1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/pagewalk.h>
3 #include <linux/mm_inline.h>
4 #include <linux/hugetlb.h>
5 #include <linux/huge_mm.h>
6 #include <linux/mount.h>
7 #include <linux/ksm.h>
8 #include <linux/seq_file.h>
9 #include <linux/highmem.h>
10 #include <linux/ptrace.h>
11 #include <linux/slab.h>
12 #include <linux/pagemap.h>
13 #include <linux/mempolicy.h>
14 #include <linux/rmap.h>
15 #include <linux/swap.h>
16 #include <linux/sched/mm.h>
17 #include <linux/swapops.h>
18 #include <linux/mmu_notifier.h>
19 #include <linux/page_idle.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/uaccess.h>
22 #include <linux/pkeys.h>
23 #include <linux/minmax.h>
24 #include <linux/overflow.h>
25 #include <linux/buildid.h>
26
27 #include <asm/elf.h>
28 #include <asm/tlb.h>
29 #include <asm/tlbflush.h>
30 #include "internal.h"
31
32 #define SENTINEL_VMA_END -1
33 #define SENTINEL_VMA_GATE -2
34
35 #define SEQ_PUT_DEC(str, val) \
36 seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
task_mem(struct seq_file * m,struct mm_struct * mm)37 void task_mem(struct seq_file *m, struct mm_struct *mm)
38 {
39 unsigned long text, lib, swap, anon, file, shmem;
40 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
41
42 anon = get_mm_counter_sum(mm, MM_ANONPAGES);
43 file = get_mm_counter_sum(mm, MM_FILEPAGES);
44 shmem = get_mm_counter_sum(mm, MM_SHMEMPAGES);
45
46 /*
47 * Note: to minimize their overhead, mm maintains hiwater_vm and
48 * hiwater_rss only when about to *lower* total_vm or rss. Any
49 * collector of these hiwater stats must therefore get total_vm
50 * and rss too, which will usually be the higher. Barriers? not
51 * worth the effort, such snapshots can always be inconsistent.
52 */
53 hiwater_vm = total_vm = mm->total_vm;
54 if (hiwater_vm < mm->hiwater_vm)
55 hiwater_vm = mm->hiwater_vm;
56 hiwater_rss = total_rss = anon + file + shmem;
57 if (hiwater_rss < mm->hiwater_rss)
58 hiwater_rss = mm->hiwater_rss;
59
60 /* split executable areas between text and lib */
61 text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
62 text = min(text, mm->exec_vm << PAGE_SHIFT);
63 lib = (mm->exec_vm << PAGE_SHIFT) - text;
64
65 swap = get_mm_counter_sum(mm, MM_SWAPENTS);
66 SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
67 SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
68 SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
69 SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
70 SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
71 SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
72 SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
73 SEQ_PUT_DEC(" kB\nRssFile:\t", file);
74 SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
75 SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
76 SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
77 seq_put_decimal_ull_width(m,
78 " kB\nVmExe:\t", text >> 10, 8);
79 seq_put_decimal_ull_width(m,
80 " kB\nVmLib:\t", lib >> 10, 8);
81 seq_put_decimal_ull_width(m,
82 " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
83 SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
84 seq_puts(m, " kB\n");
85 hugetlb_report_usage(m, mm);
86 }
87 #undef SEQ_PUT_DEC
88
task_vsize(struct mm_struct * mm)89 unsigned long task_vsize(struct mm_struct *mm)
90 {
91 return PAGE_SIZE * mm->total_vm;
92 }
93
task_statm(struct mm_struct * mm,unsigned long * shared,unsigned long * text,unsigned long * data,unsigned long * resident)94 unsigned long task_statm(struct mm_struct *mm,
95 unsigned long *shared, unsigned long *text,
96 unsigned long *data, unsigned long *resident)
97 {
98 *shared = get_mm_counter_sum(mm, MM_FILEPAGES) +
99 get_mm_counter_sum(mm, MM_SHMEMPAGES);
100 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
101 >> PAGE_SHIFT;
102 *data = mm->data_vm + mm->stack_vm;
103 *resident = *shared + get_mm_counter_sum(mm, MM_ANONPAGES);
104 return mm->total_vm;
105 }
106
107 #ifdef CONFIG_NUMA
108 /*
109 * Save get_task_policy() for show_numa_map().
110 */
hold_task_mempolicy(struct proc_maps_private * priv)111 static void hold_task_mempolicy(struct proc_maps_private *priv)
112 {
113 struct task_struct *task = priv->task;
114
115 task_lock(task);
116 priv->task_mempolicy = get_task_policy(task);
117 mpol_get(priv->task_mempolicy);
118 task_unlock(task);
119 }
release_task_mempolicy(struct proc_maps_private * priv)120 static void release_task_mempolicy(struct proc_maps_private *priv)
121 {
122 mpol_put(priv->task_mempolicy);
123 }
124 #else
hold_task_mempolicy(struct proc_maps_private * priv)125 static void hold_task_mempolicy(struct proc_maps_private *priv)
126 {
127 }
release_task_mempolicy(struct proc_maps_private * priv)128 static void release_task_mempolicy(struct proc_maps_private *priv)
129 {
130 }
131 #endif
132
133 #ifdef CONFIG_PER_VMA_LOCK
134
unlock_vma(struct proc_maps_private * priv)135 static void unlock_vma(struct proc_maps_private *priv)
136 {
137 if (priv->locked_vma) {
138 vma_end_read(priv->locked_vma);
139 priv->locked_vma = NULL;
140 }
141 }
142
143 static const struct seq_operations proc_pid_maps_op;
144
lock_vma_range(struct seq_file * m,struct proc_maps_private * priv)145 static inline bool lock_vma_range(struct seq_file *m,
146 struct proc_maps_private *priv)
147 {
148 /*
149 * smaps and numa_maps perform page table walk, therefore require
150 * mmap_lock but maps can be read with locking just the vma and
151 * walking the vma tree under rcu read protection.
152 */
153 if (m->op != &proc_pid_maps_op) {
154 if (mmap_read_lock_killable(priv->mm))
155 return false;
156
157 priv->mmap_locked = true;
158 } else {
159 rcu_read_lock();
160 priv->locked_vma = NULL;
161 priv->mmap_locked = false;
162 }
163
164 return true;
165 }
166
unlock_vma_range(struct proc_maps_private * priv)167 static inline void unlock_vma_range(struct proc_maps_private *priv)
168 {
169 if (priv->mmap_locked) {
170 mmap_read_unlock(priv->mm);
171 } else {
172 unlock_vma(priv);
173 rcu_read_unlock();
174 }
175 }
176
get_next_vma(struct proc_maps_private * priv,loff_t last_pos)177 static struct vm_area_struct *get_next_vma(struct proc_maps_private *priv,
178 loff_t last_pos)
179 {
180 struct vm_area_struct *vma;
181
182 if (priv->mmap_locked)
183 return vma_next(&priv->iter);
184
185 unlock_vma(priv);
186 vma = lock_next_vma(priv->mm, &priv->iter, last_pos);
187 if (!IS_ERR_OR_NULL(vma))
188 priv->locked_vma = vma;
189
190 return vma;
191 }
192
fallback_to_mmap_lock(struct proc_maps_private * priv,loff_t pos)193 static inline bool fallback_to_mmap_lock(struct proc_maps_private *priv,
194 loff_t pos)
195 {
196 if (priv->mmap_locked)
197 return false;
198
199 rcu_read_unlock();
200 mmap_read_lock(priv->mm);
201 /* Reinitialize the iterator after taking mmap_lock */
202 vma_iter_set(&priv->iter, pos);
203 priv->mmap_locked = true;
204
205 return true;
206 }
207
208 #else /* CONFIG_PER_VMA_LOCK */
209
lock_vma_range(struct seq_file * m,struct proc_maps_private * priv)210 static inline bool lock_vma_range(struct seq_file *m,
211 struct proc_maps_private *priv)
212 {
213 return mmap_read_lock_killable(priv->mm) == 0;
214 }
215
unlock_vma_range(struct proc_maps_private * priv)216 static inline void unlock_vma_range(struct proc_maps_private *priv)
217 {
218 mmap_read_unlock(priv->mm);
219 }
220
get_next_vma(struct proc_maps_private * priv,loff_t last_pos)221 static struct vm_area_struct *get_next_vma(struct proc_maps_private *priv,
222 loff_t last_pos)
223 {
224 return vma_next(&priv->iter);
225 }
226
fallback_to_mmap_lock(struct proc_maps_private * priv,loff_t pos)227 static inline bool fallback_to_mmap_lock(struct proc_maps_private *priv,
228 loff_t pos)
229 {
230 return false;
231 }
232
233 #endif /* CONFIG_PER_VMA_LOCK */
234
proc_get_vma(struct seq_file * m,loff_t * ppos)235 static struct vm_area_struct *proc_get_vma(struct seq_file *m, loff_t *ppos)
236 {
237 struct proc_maps_private *priv = m->private;
238 struct vm_area_struct *vma;
239
240 retry:
241 vma = get_next_vma(priv, *ppos);
242 /* EINTR of EAGAIN is possible */
243 if (IS_ERR(vma)) {
244 if (PTR_ERR(vma) == -EAGAIN && fallback_to_mmap_lock(priv, *ppos))
245 goto retry;
246
247 return vma;
248 }
249
250 /* Store previous position to be able to restart if needed */
251 priv->last_pos = *ppos;
252 if (vma) {
253 /*
254 * Track the end of the reported vma to ensure position changes
255 * even if previous vma was merged with the next vma and we
256 * found the extended vma with the same vm_start.
257 */
258 *ppos = vma->vm_end;
259 } else {
260 *ppos = SENTINEL_VMA_GATE;
261 vma = get_gate_vma(priv->mm);
262 }
263
264 return vma;
265 }
266
m_start(struct seq_file * m,loff_t * ppos)267 static void *m_start(struct seq_file *m, loff_t *ppos)
268 {
269 struct proc_maps_private *priv = m->private;
270 loff_t last_addr = *ppos;
271 struct mm_struct *mm;
272
273 /* See m_next(). Zero at the start or after lseek. */
274 if (last_addr == SENTINEL_VMA_END)
275 return NULL;
276
277 priv->task = get_proc_task(priv->inode);
278 if (!priv->task)
279 return ERR_PTR(-ESRCH);
280
281 mm = priv->mm;
282 if (!mm || !mmget_not_zero(mm)) {
283 put_task_struct(priv->task);
284 priv->task = NULL;
285 return NULL;
286 }
287
288 if (!lock_vma_range(m, priv)) {
289 mmput(mm);
290 put_task_struct(priv->task);
291 priv->task = NULL;
292 return ERR_PTR(-EINTR);
293 }
294
295 /*
296 * Reset current position if last_addr was set before
297 * and it's not a sentinel.
298 */
299 if (last_addr > 0)
300 *ppos = last_addr = priv->last_pos;
301 vma_iter_init(&priv->iter, mm, (unsigned long)last_addr);
302 hold_task_mempolicy(priv);
303 if (last_addr == SENTINEL_VMA_GATE)
304 return get_gate_vma(mm);
305
306 return proc_get_vma(m, ppos);
307 }
308
m_next(struct seq_file * m,void * v,loff_t * ppos)309 static void *m_next(struct seq_file *m, void *v, loff_t *ppos)
310 {
311 if (*ppos == SENTINEL_VMA_GATE) {
312 *ppos = SENTINEL_VMA_END;
313 return NULL;
314 }
315 return proc_get_vma(m, ppos);
316 }
317
m_stop(struct seq_file * m,void * v)318 static void m_stop(struct seq_file *m, void *v)
319 {
320 struct proc_maps_private *priv = m->private;
321 struct mm_struct *mm = priv->mm;
322
323 if (!priv->task)
324 return;
325
326 release_task_mempolicy(priv);
327 unlock_vma_range(priv);
328 mmput(mm);
329 put_task_struct(priv->task);
330 priv->task = NULL;
331 }
332
proc_maps_open(struct inode * inode,struct file * file,const struct seq_operations * ops,int psize)333 static int proc_maps_open(struct inode *inode, struct file *file,
334 const struct seq_operations *ops, int psize)
335 {
336 struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
337
338 if (!priv)
339 return -ENOMEM;
340
341 priv->inode = inode;
342 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
343 if (IS_ERR_OR_NULL(priv->mm)) {
344 int err = priv->mm ? PTR_ERR(priv->mm) : -ESRCH;
345
346 seq_release_private(inode, file);
347 return err;
348 }
349
350 return 0;
351 }
352
proc_map_release(struct inode * inode,struct file * file)353 static int proc_map_release(struct inode *inode, struct file *file)
354 {
355 struct seq_file *seq = file->private_data;
356 struct proc_maps_private *priv = seq->private;
357
358 if (priv->mm)
359 mmdrop(priv->mm);
360
361 return seq_release_private(inode, file);
362 }
363
do_maps_open(struct inode * inode,struct file * file,const struct seq_operations * ops)364 static int do_maps_open(struct inode *inode, struct file *file,
365 const struct seq_operations *ops)
366 {
367 return proc_maps_open(inode, file, ops,
368 sizeof(struct proc_maps_private));
369 }
370
get_vma_name(struct vm_area_struct * vma,const struct path ** path,const char ** name,const char ** name_fmt)371 static void get_vma_name(struct vm_area_struct *vma,
372 const struct path **path,
373 const char **name,
374 const char **name_fmt)
375 {
376 struct anon_vma_name *anon_name = vma->vm_mm ? anon_vma_name(vma) : NULL;
377
378 *name = NULL;
379 *path = NULL;
380 *name_fmt = NULL;
381
382 /*
383 * Print the dentry name for named mappings, and a
384 * special [heap] marker for the heap:
385 */
386 if (vma->vm_file) {
387 /*
388 * If user named this anon shared memory via
389 * prctl(PR_SET_VMA ..., use the provided name.
390 */
391 if (anon_name) {
392 *name_fmt = "[anon_shmem:%s]";
393 *name = anon_name->name;
394 } else {
395 *path = file_user_path(vma->vm_file);
396 }
397 return;
398 }
399
400 if (vma->vm_ops && vma->vm_ops->name) {
401 *name = vma->vm_ops->name(vma);
402 if (*name)
403 return;
404 }
405
406 *name = arch_vma_name(vma);
407 if (*name)
408 return;
409
410 if (!vma->vm_mm) {
411 *name = "[vdso]";
412 return;
413 }
414
415 if (vma_is_initial_heap(vma)) {
416 *name = "[heap]";
417 return;
418 }
419
420 if (vma_is_initial_stack(vma)) {
421 *name = "[stack]";
422 return;
423 }
424
425 if (anon_name) {
426 *name_fmt = "[anon:%s]";
427 *name = anon_name->name;
428 return;
429 }
430 }
431
show_vma_header_prefix(struct seq_file * m,unsigned long start,unsigned long end,vm_flags_t flags,unsigned long long pgoff,dev_t dev,unsigned long ino)432 static void show_vma_header_prefix(struct seq_file *m,
433 unsigned long start, unsigned long end,
434 vm_flags_t flags, unsigned long long pgoff,
435 dev_t dev, unsigned long ino)
436 {
437 seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
438 seq_put_hex_ll(m, NULL, start, 8);
439 seq_put_hex_ll(m, "-", end, 8);
440 seq_putc(m, ' ');
441 seq_putc(m, flags & VM_READ ? 'r' : '-');
442 seq_putc(m, flags & VM_WRITE ? 'w' : '-');
443 seq_putc(m, flags & VM_EXEC ? 'x' : '-');
444 seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
445 seq_put_hex_ll(m, " ", pgoff, 8);
446 seq_put_hex_ll(m, " ", MAJOR(dev), 2);
447 seq_put_hex_ll(m, ":", MINOR(dev), 2);
448 seq_put_decimal_ull(m, " ", ino);
449 seq_putc(m, ' ');
450 }
451
452 static void
show_map_vma(struct seq_file * m,struct vm_area_struct * vma)453 show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
454 {
455 const struct path *path;
456 const char *name_fmt, *name;
457 vm_flags_t flags = vma->vm_flags;
458 unsigned long ino = 0;
459 unsigned long long pgoff = 0;
460 unsigned long start, end;
461 dev_t dev = 0;
462
463 if (vma->vm_file) {
464 const struct inode *inode = file_user_inode(vma->vm_file);
465
466 dev = inode->i_sb->s_dev;
467 ino = inode->i_ino;
468 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
469 }
470
471 start = vma->vm_start;
472 end = vma->vm_end;
473 show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
474
475 get_vma_name(vma, &path, &name, &name_fmt);
476 if (path) {
477 seq_pad(m, ' ');
478 seq_path(m, path, "\n");
479 } else if (name_fmt) {
480 seq_pad(m, ' ');
481 seq_printf(m, name_fmt, name);
482 } else if (name) {
483 seq_pad(m, ' ');
484 seq_puts(m, name);
485 }
486 seq_putc(m, '\n');
487 }
488
show_map(struct seq_file * m,void * v)489 static int show_map(struct seq_file *m, void *v)
490 {
491 show_map_vma(m, v);
492 return 0;
493 }
494
495 static const struct seq_operations proc_pid_maps_op = {
496 .start = m_start,
497 .next = m_next,
498 .stop = m_stop,
499 .show = show_map
500 };
501
pid_maps_open(struct inode * inode,struct file * file)502 static int pid_maps_open(struct inode *inode, struct file *file)
503 {
504 return do_maps_open(inode, file, &proc_pid_maps_op);
505 }
506
507 #define PROCMAP_QUERY_VMA_FLAGS ( \
508 PROCMAP_QUERY_VMA_READABLE | \
509 PROCMAP_QUERY_VMA_WRITABLE | \
510 PROCMAP_QUERY_VMA_EXECUTABLE | \
511 PROCMAP_QUERY_VMA_SHARED \
512 )
513
514 #define PROCMAP_QUERY_VALID_FLAGS_MASK ( \
515 PROCMAP_QUERY_COVERING_OR_NEXT_VMA | \
516 PROCMAP_QUERY_FILE_BACKED_VMA | \
517 PROCMAP_QUERY_VMA_FLAGS \
518 )
519
query_vma_setup(struct mm_struct * mm)520 static int query_vma_setup(struct mm_struct *mm)
521 {
522 return mmap_read_lock_killable(mm);
523 }
524
query_vma_teardown(struct mm_struct * mm,struct vm_area_struct * vma)525 static void query_vma_teardown(struct mm_struct *mm, struct vm_area_struct *vma)
526 {
527 mmap_read_unlock(mm);
528 }
529
query_vma_find_by_addr(struct mm_struct * mm,unsigned long addr)530 static struct vm_area_struct *query_vma_find_by_addr(struct mm_struct *mm, unsigned long addr)
531 {
532 return find_vma(mm, addr);
533 }
534
query_matching_vma(struct mm_struct * mm,unsigned long addr,u32 flags)535 static struct vm_area_struct *query_matching_vma(struct mm_struct *mm,
536 unsigned long addr, u32 flags)
537 {
538 struct vm_area_struct *vma;
539
540 next_vma:
541 vma = query_vma_find_by_addr(mm, addr);
542 if (!vma)
543 goto no_vma;
544
545 /* user requested only file-backed VMA, keep iterating */
546 if ((flags & PROCMAP_QUERY_FILE_BACKED_VMA) && !vma->vm_file)
547 goto skip_vma;
548
549 /* VMA permissions should satisfy query flags */
550 if (flags & PROCMAP_QUERY_VMA_FLAGS) {
551 u32 perm = 0;
552
553 if (flags & PROCMAP_QUERY_VMA_READABLE)
554 perm |= VM_READ;
555 if (flags & PROCMAP_QUERY_VMA_WRITABLE)
556 perm |= VM_WRITE;
557 if (flags & PROCMAP_QUERY_VMA_EXECUTABLE)
558 perm |= VM_EXEC;
559 if (flags & PROCMAP_QUERY_VMA_SHARED)
560 perm |= VM_MAYSHARE;
561
562 if ((vma->vm_flags & perm) != perm)
563 goto skip_vma;
564 }
565
566 /* found covering VMA or user is OK with the matching next VMA */
567 if ((flags & PROCMAP_QUERY_COVERING_OR_NEXT_VMA) || vma->vm_start <= addr)
568 return vma;
569
570 skip_vma:
571 /*
572 * If the user needs closest matching VMA, keep iterating.
573 */
574 addr = vma->vm_end;
575 if (flags & PROCMAP_QUERY_COVERING_OR_NEXT_VMA)
576 goto next_vma;
577
578 no_vma:
579 return ERR_PTR(-ENOENT);
580 }
581
do_procmap_query(struct proc_maps_private * priv,void __user * uarg)582 static int do_procmap_query(struct proc_maps_private *priv, void __user *uarg)
583 {
584 struct procmap_query karg;
585 struct vm_area_struct *vma;
586 struct mm_struct *mm;
587 const char *name = NULL;
588 char build_id_buf[BUILD_ID_SIZE_MAX], *name_buf = NULL;
589 __u64 usize;
590 int err;
591
592 if (copy_from_user(&usize, (void __user *)uarg, sizeof(usize)))
593 return -EFAULT;
594 /* argument struct can never be that large, reject abuse */
595 if (usize > PAGE_SIZE)
596 return -E2BIG;
597 /* argument struct should have at least query_flags and query_addr fields */
598 if (usize < offsetofend(struct procmap_query, query_addr))
599 return -EINVAL;
600 err = copy_struct_from_user(&karg, sizeof(karg), uarg, usize);
601 if (err)
602 return err;
603
604 /* reject unknown flags */
605 if (karg.query_flags & ~PROCMAP_QUERY_VALID_FLAGS_MASK)
606 return -EINVAL;
607 /* either both buffer address and size are set, or both should be zero */
608 if (!!karg.vma_name_size != !!karg.vma_name_addr)
609 return -EINVAL;
610 if (!!karg.build_id_size != !!karg.build_id_addr)
611 return -EINVAL;
612
613 mm = priv->mm;
614 if (!mm || !mmget_not_zero(mm))
615 return -ESRCH;
616
617 err = query_vma_setup(mm);
618 if (err) {
619 mmput(mm);
620 return err;
621 }
622
623 vma = query_matching_vma(mm, karg.query_addr, karg.query_flags);
624 if (IS_ERR(vma)) {
625 err = PTR_ERR(vma);
626 vma = NULL;
627 goto out;
628 }
629
630 karg.vma_start = vma->vm_start;
631 karg.vma_end = vma->vm_end;
632
633 karg.vma_flags = 0;
634 if (vma->vm_flags & VM_READ)
635 karg.vma_flags |= PROCMAP_QUERY_VMA_READABLE;
636 if (vma->vm_flags & VM_WRITE)
637 karg.vma_flags |= PROCMAP_QUERY_VMA_WRITABLE;
638 if (vma->vm_flags & VM_EXEC)
639 karg.vma_flags |= PROCMAP_QUERY_VMA_EXECUTABLE;
640 if (vma->vm_flags & VM_MAYSHARE)
641 karg.vma_flags |= PROCMAP_QUERY_VMA_SHARED;
642
643 karg.vma_page_size = vma_kernel_pagesize(vma);
644
645 if (vma->vm_file) {
646 const struct inode *inode = file_user_inode(vma->vm_file);
647
648 karg.vma_offset = ((__u64)vma->vm_pgoff) << PAGE_SHIFT;
649 karg.dev_major = MAJOR(inode->i_sb->s_dev);
650 karg.dev_minor = MINOR(inode->i_sb->s_dev);
651 karg.inode = inode->i_ino;
652 } else {
653 karg.vma_offset = 0;
654 karg.dev_major = 0;
655 karg.dev_minor = 0;
656 karg.inode = 0;
657 }
658
659 if (karg.build_id_size) {
660 __u32 build_id_sz;
661
662 err = build_id_parse(vma, build_id_buf, &build_id_sz);
663 if (err) {
664 karg.build_id_size = 0;
665 } else {
666 if (karg.build_id_size < build_id_sz) {
667 err = -ENAMETOOLONG;
668 goto out;
669 }
670 karg.build_id_size = build_id_sz;
671 }
672 }
673
674 if (karg.vma_name_size) {
675 size_t name_buf_sz = min_t(size_t, PATH_MAX, karg.vma_name_size);
676 const struct path *path;
677 const char *name_fmt;
678 size_t name_sz = 0;
679
680 get_vma_name(vma, &path, &name, &name_fmt);
681
682 if (path || name_fmt || name) {
683 name_buf = kmalloc(name_buf_sz, GFP_KERNEL);
684 if (!name_buf) {
685 err = -ENOMEM;
686 goto out;
687 }
688 }
689 if (path) {
690 name = d_path(path, name_buf, name_buf_sz);
691 if (IS_ERR(name)) {
692 err = PTR_ERR(name);
693 goto out;
694 }
695 name_sz = name_buf + name_buf_sz - name;
696 } else if (name || name_fmt) {
697 name_sz = 1 + snprintf(name_buf, name_buf_sz, name_fmt ?: "%s", name);
698 name = name_buf;
699 }
700 if (name_sz > name_buf_sz) {
701 err = -ENAMETOOLONG;
702 goto out;
703 }
704 karg.vma_name_size = name_sz;
705 }
706
707 /* unlock vma or mmap_lock, and put mm_struct before copying data to user */
708 query_vma_teardown(mm, vma);
709 mmput(mm);
710
711 if (karg.vma_name_size && copy_to_user(u64_to_user_ptr(karg.vma_name_addr),
712 name, karg.vma_name_size)) {
713 kfree(name_buf);
714 return -EFAULT;
715 }
716 kfree(name_buf);
717
718 if (karg.build_id_size && copy_to_user(u64_to_user_ptr(karg.build_id_addr),
719 build_id_buf, karg.build_id_size))
720 return -EFAULT;
721
722 if (copy_to_user(uarg, &karg, min_t(size_t, sizeof(karg), usize)))
723 return -EFAULT;
724
725 return 0;
726
727 out:
728 query_vma_teardown(mm, vma);
729 mmput(mm);
730 kfree(name_buf);
731 return err;
732 }
733
procfs_procmap_ioctl(struct file * file,unsigned int cmd,unsigned long arg)734 static long procfs_procmap_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
735 {
736 struct seq_file *seq = file->private_data;
737 struct proc_maps_private *priv = seq->private;
738
739 switch (cmd) {
740 case PROCMAP_QUERY:
741 return do_procmap_query(priv, (void __user *)arg);
742 default:
743 return -ENOIOCTLCMD;
744 }
745 }
746
747 const struct file_operations proc_pid_maps_operations = {
748 .open = pid_maps_open,
749 .read = seq_read,
750 .llseek = seq_lseek,
751 .release = proc_map_release,
752 .unlocked_ioctl = procfs_procmap_ioctl,
753 .compat_ioctl = compat_ptr_ioctl,
754 };
755
756 /*
757 * Proportional Set Size(PSS): my share of RSS.
758 *
759 * PSS of a process is the count of pages it has in memory, where each
760 * page is divided by the number of processes sharing it. So if a
761 * process has 1000 pages all to itself, and 1000 shared with one other
762 * process, its PSS will be 1500.
763 *
764 * To keep (accumulated) division errors low, we adopt a 64bit
765 * fixed-point pss counter to minimize division errors. So (pss >>
766 * PSS_SHIFT) would be the real byte count.
767 *
768 * A shift of 12 before division means (assuming 4K page size):
769 * - 1M 3-user-pages add up to 8KB errors;
770 * - supports mapcount up to 2^24, or 16M;
771 * - supports PSS up to 2^52 bytes, or 4PB.
772 */
773 #define PSS_SHIFT 12
774
775 #ifdef CONFIG_PROC_PAGE_MONITOR
776 struct mem_size_stats {
777 unsigned long resident;
778 unsigned long shared_clean;
779 unsigned long shared_dirty;
780 unsigned long private_clean;
781 unsigned long private_dirty;
782 unsigned long referenced;
783 unsigned long anonymous;
784 unsigned long lazyfree;
785 unsigned long anonymous_thp;
786 unsigned long shmem_thp;
787 unsigned long file_thp;
788 unsigned long swap;
789 unsigned long shared_hugetlb;
790 unsigned long private_hugetlb;
791 unsigned long ksm;
792 u64 pss;
793 u64 pss_anon;
794 u64 pss_file;
795 u64 pss_shmem;
796 u64 pss_dirty;
797 u64 pss_locked;
798 u64 swap_pss;
799 };
800
smaps_page_accumulate(struct mem_size_stats * mss,struct folio * folio,unsigned long size,unsigned long pss,bool dirty,bool locked,bool private)801 static void smaps_page_accumulate(struct mem_size_stats *mss,
802 struct folio *folio, unsigned long size, unsigned long pss,
803 bool dirty, bool locked, bool private)
804 {
805 mss->pss += pss;
806
807 if (folio_test_anon(folio))
808 mss->pss_anon += pss;
809 else if (folio_test_swapbacked(folio))
810 mss->pss_shmem += pss;
811 else
812 mss->pss_file += pss;
813
814 if (locked)
815 mss->pss_locked += pss;
816
817 if (dirty || folio_test_dirty(folio)) {
818 mss->pss_dirty += pss;
819 if (private)
820 mss->private_dirty += size;
821 else
822 mss->shared_dirty += size;
823 } else {
824 if (private)
825 mss->private_clean += size;
826 else
827 mss->shared_clean += size;
828 }
829 }
830
smaps_account(struct mem_size_stats * mss,struct page * page,bool compound,bool young,bool dirty,bool locked,bool present)831 static void smaps_account(struct mem_size_stats *mss, struct page *page,
832 bool compound, bool young, bool dirty, bool locked,
833 bool present)
834 {
835 struct folio *folio = page_folio(page);
836 int i, nr = compound ? compound_nr(page) : 1;
837 unsigned long size = nr * PAGE_SIZE;
838 bool exclusive;
839 int mapcount;
840
841 /*
842 * First accumulate quantities that depend only on |size| and the type
843 * of the compound page.
844 */
845 if (folio_test_anon(folio)) {
846 mss->anonymous += size;
847 if (!folio_test_swapbacked(folio) && !dirty &&
848 !folio_test_dirty(folio))
849 mss->lazyfree += size;
850 }
851
852 if (folio_test_ksm(folio))
853 mss->ksm += size;
854
855 mss->resident += size;
856 /* Accumulate the size in pages that have been accessed. */
857 if (young || folio_test_young(folio) || folio_test_referenced(folio))
858 mss->referenced += size;
859
860 /*
861 * Then accumulate quantities that may depend on sharing, or that may
862 * differ page-by-page.
863 *
864 * refcount == 1 for present entries guarantees that the folio is mapped
865 * exactly once. For large folios this implies that exactly one
866 * PTE/PMD/... maps (a part of) this folio.
867 *
868 * Treat all non-present entries (where relying on the mapcount and
869 * refcount doesn't make sense) as "maybe shared, but not sure how
870 * often". We treat device private entries as being fake-present.
871 *
872 * Note that it would not be safe to read the mapcount especially for
873 * pages referenced by migration entries, even with the PTL held.
874 */
875 if (folio_ref_count(folio) == 1 || !present) {
876 smaps_page_accumulate(mss, folio, size, size << PSS_SHIFT,
877 dirty, locked, present);
878 return;
879 }
880
881 if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) {
882 mapcount = folio_average_page_mapcount(folio);
883 exclusive = !folio_maybe_mapped_shared(folio);
884 }
885
886 /*
887 * We obtain a snapshot of the mapcount. Without holding the folio lock
888 * this snapshot can be slightly wrong as we cannot always read the
889 * mapcount atomically.
890 */
891 for (i = 0; i < nr; i++, page++) {
892 unsigned long pss = PAGE_SIZE << PSS_SHIFT;
893
894 if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT)) {
895 mapcount = folio_precise_page_mapcount(folio, page);
896 exclusive = mapcount < 2;
897 }
898
899 if (mapcount >= 2)
900 pss /= mapcount;
901 smaps_page_accumulate(mss, folio, PAGE_SIZE, pss,
902 dirty, locked, exclusive);
903 }
904 }
905
906 #ifdef CONFIG_SHMEM
smaps_pte_hole(unsigned long addr,unsigned long end,__always_unused int depth,struct mm_walk * walk)907 static int smaps_pte_hole(unsigned long addr, unsigned long end,
908 __always_unused int depth, struct mm_walk *walk)
909 {
910 struct mem_size_stats *mss = walk->private;
911 struct vm_area_struct *vma = walk->vma;
912
913 mss->swap += shmem_partial_swap_usage(walk->vma->vm_file->f_mapping,
914 linear_page_index(vma, addr),
915 linear_page_index(vma, end));
916
917 return 0;
918 }
919 #else
920 #define smaps_pte_hole NULL
921 #endif /* CONFIG_SHMEM */
922
smaps_pte_hole_lookup(unsigned long addr,struct mm_walk * walk)923 static void smaps_pte_hole_lookup(unsigned long addr, struct mm_walk *walk)
924 {
925 #ifdef CONFIG_SHMEM
926 if (walk->ops->pte_hole) {
927 /* depth is not used */
928 smaps_pte_hole(addr, addr + PAGE_SIZE, 0, walk);
929 }
930 #endif
931 }
932
smaps_pte_entry(pte_t * pte,unsigned long addr,struct mm_walk * walk)933 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
934 struct mm_walk *walk)
935 {
936 struct mem_size_stats *mss = walk->private;
937 struct vm_area_struct *vma = walk->vma;
938 bool locked = !!(vma->vm_flags & VM_LOCKED);
939 struct page *page = NULL;
940 bool present = false, young = false, dirty = false;
941 pte_t ptent = ptep_get(pte);
942
943 if (pte_present(ptent)) {
944 page = vm_normal_page(vma, addr, ptent);
945 young = pte_young(ptent);
946 dirty = pte_dirty(ptent);
947 present = true;
948 } else if (is_swap_pte(ptent)) {
949 swp_entry_t swpent = pte_to_swp_entry(ptent);
950
951 if (!non_swap_entry(swpent)) {
952 int mapcount;
953
954 mss->swap += PAGE_SIZE;
955 mapcount = swp_swapcount(swpent);
956 if (mapcount >= 2) {
957 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
958
959 do_div(pss_delta, mapcount);
960 mss->swap_pss += pss_delta;
961 } else {
962 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
963 }
964 } else if (is_pfn_swap_entry(swpent)) {
965 if (is_device_private_entry(swpent))
966 present = true;
967 page = pfn_swap_entry_to_page(swpent);
968 }
969 } else {
970 smaps_pte_hole_lookup(addr, walk);
971 return;
972 }
973
974 if (!page)
975 return;
976
977 smaps_account(mss, page, false, young, dirty, locked, present);
978 }
979
980 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
smaps_pmd_entry(pmd_t * pmd,unsigned long addr,struct mm_walk * walk)981 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
982 struct mm_walk *walk)
983 {
984 struct mem_size_stats *mss = walk->private;
985 struct vm_area_struct *vma = walk->vma;
986 bool locked = !!(vma->vm_flags & VM_LOCKED);
987 struct page *page = NULL;
988 bool present = false;
989 struct folio *folio;
990
991 if (pmd_present(*pmd)) {
992 page = vm_normal_page_pmd(vma, addr, *pmd);
993 present = true;
994 } else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) {
995 swp_entry_t entry = pmd_to_swp_entry(*pmd);
996
997 if (is_pfn_swap_entry(entry))
998 page = pfn_swap_entry_to_page(entry);
999 }
1000 if (IS_ERR_OR_NULL(page))
1001 return;
1002 folio = page_folio(page);
1003 if (folio_test_anon(folio))
1004 mss->anonymous_thp += HPAGE_PMD_SIZE;
1005 else if (folio_test_swapbacked(folio))
1006 mss->shmem_thp += HPAGE_PMD_SIZE;
1007 else if (folio_is_zone_device(folio))
1008 /* pass */;
1009 else
1010 mss->file_thp += HPAGE_PMD_SIZE;
1011
1012 smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd),
1013 locked, present);
1014 }
1015 #else
smaps_pmd_entry(pmd_t * pmd,unsigned long addr,struct mm_walk * walk)1016 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
1017 struct mm_walk *walk)
1018 {
1019 }
1020 #endif
1021
smaps_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)1022 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
1023 struct mm_walk *walk)
1024 {
1025 struct vm_area_struct *vma = walk->vma;
1026 pte_t *pte;
1027 spinlock_t *ptl;
1028
1029 ptl = pmd_trans_huge_lock(pmd, vma);
1030 if (ptl) {
1031 smaps_pmd_entry(pmd, addr, walk);
1032 spin_unlock(ptl);
1033 goto out;
1034 }
1035
1036 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1037 if (!pte) {
1038 walk->action = ACTION_AGAIN;
1039 return 0;
1040 }
1041 for (; addr != end; pte++, addr += PAGE_SIZE)
1042 smaps_pte_entry(pte, addr, walk);
1043 pte_unmap_unlock(pte - 1, ptl);
1044 out:
1045 cond_resched();
1046 return 0;
1047 }
1048
show_smap_vma_flags(struct seq_file * m,struct vm_area_struct * vma)1049 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
1050 {
1051 /*
1052 * Don't forget to update Documentation/ on changes.
1053 *
1054 * The length of the second argument of mnemonics[]
1055 * needs to be 3 instead of previously set 2
1056 * (i.e. from [BITS_PER_LONG][2] to [BITS_PER_LONG][3])
1057 * to avoid spurious
1058 * -Werror=unterminated-string-initialization warning
1059 * with GCC 15
1060 */
1061 static const char mnemonics[BITS_PER_LONG][3] = {
1062 /*
1063 * In case if we meet a flag we don't know about.
1064 */
1065 [0 ... (BITS_PER_LONG-1)] = "??",
1066
1067 [ilog2(VM_READ)] = "rd",
1068 [ilog2(VM_WRITE)] = "wr",
1069 [ilog2(VM_EXEC)] = "ex",
1070 [ilog2(VM_SHARED)] = "sh",
1071 [ilog2(VM_MAYREAD)] = "mr",
1072 [ilog2(VM_MAYWRITE)] = "mw",
1073 [ilog2(VM_MAYEXEC)] = "me",
1074 [ilog2(VM_MAYSHARE)] = "ms",
1075 [ilog2(VM_GROWSDOWN)] = "gd",
1076 [ilog2(VM_PFNMAP)] = "pf",
1077 [ilog2(VM_LOCKED)] = "lo",
1078 [ilog2(VM_IO)] = "io",
1079 [ilog2(VM_SEQ_READ)] = "sr",
1080 [ilog2(VM_RAND_READ)] = "rr",
1081 [ilog2(VM_DONTCOPY)] = "dc",
1082 [ilog2(VM_DONTEXPAND)] = "de",
1083 [ilog2(VM_LOCKONFAULT)] = "lf",
1084 [ilog2(VM_ACCOUNT)] = "ac",
1085 [ilog2(VM_NORESERVE)] = "nr",
1086 [ilog2(VM_HUGETLB)] = "ht",
1087 [ilog2(VM_SYNC)] = "sf",
1088 [ilog2(VM_ARCH_1)] = "ar",
1089 [ilog2(VM_WIPEONFORK)] = "wf",
1090 [ilog2(VM_DONTDUMP)] = "dd",
1091 #ifdef CONFIG_ARM64_BTI
1092 [ilog2(VM_ARM64_BTI)] = "bt",
1093 #endif
1094 #ifdef CONFIG_MEM_SOFT_DIRTY
1095 [ilog2(VM_SOFTDIRTY)] = "sd",
1096 #endif
1097 [ilog2(VM_MIXEDMAP)] = "mm",
1098 [ilog2(VM_HUGEPAGE)] = "hg",
1099 [ilog2(VM_NOHUGEPAGE)] = "nh",
1100 [ilog2(VM_MERGEABLE)] = "mg",
1101 [ilog2(VM_UFFD_MISSING)]= "um",
1102 [ilog2(VM_UFFD_WP)] = "uw",
1103 #ifdef CONFIG_ARM64_MTE
1104 [ilog2(VM_MTE)] = "mt",
1105 [ilog2(VM_MTE_ALLOWED)] = "",
1106 #endif
1107 #ifdef CONFIG_ARCH_HAS_PKEYS
1108 /* These come out via ProtectionKey: */
1109 [ilog2(VM_PKEY_BIT0)] = "",
1110 [ilog2(VM_PKEY_BIT1)] = "",
1111 [ilog2(VM_PKEY_BIT2)] = "",
1112 #if VM_PKEY_BIT3
1113 [ilog2(VM_PKEY_BIT3)] = "",
1114 #endif
1115 #if VM_PKEY_BIT4
1116 [ilog2(VM_PKEY_BIT4)] = "",
1117 #endif
1118 #endif /* CONFIG_ARCH_HAS_PKEYS */
1119 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1120 [ilog2(VM_UFFD_MINOR)] = "ui",
1121 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
1122 #ifdef CONFIG_ARCH_HAS_USER_SHADOW_STACK
1123 [ilog2(VM_SHADOW_STACK)] = "ss",
1124 #endif
1125 #if defined(CONFIG_64BIT) || defined(CONFIG_PPC32)
1126 [ilog2(VM_DROPPABLE)] = "dp",
1127 #endif
1128 #ifdef CONFIG_64BIT
1129 [ilog2(VM_SEALED)] = "sl",
1130 #endif
1131 };
1132 size_t i;
1133
1134 seq_puts(m, "VmFlags: ");
1135 for (i = 0; i < BITS_PER_LONG; i++) {
1136 if (!mnemonics[i][0])
1137 continue;
1138 if (vma->vm_flags & (1UL << i))
1139 seq_printf(m, "%s ", mnemonics[i]);
1140 }
1141 seq_putc(m, '\n');
1142 }
1143
1144 #ifdef CONFIG_HUGETLB_PAGE
smaps_hugetlb_range(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)1145 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
1146 unsigned long addr, unsigned long end,
1147 struct mm_walk *walk)
1148 {
1149 struct mem_size_stats *mss = walk->private;
1150 struct vm_area_struct *vma = walk->vma;
1151 pte_t ptent = huge_ptep_get(walk->mm, addr, pte);
1152 struct folio *folio = NULL;
1153 bool present = false;
1154
1155 if (pte_present(ptent)) {
1156 folio = page_folio(pte_page(ptent));
1157 present = true;
1158 } else if (is_swap_pte(ptent)) {
1159 swp_entry_t swpent = pte_to_swp_entry(ptent);
1160
1161 if (is_pfn_swap_entry(swpent))
1162 folio = pfn_swap_entry_folio(swpent);
1163 }
1164
1165 if (folio) {
1166 /* We treat non-present entries as "maybe shared". */
1167 if (!present || folio_maybe_mapped_shared(folio) ||
1168 hugetlb_pmd_shared(pte))
1169 mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
1170 else
1171 mss->private_hugetlb += huge_page_size(hstate_vma(vma));
1172 }
1173 return 0;
1174 }
1175 #else
1176 #define smaps_hugetlb_range NULL
1177 #endif /* HUGETLB_PAGE */
1178
1179 static const struct mm_walk_ops smaps_walk_ops = {
1180 .pmd_entry = smaps_pte_range,
1181 .hugetlb_entry = smaps_hugetlb_range,
1182 .walk_lock = PGWALK_RDLOCK,
1183 };
1184
1185 static const struct mm_walk_ops smaps_shmem_walk_ops = {
1186 .pmd_entry = smaps_pte_range,
1187 .hugetlb_entry = smaps_hugetlb_range,
1188 .pte_hole = smaps_pte_hole,
1189 .walk_lock = PGWALK_RDLOCK,
1190 };
1191
1192 /*
1193 * Gather mem stats from @vma with the indicated beginning
1194 * address @start, and keep them in @mss.
1195 *
1196 * Use vm_start of @vma as the beginning address if @start is 0.
1197 */
smap_gather_stats(struct vm_area_struct * vma,struct mem_size_stats * mss,unsigned long start)1198 static void smap_gather_stats(struct vm_area_struct *vma,
1199 struct mem_size_stats *mss, unsigned long start)
1200 {
1201 const struct mm_walk_ops *ops = &smaps_walk_ops;
1202
1203 /* Invalid start */
1204 if (start >= vma->vm_end)
1205 return;
1206
1207 if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
1208 /*
1209 * For shared or readonly shmem mappings we know that all
1210 * swapped out pages belong to the shmem object, and we can
1211 * obtain the swap value much more efficiently. For private
1212 * writable mappings, we might have COW pages that are
1213 * not affected by the parent swapped out pages of the shmem
1214 * object, so we have to distinguish them during the page walk.
1215 * Unless we know that the shmem object (or the part mapped by
1216 * our VMA) has no swapped out pages at all.
1217 */
1218 unsigned long shmem_swapped = shmem_swap_usage(vma);
1219
1220 if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
1221 !(vma->vm_flags & VM_WRITE))) {
1222 mss->swap += shmem_swapped;
1223 } else {
1224 ops = &smaps_shmem_walk_ops;
1225 }
1226 }
1227
1228 /* mmap_lock is held in m_start */
1229 if (!start)
1230 walk_page_vma(vma, ops, mss);
1231 else
1232 walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss);
1233 }
1234
1235 #define SEQ_PUT_DEC(str, val) \
1236 seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
1237
1238 /* Show the contents common for smaps and smaps_rollup */
__show_smap(struct seq_file * m,const struct mem_size_stats * mss,bool rollup_mode)1239 static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
1240 bool rollup_mode)
1241 {
1242 SEQ_PUT_DEC("Rss: ", mss->resident);
1243 SEQ_PUT_DEC(" kB\nPss: ", mss->pss >> PSS_SHIFT);
1244 SEQ_PUT_DEC(" kB\nPss_Dirty: ", mss->pss_dirty >> PSS_SHIFT);
1245 if (rollup_mode) {
1246 /*
1247 * These are meaningful only for smaps_rollup, otherwise two of
1248 * them are zero, and the other one is the same as Pss.
1249 */
1250 SEQ_PUT_DEC(" kB\nPss_Anon: ",
1251 mss->pss_anon >> PSS_SHIFT);
1252 SEQ_PUT_DEC(" kB\nPss_File: ",
1253 mss->pss_file >> PSS_SHIFT);
1254 SEQ_PUT_DEC(" kB\nPss_Shmem: ",
1255 mss->pss_shmem >> PSS_SHIFT);
1256 }
1257 SEQ_PUT_DEC(" kB\nShared_Clean: ", mss->shared_clean);
1258 SEQ_PUT_DEC(" kB\nShared_Dirty: ", mss->shared_dirty);
1259 SEQ_PUT_DEC(" kB\nPrivate_Clean: ", mss->private_clean);
1260 SEQ_PUT_DEC(" kB\nPrivate_Dirty: ", mss->private_dirty);
1261 SEQ_PUT_DEC(" kB\nReferenced: ", mss->referenced);
1262 SEQ_PUT_DEC(" kB\nAnonymous: ", mss->anonymous);
1263 SEQ_PUT_DEC(" kB\nKSM: ", mss->ksm);
1264 SEQ_PUT_DEC(" kB\nLazyFree: ", mss->lazyfree);
1265 SEQ_PUT_DEC(" kB\nAnonHugePages: ", mss->anonymous_thp);
1266 SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
1267 SEQ_PUT_DEC(" kB\nFilePmdMapped: ", mss->file_thp);
1268 SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
1269 seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
1270 mss->private_hugetlb >> 10, 7);
1271 SEQ_PUT_DEC(" kB\nSwap: ", mss->swap);
1272 SEQ_PUT_DEC(" kB\nSwapPss: ",
1273 mss->swap_pss >> PSS_SHIFT);
1274 SEQ_PUT_DEC(" kB\nLocked: ",
1275 mss->pss_locked >> PSS_SHIFT);
1276 seq_puts(m, " kB\n");
1277 }
1278
show_smap(struct seq_file * m,void * v)1279 static int show_smap(struct seq_file *m, void *v)
1280 {
1281 struct vm_area_struct *vma = v;
1282 struct mem_size_stats mss = {};
1283
1284 smap_gather_stats(vma, &mss, 0);
1285
1286 show_map_vma(m, vma);
1287
1288 SEQ_PUT_DEC("Size: ", vma->vm_end - vma->vm_start);
1289 SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
1290 SEQ_PUT_DEC(" kB\nMMUPageSize: ", vma_mmu_pagesize(vma));
1291 seq_puts(m, " kB\n");
1292
1293 __show_smap(m, &mss, false);
1294
1295 seq_printf(m, "THPeligible: %8u\n",
1296 !!thp_vma_allowable_orders(vma, vma->vm_flags,
1297 TVA_SMAPS | TVA_ENFORCE_SYSFS, THP_ORDERS_ALL));
1298
1299 if (arch_pkeys_enabled())
1300 seq_printf(m, "ProtectionKey: %8u\n", vma_pkey(vma));
1301 show_smap_vma_flags(m, vma);
1302
1303 return 0;
1304 }
1305
show_smaps_rollup(struct seq_file * m,void * v)1306 static int show_smaps_rollup(struct seq_file *m, void *v)
1307 {
1308 struct proc_maps_private *priv = m->private;
1309 struct mem_size_stats mss = {};
1310 struct mm_struct *mm = priv->mm;
1311 struct vm_area_struct *vma;
1312 unsigned long vma_start = 0, last_vma_end = 0;
1313 int ret = 0;
1314 VMA_ITERATOR(vmi, mm, 0);
1315
1316 priv->task = get_proc_task(priv->inode);
1317 if (!priv->task)
1318 return -ESRCH;
1319
1320 if (!mm || !mmget_not_zero(mm)) {
1321 ret = -ESRCH;
1322 goto out_put_task;
1323 }
1324
1325 ret = mmap_read_lock_killable(mm);
1326 if (ret)
1327 goto out_put_mm;
1328
1329 hold_task_mempolicy(priv);
1330 vma = vma_next(&vmi);
1331
1332 if (unlikely(!vma))
1333 goto empty_set;
1334
1335 vma_start = vma->vm_start;
1336 do {
1337 smap_gather_stats(vma, &mss, 0);
1338 last_vma_end = vma->vm_end;
1339
1340 /*
1341 * Release mmap_lock temporarily if someone wants to
1342 * access it for write request.
1343 */
1344 if (mmap_lock_is_contended(mm)) {
1345 vma_iter_invalidate(&vmi);
1346 mmap_read_unlock(mm);
1347 ret = mmap_read_lock_killable(mm);
1348 if (ret) {
1349 release_task_mempolicy(priv);
1350 goto out_put_mm;
1351 }
1352
1353 /*
1354 * After dropping the lock, there are four cases to
1355 * consider. See the following example for explanation.
1356 *
1357 * +------+------+-----------+
1358 * | VMA1 | VMA2 | VMA3 |
1359 * +------+------+-----------+
1360 * | | | |
1361 * 4k 8k 16k 400k
1362 *
1363 * Suppose we drop the lock after reading VMA2 due to
1364 * contention, then we get:
1365 *
1366 * last_vma_end = 16k
1367 *
1368 * 1) VMA2 is freed, but VMA3 exists:
1369 *
1370 * vma_next(vmi) will return VMA3.
1371 * In this case, just continue from VMA3.
1372 *
1373 * 2) VMA2 still exists:
1374 *
1375 * vma_next(vmi) will return VMA3.
1376 * In this case, just continue from VMA3.
1377 *
1378 * 3) No more VMAs can be found:
1379 *
1380 * vma_next(vmi) will return NULL.
1381 * No more things to do, just break.
1382 *
1383 * 4) (last_vma_end - 1) is the middle of a vma (VMA'):
1384 *
1385 * vma_next(vmi) will return VMA' whose range
1386 * contains last_vma_end.
1387 * Iterate VMA' from last_vma_end.
1388 */
1389 vma = vma_next(&vmi);
1390 /* Case 3 above */
1391 if (!vma)
1392 break;
1393
1394 /* Case 1 and 2 above */
1395 if (vma->vm_start >= last_vma_end) {
1396 smap_gather_stats(vma, &mss, 0);
1397 last_vma_end = vma->vm_end;
1398 continue;
1399 }
1400
1401 /* Case 4 above */
1402 if (vma->vm_end > last_vma_end) {
1403 smap_gather_stats(vma, &mss, last_vma_end);
1404 last_vma_end = vma->vm_end;
1405 }
1406 }
1407 } for_each_vma(vmi, vma);
1408
1409 empty_set:
1410 show_vma_header_prefix(m, vma_start, last_vma_end, 0, 0, 0, 0);
1411 seq_pad(m, ' ');
1412 seq_puts(m, "[rollup]\n");
1413
1414 __show_smap(m, &mss, true);
1415
1416 release_task_mempolicy(priv);
1417 mmap_read_unlock(mm);
1418
1419 out_put_mm:
1420 mmput(mm);
1421 out_put_task:
1422 put_task_struct(priv->task);
1423 priv->task = NULL;
1424
1425 return ret;
1426 }
1427 #undef SEQ_PUT_DEC
1428
1429 static const struct seq_operations proc_pid_smaps_op = {
1430 .start = m_start,
1431 .next = m_next,
1432 .stop = m_stop,
1433 .show = show_smap
1434 };
1435
pid_smaps_open(struct inode * inode,struct file * file)1436 static int pid_smaps_open(struct inode *inode, struct file *file)
1437 {
1438 return do_maps_open(inode, file, &proc_pid_smaps_op);
1439 }
1440
smaps_rollup_open(struct inode * inode,struct file * file)1441 static int smaps_rollup_open(struct inode *inode, struct file *file)
1442 {
1443 int ret;
1444 struct proc_maps_private *priv;
1445
1446 priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
1447 if (!priv)
1448 return -ENOMEM;
1449
1450 ret = single_open(file, show_smaps_rollup, priv);
1451 if (ret)
1452 goto out_free;
1453
1454 priv->inode = inode;
1455 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
1456 if (IS_ERR_OR_NULL(priv->mm)) {
1457 ret = priv->mm ? PTR_ERR(priv->mm) : -ESRCH;
1458
1459 single_release(inode, file);
1460 goto out_free;
1461 }
1462
1463 return 0;
1464
1465 out_free:
1466 kfree(priv);
1467 return ret;
1468 }
1469
smaps_rollup_release(struct inode * inode,struct file * file)1470 static int smaps_rollup_release(struct inode *inode, struct file *file)
1471 {
1472 struct seq_file *seq = file->private_data;
1473 struct proc_maps_private *priv = seq->private;
1474
1475 if (priv->mm)
1476 mmdrop(priv->mm);
1477
1478 kfree(priv);
1479 return single_release(inode, file);
1480 }
1481
1482 const struct file_operations proc_pid_smaps_operations = {
1483 .open = pid_smaps_open,
1484 .read = seq_read,
1485 .llseek = seq_lseek,
1486 .release = proc_map_release,
1487 };
1488
1489 const struct file_operations proc_pid_smaps_rollup_operations = {
1490 .open = smaps_rollup_open,
1491 .read = seq_read,
1492 .llseek = seq_lseek,
1493 .release = smaps_rollup_release,
1494 };
1495
1496 enum clear_refs_types {
1497 CLEAR_REFS_ALL = 1,
1498 CLEAR_REFS_ANON,
1499 CLEAR_REFS_MAPPED,
1500 CLEAR_REFS_SOFT_DIRTY,
1501 CLEAR_REFS_MM_HIWATER_RSS,
1502 CLEAR_REFS_LAST,
1503 };
1504
1505 struct clear_refs_private {
1506 enum clear_refs_types type;
1507 };
1508
1509 #ifdef CONFIG_MEM_SOFT_DIRTY
1510
pte_is_pinned(struct vm_area_struct * vma,unsigned long addr,pte_t pte)1511 static inline bool pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1512 {
1513 struct folio *folio;
1514
1515 if (!pte_write(pte))
1516 return false;
1517 if (!is_cow_mapping(vma->vm_flags))
1518 return false;
1519 if (likely(!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)))
1520 return false;
1521 folio = vm_normal_folio(vma, addr, pte);
1522 if (!folio)
1523 return false;
1524 return folio_maybe_dma_pinned(folio);
1525 }
1526
clear_soft_dirty(struct vm_area_struct * vma,unsigned long addr,pte_t * pte)1527 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1528 unsigned long addr, pte_t *pte)
1529 {
1530 /*
1531 * The soft-dirty tracker uses #PF-s to catch writes
1532 * to pages, so write-protect the pte as well. See the
1533 * Documentation/admin-guide/mm/soft-dirty.rst for full description
1534 * of how soft-dirty works.
1535 */
1536 pte_t ptent = ptep_get(pte);
1537
1538 if (pte_present(ptent)) {
1539 pte_t old_pte;
1540
1541 if (pte_is_pinned(vma, addr, ptent))
1542 return;
1543 old_pte = ptep_modify_prot_start(vma, addr, pte);
1544 ptent = pte_wrprotect(old_pte);
1545 ptent = pte_clear_soft_dirty(ptent);
1546 ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
1547 } else if (is_swap_pte(ptent)) {
1548 ptent = pte_swp_clear_soft_dirty(ptent);
1549 set_pte_at(vma->vm_mm, addr, pte, ptent);
1550 }
1551 }
1552 #else
clear_soft_dirty(struct vm_area_struct * vma,unsigned long addr,pte_t * pte)1553 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1554 unsigned long addr, pte_t *pte)
1555 {
1556 }
1557 #endif
1558
1559 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
clear_soft_dirty_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1560 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1561 unsigned long addr, pmd_t *pmdp)
1562 {
1563 pmd_t old, pmd = *pmdp;
1564
1565 if (pmd_present(pmd)) {
1566 /* See comment in change_huge_pmd() */
1567 old = pmdp_invalidate(vma, addr, pmdp);
1568 if (pmd_dirty(old))
1569 pmd = pmd_mkdirty(pmd);
1570 if (pmd_young(old))
1571 pmd = pmd_mkyoung(pmd);
1572
1573 pmd = pmd_wrprotect(pmd);
1574 pmd = pmd_clear_soft_dirty(pmd);
1575
1576 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1577 } else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1578 pmd = pmd_swp_clear_soft_dirty(pmd);
1579 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1580 }
1581 }
1582 #else
clear_soft_dirty_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1583 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1584 unsigned long addr, pmd_t *pmdp)
1585 {
1586 }
1587 #endif
1588
clear_refs_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)1589 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1590 unsigned long end, struct mm_walk *walk)
1591 {
1592 struct clear_refs_private *cp = walk->private;
1593 struct vm_area_struct *vma = walk->vma;
1594 pte_t *pte, ptent;
1595 spinlock_t *ptl;
1596 struct folio *folio;
1597
1598 ptl = pmd_trans_huge_lock(pmd, vma);
1599 if (ptl) {
1600 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1601 clear_soft_dirty_pmd(vma, addr, pmd);
1602 goto out;
1603 }
1604
1605 if (!pmd_present(*pmd))
1606 goto out;
1607
1608 folio = pmd_folio(*pmd);
1609
1610 /* Clear accessed and referenced bits. */
1611 pmdp_test_and_clear_young(vma, addr, pmd);
1612 folio_test_clear_young(folio);
1613 folio_clear_referenced(folio);
1614 out:
1615 spin_unlock(ptl);
1616 return 0;
1617 }
1618
1619 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1620 if (!pte) {
1621 walk->action = ACTION_AGAIN;
1622 return 0;
1623 }
1624 for (; addr != end; pte++, addr += PAGE_SIZE) {
1625 ptent = ptep_get(pte);
1626
1627 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1628 clear_soft_dirty(vma, addr, pte);
1629 continue;
1630 }
1631
1632 if (!pte_present(ptent))
1633 continue;
1634
1635 folio = vm_normal_folio(vma, addr, ptent);
1636 if (!folio)
1637 continue;
1638
1639 /* Clear accessed and referenced bits. */
1640 ptep_test_and_clear_young(vma, addr, pte);
1641 folio_test_clear_young(folio);
1642 folio_clear_referenced(folio);
1643 }
1644 pte_unmap_unlock(pte - 1, ptl);
1645 cond_resched();
1646 return 0;
1647 }
1648
clear_refs_test_walk(unsigned long start,unsigned long end,struct mm_walk * walk)1649 static int clear_refs_test_walk(unsigned long start, unsigned long end,
1650 struct mm_walk *walk)
1651 {
1652 struct clear_refs_private *cp = walk->private;
1653 struct vm_area_struct *vma = walk->vma;
1654
1655 if (vma->vm_flags & VM_PFNMAP)
1656 return 1;
1657
1658 /*
1659 * Writing 1 to /proc/pid/clear_refs affects all pages.
1660 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1661 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1662 * Writing 4 to /proc/pid/clear_refs affects all pages.
1663 */
1664 if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1665 return 1;
1666 if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1667 return 1;
1668 return 0;
1669 }
1670
1671 static const struct mm_walk_ops clear_refs_walk_ops = {
1672 .pmd_entry = clear_refs_pte_range,
1673 .test_walk = clear_refs_test_walk,
1674 .walk_lock = PGWALK_WRLOCK,
1675 };
1676
clear_refs_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1677 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1678 size_t count, loff_t *ppos)
1679 {
1680 struct task_struct *task;
1681 char buffer[PROC_NUMBUF] = {};
1682 struct mm_struct *mm;
1683 struct vm_area_struct *vma;
1684 enum clear_refs_types type;
1685 int itype;
1686 int rv;
1687
1688 if (count > sizeof(buffer) - 1)
1689 count = sizeof(buffer) - 1;
1690 if (copy_from_user(buffer, buf, count))
1691 return -EFAULT;
1692 rv = kstrtoint(strstrip(buffer), 10, &itype);
1693 if (rv < 0)
1694 return rv;
1695 type = (enum clear_refs_types)itype;
1696 if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1697 return -EINVAL;
1698
1699 task = get_proc_task(file_inode(file));
1700 if (!task)
1701 return -ESRCH;
1702 mm = get_task_mm(task);
1703 if (mm) {
1704 VMA_ITERATOR(vmi, mm, 0);
1705 struct mmu_notifier_range range;
1706 struct clear_refs_private cp = {
1707 .type = type,
1708 };
1709
1710 if (mmap_write_lock_killable(mm)) {
1711 count = -EINTR;
1712 goto out_mm;
1713 }
1714 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1715 /*
1716 * Writing 5 to /proc/pid/clear_refs resets the peak
1717 * resident set size to this mm's current rss value.
1718 */
1719 reset_mm_hiwater_rss(mm);
1720 goto out_unlock;
1721 }
1722
1723 if (type == CLEAR_REFS_SOFT_DIRTY) {
1724 for_each_vma(vmi, vma) {
1725 if (!(vma->vm_flags & VM_SOFTDIRTY))
1726 continue;
1727 vm_flags_clear(vma, VM_SOFTDIRTY);
1728 vma_set_page_prot(vma);
1729 }
1730
1731 inc_tlb_flush_pending(mm);
1732 mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
1733 0, mm, 0, -1UL);
1734 mmu_notifier_invalidate_range_start(&range);
1735 }
1736 walk_page_range(mm, 0, -1, &clear_refs_walk_ops, &cp);
1737 if (type == CLEAR_REFS_SOFT_DIRTY) {
1738 mmu_notifier_invalidate_range_end(&range);
1739 flush_tlb_mm(mm);
1740 dec_tlb_flush_pending(mm);
1741 }
1742 out_unlock:
1743 mmap_write_unlock(mm);
1744 out_mm:
1745 mmput(mm);
1746 }
1747 put_task_struct(task);
1748
1749 return count;
1750 }
1751
1752 const struct file_operations proc_clear_refs_operations = {
1753 .write = clear_refs_write,
1754 .llseek = noop_llseek,
1755 };
1756
1757 typedef struct {
1758 u64 pme;
1759 } pagemap_entry_t;
1760
1761 struct pagemapread {
1762 int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
1763 pagemap_entry_t *buffer;
1764 bool show_pfn;
1765 };
1766
1767 #define PAGEMAP_WALK_SIZE (PMD_SIZE)
1768 #define PAGEMAP_WALK_MASK (PMD_MASK)
1769
1770 #define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
1771 #define PM_PFRAME_BITS 55
1772 #define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1773 #define PM_SOFT_DIRTY BIT_ULL(55)
1774 #define PM_MMAP_EXCLUSIVE BIT_ULL(56)
1775 #define PM_UFFD_WP BIT_ULL(57)
1776 #define PM_GUARD_REGION BIT_ULL(58)
1777 #define PM_FILE BIT_ULL(61)
1778 #define PM_SWAP BIT_ULL(62)
1779 #define PM_PRESENT BIT_ULL(63)
1780
1781 #define PM_END_OF_BUFFER 1
1782
make_pme(u64 frame,u64 flags)1783 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1784 {
1785 return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1786 }
1787
add_to_pagemap(pagemap_entry_t * pme,struct pagemapread * pm)1788 static int add_to_pagemap(pagemap_entry_t *pme, struct pagemapread *pm)
1789 {
1790 pm->buffer[pm->pos++] = *pme;
1791 if (pm->pos >= pm->len)
1792 return PM_END_OF_BUFFER;
1793 return 0;
1794 }
1795
__folio_page_mapped_exclusively(struct folio * folio,struct page * page)1796 static bool __folio_page_mapped_exclusively(struct folio *folio, struct page *page)
1797 {
1798 if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT))
1799 return folio_precise_page_mapcount(folio, page) == 1;
1800 return !folio_maybe_mapped_shared(folio);
1801 }
1802
pagemap_pte_hole(unsigned long start,unsigned long end,__always_unused int depth,struct mm_walk * walk)1803 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1804 __always_unused int depth, struct mm_walk *walk)
1805 {
1806 struct pagemapread *pm = walk->private;
1807 unsigned long addr = start;
1808 int err = 0;
1809
1810 while (addr < end) {
1811 struct vm_area_struct *vma = find_vma(walk->mm, addr);
1812 pagemap_entry_t pme = make_pme(0, 0);
1813 /* End of address space hole, which we mark as non-present. */
1814 unsigned long hole_end;
1815
1816 if (vma)
1817 hole_end = min(end, vma->vm_start);
1818 else
1819 hole_end = end;
1820
1821 for (; addr < hole_end; addr += PAGE_SIZE) {
1822 err = add_to_pagemap(&pme, pm);
1823 if (err)
1824 goto out;
1825 }
1826
1827 if (!vma)
1828 break;
1829
1830 /* Addresses in the VMA. */
1831 if (vma->vm_flags & VM_SOFTDIRTY)
1832 pme = make_pme(0, PM_SOFT_DIRTY);
1833 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1834 err = add_to_pagemap(&pme, pm);
1835 if (err)
1836 goto out;
1837 }
1838 }
1839 out:
1840 return err;
1841 }
1842
pte_to_pagemap_entry(struct pagemapread * pm,struct vm_area_struct * vma,unsigned long addr,pte_t pte)1843 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1844 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1845 {
1846 u64 frame = 0, flags = 0;
1847 struct page *page = NULL;
1848 struct folio *folio;
1849
1850 if (pte_present(pte)) {
1851 if (pm->show_pfn)
1852 frame = pte_pfn(pte);
1853 flags |= PM_PRESENT;
1854 page = vm_normal_page(vma, addr, pte);
1855 if (pte_soft_dirty(pte))
1856 flags |= PM_SOFT_DIRTY;
1857 if (pte_uffd_wp(pte))
1858 flags |= PM_UFFD_WP;
1859 } else if (is_swap_pte(pte)) {
1860 swp_entry_t entry;
1861 if (pte_swp_soft_dirty(pte))
1862 flags |= PM_SOFT_DIRTY;
1863 if (pte_swp_uffd_wp(pte))
1864 flags |= PM_UFFD_WP;
1865 entry = pte_to_swp_entry(pte);
1866 if (pm->show_pfn) {
1867 pgoff_t offset;
1868 /*
1869 * For PFN swap offsets, keeping the offset field
1870 * to be PFN only to be compatible with old smaps.
1871 */
1872 if (is_pfn_swap_entry(entry))
1873 offset = swp_offset_pfn(entry);
1874 else
1875 offset = swp_offset(entry);
1876 frame = swp_type(entry) |
1877 (offset << MAX_SWAPFILES_SHIFT);
1878 }
1879 flags |= PM_SWAP;
1880 if (is_pfn_swap_entry(entry))
1881 page = pfn_swap_entry_to_page(entry);
1882 if (pte_marker_entry_uffd_wp(entry))
1883 flags |= PM_UFFD_WP;
1884 if (is_guard_swp_entry(entry))
1885 flags |= PM_GUARD_REGION;
1886 }
1887
1888 if (page) {
1889 folio = page_folio(page);
1890 if (!folio_test_anon(folio))
1891 flags |= PM_FILE;
1892 if ((flags & PM_PRESENT) &&
1893 __folio_page_mapped_exclusively(folio, page))
1894 flags |= PM_MMAP_EXCLUSIVE;
1895 }
1896 if (vma->vm_flags & VM_SOFTDIRTY)
1897 flags |= PM_SOFT_DIRTY;
1898
1899 return make_pme(frame, flags);
1900 }
1901
pagemap_pmd_range(pmd_t * pmdp,unsigned long addr,unsigned long end,struct mm_walk * walk)1902 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1903 struct mm_walk *walk)
1904 {
1905 struct vm_area_struct *vma = walk->vma;
1906 struct pagemapread *pm = walk->private;
1907 spinlock_t *ptl;
1908 pte_t *pte, *orig_pte;
1909 int err = 0;
1910 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1911
1912 ptl = pmd_trans_huge_lock(pmdp, vma);
1913 if (ptl) {
1914 unsigned int idx = (addr & ~PMD_MASK) >> PAGE_SHIFT;
1915 u64 flags = 0, frame = 0;
1916 pmd_t pmd = *pmdp;
1917 struct page *page = NULL;
1918 struct folio *folio = NULL;
1919
1920 if (vma->vm_flags & VM_SOFTDIRTY)
1921 flags |= PM_SOFT_DIRTY;
1922
1923 if (pmd_present(pmd)) {
1924 page = pmd_page(pmd);
1925
1926 flags |= PM_PRESENT;
1927 if (pmd_soft_dirty(pmd))
1928 flags |= PM_SOFT_DIRTY;
1929 if (pmd_uffd_wp(pmd))
1930 flags |= PM_UFFD_WP;
1931 if (pm->show_pfn)
1932 frame = pmd_pfn(pmd) + idx;
1933 }
1934 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1935 else if (is_swap_pmd(pmd)) {
1936 swp_entry_t entry = pmd_to_swp_entry(pmd);
1937 unsigned long offset;
1938
1939 if (pm->show_pfn) {
1940 if (is_pfn_swap_entry(entry))
1941 offset = swp_offset_pfn(entry) + idx;
1942 else
1943 offset = swp_offset(entry) + idx;
1944 frame = swp_type(entry) |
1945 (offset << MAX_SWAPFILES_SHIFT);
1946 }
1947 flags |= PM_SWAP;
1948 if (pmd_swp_soft_dirty(pmd))
1949 flags |= PM_SOFT_DIRTY;
1950 if (pmd_swp_uffd_wp(pmd))
1951 flags |= PM_UFFD_WP;
1952 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1953 page = pfn_swap_entry_to_page(entry);
1954 }
1955 #endif
1956
1957 if (page) {
1958 folio = page_folio(page);
1959 if (!folio_test_anon(folio))
1960 flags |= PM_FILE;
1961 }
1962
1963 for (; addr != end; addr += PAGE_SIZE, idx++) {
1964 u64 cur_flags = flags;
1965 pagemap_entry_t pme;
1966
1967 if (folio && (flags & PM_PRESENT) &&
1968 __folio_page_mapped_exclusively(folio, page))
1969 cur_flags |= PM_MMAP_EXCLUSIVE;
1970
1971 pme = make_pme(frame, cur_flags);
1972 err = add_to_pagemap(&pme, pm);
1973 if (err)
1974 break;
1975 if (pm->show_pfn) {
1976 if (flags & PM_PRESENT)
1977 frame++;
1978 else if (flags & PM_SWAP)
1979 frame += (1 << MAX_SWAPFILES_SHIFT);
1980 }
1981 }
1982 spin_unlock(ptl);
1983 return err;
1984 }
1985 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1986
1987 /*
1988 * We can assume that @vma always points to a valid one and @end never
1989 * goes beyond vma->vm_end.
1990 */
1991 orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1992 if (!pte) {
1993 walk->action = ACTION_AGAIN;
1994 return err;
1995 }
1996 for (; addr < end; pte++, addr += PAGE_SIZE) {
1997 pagemap_entry_t pme;
1998
1999 pme = pte_to_pagemap_entry(pm, vma, addr, ptep_get(pte));
2000 err = add_to_pagemap(&pme, pm);
2001 if (err)
2002 break;
2003 }
2004 pte_unmap_unlock(orig_pte, ptl);
2005
2006 cond_resched();
2007
2008 return err;
2009 }
2010
2011 #ifdef CONFIG_HUGETLB_PAGE
2012 /* This function walks within one hugetlb entry in the single call */
pagemap_hugetlb_range(pte_t * ptep,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)2013 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
2014 unsigned long addr, unsigned long end,
2015 struct mm_walk *walk)
2016 {
2017 struct pagemapread *pm = walk->private;
2018 struct vm_area_struct *vma = walk->vma;
2019 u64 flags = 0, frame = 0;
2020 int err = 0;
2021 pte_t pte;
2022
2023 if (vma->vm_flags & VM_SOFTDIRTY)
2024 flags |= PM_SOFT_DIRTY;
2025
2026 pte = huge_ptep_get(walk->mm, addr, ptep);
2027 if (pte_present(pte)) {
2028 struct folio *folio = page_folio(pte_page(pte));
2029
2030 if (!folio_test_anon(folio))
2031 flags |= PM_FILE;
2032
2033 if (!folio_maybe_mapped_shared(folio) &&
2034 !hugetlb_pmd_shared(ptep))
2035 flags |= PM_MMAP_EXCLUSIVE;
2036
2037 if (huge_pte_uffd_wp(pte))
2038 flags |= PM_UFFD_WP;
2039
2040 flags |= PM_PRESENT;
2041 if (pm->show_pfn)
2042 frame = pte_pfn(pte) +
2043 ((addr & ~hmask) >> PAGE_SHIFT);
2044 } else if (pte_swp_uffd_wp_any(pte)) {
2045 flags |= PM_UFFD_WP;
2046 }
2047
2048 for (; addr != end; addr += PAGE_SIZE) {
2049 pagemap_entry_t pme = make_pme(frame, flags);
2050
2051 err = add_to_pagemap(&pme, pm);
2052 if (err)
2053 return err;
2054 if (pm->show_pfn && (flags & PM_PRESENT))
2055 frame++;
2056 }
2057
2058 cond_resched();
2059
2060 return err;
2061 }
2062 #else
2063 #define pagemap_hugetlb_range NULL
2064 #endif /* HUGETLB_PAGE */
2065
2066 static const struct mm_walk_ops pagemap_ops = {
2067 .pmd_entry = pagemap_pmd_range,
2068 .pte_hole = pagemap_pte_hole,
2069 .hugetlb_entry = pagemap_hugetlb_range,
2070 .walk_lock = PGWALK_RDLOCK,
2071 };
2072
2073 /*
2074 * /proc/pid/pagemap - an array mapping virtual pages to pfns
2075 *
2076 * For each page in the address space, this file contains one 64-bit entry
2077 * consisting of the following:
2078 *
2079 * Bits 0-54 page frame number (PFN) if present
2080 * Bits 0-4 swap type if swapped
2081 * Bits 5-54 swap offset if swapped
2082 * Bit 55 pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
2083 * Bit 56 page exclusively mapped
2084 * Bit 57 pte is uffd-wp write-protected
2085 * Bit 58 pte is a guard region
2086 * Bits 59-60 zero
2087 * Bit 61 page is file-page or shared-anon
2088 * Bit 62 page swapped
2089 * Bit 63 page present
2090 *
2091 * If the page is not present but in swap, then the PFN contains an
2092 * encoding of the swap file number and the page's offset into the
2093 * swap. Unmapped pages return a null PFN. This allows determining
2094 * precisely which pages are mapped (or in swap) and comparing mapped
2095 * pages between processes.
2096 *
2097 * Efficient users of this interface will use /proc/pid/maps to
2098 * determine which areas of memory are actually mapped and llseek to
2099 * skip over unmapped regions.
2100 */
pagemap_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)2101 static ssize_t pagemap_read(struct file *file, char __user *buf,
2102 size_t count, loff_t *ppos)
2103 {
2104 struct mm_struct *mm = file->private_data;
2105 struct pagemapread pm;
2106 unsigned long src;
2107 unsigned long svpfn;
2108 unsigned long start_vaddr;
2109 unsigned long end_vaddr;
2110 int ret = 0, copied = 0;
2111
2112 if (!mm || !mmget_not_zero(mm))
2113 goto out;
2114
2115 ret = -EINVAL;
2116 /* file position must be aligned */
2117 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
2118 goto out_mm;
2119
2120 ret = 0;
2121 if (!count)
2122 goto out_mm;
2123
2124 /* do not disclose physical addresses: attack vector */
2125 pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
2126
2127 pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
2128 pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
2129 ret = -ENOMEM;
2130 if (!pm.buffer)
2131 goto out_mm;
2132
2133 src = *ppos;
2134 svpfn = src / PM_ENTRY_BYTES;
2135 end_vaddr = mm->task_size;
2136
2137 /* watch out for wraparound */
2138 start_vaddr = end_vaddr;
2139 if (svpfn <= (ULONG_MAX >> PAGE_SHIFT)) {
2140 unsigned long end;
2141
2142 ret = mmap_read_lock_killable(mm);
2143 if (ret)
2144 goto out_free;
2145 start_vaddr = untagged_addr_remote(mm, svpfn << PAGE_SHIFT);
2146 mmap_read_unlock(mm);
2147
2148 end = start_vaddr + ((count / PM_ENTRY_BYTES) << PAGE_SHIFT);
2149 if (end >= start_vaddr && end < mm->task_size)
2150 end_vaddr = end;
2151 }
2152
2153 /* Ensure the address is inside the task */
2154 if (start_vaddr > mm->task_size)
2155 start_vaddr = end_vaddr;
2156
2157 ret = 0;
2158 while (count && (start_vaddr < end_vaddr)) {
2159 int len;
2160 unsigned long end;
2161
2162 pm.pos = 0;
2163 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
2164 /* overflow ? */
2165 if (end < start_vaddr || end > end_vaddr)
2166 end = end_vaddr;
2167 ret = mmap_read_lock_killable(mm);
2168 if (ret)
2169 goto out_free;
2170 ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm);
2171 mmap_read_unlock(mm);
2172 start_vaddr = end;
2173
2174 len = min(count, PM_ENTRY_BYTES * pm.pos);
2175 if (copy_to_user(buf, pm.buffer, len)) {
2176 ret = -EFAULT;
2177 goto out_free;
2178 }
2179 copied += len;
2180 buf += len;
2181 count -= len;
2182 }
2183 *ppos += copied;
2184 if (!ret || ret == PM_END_OF_BUFFER)
2185 ret = copied;
2186
2187 out_free:
2188 kfree(pm.buffer);
2189 out_mm:
2190 mmput(mm);
2191 out:
2192 return ret;
2193 }
2194
pagemap_open(struct inode * inode,struct file * file)2195 static int pagemap_open(struct inode *inode, struct file *file)
2196 {
2197 struct mm_struct *mm;
2198
2199 mm = proc_mem_open(inode, PTRACE_MODE_READ);
2200 if (IS_ERR_OR_NULL(mm))
2201 return mm ? PTR_ERR(mm) : -ESRCH;
2202 file->private_data = mm;
2203 return 0;
2204 }
2205
pagemap_release(struct inode * inode,struct file * file)2206 static int pagemap_release(struct inode *inode, struct file *file)
2207 {
2208 struct mm_struct *mm = file->private_data;
2209
2210 if (mm)
2211 mmdrop(mm);
2212 return 0;
2213 }
2214
2215 #define PM_SCAN_CATEGORIES (PAGE_IS_WPALLOWED | PAGE_IS_WRITTEN | \
2216 PAGE_IS_FILE | PAGE_IS_PRESENT | \
2217 PAGE_IS_SWAPPED | PAGE_IS_PFNZERO | \
2218 PAGE_IS_HUGE | PAGE_IS_SOFT_DIRTY | \
2219 PAGE_IS_GUARD)
2220 #define PM_SCAN_FLAGS (PM_SCAN_WP_MATCHING | PM_SCAN_CHECK_WPASYNC)
2221
2222 struct pagemap_scan_private {
2223 struct pm_scan_arg arg;
2224 unsigned long masks_of_interest, cur_vma_category;
2225 struct page_region *vec_buf;
2226 unsigned long vec_buf_len, vec_buf_index, found_pages;
2227 struct page_region __user *vec_out;
2228 };
2229
pagemap_page_category(struct pagemap_scan_private * p,struct vm_area_struct * vma,unsigned long addr,pte_t pte)2230 static unsigned long pagemap_page_category(struct pagemap_scan_private *p,
2231 struct vm_area_struct *vma,
2232 unsigned long addr, pte_t pte)
2233 {
2234 unsigned long categories = 0;
2235
2236 if (pte_present(pte)) {
2237 struct page *page;
2238
2239 categories |= PAGE_IS_PRESENT;
2240 if (!pte_uffd_wp(pte))
2241 categories |= PAGE_IS_WRITTEN;
2242
2243 if (p->masks_of_interest & PAGE_IS_FILE) {
2244 page = vm_normal_page(vma, addr, pte);
2245 if (page && !PageAnon(page))
2246 categories |= PAGE_IS_FILE;
2247 }
2248
2249 if (is_zero_pfn(pte_pfn(pte)))
2250 categories |= PAGE_IS_PFNZERO;
2251 if (pte_soft_dirty(pte))
2252 categories |= PAGE_IS_SOFT_DIRTY;
2253 } else if (is_swap_pte(pte)) {
2254 swp_entry_t swp;
2255
2256 categories |= PAGE_IS_SWAPPED;
2257 if (!pte_swp_uffd_wp_any(pte))
2258 categories |= PAGE_IS_WRITTEN;
2259
2260 swp = pte_to_swp_entry(pte);
2261 if (is_guard_swp_entry(swp))
2262 categories |= PAGE_IS_GUARD;
2263 else if ((p->masks_of_interest & PAGE_IS_FILE) &&
2264 is_pfn_swap_entry(swp) &&
2265 !folio_test_anon(pfn_swap_entry_folio(swp)))
2266 categories |= PAGE_IS_FILE;
2267
2268 if (pte_swp_soft_dirty(pte))
2269 categories |= PAGE_IS_SOFT_DIRTY;
2270 }
2271
2272 return categories;
2273 }
2274
make_uffd_wp_pte(struct vm_area_struct * vma,unsigned long addr,pte_t * pte,pte_t ptent)2275 static void make_uffd_wp_pte(struct vm_area_struct *vma,
2276 unsigned long addr, pte_t *pte, pte_t ptent)
2277 {
2278 if (pte_present(ptent)) {
2279 pte_t old_pte;
2280
2281 old_pte = ptep_modify_prot_start(vma, addr, pte);
2282 ptent = pte_mkuffd_wp(old_pte);
2283 ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
2284 } else if (is_swap_pte(ptent)) {
2285 ptent = pte_swp_mkuffd_wp(ptent);
2286 set_pte_at(vma->vm_mm, addr, pte, ptent);
2287 } else {
2288 set_pte_at(vma->vm_mm, addr, pte,
2289 make_pte_marker(PTE_MARKER_UFFD_WP));
2290 }
2291 }
2292
2293 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pagemap_thp_category(struct pagemap_scan_private * p,struct vm_area_struct * vma,unsigned long addr,pmd_t pmd)2294 static unsigned long pagemap_thp_category(struct pagemap_scan_private *p,
2295 struct vm_area_struct *vma,
2296 unsigned long addr, pmd_t pmd)
2297 {
2298 unsigned long categories = PAGE_IS_HUGE;
2299
2300 if (pmd_present(pmd)) {
2301 struct page *page;
2302
2303 categories |= PAGE_IS_PRESENT;
2304 if (!pmd_uffd_wp(pmd))
2305 categories |= PAGE_IS_WRITTEN;
2306
2307 if (p->masks_of_interest & PAGE_IS_FILE) {
2308 page = vm_normal_page_pmd(vma, addr, pmd);
2309 if (page && !PageAnon(page))
2310 categories |= PAGE_IS_FILE;
2311 }
2312
2313 if (is_huge_zero_pmd(pmd))
2314 categories |= PAGE_IS_PFNZERO;
2315 if (pmd_soft_dirty(pmd))
2316 categories |= PAGE_IS_SOFT_DIRTY;
2317 } else if (is_swap_pmd(pmd)) {
2318 swp_entry_t swp;
2319
2320 categories |= PAGE_IS_SWAPPED;
2321 if (!pmd_swp_uffd_wp(pmd))
2322 categories |= PAGE_IS_WRITTEN;
2323 if (pmd_swp_soft_dirty(pmd))
2324 categories |= PAGE_IS_SOFT_DIRTY;
2325
2326 if (p->masks_of_interest & PAGE_IS_FILE) {
2327 swp = pmd_to_swp_entry(pmd);
2328 if (is_pfn_swap_entry(swp) &&
2329 !folio_test_anon(pfn_swap_entry_folio(swp)))
2330 categories |= PAGE_IS_FILE;
2331 }
2332 }
2333
2334 return categories;
2335 }
2336
make_uffd_wp_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)2337 static void make_uffd_wp_pmd(struct vm_area_struct *vma,
2338 unsigned long addr, pmd_t *pmdp)
2339 {
2340 pmd_t old, pmd = *pmdp;
2341
2342 if (pmd_present(pmd)) {
2343 old = pmdp_invalidate_ad(vma, addr, pmdp);
2344 pmd = pmd_mkuffd_wp(old);
2345 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
2346 } else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
2347 pmd = pmd_swp_mkuffd_wp(pmd);
2348 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
2349 }
2350 }
2351 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2352
2353 #ifdef CONFIG_HUGETLB_PAGE
pagemap_hugetlb_category(pte_t pte)2354 static unsigned long pagemap_hugetlb_category(pte_t pte)
2355 {
2356 unsigned long categories = PAGE_IS_HUGE;
2357
2358 /*
2359 * According to pagemap_hugetlb_range(), file-backed HugeTLB
2360 * page cannot be swapped. So PAGE_IS_FILE is not checked for
2361 * swapped pages.
2362 */
2363 if (pte_present(pte)) {
2364 categories |= PAGE_IS_PRESENT;
2365 if (!huge_pte_uffd_wp(pte))
2366 categories |= PAGE_IS_WRITTEN;
2367 if (!PageAnon(pte_page(pte)))
2368 categories |= PAGE_IS_FILE;
2369 if (is_zero_pfn(pte_pfn(pte)))
2370 categories |= PAGE_IS_PFNZERO;
2371 if (pte_soft_dirty(pte))
2372 categories |= PAGE_IS_SOFT_DIRTY;
2373 } else if (is_swap_pte(pte)) {
2374 categories |= PAGE_IS_SWAPPED;
2375 if (!pte_swp_uffd_wp_any(pte))
2376 categories |= PAGE_IS_WRITTEN;
2377 if (pte_swp_soft_dirty(pte))
2378 categories |= PAGE_IS_SOFT_DIRTY;
2379 }
2380
2381 return categories;
2382 }
2383
make_uffd_wp_huge_pte(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t ptent)2384 static void make_uffd_wp_huge_pte(struct vm_area_struct *vma,
2385 unsigned long addr, pte_t *ptep,
2386 pte_t ptent)
2387 {
2388 unsigned long psize;
2389
2390 if (is_hugetlb_entry_hwpoisoned(ptent) || is_pte_marker(ptent))
2391 return;
2392
2393 psize = huge_page_size(hstate_vma(vma));
2394
2395 if (is_hugetlb_entry_migration(ptent))
2396 set_huge_pte_at(vma->vm_mm, addr, ptep,
2397 pte_swp_mkuffd_wp(ptent), psize);
2398 else if (!huge_pte_none(ptent))
2399 huge_ptep_modify_prot_commit(vma, addr, ptep, ptent,
2400 huge_pte_mkuffd_wp(ptent));
2401 else
2402 set_huge_pte_at(vma->vm_mm, addr, ptep,
2403 make_pte_marker(PTE_MARKER_UFFD_WP), psize);
2404 }
2405 #endif /* CONFIG_HUGETLB_PAGE */
2406
2407 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
pagemap_scan_backout_range(struct pagemap_scan_private * p,unsigned long addr,unsigned long end)2408 static void pagemap_scan_backout_range(struct pagemap_scan_private *p,
2409 unsigned long addr, unsigned long end)
2410 {
2411 struct page_region *cur_buf = &p->vec_buf[p->vec_buf_index];
2412
2413 if (cur_buf->start != addr)
2414 cur_buf->end = addr;
2415 else
2416 cur_buf->start = cur_buf->end = 0;
2417
2418 p->found_pages -= (end - addr) / PAGE_SIZE;
2419 }
2420 #endif
2421
pagemap_scan_is_interesting_page(unsigned long categories,const struct pagemap_scan_private * p)2422 static bool pagemap_scan_is_interesting_page(unsigned long categories,
2423 const struct pagemap_scan_private *p)
2424 {
2425 categories ^= p->arg.category_inverted;
2426 if ((categories & p->arg.category_mask) != p->arg.category_mask)
2427 return false;
2428 if (p->arg.category_anyof_mask && !(categories & p->arg.category_anyof_mask))
2429 return false;
2430
2431 return true;
2432 }
2433
pagemap_scan_is_interesting_vma(unsigned long categories,const struct pagemap_scan_private * p)2434 static bool pagemap_scan_is_interesting_vma(unsigned long categories,
2435 const struct pagemap_scan_private *p)
2436 {
2437 unsigned long required = p->arg.category_mask & PAGE_IS_WPALLOWED;
2438
2439 categories ^= p->arg.category_inverted;
2440 if ((categories & required) != required)
2441 return false;
2442
2443 return true;
2444 }
2445
pagemap_scan_test_walk(unsigned long start,unsigned long end,struct mm_walk * walk)2446 static int pagemap_scan_test_walk(unsigned long start, unsigned long end,
2447 struct mm_walk *walk)
2448 {
2449 struct pagemap_scan_private *p = walk->private;
2450 struct vm_area_struct *vma = walk->vma;
2451 unsigned long vma_category = 0;
2452 bool wp_allowed = userfaultfd_wp_async(vma) &&
2453 userfaultfd_wp_use_markers(vma);
2454
2455 if (!wp_allowed) {
2456 /* User requested explicit failure over wp-async capability */
2457 if (p->arg.flags & PM_SCAN_CHECK_WPASYNC)
2458 return -EPERM;
2459 /*
2460 * User requires wr-protect, and allows silently skipping
2461 * unsupported vmas.
2462 */
2463 if (p->arg.flags & PM_SCAN_WP_MATCHING)
2464 return 1;
2465 /*
2466 * Then the request doesn't involve wr-protects at all,
2467 * fall through to the rest checks, and allow vma walk.
2468 */
2469 }
2470
2471 if (vma->vm_flags & VM_PFNMAP)
2472 return 1;
2473
2474 if (wp_allowed)
2475 vma_category |= PAGE_IS_WPALLOWED;
2476
2477 if (vma->vm_flags & VM_SOFTDIRTY)
2478 vma_category |= PAGE_IS_SOFT_DIRTY;
2479
2480 if (!pagemap_scan_is_interesting_vma(vma_category, p))
2481 return 1;
2482
2483 p->cur_vma_category = vma_category;
2484
2485 return 0;
2486 }
2487
pagemap_scan_push_range(unsigned long categories,struct pagemap_scan_private * p,unsigned long addr,unsigned long end)2488 static bool pagemap_scan_push_range(unsigned long categories,
2489 struct pagemap_scan_private *p,
2490 unsigned long addr, unsigned long end)
2491 {
2492 struct page_region *cur_buf = &p->vec_buf[p->vec_buf_index];
2493
2494 /*
2495 * When there is no output buffer provided at all, the sentinel values
2496 * won't match here. There is no other way for `cur_buf->end` to be
2497 * non-zero other than it being non-empty.
2498 */
2499 if (addr == cur_buf->end && categories == cur_buf->categories) {
2500 cur_buf->end = end;
2501 return true;
2502 }
2503
2504 if (cur_buf->end) {
2505 if (p->vec_buf_index >= p->vec_buf_len - 1)
2506 return false;
2507
2508 cur_buf = &p->vec_buf[++p->vec_buf_index];
2509 }
2510
2511 cur_buf->start = addr;
2512 cur_buf->end = end;
2513 cur_buf->categories = categories;
2514
2515 return true;
2516 }
2517
pagemap_scan_output(unsigned long categories,struct pagemap_scan_private * p,unsigned long addr,unsigned long * end)2518 static int pagemap_scan_output(unsigned long categories,
2519 struct pagemap_scan_private *p,
2520 unsigned long addr, unsigned long *end)
2521 {
2522 unsigned long n_pages, total_pages;
2523 int ret = 0;
2524
2525 if (!p->vec_buf)
2526 return 0;
2527
2528 categories &= p->arg.return_mask;
2529
2530 n_pages = (*end - addr) / PAGE_SIZE;
2531 if (check_add_overflow(p->found_pages, n_pages, &total_pages) ||
2532 total_pages > p->arg.max_pages) {
2533 size_t n_too_much = total_pages - p->arg.max_pages;
2534 *end -= n_too_much * PAGE_SIZE;
2535 n_pages -= n_too_much;
2536 ret = -ENOSPC;
2537 }
2538
2539 if (!pagemap_scan_push_range(categories, p, addr, *end)) {
2540 *end = addr;
2541 n_pages = 0;
2542 ret = -ENOSPC;
2543 }
2544
2545 p->found_pages += n_pages;
2546 if (ret)
2547 p->arg.walk_end = *end;
2548
2549 return ret;
2550 }
2551
pagemap_scan_thp_entry(pmd_t * pmd,unsigned long start,unsigned long end,struct mm_walk * walk)2552 static int pagemap_scan_thp_entry(pmd_t *pmd, unsigned long start,
2553 unsigned long end, struct mm_walk *walk)
2554 {
2555 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2556 struct pagemap_scan_private *p = walk->private;
2557 struct vm_area_struct *vma = walk->vma;
2558 unsigned long categories;
2559 spinlock_t *ptl;
2560 int ret = 0;
2561
2562 ptl = pmd_trans_huge_lock(pmd, vma);
2563 if (!ptl)
2564 return -ENOENT;
2565
2566 categories = p->cur_vma_category |
2567 pagemap_thp_category(p, vma, start, *pmd);
2568
2569 if (!pagemap_scan_is_interesting_page(categories, p))
2570 goto out_unlock;
2571
2572 ret = pagemap_scan_output(categories, p, start, &end);
2573 if (start == end)
2574 goto out_unlock;
2575
2576 if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2577 goto out_unlock;
2578 if (~categories & PAGE_IS_WRITTEN)
2579 goto out_unlock;
2580
2581 /*
2582 * Break huge page into small pages if the WP operation
2583 * needs to be performed on a portion of the huge page.
2584 */
2585 if (end != start + HPAGE_SIZE) {
2586 spin_unlock(ptl);
2587 split_huge_pmd(vma, pmd, start);
2588 pagemap_scan_backout_range(p, start, end);
2589 /* Report as if there was no THP */
2590 return -ENOENT;
2591 }
2592
2593 make_uffd_wp_pmd(vma, start, pmd);
2594 flush_tlb_range(vma, start, end);
2595 out_unlock:
2596 spin_unlock(ptl);
2597 return ret;
2598 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
2599 return -ENOENT;
2600 #endif
2601 }
2602
pagemap_scan_pmd_entry(pmd_t * pmd,unsigned long start,unsigned long end,struct mm_walk * walk)2603 static int pagemap_scan_pmd_entry(pmd_t *pmd, unsigned long start,
2604 unsigned long end, struct mm_walk *walk)
2605 {
2606 struct pagemap_scan_private *p = walk->private;
2607 struct vm_area_struct *vma = walk->vma;
2608 unsigned long addr, flush_end = 0;
2609 pte_t *pte, *start_pte;
2610 spinlock_t *ptl;
2611 int ret;
2612
2613 ret = pagemap_scan_thp_entry(pmd, start, end, walk);
2614 if (ret != -ENOENT)
2615 return ret;
2616
2617 ret = 0;
2618 start_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl);
2619 if (!pte) {
2620 walk->action = ACTION_AGAIN;
2621 return 0;
2622 }
2623
2624 arch_enter_lazy_mmu_mode();
2625
2626 if ((p->arg.flags & PM_SCAN_WP_MATCHING) && !p->vec_out) {
2627 /* Fast path for performing exclusive WP */
2628 for (addr = start; addr != end; pte++, addr += PAGE_SIZE) {
2629 pte_t ptent = ptep_get(pte);
2630
2631 if ((pte_present(ptent) && pte_uffd_wp(ptent)) ||
2632 pte_swp_uffd_wp_any(ptent))
2633 continue;
2634 make_uffd_wp_pte(vma, addr, pte, ptent);
2635 if (!flush_end)
2636 start = addr;
2637 flush_end = addr + PAGE_SIZE;
2638 }
2639 goto flush_and_return;
2640 }
2641
2642 if (!p->arg.category_anyof_mask && !p->arg.category_inverted &&
2643 p->arg.category_mask == PAGE_IS_WRITTEN &&
2644 p->arg.return_mask == PAGE_IS_WRITTEN) {
2645 for (addr = start; addr < end; pte++, addr += PAGE_SIZE) {
2646 unsigned long next = addr + PAGE_SIZE;
2647 pte_t ptent = ptep_get(pte);
2648
2649 if ((pte_present(ptent) && pte_uffd_wp(ptent)) ||
2650 pte_swp_uffd_wp_any(ptent))
2651 continue;
2652 ret = pagemap_scan_output(p->cur_vma_category | PAGE_IS_WRITTEN,
2653 p, addr, &next);
2654 if (next == addr)
2655 break;
2656 if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2657 continue;
2658 make_uffd_wp_pte(vma, addr, pte, ptent);
2659 if (!flush_end)
2660 start = addr;
2661 flush_end = next;
2662 }
2663 goto flush_and_return;
2664 }
2665
2666 for (addr = start; addr != end; pte++, addr += PAGE_SIZE) {
2667 pte_t ptent = ptep_get(pte);
2668 unsigned long categories = p->cur_vma_category |
2669 pagemap_page_category(p, vma, addr, ptent);
2670 unsigned long next = addr + PAGE_SIZE;
2671
2672 if (!pagemap_scan_is_interesting_page(categories, p))
2673 continue;
2674
2675 ret = pagemap_scan_output(categories, p, addr, &next);
2676 if (next == addr)
2677 break;
2678
2679 if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2680 continue;
2681 if (~categories & PAGE_IS_WRITTEN)
2682 continue;
2683
2684 make_uffd_wp_pte(vma, addr, pte, ptent);
2685 if (!flush_end)
2686 start = addr;
2687 flush_end = next;
2688 }
2689
2690 flush_and_return:
2691 if (flush_end)
2692 flush_tlb_range(vma, start, addr);
2693
2694 arch_leave_lazy_mmu_mode();
2695 pte_unmap_unlock(start_pte, ptl);
2696
2697 cond_resched();
2698 return ret;
2699 }
2700
2701 #ifdef CONFIG_HUGETLB_PAGE
pagemap_scan_hugetlb_entry(pte_t * ptep,unsigned long hmask,unsigned long start,unsigned long end,struct mm_walk * walk)2702 static int pagemap_scan_hugetlb_entry(pte_t *ptep, unsigned long hmask,
2703 unsigned long start, unsigned long end,
2704 struct mm_walk *walk)
2705 {
2706 struct pagemap_scan_private *p = walk->private;
2707 struct vm_area_struct *vma = walk->vma;
2708 unsigned long categories;
2709 spinlock_t *ptl;
2710 int ret = 0;
2711 pte_t pte;
2712
2713 if (~p->arg.flags & PM_SCAN_WP_MATCHING) {
2714 /* Go the short route when not write-protecting pages. */
2715
2716 pte = huge_ptep_get(walk->mm, start, ptep);
2717 categories = p->cur_vma_category | pagemap_hugetlb_category(pte);
2718
2719 if (!pagemap_scan_is_interesting_page(categories, p))
2720 return 0;
2721
2722 return pagemap_scan_output(categories, p, start, &end);
2723 }
2724
2725 i_mmap_lock_write(vma->vm_file->f_mapping);
2726 ptl = huge_pte_lock(hstate_vma(vma), vma->vm_mm, ptep);
2727
2728 pte = huge_ptep_get(walk->mm, start, ptep);
2729 categories = p->cur_vma_category | pagemap_hugetlb_category(pte);
2730
2731 if (!pagemap_scan_is_interesting_page(categories, p))
2732 goto out_unlock;
2733
2734 ret = pagemap_scan_output(categories, p, start, &end);
2735 if (start == end)
2736 goto out_unlock;
2737
2738 if (~categories & PAGE_IS_WRITTEN)
2739 goto out_unlock;
2740
2741 if (end != start + HPAGE_SIZE) {
2742 /* Partial HugeTLB page WP isn't possible. */
2743 pagemap_scan_backout_range(p, start, end);
2744 p->arg.walk_end = start;
2745 ret = 0;
2746 goto out_unlock;
2747 }
2748
2749 make_uffd_wp_huge_pte(vma, start, ptep, pte);
2750 flush_hugetlb_tlb_range(vma, start, end);
2751
2752 out_unlock:
2753 spin_unlock(ptl);
2754 i_mmap_unlock_write(vma->vm_file->f_mapping);
2755
2756 return ret;
2757 }
2758 #else
2759 #define pagemap_scan_hugetlb_entry NULL
2760 #endif
2761
pagemap_scan_pte_hole(unsigned long addr,unsigned long end,int depth,struct mm_walk * walk)2762 static int pagemap_scan_pte_hole(unsigned long addr, unsigned long end,
2763 int depth, struct mm_walk *walk)
2764 {
2765 struct pagemap_scan_private *p = walk->private;
2766 struct vm_area_struct *vma = walk->vma;
2767 int ret, err;
2768
2769 if (!vma || !pagemap_scan_is_interesting_page(p->cur_vma_category, p))
2770 return 0;
2771
2772 ret = pagemap_scan_output(p->cur_vma_category, p, addr, &end);
2773 if (addr == end)
2774 return ret;
2775
2776 if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2777 return ret;
2778
2779 err = uffd_wp_range(vma, addr, end - addr, true);
2780 if (err < 0)
2781 ret = err;
2782
2783 return ret;
2784 }
2785
2786 static const struct mm_walk_ops pagemap_scan_ops = {
2787 .test_walk = pagemap_scan_test_walk,
2788 .pmd_entry = pagemap_scan_pmd_entry,
2789 .pte_hole = pagemap_scan_pte_hole,
2790 .hugetlb_entry = pagemap_scan_hugetlb_entry,
2791 };
2792
pagemap_scan_get_args(struct pm_scan_arg * arg,unsigned long uarg)2793 static int pagemap_scan_get_args(struct pm_scan_arg *arg,
2794 unsigned long uarg)
2795 {
2796 if (copy_from_user(arg, (void __user *)uarg, sizeof(*arg)))
2797 return -EFAULT;
2798
2799 if (arg->size != sizeof(struct pm_scan_arg))
2800 return -EINVAL;
2801
2802 /* Validate requested features */
2803 if (arg->flags & ~PM_SCAN_FLAGS)
2804 return -EINVAL;
2805 if ((arg->category_inverted | arg->category_mask |
2806 arg->category_anyof_mask | arg->return_mask) & ~PM_SCAN_CATEGORIES)
2807 return -EINVAL;
2808
2809 arg->start = untagged_addr((unsigned long)arg->start);
2810 arg->end = untagged_addr((unsigned long)arg->end);
2811 arg->vec = untagged_addr((unsigned long)arg->vec);
2812
2813 /* Validate memory pointers */
2814 if (!IS_ALIGNED(arg->start, PAGE_SIZE))
2815 return -EINVAL;
2816 if (!access_ok((void __user *)(long)arg->start, arg->end - arg->start))
2817 return -EFAULT;
2818 if (!arg->vec && arg->vec_len)
2819 return -EINVAL;
2820 if (UINT_MAX == SIZE_MAX && arg->vec_len > SIZE_MAX)
2821 return -EINVAL;
2822 if (arg->vec && !access_ok((void __user *)(long)arg->vec,
2823 size_mul(arg->vec_len, sizeof(struct page_region))))
2824 return -EFAULT;
2825
2826 /* Fixup default values */
2827 arg->end = ALIGN(arg->end, PAGE_SIZE);
2828 arg->walk_end = 0;
2829 if (!arg->max_pages)
2830 arg->max_pages = ULONG_MAX;
2831
2832 return 0;
2833 }
2834
pagemap_scan_writeback_args(struct pm_scan_arg * arg,unsigned long uargl)2835 static int pagemap_scan_writeback_args(struct pm_scan_arg *arg,
2836 unsigned long uargl)
2837 {
2838 struct pm_scan_arg __user *uarg = (void __user *)uargl;
2839
2840 if (copy_to_user(&uarg->walk_end, &arg->walk_end, sizeof(arg->walk_end)))
2841 return -EFAULT;
2842
2843 return 0;
2844 }
2845
pagemap_scan_init_bounce_buffer(struct pagemap_scan_private * p)2846 static int pagemap_scan_init_bounce_buffer(struct pagemap_scan_private *p)
2847 {
2848 if (!p->arg.vec_len)
2849 return 0;
2850
2851 p->vec_buf_len = min_t(size_t, PAGEMAP_WALK_SIZE >> PAGE_SHIFT,
2852 p->arg.vec_len);
2853 p->vec_buf = kmalloc_array(p->vec_buf_len, sizeof(*p->vec_buf),
2854 GFP_KERNEL);
2855 if (!p->vec_buf)
2856 return -ENOMEM;
2857
2858 p->vec_buf->start = p->vec_buf->end = 0;
2859 p->vec_out = (struct page_region __user *)(long)p->arg.vec;
2860
2861 return 0;
2862 }
2863
pagemap_scan_flush_buffer(struct pagemap_scan_private * p)2864 static long pagemap_scan_flush_buffer(struct pagemap_scan_private *p)
2865 {
2866 const struct page_region *buf = p->vec_buf;
2867 long n = p->vec_buf_index;
2868
2869 if (!p->vec_buf)
2870 return 0;
2871
2872 if (buf[n].end != buf[n].start)
2873 n++;
2874
2875 if (!n)
2876 return 0;
2877
2878 if (copy_to_user(p->vec_out, buf, n * sizeof(*buf)))
2879 return -EFAULT;
2880
2881 p->arg.vec_len -= n;
2882 p->vec_out += n;
2883
2884 p->vec_buf_index = 0;
2885 p->vec_buf_len = min_t(size_t, p->vec_buf_len, p->arg.vec_len);
2886 p->vec_buf->start = p->vec_buf->end = 0;
2887
2888 return n;
2889 }
2890
do_pagemap_scan(struct mm_struct * mm,unsigned long uarg)2891 static long do_pagemap_scan(struct mm_struct *mm, unsigned long uarg)
2892 {
2893 struct pagemap_scan_private p = {0};
2894 unsigned long walk_start;
2895 size_t n_ranges_out = 0;
2896 int ret;
2897
2898 ret = pagemap_scan_get_args(&p.arg, uarg);
2899 if (ret)
2900 return ret;
2901
2902 p.masks_of_interest = p.arg.category_mask | p.arg.category_anyof_mask |
2903 p.arg.return_mask;
2904 ret = pagemap_scan_init_bounce_buffer(&p);
2905 if (ret)
2906 return ret;
2907
2908 for (walk_start = p.arg.start; walk_start < p.arg.end;
2909 walk_start = p.arg.walk_end) {
2910 struct mmu_notifier_range range;
2911 long n_out;
2912
2913 if (fatal_signal_pending(current)) {
2914 ret = -EINTR;
2915 break;
2916 }
2917
2918 ret = mmap_read_lock_killable(mm);
2919 if (ret)
2920 break;
2921
2922 /* Protection change for the range is going to happen. */
2923 if (p.arg.flags & PM_SCAN_WP_MATCHING) {
2924 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 0,
2925 mm, walk_start, p.arg.end);
2926 mmu_notifier_invalidate_range_start(&range);
2927 }
2928
2929 ret = walk_page_range(mm, walk_start, p.arg.end,
2930 &pagemap_scan_ops, &p);
2931
2932 if (p.arg.flags & PM_SCAN_WP_MATCHING)
2933 mmu_notifier_invalidate_range_end(&range);
2934
2935 mmap_read_unlock(mm);
2936
2937 n_out = pagemap_scan_flush_buffer(&p);
2938 if (n_out < 0)
2939 ret = n_out;
2940 else
2941 n_ranges_out += n_out;
2942
2943 if (ret != -ENOSPC)
2944 break;
2945
2946 if (p.arg.vec_len == 0 || p.found_pages == p.arg.max_pages)
2947 break;
2948 }
2949
2950 /* ENOSPC signifies early stop (buffer full) from the walk. */
2951 if (!ret || ret == -ENOSPC)
2952 ret = n_ranges_out;
2953
2954 /* The walk_end isn't set when ret is zero */
2955 if (!p.arg.walk_end)
2956 p.arg.walk_end = p.arg.end;
2957 if (pagemap_scan_writeback_args(&p.arg, uarg))
2958 ret = -EFAULT;
2959
2960 kfree(p.vec_buf);
2961 return ret;
2962 }
2963
do_pagemap_cmd(struct file * file,unsigned int cmd,unsigned long arg)2964 static long do_pagemap_cmd(struct file *file, unsigned int cmd,
2965 unsigned long arg)
2966 {
2967 struct mm_struct *mm = file->private_data;
2968
2969 switch (cmd) {
2970 case PAGEMAP_SCAN:
2971 return do_pagemap_scan(mm, arg);
2972
2973 default:
2974 return -EINVAL;
2975 }
2976 }
2977
2978 const struct file_operations proc_pagemap_operations = {
2979 .llseek = mem_lseek, /* borrow this */
2980 .read = pagemap_read,
2981 .open = pagemap_open,
2982 .release = pagemap_release,
2983 .unlocked_ioctl = do_pagemap_cmd,
2984 .compat_ioctl = do_pagemap_cmd,
2985 };
2986 #endif /* CONFIG_PROC_PAGE_MONITOR */
2987
2988 #ifdef CONFIG_NUMA
2989
2990 struct numa_maps {
2991 unsigned long pages;
2992 unsigned long anon;
2993 unsigned long active;
2994 unsigned long writeback;
2995 unsigned long mapcount_max;
2996 unsigned long dirty;
2997 unsigned long swapcache;
2998 unsigned long node[MAX_NUMNODES];
2999 };
3000
3001 struct numa_maps_private {
3002 struct proc_maps_private proc_maps;
3003 struct numa_maps md;
3004 };
3005
gather_stats(struct page * page,struct numa_maps * md,int pte_dirty,unsigned long nr_pages)3006 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
3007 unsigned long nr_pages)
3008 {
3009 struct folio *folio = page_folio(page);
3010 int count;
3011
3012 if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT))
3013 count = folio_precise_page_mapcount(folio, page);
3014 else
3015 count = folio_average_page_mapcount(folio);
3016
3017 md->pages += nr_pages;
3018 if (pte_dirty || folio_test_dirty(folio))
3019 md->dirty += nr_pages;
3020
3021 if (folio_test_swapcache(folio))
3022 md->swapcache += nr_pages;
3023
3024 if (folio_test_active(folio) || folio_test_unevictable(folio))
3025 md->active += nr_pages;
3026
3027 if (folio_test_writeback(folio))
3028 md->writeback += nr_pages;
3029
3030 if (folio_test_anon(folio))
3031 md->anon += nr_pages;
3032
3033 if (count > md->mapcount_max)
3034 md->mapcount_max = count;
3035
3036 md->node[folio_nid(folio)] += nr_pages;
3037 }
3038
can_gather_numa_stats(pte_t pte,struct vm_area_struct * vma,unsigned long addr)3039 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
3040 unsigned long addr)
3041 {
3042 struct page *page;
3043 int nid;
3044
3045 if (!pte_present(pte))
3046 return NULL;
3047
3048 page = vm_normal_page(vma, addr, pte);
3049 if (!page || is_zone_device_page(page))
3050 return NULL;
3051
3052 if (PageReserved(page))
3053 return NULL;
3054
3055 nid = page_to_nid(page);
3056 if (!node_isset(nid, node_states[N_MEMORY]))
3057 return NULL;
3058
3059 return page;
3060 }
3061
3062 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
can_gather_numa_stats_pmd(pmd_t pmd,struct vm_area_struct * vma,unsigned long addr)3063 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
3064 struct vm_area_struct *vma,
3065 unsigned long addr)
3066 {
3067 struct page *page;
3068 int nid;
3069
3070 if (!pmd_present(pmd))
3071 return NULL;
3072
3073 page = vm_normal_page_pmd(vma, addr, pmd);
3074 if (!page)
3075 return NULL;
3076
3077 if (PageReserved(page))
3078 return NULL;
3079
3080 nid = page_to_nid(page);
3081 if (!node_isset(nid, node_states[N_MEMORY]))
3082 return NULL;
3083
3084 return page;
3085 }
3086 #endif
3087
gather_pte_stats(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)3088 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
3089 unsigned long end, struct mm_walk *walk)
3090 {
3091 struct numa_maps *md = walk->private;
3092 struct vm_area_struct *vma = walk->vma;
3093 spinlock_t *ptl;
3094 pte_t *orig_pte;
3095 pte_t *pte;
3096
3097 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3098 ptl = pmd_trans_huge_lock(pmd, vma);
3099 if (ptl) {
3100 struct page *page;
3101
3102 page = can_gather_numa_stats_pmd(*pmd, vma, addr);
3103 if (page)
3104 gather_stats(page, md, pmd_dirty(*pmd),
3105 HPAGE_PMD_SIZE/PAGE_SIZE);
3106 spin_unlock(ptl);
3107 return 0;
3108 }
3109 #endif
3110 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
3111 if (!pte) {
3112 walk->action = ACTION_AGAIN;
3113 return 0;
3114 }
3115 do {
3116 pte_t ptent = ptep_get(pte);
3117 struct page *page = can_gather_numa_stats(ptent, vma, addr);
3118 if (!page)
3119 continue;
3120 gather_stats(page, md, pte_dirty(ptent), 1);
3121
3122 } while (pte++, addr += PAGE_SIZE, addr != end);
3123 pte_unmap_unlock(orig_pte, ptl);
3124 cond_resched();
3125 return 0;
3126 }
3127 #ifdef CONFIG_HUGETLB_PAGE
gather_hugetlb_stats(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)3128 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
3129 unsigned long addr, unsigned long end, struct mm_walk *walk)
3130 {
3131 pte_t huge_pte = huge_ptep_get(walk->mm, addr, pte);
3132 struct numa_maps *md;
3133 struct page *page;
3134
3135 if (!pte_present(huge_pte))
3136 return 0;
3137
3138 page = pte_page(huge_pte);
3139
3140 md = walk->private;
3141 gather_stats(page, md, pte_dirty(huge_pte), 1);
3142 return 0;
3143 }
3144
3145 #else
gather_hugetlb_stats(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)3146 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
3147 unsigned long addr, unsigned long end, struct mm_walk *walk)
3148 {
3149 return 0;
3150 }
3151 #endif
3152
3153 static const struct mm_walk_ops show_numa_ops = {
3154 .hugetlb_entry = gather_hugetlb_stats,
3155 .pmd_entry = gather_pte_stats,
3156 .walk_lock = PGWALK_RDLOCK,
3157 };
3158
3159 /*
3160 * Display pages allocated per node and memory policy via /proc.
3161 */
show_numa_map(struct seq_file * m,void * v)3162 static int show_numa_map(struct seq_file *m, void *v)
3163 {
3164 struct numa_maps_private *numa_priv = m->private;
3165 struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
3166 struct vm_area_struct *vma = v;
3167 struct numa_maps *md = &numa_priv->md;
3168 struct file *file = vma->vm_file;
3169 struct mm_struct *mm = vma->vm_mm;
3170 char buffer[64];
3171 struct mempolicy *pol;
3172 pgoff_t ilx;
3173 int nid;
3174
3175 if (!mm)
3176 return 0;
3177
3178 /* Ensure we start with an empty set of numa_maps statistics. */
3179 memset(md, 0, sizeof(*md));
3180
3181 pol = __get_vma_policy(vma, vma->vm_start, &ilx);
3182 if (pol) {
3183 mpol_to_str(buffer, sizeof(buffer), pol);
3184 mpol_cond_put(pol);
3185 } else {
3186 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
3187 }
3188
3189 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
3190
3191 if (file) {
3192 seq_puts(m, " file=");
3193 seq_path(m, file_user_path(file), "\n\t= ");
3194 } else if (vma_is_initial_heap(vma)) {
3195 seq_puts(m, " heap");
3196 } else if (vma_is_initial_stack(vma)) {
3197 seq_puts(m, " stack");
3198 }
3199
3200 if (is_vm_hugetlb_page(vma))
3201 seq_puts(m, " huge");
3202
3203 /* mmap_lock is held by m_start */
3204 walk_page_vma(vma, &show_numa_ops, md);
3205
3206 if (!md->pages)
3207 goto out;
3208
3209 if (md->anon)
3210 seq_printf(m, " anon=%lu", md->anon);
3211
3212 if (md->dirty)
3213 seq_printf(m, " dirty=%lu", md->dirty);
3214
3215 if (md->pages != md->anon && md->pages != md->dirty)
3216 seq_printf(m, " mapped=%lu", md->pages);
3217
3218 if (md->mapcount_max > 1)
3219 seq_printf(m, " mapmax=%lu", md->mapcount_max);
3220
3221 if (md->swapcache)
3222 seq_printf(m, " swapcache=%lu", md->swapcache);
3223
3224 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
3225 seq_printf(m, " active=%lu", md->active);
3226
3227 if (md->writeback)
3228 seq_printf(m, " writeback=%lu", md->writeback);
3229
3230 for_each_node_state(nid, N_MEMORY)
3231 if (md->node[nid])
3232 seq_printf(m, " N%d=%lu", nid, md->node[nid]);
3233
3234 seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
3235 out:
3236 seq_putc(m, '\n');
3237 return 0;
3238 }
3239
3240 static const struct seq_operations proc_pid_numa_maps_op = {
3241 .start = m_start,
3242 .next = m_next,
3243 .stop = m_stop,
3244 .show = show_numa_map,
3245 };
3246
pid_numa_maps_open(struct inode * inode,struct file * file)3247 static int pid_numa_maps_open(struct inode *inode, struct file *file)
3248 {
3249 return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
3250 sizeof(struct numa_maps_private));
3251 }
3252
3253 const struct file_operations proc_pid_numa_maps_operations = {
3254 .open = pid_numa_maps_open,
3255 .read = seq_read,
3256 .llseek = seq_lseek,
3257 .release = proc_map_release,
3258 };
3259
3260 #endif /* CONFIG_NUMA */
3261