xref: /linux/include/linux/page-flags.h (revision beace86e61e465dba204a268ab3f3377153a4973)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Macros for manipulating and testing page->flags
4  */
5 
6 #ifndef PAGE_FLAGS_H
7 #define PAGE_FLAGS_H
8 
9 #include <linux/types.h>
10 #include <linux/bug.h>
11 #include <linux/mmdebug.h>
12 #ifndef __GENERATING_BOUNDS_H
13 #include <linux/mm_types.h>
14 #include <generated/bounds.h>
15 #endif /* !__GENERATING_BOUNDS_H */
16 
17 /*
18  * Various page->flags bits:
19  *
20  * PG_reserved is set for special pages. The "struct page" of such a page
21  * should in general not be touched (e.g. set dirty) except by its owner.
22  * Pages marked as PG_reserved include:
23  * - Pages part of the kernel image (including vDSO) and similar (e.g. BIOS,
24  *   initrd, HW tables)
25  * - Pages reserved or allocated early during boot (before the page allocator
26  *   was initialized). This includes (depending on the architecture) the
27  *   initial vmemmap, initial page tables, crashkernel, elfcorehdr, and much
28  *   much more. Once (if ever) freed, PG_reserved is cleared and they will
29  *   be given to the page allocator.
30  * - Pages falling into physical memory gaps - not IORESOURCE_SYSRAM. Trying
31  *   to read/write these pages might end badly. Don't touch!
32  * - The zero page(s)
33  * - Pages allocated in the context of kexec/kdump (loaded kernel image,
34  *   control pages, vmcoreinfo)
35  * - MMIO/DMA pages. Some architectures don't allow to ioremap pages that are
36  *   not marked PG_reserved (as they might be in use by somebody else who does
37  *   not respect the caching strategy).
38  * - MCA pages on ia64
39  * - Pages holding CPU notes for POWER Firmware Assisted Dump
40  * - Device memory (e.g. PMEM, DAX, HMM)
41  * Some PG_reserved pages will be excluded from the hibernation image.
42  * PG_reserved does in general not hinder anybody from dumping or swapping
43  * and is no longer required for remap_pfn_range(). ioremap might require it.
44  * Consequently, PG_reserved for a page mapped into user space can indicate
45  * the zero page, the vDSO, MMIO pages or device memory.
46  *
47  * The PG_private bitflag is set on pagecache pages if they contain filesystem
48  * specific data (which is normally at page->private). It can be used by
49  * private allocations for its own usage.
50  *
51  * During initiation of disk I/O, PG_locked is set. This bit is set before I/O
52  * and cleared when writeback _starts_ or when read _completes_. PG_writeback
53  * is set before writeback starts and cleared when it finishes.
54  *
55  * PG_locked also pins a page in pagecache, and blocks truncation of the file
56  * while it is held.
57  *
58  * page_waitqueue(page) is a wait queue of all tasks waiting for the page
59  * to become unlocked.
60  *
61  * PG_swapbacked is set when a page uses swap as a backing storage.  This are
62  * usually PageAnon or shmem pages but please note that even anonymous pages
63  * might lose their PG_swapbacked flag when they simply can be dropped (e.g. as
64  * a result of MADV_FREE).
65  *
66  * PG_referenced, PG_reclaim are used for page reclaim for anonymous and
67  * file-backed pagecache (see mm/vmscan.c).
68  *
69  * PG_arch_1 is an architecture specific page state bit.  The generic code
70  * guarantees that this bit is cleared for a page when it first is entered into
71  * the page cache.
72  *
73  * PG_hwpoison indicates that a page got corrupted in hardware and contains
74  * data with incorrect ECC bits that triggered a machine check. Accessing is
75  * not safe since it may cause another machine check. Don't touch!
76  */
77 
78 /*
79  * Don't use the pageflags directly.  Use the PageFoo macros.
80  *
81  * The page flags field is split into two parts, the main flags area
82  * which extends from the low bits upwards, and the fields area which
83  * extends from the high bits downwards.
84  *
85  *  | FIELD | ... | FLAGS |
86  *  N-1           ^       0
87  *               (NR_PAGEFLAGS)
88  *
89  * The fields area is reserved for fields mapping zone, node (for NUMA) and
90  * SPARSEMEM section (for variants of SPARSEMEM that require section ids like
91  * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP).
92  */
93 enum pageflags {
94 	PG_locked,		/* Page is locked. Don't touch. */
95 	PG_writeback,		/* Page is under writeback */
96 	PG_referenced,
97 	PG_uptodate,
98 	PG_dirty,
99 	PG_lru,
100 	PG_head,		/* Must be in bit 6 */
101 	PG_waiters,		/* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */
102 	PG_active,
103 	PG_workingset,
104 	PG_owner_priv_1,	/* Owner use. If pagecache, fs may use */
105 	PG_owner_2,		/* Owner use. If pagecache, fs may use */
106 	PG_arch_1,
107 	PG_reserved,
108 	PG_private,		/* If pagecache, has fs-private data */
109 	PG_private_2,		/* If pagecache, has fs aux data */
110 	PG_reclaim,		/* To be reclaimed asap */
111 	PG_swapbacked,		/* Page is backed by RAM/swap */
112 	PG_unevictable,		/* Page is "unevictable"  */
113 	PG_dropbehind,		/* drop pages on IO completion */
114 #ifdef CONFIG_MMU
115 	PG_mlocked,		/* Page is vma mlocked */
116 #endif
117 #ifdef CONFIG_MEMORY_FAILURE
118 	PG_hwpoison,		/* hardware poisoned page. Don't touch */
119 #endif
120 #if defined(CONFIG_PAGE_IDLE_FLAG) && defined(CONFIG_64BIT)
121 	PG_young,
122 	PG_idle,
123 #endif
124 #ifdef CONFIG_ARCH_USES_PG_ARCH_2
125 	PG_arch_2,
126 #endif
127 #ifdef CONFIG_ARCH_USES_PG_ARCH_3
128 	PG_arch_3,
129 #endif
130 	__NR_PAGEFLAGS,
131 
132 	PG_readahead = PG_reclaim,
133 
134 	/* Anonymous memory (and shmem) */
135 	PG_swapcache = PG_owner_priv_1, /* Swap page: swp_entry_t in private */
136 	/* Some filesystems */
137 	PG_checked = PG_owner_priv_1,
138 
139 	/*
140 	 * Depending on the way an anonymous folio can be mapped into a page
141 	 * table (e.g., single PMD/PUD/CONT of the head page vs. PTE-mapped
142 	 * THP), PG_anon_exclusive may be set only for the head page or for
143 	 * tail pages of an anonymous folio. For now, we only expect it to be
144 	 * set on tail pages for PTE-mapped THP.
145 	 */
146 	PG_anon_exclusive = PG_owner_2,
147 
148 	/*
149 	 * Set if all buffer heads in the folio are mapped.
150 	 * Filesystems which do not use BHs can use it for their own purpose.
151 	 */
152 	PG_mappedtodisk = PG_owner_2,
153 
154 	/* Two page bits are conscripted by FS-Cache to maintain local caching
155 	 * state.  These bits are set on pages belonging to the netfs's inodes
156 	 * when those inodes are being locally cached.
157 	 */
158 	PG_fscache = PG_private_2,	/* page backed by cache */
159 
160 	/* XEN */
161 	/* Pinned in Xen as a read-only pagetable page. */
162 	PG_pinned = PG_owner_priv_1,
163 	/* Pinned as part of domain save (see xen_mm_pin_all()). */
164 	PG_savepinned = PG_dirty,
165 	/* Has a grant mapping of another (foreign) domain's page. */
166 	PG_foreign = PG_owner_priv_1,
167 	/* Remapped by swiotlb-xen. */
168 	PG_xen_remapped = PG_owner_priv_1,
169 
170 #ifdef CONFIG_MIGRATION
171 	/* movable_ops page that is isolated for migration */
172 	PG_movable_ops_isolated = PG_reclaim,
173 	/* this is a movable_ops page (for selected typed pages only) */
174 	PG_movable_ops = PG_uptodate,
175 #endif
176 
177 	/* Only valid for buddy pages. Used to track pages that are reported */
178 	PG_reported = PG_uptodate,
179 
180 #ifdef CONFIG_MEMORY_HOTPLUG
181 	/* For self-hosted memmap pages */
182 	PG_vmemmap_self_hosted = PG_owner_priv_1,
183 #endif
184 
185 	/*
186 	 * Flags only valid for compound pages.  Stored in first tail page's
187 	 * flags word.  Cannot use the first 8 flags or any flag marked as
188 	 * PF_ANY.
189 	 */
190 
191 	/* At least one page in this folio has the hwpoison flag set */
192 	PG_has_hwpoisoned = PG_active,
193 	PG_large_rmappable = PG_workingset, /* anon or file-backed */
194 	PG_partially_mapped = PG_reclaim, /* was identified to be partially mapped */
195 };
196 
197 #define PAGEFLAGS_MASK		((1UL << NR_PAGEFLAGS) - 1)
198 
199 #ifndef __GENERATING_BOUNDS_H
200 
201 #ifdef CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP
202 DECLARE_STATIC_KEY_FALSE(hugetlb_optimize_vmemmap_key);
203 
204 /*
205  * Return the real head page struct iff the @page is a fake head page, otherwise
206  * return the @page itself. See Documentation/mm/vmemmap_dedup.rst.
207  */
208 static __always_inline const struct page *page_fixed_fake_head(const struct page *page)
209 {
210 	if (!static_branch_unlikely(&hugetlb_optimize_vmemmap_key))
211 		return page;
212 
213 	/*
214 	 * Only addresses aligned with PAGE_SIZE of struct page may be fake head
215 	 * struct page. The alignment check aims to avoid access the fields (
216 	 * e.g. compound_head) of the @page[1]. It can avoid touch a (possibly)
217 	 * cold cacheline in some cases.
218 	 */
219 	if (IS_ALIGNED((unsigned long)page, PAGE_SIZE) &&
220 	    test_bit(PG_head, &page->flags)) {
221 		/*
222 		 * We can safely access the field of the @page[1] with PG_head
223 		 * because the @page is a compound page composed with at least
224 		 * two contiguous pages.
225 		 */
226 		unsigned long head = READ_ONCE(page[1].compound_head);
227 
228 		if (likely(head & 1))
229 			return (const struct page *)(head - 1);
230 	}
231 	return page;
232 }
233 
234 static __always_inline bool page_count_writable(const struct page *page, int u)
235 {
236 	if (!static_branch_unlikely(&hugetlb_optimize_vmemmap_key))
237 		return true;
238 
239 	/*
240 	 * The refcount check is ordered before the fake-head check to prevent
241 	 * the following race:
242 	 *   CPU 1 (HVO)                     CPU 2 (speculative PFN walker)
243 	 *
244 	 *   page_ref_freeze()
245 	 *   synchronize_rcu()
246 	 *                                   rcu_read_lock()
247 	 *                                   page_is_fake_head() is false
248 	 *   vmemmap_remap_pte()
249 	 *   XXX: struct page[] becomes r/o
250 	 *
251 	 *   page_ref_unfreeze()
252 	 *                                   page_ref_count() is not zero
253 	 *
254 	 *                                   atomic_add_unless(&page->_refcount)
255 	 *                                   XXX: try to modify r/o struct page[]
256 	 *
257 	 * The refcount check also prevents modification attempts to other (r/o)
258 	 * tail pages that are not fake heads.
259 	 */
260 	if (atomic_read_acquire(&page->_refcount) == u)
261 		return false;
262 
263 	return page_fixed_fake_head(page) == page;
264 }
265 #else
266 static inline const struct page *page_fixed_fake_head(const struct page *page)
267 {
268 	return page;
269 }
270 
271 static inline bool page_count_writable(const struct page *page, int u)
272 {
273 	return true;
274 }
275 #endif
276 
277 static __always_inline int page_is_fake_head(const struct page *page)
278 {
279 	return page_fixed_fake_head(page) != page;
280 }
281 
282 static __always_inline unsigned long _compound_head(const struct page *page)
283 {
284 	unsigned long head = READ_ONCE(page->compound_head);
285 
286 	if (unlikely(head & 1))
287 		return head - 1;
288 	return (unsigned long)page_fixed_fake_head(page);
289 }
290 
291 #define compound_head(page)	((typeof(page))_compound_head(page))
292 
293 /**
294  * page_folio - Converts from page to folio.
295  * @p: The page.
296  *
297  * Every page is part of a folio.  This function cannot be called on a
298  * NULL pointer.
299  *
300  * Context: No reference, nor lock is required on @page.  If the caller
301  * does not hold a reference, this call may race with a folio split, so
302  * it should re-check the folio still contains this page after gaining
303  * a reference on the folio.
304  * Return: The folio which contains this page.
305  */
306 #define page_folio(p)		(_Generic((p),				\
307 	const struct page *:	(const struct folio *)_compound_head(p), \
308 	struct page *:		(struct folio *)_compound_head(p)))
309 
310 /**
311  * folio_page - Return a page from a folio.
312  * @folio: The folio.
313  * @n: The page number to return.
314  *
315  * @n is relative to the start of the folio.  This function does not
316  * check that the page number lies within @folio; the caller is presumed
317  * to have a reference to the page.
318  */
319 #define folio_page(folio, n)	nth_page(&(folio)->page, n)
320 
321 static __always_inline int PageTail(const struct page *page)
322 {
323 	return READ_ONCE(page->compound_head) & 1 || page_is_fake_head(page);
324 }
325 
326 static __always_inline int PageCompound(const struct page *page)
327 {
328 	return test_bit(PG_head, &page->flags) ||
329 	       READ_ONCE(page->compound_head) & 1;
330 }
331 
332 #define	PAGE_POISON_PATTERN	-1l
333 static inline int PagePoisoned(const struct page *page)
334 {
335 	return READ_ONCE(page->flags) == PAGE_POISON_PATTERN;
336 }
337 
338 #ifdef CONFIG_DEBUG_VM
339 void page_init_poison(struct page *page, size_t size);
340 #else
341 static inline void page_init_poison(struct page *page, size_t size)
342 {
343 }
344 #endif
345 
346 static const unsigned long *const_folio_flags(const struct folio *folio,
347 		unsigned n)
348 {
349 	const struct page *page = &folio->page;
350 
351 	VM_BUG_ON_PGFLAGS(page->compound_head & 1, page);
352 	VM_BUG_ON_PGFLAGS(n > 0 && !test_bit(PG_head, &page->flags), page);
353 	return &page[n].flags;
354 }
355 
356 static unsigned long *folio_flags(struct folio *folio, unsigned n)
357 {
358 	struct page *page = &folio->page;
359 
360 	VM_BUG_ON_PGFLAGS(page->compound_head & 1, page);
361 	VM_BUG_ON_PGFLAGS(n > 0 && !test_bit(PG_head, &page->flags), page);
362 	return &page[n].flags;
363 }
364 
365 /*
366  * Page flags policies wrt compound pages
367  *
368  * PF_POISONED_CHECK
369  *     check if this struct page poisoned/uninitialized
370  *
371  * PF_ANY:
372  *     the page flag is relevant for small, head and tail pages.
373  *
374  * PF_HEAD:
375  *     for compound page all operations related to the page flag applied to
376  *     head page.
377  *
378  * PF_NO_TAIL:
379  *     modifications of the page flag must be done on small or head pages,
380  *     checks can be done on tail pages too.
381  *
382  * PF_NO_COMPOUND:
383  *     the page flag is not relevant for compound pages.
384  *
385  * PF_SECOND:
386  *     the page flag is stored in the first tail page.
387  */
388 #define PF_POISONED_CHECK(page) ({					\
389 		VM_BUG_ON_PGFLAGS(PagePoisoned(page), page);		\
390 		page; })
391 #define PF_ANY(page, enforce)	PF_POISONED_CHECK(page)
392 #define PF_HEAD(page, enforce)	PF_POISONED_CHECK(compound_head(page))
393 #define PF_NO_TAIL(page, enforce) ({					\
394 		VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page);	\
395 		PF_POISONED_CHECK(compound_head(page)); })
396 #define PF_NO_COMPOUND(page, enforce) ({				\
397 		VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page);	\
398 		PF_POISONED_CHECK(page); })
399 #define PF_SECOND(page, enforce) ({					\
400 		VM_BUG_ON_PGFLAGS(!PageHead(page), page);		\
401 		PF_POISONED_CHECK(&page[1]); })
402 
403 /* Which page is the flag stored in */
404 #define FOLIO_PF_ANY		0
405 #define FOLIO_PF_HEAD		0
406 #define FOLIO_PF_NO_TAIL	0
407 #define FOLIO_PF_NO_COMPOUND	0
408 #define FOLIO_PF_SECOND		1
409 
410 #define FOLIO_HEAD_PAGE		0
411 #define FOLIO_SECOND_PAGE	1
412 
413 /*
414  * Macros to create function definitions for page flags
415  */
416 #define FOLIO_TEST_FLAG(name, page)					\
417 static __always_inline bool folio_test_##name(const struct folio *folio) \
418 { return test_bit(PG_##name, const_folio_flags(folio, page)); }
419 
420 #define FOLIO_SET_FLAG(name, page)					\
421 static __always_inline void folio_set_##name(struct folio *folio)	\
422 { set_bit(PG_##name, folio_flags(folio, page)); }
423 
424 #define FOLIO_CLEAR_FLAG(name, page)					\
425 static __always_inline void folio_clear_##name(struct folio *folio)	\
426 { clear_bit(PG_##name, folio_flags(folio, page)); }
427 
428 #define __FOLIO_SET_FLAG(name, page)					\
429 static __always_inline void __folio_set_##name(struct folio *folio)	\
430 { __set_bit(PG_##name, folio_flags(folio, page)); }
431 
432 #define __FOLIO_CLEAR_FLAG(name, page)					\
433 static __always_inline void __folio_clear_##name(struct folio *folio)	\
434 { __clear_bit(PG_##name, folio_flags(folio, page)); }
435 
436 #define FOLIO_TEST_SET_FLAG(name, page)					\
437 static __always_inline bool folio_test_set_##name(struct folio *folio)	\
438 { return test_and_set_bit(PG_##name, folio_flags(folio, page)); }
439 
440 #define FOLIO_TEST_CLEAR_FLAG(name, page)				\
441 static __always_inline bool folio_test_clear_##name(struct folio *folio) \
442 { return test_and_clear_bit(PG_##name, folio_flags(folio, page)); }
443 
444 #define FOLIO_FLAG(name, page)						\
445 FOLIO_TEST_FLAG(name, page)						\
446 FOLIO_SET_FLAG(name, page)						\
447 FOLIO_CLEAR_FLAG(name, page)
448 
449 #define TESTPAGEFLAG(uname, lname, policy)				\
450 FOLIO_TEST_FLAG(lname, FOLIO_##policy)					\
451 static __always_inline int Page##uname(const struct page *page)		\
452 { return test_bit(PG_##lname, &policy(page, 0)->flags); }
453 
454 #define SETPAGEFLAG(uname, lname, policy)				\
455 FOLIO_SET_FLAG(lname, FOLIO_##policy)					\
456 static __always_inline void SetPage##uname(struct page *page)		\
457 { set_bit(PG_##lname, &policy(page, 1)->flags); }
458 
459 #define CLEARPAGEFLAG(uname, lname, policy)				\
460 FOLIO_CLEAR_FLAG(lname, FOLIO_##policy)					\
461 static __always_inline void ClearPage##uname(struct page *page)		\
462 { clear_bit(PG_##lname, &policy(page, 1)->flags); }
463 
464 #define __SETPAGEFLAG(uname, lname, policy)				\
465 __FOLIO_SET_FLAG(lname, FOLIO_##policy)					\
466 static __always_inline void __SetPage##uname(struct page *page)		\
467 { __set_bit(PG_##lname, &policy(page, 1)->flags); }
468 
469 #define __CLEARPAGEFLAG(uname, lname, policy)				\
470 __FOLIO_CLEAR_FLAG(lname, FOLIO_##policy)				\
471 static __always_inline void __ClearPage##uname(struct page *page)	\
472 { __clear_bit(PG_##lname, &policy(page, 1)->flags); }
473 
474 #define TESTSETFLAG(uname, lname, policy)				\
475 FOLIO_TEST_SET_FLAG(lname, FOLIO_##policy)				\
476 static __always_inline int TestSetPage##uname(struct page *page)	\
477 { return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); }
478 
479 #define TESTCLEARFLAG(uname, lname, policy)				\
480 FOLIO_TEST_CLEAR_FLAG(lname, FOLIO_##policy)				\
481 static __always_inline int TestClearPage##uname(struct page *page)	\
482 { return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); }
483 
484 #define PAGEFLAG(uname, lname, policy)					\
485 	TESTPAGEFLAG(uname, lname, policy)				\
486 	SETPAGEFLAG(uname, lname, policy)				\
487 	CLEARPAGEFLAG(uname, lname, policy)
488 
489 #define __PAGEFLAG(uname, lname, policy)				\
490 	TESTPAGEFLAG(uname, lname, policy)				\
491 	__SETPAGEFLAG(uname, lname, policy)				\
492 	__CLEARPAGEFLAG(uname, lname, policy)
493 
494 #define TESTSCFLAG(uname, lname, policy)				\
495 	TESTSETFLAG(uname, lname, policy)				\
496 	TESTCLEARFLAG(uname, lname, policy)
497 
498 #define FOLIO_TEST_FLAG_FALSE(name)					\
499 static inline bool folio_test_##name(const struct folio *folio)		\
500 { return false; }
501 #define FOLIO_SET_FLAG_NOOP(name)					\
502 static inline void folio_set_##name(struct folio *folio) { }
503 #define FOLIO_CLEAR_FLAG_NOOP(name)					\
504 static inline void folio_clear_##name(struct folio *folio) { }
505 #define __FOLIO_SET_FLAG_NOOP(name)					\
506 static inline void __folio_set_##name(struct folio *folio) { }
507 #define __FOLIO_CLEAR_FLAG_NOOP(name)					\
508 static inline void __folio_clear_##name(struct folio *folio) { }
509 #define FOLIO_TEST_SET_FLAG_FALSE(name)					\
510 static inline bool folio_test_set_##name(struct folio *folio)		\
511 { return false; }
512 #define FOLIO_TEST_CLEAR_FLAG_FALSE(name)				\
513 static inline bool folio_test_clear_##name(struct folio *folio)		\
514 { return false; }
515 
516 #define FOLIO_FLAG_FALSE(name)						\
517 FOLIO_TEST_FLAG_FALSE(name)						\
518 FOLIO_SET_FLAG_NOOP(name)						\
519 FOLIO_CLEAR_FLAG_NOOP(name)
520 
521 #define TESTPAGEFLAG_FALSE(uname, lname)				\
522 FOLIO_TEST_FLAG_FALSE(lname)						\
523 static inline int Page##uname(const struct page *page) { return 0; }
524 
525 #define SETPAGEFLAG_NOOP(uname, lname)					\
526 FOLIO_SET_FLAG_NOOP(lname)						\
527 static inline void SetPage##uname(struct page *page) {  }
528 
529 #define CLEARPAGEFLAG_NOOP(uname, lname)				\
530 FOLIO_CLEAR_FLAG_NOOP(lname)						\
531 static inline void ClearPage##uname(struct page *page) {  }
532 
533 #define __CLEARPAGEFLAG_NOOP(uname, lname)				\
534 __FOLIO_CLEAR_FLAG_NOOP(lname)						\
535 static inline void __ClearPage##uname(struct page *page) {  }
536 
537 #define TESTSETFLAG_FALSE(uname, lname)					\
538 FOLIO_TEST_SET_FLAG_FALSE(lname)					\
539 static inline int TestSetPage##uname(struct page *page) { return 0; }
540 
541 #define TESTCLEARFLAG_FALSE(uname, lname)				\
542 FOLIO_TEST_CLEAR_FLAG_FALSE(lname)					\
543 static inline int TestClearPage##uname(struct page *page) { return 0; }
544 
545 #define PAGEFLAG_FALSE(uname, lname) TESTPAGEFLAG_FALSE(uname, lname)	\
546 	SETPAGEFLAG_NOOP(uname, lname) CLEARPAGEFLAG_NOOP(uname, lname)
547 
548 #define TESTSCFLAG_FALSE(uname, lname)					\
549 	TESTSETFLAG_FALSE(uname, lname) TESTCLEARFLAG_FALSE(uname, lname)
550 
551 __PAGEFLAG(Locked, locked, PF_NO_TAIL)
552 FOLIO_FLAG(waiters, FOLIO_HEAD_PAGE)
553 FOLIO_FLAG(referenced, FOLIO_HEAD_PAGE)
554 	FOLIO_TEST_CLEAR_FLAG(referenced, FOLIO_HEAD_PAGE)
555 	__FOLIO_SET_FLAG(referenced, FOLIO_HEAD_PAGE)
556 PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD)
557 	__CLEARPAGEFLAG(Dirty, dirty, PF_HEAD)
558 PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD)
559 	TESTCLEARFLAG(LRU, lru, PF_HEAD)
560 FOLIO_FLAG(active, FOLIO_HEAD_PAGE)
561 	__FOLIO_CLEAR_FLAG(active, FOLIO_HEAD_PAGE)
562 	FOLIO_TEST_CLEAR_FLAG(active, FOLIO_HEAD_PAGE)
563 PAGEFLAG(Workingset, workingset, PF_HEAD)
564 	TESTCLEARFLAG(Workingset, workingset, PF_HEAD)
565 PAGEFLAG(Checked, checked, PF_NO_COMPOUND)	   /* Used by some filesystems */
566 
567 /* Xen */
568 PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND)
569 	TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND)
570 PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND);
571 PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND);
572 PAGEFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
573 	TESTCLEARFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
574 
575 PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
576 	__CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
577 	__SETPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
578 FOLIO_FLAG(swapbacked, FOLIO_HEAD_PAGE)
579 	__FOLIO_CLEAR_FLAG(swapbacked, FOLIO_HEAD_PAGE)
580 	__FOLIO_SET_FLAG(swapbacked, FOLIO_HEAD_PAGE)
581 
582 /*
583  * Private page markings that may be used by the filesystem that owns the page
584  * for its own purposes.
585  * - PG_private and PG_private_2 cause release_folio() and co to be invoked
586  */
587 PAGEFLAG(Private, private, PF_ANY)
588 FOLIO_FLAG(private_2, FOLIO_HEAD_PAGE)
589 
590 /* owner_2 can be set on tail pages for anon memory */
591 FOLIO_FLAG(owner_2, FOLIO_HEAD_PAGE)
592 
593 /*
594  * Only test-and-set exist for PG_writeback.  The unconditional operators are
595  * risky: they bypass page accounting.
596  */
597 TESTPAGEFLAG(Writeback, writeback, PF_NO_TAIL)
598 	TESTSCFLAG(Writeback, writeback, PF_NO_TAIL)
599 FOLIO_FLAG(mappedtodisk, FOLIO_HEAD_PAGE)
600 
601 /* PG_readahead is only used for reads; PG_reclaim is only for writes */
602 PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL)
603 	TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL)
604 FOLIO_FLAG(readahead, FOLIO_HEAD_PAGE)
605 	FOLIO_TEST_CLEAR_FLAG(readahead, FOLIO_HEAD_PAGE)
606 
607 FOLIO_FLAG(dropbehind, FOLIO_HEAD_PAGE)
608 	FOLIO_TEST_CLEAR_FLAG(dropbehind, FOLIO_HEAD_PAGE)
609 	__FOLIO_SET_FLAG(dropbehind, FOLIO_HEAD_PAGE)
610 
611 #ifdef CONFIG_HIGHMEM
612 /*
613  * Must use a macro here due to header dependency issues. page_zone() is not
614  * available at this point.
615  */
616 #define PageHighMem(__p) is_highmem_idx(page_zonenum(__p))
617 #define folio_test_highmem(__f)	is_highmem_idx(folio_zonenum(__f))
618 #else
619 PAGEFLAG_FALSE(HighMem, highmem)
620 #endif
621 
622 /* Does kmap_local_folio() only allow access to one page of the folio? */
623 #ifdef CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP
624 #define folio_test_partial_kmap(f)	true
625 #else
626 #define folio_test_partial_kmap(f)	folio_test_highmem(f)
627 #endif
628 
629 #ifdef CONFIG_SWAP
630 static __always_inline bool folio_test_swapcache(const struct folio *folio)
631 {
632 	return folio_test_swapbacked(folio) &&
633 			test_bit(PG_swapcache, const_folio_flags(folio, 0));
634 }
635 
636 FOLIO_SET_FLAG(swapcache, FOLIO_HEAD_PAGE)
637 FOLIO_CLEAR_FLAG(swapcache, FOLIO_HEAD_PAGE)
638 #else
639 FOLIO_FLAG_FALSE(swapcache)
640 #endif
641 
642 FOLIO_FLAG(unevictable, FOLIO_HEAD_PAGE)
643 	__FOLIO_CLEAR_FLAG(unevictable, FOLIO_HEAD_PAGE)
644 	FOLIO_TEST_CLEAR_FLAG(unevictable, FOLIO_HEAD_PAGE)
645 
646 #ifdef CONFIG_MMU
647 FOLIO_FLAG(mlocked, FOLIO_HEAD_PAGE)
648 	__FOLIO_CLEAR_FLAG(mlocked, FOLIO_HEAD_PAGE)
649 	FOLIO_TEST_CLEAR_FLAG(mlocked, FOLIO_HEAD_PAGE)
650 	FOLIO_TEST_SET_FLAG(mlocked, FOLIO_HEAD_PAGE)
651 #else
652 FOLIO_FLAG_FALSE(mlocked)
653 	__FOLIO_CLEAR_FLAG_NOOP(mlocked)
654 	FOLIO_TEST_CLEAR_FLAG_FALSE(mlocked)
655 	FOLIO_TEST_SET_FLAG_FALSE(mlocked)
656 #endif
657 
658 #ifdef CONFIG_MEMORY_FAILURE
659 PAGEFLAG(HWPoison, hwpoison, PF_ANY)
660 TESTSCFLAG(HWPoison, hwpoison, PF_ANY)
661 #define __PG_HWPOISON (1UL << PG_hwpoison)
662 #else
663 PAGEFLAG_FALSE(HWPoison, hwpoison)
664 #define __PG_HWPOISON 0
665 #endif
666 
667 #ifdef CONFIG_PAGE_IDLE_FLAG
668 #ifdef CONFIG_64BIT
669 FOLIO_TEST_FLAG(young, FOLIO_HEAD_PAGE)
670 FOLIO_SET_FLAG(young, FOLIO_HEAD_PAGE)
671 FOLIO_TEST_CLEAR_FLAG(young, FOLIO_HEAD_PAGE)
672 FOLIO_FLAG(idle, FOLIO_HEAD_PAGE)
673 #endif
674 /* See page_idle.h for !64BIT workaround */
675 #else /* !CONFIG_PAGE_IDLE_FLAG */
676 FOLIO_FLAG_FALSE(young)
677 FOLIO_TEST_CLEAR_FLAG_FALSE(young)
678 FOLIO_FLAG_FALSE(idle)
679 #endif
680 
681 /*
682  * PageReported() is used to track reported free pages within the Buddy
683  * allocator. We can use the non-atomic version of the test and set
684  * operations as both should be shielded with the zone lock to prevent
685  * any possible races on the setting or clearing of the bit.
686  */
687 __PAGEFLAG(Reported, reported, PF_NO_COMPOUND)
688 
689 #ifdef CONFIG_MEMORY_HOTPLUG
690 PAGEFLAG(VmemmapSelfHosted, vmemmap_self_hosted, PF_ANY)
691 #else
692 PAGEFLAG_FALSE(VmemmapSelfHosted, vmemmap_self_hosted)
693 #endif
694 
695 /*
696  * On an anonymous folio mapped into a user virtual memory area,
697  * folio->mapping points to its anon_vma, not to a struct address_space;
698  * with the FOLIO_MAPPING_ANON bit set to distinguish it.  See rmap.h.
699  *
700  * On an anonymous folio in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
701  * the FOLIO_MAPPING_ANON_KSM bit may be set along with the FOLIO_MAPPING_ANON
702  * bit; and then folio->mapping points, not to an anon_vma, but to a private
703  * structure which KSM associates with that merged folio.  See ksm.h.
704  *
705  * Please note that, confusingly, "folio_mapping" refers to the inode
706  * address_space which maps the folio from disk; whereas "folio_mapped"
707  * refers to user virtual address space into which the folio is mapped.
708  *
709  * For slab pages, since slab reuses the bits in struct page to store its
710  * internal states, the folio->mapping does not exist as such, nor do
711  * these flags below.  So in order to avoid testing non-existent bits,
712  * please make sure that folio_test_slab(folio) actually evaluates to
713  * false before calling the following functions (e.g., folio_test_anon).
714  * See mm/slab.h.
715  */
716 #define FOLIO_MAPPING_ANON	0x1
717 #define FOLIO_MAPPING_ANON_KSM	0x2
718 #define FOLIO_MAPPING_KSM	(FOLIO_MAPPING_ANON | FOLIO_MAPPING_ANON_KSM)
719 #define FOLIO_MAPPING_FLAGS	(FOLIO_MAPPING_ANON | FOLIO_MAPPING_ANON_KSM)
720 
721 static __always_inline bool folio_test_anon(const struct folio *folio)
722 {
723 	return ((unsigned long)folio->mapping & FOLIO_MAPPING_ANON) != 0;
724 }
725 
726 static __always_inline bool PageAnonNotKsm(const struct page *page)
727 {
728 	unsigned long flags = (unsigned long)page_folio(page)->mapping;
729 
730 	return (flags & FOLIO_MAPPING_FLAGS) == FOLIO_MAPPING_ANON;
731 }
732 
733 static __always_inline bool PageAnon(const struct page *page)
734 {
735 	return folio_test_anon(page_folio(page));
736 }
737 #ifdef CONFIG_KSM
738 /*
739  * A KSM page is one of those write-protected "shared pages" or "merged pages"
740  * which KSM maps into multiple mms, wherever identical anonymous page content
741  * is found in VM_MERGEABLE vmas.  It's a PageAnon page, pointing not to any
742  * anon_vma, but to that page's node of the stable tree.
743  */
744 static __always_inline bool folio_test_ksm(const struct folio *folio)
745 {
746 	return ((unsigned long)folio->mapping & FOLIO_MAPPING_FLAGS) ==
747 				FOLIO_MAPPING_KSM;
748 }
749 #else
750 FOLIO_TEST_FLAG_FALSE(ksm)
751 #endif
752 
753 u64 stable_page_flags(const struct page *page);
754 
755 /**
756  * folio_xor_flags_has_waiters - Change some folio flags.
757  * @folio: The folio.
758  * @mask: Bits set in this word will be changed.
759  *
760  * This must only be used for flags which are changed with the folio
761  * lock held.  For example, it is unsafe to use for PG_dirty as that
762  * can be set without the folio lock held.  It can also only be used
763  * on flags which are in the range 0-6 as some of the implementations
764  * only affect those bits.
765  *
766  * Return: Whether there are tasks waiting on the folio.
767  */
768 static inline bool folio_xor_flags_has_waiters(struct folio *folio,
769 		unsigned long mask)
770 {
771 	return xor_unlock_is_negative_byte(mask, folio_flags(folio, 0));
772 }
773 
774 /**
775  * folio_test_uptodate - Is this folio up to date?
776  * @folio: The folio.
777  *
778  * The uptodate flag is set on a folio when every byte in the folio is
779  * at least as new as the corresponding bytes on storage.  Anonymous
780  * and CoW folios are always uptodate.  If the folio is not uptodate,
781  * some of the bytes in it may be; see the is_partially_uptodate()
782  * address_space operation.
783  */
784 static inline bool folio_test_uptodate(const struct folio *folio)
785 {
786 	bool ret = test_bit(PG_uptodate, const_folio_flags(folio, 0));
787 	/*
788 	 * Must ensure that the data we read out of the folio is loaded
789 	 * _after_ we've loaded folio->flags to check the uptodate bit.
790 	 * We can skip the barrier if the folio is not uptodate, because
791 	 * we wouldn't be reading anything from it.
792 	 *
793 	 * See folio_mark_uptodate() for the other side of the story.
794 	 */
795 	if (ret)
796 		smp_rmb();
797 
798 	return ret;
799 }
800 
801 static inline bool PageUptodate(const struct page *page)
802 {
803 	return folio_test_uptodate(page_folio(page));
804 }
805 
806 static __always_inline void __folio_mark_uptodate(struct folio *folio)
807 {
808 	smp_wmb();
809 	__set_bit(PG_uptodate, folio_flags(folio, 0));
810 }
811 
812 static __always_inline void folio_mark_uptodate(struct folio *folio)
813 {
814 	/*
815 	 * Memory barrier must be issued before setting the PG_uptodate bit,
816 	 * so that all previous stores issued in order to bring the folio
817 	 * uptodate are actually visible before folio_test_uptodate becomes true.
818 	 */
819 	smp_wmb();
820 	set_bit(PG_uptodate, folio_flags(folio, 0));
821 }
822 
823 static __always_inline void __SetPageUptodate(struct page *page)
824 {
825 	__folio_mark_uptodate((struct folio *)page);
826 }
827 
828 static __always_inline void SetPageUptodate(struct page *page)
829 {
830 	folio_mark_uptodate((struct folio *)page);
831 }
832 
833 CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL)
834 
835 void __folio_start_writeback(struct folio *folio, bool keep_write);
836 void set_page_writeback(struct page *page);
837 
838 #define folio_start_writeback(folio)			\
839 	__folio_start_writeback(folio, false)
840 #define folio_start_writeback_keepwrite(folio)	\
841 	__folio_start_writeback(folio, true)
842 
843 static __always_inline bool folio_test_head(const struct folio *folio)
844 {
845 	return test_bit(PG_head, const_folio_flags(folio, FOLIO_PF_ANY));
846 }
847 
848 static __always_inline int PageHead(const struct page *page)
849 {
850 	PF_POISONED_CHECK(page);
851 	return test_bit(PG_head, &page->flags) && !page_is_fake_head(page);
852 }
853 
854 __SETPAGEFLAG(Head, head, PF_ANY)
855 __CLEARPAGEFLAG(Head, head, PF_ANY)
856 CLEARPAGEFLAG(Head, head, PF_ANY)
857 
858 /**
859  * folio_test_large() - Does this folio contain more than one page?
860  * @folio: The folio to test.
861  *
862  * Return: True if the folio is larger than one page.
863  */
864 static inline bool folio_test_large(const struct folio *folio)
865 {
866 	return folio_test_head(folio);
867 }
868 
869 static __always_inline void set_compound_head(struct page *page, struct page *head)
870 {
871 	WRITE_ONCE(page->compound_head, (unsigned long)head + 1);
872 }
873 
874 static __always_inline void clear_compound_head(struct page *page)
875 {
876 	WRITE_ONCE(page->compound_head, 0);
877 }
878 
879 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
880 static inline void ClearPageCompound(struct page *page)
881 {
882 	BUG_ON(!PageHead(page));
883 	ClearPageHead(page);
884 }
885 FOLIO_FLAG(large_rmappable, FOLIO_SECOND_PAGE)
886 FOLIO_FLAG(partially_mapped, FOLIO_SECOND_PAGE)
887 #else
888 FOLIO_FLAG_FALSE(large_rmappable)
889 FOLIO_FLAG_FALSE(partially_mapped)
890 #endif
891 
892 #define PG_head_mask ((1UL << PG_head))
893 
894 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
895 /*
896  * PageTransCompound returns true for both transparent huge pages
897  * and hugetlbfs pages, so it should only be called when it's known
898  * that hugetlbfs pages aren't involved.
899  */
900 static inline int PageTransCompound(const struct page *page)
901 {
902 	return PageCompound(page);
903 }
904 #else
905 TESTPAGEFLAG_FALSE(TransCompound, transcompound)
906 #endif
907 
908 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
909 /*
910  * PageHasHWPoisoned indicates that at least one subpage is hwpoisoned in the
911  * compound page.
912  *
913  * This flag is set by hwpoison handler.  Cleared by THP split or free page.
914  */
915 FOLIO_FLAG(has_hwpoisoned, FOLIO_SECOND_PAGE)
916 #else
917 FOLIO_FLAG_FALSE(has_hwpoisoned)
918 #endif
919 
920 /*
921  * For pages that do not use mapcount, page_type may be used.
922  * The low 24 bits of pagetype may be used for your own purposes, as long
923  * as you are careful to not affect the top 8 bits.  The low bits of
924  * pagetype will be overwritten when you clear the page_type from the page.
925  */
926 enum pagetype {
927 	/* 0x00-0x7f are positive numbers, ie mapcount */
928 	/* Reserve 0x80-0xef for mapcount overflow. */
929 	PGTY_buddy		= 0xf0,
930 	PGTY_offline		= 0xf1,
931 	PGTY_table		= 0xf2,
932 	PGTY_guard		= 0xf3,
933 	PGTY_hugetlb		= 0xf4,
934 	PGTY_slab		= 0xf5,
935 	PGTY_zsmalloc		= 0xf6,
936 	PGTY_unaccepted		= 0xf7,
937 	PGTY_large_kmalloc	= 0xf8,
938 
939 	PGTY_mapcount_underflow = 0xff
940 };
941 
942 static inline bool page_type_has_type(int page_type)
943 {
944 	return page_type < (PGTY_mapcount_underflow << 24);
945 }
946 
947 /* This takes a mapcount which is one more than page->_mapcount */
948 static inline bool page_mapcount_is_type(unsigned int mapcount)
949 {
950 	return page_type_has_type(mapcount - 1);
951 }
952 
953 static inline bool page_has_type(const struct page *page)
954 {
955 	return page_type_has_type(data_race(page->page_type));
956 }
957 
958 #define FOLIO_TYPE_OPS(lname, fname)					\
959 static __always_inline bool folio_test_##fname(const struct folio *folio) \
960 {									\
961 	return data_race(folio->page.page_type >> 24) == PGTY_##lname;	\
962 }									\
963 static __always_inline void __folio_set_##fname(struct folio *folio)	\
964 {									\
965 	if (folio_test_##fname(folio))					\
966 		return;							\
967 	VM_BUG_ON_FOLIO(data_race(folio->page.page_type) != UINT_MAX,	\
968 			folio);						\
969 	folio->page.page_type = (unsigned int)PGTY_##lname << 24;	\
970 }									\
971 static __always_inline void __folio_clear_##fname(struct folio *folio)	\
972 {									\
973 	if (folio->page.page_type == UINT_MAX)				\
974 		return;							\
975 	VM_BUG_ON_FOLIO(!folio_test_##fname(folio), folio);		\
976 	folio->page.page_type = UINT_MAX;				\
977 }
978 
979 #define PAGE_TYPE_OPS(uname, lname, fname)				\
980 FOLIO_TYPE_OPS(lname, fname)						\
981 static __always_inline int Page##uname(const struct page *page)		\
982 {									\
983 	return data_race(page->page_type >> 24) == PGTY_##lname;	\
984 }									\
985 static __always_inline void __SetPage##uname(struct page *page)		\
986 {									\
987 	if (Page##uname(page))						\
988 		return;							\
989 	VM_BUG_ON_PAGE(data_race(page->page_type) != UINT_MAX, page);	\
990 	page->page_type = (unsigned int)PGTY_##lname << 24;		\
991 }									\
992 static __always_inline void __ClearPage##uname(struct page *page)	\
993 {									\
994 	if (page->page_type == UINT_MAX)				\
995 		return;							\
996 	VM_BUG_ON_PAGE(!Page##uname(page), page);			\
997 	page->page_type = UINT_MAX;					\
998 }
999 
1000 /*
1001  * PageBuddy() indicates that the page is free and in the buddy system
1002  * (see mm/page_alloc.c).
1003  */
1004 PAGE_TYPE_OPS(Buddy, buddy, buddy)
1005 
1006 /*
1007  * PageOffline() indicates that the page is logically offline although the
1008  * containing section is online. (e.g. inflated in a balloon driver or
1009  * not onlined when onlining the section).
1010  * The content of these pages is effectively stale. Such pages should not
1011  * be touched (read/write/dump/save) except by their owner.
1012  *
1013  * When a memory block gets onlined, all pages are initialized with a
1014  * refcount of 1 and PageOffline(). generic_online_page() will
1015  * take care of clearing PageOffline().
1016  *
1017  * If a driver wants to allow to offline unmovable PageOffline() pages without
1018  * putting them back to the buddy, it can do so via the memory notifier by
1019  * decrementing the reference count in MEM_GOING_OFFLINE and incrementing the
1020  * reference count in MEM_CANCEL_OFFLINE. When offlining, the PageOffline()
1021  * pages (now with a reference count of zero) are treated like free (unmanaged)
1022  * pages, allowing the containing memory block to get offlined. A driver that
1023  * relies on this feature is aware that re-onlining the memory block will
1024  * require not giving them to the buddy via generic_online_page().
1025  *
1026  * Memory offlining code will not adjust the managed page count for any
1027  * PageOffline() pages, treating them like they were never exposed to the
1028  * buddy using generic_online_page().
1029  *
1030  * There are drivers that mark a page PageOffline() and expect there won't be
1031  * any further access to page content. PFN walkers that read content of random
1032  * pages should check PageOffline() and synchronize with such drivers using
1033  * page_offline_freeze()/page_offline_thaw().
1034  */
1035 PAGE_TYPE_OPS(Offline, offline, offline)
1036 
1037 extern void page_offline_freeze(void);
1038 extern void page_offline_thaw(void);
1039 extern void page_offline_begin(void);
1040 extern void page_offline_end(void);
1041 
1042 /*
1043  * Marks pages in use as page tables.
1044  */
1045 PAGE_TYPE_OPS(Table, table, pgtable)
1046 
1047 /*
1048  * Marks guardpages used with debug_pagealloc.
1049  */
1050 PAGE_TYPE_OPS(Guard, guard, guard)
1051 
1052 FOLIO_TYPE_OPS(slab, slab)
1053 
1054 /**
1055  * PageSlab - Determine if the page belongs to the slab allocator
1056  * @page: The page to test.
1057  *
1058  * Context: Any context.
1059  * Return: True for slab pages, false for any other kind of page.
1060  */
1061 static inline bool PageSlab(const struct page *page)
1062 {
1063 	return folio_test_slab(page_folio(page));
1064 }
1065 
1066 #ifdef CONFIG_HUGETLB_PAGE
1067 FOLIO_TYPE_OPS(hugetlb, hugetlb)
1068 #else
1069 FOLIO_TEST_FLAG_FALSE(hugetlb)
1070 #endif
1071 
1072 PAGE_TYPE_OPS(Zsmalloc, zsmalloc, zsmalloc)
1073 
1074 /*
1075  * Mark pages that has to be accepted before touched for the first time.
1076  *
1077  * Serialized with zone lock.
1078  */
1079 PAGE_TYPE_OPS(Unaccepted, unaccepted, unaccepted)
1080 FOLIO_TYPE_OPS(large_kmalloc, large_kmalloc)
1081 
1082 /**
1083  * PageHuge - Determine if the page belongs to hugetlbfs
1084  * @page: The page to test.
1085  *
1086  * Context: Any context.
1087  * Return: True for hugetlbfs pages, false for anon pages or pages
1088  * belonging to other filesystems.
1089  */
1090 static inline bool PageHuge(const struct page *page)
1091 {
1092 	return folio_test_hugetlb(page_folio(page));
1093 }
1094 
1095 /*
1096  * Check if a page is currently marked HWPoisoned. Note that this check is
1097  * best effort only and inherently racy: there is no way to synchronize with
1098  * failing hardware.
1099  */
1100 static inline bool is_page_hwpoison(const struct page *page)
1101 {
1102 	const struct folio *folio;
1103 
1104 	if (PageHWPoison(page))
1105 		return true;
1106 	folio = page_folio(page);
1107 	return folio_test_hugetlb(folio) && PageHWPoison(&folio->page);
1108 }
1109 
1110 static inline bool folio_contain_hwpoisoned_page(struct folio *folio)
1111 {
1112 	return folio_test_hwpoison(folio) ||
1113 	    (folio_test_large(folio) && folio_test_has_hwpoisoned(folio));
1114 }
1115 
1116 bool is_free_buddy_page(const struct page *page);
1117 
1118 #ifdef CONFIG_MIGRATION
1119 /*
1120  * This page is migratable through movable_ops (for selected typed pages
1121  * only).
1122  *
1123  * Page migration of such pages might fail, for example, if the page is
1124  * already isolated by somebody else, or if the page is about to get freed.
1125  *
1126  * While a subsystem might set selected typed pages that support page migration
1127  * as being movable through movable_ops, it must never clear this flag.
1128  *
1129  * This flag is only cleared when the page is freed back to the buddy.
1130  *
1131  * Only selected page types support this flag (see page_movable_ops()) and
1132  * the flag might be used in other context for other pages. Always use
1133  * page_has_movable_ops() instead.
1134  */
1135 TESTPAGEFLAG(MovableOps, movable_ops, PF_NO_TAIL);
1136 SETPAGEFLAG(MovableOps, movable_ops, PF_NO_TAIL);
1137 /*
1138  * A movable_ops page has this flag set while it is isolated for migration.
1139  * This flag primarily protects against concurrent migration attempts.
1140  *
1141  * Once migration ended (success or failure), the flag is cleared. The
1142  * flag is managed by the migration core.
1143  */
1144 PAGEFLAG(MovableOpsIsolated, movable_ops_isolated, PF_NO_TAIL);
1145 #else /* !CONFIG_MIGRATION */
1146 TESTPAGEFLAG_FALSE(MovableOps, movable_ops);
1147 SETPAGEFLAG_NOOP(MovableOps, movable_ops);
1148 PAGEFLAG_FALSE(MovableOpsIsolated, movable_ops_isolated);
1149 #endif /* CONFIG_MIGRATION */
1150 
1151 /**
1152  * page_has_movable_ops - test for a movable_ops page
1153  * @page: The page to test.
1154  *
1155  * Test whether this is a movable_ops page. Such pages will stay that
1156  * way until freed.
1157  *
1158  * Returns true if this is a movable_ops page, otherwise false.
1159  */
1160 static inline bool page_has_movable_ops(const struct page *page)
1161 {
1162 	return PageMovableOps(page) &&
1163 	       (PageOffline(page) || PageZsmalloc(page));
1164 }
1165 
1166 static __always_inline int PageAnonExclusive(const struct page *page)
1167 {
1168 	VM_BUG_ON_PGFLAGS(!PageAnon(page), page);
1169 	/*
1170 	 * HugeTLB stores this information on the head page; THP keeps it per
1171 	 * page
1172 	 */
1173 	if (PageHuge(page))
1174 		page = compound_head(page);
1175 	return test_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags);
1176 }
1177 
1178 static __always_inline void SetPageAnonExclusive(struct page *page)
1179 {
1180 	VM_BUG_ON_PGFLAGS(!PageAnonNotKsm(page), page);
1181 	VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page);
1182 	set_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags);
1183 }
1184 
1185 static __always_inline void ClearPageAnonExclusive(struct page *page)
1186 {
1187 	VM_BUG_ON_PGFLAGS(!PageAnonNotKsm(page), page);
1188 	VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page);
1189 	clear_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags);
1190 }
1191 
1192 static __always_inline void __ClearPageAnonExclusive(struct page *page)
1193 {
1194 	VM_BUG_ON_PGFLAGS(!PageAnon(page), page);
1195 	VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page);
1196 	__clear_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags);
1197 }
1198 
1199 #ifdef CONFIG_MMU
1200 #define __PG_MLOCKED		(1UL << PG_mlocked)
1201 #else
1202 #define __PG_MLOCKED		0
1203 #endif
1204 
1205 /*
1206  * Flags checked when a page is freed.  Pages being freed should not have
1207  * these flags set.  If they are, there is a problem.
1208  */
1209 #define PAGE_FLAGS_CHECK_AT_FREE				\
1210 	(1UL << PG_lru		| 1UL << PG_locked	|	\
1211 	 1UL << PG_private	| 1UL << PG_private_2	|	\
1212 	 1UL << PG_writeback	| 1UL << PG_reserved	|	\
1213 	 1UL << PG_active 	|				\
1214 	 1UL << PG_unevictable	| __PG_MLOCKED | LRU_GEN_MASK)
1215 
1216 /*
1217  * Flags checked when a page is prepped for return by the page allocator.
1218  * Pages being prepped should not have these flags set.  If they are set,
1219  * there has been a kernel bug or struct page corruption.
1220  *
1221  * __PG_HWPOISON is exceptional because it needs to be kept beyond page's
1222  * alloc-free cycle to prevent from reusing the page.
1223  */
1224 #define PAGE_FLAGS_CHECK_AT_PREP	\
1225 	((PAGEFLAGS_MASK & ~__PG_HWPOISON) | LRU_GEN_MASK | LRU_REFS_MASK)
1226 
1227 /*
1228  * Flags stored in the second page of a compound page.  They may overlap
1229  * the CHECK_AT_FREE flags above, so need to be cleared.
1230  */
1231 #define PAGE_FLAGS_SECOND						\
1232 	(0xffUL /* order */		| 1UL << PG_has_hwpoisoned |	\
1233 	 1UL << PG_large_rmappable	| 1UL << PG_partially_mapped)
1234 
1235 #define PAGE_FLAGS_PRIVATE				\
1236 	(1UL << PG_private | 1UL << PG_private_2)
1237 /**
1238  * folio_has_private - Determine if folio has private stuff
1239  * @folio: The folio to be checked
1240  *
1241  * Determine if a folio has private stuff, indicating that release routines
1242  * should be invoked upon it.
1243  */
1244 static inline int folio_has_private(const struct folio *folio)
1245 {
1246 	return !!(folio->flags & PAGE_FLAGS_PRIVATE);
1247 }
1248 
1249 #undef PF_ANY
1250 #undef PF_HEAD
1251 #undef PF_NO_TAIL
1252 #undef PF_NO_COMPOUND
1253 #undef PF_SECOND
1254 #endif /* !__GENERATING_BOUNDS_H */
1255 
1256 #endif	/* PAGE_FLAGS_H */
1257