1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Macros for manipulating and testing page->flags 4 */ 5 6 #ifndef PAGE_FLAGS_H 7 #define PAGE_FLAGS_H 8 9 #include <linux/types.h> 10 #include <linux/bug.h> 11 #include <linux/mmdebug.h> 12 #ifndef __GENERATING_BOUNDS_H 13 #include <linux/mm_types.h> 14 #include <generated/bounds.h> 15 #endif /* !__GENERATING_BOUNDS_H */ 16 17 /* 18 * Various page->flags bits: 19 * 20 * PG_reserved is set for special pages. The "struct page" of such a page 21 * should in general not be touched (e.g. set dirty) except by its owner. 22 * Pages marked as PG_reserved include: 23 * - Pages part of the kernel image (including vDSO) and similar (e.g. BIOS, 24 * initrd, HW tables) 25 * - Pages reserved or allocated early during boot (before the page allocator 26 * was initialized). This includes (depending on the architecture) the 27 * initial vmemmap, initial page tables, crashkernel, elfcorehdr, and much 28 * much more. Once (if ever) freed, PG_reserved is cleared and they will 29 * be given to the page allocator. 30 * - Pages falling into physical memory gaps - not IORESOURCE_SYSRAM. Trying 31 * to read/write these pages might end badly. Don't touch! 32 * - The zero page(s) 33 * - Pages allocated in the context of kexec/kdump (loaded kernel image, 34 * control pages, vmcoreinfo) 35 * - MMIO/DMA pages. Some architectures don't allow to ioremap pages that are 36 * not marked PG_reserved (as they might be in use by somebody else who does 37 * not respect the caching strategy). 38 * - MCA pages on ia64 39 * - Pages holding CPU notes for POWER Firmware Assisted Dump 40 * - Device memory (e.g. PMEM, DAX, HMM) 41 * Some PG_reserved pages will be excluded from the hibernation image. 42 * PG_reserved does in general not hinder anybody from dumping or swapping 43 * and is no longer required for remap_pfn_range(). ioremap might require it. 44 * Consequently, PG_reserved for a page mapped into user space can indicate 45 * the zero page, the vDSO, MMIO pages or device memory. 46 * 47 * The PG_private bitflag is set on pagecache pages if they contain filesystem 48 * specific data (which is normally at page->private). It can be used by 49 * private allocations for its own usage. 50 * 51 * During initiation of disk I/O, PG_locked is set. This bit is set before I/O 52 * and cleared when writeback _starts_ or when read _completes_. PG_writeback 53 * is set before writeback starts and cleared when it finishes. 54 * 55 * PG_locked also pins a page in pagecache, and blocks truncation of the file 56 * while it is held. 57 * 58 * page_waitqueue(page) is a wait queue of all tasks waiting for the page 59 * to become unlocked. 60 * 61 * PG_swapbacked is set when a page uses swap as a backing storage. This are 62 * usually PageAnon or shmem pages but please note that even anonymous pages 63 * might lose their PG_swapbacked flag when they simply can be dropped (e.g. as 64 * a result of MADV_FREE). 65 * 66 * PG_referenced, PG_reclaim are used for page reclaim for anonymous and 67 * file-backed pagecache (see mm/vmscan.c). 68 * 69 * PG_arch_1 is an architecture specific page state bit. The generic code 70 * guarantees that this bit is cleared for a page when it first is entered into 71 * the page cache. 72 * 73 * PG_hwpoison indicates that a page got corrupted in hardware and contains 74 * data with incorrect ECC bits that triggered a machine check. Accessing is 75 * not safe since it may cause another machine check. Don't touch! 76 */ 77 78 /* 79 * Don't use the pageflags directly. Use the PageFoo macros. 80 * 81 * The page flags field is split into two parts, the main flags area 82 * which extends from the low bits upwards, and the fields area which 83 * extends from the high bits downwards. 84 * 85 * | FIELD | ... | FLAGS | 86 * N-1 ^ 0 87 * (NR_PAGEFLAGS) 88 * 89 * The fields area is reserved for fields mapping zone, node (for NUMA) and 90 * SPARSEMEM section (for variants of SPARSEMEM that require section ids like 91 * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP). 92 */ 93 enum pageflags { 94 PG_locked, /* Page is locked. Don't touch. */ 95 PG_writeback, /* Page is under writeback */ 96 PG_referenced, 97 PG_uptodate, 98 PG_dirty, 99 PG_lru, 100 PG_head, /* Must be in bit 6 */ 101 PG_waiters, /* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */ 102 PG_active, 103 PG_workingset, 104 PG_owner_priv_1, /* Owner use. If pagecache, fs may use */ 105 PG_owner_2, /* Owner use. If pagecache, fs may use */ 106 PG_arch_1, 107 PG_reserved, 108 PG_private, /* If pagecache, has fs-private data */ 109 PG_private_2, /* If pagecache, has fs aux data */ 110 PG_reclaim, /* To be reclaimed asap */ 111 PG_swapbacked, /* Page is backed by RAM/swap */ 112 PG_unevictable, /* Page is "unevictable" */ 113 PG_dropbehind, /* drop pages on IO completion */ 114 #ifdef CONFIG_MMU 115 PG_mlocked, /* Page is vma mlocked */ 116 #endif 117 #ifdef CONFIG_MEMORY_FAILURE 118 PG_hwpoison, /* hardware poisoned page. Don't touch */ 119 #endif 120 #if defined(CONFIG_PAGE_IDLE_FLAG) && defined(CONFIG_64BIT) 121 PG_young, 122 PG_idle, 123 #endif 124 #ifdef CONFIG_ARCH_USES_PG_ARCH_2 125 PG_arch_2, 126 #endif 127 #ifdef CONFIG_ARCH_USES_PG_ARCH_3 128 PG_arch_3, 129 #endif 130 __NR_PAGEFLAGS, 131 132 PG_readahead = PG_reclaim, 133 134 /* Anonymous memory (and shmem) */ 135 PG_swapcache = PG_owner_priv_1, /* Swap page: swp_entry_t in private */ 136 /* Some filesystems */ 137 PG_checked = PG_owner_priv_1, 138 139 /* 140 * Depending on the way an anonymous folio can be mapped into a page 141 * table (e.g., single PMD/PUD/CONT of the head page vs. PTE-mapped 142 * THP), PG_anon_exclusive may be set only for the head page or for 143 * tail pages of an anonymous folio. For now, we only expect it to be 144 * set on tail pages for PTE-mapped THP. 145 */ 146 PG_anon_exclusive = PG_owner_2, 147 148 /* 149 * Set if all buffer heads in the folio are mapped. 150 * Filesystems which do not use BHs can use it for their own purpose. 151 */ 152 PG_mappedtodisk = PG_owner_2, 153 154 /* Two page bits are conscripted by FS-Cache to maintain local caching 155 * state. These bits are set on pages belonging to the netfs's inodes 156 * when those inodes are being locally cached. 157 */ 158 PG_fscache = PG_private_2, /* page backed by cache */ 159 160 /* XEN */ 161 /* Pinned in Xen as a read-only pagetable page. */ 162 PG_pinned = PG_owner_priv_1, 163 /* Pinned as part of domain save (see xen_mm_pin_all()). */ 164 PG_savepinned = PG_dirty, 165 /* Has a grant mapping of another (foreign) domain's page. */ 166 PG_foreign = PG_owner_priv_1, 167 /* Remapped by swiotlb-xen. */ 168 PG_xen_remapped = PG_owner_priv_1, 169 170 #ifdef CONFIG_MIGRATION 171 /* movable_ops page that is isolated for migration */ 172 PG_movable_ops_isolated = PG_reclaim, 173 /* this is a movable_ops page (for selected typed pages only) */ 174 PG_movable_ops = PG_uptodate, 175 #endif 176 177 /* Only valid for buddy pages. Used to track pages that are reported */ 178 PG_reported = PG_uptodate, 179 180 #ifdef CONFIG_MEMORY_HOTPLUG 181 /* For self-hosted memmap pages */ 182 PG_vmemmap_self_hosted = PG_owner_priv_1, 183 #endif 184 185 /* 186 * Flags only valid for compound pages. Stored in first tail page's 187 * flags word. Cannot use the first 8 flags or any flag marked as 188 * PF_ANY. 189 */ 190 191 /* At least one page in this folio has the hwpoison flag set */ 192 PG_has_hwpoisoned = PG_active, 193 PG_large_rmappable = PG_workingset, /* anon or file-backed */ 194 PG_partially_mapped = PG_reclaim, /* was identified to be partially mapped */ 195 }; 196 197 #define PAGEFLAGS_MASK ((1UL << NR_PAGEFLAGS) - 1) 198 199 #ifndef __GENERATING_BOUNDS_H 200 201 #ifdef CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP 202 DECLARE_STATIC_KEY_FALSE(hugetlb_optimize_vmemmap_key); 203 204 /* 205 * Return the real head page struct iff the @page is a fake head page, otherwise 206 * return the @page itself. See Documentation/mm/vmemmap_dedup.rst. 207 */ 208 static __always_inline const struct page *page_fixed_fake_head(const struct page *page) 209 { 210 if (!static_branch_unlikely(&hugetlb_optimize_vmemmap_key)) 211 return page; 212 213 /* 214 * Only addresses aligned with PAGE_SIZE of struct page may be fake head 215 * struct page. The alignment check aims to avoid access the fields ( 216 * e.g. compound_head) of the @page[1]. It can avoid touch a (possibly) 217 * cold cacheline in some cases. 218 */ 219 if (IS_ALIGNED((unsigned long)page, PAGE_SIZE) && 220 test_bit(PG_head, &page->flags)) { 221 /* 222 * We can safely access the field of the @page[1] with PG_head 223 * because the @page is a compound page composed with at least 224 * two contiguous pages. 225 */ 226 unsigned long head = READ_ONCE(page[1].compound_head); 227 228 if (likely(head & 1)) 229 return (const struct page *)(head - 1); 230 } 231 return page; 232 } 233 234 static __always_inline bool page_count_writable(const struct page *page, int u) 235 { 236 if (!static_branch_unlikely(&hugetlb_optimize_vmemmap_key)) 237 return true; 238 239 /* 240 * The refcount check is ordered before the fake-head check to prevent 241 * the following race: 242 * CPU 1 (HVO) CPU 2 (speculative PFN walker) 243 * 244 * page_ref_freeze() 245 * synchronize_rcu() 246 * rcu_read_lock() 247 * page_is_fake_head() is false 248 * vmemmap_remap_pte() 249 * XXX: struct page[] becomes r/o 250 * 251 * page_ref_unfreeze() 252 * page_ref_count() is not zero 253 * 254 * atomic_add_unless(&page->_refcount) 255 * XXX: try to modify r/o struct page[] 256 * 257 * The refcount check also prevents modification attempts to other (r/o) 258 * tail pages that are not fake heads. 259 */ 260 if (atomic_read_acquire(&page->_refcount) == u) 261 return false; 262 263 return page_fixed_fake_head(page) == page; 264 } 265 #else 266 static inline const struct page *page_fixed_fake_head(const struct page *page) 267 { 268 return page; 269 } 270 271 static inline bool page_count_writable(const struct page *page, int u) 272 { 273 return true; 274 } 275 #endif 276 277 static __always_inline int page_is_fake_head(const struct page *page) 278 { 279 return page_fixed_fake_head(page) != page; 280 } 281 282 static __always_inline unsigned long _compound_head(const struct page *page) 283 { 284 unsigned long head = READ_ONCE(page->compound_head); 285 286 if (unlikely(head & 1)) 287 return head - 1; 288 return (unsigned long)page_fixed_fake_head(page); 289 } 290 291 #define compound_head(page) ((typeof(page))_compound_head(page)) 292 293 /** 294 * page_folio - Converts from page to folio. 295 * @p: The page. 296 * 297 * Every page is part of a folio. This function cannot be called on a 298 * NULL pointer. 299 * 300 * Context: No reference, nor lock is required on @page. If the caller 301 * does not hold a reference, this call may race with a folio split, so 302 * it should re-check the folio still contains this page after gaining 303 * a reference on the folio. 304 * Return: The folio which contains this page. 305 */ 306 #define page_folio(p) (_Generic((p), \ 307 const struct page *: (const struct folio *)_compound_head(p), \ 308 struct page *: (struct folio *)_compound_head(p))) 309 310 /** 311 * folio_page - Return a page from a folio. 312 * @folio: The folio. 313 * @n: The page number to return. 314 * 315 * @n is relative to the start of the folio. This function does not 316 * check that the page number lies within @folio; the caller is presumed 317 * to have a reference to the page. 318 */ 319 #define folio_page(folio, n) nth_page(&(folio)->page, n) 320 321 static __always_inline int PageTail(const struct page *page) 322 { 323 return READ_ONCE(page->compound_head) & 1 || page_is_fake_head(page); 324 } 325 326 static __always_inline int PageCompound(const struct page *page) 327 { 328 return test_bit(PG_head, &page->flags) || 329 READ_ONCE(page->compound_head) & 1; 330 } 331 332 #define PAGE_POISON_PATTERN -1l 333 static inline int PagePoisoned(const struct page *page) 334 { 335 return READ_ONCE(page->flags) == PAGE_POISON_PATTERN; 336 } 337 338 #ifdef CONFIG_DEBUG_VM 339 void page_init_poison(struct page *page, size_t size); 340 #else 341 static inline void page_init_poison(struct page *page, size_t size) 342 { 343 } 344 #endif 345 346 static const unsigned long *const_folio_flags(const struct folio *folio, 347 unsigned n) 348 { 349 const struct page *page = &folio->page; 350 351 VM_BUG_ON_PGFLAGS(page->compound_head & 1, page); 352 VM_BUG_ON_PGFLAGS(n > 0 && !test_bit(PG_head, &page->flags), page); 353 return &page[n].flags; 354 } 355 356 static unsigned long *folio_flags(struct folio *folio, unsigned n) 357 { 358 struct page *page = &folio->page; 359 360 VM_BUG_ON_PGFLAGS(page->compound_head & 1, page); 361 VM_BUG_ON_PGFLAGS(n > 0 && !test_bit(PG_head, &page->flags), page); 362 return &page[n].flags; 363 } 364 365 /* 366 * Page flags policies wrt compound pages 367 * 368 * PF_POISONED_CHECK 369 * check if this struct page poisoned/uninitialized 370 * 371 * PF_ANY: 372 * the page flag is relevant for small, head and tail pages. 373 * 374 * PF_HEAD: 375 * for compound page all operations related to the page flag applied to 376 * head page. 377 * 378 * PF_NO_TAIL: 379 * modifications of the page flag must be done on small or head pages, 380 * checks can be done on tail pages too. 381 * 382 * PF_NO_COMPOUND: 383 * the page flag is not relevant for compound pages. 384 * 385 * PF_SECOND: 386 * the page flag is stored in the first tail page. 387 */ 388 #define PF_POISONED_CHECK(page) ({ \ 389 VM_BUG_ON_PGFLAGS(PagePoisoned(page), page); \ 390 page; }) 391 #define PF_ANY(page, enforce) PF_POISONED_CHECK(page) 392 #define PF_HEAD(page, enforce) PF_POISONED_CHECK(compound_head(page)) 393 #define PF_NO_TAIL(page, enforce) ({ \ 394 VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page); \ 395 PF_POISONED_CHECK(compound_head(page)); }) 396 #define PF_NO_COMPOUND(page, enforce) ({ \ 397 VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page); \ 398 PF_POISONED_CHECK(page); }) 399 #define PF_SECOND(page, enforce) ({ \ 400 VM_BUG_ON_PGFLAGS(!PageHead(page), page); \ 401 PF_POISONED_CHECK(&page[1]); }) 402 403 /* Which page is the flag stored in */ 404 #define FOLIO_PF_ANY 0 405 #define FOLIO_PF_HEAD 0 406 #define FOLIO_PF_NO_TAIL 0 407 #define FOLIO_PF_NO_COMPOUND 0 408 #define FOLIO_PF_SECOND 1 409 410 #define FOLIO_HEAD_PAGE 0 411 #define FOLIO_SECOND_PAGE 1 412 413 /* 414 * Macros to create function definitions for page flags 415 */ 416 #define FOLIO_TEST_FLAG(name, page) \ 417 static __always_inline bool folio_test_##name(const struct folio *folio) \ 418 { return test_bit(PG_##name, const_folio_flags(folio, page)); } 419 420 #define FOLIO_SET_FLAG(name, page) \ 421 static __always_inline void folio_set_##name(struct folio *folio) \ 422 { set_bit(PG_##name, folio_flags(folio, page)); } 423 424 #define FOLIO_CLEAR_FLAG(name, page) \ 425 static __always_inline void folio_clear_##name(struct folio *folio) \ 426 { clear_bit(PG_##name, folio_flags(folio, page)); } 427 428 #define __FOLIO_SET_FLAG(name, page) \ 429 static __always_inline void __folio_set_##name(struct folio *folio) \ 430 { __set_bit(PG_##name, folio_flags(folio, page)); } 431 432 #define __FOLIO_CLEAR_FLAG(name, page) \ 433 static __always_inline void __folio_clear_##name(struct folio *folio) \ 434 { __clear_bit(PG_##name, folio_flags(folio, page)); } 435 436 #define FOLIO_TEST_SET_FLAG(name, page) \ 437 static __always_inline bool folio_test_set_##name(struct folio *folio) \ 438 { return test_and_set_bit(PG_##name, folio_flags(folio, page)); } 439 440 #define FOLIO_TEST_CLEAR_FLAG(name, page) \ 441 static __always_inline bool folio_test_clear_##name(struct folio *folio) \ 442 { return test_and_clear_bit(PG_##name, folio_flags(folio, page)); } 443 444 #define FOLIO_FLAG(name, page) \ 445 FOLIO_TEST_FLAG(name, page) \ 446 FOLIO_SET_FLAG(name, page) \ 447 FOLIO_CLEAR_FLAG(name, page) 448 449 #define TESTPAGEFLAG(uname, lname, policy) \ 450 FOLIO_TEST_FLAG(lname, FOLIO_##policy) \ 451 static __always_inline int Page##uname(const struct page *page) \ 452 { return test_bit(PG_##lname, &policy(page, 0)->flags); } 453 454 #define SETPAGEFLAG(uname, lname, policy) \ 455 FOLIO_SET_FLAG(lname, FOLIO_##policy) \ 456 static __always_inline void SetPage##uname(struct page *page) \ 457 { set_bit(PG_##lname, &policy(page, 1)->flags); } 458 459 #define CLEARPAGEFLAG(uname, lname, policy) \ 460 FOLIO_CLEAR_FLAG(lname, FOLIO_##policy) \ 461 static __always_inline void ClearPage##uname(struct page *page) \ 462 { clear_bit(PG_##lname, &policy(page, 1)->flags); } 463 464 #define __SETPAGEFLAG(uname, lname, policy) \ 465 __FOLIO_SET_FLAG(lname, FOLIO_##policy) \ 466 static __always_inline void __SetPage##uname(struct page *page) \ 467 { __set_bit(PG_##lname, &policy(page, 1)->flags); } 468 469 #define __CLEARPAGEFLAG(uname, lname, policy) \ 470 __FOLIO_CLEAR_FLAG(lname, FOLIO_##policy) \ 471 static __always_inline void __ClearPage##uname(struct page *page) \ 472 { __clear_bit(PG_##lname, &policy(page, 1)->flags); } 473 474 #define TESTSETFLAG(uname, lname, policy) \ 475 FOLIO_TEST_SET_FLAG(lname, FOLIO_##policy) \ 476 static __always_inline int TestSetPage##uname(struct page *page) \ 477 { return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); } 478 479 #define TESTCLEARFLAG(uname, lname, policy) \ 480 FOLIO_TEST_CLEAR_FLAG(lname, FOLIO_##policy) \ 481 static __always_inline int TestClearPage##uname(struct page *page) \ 482 { return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); } 483 484 #define PAGEFLAG(uname, lname, policy) \ 485 TESTPAGEFLAG(uname, lname, policy) \ 486 SETPAGEFLAG(uname, lname, policy) \ 487 CLEARPAGEFLAG(uname, lname, policy) 488 489 #define __PAGEFLAG(uname, lname, policy) \ 490 TESTPAGEFLAG(uname, lname, policy) \ 491 __SETPAGEFLAG(uname, lname, policy) \ 492 __CLEARPAGEFLAG(uname, lname, policy) 493 494 #define TESTSCFLAG(uname, lname, policy) \ 495 TESTSETFLAG(uname, lname, policy) \ 496 TESTCLEARFLAG(uname, lname, policy) 497 498 #define FOLIO_TEST_FLAG_FALSE(name) \ 499 static inline bool folio_test_##name(const struct folio *folio) \ 500 { return false; } 501 #define FOLIO_SET_FLAG_NOOP(name) \ 502 static inline void folio_set_##name(struct folio *folio) { } 503 #define FOLIO_CLEAR_FLAG_NOOP(name) \ 504 static inline void folio_clear_##name(struct folio *folio) { } 505 #define __FOLIO_SET_FLAG_NOOP(name) \ 506 static inline void __folio_set_##name(struct folio *folio) { } 507 #define __FOLIO_CLEAR_FLAG_NOOP(name) \ 508 static inline void __folio_clear_##name(struct folio *folio) { } 509 #define FOLIO_TEST_SET_FLAG_FALSE(name) \ 510 static inline bool folio_test_set_##name(struct folio *folio) \ 511 { return false; } 512 #define FOLIO_TEST_CLEAR_FLAG_FALSE(name) \ 513 static inline bool folio_test_clear_##name(struct folio *folio) \ 514 { return false; } 515 516 #define FOLIO_FLAG_FALSE(name) \ 517 FOLIO_TEST_FLAG_FALSE(name) \ 518 FOLIO_SET_FLAG_NOOP(name) \ 519 FOLIO_CLEAR_FLAG_NOOP(name) 520 521 #define TESTPAGEFLAG_FALSE(uname, lname) \ 522 FOLIO_TEST_FLAG_FALSE(lname) \ 523 static inline int Page##uname(const struct page *page) { return 0; } 524 525 #define SETPAGEFLAG_NOOP(uname, lname) \ 526 FOLIO_SET_FLAG_NOOP(lname) \ 527 static inline void SetPage##uname(struct page *page) { } 528 529 #define CLEARPAGEFLAG_NOOP(uname, lname) \ 530 FOLIO_CLEAR_FLAG_NOOP(lname) \ 531 static inline void ClearPage##uname(struct page *page) { } 532 533 #define __CLEARPAGEFLAG_NOOP(uname, lname) \ 534 __FOLIO_CLEAR_FLAG_NOOP(lname) \ 535 static inline void __ClearPage##uname(struct page *page) { } 536 537 #define TESTSETFLAG_FALSE(uname, lname) \ 538 FOLIO_TEST_SET_FLAG_FALSE(lname) \ 539 static inline int TestSetPage##uname(struct page *page) { return 0; } 540 541 #define TESTCLEARFLAG_FALSE(uname, lname) \ 542 FOLIO_TEST_CLEAR_FLAG_FALSE(lname) \ 543 static inline int TestClearPage##uname(struct page *page) { return 0; } 544 545 #define PAGEFLAG_FALSE(uname, lname) TESTPAGEFLAG_FALSE(uname, lname) \ 546 SETPAGEFLAG_NOOP(uname, lname) CLEARPAGEFLAG_NOOP(uname, lname) 547 548 #define TESTSCFLAG_FALSE(uname, lname) \ 549 TESTSETFLAG_FALSE(uname, lname) TESTCLEARFLAG_FALSE(uname, lname) 550 551 __PAGEFLAG(Locked, locked, PF_NO_TAIL) 552 FOLIO_FLAG(waiters, FOLIO_HEAD_PAGE) 553 FOLIO_FLAG(referenced, FOLIO_HEAD_PAGE) 554 FOLIO_TEST_CLEAR_FLAG(referenced, FOLIO_HEAD_PAGE) 555 __FOLIO_SET_FLAG(referenced, FOLIO_HEAD_PAGE) 556 PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD) 557 __CLEARPAGEFLAG(Dirty, dirty, PF_HEAD) 558 PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD) 559 TESTCLEARFLAG(LRU, lru, PF_HEAD) 560 FOLIO_FLAG(active, FOLIO_HEAD_PAGE) 561 __FOLIO_CLEAR_FLAG(active, FOLIO_HEAD_PAGE) 562 FOLIO_TEST_CLEAR_FLAG(active, FOLIO_HEAD_PAGE) 563 PAGEFLAG(Workingset, workingset, PF_HEAD) 564 TESTCLEARFLAG(Workingset, workingset, PF_HEAD) 565 PAGEFLAG(Checked, checked, PF_NO_COMPOUND) /* Used by some filesystems */ 566 567 /* Xen */ 568 PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND) 569 TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND) 570 PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND); 571 PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND); 572 PAGEFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND) 573 TESTCLEARFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND) 574 575 PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 576 __CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 577 __SETPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 578 FOLIO_FLAG(swapbacked, FOLIO_HEAD_PAGE) 579 __FOLIO_CLEAR_FLAG(swapbacked, FOLIO_HEAD_PAGE) 580 __FOLIO_SET_FLAG(swapbacked, FOLIO_HEAD_PAGE) 581 582 /* 583 * Private page markings that may be used by the filesystem that owns the page 584 * for its own purposes. 585 * - PG_private and PG_private_2 cause release_folio() and co to be invoked 586 */ 587 PAGEFLAG(Private, private, PF_ANY) 588 FOLIO_FLAG(private_2, FOLIO_HEAD_PAGE) 589 590 /* owner_2 can be set on tail pages for anon memory */ 591 FOLIO_FLAG(owner_2, FOLIO_HEAD_PAGE) 592 593 /* 594 * Only test-and-set exist for PG_writeback. The unconditional operators are 595 * risky: they bypass page accounting. 596 */ 597 TESTPAGEFLAG(Writeback, writeback, PF_NO_TAIL) 598 TESTSCFLAG(Writeback, writeback, PF_NO_TAIL) 599 FOLIO_FLAG(mappedtodisk, FOLIO_HEAD_PAGE) 600 601 /* PG_readahead is only used for reads; PG_reclaim is only for writes */ 602 PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL) 603 TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL) 604 FOLIO_FLAG(readahead, FOLIO_HEAD_PAGE) 605 FOLIO_TEST_CLEAR_FLAG(readahead, FOLIO_HEAD_PAGE) 606 607 FOLIO_FLAG(dropbehind, FOLIO_HEAD_PAGE) 608 FOLIO_TEST_CLEAR_FLAG(dropbehind, FOLIO_HEAD_PAGE) 609 __FOLIO_SET_FLAG(dropbehind, FOLIO_HEAD_PAGE) 610 611 #ifdef CONFIG_HIGHMEM 612 /* 613 * Must use a macro here due to header dependency issues. page_zone() is not 614 * available at this point. 615 */ 616 #define PageHighMem(__p) is_highmem_idx(page_zonenum(__p)) 617 #define folio_test_highmem(__f) is_highmem_idx(folio_zonenum(__f)) 618 #else 619 PAGEFLAG_FALSE(HighMem, highmem) 620 #endif 621 622 /* Does kmap_local_folio() only allow access to one page of the folio? */ 623 #ifdef CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP 624 #define folio_test_partial_kmap(f) true 625 #else 626 #define folio_test_partial_kmap(f) folio_test_highmem(f) 627 #endif 628 629 #ifdef CONFIG_SWAP 630 static __always_inline bool folio_test_swapcache(const struct folio *folio) 631 { 632 return folio_test_swapbacked(folio) && 633 test_bit(PG_swapcache, const_folio_flags(folio, 0)); 634 } 635 636 FOLIO_SET_FLAG(swapcache, FOLIO_HEAD_PAGE) 637 FOLIO_CLEAR_FLAG(swapcache, FOLIO_HEAD_PAGE) 638 #else 639 FOLIO_FLAG_FALSE(swapcache) 640 #endif 641 642 FOLIO_FLAG(unevictable, FOLIO_HEAD_PAGE) 643 __FOLIO_CLEAR_FLAG(unevictable, FOLIO_HEAD_PAGE) 644 FOLIO_TEST_CLEAR_FLAG(unevictable, FOLIO_HEAD_PAGE) 645 646 #ifdef CONFIG_MMU 647 FOLIO_FLAG(mlocked, FOLIO_HEAD_PAGE) 648 __FOLIO_CLEAR_FLAG(mlocked, FOLIO_HEAD_PAGE) 649 FOLIO_TEST_CLEAR_FLAG(mlocked, FOLIO_HEAD_PAGE) 650 FOLIO_TEST_SET_FLAG(mlocked, FOLIO_HEAD_PAGE) 651 #else 652 FOLIO_FLAG_FALSE(mlocked) 653 __FOLIO_CLEAR_FLAG_NOOP(mlocked) 654 FOLIO_TEST_CLEAR_FLAG_FALSE(mlocked) 655 FOLIO_TEST_SET_FLAG_FALSE(mlocked) 656 #endif 657 658 #ifdef CONFIG_MEMORY_FAILURE 659 PAGEFLAG(HWPoison, hwpoison, PF_ANY) 660 TESTSCFLAG(HWPoison, hwpoison, PF_ANY) 661 #define __PG_HWPOISON (1UL << PG_hwpoison) 662 #else 663 PAGEFLAG_FALSE(HWPoison, hwpoison) 664 #define __PG_HWPOISON 0 665 #endif 666 667 #ifdef CONFIG_PAGE_IDLE_FLAG 668 #ifdef CONFIG_64BIT 669 FOLIO_TEST_FLAG(young, FOLIO_HEAD_PAGE) 670 FOLIO_SET_FLAG(young, FOLIO_HEAD_PAGE) 671 FOLIO_TEST_CLEAR_FLAG(young, FOLIO_HEAD_PAGE) 672 FOLIO_FLAG(idle, FOLIO_HEAD_PAGE) 673 #endif 674 /* See page_idle.h for !64BIT workaround */ 675 #else /* !CONFIG_PAGE_IDLE_FLAG */ 676 FOLIO_FLAG_FALSE(young) 677 FOLIO_TEST_CLEAR_FLAG_FALSE(young) 678 FOLIO_FLAG_FALSE(idle) 679 #endif 680 681 /* 682 * PageReported() is used to track reported free pages within the Buddy 683 * allocator. We can use the non-atomic version of the test and set 684 * operations as both should be shielded with the zone lock to prevent 685 * any possible races on the setting or clearing of the bit. 686 */ 687 __PAGEFLAG(Reported, reported, PF_NO_COMPOUND) 688 689 #ifdef CONFIG_MEMORY_HOTPLUG 690 PAGEFLAG(VmemmapSelfHosted, vmemmap_self_hosted, PF_ANY) 691 #else 692 PAGEFLAG_FALSE(VmemmapSelfHosted, vmemmap_self_hosted) 693 #endif 694 695 /* 696 * On an anonymous folio mapped into a user virtual memory area, 697 * folio->mapping points to its anon_vma, not to a struct address_space; 698 * with the FOLIO_MAPPING_ANON bit set to distinguish it. See rmap.h. 699 * 700 * On an anonymous folio in a VM_MERGEABLE area, if CONFIG_KSM is enabled, 701 * the FOLIO_MAPPING_ANON_KSM bit may be set along with the FOLIO_MAPPING_ANON 702 * bit; and then folio->mapping points, not to an anon_vma, but to a private 703 * structure which KSM associates with that merged folio. See ksm.h. 704 * 705 * Please note that, confusingly, "folio_mapping" refers to the inode 706 * address_space which maps the folio from disk; whereas "folio_mapped" 707 * refers to user virtual address space into which the folio is mapped. 708 * 709 * For slab pages, since slab reuses the bits in struct page to store its 710 * internal states, the folio->mapping does not exist as such, nor do 711 * these flags below. So in order to avoid testing non-existent bits, 712 * please make sure that folio_test_slab(folio) actually evaluates to 713 * false before calling the following functions (e.g., folio_test_anon). 714 * See mm/slab.h. 715 */ 716 #define FOLIO_MAPPING_ANON 0x1 717 #define FOLIO_MAPPING_ANON_KSM 0x2 718 #define FOLIO_MAPPING_KSM (FOLIO_MAPPING_ANON | FOLIO_MAPPING_ANON_KSM) 719 #define FOLIO_MAPPING_FLAGS (FOLIO_MAPPING_ANON | FOLIO_MAPPING_ANON_KSM) 720 721 static __always_inline bool folio_test_anon(const struct folio *folio) 722 { 723 return ((unsigned long)folio->mapping & FOLIO_MAPPING_ANON) != 0; 724 } 725 726 static __always_inline bool PageAnonNotKsm(const struct page *page) 727 { 728 unsigned long flags = (unsigned long)page_folio(page)->mapping; 729 730 return (flags & FOLIO_MAPPING_FLAGS) == FOLIO_MAPPING_ANON; 731 } 732 733 static __always_inline bool PageAnon(const struct page *page) 734 { 735 return folio_test_anon(page_folio(page)); 736 } 737 #ifdef CONFIG_KSM 738 /* 739 * A KSM page is one of those write-protected "shared pages" or "merged pages" 740 * which KSM maps into multiple mms, wherever identical anonymous page content 741 * is found in VM_MERGEABLE vmas. It's a PageAnon page, pointing not to any 742 * anon_vma, but to that page's node of the stable tree. 743 */ 744 static __always_inline bool folio_test_ksm(const struct folio *folio) 745 { 746 return ((unsigned long)folio->mapping & FOLIO_MAPPING_FLAGS) == 747 FOLIO_MAPPING_KSM; 748 } 749 #else 750 FOLIO_TEST_FLAG_FALSE(ksm) 751 #endif 752 753 u64 stable_page_flags(const struct page *page); 754 755 /** 756 * folio_xor_flags_has_waiters - Change some folio flags. 757 * @folio: The folio. 758 * @mask: Bits set in this word will be changed. 759 * 760 * This must only be used for flags which are changed with the folio 761 * lock held. For example, it is unsafe to use for PG_dirty as that 762 * can be set without the folio lock held. It can also only be used 763 * on flags which are in the range 0-6 as some of the implementations 764 * only affect those bits. 765 * 766 * Return: Whether there are tasks waiting on the folio. 767 */ 768 static inline bool folio_xor_flags_has_waiters(struct folio *folio, 769 unsigned long mask) 770 { 771 return xor_unlock_is_negative_byte(mask, folio_flags(folio, 0)); 772 } 773 774 /** 775 * folio_test_uptodate - Is this folio up to date? 776 * @folio: The folio. 777 * 778 * The uptodate flag is set on a folio when every byte in the folio is 779 * at least as new as the corresponding bytes on storage. Anonymous 780 * and CoW folios are always uptodate. If the folio is not uptodate, 781 * some of the bytes in it may be; see the is_partially_uptodate() 782 * address_space operation. 783 */ 784 static inline bool folio_test_uptodate(const struct folio *folio) 785 { 786 bool ret = test_bit(PG_uptodate, const_folio_flags(folio, 0)); 787 /* 788 * Must ensure that the data we read out of the folio is loaded 789 * _after_ we've loaded folio->flags to check the uptodate bit. 790 * We can skip the barrier if the folio is not uptodate, because 791 * we wouldn't be reading anything from it. 792 * 793 * See folio_mark_uptodate() for the other side of the story. 794 */ 795 if (ret) 796 smp_rmb(); 797 798 return ret; 799 } 800 801 static inline bool PageUptodate(const struct page *page) 802 { 803 return folio_test_uptodate(page_folio(page)); 804 } 805 806 static __always_inline void __folio_mark_uptodate(struct folio *folio) 807 { 808 smp_wmb(); 809 __set_bit(PG_uptodate, folio_flags(folio, 0)); 810 } 811 812 static __always_inline void folio_mark_uptodate(struct folio *folio) 813 { 814 /* 815 * Memory barrier must be issued before setting the PG_uptodate bit, 816 * so that all previous stores issued in order to bring the folio 817 * uptodate are actually visible before folio_test_uptodate becomes true. 818 */ 819 smp_wmb(); 820 set_bit(PG_uptodate, folio_flags(folio, 0)); 821 } 822 823 static __always_inline void __SetPageUptodate(struct page *page) 824 { 825 __folio_mark_uptodate((struct folio *)page); 826 } 827 828 static __always_inline void SetPageUptodate(struct page *page) 829 { 830 folio_mark_uptodate((struct folio *)page); 831 } 832 833 CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL) 834 835 void __folio_start_writeback(struct folio *folio, bool keep_write); 836 void set_page_writeback(struct page *page); 837 838 #define folio_start_writeback(folio) \ 839 __folio_start_writeback(folio, false) 840 #define folio_start_writeback_keepwrite(folio) \ 841 __folio_start_writeback(folio, true) 842 843 static __always_inline bool folio_test_head(const struct folio *folio) 844 { 845 return test_bit(PG_head, const_folio_flags(folio, FOLIO_PF_ANY)); 846 } 847 848 static __always_inline int PageHead(const struct page *page) 849 { 850 PF_POISONED_CHECK(page); 851 return test_bit(PG_head, &page->flags) && !page_is_fake_head(page); 852 } 853 854 __SETPAGEFLAG(Head, head, PF_ANY) 855 __CLEARPAGEFLAG(Head, head, PF_ANY) 856 CLEARPAGEFLAG(Head, head, PF_ANY) 857 858 /** 859 * folio_test_large() - Does this folio contain more than one page? 860 * @folio: The folio to test. 861 * 862 * Return: True if the folio is larger than one page. 863 */ 864 static inline bool folio_test_large(const struct folio *folio) 865 { 866 return folio_test_head(folio); 867 } 868 869 static __always_inline void set_compound_head(struct page *page, struct page *head) 870 { 871 WRITE_ONCE(page->compound_head, (unsigned long)head + 1); 872 } 873 874 static __always_inline void clear_compound_head(struct page *page) 875 { 876 WRITE_ONCE(page->compound_head, 0); 877 } 878 879 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 880 static inline void ClearPageCompound(struct page *page) 881 { 882 BUG_ON(!PageHead(page)); 883 ClearPageHead(page); 884 } 885 FOLIO_FLAG(large_rmappable, FOLIO_SECOND_PAGE) 886 FOLIO_FLAG(partially_mapped, FOLIO_SECOND_PAGE) 887 #else 888 FOLIO_FLAG_FALSE(large_rmappable) 889 FOLIO_FLAG_FALSE(partially_mapped) 890 #endif 891 892 #define PG_head_mask ((1UL << PG_head)) 893 894 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 895 /* 896 * PageTransCompound returns true for both transparent huge pages 897 * and hugetlbfs pages, so it should only be called when it's known 898 * that hugetlbfs pages aren't involved. 899 */ 900 static inline int PageTransCompound(const struct page *page) 901 { 902 return PageCompound(page); 903 } 904 #else 905 TESTPAGEFLAG_FALSE(TransCompound, transcompound) 906 #endif 907 908 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 909 /* 910 * PageHasHWPoisoned indicates that at least one subpage is hwpoisoned in the 911 * compound page. 912 * 913 * This flag is set by hwpoison handler. Cleared by THP split or free page. 914 */ 915 FOLIO_FLAG(has_hwpoisoned, FOLIO_SECOND_PAGE) 916 #else 917 FOLIO_FLAG_FALSE(has_hwpoisoned) 918 #endif 919 920 /* 921 * For pages that do not use mapcount, page_type may be used. 922 * The low 24 bits of pagetype may be used for your own purposes, as long 923 * as you are careful to not affect the top 8 bits. The low bits of 924 * pagetype will be overwritten when you clear the page_type from the page. 925 */ 926 enum pagetype { 927 /* 0x00-0x7f are positive numbers, ie mapcount */ 928 /* Reserve 0x80-0xef for mapcount overflow. */ 929 PGTY_buddy = 0xf0, 930 PGTY_offline = 0xf1, 931 PGTY_table = 0xf2, 932 PGTY_guard = 0xf3, 933 PGTY_hugetlb = 0xf4, 934 PGTY_slab = 0xf5, 935 PGTY_zsmalloc = 0xf6, 936 PGTY_unaccepted = 0xf7, 937 PGTY_large_kmalloc = 0xf8, 938 939 PGTY_mapcount_underflow = 0xff 940 }; 941 942 static inline bool page_type_has_type(int page_type) 943 { 944 return page_type < (PGTY_mapcount_underflow << 24); 945 } 946 947 /* This takes a mapcount which is one more than page->_mapcount */ 948 static inline bool page_mapcount_is_type(unsigned int mapcount) 949 { 950 return page_type_has_type(mapcount - 1); 951 } 952 953 static inline bool page_has_type(const struct page *page) 954 { 955 return page_type_has_type(data_race(page->page_type)); 956 } 957 958 #define FOLIO_TYPE_OPS(lname, fname) \ 959 static __always_inline bool folio_test_##fname(const struct folio *folio) \ 960 { \ 961 return data_race(folio->page.page_type >> 24) == PGTY_##lname; \ 962 } \ 963 static __always_inline void __folio_set_##fname(struct folio *folio) \ 964 { \ 965 if (folio_test_##fname(folio)) \ 966 return; \ 967 VM_BUG_ON_FOLIO(data_race(folio->page.page_type) != UINT_MAX, \ 968 folio); \ 969 folio->page.page_type = (unsigned int)PGTY_##lname << 24; \ 970 } \ 971 static __always_inline void __folio_clear_##fname(struct folio *folio) \ 972 { \ 973 if (folio->page.page_type == UINT_MAX) \ 974 return; \ 975 VM_BUG_ON_FOLIO(!folio_test_##fname(folio), folio); \ 976 folio->page.page_type = UINT_MAX; \ 977 } 978 979 #define PAGE_TYPE_OPS(uname, lname, fname) \ 980 FOLIO_TYPE_OPS(lname, fname) \ 981 static __always_inline int Page##uname(const struct page *page) \ 982 { \ 983 return data_race(page->page_type >> 24) == PGTY_##lname; \ 984 } \ 985 static __always_inline void __SetPage##uname(struct page *page) \ 986 { \ 987 if (Page##uname(page)) \ 988 return; \ 989 VM_BUG_ON_PAGE(data_race(page->page_type) != UINT_MAX, page); \ 990 page->page_type = (unsigned int)PGTY_##lname << 24; \ 991 } \ 992 static __always_inline void __ClearPage##uname(struct page *page) \ 993 { \ 994 if (page->page_type == UINT_MAX) \ 995 return; \ 996 VM_BUG_ON_PAGE(!Page##uname(page), page); \ 997 page->page_type = UINT_MAX; \ 998 } 999 1000 /* 1001 * PageBuddy() indicates that the page is free and in the buddy system 1002 * (see mm/page_alloc.c). 1003 */ 1004 PAGE_TYPE_OPS(Buddy, buddy, buddy) 1005 1006 /* 1007 * PageOffline() indicates that the page is logically offline although the 1008 * containing section is online. (e.g. inflated in a balloon driver or 1009 * not onlined when onlining the section). 1010 * The content of these pages is effectively stale. Such pages should not 1011 * be touched (read/write/dump/save) except by their owner. 1012 * 1013 * When a memory block gets onlined, all pages are initialized with a 1014 * refcount of 1 and PageOffline(). generic_online_page() will 1015 * take care of clearing PageOffline(). 1016 * 1017 * If a driver wants to allow to offline unmovable PageOffline() pages without 1018 * putting them back to the buddy, it can do so via the memory notifier by 1019 * decrementing the reference count in MEM_GOING_OFFLINE and incrementing the 1020 * reference count in MEM_CANCEL_OFFLINE. When offlining, the PageOffline() 1021 * pages (now with a reference count of zero) are treated like free (unmanaged) 1022 * pages, allowing the containing memory block to get offlined. A driver that 1023 * relies on this feature is aware that re-onlining the memory block will 1024 * require not giving them to the buddy via generic_online_page(). 1025 * 1026 * Memory offlining code will not adjust the managed page count for any 1027 * PageOffline() pages, treating them like they were never exposed to the 1028 * buddy using generic_online_page(). 1029 * 1030 * There are drivers that mark a page PageOffline() and expect there won't be 1031 * any further access to page content. PFN walkers that read content of random 1032 * pages should check PageOffline() and synchronize with such drivers using 1033 * page_offline_freeze()/page_offline_thaw(). 1034 */ 1035 PAGE_TYPE_OPS(Offline, offline, offline) 1036 1037 extern void page_offline_freeze(void); 1038 extern void page_offline_thaw(void); 1039 extern void page_offline_begin(void); 1040 extern void page_offline_end(void); 1041 1042 /* 1043 * Marks pages in use as page tables. 1044 */ 1045 PAGE_TYPE_OPS(Table, table, pgtable) 1046 1047 /* 1048 * Marks guardpages used with debug_pagealloc. 1049 */ 1050 PAGE_TYPE_OPS(Guard, guard, guard) 1051 1052 FOLIO_TYPE_OPS(slab, slab) 1053 1054 /** 1055 * PageSlab - Determine if the page belongs to the slab allocator 1056 * @page: The page to test. 1057 * 1058 * Context: Any context. 1059 * Return: True for slab pages, false for any other kind of page. 1060 */ 1061 static inline bool PageSlab(const struct page *page) 1062 { 1063 return folio_test_slab(page_folio(page)); 1064 } 1065 1066 #ifdef CONFIG_HUGETLB_PAGE 1067 FOLIO_TYPE_OPS(hugetlb, hugetlb) 1068 #else 1069 FOLIO_TEST_FLAG_FALSE(hugetlb) 1070 #endif 1071 1072 PAGE_TYPE_OPS(Zsmalloc, zsmalloc, zsmalloc) 1073 1074 /* 1075 * Mark pages that has to be accepted before touched for the first time. 1076 * 1077 * Serialized with zone lock. 1078 */ 1079 PAGE_TYPE_OPS(Unaccepted, unaccepted, unaccepted) 1080 FOLIO_TYPE_OPS(large_kmalloc, large_kmalloc) 1081 1082 /** 1083 * PageHuge - Determine if the page belongs to hugetlbfs 1084 * @page: The page to test. 1085 * 1086 * Context: Any context. 1087 * Return: True for hugetlbfs pages, false for anon pages or pages 1088 * belonging to other filesystems. 1089 */ 1090 static inline bool PageHuge(const struct page *page) 1091 { 1092 return folio_test_hugetlb(page_folio(page)); 1093 } 1094 1095 /* 1096 * Check if a page is currently marked HWPoisoned. Note that this check is 1097 * best effort only and inherently racy: there is no way to synchronize with 1098 * failing hardware. 1099 */ 1100 static inline bool is_page_hwpoison(const struct page *page) 1101 { 1102 const struct folio *folio; 1103 1104 if (PageHWPoison(page)) 1105 return true; 1106 folio = page_folio(page); 1107 return folio_test_hugetlb(folio) && PageHWPoison(&folio->page); 1108 } 1109 1110 static inline bool folio_contain_hwpoisoned_page(struct folio *folio) 1111 { 1112 return folio_test_hwpoison(folio) || 1113 (folio_test_large(folio) && folio_test_has_hwpoisoned(folio)); 1114 } 1115 1116 bool is_free_buddy_page(const struct page *page); 1117 1118 #ifdef CONFIG_MIGRATION 1119 /* 1120 * This page is migratable through movable_ops (for selected typed pages 1121 * only). 1122 * 1123 * Page migration of such pages might fail, for example, if the page is 1124 * already isolated by somebody else, or if the page is about to get freed. 1125 * 1126 * While a subsystem might set selected typed pages that support page migration 1127 * as being movable through movable_ops, it must never clear this flag. 1128 * 1129 * This flag is only cleared when the page is freed back to the buddy. 1130 * 1131 * Only selected page types support this flag (see page_movable_ops()) and 1132 * the flag might be used in other context for other pages. Always use 1133 * page_has_movable_ops() instead. 1134 */ 1135 TESTPAGEFLAG(MovableOps, movable_ops, PF_NO_TAIL); 1136 SETPAGEFLAG(MovableOps, movable_ops, PF_NO_TAIL); 1137 /* 1138 * A movable_ops page has this flag set while it is isolated for migration. 1139 * This flag primarily protects against concurrent migration attempts. 1140 * 1141 * Once migration ended (success or failure), the flag is cleared. The 1142 * flag is managed by the migration core. 1143 */ 1144 PAGEFLAG(MovableOpsIsolated, movable_ops_isolated, PF_NO_TAIL); 1145 #else /* !CONFIG_MIGRATION */ 1146 TESTPAGEFLAG_FALSE(MovableOps, movable_ops); 1147 SETPAGEFLAG_NOOP(MovableOps, movable_ops); 1148 PAGEFLAG_FALSE(MovableOpsIsolated, movable_ops_isolated); 1149 #endif /* CONFIG_MIGRATION */ 1150 1151 /** 1152 * page_has_movable_ops - test for a movable_ops page 1153 * @page: The page to test. 1154 * 1155 * Test whether this is a movable_ops page. Such pages will stay that 1156 * way until freed. 1157 * 1158 * Returns true if this is a movable_ops page, otherwise false. 1159 */ 1160 static inline bool page_has_movable_ops(const struct page *page) 1161 { 1162 return PageMovableOps(page) && 1163 (PageOffline(page) || PageZsmalloc(page)); 1164 } 1165 1166 static __always_inline int PageAnonExclusive(const struct page *page) 1167 { 1168 VM_BUG_ON_PGFLAGS(!PageAnon(page), page); 1169 /* 1170 * HugeTLB stores this information on the head page; THP keeps it per 1171 * page 1172 */ 1173 if (PageHuge(page)) 1174 page = compound_head(page); 1175 return test_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags); 1176 } 1177 1178 static __always_inline void SetPageAnonExclusive(struct page *page) 1179 { 1180 VM_BUG_ON_PGFLAGS(!PageAnonNotKsm(page), page); 1181 VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page); 1182 set_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags); 1183 } 1184 1185 static __always_inline void ClearPageAnonExclusive(struct page *page) 1186 { 1187 VM_BUG_ON_PGFLAGS(!PageAnonNotKsm(page), page); 1188 VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page); 1189 clear_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags); 1190 } 1191 1192 static __always_inline void __ClearPageAnonExclusive(struct page *page) 1193 { 1194 VM_BUG_ON_PGFLAGS(!PageAnon(page), page); 1195 VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page); 1196 __clear_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags); 1197 } 1198 1199 #ifdef CONFIG_MMU 1200 #define __PG_MLOCKED (1UL << PG_mlocked) 1201 #else 1202 #define __PG_MLOCKED 0 1203 #endif 1204 1205 /* 1206 * Flags checked when a page is freed. Pages being freed should not have 1207 * these flags set. If they are, there is a problem. 1208 */ 1209 #define PAGE_FLAGS_CHECK_AT_FREE \ 1210 (1UL << PG_lru | 1UL << PG_locked | \ 1211 1UL << PG_private | 1UL << PG_private_2 | \ 1212 1UL << PG_writeback | 1UL << PG_reserved | \ 1213 1UL << PG_active | \ 1214 1UL << PG_unevictable | __PG_MLOCKED | LRU_GEN_MASK) 1215 1216 /* 1217 * Flags checked when a page is prepped for return by the page allocator. 1218 * Pages being prepped should not have these flags set. If they are set, 1219 * there has been a kernel bug or struct page corruption. 1220 * 1221 * __PG_HWPOISON is exceptional because it needs to be kept beyond page's 1222 * alloc-free cycle to prevent from reusing the page. 1223 */ 1224 #define PAGE_FLAGS_CHECK_AT_PREP \ 1225 ((PAGEFLAGS_MASK & ~__PG_HWPOISON) | LRU_GEN_MASK | LRU_REFS_MASK) 1226 1227 /* 1228 * Flags stored in the second page of a compound page. They may overlap 1229 * the CHECK_AT_FREE flags above, so need to be cleared. 1230 */ 1231 #define PAGE_FLAGS_SECOND \ 1232 (0xffUL /* order */ | 1UL << PG_has_hwpoisoned | \ 1233 1UL << PG_large_rmappable | 1UL << PG_partially_mapped) 1234 1235 #define PAGE_FLAGS_PRIVATE \ 1236 (1UL << PG_private | 1UL << PG_private_2) 1237 /** 1238 * folio_has_private - Determine if folio has private stuff 1239 * @folio: The folio to be checked 1240 * 1241 * Determine if a folio has private stuff, indicating that release routines 1242 * should be invoked upon it. 1243 */ 1244 static inline int folio_has_private(const struct folio *folio) 1245 { 1246 return !!(folio->flags & PAGE_FLAGS_PRIVATE); 1247 } 1248 1249 #undef PF_ANY 1250 #undef PF_HEAD 1251 #undef PF_NO_TAIL 1252 #undef PF_NO_COMPOUND 1253 #undef PF_SECOND 1254 #endif /* !__GENERATING_BOUNDS_H */ 1255 1256 #endif /* PAGE_FLAGS_H */ 1257