1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Driver for the SPI-NAND mode of Mediatek NAND Flash Interface
4 //
5 // Copyright (c) 2022 Chuanhong Guo <gch981213@gmail.com>
6 //
7 // This driver is based on the SPI-NAND mtd driver from Mediatek SDK:
8 //
9 // Copyright (C) 2020 MediaTek Inc.
10 // Author: Weijie Gao <weijie.gao@mediatek.com>
11 //
12 // This controller organize the page data as several interleaved sectors
13 // like the following: (sizeof(FDM + ECC) = snf->nfi_cfg.spare_size)
14 // +---------+------+------+---------+------+------+-----+
15 // | Sector1 | FDM1 | ECC1 | Sector2 | FDM2 | ECC2 | ... |
16 // +---------+------+------+---------+------+------+-----+
17 // With auto-format turned on, DMA only returns this part:
18 // +---------+---------+-----+
19 // | Sector1 | Sector2 | ... |
20 // +---------+---------+-----+
21 // The FDM data will be filled to the registers, and ECC parity data isn't
22 // accessible.
23 // With auto-format off, all ((Sector+FDM+ECC)*nsectors) will be read over DMA
24 // in it's original order shown in the first table. ECC can't be turned on when
25 // auto-format is off.
26 //
27 // However, Linux SPI-NAND driver expects the data returned as:
28 // +------+-----+
29 // | Page | OOB |
30 // +------+-----+
31 // where the page data is continuously stored instead of interleaved.
32 // So we assume all instructions matching the page_op template between ECC
33 // prepare_io_req and finish_io_req are for page cache r/w.
34 // Here's how this spi-mem driver operates when reading:
35 // 1. Always set snf->autofmt = true in prepare_io_req (even when ECC is off).
36 // 2. Perform page ops and let the controller fill the DMA bounce buffer with
37 // de-interleaved sector data and set FDM registers.
38 // 3. Return the data as:
39 // +---------+---------+-----+------+------+-----+
40 // | Sector1 | Sector2 | ... | FDM1 | FDM2 | ... |
41 // +---------+---------+-----+------+------+-----+
42 // 4. For other matching spi_mem ops outside a prepare/finish_io_req pair,
43 // read the data with auto-format off into the bounce buffer and copy
44 // needed data to the buffer specified in the request.
45 //
46 // Write requests operates in a similar manner.
47 // As a limitation of this strategy, we won't be able to access any ECC parity
48 // data at all in Linux.
49 //
50 // Here's the bad block mark situation on MTK chips:
51 // In older chips like mt7622, MTK uses the first FDM byte in the first sector
52 // as the bad block mark. After de-interleaving, this byte appears at [pagesize]
53 // in the returned data, which is the BBM position expected by kernel. However,
54 // the conventional bad block mark is the first byte of the OOB, which is part
55 // of the last sector data in the interleaved layout. Instead of fixing their
56 // hardware, MTK decided to address this inconsistency in software. On these
57 // later chips, the BootROM expects the following:
58 // 1. The [pagesize] byte on a nand page is used as BBM, which will appear at
59 // (page_size - (nsectors - 1) * spare_size) in the DMA buffer.
60 // 2. The original byte stored at that position in the DMA buffer will be stored
61 // as the first byte of the FDM section in the last sector.
62 // We can't disagree with the BootROM, so after de-interleaving, we need to
63 // perform the following swaps in read:
64 // 1. Store the BBM at [page_size - (nsectors - 1) * spare_size] to [page_size],
65 // which is the expected BBM position by kernel.
66 // 2. Store the page data byte at [pagesize + (nsectors-1) * fdm] back to
67 // [page_size - (nsectors - 1) * spare_size]
68 // Similarly, when writing, we need to perform swaps in the other direction.
69
70 #include <linux/kernel.h>
71 #include <linux/module.h>
72 #include <linux/init.h>
73 #include <linux/device.h>
74 #include <linux/mutex.h>
75 #include <linux/clk.h>
76 #include <linux/interrupt.h>
77 #include <linux/dma-mapping.h>
78 #include <linux/iopoll.h>
79 #include <linux/of.h>
80 #include <linux/platform_device.h>
81 #include <linux/mtd/nand-ecc-mtk.h>
82 #include <linux/spi/spi.h>
83 #include <linux/spi/spi-mem.h>
84 #include <linux/mtd/nand.h>
85
86 // NFI registers
87 #define NFI_CNFG 0x000
88 #define CNFG_OP_MODE_S 12
89 #define CNFG_OP_MODE_CUST 6
90 #define CNFG_OP_MODE_PROGRAM 3
91 #define CNFG_AUTO_FMT_EN BIT(9)
92 #define CNFG_HW_ECC_EN BIT(8)
93 #define CNFG_DMA_BURST_EN BIT(2)
94 #define CNFG_READ_MODE BIT(1)
95 #define CNFG_DMA_MODE BIT(0)
96
97 #define NFI_PAGEFMT 0x0004
98 #define NFI_SPARE_SIZE_LS_S 16
99 #define NFI_FDM_ECC_NUM_S 12
100 #define NFI_FDM_NUM_S 8
101 #define NFI_SPARE_SIZE_S 4
102 #define NFI_SEC_SEL_512 BIT(2)
103 #define NFI_PAGE_SIZE_S 0
104 #define NFI_PAGE_SIZE_512_2K 0
105 #define NFI_PAGE_SIZE_2K_4K 1
106 #define NFI_PAGE_SIZE_4K_8K 2
107 #define NFI_PAGE_SIZE_8K_16K 3
108
109 #define NFI_CON 0x008
110 #define CON_SEC_NUM_S 12
111 #define CON_BWR BIT(9)
112 #define CON_BRD BIT(8)
113 #define CON_NFI_RST BIT(1)
114 #define CON_FIFO_FLUSH BIT(0)
115
116 #define NFI_INTR_EN 0x010
117 #define NFI_INTR_STA 0x014
118 #define NFI_IRQ_INTR_EN BIT(31)
119 #define NFI_IRQ_CUS_READ BIT(8)
120 #define NFI_IRQ_CUS_PG BIT(7)
121
122 #define NFI_CMD 0x020
123 #define NFI_CMD_DUMMY_READ 0x00
124 #define NFI_CMD_DUMMY_WRITE 0x80
125
126 #define NFI_STRDATA 0x040
127 #define STR_DATA BIT(0)
128
129 #define NFI_STA 0x060
130 #define NFI_NAND_FSM_7622 GENMASK(28, 24)
131 #define NFI_NAND_FSM_7986 GENMASK(29, 23)
132 #define NFI_FSM GENMASK(19, 16)
133 #define READ_EMPTY BIT(12)
134
135 #define NFI_FIFOSTA 0x064
136 #define FIFO_WR_REMAIN_S 8
137 #define FIFO_RD_REMAIN_S 0
138
139 #define NFI_ADDRCNTR 0x070
140 #define SEC_CNTR GENMASK(16, 12)
141 #define SEC_CNTR_S 12
142 #define NFI_SEC_CNTR(val) (((val)&SEC_CNTR) >> SEC_CNTR_S)
143
144 #define NFI_STRADDR 0x080
145
146 #define NFI_BYTELEN 0x084
147 #define BUS_SEC_CNTR(val) (((val)&SEC_CNTR) >> SEC_CNTR_S)
148
149 #define NFI_FDM0L 0x0a0
150 #define NFI_FDM0M 0x0a4
151 #define NFI_FDML(n) (NFI_FDM0L + (n)*8)
152 #define NFI_FDMM(n) (NFI_FDM0M + (n)*8)
153
154 #define NFI_DEBUG_CON1 0x220
155 #define WBUF_EN BIT(2)
156
157 #define NFI_MASTERSTA 0x224
158 #define MAS_ADDR GENMASK(11, 9)
159 #define MAS_RD GENMASK(8, 6)
160 #define MAS_WR GENMASK(5, 3)
161 #define MAS_RDDLY GENMASK(2, 0)
162 #define NFI_MASTERSTA_MASK_7622 (MAS_ADDR | MAS_RD | MAS_WR | MAS_RDDLY)
163 #define NFI_MASTERSTA_MASK_7986 3
164
165 // SNFI registers
166 #define SNF_MAC_CTL 0x500
167 #define MAC_XIO_SEL BIT(4)
168 #define SF_MAC_EN BIT(3)
169 #define SF_TRIG BIT(2)
170 #define WIP_READY BIT(1)
171 #define WIP BIT(0)
172
173 #define SNF_MAC_OUTL 0x504
174 #define SNF_MAC_INL 0x508
175
176 #define SNF_RD_CTL2 0x510
177 #define DATA_READ_DUMMY_S 8
178 #define DATA_READ_MAX_DUMMY 0xf
179 #define DATA_READ_CMD_S 0
180
181 #define SNF_RD_CTL3 0x514
182
183 #define SNF_PG_CTL1 0x524
184 #define PG_LOAD_CMD_S 8
185
186 #define SNF_PG_CTL2 0x528
187
188 #define SNF_MISC_CTL 0x538
189 #define SW_RST BIT(28)
190 #define FIFO_RD_LTC_S 25
191 #define PG_LOAD_X4_EN BIT(20)
192 #define DATA_READ_MODE_S 16
193 #define DATA_READ_MODE GENMASK(18, 16)
194 #define DATA_READ_MODE_X1 0
195 #define DATA_READ_MODE_X2 1
196 #define DATA_READ_MODE_X4 2
197 #define DATA_READ_MODE_DUAL 5
198 #define DATA_READ_MODE_QUAD 6
199 #define DATA_READ_LATCH_LAT GENMASK(9, 8)
200 #define DATA_READ_LATCH_LAT_S 8
201 #define PG_LOAD_CUSTOM_EN BIT(7)
202 #define DATARD_CUSTOM_EN BIT(6)
203 #define CS_DESELECT_CYC_S 0
204
205 #define SNF_MISC_CTL2 0x53c
206 #define PROGRAM_LOAD_BYTE_NUM_S 16
207 #define READ_DATA_BYTE_NUM_S 11
208
209 #define SNF_DLY_CTL3 0x548
210 #define SFCK_SAM_DLY_S 0
211 #define SFCK_SAM_DLY GENMASK(5, 0)
212 #define SFCK_SAM_DLY_TOTAL 9
213 #define SFCK_SAM_DLY_RANGE 47
214
215 #define SNF_STA_CTL1 0x550
216 #define CUS_PG_DONE BIT(28)
217 #define CUS_READ_DONE BIT(27)
218 #define SPI_STATE_S 0
219 #define SPI_STATE GENMASK(3, 0)
220
221 #define SNF_CFG 0x55c
222 #define SPI_MODE BIT(0)
223
224 #define SNF_GPRAM 0x800
225 #define SNF_GPRAM_SIZE 0xa0
226
227 #define SNFI_POLL_INTERVAL 1000000
228
229 static const u8 mt7622_spare_sizes[] = { 16, 26, 27, 28 };
230
231 static const u8 mt7986_spare_sizes[] = {
232 16, 26, 27, 28, 32, 36, 40, 44, 48, 49, 50, 51, 52, 62, 61, 63, 64, 67,
233 74
234 };
235
236 struct mtk_snand_caps {
237 u16 sector_size;
238 u16 max_sectors;
239 u16 fdm_size;
240 u16 fdm_ecc_size;
241 u16 fifo_size;
242
243 bool bbm_swap;
244 bool empty_page_check;
245 u32 mastersta_mask;
246 u32 nandfsm_mask;
247
248 const u8 *spare_sizes;
249 u32 num_spare_size;
250 };
251
252 static const struct mtk_snand_caps mt7622_snand_caps = {
253 .sector_size = 512,
254 .max_sectors = 8,
255 .fdm_size = 8,
256 .fdm_ecc_size = 1,
257 .fifo_size = 32,
258 .bbm_swap = false,
259 .empty_page_check = false,
260 .mastersta_mask = NFI_MASTERSTA_MASK_7622,
261 .nandfsm_mask = NFI_NAND_FSM_7622,
262 .spare_sizes = mt7622_spare_sizes,
263 .num_spare_size = ARRAY_SIZE(mt7622_spare_sizes)
264 };
265
266 static const struct mtk_snand_caps mt7629_snand_caps = {
267 .sector_size = 512,
268 .max_sectors = 8,
269 .fdm_size = 8,
270 .fdm_ecc_size = 1,
271 .fifo_size = 32,
272 .bbm_swap = true,
273 .empty_page_check = false,
274 .mastersta_mask = NFI_MASTERSTA_MASK_7622,
275 .nandfsm_mask = NFI_NAND_FSM_7622,
276 .spare_sizes = mt7622_spare_sizes,
277 .num_spare_size = ARRAY_SIZE(mt7622_spare_sizes)
278 };
279
280 static const struct mtk_snand_caps mt7986_snand_caps = {
281 .sector_size = 1024,
282 .max_sectors = 8,
283 .fdm_size = 8,
284 .fdm_ecc_size = 1,
285 .fifo_size = 64,
286 .bbm_swap = true,
287 .empty_page_check = true,
288 .mastersta_mask = NFI_MASTERSTA_MASK_7986,
289 .nandfsm_mask = NFI_NAND_FSM_7986,
290 .spare_sizes = mt7986_spare_sizes,
291 .num_spare_size = ARRAY_SIZE(mt7986_spare_sizes)
292 };
293
294 struct mtk_snand_conf {
295 size_t page_size;
296 size_t oob_size;
297 u8 nsectors;
298 u8 spare_size;
299 };
300
301 struct mtk_snand {
302 struct spi_controller *ctlr;
303 struct device *dev;
304 struct clk *nfi_clk;
305 struct clk *pad_clk;
306 struct clk *nfi_hclk;
307 void __iomem *nfi_base;
308 int irq;
309 struct completion op_done;
310 const struct mtk_snand_caps *caps;
311 struct mtk_ecc_config *ecc_cfg;
312 struct mtk_ecc *ecc;
313 struct mtk_snand_conf nfi_cfg;
314 struct mtk_ecc_stats ecc_stats;
315 struct nand_ecc_engine ecc_eng;
316 bool autofmt;
317 u8 *buf;
318 size_t buf_len;
319 };
320
nand_to_mtk_snand(struct nand_device * nand)321 static struct mtk_snand *nand_to_mtk_snand(struct nand_device *nand)
322 {
323 struct nand_ecc_engine *eng = nand->ecc.engine;
324
325 return container_of(eng, struct mtk_snand, ecc_eng);
326 }
327
snand_prepare_bouncebuf(struct mtk_snand * snf,size_t size)328 static inline int snand_prepare_bouncebuf(struct mtk_snand *snf, size_t size)
329 {
330 if (snf->buf_len >= size)
331 return 0;
332 kfree(snf->buf);
333 snf->buf = kmalloc(size, GFP_KERNEL);
334 if (!snf->buf)
335 return -ENOMEM;
336 snf->buf_len = size;
337 memset(snf->buf, 0xff, snf->buf_len);
338 return 0;
339 }
340
nfi_read32(struct mtk_snand * snf,u32 reg)341 static inline u32 nfi_read32(struct mtk_snand *snf, u32 reg)
342 {
343 return readl(snf->nfi_base + reg);
344 }
345
nfi_write32(struct mtk_snand * snf,u32 reg,u32 val)346 static inline void nfi_write32(struct mtk_snand *snf, u32 reg, u32 val)
347 {
348 writel(val, snf->nfi_base + reg);
349 }
350
nfi_write16(struct mtk_snand * snf,u32 reg,u16 val)351 static inline void nfi_write16(struct mtk_snand *snf, u32 reg, u16 val)
352 {
353 writew(val, snf->nfi_base + reg);
354 }
355
nfi_rmw32(struct mtk_snand * snf,u32 reg,u32 clr,u32 set)356 static inline void nfi_rmw32(struct mtk_snand *snf, u32 reg, u32 clr, u32 set)
357 {
358 u32 val;
359
360 val = readl(snf->nfi_base + reg);
361 val &= ~clr;
362 val |= set;
363 writel(val, snf->nfi_base + reg);
364 }
365
nfi_read_data(struct mtk_snand * snf,u32 reg,u8 * data,u32 len)366 static void nfi_read_data(struct mtk_snand *snf, u32 reg, u8 *data, u32 len)
367 {
368 u32 i, val = 0, es = sizeof(u32);
369
370 for (i = reg; i < reg + len; i++) {
371 if (i == reg || i % es == 0)
372 val = nfi_read32(snf, i & ~(es - 1));
373
374 *data++ = (u8)(val >> (8 * (i % es)));
375 }
376 }
377
mtk_nfi_reset(struct mtk_snand * snf)378 static int mtk_nfi_reset(struct mtk_snand *snf)
379 {
380 u32 val, fifo_mask;
381 int ret;
382
383 nfi_write32(snf, NFI_CON, CON_FIFO_FLUSH | CON_NFI_RST);
384
385 ret = readw_poll_timeout(snf->nfi_base + NFI_MASTERSTA, val,
386 !(val & snf->caps->mastersta_mask), 0,
387 SNFI_POLL_INTERVAL);
388 if (ret) {
389 dev_err(snf->dev, "NFI master is still busy after reset\n");
390 return ret;
391 }
392
393 ret = readl_poll_timeout(snf->nfi_base + NFI_STA, val,
394 !(val & (NFI_FSM | snf->caps->nandfsm_mask)), 0,
395 SNFI_POLL_INTERVAL);
396 if (ret) {
397 dev_err(snf->dev, "Failed to reset NFI\n");
398 return ret;
399 }
400
401 fifo_mask = ((snf->caps->fifo_size - 1) << FIFO_RD_REMAIN_S) |
402 ((snf->caps->fifo_size - 1) << FIFO_WR_REMAIN_S);
403 ret = readw_poll_timeout(snf->nfi_base + NFI_FIFOSTA, val,
404 !(val & fifo_mask), 0, SNFI_POLL_INTERVAL);
405 if (ret) {
406 dev_err(snf->dev, "NFI FIFOs are not empty\n");
407 return ret;
408 }
409
410 return 0;
411 }
412
mtk_snand_mac_reset(struct mtk_snand * snf)413 static int mtk_snand_mac_reset(struct mtk_snand *snf)
414 {
415 int ret;
416 u32 val;
417
418 nfi_rmw32(snf, SNF_MISC_CTL, 0, SW_RST);
419
420 ret = readl_poll_timeout(snf->nfi_base + SNF_STA_CTL1, val,
421 !(val & SPI_STATE), 0, SNFI_POLL_INTERVAL);
422 if (ret)
423 dev_err(snf->dev, "Failed to reset SNFI MAC\n");
424
425 nfi_write32(snf, SNF_MISC_CTL,
426 (2 << FIFO_RD_LTC_S) | (10 << CS_DESELECT_CYC_S));
427
428 return ret;
429 }
430
mtk_snand_mac_trigger(struct mtk_snand * snf,u32 outlen,u32 inlen)431 static int mtk_snand_mac_trigger(struct mtk_snand *snf, u32 outlen, u32 inlen)
432 {
433 int ret;
434 u32 val;
435
436 nfi_write32(snf, SNF_MAC_CTL, SF_MAC_EN);
437 nfi_write32(snf, SNF_MAC_OUTL, outlen);
438 nfi_write32(snf, SNF_MAC_INL, inlen);
439
440 nfi_write32(snf, SNF_MAC_CTL, SF_MAC_EN | SF_TRIG);
441
442 ret = readl_poll_timeout(snf->nfi_base + SNF_MAC_CTL, val,
443 val & WIP_READY, 0, SNFI_POLL_INTERVAL);
444 if (ret) {
445 dev_err(snf->dev, "Timed out waiting for WIP_READY\n");
446 goto cleanup;
447 }
448
449 ret = readl_poll_timeout(snf->nfi_base + SNF_MAC_CTL, val, !(val & WIP),
450 0, SNFI_POLL_INTERVAL);
451 if (ret)
452 dev_err(snf->dev, "Timed out waiting for WIP cleared\n");
453
454 cleanup:
455 nfi_write32(snf, SNF_MAC_CTL, 0);
456
457 return ret;
458 }
459
mtk_snand_mac_io(struct mtk_snand * snf,const struct spi_mem_op * op)460 static int mtk_snand_mac_io(struct mtk_snand *snf, const struct spi_mem_op *op)
461 {
462 u32 rx_len = 0;
463 u32 reg_offs = 0;
464 u32 val = 0;
465 const u8 *tx_buf = NULL;
466 u8 *rx_buf = NULL;
467 int i, ret;
468 u8 b;
469
470 if (op->data.dir == SPI_MEM_DATA_IN) {
471 rx_len = op->data.nbytes;
472 rx_buf = op->data.buf.in;
473 } else {
474 tx_buf = op->data.buf.out;
475 }
476
477 mtk_snand_mac_reset(snf);
478
479 for (i = 0; i < op->cmd.nbytes; i++, reg_offs++) {
480 b = (op->cmd.opcode >> ((op->cmd.nbytes - i - 1) * 8)) & 0xff;
481 val |= b << (8 * (reg_offs % 4));
482 if (reg_offs % 4 == 3) {
483 nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
484 val = 0;
485 }
486 }
487
488 for (i = 0; i < op->addr.nbytes; i++, reg_offs++) {
489 b = (op->addr.val >> ((op->addr.nbytes - i - 1) * 8)) & 0xff;
490 val |= b << (8 * (reg_offs % 4));
491 if (reg_offs % 4 == 3) {
492 nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
493 val = 0;
494 }
495 }
496
497 for (i = 0; i < op->dummy.nbytes; i++, reg_offs++) {
498 if (reg_offs % 4 == 3) {
499 nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
500 val = 0;
501 }
502 }
503
504 if (op->data.dir == SPI_MEM_DATA_OUT) {
505 for (i = 0; i < op->data.nbytes; i++, reg_offs++) {
506 val |= tx_buf[i] << (8 * (reg_offs % 4));
507 if (reg_offs % 4 == 3) {
508 nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
509 val = 0;
510 }
511 }
512 }
513
514 if (reg_offs % 4)
515 nfi_write32(snf, SNF_GPRAM + (reg_offs & ~3), val);
516
517 for (i = 0; i < reg_offs; i += 4)
518 dev_dbg(snf->dev, "%d: %08X", i,
519 nfi_read32(snf, SNF_GPRAM + i));
520
521 dev_dbg(snf->dev, "SNF TX: %u RX: %u", reg_offs, rx_len);
522
523 ret = mtk_snand_mac_trigger(snf, reg_offs, rx_len);
524 if (ret)
525 return ret;
526
527 if (!rx_len)
528 return 0;
529
530 nfi_read_data(snf, SNF_GPRAM + reg_offs, rx_buf, rx_len);
531 return 0;
532 }
533
mtk_snand_setup_pagefmt(struct mtk_snand * snf,u32 page_size,u32 oob_size)534 static int mtk_snand_setup_pagefmt(struct mtk_snand *snf, u32 page_size,
535 u32 oob_size)
536 {
537 int spare_idx = -1;
538 u32 spare_size, spare_size_shift, pagesize_idx;
539 u32 sector_size_512;
540 u8 nsectors;
541 int i;
542
543 // skip if it's already configured as required.
544 if (snf->nfi_cfg.page_size == page_size &&
545 snf->nfi_cfg.oob_size == oob_size)
546 return 0;
547
548 nsectors = page_size / snf->caps->sector_size;
549 if (nsectors > snf->caps->max_sectors) {
550 dev_err(snf->dev, "too many sectors required.\n");
551 goto err;
552 }
553
554 if (snf->caps->sector_size == 512) {
555 sector_size_512 = NFI_SEC_SEL_512;
556 spare_size_shift = NFI_SPARE_SIZE_S;
557 } else {
558 sector_size_512 = 0;
559 spare_size_shift = NFI_SPARE_SIZE_LS_S;
560 }
561
562 switch (page_size) {
563 case SZ_512:
564 pagesize_idx = NFI_PAGE_SIZE_512_2K;
565 break;
566 case SZ_2K:
567 if (snf->caps->sector_size == 512)
568 pagesize_idx = NFI_PAGE_SIZE_2K_4K;
569 else
570 pagesize_idx = NFI_PAGE_SIZE_512_2K;
571 break;
572 case SZ_4K:
573 if (snf->caps->sector_size == 512)
574 pagesize_idx = NFI_PAGE_SIZE_4K_8K;
575 else
576 pagesize_idx = NFI_PAGE_SIZE_2K_4K;
577 break;
578 case SZ_8K:
579 if (snf->caps->sector_size == 512)
580 pagesize_idx = NFI_PAGE_SIZE_8K_16K;
581 else
582 pagesize_idx = NFI_PAGE_SIZE_4K_8K;
583 break;
584 case SZ_16K:
585 pagesize_idx = NFI_PAGE_SIZE_8K_16K;
586 break;
587 default:
588 dev_err(snf->dev, "unsupported page size.\n");
589 goto err;
590 }
591
592 spare_size = oob_size / nsectors;
593 // If we're using the 1KB sector size, HW will automatically double the
594 // spare size. We should only use half of the value in this case.
595 if (snf->caps->sector_size == 1024)
596 spare_size /= 2;
597
598 for (i = snf->caps->num_spare_size - 1; i >= 0; i--) {
599 if (snf->caps->spare_sizes[i] <= spare_size) {
600 spare_size = snf->caps->spare_sizes[i];
601 if (snf->caps->sector_size == 1024)
602 spare_size *= 2;
603 spare_idx = i;
604 break;
605 }
606 }
607
608 if (spare_idx < 0) {
609 dev_err(snf->dev, "unsupported spare size: %u\n", spare_size);
610 goto err;
611 }
612
613 nfi_write32(snf, NFI_PAGEFMT,
614 (snf->caps->fdm_ecc_size << NFI_FDM_ECC_NUM_S) |
615 (snf->caps->fdm_size << NFI_FDM_NUM_S) |
616 (spare_idx << spare_size_shift) |
617 (pagesize_idx << NFI_PAGE_SIZE_S) |
618 sector_size_512);
619
620 snf->nfi_cfg.page_size = page_size;
621 snf->nfi_cfg.oob_size = oob_size;
622 snf->nfi_cfg.nsectors = nsectors;
623 snf->nfi_cfg.spare_size = spare_size;
624
625 dev_dbg(snf->dev, "page format: (%u + %u) * %u\n",
626 snf->caps->sector_size, spare_size, nsectors);
627 return snand_prepare_bouncebuf(snf, page_size + oob_size);
628 err:
629 dev_err(snf->dev, "page size %u + %u is not supported\n", page_size,
630 oob_size);
631 return -EOPNOTSUPP;
632 }
633
mtk_snand_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobecc)634 static int mtk_snand_ooblayout_ecc(struct mtd_info *mtd, int section,
635 struct mtd_oob_region *oobecc)
636 {
637 // ECC area is not accessible
638 return -ERANGE;
639 }
640
mtk_snand_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobfree)641 static int mtk_snand_ooblayout_free(struct mtd_info *mtd, int section,
642 struct mtd_oob_region *oobfree)
643 {
644 struct nand_device *nand = mtd_to_nanddev(mtd);
645 struct mtk_snand *ms = nand_to_mtk_snand(nand);
646
647 if (section >= ms->nfi_cfg.nsectors)
648 return -ERANGE;
649
650 oobfree->length = ms->caps->fdm_size - 1;
651 oobfree->offset = section * ms->caps->fdm_size + 1;
652 return 0;
653 }
654
655 static const struct mtd_ooblayout_ops mtk_snand_ooblayout = {
656 .ecc = mtk_snand_ooblayout_ecc,
657 .free = mtk_snand_ooblayout_free,
658 };
659
mtk_snand_ecc_init_ctx(struct nand_device * nand)660 static int mtk_snand_ecc_init_ctx(struct nand_device *nand)
661 {
662 struct mtk_snand *snf = nand_to_mtk_snand(nand);
663 struct nand_ecc_props *conf = &nand->ecc.ctx.conf;
664 struct nand_ecc_props *reqs = &nand->ecc.requirements;
665 struct nand_ecc_props *user = &nand->ecc.user_conf;
666 struct mtd_info *mtd = nanddev_to_mtd(nand);
667 int step_size = 0, strength = 0, desired_correction = 0, steps;
668 bool ecc_user = false;
669 int ret;
670 u32 parity_bits, max_ecc_bytes;
671 struct mtk_ecc_config *ecc_cfg;
672
673 ret = mtk_snand_setup_pagefmt(snf, nand->memorg.pagesize,
674 nand->memorg.oobsize);
675 if (ret)
676 return ret;
677
678 ecc_cfg = kzalloc(sizeof(*ecc_cfg), GFP_KERNEL);
679 if (!ecc_cfg)
680 return -ENOMEM;
681
682 nand->ecc.ctx.priv = ecc_cfg;
683
684 if (user->step_size && user->strength) {
685 step_size = user->step_size;
686 strength = user->strength;
687 ecc_user = true;
688 } else if (reqs->step_size && reqs->strength) {
689 step_size = reqs->step_size;
690 strength = reqs->strength;
691 }
692
693 if (step_size && strength) {
694 steps = mtd->writesize / step_size;
695 desired_correction = steps * strength;
696 strength = desired_correction / snf->nfi_cfg.nsectors;
697 }
698
699 ecc_cfg->mode = ECC_NFI_MODE;
700 ecc_cfg->sectors = snf->nfi_cfg.nsectors;
701 ecc_cfg->len = snf->caps->sector_size + snf->caps->fdm_ecc_size;
702
703 // calculate the max possible strength under current page format
704 parity_bits = mtk_ecc_get_parity_bits(snf->ecc);
705 max_ecc_bytes = snf->nfi_cfg.spare_size - snf->caps->fdm_size;
706 ecc_cfg->strength = max_ecc_bytes * 8 / parity_bits;
707 mtk_ecc_adjust_strength(snf->ecc, &ecc_cfg->strength);
708
709 // if there's a user requested strength, find the minimum strength that
710 // meets the requirement. Otherwise use the maximum strength which is
711 // expected by BootROM.
712 if (ecc_user && strength) {
713 u32 s_next = ecc_cfg->strength - 1;
714
715 while (1) {
716 mtk_ecc_adjust_strength(snf->ecc, &s_next);
717 if (s_next >= ecc_cfg->strength)
718 break;
719 if (s_next < strength)
720 break;
721 s_next = ecc_cfg->strength - 1;
722 }
723 }
724
725 mtd_set_ooblayout(mtd, &mtk_snand_ooblayout);
726
727 conf->step_size = snf->caps->sector_size;
728 conf->strength = ecc_cfg->strength;
729
730 if (ecc_cfg->strength < strength)
731 dev_warn(snf->dev, "unable to fulfill ECC of %u bits.\n",
732 strength);
733 dev_info(snf->dev, "ECC strength: %u bits per %u bytes\n",
734 ecc_cfg->strength, snf->caps->sector_size);
735
736 return 0;
737 }
738
mtk_snand_ecc_cleanup_ctx(struct nand_device * nand)739 static void mtk_snand_ecc_cleanup_ctx(struct nand_device *nand)
740 {
741 struct mtk_ecc_config *ecc_cfg = nand_to_ecc_ctx(nand);
742
743 kfree(ecc_cfg);
744 }
745
mtk_snand_ecc_prepare_io_req(struct nand_device * nand,struct nand_page_io_req * req)746 static int mtk_snand_ecc_prepare_io_req(struct nand_device *nand,
747 struct nand_page_io_req *req)
748 {
749 struct mtk_snand *snf = nand_to_mtk_snand(nand);
750 struct mtk_ecc_config *ecc_cfg = nand_to_ecc_ctx(nand);
751 int ret;
752
753 ret = mtk_snand_setup_pagefmt(snf, nand->memorg.pagesize,
754 nand->memorg.oobsize);
755 if (ret)
756 return ret;
757 snf->autofmt = true;
758 snf->ecc_cfg = ecc_cfg;
759 return 0;
760 }
761
mtk_snand_ecc_finish_io_req(struct nand_device * nand,struct nand_page_io_req * req)762 static int mtk_snand_ecc_finish_io_req(struct nand_device *nand,
763 struct nand_page_io_req *req)
764 {
765 struct mtk_snand *snf = nand_to_mtk_snand(nand);
766 struct mtd_info *mtd = nanddev_to_mtd(nand);
767
768 snf->ecc_cfg = NULL;
769 snf->autofmt = false;
770 if ((req->mode == MTD_OPS_RAW) || (req->type != NAND_PAGE_READ))
771 return 0;
772
773 if (snf->ecc_stats.failed)
774 mtd->ecc_stats.failed += snf->ecc_stats.failed;
775 mtd->ecc_stats.corrected += snf->ecc_stats.corrected;
776 return snf->ecc_stats.failed ? -EBADMSG : snf->ecc_stats.bitflips;
777 }
778
779 static const struct nand_ecc_engine_ops mtk_snfi_ecc_engine_ops = {
780 .init_ctx = mtk_snand_ecc_init_ctx,
781 .cleanup_ctx = mtk_snand_ecc_cleanup_ctx,
782 .prepare_io_req = mtk_snand_ecc_prepare_io_req,
783 .finish_io_req = mtk_snand_ecc_finish_io_req,
784 };
785
mtk_snand_read_fdm(struct mtk_snand * snf,u8 * buf)786 static void mtk_snand_read_fdm(struct mtk_snand *snf, u8 *buf)
787 {
788 u32 vall, valm;
789 u8 *oobptr = buf;
790 int i, j;
791
792 for (i = 0; i < snf->nfi_cfg.nsectors; i++) {
793 vall = nfi_read32(snf, NFI_FDML(i));
794 valm = nfi_read32(snf, NFI_FDMM(i));
795
796 for (j = 0; j < snf->caps->fdm_size; j++)
797 oobptr[j] = (j >= 4 ? valm : vall) >> ((j % 4) * 8);
798
799 oobptr += snf->caps->fdm_size;
800 }
801 }
802
mtk_snand_write_fdm(struct mtk_snand * snf,const u8 * buf)803 static void mtk_snand_write_fdm(struct mtk_snand *snf, const u8 *buf)
804 {
805 u32 fdm_size = snf->caps->fdm_size;
806 const u8 *oobptr = buf;
807 u32 vall, valm;
808 int i, j;
809
810 for (i = 0; i < snf->nfi_cfg.nsectors; i++) {
811 vall = 0;
812 valm = 0;
813
814 for (j = 0; j < 8; j++) {
815 if (j < 4)
816 vall |= (j < fdm_size ? oobptr[j] : 0xff)
817 << (j * 8);
818 else
819 valm |= (j < fdm_size ? oobptr[j] : 0xff)
820 << ((j - 4) * 8);
821 }
822
823 nfi_write32(snf, NFI_FDML(i), vall);
824 nfi_write32(snf, NFI_FDMM(i), valm);
825
826 oobptr += fdm_size;
827 }
828 }
829
mtk_snand_bm_swap(struct mtk_snand * snf,u8 * buf)830 static void mtk_snand_bm_swap(struct mtk_snand *snf, u8 *buf)
831 {
832 u32 buf_bbm_pos, fdm_bbm_pos;
833
834 if (!snf->caps->bbm_swap || snf->nfi_cfg.nsectors == 1)
835 return;
836
837 // swap [pagesize] byte on nand with the first fdm byte
838 // in the last sector.
839 buf_bbm_pos = snf->nfi_cfg.page_size -
840 (snf->nfi_cfg.nsectors - 1) * snf->nfi_cfg.spare_size;
841 fdm_bbm_pos = snf->nfi_cfg.page_size +
842 (snf->nfi_cfg.nsectors - 1) * snf->caps->fdm_size;
843
844 swap(snf->buf[fdm_bbm_pos], buf[buf_bbm_pos]);
845 }
846
mtk_snand_fdm_bm_swap(struct mtk_snand * snf)847 static void mtk_snand_fdm_bm_swap(struct mtk_snand *snf)
848 {
849 u32 fdm_bbm_pos1, fdm_bbm_pos2;
850
851 if (!snf->caps->bbm_swap || snf->nfi_cfg.nsectors == 1)
852 return;
853
854 // swap the first fdm byte in the first and the last sector.
855 fdm_bbm_pos1 = snf->nfi_cfg.page_size;
856 fdm_bbm_pos2 = snf->nfi_cfg.page_size +
857 (snf->nfi_cfg.nsectors - 1) * snf->caps->fdm_size;
858 swap(snf->buf[fdm_bbm_pos1], snf->buf[fdm_bbm_pos2]);
859 }
860
mtk_snand_read_page_cache(struct mtk_snand * snf,const struct spi_mem_op * op)861 static int mtk_snand_read_page_cache(struct mtk_snand *snf,
862 const struct spi_mem_op *op)
863 {
864 u8 *buf = snf->buf;
865 u8 *buf_fdm = buf + snf->nfi_cfg.page_size;
866 // the address part to be sent by the controller
867 u32 op_addr = op->addr.val;
868 // where to start copying data from bounce buffer
869 u32 rd_offset = 0;
870 u32 dummy_clk = (op->dummy.nbytes * BITS_PER_BYTE / op->dummy.buswidth);
871 u32 op_mode = 0;
872 u32 dma_len = snf->buf_len;
873 int ret = 0;
874 u32 rd_mode, rd_bytes, val;
875 dma_addr_t buf_dma;
876
877 if (snf->autofmt) {
878 u32 last_bit;
879 u32 mask;
880
881 dma_len = snf->nfi_cfg.page_size;
882 op_mode = CNFG_AUTO_FMT_EN;
883 if (op->data.ecc)
884 op_mode |= CNFG_HW_ECC_EN;
885 // extract the plane bit:
886 // Find the highest bit set in (pagesize+oobsize).
887 // Bits higher than that in op->addr are kept and sent over SPI
888 // Lower bits are used as an offset for copying data from DMA
889 // bounce buffer.
890 last_bit = fls(snf->nfi_cfg.page_size + snf->nfi_cfg.oob_size);
891 mask = (1 << last_bit) - 1;
892 rd_offset = op_addr & mask;
893 op_addr &= ~mask;
894
895 // check if we can dma to the caller memory
896 if (rd_offset == 0 && op->data.nbytes >= snf->nfi_cfg.page_size)
897 buf = op->data.buf.in;
898 }
899 mtk_snand_mac_reset(snf);
900 mtk_nfi_reset(snf);
901
902 // command and dummy cycles
903 nfi_write32(snf, SNF_RD_CTL2,
904 (dummy_clk << DATA_READ_DUMMY_S) |
905 (op->cmd.opcode << DATA_READ_CMD_S));
906
907 // read address
908 nfi_write32(snf, SNF_RD_CTL3, op_addr);
909
910 // Set read op_mode
911 if (op->data.buswidth == 4)
912 rd_mode = op->addr.buswidth == 4 ? DATA_READ_MODE_QUAD :
913 DATA_READ_MODE_X4;
914 else if (op->data.buswidth == 2)
915 rd_mode = op->addr.buswidth == 2 ? DATA_READ_MODE_DUAL :
916 DATA_READ_MODE_X2;
917 else
918 rd_mode = DATA_READ_MODE_X1;
919 rd_mode <<= DATA_READ_MODE_S;
920 nfi_rmw32(snf, SNF_MISC_CTL, DATA_READ_MODE,
921 rd_mode | DATARD_CUSTOM_EN);
922
923 // Set bytes to read
924 rd_bytes = (snf->nfi_cfg.spare_size + snf->caps->sector_size) *
925 snf->nfi_cfg.nsectors;
926 nfi_write32(snf, SNF_MISC_CTL2,
927 (rd_bytes << PROGRAM_LOAD_BYTE_NUM_S) | rd_bytes);
928
929 // NFI read prepare
930 nfi_write16(snf, NFI_CNFG,
931 (CNFG_OP_MODE_CUST << CNFG_OP_MODE_S) | CNFG_DMA_BURST_EN |
932 CNFG_READ_MODE | CNFG_DMA_MODE | op_mode);
933
934 nfi_write32(snf, NFI_CON, (snf->nfi_cfg.nsectors << CON_SEC_NUM_S));
935
936 buf_dma = dma_map_single(snf->dev, buf, dma_len, DMA_FROM_DEVICE);
937 ret = dma_mapping_error(snf->dev, buf_dma);
938 if (ret) {
939 dev_err(snf->dev, "DMA mapping failed.\n");
940 goto cleanup;
941 }
942 nfi_write32(snf, NFI_STRADDR, buf_dma);
943 if (op->data.ecc) {
944 snf->ecc_cfg->op = ECC_DECODE;
945 ret = mtk_ecc_enable(snf->ecc, snf->ecc_cfg);
946 if (ret)
947 goto cleanup_dma;
948 }
949 // Prepare for custom read interrupt
950 nfi_write32(snf, NFI_INTR_EN, NFI_IRQ_INTR_EN | NFI_IRQ_CUS_READ);
951 reinit_completion(&snf->op_done);
952
953 // Trigger NFI into custom mode
954 nfi_write16(snf, NFI_CMD, NFI_CMD_DUMMY_READ);
955
956 // Start DMA read
957 nfi_rmw32(snf, NFI_CON, 0, CON_BRD);
958 nfi_write16(snf, NFI_STRDATA, STR_DATA);
959
960 if (!wait_for_completion_timeout(
961 &snf->op_done, usecs_to_jiffies(SNFI_POLL_INTERVAL))) {
962 dev_err(snf->dev, "DMA timed out for reading from cache.\n");
963 ret = -ETIMEDOUT;
964 goto cleanup;
965 }
966
967 // Wait for BUS_SEC_CNTR returning expected value
968 ret = readl_poll_timeout(snf->nfi_base + NFI_BYTELEN, val,
969 BUS_SEC_CNTR(val) >= snf->nfi_cfg.nsectors, 0,
970 SNFI_POLL_INTERVAL);
971 if (ret) {
972 dev_err(snf->dev, "Timed out waiting for BUS_SEC_CNTR\n");
973 goto cleanup2;
974 }
975
976 // Wait for bus becoming idle
977 ret = readl_poll_timeout(snf->nfi_base + NFI_MASTERSTA, val,
978 !(val & snf->caps->mastersta_mask), 0,
979 SNFI_POLL_INTERVAL);
980 if (ret) {
981 dev_err(snf->dev, "Timed out waiting for bus becoming idle\n");
982 goto cleanup2;
983 }
984
985 if (op->data.ecc) {
986 ret = mtk_ecc_wait_done(snf->ecc, ECC_DECODE);
987 if (ret) {
988 dev_err(snf->dev, "wait ecc done timeout\n");
989 goto cleanup2;
990 }
991 // save status before disabling ecc
992 mtk_ecc_get_stats(snf->ecc, &snf->ecc_stats,
993 snf->nfi_cfg.nsectors);
994 }
995
996 dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_FROM_DEVICE);
997
998 if (snf->autofmt) {
999 mtk_snand_read_fdm(snf, buf_fdm);
1000 if (snf->caps->bbm_swap) {
1001 mtk_snand_bm_swap(snf, buf);
1002 mtk_snand_fdm_bm_swap(snf);
1003 }
1004 }
1005
1006 // copy data back
1007 if (nfi_read32(snf, NFI_STA) & READ_EMPTY) {
1008 memset(op->data.buf.in, 0xff, op->data.nbytes);
1009 snf->ecc_stats.bitflips = 0;
1010 snf->ecc_stats.failed = 0;
1011 snf->ecc_stats.corrected = 0;
1012 } else {
1013 if (buf == op->data.buf.in) {
1014 u32 cap_len = snf->buf_len - snf->nfi_cfg.page_size;
1015 u32 req_left = op->data.nbytes - snf->nfi_cfg.page_size;
1016
1017 if (req_left)
1018 memcpy(op->data.buf.in + snf->nfi_cfg.page_size,
1019 buf_fdm,
1020 cap_len < req_left ? cap_len : req_left);
1021 } else if (rd_offset < snf->buf_len) {
1022 u32 cap_len = snf->buf_len - rd_offset;
1023
1024 if (op->data.nbytes < cap_len)
1025 cap_len = op->data.nbytes;
1026 memcpy(op->data.buf.in, snf->buf + rd_offset, cap_len);
1027 }
1028 }
1029 cleanup2:
1030 if (op->data.ecc)
1031 mtk_ecc_disable(snf->ecc);
1032 cleanup_dma:
1033 // unmap dma only if any error happens. (otherwise it's done before
1034 // data copying)
1035 if (ret)
1036 dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_FROM_DEVICE);
1037 cleanup:
1038 // Stop read
1039 nfi_write32(snf, NFI_CON, 0);
1040 nfi_write16(snf, NFI_CNFG, 0);
1041
1042 // Clear SNF done flag
1043 nfi_rmw32(snf, SNF_STA_CTL1, 0, CUS_READ_DONE);
1044 nfi_write32(snf, SNF_STA_CTL1, 0);
1045
1046 // Disable interrupt
1047 nfi_read32(snf, NFI_INTR_STA);
1048 nfi_write32(snf, NFI_INTR_EN, 0);
1049
1050 nfi_rmw32(snf, SNF_MISC_CTL, DATARD_CUSTOM_EN, 0);
1051 return ret;
1052 }
1053
mtk_snand_write_page_cache(struct mtk_snand * snf,const struct spi_mem_op * op)1054 static int mtk_snand_write_page_cache(struct mtk_snand *snf,
1055 const struct spi_mem_op *op)
1056 {
1057 // the address part to be sent by the controller
1058 u32 op_addr = op->addr.val;
1059 // where to start copying data from bounce buffer
1060 u32 wr_offset = 0;
1061 u32 op_mode = 0;
1062 int ret = 0;
1063 u32 wr_mode = 0;
1064 u32 dma_len = snf->buf_len;
1065 u32 wr_bytes, val;
1066 size_t cap_len;
1067 dma_addr_t buf_dma;
1068
1069 if (snf->autofmt) {
1070 u32 last_bit;
1071 u32 mask;
1072
1073 dma_len = snf->nfi_cfg.page_size;
1074 op_mode = CNFG_AUTO_FMT_EN;
1075 if (op->data.ecc)
1076 op_mode |= CNFG_HW_ECC_EN;
1077
1078 last_bit = fls(snf->nfi_cfg.page_size + snf->nfi_cfg.oob_size);
1079 mask = (1 << last_bit) - 1;
1080 wr_offset = op_addr & mask;
1081 op_addr &= ~mask;
1082 }
1083 mtk_snand_mac_reset(snf);
1084 mtk_nfi_reset(snf);
1085
1086 if (wr_offset)
1087 memset(snf->buf, 0xff, wr_offset);
1088
1089 cap_len = snf->buf_len - wr_offset;
1090 if (op->data.nbytes < cap_len)
1091 cap_len = op->data.nbytes;
1092 memcpy(snf->buf + wr_offset, op->data.buf.out, cap_len);
1093 if (snf->autofmt) {
1094 if (snf->caps->bbm_swap) {
1095 mtk_snand_fdm_bm_swap(snf);
1096 mtk_snand_bm_swap(snf, snf->buf);
1097 }
1098 mtk_snand_write_fdm(snf, snf->buf + snf->nfi_cfg.page_size);
1099 }
1100
1101 // Command
1102 nfi_write32(snf, SNF_PG_CTL1, (op->cmd.opcode << PG_LOAD_CMD_S));
1103
1104 // write address
1105 nfi_write32(snf, SNF_PG_CTL2, op_addr);
1106
1107 // Set read op_mode
1108 if (op->data.buswidth == 4)
1109 wr_mode = PG_LOAD_X4_EN;
1110
1111 nfi_rmw32(snf, SNF_MISC_CTL, PG_LOAD_X4_EN,
1112 wr_mode | PG_LOAD_CUSTOM_EN);
1113
1114 // Set bytes to write
1115 wr_bytes = (snf->nfi_cfg.spare_size + snf->caps->sector_size) *
1116 snf->nfi_cfg.nsectors;
1117 nfi_write32(snf, SNF_MISC_CTL2,
1118 (wr_bytes << PROGRAM_LOAD_BYTE_NUM_S) | wr_bytes);
1119
1120 // NFI write prepare
1121 nfi_write16(snf, NFI_CNFG,
1122 (CNFG_OP_MODE_PROGRAM << CNFG_OP_MODE_S) |
1123 CNFG_DMA_BURST_EN | CNFG_DMA_MODE | op_mode);
1124
1125 nfi_write32(snf, NFI_CON, (snf->nfi_cfg.nsectors << CON_SEC_NUM_S));
1126 buf_dma = dma_map_single(snf->dev, snf->buf, dma_len, DMA_TO_DEVICE);
1127 ret = dma_mapping_error(snf->dev, buf_dma);
1128 if (ret) {
1129 dev_err(snf->dev, "DMA mapping failed.\n");
1130 goto cleanup;
1131 }
1132 nfi_write32(snf, NFI_STRADDR, buf_dma);
1133 if (op->data.ecc) {
1134 snf->ecc_cfg->op = ECC_ENCODE;
1135 ret = mtk_ecc_enable(snf->ecc, snf->ecc_cfg);
1136 if (ret)
1137 goto cleanup_dma;
1138 }
1139 // Prepare for custom write interrupt
1140 nfi_write32(snf, NFI_INTR_EN, NFI_IRQ_INTR_EN | NFI_IRQ_CUS_PG);
1141 reinit_completion(&snf->op_done);
1142 ;
1143
1144 // Trigger NFI into custom mode
1145 nfi_write16(snf, NFI_CMD, NFI_CMD_DUMMY_WRITE);
1146
1147 // Start DMA write
1148 nfi_rmw32(snf, NFI_CON, 0, CON_BWR);
1149 nfi_write16(snf, NFI_STRDATA, STR_DATA);
1150
1151 if (!wait_for_completion_timeout(
1152 &snf->op_done, usecs_to_jiffies(SNFI_POLL_INTERVAL))) {
1153 dev_err(snf->dev, "DMA timed out for program load.\n");
1154 ret = -ETIMEDOUT;
1155 goto cleanup_ecc;
1156 }
1157
1158 // Wait for NFI_SEC_CNTR returning expected value
1159 ret = readl_poll_timeout(snf->nfi_base + NFI_ADDRCNTR, val,
1160 NFI_SEC_CNTR(val) >= snf->nfi_cfg.nsectors, 0,
1161 SNFI_POLL_INTERVAL);
1162 if (ret)
1163 dev_err(snf->dev, "Timed out waiting for NFI_SEC_CNTR\n");
1164
1165 cleanup_ecc:
1166 if (op->data.ecc)
1167 mtk_ecc_disable(snf->ecc);
1168 cleanup_dma:
1169 dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_TO_DEVICE);
1170 cleanup:
1171 // Stop write
1172 nfi_write32(snf, NFI_CON, 0);
1173 nfi_write16(snf, NFI_CNFG, 0);
1174
1175 // Clear SNF done flag
1176 nfi_rmw32(snf, SNF_STA_CTL1, 0, CUS_PG_DONE);
1177 nfi_write32(snf, SNF_STA_CTL1, 0);
1178
1179 // Disable interrupt
1180 nfi_read32(snf, NFI_INTR_STA);
1181 nfi_write32(snf, NFI_INTR_EN, 0);
1182
1183 nfi_rmw32(snf, SNF_MISC_CTL, PG_LOAD_CUSTOM_EN, 0);
1184
1185 return ret;
1186 }
1187
1188 /**
1189 * mtk_snand_is_page_ops() - check if the op is a controller supported page op.
1190 * @op: spi-mem op to check
1191 *
1192 * Check whether op can be executed with read_from_cache or program_load
1193 * mode in the controller.
1194 * This controller can execute typical Read From Cache and Program Load
1195 * instructions found on SPI-NAND with 2-byte address.
1196 * DTR and cmd buswidth & nbytes should be checked before calling this.
1197 *
1198 * Return: true if the op matches the instruction template
1199 */
mtk_snand_is_page_ops(const struct spi_mem_op * op)1200 static bool mtk_snand_is_page_ops(const struct spi_mem_op *op)
1201 {
1202 if (op->addr.nbytes != 2)
1203 return false;
1204
1205 if (op->addr.buswidth != 1 && op->addr.buswidth != 2 &&
1206 op->addr.buswidth != 4)
1207 return false;
1208
1209 // match read from page instructions
1210 if (op->data.dir == SPI_MEM_DATA_IN) {
1211 // check dummy cycle first
1212 if (op->dummy.nbytes * BITS_PER_BYTE / op->dummy.buswidth >
1213 DATA_READ_MAX_DUMMY)
1214 return false;
1215 // quad io / quad out
1216 if ((op->addr.buswidth == 4 || op->addr.buswidth == 1) &&
1217 op->data.buswidth == 4)
1218 return true;
1219
1220 // dual io / dual out
1221 if ((op->addr.buswidth == 2 || op->addr.buswidth == 1) &&
1222 op->data.buswidth == 2)
1223 return true;
1224
1225 // standard spi
1226 if (op->addr.buswidth == 1 && op->data.buswidth == 1)
1227 return true;
1228 } else if (op->data.dir == SPI_MEM_DATA_OUT) {
1229 // check dummy cycle first
1230 if (op->dummy.nbytes)
1231 return false;
1232 // program load quad out
1233 if (op->addr.buswidth == 1 && op->data.buswidth == 4)
1234 return true;
1235 // standard spi
1236 if (op->addr.buswidth == 1 && op->data.buswidth == 1)
1237 return true;
1238 }
1239 return false;
1240 }
1241
mtk_snand_supports_op(struct spi_mem * mem,const struct spi_mem_op * op)1242 static bool mtk_snand_supports_op(struct spi_mem *mem,
1243 const struct spi_mem_op *op)
1244 {
1245 if (!spi_mem_default_supports_op(mem, op))
1246 return false;
1247 if (op->cmd.nbytes != 1 || op->cmd.buswidth != 1)
1248 return false;
1249 if (mtk_snand_is_page_ops(op))
1250 return true;
1251 return ((op->addr.nbytes == 0 || op->addr.buswidth == 1) &&
1252 (op->dummy.nbytes == 0 || op->dummy.buswidth == 1) &&
1253 (op->data.nbytes == 0 || op->data.buswidth == 1));
1254 }
1255
mtk_snand_adjust_op_size(struct spi_mem * mem,struct spi_mem_op * op)1256 static int mtk_snand_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
1257 {
1258 struct mtk_snand *ms = spi_controller_get_devdata(mem->spi->controller);
1259 // page ops transfer size must be exactly ((sector_size + spare_size) *
1260 // nsectors). Limit the op size if the caller requests more than that.
1261 // exec_op will read more than needed and discard the leftover if the
1262 // caller requests less data.
1263 if (mtk_snand_is_page_ops(op)) {
1264 size_t l;
1265 // skip adjust_op_size for page ops
1266 if (ms->autofmt)
1267 return 0;
1268 l = ms->caps->sector_size + ms->nfi_cfg.spare_size;
1269 l *= ms->nfi_cfg.nsectors;
1270 if (op->data.nbytes > l)
1271 op->data.nbytes = l;
1272 } else {
1273 size_t hl = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
1274
1275 if (hl >= SNF_GPRAM_SIZE)
1276 return -EOPNOTSUPP;
1277 if (op->data.nbytes > SNF_GPRAM_SIZE - hl)
1278 op->data.nbytes = SNF_GPRAM_SIZE - hl;
1279 }
1280 return 0;
1281 }
1282
mtk_snand_exec_op(struct spi_mem * mem,const struct spi_mem_op * op)1283 static int mtk_snand_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
1284 {
1285 struct mtk_snand *ms = spi_controller_get_devdata(mem->spi->controller);
1286
1287 dev_dbg(ms->dev, "OP %02x ADDR %08llX@%d:%u DATA %d:%u", op->cmd.opcode,
1288 op->addr.val, op->addr.buswidth, op->addr.nbytes,
1289 op->data.buswidth, op->data.nbytes);
1290 if (mtk_snand_is_page_ops(op)) {
1291 if (op->data.dir == SPI_MEM_DATA_IN)
1292 return mtk_snand_read_page_cache(ms, op);
1293 else
1294 return mtk_snand_write_page_cache(ms, op);
1295 } else {
1296 return mtk_snand_mac_io(ms, op);
1297 }
1298 }
1299
1300 static const struct spi_controller_mem_ops mtk_snand_mem_ops = {
1301 .adjust_op_size = mtk_snand_adjust_op_size,
1302 .supports_op = mtk_snand_supports_op,
1303 .exec_op = mtk_snand_exec_op,
1304 };
1305
1306 static const struct spi_controller_mem_caps mtk_snand_mem_caps = {
1307 .ecc = true,
1308 };
1309
mtk_snand_irq(int irq,void * id)1310 static irqreturn_t mtk_snand_irq(int irq, void *id)
1311 {
1312 struct mtk_snand *snf = id;
1313 u32 sta, ien;
1314
1315 sta = nfi_read32(snf, NFI_INTR_STA);
1316 ien = nfi_read32(snf, NFI_INTR_EN);
1317
1318 if (!(sta & ien))
1319 return IRQ_NONE;
1320
1321 nfi_write32(snf, NFI_INTR_EN, 0);
1322 complete(&snf->op_done);
1323 return IRQ_HANDLED;
1324 }
1325
1326 static const struct of_device_id mtk_snand_ids[] = {
1327 { .compatible = "mediatek,mt7622-snand", .data = &mt7622_snand_caps },
1328 { .compatible = "mediatek,mt7629-snand", .data = &mt7629_snand_caps },
1329 { .compatible = "mediatek,mt7986-snand", .data = &mt7986_snand_caps },
1330 {},
1331 };
1332
1333 MODULE_DEVICE_TABLE(of, mtk_snand_ids);
1334
mtk_snand_probe(struct platform_device * pdev)1335 static int mtk_snand_probe(struct platform_device *pdev)
1336 {
1337 struct device_node *np = pdev->dev.of_node;
1338 const struct of_device_id *dev_id;
1339 struct spi_controller *ctlr;
1340 struct mtk_snand *ms;
1341 unsigned long spi_freq;
1342 u32 val = 0;
1343 int ret;
1344
1345 dev_id = of_match_node(mtk_snand_ids, np);
1346 if (!dev_id)
1347 return -EINVAL;
1348
1349 ctlr = devm_spi_alloc_host(&pdev->dev, sizeof(*ms));
1350 if (!ctlr)
1351 return -ENOMEM;
1352 platform_set_drvdata(pdev, ctlr);
1353
1354 ms = spi_controller_get_devdata(ctlr);
1355
1356 ms->ctlr = ctlr;
1357 ms->caps = dev_id->data;
1358
1359 ms->ecc = of_mtk_ecc_get(np);
1360 if (IS_ERR(ms->ecc))
1361 return PTR_ERR(ms->ecc);
1362 else if (!ms->ecc)
1363 return -ENODEV;
1364
1365 ms->nfi_base = devm_platform_ioremap_resource(pdev, 0);
1366 if (IS_ERR(ms->nfi_base)) {
1367 ret = PTR_ERR(ms->nfi_base);
1368 goto release_ecc;
1369 }
1370
1371 ms->dev = &pdev->dev;
1372
1373 ms->nfi_clk = devm_clk_get_enabled(&pdev->dev, "nfi_clk");
1374 if (IS_ERR(ms->nfi_clk)) {
1375 ret = PTR_ERR(ms->nfi_clk);
1376 dev_err(&pdev->dev, "unable to get nfi_clk, err = %d\n", ret);
1377 goto release_ecc;
1378 }
1379
1380 ms->pad_clk = devm_clk_get_enabled(&pdev->dev, "pad_clk");
1381 if (IS_ERR(ms->pad_clk)) {
1382 ret = PTR_ERR(ms->pad_clk);
1383 dev_err(&pdev->dev, "unable to get pad_clk, err = %d\n", ret);
1384 goto release_ecc;
1385 }
1386
1387 ms->nfi_hclk = devm_clk_get_optional_enabled(&pdev->dev, "nfi_hclk");
1388 if (IS_ERR(ms->nfi_hclk)) {
1389 ret = PTR_ERR(ms->nfi_hclk);
1390 dev_err(&pdev->dev, "unable to get nfi_hclk, err = %d\n", ret);
1391 goto release_ecc;
1392 }
1393
1394 init_completion(&ms->op_done);
1395
1396 ms->irq = platform_get_irq(pdev, 0);
1397 if (ms->irq < 0) {
1398 ret = ms->irq;
1399 goto release_ecc;
1400 }
1401 ret = devm_request_irq(ms->dev, ms->irq, mtk_snand_irq, 0x0,
1402 "mtk-snand", ms);
1403 if (ret) {
1404 dev_err(ms->dev, "failed to request snfi irq\n");
1405 goto release_ecc;
1406 }
1407
1408 ret = dma_set_mask(ms->dev, DMA_BIT_MASK(32));
1409 if (ret) {
1410 dev_err(ms->dev, "failed to set dma mask\n");
1411 goto release_ecc;
1412 }
1413
1414 // switch to SNFI mode
1415 nfi_write32(ms, SNF_CFG, SPI_MODE);
1416
1417 ret = of_property_read_u32(np, "rx-sample-delay-ns", &val);
1418 if (!ret)
1419 nfi_rmw32(ms, SNF_DLY_CTL3, SFCK_SAM_DLY,
1420 val * SFCK_SAM_DLY_RANGE / SFCK_SAM_DLY_TOTAL);
1421
1422 ret = of_property_read_u32(np, "mediatek,rx-latch-latency-ns", &val);
1423 if (!ret) {
1424 spi_freq = clk_get_rate(ms->pad_clk);
1425 val = DIV_ROUND_CLOSEST(val, NSEC_PER_SEC / spi_freq);
1426 nfi_rmw32(ms, SNF_MISC_CTL, DATA_READ_LATCH_LAT,
1427 val << DATA_READ_LATCH_LAT_S);
1428 }
1429
1430 // setup an initial page format for ops matching page_cache_op template
1431 // before ECC is called.
1432 ret = mtk_snand_setup_pagefmt(ms, SZ_2K, SZ_64);
1433 if (ret) {
1434 dev_err(ms->dev, "failed to set initial page format\n");
1435 goto release_ecc;
1436 }
1437
1438 // setup ECC engine
1439 ms->ecc_eng.dev = &pdev->dev;
1440 ms->ecc_eng.integration = NAND_ECC_ENGINE_INTEGRATION_PIPELINED;
1441 ms->ecc_eng.ops = &mtk_snfi_ecc_engine_ops;
1442 ms->ecc_eng.priv = ms;
1443
1444 ret = nand_ecc_register_on_host_hw_engine(&ms->ecc_eng);
1445 if (ret) {
1446 dev_err(&pdev->dev, "failed to register ecc engine.\n");
1447 goto release_ecc;
1448 }
1449
1450 ctlr->num_chipselect = 1;
1451 ctlr->mem_ops = &mtk_snand_mem_ops;
1452 ctlr->mem_caps = &mtk_snand_mem_caps;
1453 ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
1454 ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_TX_DUAL | SPI_TX_QUAD;
1455 ctlr->dev.of_node = pdev->dev.of_node;
1456 ret = spi_register_controller(ctlr);
1457 if (ret) {
1458 dev_err(&pdev->dev, "spi_register_controller failed.\n");
1459 goto release_ecc;
1460 }
1461
1462 return 0;
1463 release_ecc:
1464 mtk_ecc_release(ms->ecc);
1465 return ret;
1466 }
1467
mtk_snand_remove(struct platform_device * pdev)1468 static void mtk_snand_remove(struct platform_device *pdev)
1469 {
1470 struct spi_controller *ctlr = platform_get_drvdata(pdev);
1471 struct mtk_snand *ms = spi_controller_get_devdata(ctlr);
1472
1473 spi_unregister_controller(ctlr);
1474 mtk_ecc_release(ms->ecc);
1475 kfree(ms->buf);
1476 }
1477
1478 static struct platform_driver mtk_snand_driver = {
1479 .probe = mtk_snand_probe,
1480 .remove = mtk_snand_remove,
1481 .driver = {
1482 .name = "mtk-snand",
1483 .of_match_table = mtk_snand_ids,
1484 },
1485 };
1486
1487 module_platform_driver(mtk_snand_driver);
1488
1489 MODULE_LICENSE("GPL");
1490 MODULE_AUTHOR("Chuanhong Guo <gch981213@gmail.com>");
1491 MODULE_DESCRIPTION("MeidaTek SPI-NAND Flash Controller Driver");
1492