xref: /linux/include/linux/sched.h (revision fd1f8473503e5bf897bd3e8efe3545c0352954e6)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4 
5 /*
6  * Define 'struct task_struct' and provide the main scheduler
7  * APIs (schedule(), wakeup variants, etc.)
8  */
9 
10 #include <uapi/linux/sched.h>
11 
12 #include <asm/current.h>
13 #include <asm/processor.h>
14 #include <linux/thread_info.h>
15 #include <linux/preempt.h>
16 #include <linux/cpumask_types.h>
17 
18 #include <linux/cache.h>
19 #include <linux/irqflags_types.h>
20 #include <linux/smp_types.h>
21 #include <linux/pid_types.h>
22 #include <linux/sem_types.h>
23 #include <linux/shm.h>
24 #include <linux/kmsan_types.h>
25 #include <linux/mutex_types.h>
26 #include <linux/plist_types.h>
27 #include <linux/hrtimer_types.h>
28 #include <linux/timer_types.h>
29 #include <linux/seccomp_types.h>
30 #include <linux/nodemask_types.h>
31 #include <linux/refcount_types.h>
32 #include <linux/resource.h>
33 #include <linux/latencytop.h>
34 #include <linux/sched/prio.h>
35 #include <linux/sched/types.h>
36 #include <linux/signal_types.h>
37 #include <linux/syscall_user_dispatch_types.h>
38 #include <linux/mm_types_task.h>
39 #include <linux/netdevice_xmit.h>
40 #include <linux/task_io_accounting.h>
41 #include <linux/posix-timers_types.h>
42 #include <linux/restart_block.h>
43 #include <uapi/linux/rseq.h>
44 #include <linux/seqlock_types.h>
45 #include <linux/kcsan.h>
46 #include <linux/rv.h>
47 #include <linux/uidgid_types.h>
48 #include <linux/tracepoint-defs.h>
49 #include <asm/kmap_size.h>
50 
51 /* task_struct member predeclarations (sorted alphabetically): */
52 struct audit_context;
53 struct bio_list;
54 struct blk_plug;
55 struct bpf_local_storage;
56 struct bpf_run_ctx;
57 struct bpf_net_context;
58 struct capture_control;
59 struct cfs_rq;
60 struct fs_struct;
61 struct futex_pi_state;
62 struct io_context;
63 struct io_uring_task;
64 struct mempolicy;
65 struct nameidata;
66 struct nsproxy;
67 struct perf_event_context;
68 struct perf_ctx_data;
69 struct pid_namespace;
70 struct pipe_inode_info;
71 struct rcu_node;
72 struct reclaim_state;
73 struct robust_list_head;
74 struct root_domain;
75 struct rq;
76 struct sched_attr;
77 struct sched_dl_entity;
78 struct seq_file;
79 struct sighand_struct;
80 struct signal_struct;
81 struct task_delay_info;
82 struct task_group;
83 struct task_struct;
84 struct user_event_mm;
85 
86 #include <linux/sched/ext.h>
87 
88 /*
89  * Task state bitmask. NOTE! These bits are also
90  * encoded in fs/proc/array.c: get_task_state().
91  *
92  * We have two separate sets of flags: task->__state
93  * is about runnability, while task->exit_state are
94  * about the task exiting. Confusing, but this way
95  * modifying one set can't modify the other one by
96  * mistake.
97  */
98 
99 /* Used in tsk->__state: */
100 #define TASK_RUNNING			0x00000000
101 #define TASK_INTERRUPTIBLE		0x00000001
102 #define TASK_UNINTERRUPTIBLE		0x00000002
103 #define __TASK_STOPPED			0x00000004
104 #define __TASK_TRACED			0x00000008
105 /* Used in tsk->exit_state: */
106 #define EXIT_DEAD			0x00000010
107 #define EXIT_ZOMBIE			0x00000020
108 #define EXIT_TRACE			(EXIT_ZOMBIE | EXIT_DEAD)
109 /* Used in tsk->__state again: */
110 #define TASK_PARKED			0x00000040
111 #define TASK_DEAD			0x00000080
112 #define TASK_WAKEKILL			0x00000100
113 #define TASK_WAKING			0x00000200
114 #define TASK_NOLOAD			0x00000400
115 #define TASK_NEW			0x00000800
116 #define TASK_RTLOCK_WAIT		0x00001000
117 #define TASK_FREEZABLE			0x00002000
118 #define __TASK_FREEZABLE_UNSAFE	       (0x00004000 * IS_ENABLED(CONFIG_LOCKDEP))
119 #define TASK_FROZEN			0x00008000
120 #define TASK_STATE_MAX			0x00010000
121 
122 #define TASK_ANY			(TASK_STATE_MAX-1)
123 
124 /*
125  * DO NOT ADD ANY NEW USERS !
126  */
127 #define TASK_FREEZABLE_UNSAFE		(TASK_FREEZABLE | __TASK_FREEZABLE_UNSAFE)
128 
129 /* Convenience macros for the sake of set_current_state: */
130 #define TASK_KILLABLE			(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
131 #define TASK_STOPPED			(TASK_WAKEKILL | __TASK_STOPPED)
132 #define TASK_TRACED			__TASK_TRACED
133 
134 #define TASK_IDLE			(TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
135 
136 /* Convenience macros for the sake of wake_up(): */
137 #define TASK_NORMAL			(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
138 
139 /* get_task_state(): */
140 #define TASK_REPORT			(TASK_RUNNING | TASK_INTERRUPTIBLE | \
141 					 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
142 					 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
143 					 TASK_PARKED)
144 
145 #define task_is_running(task)		(READ_ONCE((task)->__state) == TASK_RUNNING)
146 
147 #define task_is_traced(task)		((READ_ONCE(task->jobctl) & JOBCTL_TRACED) != 0)
148 #define task_is_stopped(task)		((READ_ONCE(task->jobctl) & JOBCTL_STOPPED) != 0)
149 #define task_is_stopped_or_traced(task)	((READ_ONCE(task->jobctl) & (JOBCTL_STOPPED | JOBCTL_TRACED)) != 0)
150 
151 /*
152  * Special states are those that do not use the normal wait-loop pattern. See
153  * the comment with set_special_state().
154  */
155 #define is_special_task_state(state)					\
156 	((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED |	\
157 		    TASK_DEAD | TASK_FROZEN))
158 
159 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
160 # define debug_normal_state_change(state_value)				\
161 	do {								\
162 		WARN_ON_ONCE(is_special_task_state(state_value));	\
163 		current->task_state_change = _THIS_IP_;			\
164 	} while (0)
165 
166 # define debug_special_state_change(state_value)			\
167 	do {								\
168 		WARN_ON_ONCE(!is_special_task_state(state_value));	\
169 		current->task_state_change = _THIS_IP_;			\
170 	} while (0)
171 
172 # define debug_rtlock_wait_set_state()					\
173 	do {								 \
174 		current->saved_state_change = current->task_state_change;\
175 		current->task_state_change = _THIS_IP_;			 \
176 	} while (0)
177 
178 # define debug_rtlock_wait_restore_state()				\
179 	do {								 \
180 		current->task_state_change = current->saved_state_change;\
181 	} while (0)
182 
183 #else
184 # define debug_normal_state_change(cond)	do { } while (0)
185 # define debug_special_state_change(cond)	do { } while (0)
186 # define debug_rtlock_wait_set_state()		do { } while (0)
187 # define debug_rtlock_wait_restore_state()	do { } while (0)
188 #endif
189 
190 #define trace_set_current_state(state_value)                     \
191 	do {                                                     \
192 		if (tracepoint_enabled(sched_set_state_tp))      \
193 			__trace_set_current_state(state_value); \
194 	} while (0)
195 
196 /*
197  * set_current_state() includes a barrier so that the write of current->__state
198  * is correctly serialised wrt the caller's subsequent test of whether to
199  * actually sleep:
200  *
201  *   for (;;) {
202  *	set_current_state(TASK_UNINTERRUPTIBLE);
203  *	if (CONDITION)
204  *	   break;
205  *
206  *	schedule();
207  *   }
208  *   __set_current_state(TASK_RUNNING);
209  *
210  * If the caller does not need such serialisation (because, for instance, the
211  * CONDITION test and condition change and wakeup are under the same lock) then
212  * use __set_current_state().
213  *
214  * The above is typically ordered against the wakeup, which does:
215  *
216  *   CONDITION = 1;
217  *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
218  *
219  * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
220  * accessing p->__state.
221  *
222  * Wakeup will do: if (@state & p->__state) p->__state = TASK_RUNNING, that is,
223  * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
224  * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
225  *
226  * However, with slightly different timing the wakeup TASK_RUNNING store can
227  * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
228  * a problem either because that will result in one extra go around the loop
229  * and our @cond test will save the day.
230  *
231  * Also see the comments of try_to_wake_up().
232  */
233 #define __set_current_state(state_value)				\
234 	do {								\
235 		debug_normal_state_change((state_value));		\
236 		trace_set_current_state(state_value);			\
237 		WRITE_ONCE(current->__state, (state_value));		\
238 	} while (0)
239 
240 #define set_current_state(state_value)					\
241 	do {								\
242 		debug_normal_state_change((state_value));		\
243 		trace_set_current_state(state_value);			\
244 		smp_store_mb(current->__state, (state_value));		\
245 	} while (0)
246 
247 /*
248  * set_special_state() should be used for those states when the blocking task
249  * can not use the regular condition based wait-loop. In that case we must
250  * serialize against wakeups such that any possible in-flight TASK_RUNNING
251  * stores will not collide with our state change.
252  */
253 #define set_special_state(state_value)					\
254 	do {								\
255 		unsigned long flags; /* may shadow */			\
256 									\
257 		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
258 		debug_special_state_change((state_value));		\
259 		trace_set_current_state(state_value);			\
260 		WRITE_ONCE(current->__state, (state_value));		\
261 		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
262 	} while (0)
263 
264 /*
265  * PREEMPT_RT specific variants for "sleeping" spin/rwlocks
266  *
267  * RT's spin/rwlock substitutions are state preserving. The state of the
268  * task when blocking on the lock is saved in task_struct::saved_state and
269  * restored after the lock has been acquired.  These operations are
270  * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
271  * lock related wakeups while the task is blocked on the lock are
272  * redirected to operate on task_struct::saved_state to ensure that these
273  * are not dropped. On restore task_struct::saved_state is set to
274  * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
275  *
276  * The lock operation looks like this:
277  *
278  *	current_save_and_set_rtlock_wait_state();
279  *	for (;;) {
280  *		if (try_lock())
281  *			break;
282  *		raw_spin_unlock_irq(&lock->wait_lock);
283  *		schedule_rtlock();
284  *		raw_spin_lock_irq(&lock->wait_lock);
285  *		set_current_state(TASK_RTLOCK_WAIT);
286  *	}
287  *	current_restore_rtlock_saved_state();
288  */
289 #define current_save_and_set_rtlock_wait_state()			\
290 	do {								\
291 		lockdep_assert_irqs_disabled();				\
292 		raw_spin_lock(&current->pi_lock);			\
293 		current->saved_state = current->__state;		\
294 		debug_rtlock_wait_set_state();				\
295 		trace_set_current_state(TASK_RTLOCK_WAIT);		\
296 		WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT);		\
297 		raw_spin_unlock(&current->pi_lock);			\
298 	} while (0);
299 
300 #define current_restore_rtlock_saved_state()				\
301 	do {								\
302 		lockdep_assert_irqs_disabled();				\
303 		raw_spin_lock(&current->pi_lock);			\
304 		debug_rtlock_wait_restore_state();			\
305 		trace_set_current_state(current->saved_state);		\
306 		WRITE_ONCE(current->__state, current->saved_state);	\
307 		current->saved_state = TASK_RUNNING;			\
308 		raw_spin_unlock(&current->pi_lock);			\
309 	} while (0);
310 
311 #define get_current_state()	READ_ONCE(current->__state)
312 
313 /*
314  * Define the task command name length as enum, then it can be visible to
315  * BPF programs.
316  */
317 enum {
318 	TASK_COMM_LEN = 16,
319 };
320 
321 extern void sched_tick(void);
322 
323 #define	MAX_SCHEDULE_TIMEOUT		LONG_MAX
324 
325 extern long schedule_timeout(long timeout);
326 extern long schedule_timeout_interruptible(long timeout);
327 extern long schedule_timeout_killable(long timeout);
328 extern long schedule_timeout_uninterruptible(long timeout);
329 extern long schedule_timeout_idle(long timeout);
330 asmlinkage void schedule(void);
331 extern void schedule_preempt_disabled(void);
332 asmlinkage void preempt_schedule_irq(void);
333 #ifdef CONFIG_PREEMPT_RT
334  extern void schedule_rtlock(void);
335 #endif
336 
337 extern int __must_check io_schedule_prepare(void);
338 extern void io_schedule_finish(int token);
339 extern long io_schedule_timeout(long timeout);
340 extern void io_schedule(void);
341 
342 /* wrapper function to trace from this header file */
343 DECLARE_TRACEPOINT(sched_set_state_tp);
344 extern void __trace_set_current_state(int state_value);
345 
346 /**
347  * struct prev_cputime - snapshot of system and user cputime
348  * @utime: time spent in user mode
349  * @stime: time spent in system mode
350  * @lock: protects the above two fields
351  *
352  * Stores previous user/system time values such that we can guarantee
353  * monotonicity.
354  */
355 struct prev_cputime {
356 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
357 	u64				utime;
358 	u64				stime;
359 	raw_spinlock_t			lock;
360 #endif
361 };
362 
363 enum vtime_state {
364 	/* Task is sleeping or running in a CPU with VTIME inactive: */
365 	VTIME_INACTIVE = 0,
366 	/* Task is idle */
367 	VTIME_IDLE,
368 	/* Task runs in kernelspace in a CPU with VTIME active: */
369 	VTIME_SYS,
370 	/* Task runs in userspace in a CPU with VTIME active: */
371 	VTIME_USER,
372 	/* Task runs as guests in a CPU with VTIME active: */
373 	VTIME_GUEST,
374 };
375 
376 struct vtime {
377 	seqcount_t		seqcount;
378 	unsigned long long	starttime;
379 	enum vtime_state	state;
380 	unsigned int		cpu;
381 	u64			utime;
382 	u64			stime;
383 	u64			gtime;
384 };
385 
386 /*
387  * Utilization clamp constraints.
388  * @UCLAMP_MIN:	Minimum utilization
389  * @UCLAMP_MAX:	Maximum utilization
390  * @UCLAMP_CNT:	Utilization clamp constraints count
391  */
392 enum uclamp_id {
393 	UCLAMP_MIN = 0,
394 	UCLAMP_MAX,
395 	UCLAMP_CNT
396 };
397 
398 #ifdef CONFIG_SMP
399 extern struct root_domain def_root_domain;
400 extern struct mutex sched_domains_mutex;
401 extern void sched_domains_mutex_lock(void);
402 extern void sched_domains_mutex_unlock(void);
403 #else
404 static inline void sched_domains_mutex_lock(void) { }
405 static inline void sched_domains_mutex_unlock(void) { }
406 #endif
407 
408 struct sched_param {
409 	int sched_priority;
410 };
411 
412 struct sched_info {
413 #ifdef CONFIG_SCHED_INFO
414 	/* Cumulative counters: */
415 
416 	/* # of times we have run on this CPU: */
417 	unsigned long			pcount;
418 
419 	/* Time spent waiting on a runqueue: */
420 	unsigned long long		run_delay;
421 
422 	/* Max time spent waiting on a runqueue: */
423 	unsigned long long		max_run_delay;
424 
425 	/* Min time spent waiting on a runqueue: */
426 	unsigned long long		min_run_delay;
427 
428 	/* Timestamps: */
429 
430 	/* When did we last run on a CPU? */
431 	unsigned long long		last_arrival;
432 
433 	/* When were we last queued to run? */
434 	unsigned long long		last_queued;
435 
436 #endif /* CONFIG_SCHED_INFO */
437 };
438 
439 /*
440  * Integer metrics need fixed point arithmetic, e.g., sched/fair
441  * has a few: load, load_avg, util_avg, freq, and capacity.
442  *
443  * We define a basic fixed point arithmetic range, and then formalize
444  * all these metrics based on that basic range.
445  */
446 # define SCHED_FIXEDPOINT_SHIFT		10
447 # define SCHED_FIXEDPOINT_SCALE		(1L << SCHED_FIXEDPOINT_SHIFT)
448 
449 /* Increase resolution of cpu_capacity calculations */
450 # define SCHED_CAPACITY_SHIFT		SCHED_FIXEDPOINT_SHIFT
451 # define SCHED_CAPACITY_SCALE		(1L << SCHED_CAPACITY_SHIFT)
452 
453 struct load_weight {
454 	unsigned long			weight;
455 	u32				inv_weight;
456 };
457 
458 /*
459  * The load/runnable/util_avg accumulates an infinite geometric series
460  * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
461  *
462  * [load_avg definition]
463  *
464  *   load_avg = runnable% * scale_load_down(load)
465  *
466  * [runnable_avg definition]
467  *
468  *   runnable_avg = runnable% * SCHED_CAPACITY_SCALE
469  *
470  * [util_avg definition]
471  *
472  *   util_avg = running% * SCHED_CAPACITY_SCALE
473  *
474  * where runnable% is the time ratio that a sched_entity is runnable and
475  * running% the time ratio that a sched_entity is running.
476  *
477  * For cfs_rq, they are the aggregated values of all runnable and blocked
478  * sched_entities.
479  *
480  * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
481  * capacity scaling. The scaling is done through the rq_clock_pelt that is used
482  * for computing those signals (see update_rq_clock_pelt())
483  *
484  * N.B., the above ratios (runnable% and running%) themselves are in the
485  * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
486  * to as large a range as necessary. This is for example reflected by
487  * util_avg's SCHED_CAPACITY_SCALE.
488  *
489  * [Overflow issue]
490  *
491  * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
492  * with the highest load (=88761), always runnable on a single cfs_rq,
493  * and should not overflow as the number already hits PID_MAX_LIMIT.
494  *
495  * For all other cases (including 32-bit kernels), struct load_weight's
496  * weight will overflow first before we do, because:
497  *
498  *    Max(load_avg) <= Max(load.weight)
499  *
500  * Then it is the load_weight's responsibility to consider overflow
501  * issues.
502  */
503 struct sched_avg {
504 	u64				last_update_time;
505 	u64				load_sum;
506 	u64				runnable_sum;
507 	u32				util_sum;
508 	u32				period_contrib;
509 	unsigned long			load_avg;
510 	unsigned long			runnable_avg;
511 	unsigned long			util_avg;
512 	unsigned int			util_est;
513 } ____cacheline_aligned;
514 
515 /*
516  * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
517  * updates. When a task is dequeued, its util_est should not be updated if its
518  * util_avg has not been updated in the meantime.
519  * This information is mapped into the MSB bit of util_est at dequeue time.
520  * Since max value of util_est for a task is 1024 (PELT util_avg for a task)
521  * it is safe to use MSB.
522  */
523 #define UTIL_EST_WEIGHT_SHIFT		2
524 #define UTIL_AVG_UNCHANGED		0x80000000
525 
526 struct sched_statistics {
527 #ifdef CONFIG_SCHEDSTATS
528 	u64				wait_start;
529 	u64				wait_max;
530 	u64				wait_count;
531 	u64				wait_sum;
532 	u64				iowait_count;
533 	u64				iowait_sum;
534 
535 	u64				sleep_start;
536 	u64				sleep_max;
537 	s64				sum_sleep_runtime;
538 
539 	u64				block_start;
540 	u64				block_max;
541 	s64				sum_block_runtime;
542 
543 	s64				exec_max;
544 	u64				slice_max;
545 
546 	u64				nr_migrations_cold;
547 	u64				nr_failed_migrations_affine;
548 	u64				nr_failed_migrations_running;
549 	u64				nr_failed_migrations_hot;
550 	u64				nr_forced_migrations;
551 #ifdef CONFIG_NUMA_BALANCING
552 	u64				numa_task_migrated;
553 	u64				numa_task_swapped;
554 #endif
555 
556 	u64				nr_wakeups;
557 	u64				nr_wakeups_sync;
558 	u64				nr_wakeups_migrate;
559 	u64				nr_wakeups_local;
560 	u64				nr_wakeups_remote;
561 	u64				nr_wakeups_affine;
562 	u64				nr_wakeups_affine_attempts;
563 	u64				nr_wakeups_passive;
564 	u64				nr_wakeups_idle;
565 
566 #ifdef CONFIG_SCHED_CORE
567 	u64				core_forceidle_sum;
568 #endif
569 #endif /* CONFIG_SCHEDSTATS */
570 } ____cacheline_aligned;
571 
572 struct sched_entity {
573 	/* For load-balancing: */
574 	struct load_weight		load;
575 	struct rb_node			run_node;
576 	u64				deadline;
577 	u64				min_vruntime;
578 	u64				min_slice;
579 
580 	struct list_head		group_node;
581 	unsigned char			on_rq;
582 	unsigned char			sched_delayed;
583 	unsigned char			rel_deadline;
584 	unsigned char			custom_slice;
585 					/* hole */
586 
587 	u64				exec_start;
588 	u64				sum_exec_runtime;
589 	u64				prev_sum_exec_runtime;
590 	u64				vruntime;
591 	s64				vlag;
592 	u64				slice;
593 
594 	u64				nr_migrations;
595 
596 #ifdef CONFIG_FAIR_GROUP_SCHED
597 	int				depth;
598 	struct sched_entity		*parent;
599 	/* rq on which this entity is (to be) queued: */
600 	struct cfs_rq			*cfs_rq;
601 	/* rq "owned" by this entity/group: */
602 	struct cfs_rq			*my_q;
603 	/* cached value of my_q->h_nr_running */
604 	unsigned long			runnable_weight;
605 #endif
606 
607 #ifdef CONFIG_SMP
608 	/*
609 	 * Per entity load average tracking.
610 	 *
611 	 * Put into separate cache line so it does not
612 	 * collide with read-mostly values above.
613 	 */
614 	struct sched_avg		avg;
615 #endif
616 };
617 
618 struct sched_rt_entity {
619 	struct list_head		run_list;
620 	unsigned long			timeout;
621 	unsigned long			watchdog_stamp;
622 	unsigned int			time_slice;
623 	unsigned short			on_rq;
624 	unsigned short			on_list;
625 
626 	struct sched_rt_entity		*back;
627 #ifdef CONFIG_RT_GROUP_SCHED
628 	struct sched_rt_entity		*parent;
629 	/* rq on which this entity is (to be) queued: */
630 	struct rt_rq			*rt_rq;
631 	/* rq "owned" by this entity/group: */
632 	struct rt_rq			*my_q;
633 #endif
634 } __randomize_layout;
635 
636 typedef bool (*dl_server_has_tasks_f)(struct sched_dl_entity *);
637 typedef struct task_struct *(*dl_server_pick_f)(struct sched_dl_entity *);
638 
639 struct sched_dl_entity {
640 	struct rb_node			rb_node;
641 
642 	/*
643 	 * Original scheduling parameters. Copied here from sched_attr
644 	 * during sched_setattr(), they will remain the same until
645 	 * the next sched_setattr().
646 	 */
647 	u64				dl_runtime;	/* Maximum runtime for each instance	*/
648 	u64				dl_deadline;	/* Relative deadline of each instance	*/
649 	u64				dl_period;	/* Separation of two instances (period) */
650 	u64				dl_bw;		/* dl_runtime / dl_period		*/
651 	u64				dl_density;	/* dl_runtime / dl_deadline		*/
652 
653 	/*
654 	 * Actual scheduling parameters. Initialized with the values above,
655 	 * they are continuously updated during task execution. Note that
656 	 * the remaining runtime could be < 0 in case we are in overrun.
657 	 */
658 	s64				runtime;	/* Remaining runtime for this instance	*/
659 	u64				deadline;	/* Absolute deadline for this instance	*/
660 	unsigned int			flags;		/* Specifying the scheduler behaviour	*/
661 
662 	/*
663 	 * Some bool flags:
664 	 *
665 	 * @dl_throttled tells if we exhausted the runtime. If so, the
666 	 * task has to wait for a replenishment to be performed at the
667 	 * next firing of dl_timer.
668 	 *
669 	 * @dl_yielded tells if task gave up the CPU before consuming
670 	 * all its available runtime during the last job.
671 	 *
672 	 * @dl_non_contending tells if the task is inactive while still
673 	 * contributing to the active utilization. In other words, it
674 	 * indicates if the inactive timer has been armed and its handler
675 	 * has not been executed yet. This flag is useful to avoid race
676 	 * conditions between the inactive timer handler and the wakeup
677 	 * code.
678 	 *
679 	 * @dl_overrun tells if the task asked to be informed about runtime
680 	 * overruns.
681 	 *
682 	 * @dl_server tells if this is a server entity.
683 	 *
684 	 * @dl_defer tells if this is a deferred or regular server. For
685 	 * now only defer server exists.
686 	 *
687 	 * @dl_defer_armed tells if the deferrable server is waiting
688 	 * for the replenishment timer to activate it.
689 	 *
690 	 * @dl_server_active tells if the dlserver is active(started).
691 	 * dlserver is started on first cfs enqueue on an idle runqueue
692 	 * and is stopped when a dequeue results in 0 cfs tasks on the
693 	 * runqueue. In other words, dlserver is active only when cpu's
694 	 * runqueue has atleast one cfs task.
695 	 *
696 	 * @dl_defer_running tells if the deferrable server is actually
697 	 * running, skipping the defer phase.
698 	 */
699 	unsigned int			dl_throttled      : 1;
700 	unsigned int			dl_yielded        : 1;
701 	unsigned int			dl_non_contending : 1;
702 	unsigned int			dl_overrun	  : 1;
703 	unsigned int			dl_server         : 1;
704 	unsigned int			dl_server_active  : 1;
705 	unsigned int			dl_defer	  : 1;
706 	unsigned int			dl_defer_armed	  : 1;
707 	unsigned int			dl_defer_running  : 1;
708 
709 	/*
710 	 * Bandwidth enforcement timer. Each -deadline task has its
711 	 * own bandwidth to be enforced, thus we need one timer per task.
712 	 */
713 	struct hrtimer			dl_timer;
714 
715 	/*
716 	 * Inactive timer, responsible for decreasing the active utilization
717 	 * at the "0-lag time". When a -deadline task blocks, it contributes
718 	 * to GRUB's active utilization until the "0-lag time", hence a
719 	 * timer is needed to decrease the active utilization at the correct
720 	 * time.
721 	 */
722 	struct hrtimer			inactive_timer;
723 
724 	/*
725 	 * Bits for DL-server functionality. Also see the comment near
726 	 * dl_server_update().
727 	 *
728 	 * @rq the runqueue this server is for
729 	 *
730 	 * @server_has_tasks() returns true if @server_pick return a
731 	 * runnable task.
732 	 */
733 	struct rq			*rq;
734 	dl_server_has_tasks_f		server_has_tasks;
735 	dl_server_pick_f		server_pick_task;
736 
737 #ifdef CONFIG_RT_MUTEXES
738 	/*
739 	 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
740 	 * pi_se points to the donor, otherwise points to the dl_se it belongs
741 	 * to (the original one/itself).
742 	 */
743 	struct sched_dl_entity *pi_se;
744 #endif
745 };
746 
747 #ifdef CONFIG_UCLAMP_TASK
748 /* Number of utilization clamp buckets (shorter alias) */
749 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
750 
751 /*
752  * Utilization clamp for a scheduling entity
753  * @value:		clamp value "assigned" to a se
754  * @bucket_id:		bucket index corresponding to the "assigned" value
755  * @active:		the se is currently refcounted in a rq's bucket
756  * @user_defined:	the requested clamp value comes from user-space
757  *
758  * The bucket_id is the index of the clamp bucket matching the clamp value
759  * which is pre-computed and stored to avoid expensive integer divisions from
760  * the fast path.
761  *
762  * The active bit is set whenever a task has got an "effective" value assigned,
763  * which can be different from the clamp value "requested" from user-space.
764  * This allows to know a task is refcounted in the rq's bucket corresponding
765  * to the "effective" bucket_id.
766  *
767  * The user_defined bit is set whenever a task has got a task-specific clamp
768  * value requested from userspace, i.e. the system defaults apply to this task
769  * just as a restriction. This allows to relax default clamps when a less
770  * restrictive task-specific value has been requested, thus allowing to
771  * implement a "nice" semantic. For example, a task running with a 20%
772  * default boost can still drop its own boosting to 0%.
773  */
774 struct uclamp_se {
775 	unsigned int value		: bits_per(SCHED_CAPACITY_SCALE);
776 	unsigned int bucket_id		: bits_per(UCLAMP_BUCKETS);
777 	unsigned int active		: 1;
778 	unsigned int user_defined	: 1;
779 };
780 #endif /* CONFIG_UCLAMP_TASK */
781 
782 union rcu_special {
783 	struct {
784 		u8			blocked;
785 		u8			need_qs;
786 		u8			exp_hint; /* Hint for performance. */
787 		u8			need_mb; /* Readers need smp_mb(). */
788 	} b; /* Bits. */
789 	u32 s; /* Set of bits. */
790 };
791 
792 enum perf_event_task_context {
793 	perf_invalid_context = -1,
794 	perf_hw_context = 0,
795 	perf_sw_context,
796 	perf_nr_task_contexts,
797 };
798 
799 /*
800  * Number of contexts where an event can trigger:
801  *      task, softirq, hardirq, nmi.
802  */
803 #define PERF_NR_CONTEXTS	4
804 
805 struct wake_q_node {
806 	struct wake_q_node *next;
807 };
808 
809 struct kmap_ctrl {
810 #ifdef CONFIG_KMAP_LOCAL
811 	int				idx;
812 	pte_t				pteval[KM_MAX_IDX];
813 #endif
814 };
815 
816 struct task_struct {
817 #ifdef CONFIG_THREAD_INFO_IN_TASK
818 	/*
819 	 * For reasons of header soup (see current_thread_info()), this
820 	 * must be the first element of task_struct.
821 	 */
822 	struct thread_info		thread_info;
823 #endif
824 	unsigned int			__state;
825 
826 	/* saved state for "spinlock sleepers" */
827 	unsigned int			saved_state;
828 
829 	/*
830 	 * This begins the randomizable portion of task_struct. Only
831 	 * scheduling-critical items should be added above here.
832 	 */
833 	randomized_struct_fields_start
834 
835 	void				*stack;
836 	refcount_t			usage;
837 	/* Per task flags (PF_*), defined further below: */
838 	unsigned int			flags;
839 	unsigned int			ptrace;
840 
841 #ifdef CONFIG_MEM_ALLOC_PROFILING
842 	struct alloc_tag		*alloc_tag;
843 #endif
844 
845 #ifdef CONFIG_SMP
846 	int				on_cpu;
847 	struct __call_single_node	wake_entry;
848 	unsigned int			wakee_flips;
849 	unsigned long			wakee_flip_decay_ts;
850 	struct task_struct		*last_wakee;
851 
852 	/*
853 	 * recent_used_cpu is initially set as the last CPU used by a task
854 	 * that wakes affine another task. Waker/wakee relationships can
855 	 * push tasks around a CPU where each wakeup moves to the next one.
856 	 * Tracking a recently used CPU allows a quick search for a recently
857 	 * used CPU that may be idle.
858 	 */
859 	int				recent_used_cpu;
860 	int				wake_cpu;
861 #endif
862 	int				on_rq;
863 
864 	int				prio;
865 	int				static_prio;
866 	int				normal_prio;
867 	unsigned int			rt_priority;
868 
869 	struct sched_entity		se;
870 	struct sched_rt_entity		rt;
871 	struct sched_dl_entity		dl;
872 	struct sched_dl_entity		*dl_server;
873 #ifdef CONFIG_SCHED_CLASS_EXT
874 	struct sched_ext_entity		scx;
875 #endif
876 	const struct sched_class	*sched_class;
877 
878 #ifdef CONFIG_SCHED_CORE
879 	struct rb_node			core_node;
880 	unsigned long			core_cookie;
881 	unsigned int			core_occupation;
882 #endif
883 
884 #ifdef CONFIG_CGROUP_SCHED
885 	struct task_group		*sched_task_group;
886 #endif
887 
888 
889 #ifdef CONFIG_UCLAMP_TASK
890 	/*
891 	 * Clamp values requested for a scheduling entity.
892 	 * Must be updated with task_rq_lock() held.
893 	 */
894 	struct uclamp_se		uclamp_req[UCLAMP_CNT];
895 	/*
896 	 * Effective clamp values used for a scheduling entity.
897 	 * Must be updated with task_rq_lock() held.
898 	 */
899 	struct uclamp_se		uclamp[UCLAMP_CNT];
900 #endif
901 
902 	struct sched_statistics         stats;
903 
904 #ifdef CONFIG_PREEMPT_NOTIFIERS
905 	/* List of struct preempt_notifier: */
906 	struct hlist_head		preempt_notifiers;
907 #endif
908 
909 #ifdef CONFIG_BLK_DEV_IO_TRACE
910 	unsigned int			btrace_seq;
911 #endif
912 
913 	unsigned int			policy;
914 	unsigned long			max_allowed_capacity;
915 	int				nr_cpus_allowed;
916 	const cpumask_t			*cpus_ptr;
917 	cpumask_t			*user_cpus_ptr;
918 	cpumask_t			cpus_mask;
919 	void				*migration_pending;
920 #ifdef CONFIG_SMP
921 	unsigned short			migration_disabled;
922 #endif
923 	unsigned short			migration_flags;
924 
925 #ifdef CONFIG_PREEMPT_RCU
926 	int				rcu_read_lock_nesting;
927 	union rcu_special		rcu_read_unlock_special;
928 	struct list_head		rcu_node_entry;
929 	struct rcu_node			*rcu_blocked_node;
930 #endif /* #ifdef CONFIG_PREEMPT_RCU */
931 
932 #ifdef CONFIG_TASKS_RCU
933 	unsigned long			rcu_tasks_nvcsw;
934 	u8				rcu_tasks_holdout;
935 	u8				rcu_tasks_idx;
936 	int				rcu_tasks_idle_cpu;
937 	struct list_head		rcu_tasks_holdout_list;
938 	int				rcu_tasks_exit_cpu;
939 	struct list_head		rcu_tasks_exit_list;
940 #endif /* #ifdef CONFIG_TASKS_RCU */
941 
942 #ifdef CONFIG_TASKS_TRACE_RCU
943 	int				trc_reader_nesting;
944 	int				trc_ipi_to_cpu;
945 	union rcu_special		trc_reader_special;
946 	struct list_head		trc_holdout_list;
947 	struct list_head		trc_blkd_node;
948 	int				trc_blkd_cpu;
949 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
950 
951 	struct sched_info		sched_info;
952 
953 	struct list_head		tasks;
954 #ifdef CONFIG_SMP
955 	struct plist_node		pushable_tasks;
956 	struct rb_node			pushable_dl_tasks;
957 #endif
958 
959 	struct mm_struct		*mm;
960 	struct mm_struct		*active_mm;
961 	struct address_space		*faults_disabled_mapping;
962 
963 	int				exit_state;
964 	int				exit_code;
965 	int				exit_signal;
966 	/* The signal sent when the parent dies: */
967 	int				pdeath_signal;
968 	/* JOBCTL_*, siglock protected: */
969 	unsigned long			jobctl;
970 
971 	/* Used for emulating ABI behavior of previous Linux versions: */
972 	unsigned int			personality;
973 
974 	/* Scheduler bits, serialized by scheduler locks: */
975 	unsigned			sched_reset_on_fork:1;
976 	unsigned			sched_contributes_to_load:1;
977 	unsigned			sched_migrated:1;
978 	unsigned			sched_task_hot:1;
979 
980 	/* Force alignment to the next boundary: */
981 	unsigned			:0;
982 
983 	/* Unserialized, strictly 'current' */
984 
985 	/*
986 	 * This field must not be in the scheduler word above due to wakelist
987 	 * queueing no longer being serialized by p->on_cpu. However:
988 	 *
989 	 * p->XXX = X;			ttwu()
990 	 * schedule()			  if (p->on_rq && ..) // false
991 	 *   smp_mb__after_spinlock();	  if (smp_load_acquire(&p->on_cpu) && //true
992 	 *   deactivate_task()		      ttwu_queue_wakelist())
993 	 *     p->on_rq = 0;			p->sched_remote_wakeup = Y;
994 	 *
995 	 * guarantees all stores of 'current' are visible before
996 	 * ->sched_remote_wakeup gets used, so it can be in this word.
997 	 */
998 	unsigned			sched_remote_wakeup:1;
999 #ifdef CONFIG_RT_MUTEXES
1000 	unsigned			sched_rt_mutex:1;
1001 #endif
1002 
1003 	/* Bit to tell TOMOYO we're in execve(): */
1004 	unsigned			in_execve:1;
1005 	unsigned			in_iowait:1;
1006 #ifndef TIF_RESTORE_SIGMASK
1007 	unsigned			restore_sigmask:1;
1008 #endif
1009 #ifdef CONFIG_MEMCG_V1
1010 	unsigned			in_user_fault:1;
1011 #endif
1012 #ifdef CONFIG_LRU_GEN
1013 	/* whether the LRU algorithm may apply to this access */
1014 	unsigned			in_lru_fault:1;
1015 #endif
1016 #ifdef CONFIG_COMPAT_BRK
1017 	unsigned			brk_randomized:1;
1018 #endif
1019 #ifdef CONFIG_CGROUPS
1020 	/* disallow userland-initiated cgroup migration */
1021 	unsigned			no_cgroup_migration:1;
1022 	/* task is frozen/stopped (used by the cgroup freezer) */
1023 	unsigned			frozen:1;
1024 #endif
1025 #ifdef CONFIG_BLK_CGROUP
1026 	unsigned			use_memdelay:1;
1027 #endif
1028 #ifdef CONFIG_PSI
1029 	/* Stalled due to lack of memory */
1030 	unsigned			in_memstall:1;
1031 #endif
1032 #ifdef CONFIG_PAGE_OWNER
1033 	/* Used by page_owner=on to detect recursion in page tracking. */
1034 	unsigned			in_page_owner:1;
1035 #endif
1036 #ifdef CONFIG_EVENTFD
1037 	/* Recursion prevention for eventfd_signal() */
1038 	unsigned			in_eventfd:1;
1039 #endif
1040 #ifdef CONFIG_ARCH_HAS_CPU_PASID
1041 	unsigned			pasid_activated:1;
1042 #endif
1043 #ifdef CONFIG_X86_BUS_LOCK_DETECT
1044 	unsigned			reported_split_lock:1;
1045 #endif
1046 #ifdef CONFIG_TASK_DELAY_ACCT
1047 	/* delay due to memory thrashing */
1048 	unsigned                        in_thrashing:1;
1049 #endif
1050 	unsigned			in_nf_duplicate:1;
1051 #ifdef CONFIG_PREEMPT_RT
1052 	struct netdev_xmit		net_xmit;
1053 #endif
1054 	unsigned long			atomic_flags; /* Flags requiring atomic access. */
1055 
1056 	struct restart_block		restart_block;
1057 
1058 	pid_t				pid;
1059 	pid_t				tgid;
1060 
1061 #ifdef CONFIG_STACKPROTECTOR
1062 	/* Canary value for the -fstack-protector GCC feature: */
1063 	unsigned long			stack_canary;
1064 #endif
1065 	/*
1066 	 * Pointers to the (original) parent process, youngest child, younger sibling,
1067 	 * older sibling, respectively.  (p->father can be replaced with
1068 	 * p->real_parent->pid)
1069 	 */
1070 
1071 	/* Real parent process: */
1072 	struct task_struct __rcu	*real_parent;
1073 
1074 	/* Recipient of SIGCHLD, wait4() reports: */
1075 	struct task_struct __rcu	*parent;
1076 
1077 	/*
1078 	 * Children/sibling form the list of natural children:
1079 	 */
1080 	struct list_head		children;
1081 	struct list_head		sibling;
1082 	struct task_struct		*group_leader;
1083 
1084 	/*
1085 	 * 'ptraced' is the list of tasks this task is using ptrace() on.
1086 	 *
1087 	 * This includes both natural children and PTRACE_ATTACH targets.
1088 	 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
1089 	 */
1090 	struct list_head		ptraced;
1091 	struct list_head		ptrace_entry;
1092 
1093 	/* PID/PID hash table linkage. */
1094 	struct pid			*thread_pid;
1095 	struct hlist_node		pid_links[PIDTYPE_MAX];
1096 	struct list_head		thread_node;
1097 
1098 	struct completion		*vfork_done;
1099 
1100 	/* CLONE_CHILD_SETTID: */
1101 	int __user			*set_child_tid;
1102 
1103 	/* CLONE_CHILD_CLEARTID: */
1104 	int __user			*clear_child_tid;
1105 
1106 	/* PF_KTHREAD | PF_IO_WORKER */
1107 	void				*worker_private;
1108 
1109 	u64				utime;
1110 	u64				stime;
1111 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1112 	u64				utimescaled;
1113 	u64				stimescaled;
1114 #endif
1115 	u64				gtime;
1116 	struct prev_cputime		prev_cputime;
1117 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1118 	struct vtime			vtime;
1119 #endif
1120 
1121 #ifdef CONFIG_NO_HZ_FULL
1122 	atomic_t			tick_dep_mask;
1123 #endif
1124 	/* Context switch counts: */
1125 	unsigned long			nvcsw;
1126 	unsigned long			nivcsw;
1127 
1128 	/* Monotonic time in nsecs: */
1129 	u64				start_time;
1130 
1131 	/* Boot based time in nsecs: */
1132 	u64				start_boottime;
1133 
1134 	/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
1135 	unsigned long			min_flt;
1136 	unsigned long			maj_flt;
1137 
1138 	/* Empty if CONFIG_POSIX_CPUTIMERS=n */
1139 	struct posix_cputimers		posix_cputimers;
1140 
1141 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1142 	struct posix_cputimers_work	posix_cputimers_work;
1143 #endif
1144 
1145 	/* Process credentials: */
1146 
1147 	/* Tracer's credentials at attach: */
1148 	const struct cred __rcu		*ptracer_cred;
1149 
1150 	/* Objective and real subjective task credentials (COW): */
1151 	const struct cred __rcu		*real_cred;
1152 
1153 	/* Effective (overridable) subjective task credentials (COW): */
1154 	const struct cred __rcu		*cred;
1155 
1156 #ifdef CONFIG_KEYS
1157 	/* Cached requested key. */
1158 	struct key			*cached_requested_key;
1159 #endif
1160 
1161 	/*
1162 	 * executable name, excluding path.
1163 	 *
1164 	 * - normally initialized begin_new_exec()
1165 	 * - set it with set_task_comm()
1166 	 *   - strscpy_pad() to ensure it is always NUL-terminated and
1167 	 *     zero-padded
1168 	 *   - task_lock() to ensure the operation is atomic and the name is
1169 	 *     fully updated.
1170 	 */
1171 	char				comm[TASK_COMM_LEN];
1172 
1173 	struct nameidata		*nameidata;
1174 
1175 #ifdef CONFIG_SYSVIPC
1176 	struct sysv_sem			sysvsem;
1177 	struct sysv_shm			sysvshm;
1178 #endif
1179 #ifdef CONFIG_DETECT_HUNG_TASK
1180 	unsigned long			last_switch_count;
1181 	unsigned long			last_switch_time;
1182 #endif
1183 	/* Filesystem information: */
1184 	struct fs_struct		*fs;
1185 
1186 	/* Open file information: */
1187 	struct files_struct		*files;
1188 
1189 #ifdef CONFIG_IO_URING
1190 	struct io_uring_task		*io_uring;
1191 #endif
1192 
1193 	/* Namespaces: */
1194 	struct nsproxy			*nsproxy;
1195 
1196 	/* Signal handlers: */
1197 	struct signal_struct		*signal;
1198 	struct sighand_struct __rcu		*sighand;
1199 	sigset_t			blocked;
1200 	sigset_t			real_blocked;
1201 	/* Restored if set_restore_sigmask() was used: */
1202 	sigset_t			saved_sigmask;
1203 	struct sigpending		pending;
1204 	unsigned long			sas_ss_sp;
1205 	size_t				sas_ss_size;
1206 	unsigned int			sas_ss_flags;
1207 
1208 	struct callback_head		*task_works;
1209 
1210 #ifdef CONFIG_AUDIT
1211 #ifdef CONFIG_AUDITSYSCALL
1212 	struct audit_context		*audit_context;
1213 #endif
1214 	kuid_t				loginuid;
1215 	unsigned int			sessionid;
1216 #endif
1217 	struct seccomp			seccomp;
1218 	struct syscall_user_dispatch	syscall_dispatch;
1219 
1220 	/* Thread group tracking: */
1221 	u64				parent_exec_id;
1222 	u64				self_exec_id;
1223 
1224 	/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1225 	spinlock_t			alloc_lock;
1226 
1227 	/* Protection of the PI data structures: */
1228 	raw_spinlock_t			pi_lock;
1229 
1230 	struct wake_q_node		wake_q;
1231 
1232 #ifdef CONFIG_RT_MUTEXES
1233 	/* PI waiters blocked on a rt_mutex held by this task: */
1234 	struct rb_root_cached		pi_waiters;
1235 	/* Updated under owner's pi_lock and rq lock */
1236 	struct task_struct		*pi_top_task;
1237 	/* Deadlock detection and priority inheritance handling: */
1238 	struct rt_mutex_waiter		*pi_blocked_on;
1239 #endif
1240 
1241 #ifdef CONFIG_DEBUG_MUTEXES
1242 	/* Mutex deadlock detection: */
1243 	struct mutex_waiter		*blocked_on;
1244 #endif
1245 
1246 #ifdef CONFIG_DETECT_HUNG_TASK_BLOCKER
1247 	/*
1248 	 * Encoded lock address causing task block (lower 2 bits = type from
1249 	 * <linux/hung_task.h>). Accessed via hung_task_*() helpers.
1250 	 */
1251 	unsigned long			blocker;
1252 #endif
1253 
1254 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1255 	int				non_block_count;
1256 #endif
1257 
1258 #ifdef CONFIG_TRACE_IRQFLAGS
1259 	struct irqtrace_events		irqtrace;
1260 	unsigned int			hardirq_threaded;
1261 	u64				hardirq_chain_key;
1262 	int				softirqs_enabled;
1263 	int				softirq_context;
1264 	int				irq_config;
1265 #endif
1266 #ifdef CONFIG_PREEMPT_RT
1267 	int				softirq_disable_cnt;
1268 #endif
1269 
1270 #ifdef CONFIG_LOCKDEP
1271 # define MAX_LOCK_DEPTH			48UL
1272 	u64				curr_chain_key;
1273 	int				lockdep_depth;
1274 	unsigned int			lockdep_recursion;
1275 	struct held_lock		held_locks[MAX_LOCK_DEPTH];
1276 #endif
1277 
1278 #if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1279 	unsigned int			in_ubsan;
1280 #endif
1281 
1282 	/* Journalling filesystem info: */
1283 	void				*journal_info;
1284 
1285 	/* Stacked block device info: */
1286 	struct bio_list			*bio_list;
1287 
1288 	/* Stack plugging: */
1289 	struct blk_plug			*plug;
1290 
1291 	/* VM state: */
1292 	struct reclaim_state		*reclaim_state;
1293 
1294 	struct io_context		*io_context;
1295 
1296 #ifdef CONFIG_COMPACTION
1297 	struct capture_control		*capture_control;
1298 #endif
1299 	/* Ptrace state: */
1300 	unsigned long			ptrace_message;
1301 	kernel_siginfo_t		*last_siginfo;
1302 
1303 	struct task_io_accounting	ioac;
1304 #ifdef CONFIG_PSI
1305 	/* Pressure stall state */
1306 	unsigned int			psi_flags;
1307 #endif
1308 #ifdef CONFIG_TASK_XACCT
1309 	/* Accumulated RSS usage: */
1310 	u64				acct_rss_mem1;
1311 	/* Accumulated virtual memory usage: */
1312 	u64				acct_vm_mem1;
1313 	/* stime + utime since last update: */
1314 	u64				acct_timexpd;
1315 #endif
1316 #ifdef CONFIG_CPUSETS
1317 	/* Protected by ->alloc_lock: */
1318 	nodemask_t			mems_allowed;
1319 	/* Sequence number to catch updates: */
1320 	seqcount_spinlock_t		mems_allowed_seq;
1321 	int				cpuset_mem_spread_rotor;
1322 #endif
1323 #ifdef CONFIG_CGROUPS
1324 	/* Control Group info protected by css_set_lock: */
1325 	struct css_set __rcu		*cgroups;
1326 	/* cg_list protected by css_set_lock and tsk->alloc_lock: */
1327 	struct list_head		cg_list;
1328 #endif
1329 #ifdef CONFIG_X86_CPU_RESCTRL
1330 	u32				closid;
1331 	u32				rmid;
1332 #endif
1333 #ifdef CONFIG_FUTEX
1334 	struct robust_list_head __user	*robust_list;
1335 #ifdef CONFIG_COMPAT
1336 	struct compat_robust_list_head __user *compat_robust_list;
1337 #endif
1338 	struct list_head		pi_state_list;
1339 	struct futex_pi_state		*pi_state_cache;
1340 	struct mutex			futex_exit_mutex;
1341 	unsigned int			futex_state;
1342 #endif
1343 #ifdef CONFIG_PERF_EVENTS
1344 	u8				perf_recursion[PERF_NR_CONTEXTS];
1345 	struct perf_event_context	*perf_event_ctxp;
1346 	struct mutex			perf_event_mutex;
1347 	struct list_head		perf_event_list;
1348 	struct perf_ctx_data __rcu	*perf_ctx_data;
1349 #endif
1350 #ifdef CONFIG_DEBUG_PREEMPT
1351 	unsigned long			preempt_disable_ip;
1352 #endif
1353 #ifdef CONFIG_NUMA
1354 	/* Protected by alloc_lock: */
1355 	struct mempolicy		*mempolicy;
1356 	short				il_prev;
1357 	u8				il_weight;
1358 	short				pref_node_fork;
1359 #endif
1360 #ifdef CONFIG_NUMA_BALANCING
1361 	int				numa_scan_seq;
1362 	unsigned int			numa_scan_period;
1363 	unsigned int			numa_scan_period_max;
1364 	int				numa_preferred_nid;
1365 	unsigned long			numa_migrate_retry;
1366 	/* Migration stamp: */
1367 	u64				node_stamp;
1368 	u64				last_task_numa_placement;
1369 	u64				last_sum_exec_runtime;
1370 	struct callback_head		numa_work;
1371 
1372 	/*
1373 	 * This pointer is only modified for current in syscall and
1374 	 * pagefault context (and for tasks being destroyed), so it can be read
1375 	 * from any of the following contexts:
1376 	 *  - RCU read-side critical section
1377 	 *  - current->numa_group from everywhere
1378 	 *  - task's runqueue locked, task not running
1379 	 */
1380 	struct numa_group __rcu		*numa_group;
1381 
1382 	/*
1383 	 * numa_faults is an array split into four regions:
1384 	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1385 	 * in this precise order.
1386 	 *
1387 	 * faults_memory: Exponential decaying average of faults on a per-node
1388 	 * basis. Scheduling placement decisions are made based on these
1389 	 * counts. The values remain static for the duration of a PTE scan.
1390 	 * faults_cpu: Track the nodes the process was running on when a NUMA
1391 	 * hinting fault was incurred.
1392 	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1393 	 * during the current scan window. When the scan completes, the counts
1394 	 * in faults_memory and faults_cpu decay and these values are copied.
1395 	 */
1396 	unsigned long			*numa_faults;
1397 	unsigned long			total_numa_faults;
1398 
1399 	/*
1400 	 * numa_faults_locality tracks if faults recorded during the last
1401 	 * scan window were remote/local or failed to migrate. The task scan
1402 	 * period is adapted based on the locality of the faults with different
1403 	 * weights depending on whether they were shared or private faults
1404 	 */
1405 	unsigned long			numa_faults_locality[3];
1406 
1407 	unsigned long			numa_pages_migrated;
1408 #endif /* CONFIG_NUMA_BALANCING */
1409 
1410 #ifdef CONFIG_RSEQ
1411 	struct rseq __user *rseq;
1412 	u32 rseq_len;
1413 	u32 rseq_sig;
1414 	/*
1415 	 * RmW on rseq_event_mask must be performed atomically
1416 	 * with respect to preemption.
1417 	 */
1418 	unsigned long rseq_event_mask;
1419 # ifdef CONFIG_DEBUG_RSEQ
1420 	/*
1421 	 * This is a place holder to save a copy of the rseq fields for
1422 	 * validation of read-only fields. The struct rseq has a
1423 	 * variable-length array at the end, so it cannot be used
1424 	 * directly. Reserve a size large enough for the known fields.
1425 	 */
1426 	char				rseq_fields[sizeof(struct rseq)];
1427 # endif
1428 #endif
1429 
1430 #ifdef CONFIG_SCHED_MM_CID
1431 	int				mm_cid;		/* Current cid in mm */
1432 	int				last_mm_cid;	/* Most recent cid in mm */
1433 	int				migrate_from_cpu;
1434 	int				mm_cid_active;	/* Whether cid bitmap is active */
1435 	struct callback_head		cid_work;
1436 #endif
1437 
1438 	struct tlbflush_unmap_batch	tlb_ubc;
1439 
1440 	/* Cache last used pipe for splice(): */
1441 	struct pipe_inode_info		*splice_pipe;
1442 
1443 	struct page_frag		task_frag;
1444 
1445 #ifdef CONFIG_TASK_DELAY_ACCT
1446 	struct task_delay_info		*delays;
1447 #endif
1448 
1449 #ifdef CONFIG_FAULT_INJECTION
1450 	int				make_it_fail;
1451 	unsigned int			fail_nth;
1452 #endif
1453 	/*
1454 	 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1455 	 * balance_dirty_pages() for a dirty throttling pause:
1456 	 */
1457 	int				nr_dirtied;
1458 	int				nr_dirtied_pause;
1459 	/* Start of a write-and-pause period: */
1460 	unsigned long			dirty_paused_when;
1461 
1462 #ifdef CONFIG_LATENCYTOP
1463 	int				latency_record_count;
1464 	struct latency_record		latency_record[LT_SAVECOUNT];
1465 #endif
1466 	/*
1467 	 * Time slack values; these are used to round up poll() and
1468 	 * select() etc timeout values. These are in nanoseconds.
1469 	 */
1470 	u64				timer_slack_ns;
1471 	u64				default_timer_slack_ns;
1472 
1473 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1474 	unsigned int			kasan_depth;
1475 #endif
1476 
1477 #ifdef CONFIG_KCSAN
1478 	struct kcsan_ctx		kcsan_ctx;
1479 #ifdef CONFIG_TRACE_IRQFLAGS
1480 	struct irqtrace_events		kcsan_save_irqtrace;
1481 #endif
1482 #ifdef CONFIG_KCSAN_WEAK_MEMORY
1483 	int				kcsan_stack_depth;
1484 #endif
1485 #endif
1486 
1487 #ifdef CONFIG_KMSAN
1488 	struct kmsan_ctx		kmsan_ctx;
1489 #endif
1490 
1491 #if IS_ENABLED(CONFIG_KUNIT)
1492 	struct kunit			*kunit_test;
1493 #endif
1494 
1495 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1496 	/* Index of current stored address in ret_stack: */
1497 	int				curr_ret_stack;
1498 	int				curr_ret_depth;
1499 
1500 	/* Stack of return addresses for return function tracing: */
1501 	unsigned long			*ret_stack;
1502 
1503 	/* Timestamp for last schedule: */
1504 	unsigned long long		ftrace_timestamp;
1505 	unsigned long long		ftrace_sleeptime;
1506 
1507 	/*
1508 	 * Number of functions that haven't been traced
1509 	 * because of depth overrun:
1510 	 */
1511 	atomic_t			trace_overrun;
1512 
1513 	/* Pause tracing: */
1514 	atomic_t			tracing_graph_pause;
1515 #endif
1516 
1517 #ifdef CONFIG_TRACING
1518 	/* Bitmask and counter of trace recursion: */
1519 	unsigned long			trace_recursion;
1520 #endif /* CONFIG_TRACING */
1521 
1522 #ifdef CONFIG_KCOV
1523 	/* See kernel/kcov.c for more details. */
1524 
1525 	/* Coverage collection mode enabled for this task (0 if disabled): */
1526 	unsigned int			kcov_mode;
1527 
1528 	/* Size of the kcov_area: */
1529 	unsigned int			kcov_size;
1530 
1531 	/* Buffer for coverage collection: */
1532 	void				*kcov_area;
1533 
1534 	/* KCOV descriptor wired with this task or NULL: */
1535 	struct kcov			*kcov;
1536 
1537 	/* KCOV common handle for remote coverage collection: */
1538 	u64				kcov_handle;
1539 
1540 	/* KCOV sequence number: */
1541 	int				kcov_sequence;
1542 
1543 	/* Collect coverage from softirq context: */
1544 	unsigned int			kcov_softirq;
1545 #endif
1546 
1547 #ifdef CONFIG_MEMCG_V1
1548 	struct mem_cgroup		*memcg_in_oom;
1549 #endif
1550 
1551 #ifdef CONFIG_MEMCG
1552 	/* Number of pages to reclaim on returning to userland: */
1553 	unsigned int			memcg_nr_pages_over_high;
1554 
1555 	/* Used by memcontrol for targeted memcg charge: */
1556 	struct mem_cgroup		*active_memcg;
1557 
1558 	/* Cache for current->cgroups->memcg->objcg lookups: */
1559 	struct obj_cgroup		*objcg;
1560 #endif
1561 
1562 #ifdef CONFIG_BLK_CGROUP
1563 	struct gendisk			*throttle_disk;
1564 #endif
1565 
1566 #ifdef CONFIG_UPROBES
1567 	struct uprobe_task		*utask;
1568 #endif
1569 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1570 	unsigned int			sequential_io;
1571 	unsigned int			sequential_io_avg;
1572 #endif
1573 	struct kmap_ctrl		kmap_ctrl;
1574 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1575 	unsigned long			task_state_change;
1576 # ifdef CONFIG_PREEMPT_RT
1577 	unsigned long			saved_state_change;
1578 # endif
1579 #endif
1580 	struct rcu_head			rcu;
1581 	refcount_t			rcu_users;
1582 	int				pagefault_disabled;
1583 #ifdef CONFIG_MMU
1584 	struct task_struct		*oom_reaper_list;
1585 	struct timer_list		oom_reaper_timer;
1586 #endif
1587 #ifdef CONFIG_VMAP_STACK
1588 	struct vm_struct		*stack_vm_area;
1589 #endif
1590 #ifdef CONFIG_THREAD_INFO_IN_TASK
1591 	/* A live task holds one reference: */
1592 	refcount_t			stack_refcount;
1593 #endif
1594 #ifdef CONFIG_LIVEPATCH
1595 	int patch_state;
1596 #endif
1597 #ifdef CONFIG_SECURITY
1598 	/* Used by LSM modules for access restriction: */
1599 	void				*security;
1600 #endif
1601 #ifdef CONFIG_BPF_SYSCALL
1602 	/* Used by BPF task local storage */
1603 	struct bpf_local_storage __rcu	*bpf_storage;
1604 	/* Used for BPF run context */
1605 	struct bpf_run_ctx		*bpf_ctx;
1606 #endif
1607 	/* Used by BPF for per-TASK xdp storage */
1608 	struct bpf_net_context		*bpf_net_context;
1609 
1610 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1611 	unsigned long			lowest_stack;
1612 	unsigned long			prev_lowest_stack;
1613 #endif
1614 
1615 #ifdef CONFIG_X86_MCE
1616 	void __user			*mce_vaddr;
1617 	__u64				mce_kflags;
1618 	u64				mce_addr;
1619 	__u64				mce_ripv : 1,
1620 					mce_whole_page : 1,
1621 					__mce_reserved : 62;
1622 	struct callback_head		mce_kill_me;
1623 	int				mce_count;
1624 #endif
1625 
1626 #ifdef CONFIG_KRETPROBES
1627 	struct llist_head               kretprobe_instances;
1628 #endif
1629 #ifdef CONFIG_RETHOOK
1630 	struct llist_head               rethooks;
1631 #endif
1632 
1633 #ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
1634 	/*
1635 	 * If L1D flush is supported on mm context switch
1636 	 * then we use this callback head to queue kill work
1637 	 * to kill tasks that are not running on SMT disabled
1638 	 * cores
1639 	 */
1640 	struct callback_head		l1d_flush_kill;
1641 #endif
1642 
1643 #ifdef CONFIG_RV
1644 	/*
1645 	 * Per-task RV monitor. Nowadays fixed in RV_PER_TASK_MONITORS.
1646 	 * If we find justification for more monitors, we can think
1647 	 * about adding more or developing a dynamic method. So far,
1648 	 * none of these are justified.
1649 	 */
1650 	union rv_task_monitor		rv[RV_PER_TASK_MONITORS];
1651 #endif
1652 
1653 #ifdef CONFIG_USER_EVENTS
1654 	struct user_event_mm		*user_event_mm;
1655 #endif
1656 
1657 	/* CPU-specific state of this task: */
1658 	struct thread_struct		thread;
1659 
1660 	/*
1661 	 * New fields for task_struct should be added above here, so that
1662 	 * they are included in the randomized portion of task_struct.
1663 	 */
1664 	randomized_struct_fields_end
1665 } __attribute__ ((aligned (64)));
1666 
1667 #define TASK_REPORT_IDLE	(TASK_REPORT + 1)
1668 #define TASK_REPORT_MAX		(TASK_REPORT_IDLE << 1)
1669 
1670 static inline unsigned int __task_state_index(unsigned int tsk_state,
1671 					      unsigned int tsk_exit_state)
1672 {
1673 	unsigned int state = (tsk_state | tsk_exit_state) & TASK_REPORT;
1674 
1675 	BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1676 
1677 	if ((tsk_state & TASK_IDLE) == TASK_IDLE)
1678 		state = TASK_REPORT_IDLE;
1679 
1680 	/*
1681 	 * We're lying here, but rather than expose a completely new task state
1682 	 * to userspace, we can make this appear as if the task has gone through
1683 	 * a regular rt_mutex_lock() call.
1684 	 * Report frozen tasks as uninterruptible.
1685 	 */
1686 	if ((tsk_state & TASK_RTLOCK_WAIT) || (tsk_state & TASK_FROZEN))
1687 		state = TASK_UNINTERRUPTIBLE;
1688 
1689 	return fls(state);
1690 }
1691 
1692 static inline unsigned int task_state_index(struct task_struct *tsk)
1693 {
1694 	return __task_state_index(READ_ONCE(tsk->__state), tsk->exit_state);
1695 }
1696 
1697 static inline char task_index_to_char(unsigned int state)
1698 {
1699 	static const char state_char[] = "RSDTtXZPI";
1700 
1701 	BUILD_BUG_ON(TASK_REPORT_MAX * 2 != 1 << (sizeof(state_char) - 1));
1702 
1703 	return state_char[state];
1704 }
1705 
1706 static inline char task_state_to_char(struct task_struct *tsk)
1707 {
1708 	return task_index_to_char(task_state_index(tsk));
1709 }
1710 
1711 extern struct pid *cad_pid;
1712 
1713 /*
1714  * Per process flags
1715  */
1716 #define PF_VCPU			0x00000001	/* I'm a virtual CPU */
1717 #define PF_IDLE			0x00000002	/* I am an IDLE thread */
1718 #define PF_EXITING		0x00000004	/* Getting shut down */
1719 #define PF_POSTCOREDUMP		0x00000008	/* Coredumps should ignore this task */
1720 #define PF_IO_WORKER		0x00000010	/* Task is an IO worker */
1721 #define PF_WQ_WORKER		0x00000020	/* I'm a workqueue worker */
1722 #define PF_FORKNOEXEC		0x00000040	/* Forked but didn't exec */
1723 #define PF_MCE_PROCESS		0x00000080      /* Process policy on mce errors */
1724 #define PF_SUPERPRIV		0x00000100	/* Used super-user privileges */
1725 #define PF_DUMPCORE		0x00000200	/* Dumped core */
1726 #define PF_SIGNALED		0x00000400	/* Killed by a signal */
1727 #define PF_MEMALLOC		0x00000800	/* Allocating memory to free memory. See memalloc_noreclaim_save() */
1728 #define PF_NPROC_EXCEEDED	0x00001000	/* set_user() noticed that RLIMIT_NPROC was exceeded */
1729 #define PF_USED_MATH		0x00002000	/* If unset the fpu must be initialized before use */
1730 #define PF_USER_WORKER		0x00004000	/* Kernel thread cloned from userspace thread */
1731 #define PF_NOFREEZE		0x00008000	/* This thread should not be frozen */
1732 #define PF_KCOMPACTD		0x00010000	/* I am kcompactd */
1733 #define PF_KSWAPD		0x00020000	/* I am kswapd */
1734 #define PF_MEMALLOC_NOFS	0x00040000	/* All allocations inherit GFP_NOFS. See memalloc_nfs_save() */
1735 #define PF_MEMALLOC_NOIO	0x00080000	/* All allocations inherit GFP_NOIO. See memalloc_noio_save() */
1736 #define PF_LOCAL_THROTTLE	0x00100000	/* Throttle writes only against the bdi I write to,
1737 						 * I am cleaning dirty pages from some other bdi. */
1738 #define PF_KTHREAD		0x00200000	/* I am a kernel thread */
1739 #define PF_RANDOMIZE		0x00400000	/* Randomize virtual address space */
1740 #define PF__HOLE__00800000	0x00800000
1741 #define PF__HOLE__01000000	0x01000000
1742 #define PF__HOLE__02000000	0x02000000
1743 #define PF_NO_SETAFFINITY	0x04000000	/* Userland is not allowed to meddle with cpus_mask */
1744 #define PF_MCE_EARLY		0x08000000      /* Early kill for mce process policy */
1745 #define PF_MEMALLOC_PIN		0x10000000	/* Allocations constrained to zones which allow long term pinning.
1746 						 * See memalloc_pin_save() */
1747 #define PF_BLOCK_TS		0x20000000	/* plug has ts that needs updating */
1748 #define PF__HOLE__40000000	0x40000000
1749 #define PF_SUSPEND_TASK		0x80000000      /* This thread called freeze_processes() and should not be frozen */
1750 
1751 /*
1752  * Only the _current_ task can read/write to tsk->flags, but other
1753  * tasks can access tsk->flags in readonly mode for example
1754  * with tsk_used_math (like during threaded core dumping).
1755  * There is however an exception to this rule during ptrace
1756  * or during fork: the ptracer task is allowed to write to the
1757  * child->flags of its traced child (same goes for fork, the parent
1758  * can write to the child->flags), because we're guaranteed the
1759  * child is not running and in turn not changing child->flags
1760  * at the same time the parent does it.
1761  */
1762 #define clear_stopped_child_used_math(child)	do { (child)->flags &= ~PF_USED_MATH; } while (0)
1763 #define set_stopped_child_used_math(child)	do { (child)->flags |= PF_USED_MATH; } while (0)
1764 #define clear_used_math()			clear_stopped_child_used_math(current)
1765 #define set_used_math()				set_stopped_child_used_math(current)
1766 
1767 #define conditional_stopped_child_used_math(condition, child) \
1768 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1769 
1770 #define conditional_used_math(condition)	conditional_stopped_child_used_math(condition, current)
1771 
1772 #define copy_to_stopped_child_used_math(child) \
1773 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1774 
1775 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1776 #define tsk_used_math(p)			((p)->flags & PF_USED_MATH)
1777 #define used_math()				tsk_used_math(current)
1778 
1779 static __always_inline bool is_percpu_thread(void)
1780 {
1781 #ifdef CONFIG_SMP
1782 	return (current->flags & PF_NO_SETAFFINITY) &&
1783 		(current->nr_cpus_allowed  == 1);
1784 #else
1785 	return true;
1786 #endif
1787 }
1788 
1789 /* Per-process atomic flags. */
1790 #define PFA_NO_NEW_PRIVS		0	/* May not gain new privileges. */
1791 #define PFA_SPREAD_PAGE			1	/* Spread page cache over cpuset */
1792 #define PFA_SPREAD_SLAB			2	/* Spread some slab caches over cpuset */
1793 #define PFA_SPEC_SSB_DISABLE		3	/* Speculative Store Bypass disabled */
1794 #define PFA_SPEC_SSB_FORCE_DISABLE	4	/* Speculative Store Bypass force disabled*/
1795 #define PFA_SPEC_IB_DISABLE		5	/* Indirect branch speculation restricted */
1796 #define PFA_SPEC_IB_FORCE_DISABLE	6	/* Indirect branch speculation permanently restricted */
1797 #define PFA_SPEC_SSB_NOEXEC		7	/* Speculative Store Bypass clear on execve() */
1798 
1799 #define TASK_PFA_TEST(name, func)					\
1800 	static inline bool task_##func(struct task_struct *p)		\
1801 	{ return test_bit(PFA_##name, &p->atomic_flags); }
1802 
1803 #define TASK_PFA_SET(name, func)					\
1804 	static inline void task_set_##func(struct task_struct *p)	\
1805 	{ set_bit(PFA_##name, &p->atomic_flags); }
1806 
1807 #define TASK_PFA_CLEAR(name, func)					\
1808 	static inline void task_clear_##func(struct task_struct *p)	\
1809 	{ clear_bit(PFA_##name, &p->atomic_flags); }
1810 
1811 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1812 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1813 
1814 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1815 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1816 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1817 
1818 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1819 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1820 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1821 
1822 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1823 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1824 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1825 
1826 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1827 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1828 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1829 
1830 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1831 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1832 
1833 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1834 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1835 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1836 
1837 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1838 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1839 
1840 static inline void
1841 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1842 {
1843 	current->flags &= ~flags;
1844 	current->flags |= orig_flags & flags;
1845 }
1846 
1847 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1848 extern int task_can_attach(struct task_struct *p);
1849 extern int dl_bw_alloc(int cpu, u64 dl_bw);
1850 extern void dl_bw_free(int cpu, u64 dl_bw);
1851 #ifdef CONFIG_SMP
1852 
1853 /* do_set_cpus_allowed() - consider using set_cpus_allowed_ptr() instead */
1854 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1855 
1856 /**
1857  * set_cpus_allowed_ptr - set CPU affinity mask of a task
1858  * @p: the task
1859  * @new_mask: CPU affinity mask
1860  *
1861  * Return: zero if successful, or a negative error code
1862  */
1863 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1864 extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
1865 extern void release_user_cpus_ptr(struct task_struct *p);
1866 extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
1867 extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
1868 extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
1869 #else
1870 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1871 {
1872 }
1873 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1874 {
1875 	/* Opencoded cpumask_test_cpu(0, new_mask) to avoid dependency on cpumask.h */
1876 	if ((*cpumask_bits(new_mask) & 1) == 0)
1877 		return -EINVAL;
1878 	return 0;
1879 }
1880 static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node)
1881 {
1882 	if (src->user_cpus_ptr)
1883 		return -EINVAL;
1884 	return 0;
1885 }
1886 static inline void release_user_cpus_ptr(struct task_struct *p)
1887 {
1888 	WARN_ON(p->user_cpus_ptr);
1889 }
1890 
1891 static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
1892 {
1893 	return 0;
1894 }
1895 #endif
1896 
1897 extern int yield_to(struct task_struct *p, bool preempt);
1898 extern void set_user_nice(struct task_struct *p, long nice);
1899 extern int task_prio(const struct task_struct *p);
1900 
1901 /**
1902  * task_nice - return the nice value of a given task.
1903  * @p: the task in question.
1904  *
1905  * Return: The nice value [ -20 ... 0 ... 19 ].
1906  */
1907 static inline int task_nice(const struct task_struct *p)
1908 {
1909 	return PRIO_TO_NICE((p)->static_prio);
1910 }
1911 
1912 extern int can_nice(const struct task_struct *p, const int nice);
1913 extern int task_curr(const struct task_struct *p);
1914 extern int idle_cpu(int cpu);
1915 extern int available_idle_cpu(int cpu);
1916 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1917 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1918 extern void sched_set_fifo(struct task_struct *p);
1919 extern void sched_set_fifo_low(struct task_struct *p);
1920 extern void sched_set_normal(struct task_struct *p, int nice);
1921 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1922 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1923 extern struct task_struct *idle_task(int cpu);
1924 
1925 /**
1926  * is_idle_task - is the specified task an idle task?
1927  * @p: the task in question.
1928  *
1929  * Return: 1 if @p is an idle task. 0 otherwise.
1930  */
1931 static __always_inline bool is_idle_task(const struct task_struct *p)
1932 {
1933 	return !!(p->flags & PF_IDLE);
1934 }
1935 
1936 extern struct task_struct *curr_task(int cpu);
1937 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1938 
1939 void yield(void);
1940 
1941 union thread_union {
1942 	struct task_struct task;
1943 #ifndef CONFIG_THREAD_INFO_IN_TASK
1944 	struct thread_info thread_info;
1945 #endif
1946 	unsigned long stack[THREAD_SIZE/sizeof(long)];
1947 };
1948 
1949 #ifndef CONFIG_THREAD_INFO_IN_TASK
1950 extern struct thread_info init_thread_info;
1951 #endif
1952 
1953 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1954 
1955 #ifdef CONFIG_THREAD_INFO_IN_TASK
1956 # define task_thread_info(task)	(&(task)->thread_info)
1957 #else
1958 # define task_thread_info(task)	((struct thread_info *)(task)->stack)
1959 #endif
1960 
1961 /*
1962  * find a task by one of its numerical ids
1963  *
1964  * find_task_by_pid_ns():
1965  *      finds a task by its pid in the specified namespace
1966  * find_task_by_vpid():
1967  *      finds a task by its virtual pid
1968  *
1969  * see also find_vpid() etc in include/linux/pid.h
1970  */
1971 
1972 extern struct task_struct *find_task_by_vpid(pid_t nr);
1973 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1974 
1975 /*
1976  * find a task by its virtual pid and get the task struct
1977  */
1978 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1979 
1980 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1981 extern int wake_up_process(struct task_struct *tsk);
1982 extern void wake_up_new_task(struct task_struct *tsk);
1983 
1984 #ifdef CONFIG_SMP
1985 extern void kick_process(struct task_struct *tsk);
1986 #else
1987 static inline void kick_process(struct task_struct *tsk) { }
1988 #endif
1989 
1990 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1991 #define set_task_comm(tsk, from) ({			\
1992 	BUILD_BUG_ON(sizeof(from) != TASK_COMM_LEN);	\
1993 	__set_task_comm(tsk, from, false);		\
1994 })
1995 
1996 /*
1997  * - Why not use task_lock()?
1998  *   User space can randomly change their names anyway, so locking for readers
1999  *   doesn't make sense. For writers, locking is probably necessary, as a race
2000  *   condition could lead to long-term mixed results.
2001  *   The strscpy_pad() in __set_task_comm() can ensure that the task comm is
2002  *   always NUL-terminated and zero-padded. Therefore the race condition between
2003  *   reader and writer is not an issue.
2004  *
2005  * - BUILD_BUG_ON() can help prevent the buf from being truncated.
2006  *   Since the callers don't perform any return value checks, this safeguard is
2007  *   necessary.
2008  */
2009 #define get_task_comm(buf, tsk) ({			\
2010 	BUILD_BUG_ON(sizeof(buf) < TASK_COMM_LEN);	\
2011 	strscpy_pad(buf, (tsk)->comm);			\
2012 	buf;						\
2013 })
2014 
2015 #ifdef CONFIG_SMP
2016 static __always_inline void scheduler_ipi(void)
2017 {
2018 	/*
2019 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
2020 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
2021 	 * this IPI.
2022 	 */
2023 	preempt_fold_need_resched();
2024 }
2025 #else
2026 static inline void scheduler_ipi(void) { }
2027 #endif
2028 
2029 extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
2030 
2031 /*
2032  * Set thread flags in other task's structures.
2033  * See asm/thread_info.h for TIF_xxxx flags available:
2034  */
2035 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2036 {
2037 	set_ti_thread_flag(task_thread_info(tsk), flag);
2038 }
2039 
2040 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2041 {
2042 	clear_ti_thread_flag(task_thread_info(tsk), flag);
2043 }
2044 
2045 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
2046 					  bool value)
2047 {
2048 	update_ti_thread_flag(task_thread_info(tsk), flag, value);
2049 }
2050 
2051 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2052 {
2053 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2054 }
2055 
2056 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2057 {
2058 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2059 }
2060 
2061 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2062 {
2063 	return test_ti_thread_flag(task_thread_info(tsk), flag);
2064 }
2065 
2066 static inline void set_tsk_need_resched(struct task_struct *tsk)
2067 {
2068 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2069 }
2070 
2071 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2072 {
2073 	atomic_long_andnot(_TIF_NEED_RESCHED | _TIF_NEED_RESCHED_LAZY,
2074 			   (atomic_long_t *)&task_thread_info(tsk)->flags);
2075 }
2076 
2077 static inline int test_tsk_need_resched(struct task_struct *tsk)
2078 {
2079 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2080 }
2081 
2082 /*
2083  * cond_resched() and cond_resched_lock(): latency reduction via
2084  * explicit rescheduling in places that are safe. The return
2085  * value indicates whether a reschedule was done in fact.
2086  * cond_resched_lock() will drop the spinlock before scheduling,
2087  */
2088 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
2089 extern int __cond_resched(void);
2090 
2091 #if defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
2092 
2093 DECLARE_STATIC_CALL(cond_resched, __cond_resched);
2094 
2095 static __always_inline int _cond_resched(void)
2096 {
2097 	return static_call_mod(cond_resched)();
2098 }
2099 
2100 #elif defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
2101 
2102 extern int dynamic_cond_resched(void);
2103 
2104 static __always_inline int _cond_resched(void)
2105 {
2106 	return dynamic_cond_resched();
2107 }
2108 
2109 #else /* !CONFIG_PREEMPTION */
2110 
2111 static inline int _cond_resched(void)
2112 {
2113 	return __cond_resched();
2114 }
2115 
2116 #endif /* PREEMPT_DYNAMIC && CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
2117 
2118 #else /* CONFIG_PREEMPTION && !CONFIG_PREEMPT_DYNAMIC */
2119 
2120 static inline int _cond_resched(void)
2121 {
2122 	return 0;
2123 }
2124 
2125 #endif /* !CONFIG_PREEMPTION || CONFIG_PREEMPT_DYNAMIC */
2126 
2127 #define cond_resched() ({			\
2128 	__might_resched(__FILE__, __LINE__, 0);	\
2129 	_cond_resched();			\
2130 })
2131 
2132 extern int __cond_resched_lock(spinlock_t *lock);
2133 extern int __cond_resched_rwlock_read(rwlock_t *lock);
2134 extern int __cond_resched_rwlock_write(rwlock_t *lock);
2135 
2136 #define MIGHT_RESCHED_RCU_SHIFT		8
2137 #define MIGHT_RESCHED_PREEMPT_MASK	((1U << MIGHT_RESCHED_RCU_SHIFT) - 1)
2138 
2139 #ifndef CONFIG_PREEMPT_RT
2140 /*
2141  * Non RT kernels have an elevated preempt count due to the held lock,
2142  * but are not allowed to be inside a RCU read side critical section
2143  */
2144 # define PREEMPT_LOCK_RESCHED_OFFSETS	PREEMPT_LOCK_OFFSET
2145 #else
2146 /*
2147  * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in
2148  * cond_resched*lock() has to take that into account because it checks for
2149  * preempt_count() and rcu_preempt_depth().
2150  */
2151 # define PREEMPT_LOCK_RESCHED_OFFSETS	\
2152 	(PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT))
2153 #endif
2154 
2155 #define cond_resched_lock(lock) ({						\
2156 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2157 	__cond_resched_lock(lock);						\
2158 })
2159 
2160 #define cond_resched_rwlock_read(lock) ({					\
2161 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2162 	__cond_resched_rwlock_read(lock);					\
2163 })
2164 
2165 #define cond_resched_rwlock_write(lock) ({					\
2166 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2167 	__cond_resched_rwlock_write(lock);					\
2168 })
2169 
2170 static __always_inline bool need_resched(void)
2171 {
2172 	return unlikely(tif_need_resched());
2173 }
2174 
2175 /*
2176  * Wrappers for p->thread_info->cpu access. No-op on UP.
2177  */
2178 #ifdef CONFIG_SMP
2179 
2180 static inline unsigned int task_cpu(const struct task_struct *p)
2181 {
2182 	return READ_ONCE(task_thread_info(p)->cpu);
2183 }
2184 
2185 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2186 
2187 #else
2188 
2189 static inline unsigned int task_cpu(const struct task_struct *p)
2190 {
2191 	return 0;
2192 }
2193 
2194 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2195 {
2196 }
2197 
2198 #endif /* CONFIG_SMP */
2199 
2200 static inline bool task_is_runnable(struct task_struct *p)
2201 {
2202 	return p->on_rq && !p->se.sched_delayed;
2203 }
2204 
2205 extern bool sched_task_on_rq(struct task_struct *p);
2206 extern unsigned long get_wchan(struct task_struct *p);
2207 extern struct task_struct *cpu_curr_snapshot(int cpu);
2208 
2209 #include <linux/spinlock.h>
2210 
2211 /*
2212  * In order to reduce various lock holder preemption latencies provide an
2213  * interface to see if a vCPU is currently running or not.
2214  *
2215  * This allows us to terminate optimistic spin loops and block, analogous to
2216  * the native optimistic spin heuristic of testing if the lock owner task is
2217  * running or not.
2218  */
2219 #ifndef vcpu_is_preempted
2220 static inline bool vcpu_is_preempted(int cpu)
2221 {
2222 	return false;
2223 }
2224 #endif
2225 
2226 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2227 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2228 
2229 #ifndef TASK_SIZE_OF
2230 #define TASK_SIZE_OF(tsk)	TASK_SIZE
2231 #endif
2232 
2233 #ifdef CONFIG_SMP
2234 static inline bool owner_on_cpu(struct task_struct *owner)
2235 {
2236 	/*
2237 	 * As lock holder preemption issue, we both skip spinning if
2238 	 * task is not on cpu or its cpu is preempted
2239 	 */
2240 	return READ_ONCE(owner->on_cpu) && !vcpu_is_preempted(task_cpu(owner));
2241 }
2242 
2243 /* Returns effective CPU energy utilization, as seen by the scheduler */
2244 unsigned long sched_cpu_util(int cpu);
2245 #endif /* CONFIG_SMP */
2246 
2247 #ifdef CONFIG_SCHED_CORE
2248 extern void sched_core_free(struct task_struct *tsk);
2249 extern void sched_core_fork(struct task_struct *p);
2250 extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
2251 				unsigned long uaddr);
2252 extern int sched_core_idle_cpu(int cpu);
2253 #else
2254 static inline void sched_core_free(struct task_struct *tsk) { }
2255 static inline void sched_core_fork(struct task_struct *p) { }
2256 static inline int sched_core_idle_cpu(int cpu) { return idle_cpu(cpu); }
2257 #endif
2258 
2259 extern void sched_set_stop_task(int cpu, struct task_struct *stop);
2260 
2261 #ifdef CONFIG_MEM_ALLOC_PROFILING
2262 static __always_inline struct alloc_tag *alloc_tag_save(struct alloc_tag *tag)
2263 {
2264 	swap(current->alloc_tag, tag);
2265 	return tag;
2266 }
2267 
2268 static __always_inline void alloc_tag_restore(struct alloc_tag *tag, struct alloc_tag *old)
2269 {
2270 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
2271 	WARN(current->alloc_tag != tag, "current->alloc_tag was changed:\n");
2272 #endif
2273 	current->alloc_tag = old;
2274 }
2275 #else
2276 #define alloc_tag_save(_tag)			NULL
2277 #define alloc_tag_restore(_tag, _old)		do {} while (0)
2278 #endif
2279 
2280 #endif
2281