1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * asus-laptop.c - Asus Laptop Support
4 *
5 * Copyright (C) 2002-2005 Julien Lerouge, 2003-2006 Karol Kozimor
6 * Copyright (C) 2006-2007 Corentin Chary
7 * Copyright (C) 2011 Wind River Systems
8 *
9 * The development page for this driver is located at
10 * http://sourceforge.net/projects/acpi4asus/
11 *
12 * Credits:
13 * Pontus Fuchs - Helper functions, cleanup
14 * Johann Wiesner - Small compile fixes
15 * John Belmonte - ACPI code for Toshiba laptop was a good starting point.
16 * Eric Burghard - LED display support for W1N
17 * Josh Green - Light Sens support
18 * Thomas Tuttle - His first patch for led support was very helpful
19 * Sam Lin - GPS support
20 */
21
22 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
23
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/init.h>
27 #include <linux/types.h>
28 #include <linux/err.h>
29 #include <linux/proc_fs.h>
30 #include <linux/backlight.h>
31 #include <linux/leds.h>
32 #include <linux/platform_device.h>
33 #include <linux/uaccess.h>
34 #include <linux/input.h>
35 #include <linux/input/sparse-keymap.h>
36 #include <linux/rfkill.h>
37 #include <linux/slab.h>
38 #include <linux/dmi.h>
39 #include <linux/acpi.h>
40 #include <acpi/video.h>
41
42 #define ASUS_LAPTOP_VERSION "0.42"
43
44 #define ASUS_LAPTOP_NAME "Asus Laptop Support"
45 #define ASUS_LAPTOP_CLASS "hotkey"
46 #define ASUS_LAPTOP_DEVICE_NAME "Hotkey"
47 #define ASUS_LAPTOP_FILE KBUILD_MODNAME
48 #define ASUS_LAPTOP_PREFIX "\\_SB.ATKD."
49
50 MODULE_AUTHOR("Julien Lerouge, Karol Kozimor, Corentin Chary");
51 MODULE_DESCRIPTION(ASUS_LAPTOP_NAME);
52 MODULE_LICENSE("GPL");
53
54 /*
55 * WAPF defines the behavior of the Fn+Fx wlan key
56 * The significance of values is yet to be found, but
57 * most of the time:
58 * Bit | Bluetooth | WLAN
59 * 0 | Hardware | Hardware
60 * 1 | Hardware | Software
61 * 4 | Software | Software
62 */
63 static uint wapf = 1;
64 module_param(wapf, uint, 0444);
65 MODULE_PARM_DESC(wapf, "WAPF value");
66
67 static char *wled_type = "unknown";
68 static char *bled_type = "unknown";
69
70 module_param(wled_type, charp, 0444);
71 MODULE_PARM_DESC(wled_type, "Set the wled type on boot "
72 "(unknown, led or rfkill). "
73 "default is unknown");
74
75 module_param(bled_type, charp, 0444);
76 MODULE_PARM_DESC(bled_type, "Set the bled type on boot "
77 "(unknown, led or rfkill). "
78 "default is unknown");
79
80 static int wlan_status = 1;
81 static int bluetooth_status = 1;
82 static int wimax_status = -1;
83 static int wwan_status = -1;
84 static int als_status;
85
86 module_param(wlan_status, int, 0444);
87 MODULE_PARM_DESC(wlan_status, "Set the wireless status on boot "
88 "(0 = disabled, 1 = enabled, -1 = don't do anything). "
89 "default is -1");
90
91 module_param(bluetooth_status, int, 0444);
92 MODULE_PARM_DESC(bluetooth_status, "Set the wireless status on boot "
93 "(0 = disabled, 1 = enabled, -1 = don't do anything). "
94 "default is -1");
95
96 module_param(wimax_status, int, 0444);
97 MODULE_PARM_DESC(wimax_status, "Set the wireless status on boot "
98 "(0 = disabled, 1 = enabled, -1 = don't do anything). "
99 "default is -1");
100
101 module_param(wwan_status, int, 0444);
102 MODULE_PARM_DESC(wwan_status, "Set the wireless status on boot "
103 "(0 = disabled, 1 = enabled, -1 = don't do anything). "
104 "default is -1");
105
106 module_param(als_status, int, 0444);
107 MODULE_PARM_DESC(als_status, "Set the ALS status on boot "
108 "(0 = disabled, 1 = enabled). "
109 "default is 0");
110
111 /*
112 * Some events we use, same for all Asus
113 */
114 #define ATKD_BRNUP_MIN 0x10
115 #define ATKD_BRNUP_MAX 0x1f
116 #define ATKD_BRNDOWN_MIN 0x20
117 #define ATKD_BRNDOWN_MAX 0x2f
118 #define ATKD_BRNDOWN 0x20
119 #define ATKD_BRNUP 0x2f
120 #define ATKD_LCD_ON 0x33
121 #define ATKD_LCD_OFF 0x34
122
123 /*
124 * Known bits returned by \_SB.ATKD.HWRS
125 */
126 #define WL_HWRS 0x80
127 #define BT_HWRS 0x100
128
129 /*
130 * Flags for hotk status
131 * WL_ON and BT_ON are also used for wireless_status()
132 */
133 #define WL_RSTS 0x01 /* internal Wifi */
134 #define BT_RSTS 0x02 /* internal Bluetooth */
135 #define WM_RSTS 0x08 /* internal wimax */
136 #define WW_RSTS 0x20 /* internal wwan */
137
138 /* WLED and BLED type */
139 #define TYPE_UNKNOWN 0
140 #define TYPE_LED 1
141 #define TYPE_RFKILL 2
142
143 /* LED */
144 #define METHOD_MLED "MLED"
145 #define METHOD_TLED "TLED"
146 #define METHOD_RLED "RLED" /* W1JC */
147 #define METHOD_PLED "PLED" /* A7J */
148 #define METHOD_GLED "GLED" /* G1, G2 (probably) */
149
150 /* LEDD */
151 #define METHOD_LEDD "SLCM"
152
153 /*
154 * Bluetooth and WLAN
155 * WLED and BLED are not handled like other XLED, because in some dsdt
156 * they also control the WLAN/Bluetooth device.
157 */
158 #define METHOD_WLAN "WLED"
159 #define METHOD_BLUETOOTH "BLED"
160
161 /* WWAN and WIMAX */
162 #define METHOD_WWAN "GSMC"
163 #define METHOD_WIMAX "WMXC"
164
165 #define METHOD_WL_STATUS "RSTS"
166
167 /* Brightness */
168 #define METHOD_BRIGHTNESS_SET "SPLV"
169 #define METHOD_BRIGHTNESS_GET "GPLV"
170
171 /* Display */
172 #define METHOD_SWITCH_DISPLAY "SDSP"
173
174 #define METHOD_ALS_CONTROL "ALSC" /* Z71A Z71V */
175 #define METHOD_ALS_LEVEL "ALSL" /* Z71A Z71V */
176
177 /* GPS */
178 /* R2H use different handle for GPS on/off */
179 #define METHOD_GPS_ON "SDON"
180 #define METHOD_GPS_OFF "SDOF"
181 #define METHOD_GPS_STATUS "GPST"
182
183 /* Keyboard light */
184 #define METHOD_KBD_LIGHT_SET "SLKB"
185 #define METHOD_KBD_LIGHT_GET "GLKB"
186
187 /* For Pegatron Lucid tablet */
188 #define DEVICE_NAME_PEGA "Lucid"
189
190 #define METHOD_PEGA_ENABLE "ENPR"
191 #define METHOD_PEGA_DISABLE "DAPR"
192 #define PEGA_WLAN 0x00
193 #define PEGA_BLUETOOTH 0x01
194 #define PEGA_WWAN 0x02
195 #define PEGA_ALS 0x04
196 #define PEGA_ALS_POWER 0x05
197
198 #define METHOD_PEGA_READ "RDLN"
199 #define PEGA_READ_ALS_H 0x02
200 #define PEGA_READ_ALS_L 0x03
201
202 #define PEGA_ACCEL_NAME "pega_accel"
203 #define PEGA_ACCEL_DESC "Pegatron Lucid Tablet Accelerometer"
204 #define METHOD_XLRX "XLRX"
205 #define METHOD_XLRY "XLRY"
206 #define METHOD_XLRZ "XLRZ"
207 #define PEGA_ACC_CLAMP 512 /* 1G accel is reported as ~256, so clamp to 2G */
208 #define PEGA_ACC_RETRIES 3
209
210 /*
211 * Define a specific led structure to keep the main structure clean
212 */
213 struct asus_led {
214 int wk;
215 struct work_struct work;
216 struct led_classdev led;
217 struct asus_laptop *asus;
218 const char *method;
219 };
220
221 /*
222 * Same thing for rfkill
223 */
224 struct asus_rfkill {
225 /* type of control. Maps to PEGA_* values or *_RSTS */
226 int control_id;
227 struct rfkill *rfkill;
228 struct asus_laptop *asus;
229 };
230
231 /*
232 * This is the main structure, we can use it to store anything interesting
233 * about the hotk device
234 */
235 struct asus_laptop {
236 char *name; /* laptop name */
237
238 struct acpi_table_header *dsdt_info;
239 struct platform_device *platform_device;
240 struct acpi_device *device; /* the device we are in */
241 struct backlight_device *backlight_device;
242
243 struct input_dev *inputdev;
244 struct key_entry *keymap;
245 struct input_dev *pega_accel_poll;
246
247 struct asus_led wled;
248 struct asus_led bled;
249 struct asus_led mled;
250 struct asus_led tled;
251 struct asus_led rled;
252 struct asus_led pled;
253 struct asus_led gled;
254 struct asus_led kled;
255 struct workqueue_struct *led_workqueue;
256
257 int wled_type;
258 int bled_type;
259 int wireless_status;
260 bool have_rsts;
261 bool is_pega_lucid;
262 bool pega_acc_live;
263 int pega_acc_x;
264 int pega_acc_y;
265 int pega_acc_z;
266
267 struct asus_rfkill wlan;
268 struct asus_rfkill bluetooth;
269 struct asus_rfkill wwan;
270 struct asus_rfkill wimax;
271 struct asus_rfkill gps;
272
273 acpi_handle handle; /* the handle of the hotk device */
274 u32 ledd_status; /* status of the LED display */
275 u8 light_level; /* light sensor level */
276 u8 light_switch; /* light sensor switch value */
277 u16 event_count[128]; /* count for each event TODO make this better */
278 };
279
280 static const struct key_entry asus_keymap[] = {
281 /* Lenovo SL Specific keycodes */
282 {KE_KEY, 0x02, { KEY_SCREENLOCK } },
283 {KE_KEY, 0x05, { KEY_WLAN } },
284 {KE_KEY, 0x08, { KEY_F13 } },
285 {KE_KEY, 0x09, { KEY_PROG2 } }, /* Dock */
286 {KE_KEY, 0x17, { KEY_ZOOM } },
287 {KE_KEY, 0x1f, { KEY_BATTERY } },
288 /* End of Lenovo SL Specific keycodes */
289 {KE_KEY, ATKD_BRNDOWN, { KEY_BRIGHTNESSDOWN } },
290 {KE_KEY, ATKD_BRNUP, { KEY_BRIGHTNESSUP } },
291 {KE_KEY, 0x30, { KEY_VOLUMEUP } },
292 {KE_KEY, 0x31, { KEY_VOLUMEDOWN } },
293 {KE_KEY, 0x32, { KEY_MUTE } },
294 {KE_KEY, 0x33, { KEY_DISPLAYTOGGLE } }, /* LCD on */
295 {KE_KEY, 0x34, { KEY_DISPLAY_OFF } }, /* LCD off */
296 {KE_KEY, 0x40, { KEY_PREVIOUSSONG } },
297 {KE_KEY, 0x41, { KEY_NEXTSONG } },
298 {KE_KEY, 0x43, { KEY_STOPCD } }, /* Stop/Eject */
299 {KE_KEY, 0x45, { KEY_PLAYPAUSE } },
300 {KE_KEY, 0x4c, { KEY_MEDIA } }, /* WMP Key */
301 {KE_KEY, 0x50, { KEY_EMAIL } },
302 {KE_KEY, 0x51, { KEY_WWW } },
303 {KE_KEY, 0x55, { KEY_CALC } },
304 {KE_IGNORE, 0x57, }, /* Battery mode */
305 {KE_IGNORE, 0x58, }, /* AC mode */
306 {KE_KEY, 0x5C, { KEY_SCREENLOCK } }, /* Screenlock */
307 {KE_KEY, 0x5D, { KEY_WLAN } }, /* WLAN Toggle */
308 {KE_KEY, 0x5E, { KEY_WLAN } }, /* WLAN Enable */
309 {KE_KEY, 0x5F, { KEY_WLAN } }, /* WLAN Disable */
310 {KE_KEY, 0x60, { KEY_TOUCHPAD_ON } },
311 {KE_KEY, 0x61, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD only */
312 {KE_KEY, 0x62, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT only */
313 {KE_KEY, 0x63, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT */
314 {KE_KEY, 0x64, { KEY_SWITCHVIDEOMODE } }, /* SDSP TV */
315 {KE_KEY, 0x65, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + TV */
316 {KE_KEY, 0x66, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + TV */
317 {KE_KEY, 0x67, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + TV */
318 {KE_KEY, 0x6A, { KEY_TOUCHPAD_TOGGLE } }, /* Lock Touchpad Fn + F9 */
319 {KE_KEY, 0x6B, { KEY_TOUCHPAD_TOGGLE } }, /* Lock Touchpad */
320 {KE_KEY, 0x6C, { KEY_SLEEP } }, /* Suspend */
321 {KE_KEY, 0x6D, { KEY_SLEEP } }, /* Hibernate */
322 {KE_IGNORE, 0x6E, }, /* Low Battery notification */
323 {KE_KEY, 0x7D, { KEY_BLUETOOTH } }, /* Bluetooth Enable */
324 {KE_KEY, 0x7E, { KEY_BLUETOOTH } }, /* Bluetooth Disable */
325 {KE_KEY, 0x82, { KEY_CAMERA } },
326 {KE_KEY, 0x88, { KEY_RFKILL } }, /* Radio Toggle Key */
327 {KE_KEY, 0x8A, { KEY_PROG1 } }, /* Color enhancement mode */
328 {KE_KEY, 0x8C, { KEY_SWITCHVIDEOMODE } }, /* SDSP DVI only */
329 {KE_KEY, 0x8D, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + DVI */
330 {KE_KEY, 0x8E, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + DVI */
331 {KE_KEY, 0x8F, { KEY_SWITCHVIDEOMODE } }, /* SDSP TV + DVI */
332 {KE_KEY, 0x90, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + DVI */
333 {KE_KEY, 0x91, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + TV + DVI */
334 {KE_KEY, 0x92, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + TV + DVI */
335 {KE_KEY, 0x93, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + TV + DVI */
336 {KE_KEY, 0x95, { KEY_MEDIA } },
337 {KE_KEY, 0x99, { KEY_PHONE } },
338 {KE_KEY, 0xA0, { KEY_SWITCHVIDEOMODE } }, /* SDSP HDMI only */
339 {KE_KEY, 0xA1, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + HDMI */
340 {KE_KEY, 0xA2, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + HDMI */
341 {KE_KEY, 0xA3, { KEY_SWITCHVIDEOMODE } }, /* SDSP TV + HDMI */
342 {KE_KEY, 0xA4, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + HDMI */
343 {KE_KEY, 0xA5, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + TV + HDMI */
344 {KE_KEY, 0xA6, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + TV + HDMI */
345 {KE_KEY, 0xA7, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + TV + HDMI */
346 {KE_KEY, 0xB5, { KEY_CALC } },
347 {KE_KEY, 0xC4, { KEY_KBDILLUMUP } },
348 {KE_KEY, 0xC5, { KEY_KBDILLUMDOWN } },
349 {KE_END, 0},
350 };
351
352
353 /*
354 * This function evaluates an ACPI method, given an int as parameter, the
355 * method is searched within the scope of the handle, can be NULL. The output
356 * of the method is written is output, which can also be NULL
357 *
358 * returns 0 if write is successful, -1 else.
359 */
write_acpi_int_ret(acpi_handle handle,const char * method,int val,struct acpi_buffer * output)360 static int write_acpi_int_ret(acpi_handle handle, const char *method, int val,
361 struct acpi_buffer *output)
362 {
363 struct acpi_object_list params; /* list of input parameters (an int) */
364 union acpi_object in_obj; /* the only param we use */
365 acpi_status status;
366
367 if (!handle)
368 return -1;
369
370 params.count = 1;
371 params.pointer = &in_obj;
372 in_obj.type = ACPI_TYPE_INTEGER;
373 in_obj.integer.value = val;
374
375 status = acpi_evaluate_object(handle, (char *)method, ¶ms, output);
376 if (status == AE_OK)
377 return 0;
378 else
379 return -1;
380 }
381
write_acpi_int(acpi_handle handle,const char * method,int val)382 static int write_acpi_int(acpi_handle handle, const char *method, int val)
383 {
384 return write_acpi_int_ret(handle, method, val, NULL);
385 }
386
acpi_check_handle(acpi_handle handle,const char * method,acpi_handle * ret)387 static int acpi_check_handle(acpi_handle handle, const char *method,
388 acpi_handle *ret)
389 {
390 acpi_status status;
391
392 if (method == NULL)
393 return -ENODEV;
394
395 if (ret)
396 status = acpi_get_handle(handle, (char *)method,
397 ret);
398 else {
399 acpi_handle dummy;
400
401 status = acpi_get_handle(handle, (char *)method,
402 &dummy);
403 }
404
405 if (status != AE_OK) {
406 if (ret)
407 pr_warn("Error finding %s\n", method);
408 return -ENODEV;
409 }
410 return 0;
411 }
412
asus_check_pega_lucid(struct asus_laptop * asus)413 static bool asus_check_pega_lucid(struct asus_laptop *asus)
414 {
415 return !strcmp(asus->name, DEVICE_NAME_PEGA) &&
416 !acpi_check_handle(asus->handle, METHOD_PEGA_ENABLE, NULL) &&
417 !acpi_check_handle(asus->handle, METHOD_PEGA_DISABLE, NULL) &&
418 !acpi_check_handle(asus->handle, METHOD_PEGA_READ, NULL);
419 }
420
asus_pega_lucid_set(struct asus_laptop * asus,int unit,bool enable)421 static int asus_pega_lucid_set(struct asus_laptop *asus, int unit, bool enable)
422 {
423 char *method = enable ? METHOD_PEGA_ENABLE : METHOD_PEGA_DISABLE;
424 return write_acpi_int(asus->handle, method, unit);
425 }
426
pega_acc_axis(struct asus_laptop * asus,int curr,char * method)427 static int pega_acc_axis(struct asus_laptop *asus, int curr, char *method)
428 {
429 int i, delta;
430 unsigned long long val;
431 for (i = 0; i < PEGA_ACC_RETRIES; i++) {
432 acpi_evaluate_integer(asus->handle, method, NULL, &val);
433
434 /* The output is noisy. From reading the ASL
435 * dissassembly, timeout errors are returned with 1's
436 * in the high word, and the lack of locking around
437 * thei hi/lo byte reads means that a transition
438 * between (for example) -1 and 0 could be read as
439 * 0xff00 or 0x00ff. */
440 delta = abs(curr - (short)val);
441 if (delta < 128 && !(val & ~0xffff))
442 break;
443 }
444 return clamp_val((short)val, -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP);
445 }
446
pega_accel_poll(struct input_dev * input)447 static void pega_accel_poll(struct input_dev *input)
448 {
449 struct device *parent = input->dev.parent;
450 struct asus_laptop *asus = dev_get_drvdata(parent);
451
452 /* In some cases, the very first call to poll causes a
453 * recursive fault under the polldev worker. This is
454 * apparently related to very early userspace access to the
455 * device, and perhaps a firmware bug. Fake the first report. */
456 if (!asus->pega_acc_live) {
457 asus->pega_acc_live = true;
458 input_report_abs(input, ABS_X, 0);
459 input_report_abs(input, ABS_Y, 0);
460 input_report_abs(input, ABS_Z, 0);
461 input_sync(input);
462 return;
463 }
464
465 asus->pega_acc_x = pega_acc_axis(asus, asus->pega_acc_x, METHOD_XLRX);
466 asus->pega_acc_y = pega_acc_axis(asus, asus->pega_acc_y, METHOD_XLRY);
467 asus->pega_acc_z = pega_acc_axis(asus, asus->pega_acc_z, METHOD_XLRZ);
468
469 /* Note transform, convert to "right/up/out" in the native
470 * landscape orientation (i.e. the vector is the direction of
471 * "real up" in the device's cartiesian coordinates). */
472 input_report_abs(input, ABS_X, -asus->pega_acc_x);
473 input_report_abs(input, ABS_Y, -asus->pega_acc_y);
474 input_report_abs(input, ABS_Z, asus->pega_acc_z);
475 input_sync(input);
476 }
477
pega_accel_exit(struct asus_laptop * asus)478 static void pega_accel_exit(struct asus_laptop *asus)
479 {
480 if (asus->pega_accel_poll) {
481 input_unregister_device(asus->pega_accel_poll);
482 asus->pega_accel_poll = NULL;
483 }
484 }
485
pega_accel_init(struct asus_laptop * asus)486 static int pega_accel_init(struct asus_laptop *asus)
487 {
488 int err;
489 struct input_dev *input;
490
491 if (!asus->is_pega_lucid)
492 return -ENODEV;
493
494 if (acpi_check_handle(asus->handle, METHOD_XLRX, NULL) ||
495 acpi_check_handle(asus->handle, METHOD_XLRY, NULL) ||
496 acpi_check_handle(asus->handle, METHOD_XLRZ, NULL))
497 return -ENODEV;
498
499 input = input_allocate_device();
500 if (!input)
501 return -ENOMEM;
502
503 input->name = PEGA_ACCEL_DESC;
504 input->phys = PEGA_ACCEL_NAME "/input0";
505 input->dev.parent = &asus->platform_device->dev;
506 input->id.bustype = BUS_HOST;
507
508 input_set_abs_params(input, ABS_X,
509 -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP, 0, 0);
510 input_set_abs_params(input, ABS_Y,
511 -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP, 0, 0);
512 input_set_abs_params(input, ABS_Z,
513 -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP, 0, 0);
514
515 err = input_setup_polling(input, pega_accel_poll);
516 if (err)
517 goto exit;
518
519 input_set_poll_interval(input, 125);
520 input_set_min_poll_interval(input, 50);
521 input_set_max_poll_interval(input, 2000);
522
523 err = input_register_device(input);
524 if (err)
525 goto exit;
526
527 asus->pega_accel_poll = input;
528 return 0;
529
530 exit:
531 input_free_device(input);
532 return err;
533 }
534
535 /* Generic LED function */
asus_led_set(struct asus_laptop * asus,const char * method,int value)536 static int asus_led_set(struct asus_laptop *asus, const char *method,
537 int value)
538 {
539 if (!strcmp(method, METHOD_MLED))
540 value = !value;
541 else if (!strcmp(method, METHOD_GLED))
542 value = !value + 1;
543 else
544 value = !!value;
545
546 return write_acpi_int(asus->handle, method, value);
547 }
548
549 /*
550 * LEDs
551 */
552 /* /sys/class/led handlers */
asus_led_cdev_set(struct led_classdev * led_cdev,enum led_brightness value)553 static void asus_led_cdev_set(struct led_classdev *led_cdev,
554 enum led_brightness value)
555 {
556 struct asus_led *led = container_of(led_cdev, struct asus_led, led);
557 struct asus_laptop *asus = led->asus;
558
559 led->wk = !!value;
560 queue_work(asus->led_workqueue, &led->work);
561 }
562
asus_led_cdev_update(struct work_struct * work)563 static void asus_led_cdev_update(struct work_struct *work)
564 {
565 struct asus_led *led = container_of(work, struct asus_led, work);
566 struct asus_laptop *asus = led->asus;
567
568 asus_led_set(asus, led->method, led->wk);
569 }
570
asus_led_cdev_get(struct led_classdev * led_cdev)571 static enum led_brightness asus_led_cdev_get(struct led_classdev *led_cdev)
572 {
573 return led_cdev->brightness;
574 }
575
576 /*
577 * Keyboard backlight (also a LED)
578 */
asus_kled_lvl(struct asus_laptop * asus)579 static int asus_kled_lvl(struct asus_laptop *asus)
580 {
581 unsigned long long kblv;
582 struct acpi_object_list params;
583 union acpi_object in_obj;
584 acpi_status rv;
585
586 params.count = 1;
587 params.pointer = &in_obj;
588 in_obj.type = ACPI_TYPE_INTEGER;
589 in_obj.integer.value = 2;
590
591 rv = acpi_evaluate_integer(asus->handle, METHOD_KBD_LIGHT_GET,
592 ¶ms, &kblv);
593 if (ACPI_FAILURE(rv)) {
594 pr_warn("Error reading kled level\n");
595 return -ENODEV;
596 }
597 return kblv;
598 }
599
asus_kled_set(struct asus_laptop * asus,int kblv)600 static int asus_kled_set(struct asus_laptop *asus, int kblv)
601 {
602 if (kblv > 0)
603 kblv = (1 << 7) | (kblv & 0x7F);
604 else
605 kblv = 0;
606
607 if (write_acpi_int(asus->handle, METHOD_KBD_LIGHT_SET, kblv)) {
608 pr_warn("Keyboard LED display write failed\n");
609 return -EINVAL;
610 }
611 return 0;
612 }
613
asus_kled_cdev_set(struct led_classdev * led_cdev,enum led_brightness value)614 static void asus_kled_cdev_set(struct led_classdev *led_cdev,
615 enum led_brightness value)
616 {
617 struct asus_led *led = container_of(led_cdev, struct asus_led, led);
618 struct asus_laptop *asus = led->asus;
619
620 led->wk = value;
621 queue_work(asus->led_workqueue, &led->work);
622 }
623
asus_kled_cdev_update(struct work_struct * work)624 static void asus_kled_cdev_update(struct work_struct *work)
625 {
626 struct asus_led *led = container_of(work, struct asus_led, work);
627 struct asus_laptop *asus = led->asus;
628
629 asus_kled_set(asus, led->wk);
630 }
631
asus_kled_cdev_get(struct led_classdev * led_cdev)632 static enum led_brightness asus_kled_cdev_get(struct led_classdev *led_cdev)
633 {
634 struct asus_led *led = container_of(led_cdev, struct asus_led, led);
635 struct asus_laptop *asus = led->asus;
636
637 return asus_kled_lvl(asus);
638 }
639
asus_led_exit(struct asus_laptop * asus)640 static void asus_led_exit(struct asus_laptop *asus)
641 {
642 led_classdev_unregister(&asus->wled.led);
643 led_classdev_unregister(&asus->bled.led);
644 led_classdev_unregister(&asus->mled.led);
645 led_classdev_unregister(&asus->tled.led);
646 led_classdev_unregister(&asus->pled.led);
647 led_classdev_unregister(&asus->rled.led);
648 led_classdev_unregister(&asus->gled.led);
649 led_classdev_unregister(&asus->kled.led);
650
651 if (asus->led_workqueue) {
652 destroy_workqueue(asus->led_workqueue);
653 asus->led_workqueue = NULL;
654 }
655 }
656
657 /* Ugly macro, need to fix that later */
asus_led_register(struct asus_laptop * asus,struct asus_led * led,const char * name,const char * method)658 static int asus_led_register(struct asus_laptop *asus,
659 struct asus_led *led,
660 const char *name, const char *method)
661 {
662 struct led_classdev *led_cdev = &led->led;
663
664 if (!method || acpi_check_handle(asus->handle, method, NULL))
665 return 0; /* Led not present */
666
667 led->asus = asus;
668 led->method = method;
669
670 INIT_WORK(&led->work, asus_led_cdev_update);
671 led_cdev->name = name;
672 led_cdev->brightness_set = asus_led_cdev_set;
673 led_cdev->brightness_get = asus_led_cdev_get;
674 led_cdev->max_brightness = 1;
675 return led_classdev_register(&asus->platform_device->dev, led_cdev);
676 }
677
asus_led_init(struct asus_laptop * asus)678 static int asus_led_init(struct asus_laptop *asus)
679 {
680 int r = 0;
681
682 /*
683 * The Pegatron Lucid has no physical leds, but all methods are
684 * available in the DSDT...
685 */
686 if (asus->is_pega_lucid)
687 return 0;
688
689 /*
690 * Functions that actually update the LED's are called from a
691 * workqueue. By doing this as separate work rather than when the LED
692 * subsystem asks, we avoid messing with the Asus ACPI stuff during a
693 * potentially bad time, such as a timer interrupt.
694 */
695 asus->led_workqueue = create_singlethread_workqueue("led_workqueue");
696 if (!asus->led_workqueue)
697 return -ENOMEM;
698
699 if (asus->wled_type == TYPE_LED)
700 r = asus_led_register(asus, &asus->wled, "asus::wlan",
701 METHOD_WLAN);
702 if (r)
703 goto error;
704 if (asus->bled_type == TYPE_LED)
705 r = asus_led_register(asus, &asus->bled, "asus::bluetooth",
706 METHOD_BLUETOOTH);
707 if (r)
708 goto error;
709 r = asus_led_register(asus, &asus->mled, "asus::mail", METHOD_MLED);
710 if (r)
711 goto error;
712 r = asus_led_register(asus, &asus->tled, "asus::touchpad", METHOD_TLED);
713 if (r)
714 goto error;
715 r = asus_led_register(asus, &asus->rled, "asus::record", METHOD_RLED);
716 if (r)
717 goto error;
718 r = asus_led_register(asus, &asus->pled, "asus::phone", METHOD_PLED);
719 if (r)
720 goto error;
721 r = asus_led_register(asus, &asus->gled, "asus::gaming", METHOD_GLED);
722 if (r)
723 goto error;
724 if (!acpi_check_handle(asus->handle, METHOD_KBD_LIGHT_SET, NULL) &&
725 !acpi_check_handle(asus->handle, METHOD_KBD_LIGHT_GET, NULL)) {
726 struct asus_led *led = &asus->kled;
727 struct led_classdev *cdev = &led->led;
728
729 led->asus = asus;
730
731 INIT_WORK(&led->work, asus_kled_cdev_update);
732 cdev->name = "asus::kbd_backlight";
733 cdev->brightness_set = asus_kled_cdev_set;
734 cdev->brightness_get = asus_kled_cdev_get;
735 cdev->max_brightness = 3;
736 r = led_classdev_register(&asus->platform_device->dev, cdev);
737 }
738 error:
739 if (r)
740 asus_led_exit(asus);
741 return r;
742 }
743
744 /*
745 * Backlight device
746 */
asus_read_brightness(struct backlight_device * bd)747 static int asus_read_brightness(struct backlight_device *bd)
748 {
749 struct asus_laptop *asus = bl_get_data(bd);
750 unsigned long long value;
751 acpi_status rv;
752
753 rv = acpi_evaluate_integer(asus->handle, METHOD_BRIGHTNESS_GET,
754 NULL, &value);
755 if (ACPI_FAILURE(rv)) {
756 pr_warn("Error reading brightness\n");
757 return 0;
758 }
759
760 return value;
761 }
762
asus_set_brightness(struct backlight_device * bd,int value)763 static int asus_set_brightness(struct backlight_device *bd, int value)
764 {
765 struct asus_laptop *asus = bl_get_data(bd);
766
767 if (write_acpi_int(asus->handle, METHOD_BRIGHTNESS_SET, value)) {
768 pr_warn("Error changing brightness\n");
769 return -EIO;
770 }
771 return 0;
772 }
773
update_bl_status(struct backlight_device * bd)774 static int update_bl_status(struct backlight_device *bd)
775 {
776 int value = bd->props.brightness;
777
778 return asus_set_brightness(bd, value);
779 }
780
781 static const struct backlight_ops asusbl_ops = {
782 .get_brightness = asus_read_brightness,
783 .update_status = update_bl_status,
784 };
785
asus_backlight_notify(struct asus_laptop * asus)786 static int asus_backlight_notify(struct asus_laptop *asus)
787 {
788 struct backlight_device *bd = asus->backlight_device;
789 int old = bd->props.brightness;
790
791 backlight_force_update(bd, BACKLIGHT_UPDATE_HOTKEY);
792
793 return old;
794 }
795
asus_backlight_init(struct asus_laptop * asus)796 static int asus_backlight_init(struct asus_laptop *asus)
797 {
798 struct backlight_device *bd;
799 struct backlight_properties props;
800
801 if (acpi_check_handle(asus->handle, METHOD_BRIGHTNESS_GET, NULL) ||
802 acpi_check_handle(asus->handle, METHOD_BRIGHTNESS_SET, NULL))
803 return 0;
804
805 memset(&props, 0, sizeof(struct backlight_properties));
806 props.max_brightness = 15;
807 props.type = BACKLIGHT_PLATFORM;
808
809 bd = backlight_device_register(ASUS_LAPTOP_FILE,
810 &asus->platform_device->dev, asus,
811 &asusbl_ops, &props);
812 if (IS_ERR(bd)) {
813 pr_err("Could not register asus backlight device\n");
814 asus->backlight_device = NULL;
815 return PTR_ERR(bd);
816 }
817
818 asus->backlight_device = bd;
819 bd->props.brightness = asus_read_brightness(bd);
820 bd->props.power = BACKLIGHT_POWER_ON;
821 backlight_update_status(bd);
822 return 0;
823 }
824
asus_backlight_exit(struct asus_laptop * asus)825 static void asus_backlight_exit(struct asus_laptop *asus)
826 {
827 backlight_device_unregister(asus->backlight_device);
828 asus->backlight_device = NULL;
829 }
830
831 /*
832 * Platform device handlers
833 */
834
835 /*
836 * We write our info in page, we begin at offset off and cannot write more
837 * than count bytes. We set eof to 1 if we handle those 2 values. We return the
838 * number of bytes written in page
839 */
infos_show(struct device * dev,struct device_attribute * attr,char * page)840 static ssize_t infos_show(struct device *dev, struct device_attribute *attr,
841 char *page)
842 {
843 struct asus_laptop *asus = dev_get_drvdata(dev);
844 int len = 0;
845 unsigned long long temp;
846 char buf[16]; /* enough for all info */
847 acpi_status rv;
848
849 /*
850 * We use the easy way, we don't care of off and count,
851 * so we don't set eof to 1
852 */
853
854 len += sysfs_emit_at(page, len, ASUS_LAPTOP_NAME " " ASUS_LAPTOP_VERSION "\n");
855 len += sysfs_emit_at(page, len, "Model reference : %s\n", asus->name);
856 /*
857 * The SFUN method probably allows the original driver to get the list
858 * of features supported by a given model. For now, 0x0100 or 0x0800
859 * bit signifies that the laptop is equipped with a Wi-Fi MiniPCI card.
860 * The significance of others is yet to be found.
861 */
862 rv = acpi_evaluate_integer(asus->handle, "SFUN", NULL, &temp);
863 if (ACPI_SUCCESS(rv))
864 len += sysfs_emit_at(page, len, "SFUN value : %#x\n",
865 (uint) temp);
866 /*
867 * The HWRS method return informations about the hardware.
868 * 0x80 bit is for WLAN, 0x100 for Bluetooth.
869 * 0x40 for WWAN, 0x10 for WIMAX.
870 * The significance of others is yet to be found.
871 * We don't currently use this for device detection, and it
872 * takes several seconds to run on some systems.
873 */
874 rv = acpi_evaluate_integer(asus->handle, "HWRS", NULL, &temp);
875 if (ACPI_SUCCESS(rv))
876 len += sysfs_emit_at(page, len, "HWRS value : %#x\n",
877 (uint) temp);
878 /*
879 * Another value for userspace: the ASYM method returns 0x02 for
880 * battery low and 0x04 for battery critical, its readings tend to be
881 * more accurate than those provided by _BST.
882 * Note: since not all the laptops provide this method, errors are
883 * silently ignored.
884 */
885 rv = acpi_evaluate_integer(asus->handle, "ASYM", NULL, &temp);
886 if (ACPI_SUCCESS(rv))
887 len += sysfs_emit_at(page, len, "ASYM value : %#x\n",
888 (uint) temp);
889 if (asus->dsdt_info) {
890 snprintf(buf, 16, "%d", asus->dsdt_info->length);
891 len += sysfs_emit_at(page, len, "DSDT length : %s\n", buf);
892 snprintf(buf, 16, "%d", asus->dsdt_info->checksum);
893 len += sysfs_emit_at(page, len, "DSDT checksum : %s\n", buf);
894 snprintf(buf, 16, "%d", asus->dsdt_info->revision);
895 len += sysfs_emit_at(page, len, "DSDT revision : %s\n", buf);
896 snprintf(buf, 7, "%s", asus->dsdt_info->oem_id);
897 len += sysfs_emit_at(page, len, "OEM id : %s\n", buf);
898 snprintf(buf, 9, "%s", asus->dsdt_info->oem_table_id);
899 len += sysfs_emit_at(page, len, "OEM table id : %s\n", buf);
900 snprintf(buf, 16, "%x", asus->dsdt_info->oem_revision);
901 len += sysfs_emit_at(page, len, "OEM revision : 0x%s\n", buf);
902 snprintf(buf, 5, "%s", asus->dsdt_info->asl_compiler_id);
903 len += sysfs_emit_at(page, len, "ASL comp vendor id : %s\n", buf);
904 snprintf(buf, 16, "%x", asus->dsdt_info->asl_compiler_revision);
905 len += sysfs_emit_at(page, len, "ASL comp revision : 0x%s\n", buf);
906 }
907
908 return len;
909 }
910 static DEVICE_ATTR_RO(infos);
911
sysfs_acpi_set(struct asus_laptop * asus,const char * buf,size_t count,const char * method)912 static ssize_t sysfs_acpi_set(struct asus_laptop *asus,
913 const char *buf, size_t count,
914 const char *method)
915 {
916 int rv, value;
917
918 rv = kstrtoint(buf, 0, &value);
919 if (rv < 0)
920 return rv;
921
922 if (write_acpi_int(asus->handle, method, value))
923 return -ENODEV;
924 return count;
925 }
926
927 /*
928 * LEDD display
929 */
ledd_show(struct device * dev,struct device_attribute * attr,char * buf)930 static ssize_t ledd_show(struct device *dev, struct device_attribute *attr,
931 char *buf)
932 {
933 struct asus_laptop *asus = dev_get_drvdata(dev);
934
935 return sysfs_emit(buf, "0x%08x\n", asus->ledd_status);
936 }
937
ledd_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)938 static ssize_t ledd_store(struct device *dev, struct device_attribute *attr,
939 const char *buf, size_t count)
940 {
941 struct asus_laptop *asus = dev_get_drvdata(dev);
942 int rv, value;
943
944 rv = kstrtoint(buf, 0, &value);
945 if (rv < 0)
946 return rv;
947
948 if (write_acpi_int(asus->handle, METHOD_LEDD, value)) {
949 pr_warn("LED display write failed\n");
950 return -ENODEV;
951 }
952
953 asus->ledd_status = (u32) value;
954 return count;
955 }
956 static DEVICE_ATTR_RW(ledd);
957
958 /*
959 * Wireless
960 */
asus_wireless_status(struct asus_laptop * asus,int mask)961 static int asus_wireless_status(struct asus_laptop *asus, int mask)
962 {
963 unsigned long long status;
964 acpi_status rv = AE_OK;
965
966 if (!asus->have_rsts)
967 return (asus->wireless_status & mask) ? 1 : 0;
968
969 rv = acpi_evaluate_integer(asus->handle, METHOD_WL_STATUS,
970 NULL, &status);
971 if (ACPI_FAILURE(rv)) {
972 pr_warn("Error reading Wireless status\n");
973 return -EINVAL;
974 }
975 return !!(status & mask);
976 }
977
978 /*
979 * WLAN
980 */
asus_wlan_set(struct asus_laptop * asus,int status)981 static int asus_wlan_set(struct asus_laptop *asus, int status)
982 {
983 if (write_acpi_int(asus->handle, METHOD_WLAN, !!status)) {
984 pr_warn("Error setting wlan status to %d\n", status);
985 return -EIO;
986 }
987 return 0;
988 }
989
wlan_show(struct device * dev,struct device_attribute * attr,char * buf)990 static ssize_t wlan_show(struct device *dev, struct device_attribute *attr,
991 char *buf)
992 {
993 struct asus_laptop *asus = dev_get_drvdata(dev);
994
995 return sysfs_emit(buf, "%d\n", asus_wireless_status(asus, WL_RSTS));
996 }
997
wlan_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)998 static ssize_t wlan_store(struct device *dev, struct device_attribute *attr,
999 const char *buf, size_t count)
1000 {
1001 struct asus_laptop *asus = dev_get_drvdata(dev);
1002
1003 return sysfs_acpi_set(asus, buf, count, METHOD_WLAN);
1004 }
1005 static DEVICE_ATTR_RW(wlan);
1006
1007 /*e
1008 * Bluetooth
1009 */
asus_bluetooth_set(struct asus_laptop * asus,int status)1010 static int asus_bluetooth_set(struct asus_laptop *asus, int status)
1011 {
1012 if (write_acpi_int(asus->handle, METHOD_BLUETOOTH, !!status)) {
1013 pr_warn("Error setting bluetooth status to %d\n", status);
1014 return -EIO;
1015 }
1016 return 0;
1017 }
1018
bluetooth_show(struct device * dev,struct device_attribute * attr,char * buf)1019 static ssize_t bluetooth_show(struct device *dev, struct device_attribute *attr,
1020 char *buf)
1021 {
1022 struct asus_laptop *asus = dev_get_drvdata(dev);
1023
1024 return sysfs_emit(buf, "%d\n", asus_wireless_status(asus, BT_RSTS));
1025 }
1026
bluetooth_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1027 static ssize_t bluetooth_store(struct device *dev,
1028 struct device_attribute *attr, const char *buf,
1029 size_t count)
1030 {
1031 struct asus_laptop *asus = dev_get_drvdata(dev);
1032
1033 return sysfs_acpi_set(asus, buf, count, METHOD_BLUETOOTH);
1034 }
1035 static DEVICE_ATTR_RW(bluetooth);
1036
1037 /*
1038 * Wimax
1039 */
asus_wimax_set(struct asus_laptop * asus,int status)1040 static int asus_wimax_set(struct asus_laptop *asus, int status)
1041 {
1042 if (write_acpi_int(asus->handle, METHOD_WIMAX, !!status)) {
1043 pr_warn("Error setting wimax status to %d\n", status);
1044 return -EIO;
1045 }
1046 return 0;
1047 }
1048
wimax_show(struct device * dev,struct device_attribute * attr,char * buf)1049 static ssize_t wimax_show(struct device *dev, struct device_attribute *attr,
1050 char *buf)
1051 {
1052 struct asus_laptop *asus = dev_get_drvdata(dev);
1053
1054 return sysfs_emit(buf, "%d\n", asus_wireless_status(asus, WM_RSTS));
1055 }
1056
wimax_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1057 static ssize_t wimax_store(struct device *dev, struct device_attribute *attr,
1058 const char *buf, size_t count)
1059 {
1060 struct asus_laptop *asus = dev_get_drvdata(dev);
1061
1062 return sysfs_acpi_set(asus, buf, count, METHOD_WIMAX);
1063 }
1064 static DEVICE_ATTR_RW(wimax);
1065
1066 /*
1067 * Wwan
1068 */
asus_wwan_set(struct asus_laptop * asus,int status)1069 static int asus_wwan_set(struct asus_laptop *asus, int status)
1070 {
1071 if (write_acpi_int(asus->handle, METHOD_WWAN, !!status)) {
1072 pr_warn("Error setting wwan status to %d\n", status);
1073 return -EIO;
1074 }
1075 return 0;
1076 }
1077
wwan_show(struct device * dev,struct device_attribute * attr,char * buf)1078 static ssize_t wwan_show(struct device *dev, struct device_attribute *attr,
1079 char *buf)
1080 {
1081 struct asus_laptop *asus = dev_get_drvdata(dev);
1082
1083 return sysfs_emit(buf, "%d\n", asus_wireless_status(asus, WW_RSTS));
1084 }
1085
wwan_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1086 static ssize_t wwan_store(struct device *dev, struct device_attribute *attr,
1087 const char *buf, size_t count)
1088 {
1089 struct asus_laptop *asus = dev_get_drvdata(dev);
1090
1091 return sysfs_acpi_set(asus, buf, count, METHOD_WWAN);
1092 }
1093 static DEVICE_ATTR_RW(wwan);
1094
1095 /*
1096 * Display
1097 */
asus_set_display(struct asus_laptop * asus,int value)1098 static void asus_set_display(struct asus_laptop *asus, int value)
1099 {
1100 /* no sanity check needed for now */
1101 if (write_acpi_int(asus->handle, METHOD_SWITCH_DISPLAY, value))
1102 pr_warn("Error setting display\n");
1103 return;
1104 }
1105
1106 /*
1107 * Experimental support for display switching. As of now: 1 should activate
1108 * the LCD output, 2 should do for CRT, 4 for TV-Out and 8 for DVI.
1109 * Any combination (bitwise) of these will suffice. I never actually tested 4
1110 * displays hooked up simultaneously, so be warned. See the acpi4asus README
1111 * for more info.
1112 */
display_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1113 static ssize_t display_store(struct device *dev, struct device_attribute *attr,
1114 const char *buf, size_t count)
1115 {
1116 struct asus_laptop *asus = dev_get_drvdata(dev);
1117 int rv, value;
1118
1119 rv = kstrtoint(buf, 0, &value);
1120 if (rv < 0)
1121 return rv;
1122
1123 asus_set_display(asus, value);
1124 return count;
1125 }
1126 static DEVICE_ATTR_WO(display);
1127
1128 /*
1129 * Light Sens
1130 */
asus_als_switch(struct asus_laptop * asus,int value)1131 static void asus_als_switch(struct asus_laptop *asus, int value)
1132 {
1133 int ret;
1134
1135 if (asus->is_pega_lucid) {
1136 ret = asus_pega_lucid_set(asus, PEGA_ALS, value);
1137 if (!ret)
1138 ret = asus_pega_lucid_set(asus, PEGA_ALS_POWER, value);
1139 } else {
1140 ret = write_acpi_int(asus->handle, METHOD_ALS_CONTROL, value);
1141 }
1142 if (ret)
1143 pr_warn("Error setting light sensor switch\n");
1144
1145 asus->light_switch = value;
1146 }
1147
ls_switch_show(struct device * dev,struct device_attribute * attr,char * buf)1148 static ssize_t ls_switch_show(struct device *dev, struct device_attribute *attr,
1149 char *buf)
1150 {
1151 struct asus_laptop *asus = dev_get_drvdata(dev);
1152
1153 return sysfs_emit(buf, "%d\n", asus->light_switch);
1154 }
1155
ls_switch_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1156 static ssize_t ls_switch_store(struct device *dev,
1157 struct device_attribute *attr, const char *buf,
1158 size_t count)
1159 {
1160 struct asus_laptop *asus = dev_get_drvdata(dev);
1161 int rv, value;
1162
1163 rv = kstrtoint(buf, 0, &value);
1164 if (rv < 0)
1165 return rv;
1166
1167 asus_als_switch(asus, value ? 1 : 0);
1168 return count;
1169 }
1170 static DEVICE_ATTR_RW(ls_switch);
1171
asus_als_level(struct asus_laptop * asus,int value)1172 static void asus_als_level(struct asus_laptop *asus, int value)
1173 {
1174 if (write_acpi_int(asus->handle, METHOD_ALS_LEVEL, value))
1175 pr_warn("Error setting light sensor level\n");
1176 asus->light_level = value;
1177 }
1178
ls_level_show(struct device * dev,struct device_attribute * attr,char * buf)1179 static ssize_t ls_level_show(struct device *dev, struct device_attribute *attr,
1180 char *buf)
1181 {
1182 struct asus_laptop *asus = dev_get_drvdata(dev);
1183
1184 return sysfs_emit(buf, "%d\n", asus->light_level);
1185 }
1186
ls_level_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1187 static ssize_t ls_level_store(struct device *dev, struct device_attribute *attr,
1188 const char *buf, size_t count)
1189 {
1190 struct asus_laptop *asus = dev_get_drvdata(dev);
1191 int rv, value;
1192
1193 rv = kstrtoint(buf, 0, &value);
1194 if (rv < 0)
1195 return rv;
1196
1197 value = (0 < value) ? ((15 < value) ? 15 : value) : 0;
1198 /* 0 <= value <= 15 */
1199 asus_als_level(asus, value);
1200
1201 return count;
1202 }
1203 static DEVICE_ATTR_RW(ls_level);
1204
pega_int_read(struct asus_laptop * asus,int arg,int * result)1205 static int pega_int_read(struct asus_laptop *asus, int arg, int *result)
1206 {
1207 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1208 int err = write_acpi_int_ret(asus->handle, METHOD_PEGA_READ, arg,
1209 &buffer);
1210 if (!err) {
1211 union acpi_object *obj = buffer.pointer;
1212 if (obj && obj->type == ACPI_TYPE_INTEGER)
1213 *result = obj->integer.value;
1214 else
1215 err = -EIO;
1216 }
1217 return err;
1218 }
1219
ls_value_show(struct device * dev,struct device_attribute * attr,char * buf)1220 static ssize_t ls_value_show(struct device *dev, struct device_attribute *attr,
1221 char *buf)
1222 {
1223 struct asus_laptop *asus = dev_get_drvdata(dev);
1224 int err, hi, lo;
1225
1226 err = pega_int_read(asus, PEGA_READ_ALS_H, &hi);
1227 if (!err)
1228 err = pega_int_read(asus, PEGA_READ_ALS_L, &lo);
1229 if (!err)
1230 return sysfs_emit(buf, "%d\n", 10 * hi + lo);
1231 return err;
1232 }
1233 static DEVICE_ATTR_RO(ls_value);
1234
1235 /*
1236 * GPS
1237 */
asus_gps_status(struct asus_laptop * asus)1238 static int asus_gps_status(struct asus_laptop *asus)
1239 {
1240 unsigned long long status;
1241 acpi_status rv;
1242
1243 rv = acpi_evaluate_integer(asus->handle, METHOD_GPS_STATUS,
1244 NULL, &status);
1245 if (ACPI_FAILURE(rv)) {
1246 pr_warn("Error reading GPS status\n");
1247 return -ENODEV;
1248 }
1249 return !!status;
1250 }
1251
asus_gps_switch(struct asus_laptop * asus,int status)1252 static int asus_gps_switch(struct asus_laptop *asus, int status)
1253 {
1254 const char *meth = status ? METHOD_GPS_ON : METHOD_GPS_OFF;
1255
1256 if (write_acpi_int(asus->handle, meth, 0x02))
1257 return -ENODEV;
1258 return 0;
1259 }
1260
gps_show(struct device * dev,struct device_attribute * attr,char * buf)1261 static ssize_t gps_show(struct device *dev, struct device_attribute *attr,
1262 char *buf)
1263 {
1264 struct asus_laptop *asus = dev_get_drvdata(dev);
1265
1266 return sysfs_emit(buf, "%d\n", asus_gps_status(asus));
1267 }
1268
gps_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1269 static ssize_t gps_store(struct device *dev, struct device_attribute *attr,
1270 const char *buf, size_t count)
1271 {
1272 struct asus_laptop *asus = dev_get_drvdata(dev);
1273 int rv, value;
1274 int ret;
1275
1276 rv = kstrtoint(buf, 0, &value);
1277 if (rv < 0)
1278 return rv;
1279 ret = asus_gps_switch(asus, !!value);
1280 if (ret)
1281 return ret;
1282 rfkill_set_sw_state(asus->gps.rfkill, !value);
1283 return count;
1284 }
1285 static DEVICE_ATTR_RW(gps);
1286
1287 /*
1288 * rfkill
1289 */
asus_gps_rfkill_set(void * data,bool blocked)1290 static int asus_gps_rfkill_set(void *data, bool blocked)
1291 {
1292 struct asus_laptop *asus = data;
1293
1294 return asus_gps_switch(asus, !blocked);
1295 }
1296
1297 static const struct rfkill_ops asus_gps_rfkill_ops = {
1298 .set_block = asus_gps_rfkill_set,
1299 };
1300
asus_rfkill_set(void * data,bool blocked)1301 static int asus_rfkill_set(void *data, bool blocked)
1302 {
1303 struct asus_rfkill *rfk = data;
1304 struct asus_laptop *asus = rfk->asus;
1305
1306 if (rfk->control_id == WL_RSTS)
1307 return asus_wlan_set(asus, !blocked);
1308 else if (rfk->control_id == BT_RSTS)
1309 return asus_bluetooth_set(asus, !blocked);
1310 else if (rfk->control_id == WM_RSTS)
1311 return asus_wimax_set(asus, !blocked);
1312 else if (rfk->control_id == WW_RSTS)
1313 return asus_wwan_set(asus, !blocked);
1314
1315 return -EINVAL;
1316 }
1317
1318 static const struct rfkill_ops asus_rfkill_ops = {
1319 .set_block = asus_rfkill_set,
1320 };
1321
asus_rfkill_terminate(struct asus_rfkill * rfk)1322 static void asus_rfkill_terminate(struct asus_rfkill *rfk)
1323 {
1324 if (!rfk->rfkill)
1325 return ;
1326
1327 rfkill_unregister(rfk->rfkill);
1328 rfkill_destroy(rfk->rfkill);
1329 rfk->rfkill = NULL;
1330 }
1331
asus_rfkill_exit(struct asus_laptop * asus)1332 static void asus_rfkill_exit(struct asus_laptop *asus)
1333 {
1334 asus_rfkill_terminate(&asus->wwan);
1335 asus_rfkill_terminate(&asus->bluetooth);
1336 asus_rfkill_terminate(&asus->wlan);
1337 asus_rfkill_terminate(&asus->gps);
1338 }
1339
asus_rfkill_setup(struct asus_laptop * asus,struct asus_rfkill * rfk,const char * name,int control_id,int type,const struct rfkill_ops * ops)1340 static int asus_rfkill_setup(struct asus_laptop *asus, struct asus_rfkill *rfk,
1341 const char *name, int control_id, int type,
1342 const struct rfkill_ops *ops)
1343 {
1344 int result;
1345
1346 rfk->control_id = control_id;
1347 rfk->asus = asus;
1348 rfk->rfkill = rfkill_alloc(name, &asus->platform_device->dev,
1349 type, ops, rfk);
1350 if (!rfk->rfkill)
1351 return -EINVAL;
1352
1353 result = rfkill_register(rfk->rfkill);
1354 if (result) {
1355 rfkill_destroy(rfk->rfkill);
1356 rfk->rfkill = NULL;
1357 }
1358
1359 return result;
1360 }
1361
asus_rfkill_init(struct asus_laptop * asus)1362 static int asus_rfkill_init(struct asus_laptop *asus)
1363 {
1364 int result = 0;
1365
1366 if (asus->is_pega_lucid)
1367 return -ENODEV;
1368
1369 if (!acpi_check_handle(asus->handle, METHOD_GPS_ON, NULL) &&
1370 !acpi_check_handle(asus->handle, METHOD_GPS_OFF, NULL) &&
1371 !acpi_check_handle(asus->handle, METHOD_GPS_STATUS, NULL))
1372 result = asus_rfkill_setup(asus, &asus->gps, "asus-gps",
1373 -1, RFKILL_TYPE_GPS,
1374 &asus_gps_rfkill_ops);
1375 if (result)
1376 goto exit;
1377
1378
1379 if (!acpi_check_handle(asus->handle, METHOD_WLAN, NULL) &&
1380 asus->wled_type == TYPE_RFKILL)
1381 result = asus_rfkill_setup(asus, &asus->wlan, "asus-wlan",
1382 WL_RSTS, RFKILL_TYPE_WLAN,
1383 &asus_rfkill_ops);
1384 if (result)
1385 goto exit;
1386
1387 if (!acpi_check_handle(asus->handle, METHOD_BLUETOOTH, NULL) &&
1388 asus->bled_type == TYPE_RFKILL)
1389 result = asus_rfkill_setup(asus, &asus->bluetooth,
1390 "asus-bluetooth", BT_RSTS,
1391 RFKILL_TYPE_BLUETOOTH,
1392 &asus_rfkill_ops);
1393 if (result)
1394 goto exit;
1395
1396 if (!acpi_check_handle(asus->handle, METHOD_WWAN, NULL))
1397 result = asus_rfkill_setup(asus, &asus->wwan, "asus-wwan",
1398 WW_RSTS, RFKILL_TYPE_WWAN,
1399 &asus_rfkill_ops);
1400 if (result)
1401 goto exit;
1402
1403 if (!acpi_check_handle(asus->handle, METHOD_WIMAX, NULL))
1404 result = asus_rfkill_setup(asus, &asus->wimax, "asus-wimax",
1405 WM_RSTS, RFKILL_TYPE_WIMAX,
1406 &asus_rfkill_ops);
1407 if (result)
1408 goto exit;
1409
1410 exit:
1411 if (result)
1412 asus_rfkill_exit(asus);
1413
1414 return result;
1415 }
1416
pega_rfkill_set(void * data,bool blocked)1417 static int pega_rfkill_set(void *data, bool blocked)
1418 {
1419 struct asus_rfkill *rfk = data;
1420
1421 int ret = asus_pega_lucid_set(rfk->asus, rfk->control_id, !blocked);
1422 return ret;
1423 }
1424
1425 static const struct rfkill_ops pega_rfkill_ops = {
1426 .set_block = pega_rfkill_set,
1427 };
1428
pega_rfkill_setup(struct asus_laptop * asus,struct asus_rfkill * rfk,const char * name,int controlid,int rfkill_type)1429 static int pega_rfkill_setup(struct asus_laptop *asus, struct asus_rfkill *rfk,
1430 const char *name, int controlid, int rfkill_type)
1431 {
1432 return asus_rfkill_setup(asus, rfk, name, controlid, rfkill_type,
1433 &pega_rfkill_ops);
1434 }
1435
pega_rfkill_init(struct asus_laptop * asus)1436 static int pega_rfkill_init(struct asus_laptop *asus)
1437 {
1438 int ret = 0;
1439
1440 if(!asus->is_pega_lucid)
1441 return -ENODEV;
1442
1443 ret = pega_rfkill_setup(asus, &asus->wlan, "pega-wlan",
1444 PEGA_WLAN, RFKILL_TYPE_WLAN);
1445 if(ret)
1446 goto exit;
1447
1448 ret = pega_rfkill_setup(asus, &asus->bluetooth, "pega-bt",
1449 PEGA_BLUETOOTH, RFKILL_TYPE_BLUETOOTH);
1450 if(ret)
1451 goto exit;
1452
1453 ret = pega_rfkill_setup(asus, &asus->wwan, "pega-wwan",
1454 PEGA_WWAN, RFKILL_TYPE_WWAN);
1455
1456 exit:
1457 if (ret)
1458 asus_rfkill_exit(asus);
1459
1460 return ret;
1461 }
1462
1463 /*
1464 * Input device (i.e. hotkeys)
1465 */
asus_input_notify(struct asus_laptop * asus,int event)1466 static void asus_input_notify(struct asus_laptop *asus, int event)
1467 {
1468 if (!asus->inputdev)
1469 return ;
1470 if (!sparse_keymap_report_event(asus->inputdev, event, 1, true))
1471 pr_info("Unknown key %x pressed\n", event);
1472 }
1473
asus_input_init(struct asus_laptop * asus)1474 static int asus_input_init(struct asus_laptop *asus)
1475 {
1476 struct input_dev *input;
1477 int error;
1478
1479 input = input_allocate_device();
1480 if (!input)
1481 return -ENOMEM;
1482
1483 input->name = "Asus Laptop extra buttons";
1484 input->phys = ASUS_LAPTOP_FILE "/input0";
1485 input->id.bustype = BUS_HOST;
1486 input->dev.parent = &asus->platform_device->dev;
1487
1488 error = sparse_keymap_setup(input, asus_keymap, NULL);
1489 if (error) {
1490 pr_err("Unable to setup input device keymap\n");
1491 goto err_free_dev;
1492 }
1493 error = input_register_device(input);
1494 if (error) {
1495 pr_warn("Unable to register input device\n");
1496 goto err_free_dev;
1497 }
1498
1499 asus->inputdev = input;
1500 return 0;
1501
1502 err_free_dev:
1503 input_free_device(input);
1504 return error;
1505 }
1506
asus_input_exit(struct asus_laptop * asus)1507 static void asus_input_exit(struct asus_laptop *asus)
1508 {
1509 if (asus->inputdev)
1510 input_unregister_device(asus->inputdev);
1511 asus->inputdev = NULL;
1512 }
1513
1514 /*
1515 * ACPI driver
1516 */
asus_acpi_notify(struct acpi_device * device,u32 event)1517 static void asus_acpi_notify(struct acpi_device *device, u32 event)
1518 {
1519 struct asus_laptop *asus = acpi_driver_data(device);
1520 u16 count;
1521
1522 /* TODO Find a better way to handle events count. */
1523 count = asus->event_count[event % 128]++;
1524 acpi_bus_generate_netlink_event(asus->device->pnp.device_class,
1525 dev_name(&asus->device->dev), event,
1526 count);
1527
1528 if (event >= ATKD_BRNUP_MIN && event <= ATKD_BRNUP_MAX)
1529 event = ATKD_BRNUP;
1530 else if (event >= ATKD_BRNDOWN_MIN &&
1531 event <= ATKD_BRNDOWN_MAX)
1532 event = ATKD_BRNDOWN;
1533
1534 /* Brightness events are special */
1535 if (event == ATKD_BRNDOWN || event == ATKD_BRNUP) {
1536 if (asus->backlight_device != NULL) {
1537 /* Update the backlight device. */
1538 asus_backlight_notify(asus);
1539 return ;
1540 }
1541 }
1542
1543 /* Accelerometer "coarse orientation change" event */
1544 if (asus->pega_accel_poll && event == 0xEA) {
1545 kobject_uevent(&asus->pega_accel_poll->dev.kobj, KOBJ_CHANGE);
1546 return ;
1547 }
1548
1549 asus_input_notify(asus, event);
1550 }
1551
1552 static struct attribute *asus_attributes[] = {
1553 &dev_attr_infos.attr,
1554 &dev_attr_wlan.attr,
1555 &dev_attr_bluetooth.attr,
1556 &dev_attr_wimax.attr,
1557 &dev_attr_wwan.attr,
1558 &dev_attr_display.attr,
1559 &dev_attr_ledd.attr,
1560 &dev_attr_ls_value.attr,
1561 &dev_attr_ls_level.attr,
1562 &dev_attr_ls_switch.attr,
1563 &dev_attr_gps.attr,
1564 NULL
1565 };
1566
asus_sysfs_is_visible(struct kobject * kobj,struct attribute * attr,int idx)1567 static umode_t asus_sysfs_is_visible(struct kobject *kobj,
1568 struct attribute *attr,
1569 int idx)
1570 {
1571 struct device *dev = kobj_to_dev(kobj);
1572 struct asus_laptop *asus = dev_get_drvdata(dev);
1573 acpi_handle handle = asus->handle;
1574 bool supported;
1575
1576 if (asus->is_pega_lucid) {
1577 /* no ls_level interface on the Lucid */
1578 if (attr == &dev_attr_ls_switch.attr)
1579 supported = true;
1580 else if (attr == &dev_attr_ls_level.attr)
1581 supported = false;
1582 else
1583 goto normal;
1584
1585 return supported ? attr->mode : 0;
1586 }
1587
1588 normal:
1589 if (attr == &dev_attr_wlan.attr) {
1590 supported = !acpi_check_handle(handle, METHOD_WLAN, NULL);
1591
1592 } else if (attr == &dev_attr_bluetooth.attr) {
1593 supported = !acpi_check_handle(handle, METHOD_BLUETOOTH, NULL);
1594
1595 } else if (attr == &dev_attr_display.attr) {
1596 supported = !acpi_check_handle(handle, METHOD_SWITCH_DISPLAY, NULL);
1597
1598 } else if (attr == &dev_attr_wimax.attr) {
1599 supported =
1600 !acpi_check_handle(asus->handle, METHOD_WIMAX, NULL);
1601
1602 } else if (attr == &dev_attr_wwan.attr) {
1603 supported = !acpi_check_handle(asus->handle, METHOD_WWAN, NULL);
1604
1605 } else if (attr == &dev_attr_ledd.attr) {
1606 supported = !acpi_check_handle(handle, METHOD_LEDD, NULL);
1607
1608 } else if (attr == &dev_attr_ls_switch.attr ||
1609 attr == &dev_attr_ls_level.attr) {
1610 supported = !acpi_check_handle(handle, METHOD_ALS_CONTROL, NULL) &&
1611 !acpi_check_handle(handle, METHOD_ALS_LEVEL, NULL);
1612 } else if (attr == &dev_attr_ls_value.attr) {
1613 supported = asus->is_pega_lucid;
1614 } else if (attr == &dev_attr_gps.attr) {
1615 supported = !acpi_check_handle(handle, METHOD_GPS_ON, NULL) &&
1616 !acpi_check_handle(handle, METHOD_GPS_OFF, NULL) &&
1617 !acpi_check_handle(handle, METHOD_GPS_STATUS, NULL);
1618 } else {
1619 supported = true;
1620 }
1621
1622 return supported ? attr->mode : 0;
1623 }
1624
1625
1626 static const struct attribute_group asus_attr_group = {
1627 .is_visible = asus_sysfs_is_visible,
1628 .attrs = asus_attributes,
1629 };
1630
asus_platform_init(struct asus_laptop * asus)1631 static int asus_platform_init(struct asus_laptop *asus)
1632 {
1633 int result;
1634
1635 asus->platform_device = platform_device_alloc(ASUS_LAPTOP_FILE, PLATFORM_DEVID_NONE);
1636 if (!asus->platform_device)
1637 return -ENOMEM;
1638 platform_set_drvdata(asus->platform_device, asus);
1639
1640 result = platform_device_add(asus->platform_device);
1641 if (result)
1642 goto fail_platform_device;
1643
1644 result = sysfs_create_group(&asus->platform_device->dev.kobj,
1645 &asus_attr_group);
1646 if (result)
1647 goto fail_sysfs;
1648
1649 return 0;
1650
1651 fail_sysfs:
1652 platform_device_del(asus->platform_device);
1653 fail_platform_device:
1654 platform_device_put(asus->platform_device);
1655 return result;
1656 }
1657
asus_platform_exit(struct asus_laptop * asus)1658 static void asus_platform_exit(struct asus_laptop *asus)
1659 {
1660 sysfs_remove_group(&asus->platform_device->dev.kobj, &asus_attr_group);
1661 platform_device_unregister(asus->platform_device);
1662 }
1663
1664 static struct platform_driver platform_driver = {
1665 .driver = {
1666 .name = ASUS_LAPTOP_FILE,
1667 },
1668 };
1669
1670 /*
1671 * This function is used to initialize the context with right values. In this
1672 * method, we can make all the detection we want, and modify the asus_laptop
1673 * struct
1674 */
asus_laptop_get_info(struct asus_laptop * asus)1675 static int asus_laptop_get_info(struct asus_laptop *asus)
1676 {
1677 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1678 union acpi_object *model = NULL;
1679 unsigned long long bsts_result;
1680 char *string = NULL;
1681 acpi_status status;
1682
1683 /*
1684 * Get DSDT headers early enough to allow for differentiating between
1685 * models, but late enough to allow acpi_bus_register_driver() to fail
1686 * before doing anything ACPI-specific. Should we encounter a machine,
1687 * which needs special handling (i.e. its hotkey device has a different
1688 * HID), this bit will be moved.
1689 */
1690 status = acpi_get_table(ACPI_SIG_DSDT, 1, &asus->dsdt_info);
1691 if (ACPI_FAILURE(status))
1692 pr_warn("Couldn't get the DSDT table header\n");
1693
1694 /* We have to write 0 on init this far for all ASUS models */
1695 if (write_acpi_int_ret(asus->handle, "INIT", 0, &buffer)) {
1696 pr_err("Hotkey initialization failed\n");
1697 return -ENODEV;
1698 }
1699
1700 /* This needs to be called for some laptops to init properly */
1701 status =
1702 acpi_evaluate_integer(asus->handle, "BSTS", NULL, &bsts_result);
1703 if (ACPI_FAILURE(status))
1704 pr_warn("Error calling BSTS\n");
1705 else if (bsts_result)
1706 pr_notice("BSTS called, 0x%02x returned\n",
1707 (uint) bsts_result);
1708
1709 /* This too ... */
1710 if (write_acpi_int(asus->handle, "CWAP", wapf))
1711 pr_err("Error calling CWAP(%d)\n", wapf);
1712 /*
1713 * Try to match the object returned by INIT to the specific model.
1714 * Handle every possible object (or the lack of thereof) the DSDT
1715 * writers might throw at us. When in trouble, we pass NULL to
1716 * asus_model_match() and try something completely different.
1717 */
1718 if (buffer.pointer) {
1719 model = buffer.pointer;
1720 switch (model->type) {
1721 case ACPI_TYPE_STRING:
1722 string = model->string.pointer;
1723 break;
1724 case ACPI_TYPE_BUFFER:
1725 string = model->buffer.pointer;
1726 break;
1727 default:
1728 string = "";
1729 break;
1730 }
1731 }
1732 asus->name = kstrdup(string, GFP_KERNEL);
1733 if (!asus->name) {
1734 kfree(buffer.pointer);
1735 return -ENOMEM;
1736 }
1737
1738 if (string)
1739 pr_notice(" %s model detected\n", string);
1740
1741 if (!acpi_check_handle(asus->handle, METHOD_WL_STATUS, NULL))
1742 asus->have_rsts = true;
1743
1744 kfree(model);
1745
1746 return AE_OK;
1747 }
1748
asus_acpi_init(struct asus_laptop * asus)1749 static int asus_acpi_init(struct asus_laptop *asus)
1750 {
1751 int result = 0;
1752
1753 result = acpi_bus_get_status(asus->device);
1754 if (result)
1755 return result;
1756 if (!asus->device->status.present) {
1757 pr_err("Hotkey device not present, aborting\n");
1758 return -ENODEV;
1759 }
1760
1761 result = asus_laptop_get_info(asus);
1762 if (result)
1763 return result;
1764
1765 if (!strcmp(bled_type, "led"))
1766 asus->bled_type = TYPE_LED;
1767 else if (!strcmp(bled_type, "rfkill"))
1768 asus->bled_type = TYPE_RFKILL;
1769
1770 if (!strcmp(wled_type, "led"))
1771 asus->wled_type = TYPE_LED;
1772 else if (!strcmp(wled_type, "rfkill"))
1773 asus->wled_type = TYPE_RFKILL;
1774
1775 if (bluetooth_status >= 0)
1776 asus_bluetooth_set(asus, !!bluetooth_status);
1777
1778 if (wlan_status >= 0)
1779 asus_wlan_set(asus, !!wlan_status);
1780
1781 if (wimax_status >= 0)
1782 asus_wimax_set(asus, !!wimax_status);
1783
1784 if (wwan_status >= 0)
1785 asus_wwan_set(asus, !!wwan_status);
1786
1787 /* Keyboard Backlight is on by default */
1788 if (!acpi_check_handle(asus->handle, METHOD_KBD_LIGHT_SET, NULL))
1789 asus_kled_set(asus, 1);
1790
1791 /* LED display is off by default */
1792 asus->ledd_status = 0xFFF;
1793
1794 /* Set initial values of light sensor and level */
1795 asus->light_switch = !!als_status;
1796 asus->light_level = 5; /* level 5 for sensor sensitivity */
1797
1798 if (asus->is_pega_lucid) {
1799 asus_als_switch(asus, asus->light_switch);
1800 } else if (!acpi_check_handle(asus->handle, METHOD_ALS_CONTROL, NULL) &&
1801 !acpi_check_handle(asus->handle, METHOD_ALS_LEVEL, NULL)) {
1802 asus_als_switch(asus, asus->light_switch);
1803 asus_als_level(asus, asus->light_level);
1804 }
1805
1806 return result;
1807 }
1808
asus_dmi_check(void)1809 static void asus_dmi_check(void)
1810 {
1811 const char *model;
1812
1813 model = dmi_get_system_info(DMI_PRODUCT_NAME);
1814 if (!model)
1815 return;
1816
1817 /* On L1400B WLED control the sound card, don't mess with it ... */
1818 if (strncmp(model, "L1400B", 6) == 0)
1819 wlan_status = -1;
1820 }
1821
1822 static bool asus_device_present;
1823
asus_acpi_add(struct acpi_device * device)1824 static int asus_acpi_add(struct acpi_device *device)
1825 {
1826 struct asus_laptop *asus;
1827 int result;
1828
1829 pr_notice("Asus Laptop Support version %s\n",
1830 ASUS_LAPTOP_VERSION);
1831 asus = kzalloc(sizeof(struct asus_laptop), GFP_KERNEL);
1832 if (!asus)
1833 return -ENOMEM;
1834 asus->handle = device->handle;
1835 strscpy(acpi_device_name(device), ASUS_LAPTOP_DEVICE_NAME);
1836 strscpy(acpi_device_class(device), ASUS_LAPTOP_CLASS);
1837 device->driver_data = asus;
1838 asus->device = device;
1839
1840 asus_dmi_check();
1841
1842 result = asus_acpi_init(asus);
1843 if (result)
1844 goto fail_platform;
1845
1846 /*
1847 * Need platform type detection first, then the platform
1848 * device. It is used as a parent for the sub-devices below.
1849 */
1850 asus->is_pega_lucid = asus_check_pega_lucid(asus);
1851 result = asus_platform_init(asus);
1852 if (result)
1853 goto fail_platform;
1854
1855 if (acpi_video_get_backlight_type() == acpi_backlight_vendor) {
1856 result = asus_backlight_init(asus);
1857 if (result)
1858 goto fail_backlight;
1859 }
1860
1861 result = asus_input_init(asus);
1862 if (result)
1863 goto fail_input;
1864
1865 result = asus_led_init(asus);
1866 if (result)
1867 goto fail_led;
1868
1869 result = asus_rfkill_init(asus);
1870 if (result && result != -ENODEV)
1871 goto fail_rfkill;
1872
1873 result = pega_accel_init(asus);
1874 if (result && result != -ENODEV)
1875 goto fail_pega_accel;
1876
1877 result = pega_rfkill_init(asus);
1878 if (result && result != -ENODEV)
1879 goto fail_pega_rfkill;
1880
1881 asus_device_present = true;
1882 return 0;
1883
1884 fail_pega_rfkill:
1885 pega_accel_exit(asus);
1886 fail_pega_accel:
1887 asus_rfkill_exit(asus);
1888 fail_rfkill:
1889 asus_led_exit(asus);
1890 fail_led:
1891 asus_input_exit(asus);
1892 fail_input:
1893 asus_backlight_exit(asus);
1894 fail_backlight:
1895 asus_platform_exit(asus);
1896 fail_platform:
1897 kfree(asus);
1898
1899 return result;
1900 }
1901
asus_acpi_remove(struct acpi_device * device)1902 static void asus_acpi_remove(struct acpi_device *device)
1903 {
1904 struct asus_laptop *asus = acpi_driver_data(device);
1905
1906 asus_backlight_exit(asus);
1907 asus_rfkill_exit(asus);
1908 asus_led_exit(asus);
1909 asus_input_exit(asus);
1910 pega_accel_exit(asus);
1911 asus_platform_exit(asus);
1912
1913 kfree(asus->name);
1914 kfree(asus);
1915 }
1916
1917 static const struct acpi_device_id asus_device_ids[] = {
1918 {"ATK0100", 0},
1919 {"ATK0101", 0},
1920 {"", 0},
1921 };
1922 MODULE_DEVICE_TABLE(acpi, asus_device_ids);
1923
1924 static struct acpi_driver asus_acpi_driver = {
1925 .name = ASUS_LAPTOP_NAME,
1926 .class = ASUS_LAPTOP_CLASS,
1927 .ids = asus_device_ids,
1928 .flags = ACPI_DRIVER_ALL_NOTIFY_EVENTS,
1929 .ops = {
1930 .add = asus_acpi_add,
1931 .remove = asus_acpi_remove,
1932 .notify = asus_acpi_notify,
1933 },
1934 };
1935
asus_laptop_init(void)1936 static int __init asus_laptop_init(void)
1937 {
1938 int result;
1939
1940 result = platform_driver_register(&platform_driver);
1941 if (result < 0)
1942 return result;
1943
1944 result = acpi_bus_register_driver(&asus_acpi_driver);
1945 if (result < 0)
1946 goto fail_acpi_driver;
1947 if (!asus_device_present) {
1948 result = -ENODEV;
1949 goto fail_no_device;
1950 }
1951 return 0;
1952
1953 fail_no_device:
1954 acpi_bus_unregister_driver(&asus_acpi_driver);
1955 fail_acpi_driver:
1956 platform_driver_unregister(&platform_driver);
1957 return result;
1958 }
1959
asus_laptop_exit(void)1960 static void __exit asus_laptop_exit(void)
1961 {
1962 acpi_bus_unregister_driver(&asus_acpi_driver);
1963 platform_driver_unregister(&platform_driver);
1964 }
1965
1966 module_init(asus_laptop_init);
1967 module_exit(asus_laptop_exit);
1968