1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) Microsoft Corporation.
4 *
5 * Author:
6 * Jake Oshins <jakeo@microsoft.com>
7 *
8 * This driver acts as a paravirtual front-end for PCI Express root buses.
9 * When a PCI Express function (either an entire device or an SR-IOV
10 * Virtual Function) is being passed through to the VM, this driver exposes
11 * a new bus to the guest VM. This is modeled as a root PCI bus because
12 * no bridges are being exposed to the VM. In fact, with a "Generation 2"
13 * VM within Hyper-V, there may seem to be no PCI bus at all in the VM
14 * until a device as been exposed using this driver.
15 *
16 * Each root PCI bus has its own PCI domain, which is called "Segment" in
17 * the PCI Firmware Specifications. Thus while each device passed through
18 * to the VM using this front-end will appear at "device 0", the domain will
19 * be unique. Typically, each bus will have one PCI function on it, though
20 * this driver does support more than one.
21 *
22 * In order to map the interrupts from the device through to the guest VM,
23 * this driver also implements an IRQ Domain, which handles interrupts (either
24 * MSI or MSI-X) associated with the functions on the bus. As interrupts are
25 * set up, torn down, or reaffined, this driver communicates with the
26 * underlying hypervisor to adjust the mappings in the I/O MMU so that each
27 * interrupt will be delivered to the correct virtual processor at the right
28 * vector. This driver does not support level-triggered (line-based)
29 * interrupts, and will report that the Interrupt Line register in the
30 * function's configuration space is zero.
31 *
32 * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V
33 * facilities. For instance, the configuration space of a function exposed
34 * by Hyper-V is mapped into a single page of memory space, and the
35 * read and write handlers for config space must be aware of this mechanism.
36 * Similarly, device setup and teardown involves messages sent to and from
37 * the PCI back-end driver in Hyper-V.
38 */
39
40 #include <linux/kernel.h>
41 #include <linux/module.h>
42 #include <linux/pci.h>
43 #include <linux/pci-ecam.h>
44 #include <linux/delay.h>
45 #include <linux/semaphore.h>
46 #include <linux/irq.h>
47 #include <linux/irqchip/irq-msi-lib.h>
48 #include <linux/msi.h>
49 #include <linux/hyperv.h>
50 #include <linux/refcount.h>
51 #include <linux/irqdomain.h>
52 #include <linux/acpi.h>
53 #include <linux/sizes.h>
54 #include <linux/of_irq.h>
55 #include <asm/mshyperv.h>
56
57 /*
58 * Protocol versions. The low word is the minor version, the high word the
59 * major version.
60 */
61
62 #define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor)))
63 #define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16)
64 #define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff)
65
66 enum pci_protocol_version_t {
67 PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1), /* Win10 */
68 PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2), /* RS1 */
69 PCI_PROTOCOL_VERSION_1_3 = PCI_MAKE_VERSION(1, 3), /* Vibranium */
70 PCI_PROTOCOL_VERSION_1_4 = PCI_MAKE_VERSION(1, 4), /* WS2022 */
71 };
72
73 #define CPU_AFFINITY_ALL -1ULL
74
75 /*
76 * Supported protocol versions in the order of probing - highest go
77 * first.
78 */
79 static enum pci_protocol_version_t pci_protocol_versions[] = {
80 PCI_PROTOCOL_VERSION_1_4,
81 PCI_PROTOCOL_VERSION_1_3,
82 PCI_PROTOCOL_VERSION_1_2,
83 PCI_PROTOCOL_VERSION_1_1,
84 };
85
86 #define PCI_CONFIG_MMIO_LENGTH 0x2000
87 #define CFG_PAGE_OFFSET 0x1000
88 #define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET)
89
90 #define MAX_SUPPORTED_MSI_MESSAGES 0x400
91
92 #define STATUS_REVISION_MISMATCH 0xC0000059
93
94 /* space for 32bit serial number as string */
95 #define SLOT_NAME_SIZE 11
96
97 /*
98 * Size of requestor for VMbus; the value is based on the observation
99 * that having more than one request outstanding is 'rare', and so 64
100 * should be generous in ensuring that we don't ever run out.
101 */
102 #define HV_PCI_RQSTOR_SIZE 64
103
104 /*
105 * Message Types
106 */
107
108 enum pci_message_type {
109 /*
110 * Version 1.1
111 */
112 PCI_MESSAGE_BASE = 0x42490000,
113 PCI_BUS_RELATIONS = PCI_MESSAGE_BASE + 0,
114 PCI_QUERY_BUS_RELATIONS = PCI_MESSAGE_BASE + 1,
115 PCI_POWER_STATE_CHANGE = PCI_MESSAGE_BASE + 4,
116 PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5,
117 PCI_QUERY_RESOURCE_RESOURCES = PCI_MESSAGE_BASE + 6,
118 PCI_BUS_D0ENTRY = PCI_MESSAGE_BASE + 7,
119 PCI_BUS_D0EXIT = PCI_MESSAGE_BASE + 8,
120 PCI_READ_BLOCK = PCI_MESSAGE_BASE + 9,
121 PCI_WRITE_BLOCK = PCI_MESSAGE_BASE + 0xA,
122 PCI_EJECT = PCI_MESSAGE_BASE + 0xB,
123 PCI_QUERY_STOP = PCI_MESSAGE_BASE + 0xC,
124 PCI_REENABLE = PCI_MESSAGE_BASE + 0xD,
125 PCI_QUERY_STOP_FAILED = PCI_MESSAGE_BASE + 0xE,
126 PCI_EJECTION_COMPLETE = PCI_MESSAGE_BASE + 0xF,
127 PCI_RESOURCES_ASSIGNED = PCI_MESSAGE_BASE + 0x10,
128 PCI_RESOURCES_RELEASED = PCI_MESSAGE_BASE + 0x11,
129 PCI_INVALIDATE_BLOCK = PCI_MESSAGE_BASE + 0x12,
130 PCI_QUERY_PROTOCOL_VERSION = PCI_MESSAGE_BASE + 0x13,
131 PCI_CREATE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x14,
132 PCI_DELETE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x15,
133 PCI_RESOURCES_ASSIGNED2 = PCI_MESSAGE_BASE + 0x16,
134 PCI_CREATE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x17,
135 PCI_DELETE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x18, /* unused */
136 PCI_BUS_RELATIONS2 = PCI_MESSAGE_BASE + 0x19,
137 PCI_RESOURCES_ASSIGNED3 = PCI_MESSAGE_BASE + 0x1A,
138 PCI_CREATE_INTERRUPT_MESSAGE3 = PCI_MESSAGE_BASE + 0x1B,
139 PCI_MESSAGE_MAXIMUM
140 };
141
142 /*
143 * Structures defining the virtual PCI Express protocol.
144 */
145
146 union pci_version {
147 struct {
148 u16 minor_version;
149 u16 major_version;
150 } parts;
151 u32 version;
152 } __packed;
153
154 /*
155 * Function numbers are 8-bits wide on Express, as interpreted through ARI,
156 * which is all this driver does. This representation is the one used in
157 * Windows, which is what is expected when sending this back and forth with
158 * the Hyper-V parent partition.
159 */
160 union win_slot_encoding {
161 struct {
162 u32 dev:5;
163 u32 func:3;
164 u32 reserved:24;
165 } bits;
166 u32 slot;
167 } __packed;
168
169 /*
170 * Pretty much as defined in the PCI Specifications.
171 */
172 struct pci_function_description {
173 u16 v_id; /* vendor ID */
174 u16 d_id; /* device ID */
175 u8 rev;
176 u8 prog_intf;
177 u8 subclass;
178 u8 base_class;
179 u32 subsystem_id;
180 union win_slot_encoding win_slot;
181 u32 ser; /* serial number */
182 } __packed;
183
184 enum pci_device_description_flags {
185 HV_PCI_DEVICE_FLAG_NONE = 0x0,
186 HV_PCI_DEVICE_FLAG_NUMA_AFFINITY = 0x1,
187 };
188
189 struct pci_function_description2 {
190 u16 v_id; /* vendor ID */
191 u16 d_id; /* device ID */
192 u8 rev;
193 u8 prog_intf;
194 u8 subclass;
195 u8 base_class;
196 u32 subsystem_id;
197 union win_slot_encoding win_slot;
198 u32 ser; /* serial number */
199 u32 flags;
200 u16 virtual_numa_node;
201 u16 reserved;
202 } __packed;
203
204 /**
205 * struct hv_msi_desc
206 * @vector: IDT entry
207 * @delivery_mode: As defined in Intel's Programmer's
208 * Reference Manual, Volume 3, Chapter 8.
209 * @vector_count: Number of contiguous entries in the
210 * Interrupt Descriptor Table that are
211 * occupied by this Message-Signaled
212 * Interrupt. For "MSI", as first defined
213 * in PCI 2.2, this can be between 1 and
214 * 32. For "MSI-X," as first defined in PCI
215 * 3.0, this must be 1, as each MSI-X table
216 * entry would have its own descriptor.
217 * @reserved: Empty space
218 * @cpu_mask: All the target virtual processors.
219 */
220 struct hv_msi_desc {
221 u8 vector;
222 u8 delivery_mode;
223 u16 vector_count;
224 u32 reserved;
225 u64 cpu_mask;
226 } __packed;
227
228 /**
229 * struct hv_msi_desc2 - 1.2 version of hv_msi_desc
230 * @vector: IDT entry
231 * @delivery_mode: As defined in Intel's Programmer's
232 * Reference Manual, Volume 3, Chapter 8.
233 * @vector_count: Number of contiguous entries in the
234 * Interrupt Descriptor Table that are
235 * occupied by this Message-Signaled
236 * Interrupt. For "MSI", as first defined
237 * in PCI 2.2, this can be between 1 and
238 * 32. For "MSI-X," as first defined in PCI
239 * 3.0, this must be 1, as each MSI-X table
240 * entry would have its own descriptor.
241 * @processor_count: number of bits enabled in array.
242 * @processor_array: All the target virtual processors.
243 */
244 struct hv_msi_desc2 {
245 u8 vector;
246 u8 delivery_mode;
247 u16 vector_count;
248 u16 processor_count;
249 u16 processor_array[32];
250 } __packed;
251
252 /*
253 * struct hv_msi_desc3 - 1.3 version of hv_msi_desc
254 * Everything is the same as in 'hv_msi_desc2' except that the size of the
255 * 'vector' field is larger to support bigger vector values. For ex: LPI
256 * vectors on ARM.
257 */
258 struct hv_msi_desc3 {
259 u32 vector;
260 u8 delivery_mode;
261 u8 reserved;
262 u16 vector_count;
263 u16 processor_count;
264 u16 processor_array[32];
265 } __packed;
266
267 /**
268 * struct tran_int_desc
269 * @reserved: unused, padding
270 * @vector_count: same as in hv_msi_desc
271 * @data: This is the "data payload" value that is
272 * written by the device when it generates
273 * a message-signaled interrupt, either MSI
274 * or MSI-X.
275 * @address: This is the address to which the data
276 * payload is written on interrupt
277 * generation.
278 */
279 struct tran_int_desc {
280 u16 reserved;
281 u16 vector_count;
282 u32 data;
283 u64 address;
284 } __packed;
285
286 /*
287 * A generic message format for virtual PCI.
288 * Specific message formats are defined later in the file.
289 */
290
291 struct pci_message {
292 u32 type;
293 } __packed;
294
295 struct pci_child_message {
296 struct pci_message message_type;
297 union win_slot_encoding wslot;
298 } __packed;
299
300 struct pci_incoming_message {
301 struct vmpacket_descriptor hdr;
302 struct pci_message message_type;
303 } __packed;
304
305 struct pci_response {
306 struct vmpacket_descriptor hdr;
307 s32 status; /* negative values are failures */
308 } __packed;
309
310 struct pci_packet {
311 void (*completion_func)(void *context, struct pci_response *resp,
312 int resp_packet_size);
313 void *compl_ctxt;
314 };
315
316 /*
317 * Specific message types supporting the PCI protocol.
318 */
319
320 /*
321 * Version negotiation message. Sent from the guest to the host.
322 * The guest is free to try different versions until the host
323 * accepts the version.
324 *
325 * pci_version: The protocol version requested.
326 * is_last_attempt: If TRUE, this is the last version guest will request.
327 * reservedz: Reserved field, set to zero.
328 */
329
330 struct pci_version_request {
331 struct pci_message message_type;
332 u32 protocol_version;
333 } __packed;
334
335 /*
336 * Bus D0 Entry. This is sent from the guest to the host when the virtual
337 * bus (PCI Express port) is ready for action.
338 */
339
340 struct pci_bus_d0_entry {
341 struct pci_message message_type;
342 u32 reserved;
343 u64 mmio_base;
344 } __packed;
345
346 struct pci_bus_relations {
347 struct pci_incoming_message incoming;
348 u32 device_count;
349 struct pci_function_description func[];
350 } __packed;
351
352 struct pci_bus_relations2 {
353 struct pci_incoming_message incoming;
354 u32 device_count;
355 struct pci_function_description2 func[];
356 } __packed;
357
358 struct pci_q_res_req_response {
359 struct vmpacket_descriptor hdr;
360 s32 status; /* negative values are failures */
361 u32 probed_bar[PCI_STD_NUM_BARS];
362 } __packed;
363
364 struct pci_set_power {
365 struct pci_message message_type;
366 union win_slot_encoding wslot;
367 u32 power_state; /* In Windows terms */
368 u32 reserved;
369 } __packed;
370
371 struct pci_set_power_response {
372 struct vmpacket_descriptor hdr;
373 s32 status; /* negative values are failures */
374 union win_slot_encoding wslot;
375 u32 resultant_state; /* In Windows terms */
376 u32 reserved;
377 } __packed;
378
379 struct pci_resources_assigned {
380 struct pci_message message_type;
381 union win_slot_encoding wslot;
382 u8 memory_range[0x14][6]; /* not used here */
383 u32 msi_descriptors;
384 u32 reserved[4];
385 } __packed;
386
387 struct pci_resources_assigned2 {
388 struct pci_message message_type;
389 union win_slot_encoding wslot;
390 u8 memory_range[0x14][6]; /* not used here */
391 u32 msi_descriptor_count;
392 u8 reserved[70];
393 } __packed;
394
395 struct pci_create_interrupt {
396 struct pci_message message_type;
397 union win_slot_encoding wslot;
398 struct hv_msi_desc int_desc;
399 } __packed;
400
401 struct pci_create_int_response {
402 struct pci_response response;
403 u32 reserved;
404 struct tran_int_desc int_desc;
405 } __packed;
406
407 struct pci_create_interrupt2 {
408 struct pci_message message_type;
409 union win_slot_encoding wslot;
410 struct hv_msi_desc2 int_desc;
411 } __packed;
412
413 struct pci_create_interrupt3 {
414 struct pci_message message_type;
415 union win_slot_encoding wslot;
416 struct hv_msi_desc3 int_desc;
417 } __packed;
418
419 struct pci_delete_interrupt {
420 struct pci_message message_type;
421 union win_slot_encoding wslot;
422 struct tran_int_desc int_desc;
423 } __packed;
424
425 /*
426 * Note: the VM must pass a valid block id, wslot and bytes_requested.
427 */
428 struct pci_read_block {
429 struct pci_message message_type;
430 u32 block_id;
431 union win_slot_encoding wslot;
432 u32 bytes_requested;
433 } __packed;
434
435 struct pci_read_block_response {
436 struct vmpacket_descriptor hdr;
437 u32 status;
438 u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
439 } __packed;
440
441 /*
442 * Note: the VM must pass a valid block id, wslot and byte_count.
443 */
444 struct pci_write_block {
445 struct pci_message message_type;
446 u32 block_id;
447 union win_slot_encoding wslot;
448 u32 byte_count;
449 u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
450 } __packed;
451
452 struct pci_dev_inval_block {
453 struct pci_incoming_message incoming;
454 union win_slot_encoding wslot;
455 u64 block_mask;
456 } __packed;
457
458 struct pci_dev_incoming {
459 struct pci_incoming_message incoming;
460 union win_slot_encoding wslot;
461 } __packed;
462
463 struct pci_eject_response {
464 struct pci_message message_type;
465 union win_slot_encoding wslot;
466 u32 status;
467 } __packed;
468
469 static int pci_ring_size = VMBUS_RING_SIZE(SZ_16K);
470
471 /*
472 * Driver specific state.
473 */
474
475 enum hv_pcibus_state {
476 hv_pcibus_init = 0,
477 hv_pcibus_probed,
478 hv_pcibus_installed,
479 hv_pcibus_removing,
480 hv_pcibus_maximum
481 };
482
483 struct hv_pcibus_device {
484 #ifdef CONFIG_X86
485 struct pci_sysdata sysdata;
486 #elif defined(CONFIG_ARM64)
487 struct pci_config_window sysdata;
488 #endif
489 struct pci_host_bridge *bridge;
490 struct fwnode_handle *fwnode;
491 /* Protocol version negotiated with the host */
492 enum pci_protocol_version_t protocol_version;
493
494 struct mutex state_lock;
495 enum hv_pcibus_state state;
496
497 struct hv_device *hdev;
498 resource_size_t low_mmio_space;
499 resource_size_t high_mmio_space;
500 struct resource *mem_config;
501 struct resource *low_mmio_res;
502 struct resource *high_mmio_res;
503 struct completion *survey_event;
504 struct pci_bus *pci_bus;
505 spinlock_t config_lock; /* Avoid two threads writing index page */
506 spinlock_t device_list_lock; /* Protect lists below */
507 void __iomem *cfg_addr;
508
509 struct list_head children;
510 struct list_head dr_list;
511
512 struct irq_domain *irq_domain;
513
514 struct workqueue_struct *wq;
515
516 /* Highest slot of child device with resources allocated */
517 int wslot_res_allocated;
518 bool use_calls; /* Use hypercalls to access mmio cfg space */
519 };
520
521 /*
522 * Tracks "Device Relations" messages from the host, which must be both
523 * processed in order and deferred so that they don't run in the context
524 * of the incoming packet callback.
525 */
526 struct hv_dr_work {
527 struct work_struct wrk;
528 struct hv_pcibus_device *bus;
529 };
530
531 struct hv_pcidev_description {
532 u16 v_id; /* vendor ID */
533 u16 d_id; /* device ID */
534 u8 rev;
535 u8 prog_intf;
536 u8 subclass;
537 u8 base_class;
538 u32 subsystem_id;
539 union win_slot_encoding win_slot;
540 u32 ser; /* serial number */
541 u32 flags;
542 u16 virtual_numa_node;
543 };
544
545 struct hv_dr_state {
546 struct list_head list_entry;
547 u32 device_count;
548 struct hv_pcidev_description func[] __counted_by(device_count);
549 };
550
551 struct hv_pci_dev {
552 /* List protected by pci_rescan_remove_lock */
553 struct list_head list_entry;
554 refcount_t refs;
555 struct pci_slot *pci_slot;
556 struct hv_pcidev_description desc;
557 bool reported_missing;
558 struct hv_pcibus_device *hbus;
559 struct work_struct wrk;
560
561 void (*block_invalidate)(void *context, u64 block_mask);
562 void *invalidate_context;
563
564 /*
565 * What would be observed if one wrote 0xFFFFFFFF to a BAR and then
566 * read it back, for each of the BAR offsets within config space.
567 */
568 u32 probed_bar[PCI_STD_NUM_BARS];
569 };
570
571 struct hv_pci_compl {
572 struct completion host_event;
573 s32 completion_status;
574 };
575
576 static void hv_pci_onchannelcallback(void *context);
577
578 #ifdef CONFIG_X86
579 #define DELIVERY_MODE APIC_DELIVERY_MODE_FIXED
580 #define HV_MSI_CHIP_FLAGS MSI_CHIP_FLAG_SET_ACK
581
hv_pci_irqchip_init(void)582 static int hv_pci_irqchip_init(void)
583 {
584 return 0;
585 }
586
hv_pci_get_root_domain(void)587 static struct irq_domain *hv_pci_get_root_domain(void)
588 {
589 return x86_vector_domain;
590 }
591
hv_msi_get_int_vector(struct irq_data * data)592 static unsigned int hv_msi_get_int_vector(struct irq_data *data)
593 {
594 struct irq_cfg *cfg = irqd_cfg(data);
595
596 return cfg->vector;
597 }
598
599 #define hv_msi_prepare pci_msi_prepare
600
601 /**
602 * hv_irq_retarget_interrupt() - "Unmask" the IRQ by setting its current
603 * affinity.
604 * @data: Describes the IRQ
605 *
606 * Build new a destination for the MSI and make a hypercall to
607 * update the Interrupt Redirection Table. "Device Logical ID"
608 * is built out of this PCI bus's instance GUID and the function
609 * number of the device.
610 */
hv_irq_retarget_interrupt(struct irq_data * data)611 static void hv_irq_retarget_interrupt(struct irq_data *data)
612 {
613 struct msi_desc *msi_desc = irq_data_get_msi_desc(data);
614 struct hv_retarget_device_interrupt *params;
615 struct tran_int_desc *int_desc;
616 struct hv_pcibus_device *hbus;
617 const struct cpumask *dest;
618 cpumask_var_t tmp;
619 struct pci_bus *pbus;
620 struct pci_dev *pdev;
621 unsigned long flags;
622 u32 var_size = 0;
623 int cpu, nr_bank;
624 u64 res;
625
626 dest = irq_data_get_effective_affinity_mask(data);
627 pdev = msi_desc_to_pci_dev(msi_desc);
628 pbus = pdev->bus;
629 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
630 int_desc = data->chip_data;
631 if (!int_desc) {
632 dev_warn(&hbus->hdev->device, "%s() can not unmask irq %u\n",
633 __func__, data->irq);
634 return;
635 }
636
637 local_irq_save(flags);
638
639 params = *this_cpu_ptr(hyperv_pcpu_input_arg);
640 memset(params, 0, sizeof(*params));
641 params->partition_id = HV_PARTITION_ID_SELF;
642 params->int_entry.source = HV_INTERRUPT_SOURCE_MSI;
643 params->int_entry.msi_entry.address.as_uint32 = int_desc->address & 0xffffffff;
644 params->int_entry.msi_entry.data.as_uint32 = int_desc->data;
645 params->device_id = (hbus->hdev->dev_instance.b[5] << 24) |
646 (hbus->hdev->dev_instance.b[4] << 16) |
647 (hbus->hdev->dev_instance.b[7] << 8) |
648 (hbus->hdev->dev_instance.b[6] & 0xf8) |
649 PCI_FUNC(pdev->devfn);
650 params->int_target.vector = hv_msi_get_int_vector(data);
651
652 if (hbus->protocol_version >= PCI_PROTOCOL_VERSION_1_2) {
653 /*
654 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the
655 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides
656 * with >64 VP support.
657 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED
658 * is not sufficient for this hypercall.
659 */
660 params->int_target.flags |=
661 HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET;
662
663 if (!alloc_cpumask_var(&tmp, GFP_ATOMIC)) {
664 res = 1;
665 goto out;
666 }
667
668 cpumask_and(tmp, dest, cpu_online_mask);
669 nr_bank = cpumask_to_vpset(¶ms->int_target.vp_set, tmp);
670 free_cpumask_var(tmp);
671
672 if (nr_bank <= 0) {
673 res = 1;
674 goto out;
675 }
676
677 /*
678 * var-sized hypercall, var-size starts after vp_mask (thus
679 * vp_set.format does not count, but vp_set.valid_bank_mask
680 * does).
681 */
682 var_size = 1 + nr_bank;
683 } else {
684 for_each_cpu_and(cpu, dest, cpu_online_mask) {
685 params->int_target.vp_mask |=
686 (1ULL << hv_cpu_number_to_vp_number(cpu));
687 }
688 }
689
690 res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17),
691 params, NULL);
692
693 out:
694 local_irq_restore(flags);
695
696 /*
697 * During hibernation, when a CPU is offlined, the kernel tries
698 * to move the interrupt to the remaining CPUs that haven't
699 * been offlined yet. In this case, the below hv_do_hypercall()
700 * always fails since the vmbus channel has been closed:
701 * refer to cpu_disable_common() -> fixup_irqs() ->
702 * irq_migrate_all_off_this_cpu() -> migrate_one_irq().
703 *
704 * Suppress the error message for hibernation because the failure
705 * during hibernation does not matter (at this time all the devices
706 * have been frozen). Note: the correct affinity info is still updated
707 * into the irqdata data structure in migrate_one_irq() ->
708 * irq_do_set_affinity(), so later when the VM resumes,
709 * hv_pci_restore_msi_state() is able to correctly restore the
710 * interrupt with the correct affinity.
711 */
712 if (!hv_result_success(res) && hbus->state != hv_pcibus_removing)
713 dev_err(&hbus->hdev->device,
714 "%s() failed: %#llx", __func__, res);
715 }
716
hv_arch_irq_unmask(struct irq_data * data)717 static void hv_arch_irq_unmask(struct irq_data *data)
718 {
719 if (hv_root_partition())
720 /*
721 * In case of the nested root partition, the nested hypervisor
722 * is taking care of interrupt remapping and thus the
723 * MAP_DEVICE_INTERRUPT hypercall is required instead of
724 * RETARGET_INTERRUPT.
725 */
726 (void)hv_map_msi_interrupt(data, NULL);
727 else
728 hv_irq_retarget_interrupt(data);
729 }
730 #elif defined(CONFIG_ARM64)
731 /*
732 * SPI vectors to use for vPCI; arch SPIs range is [32, 1019], but leaving a bit
733 * of room at the start to allow for SPIs to be specified through ACPI and
734 * starting with a power of two to satisfy power of 2 multi-MSI requirement.
735 */
736 #define HV_PCI_MSI_SPI_START 64
737 #define HV_PCI_MSI_SPI_NR (1020 - HV_PCI_MSI_SPI_START)
738 #define DELIVERY_MODE 0
739 #define HV_MSI_CHIP_FLAGS MSI_CHIP_FLAG_SET_EOI
740 #define hv_msi_prepare NULL
741
742 struct hv_pci_chip_data {
743 DECLARE_BITMAP(spi_map, HV_PCI_MSI_SPI_NR);
744 struct mutex map_lock;
745 };
746
747 /* Hyper-V vPCI MSI GIC IRQ domain */
748 static struct irq_domain *hv_msi_gic_irq_domain;
749
750 /* Hyper-V PCI MSI IRQ chip */
751 static struct irq_chip hv_arm64_msi_irq_chip = {
752 .name = "MSI",
753 .irq_set_affinity = irq_chip_set_affinity_parent,
754 .irq_eoi = irq_chip_eoi_parent,
755 .irq_mask = irq_chip_mask_parent,
756 .irq_unmask = irq_chip_unmask_parent
757 };
758
hv_msi_get_int_vector(struct irq_data * irqd)759 static unsigned int hv_msi_get_int_vector(struct irq_data *irqd)
760 {
761 return irqd->parent_data->hwirq;
762 }
763
764 /*
765 * @nr_bm_irqs: Indicates the number of IRQs that were allocated from
766 * the bitmap.
767 * @nr_dom_irqs: Indicates the number of IRQs that were allocated from
768 * the parent domain.
769 */
hv_pci_vec_irq_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_bm_irqs,unsigned int nr_dom_irqs)770 static void hv_pci_vec_irq_free(struct irq_domain *domain,
771 unsigned int virq,
772 unsigned int nr_bm_irqs,
773 unsigned int nr_dom_irqs)
774 {
775 struct hv_pci_chip_data *chip_data = domain->host_data;
776 struct irq_data *d = irq_domain_get_irq_data(domain, virq);
777 int first = d->hwirq - HV_PCI_MSI_SPI_START;
778 int i;
779
780 mutex_lock(&chip_data->map_lock);
781 bitmap_release_region(chip_data->spi_map,
782 first,
783 get_count_order(nr_bm_irqs));
784 mutex_unlock(&chip_data->map_lock);
785 for (i = 0; i < nr_dom_irqs; i++) {
786 if (i)
787 d = irq_domain_get_irq_data(domain, virq + i);
788 irq_domain_reset_irq_data(d);
789 }
790
791 irq_domain_free_irqs_parent(domain, virq, nr_dom_irqs);
792 }
793
hv_pci_vec_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)794 static void hv_pci_vec_irq_domain_free(struct irq_domain *domain,
795 unsigned int virq,
796 unsigned int nr_irqs)
797 {
798 hv_pci_vec_irq_free(domain, virq, nr_irqs, nr_irqs);
799 }
800
hv_pci_vec_alloc_device_irq(struct irq_domain * domain,unsigned int nr_irqs,irq_hw_number_t * hwirq)801 static int hv_pci_vec_alloc_device_irq(struct irq_domain *domain,
802 unsigned int nr_irqs,
803 irq_hw_number_t *hwirq)
804 {
805 struct hv_pci_chip_data *chip_data = domain->host_data;
806 int index;
807
808 /* Find and allocate region from the SPI bitmap */
809 mutex_lock(&chip_data->map_lock);
810 index = bitmap_find_free_region(chip_data->spi_map,
811 HV_PCI_MSI_SPI_NR,
812 get_count_order(nr_irqs));
813 mutex_unlock(&chip_data->map_lock);
814 if (index < 0)
815 return -ENOSPC;
816
817 *hwirq = index + HV_PCI_MSI_SPI_START;
818
819 return 0;
820 }
821
hv_pci_vec_irq_gic_domain_alloc(struct irq_domain * domain,unsigned int virq,irq_hw_number_t hwirq)822 static int hv_pci_vec_irq_gic_domain_alloc(struct irq_domain *domain,
823 unsigned int virq,
824 irq_hw_number_t hwirq)
825 {
826 struct irq_fwspec fwspec;
827 struct irq_data *d;
828 int ret;
829
830 fwspec.fwnode = domain->parent->fwnode;
831 if (is_of_node(fwspec.fwnode)) {
832 /* SPI lines for OF translations start at offset 32 */
833 fwspec.param_count = 3;
834 fwspec.param[0] = 0;
835 fwspec.param[1] = hwirq - 32;
836 fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
837 } else {
838 fwspec.param_count = 2;
839 fwspec.param[0] = hwirq;
840 fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
841 }
842
843 ret = irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
844 if (ret)
845 return ret;
846
847 /*
848 * Since the interrupt specifier is not coming from ACPI or DT, the
849 * trigger type will need to be set explicitly. Otherwise, it will be
850 * set to whatever is in the GIC configuration.
851 */
852 d = irq_domain_get_irq_data(domain->parent, virq);
853
854 return d->chip->irq_set_type(d, IRQ_TYPE_EDGE_RISING);
855 }
856
hv_pci_vec_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * args)857 static int hv_pci_vec_irq_domain_alloc(struct irq_domain *domain,
858 unsigned int virq, unsigned int nr_irqs,
859 void *args)
860 {
861 irq_hw_number_t hwirq;
862 unsigned int i;
863 int ret;
864
865 ret = hv_pci_vec_alloc_device_irq(domain, nr_irqs, &hwirq);
866 if (ret)
867 return ret;
868
869 for (i = 0; i < nr_irqs; i++) {
870 ret = hv_pci_vec_irq_gic_domain_alloc(domain, virq + i,
871 hwirq + i);
872 if (ret) {
873 hv_pci_vec_irq_free(domain, virq, nr_irqs, i);
874 return ret;
875 }
876
877 irq_domain_set_hwirq_and_chip(domain, virq + i,
878 hwirq + i,
879 &hv_arm64_msi_irq_chip,
880 domain->host_data);
881 pr_debug("pID:%d vID:%u\n", (int)(hwirq + i), virq + i);
882 }
883
884 return 0;
885 }
886
887 /*
888 * Pick the first cpu as the irq affinity that can be temporarily used for
889 * composing MSI from the hypervisor. GIC will eventually set the right
890 * affinity for the irq and the 'unmask' will retarget the interrupt to that
891 * cpu.
892 */
hv_pci_vec_irq_domain_activate(struct irq_domain * domain,struct irq_data * irqd,bool reserve)893 static int hv_pci_vec_irq_domain_activate(struct irq_domain *domain,
894 struct irq_data *irqd, bool reserve)
895 {
896 int cpu = cpumask_first(cpu_present_mask);
897
898 irq_data_update_effective_affinity(irqd, cpumask_of(cpu));
899
900 return 0;
901 }
902
903 static const struct irq_domain_ops hv_pci_domain_ops = {
904 .alloc = hv_pci_vec_irq_domain_alloc,
905 .free = hv_pci_vec_irq_domain_free,
906 .activate = hv_pci_vec_irq_domain_activate,
907 };
908
909 #ifdef CONFIG_OF
910
hv_pci_of_irq_domain_parent(void)911 static struct irq_domain *hv_pci_of_irq_domain_parent(void)
912 {
913 struct device_node *parent;
914 struct irq_domain *domain;
915
916 parent = of_irq_find_parent(hv_get_vmbus_root_device()->of_node);
917 if (!parent)
918 return NULL;
919 domain = irq_find_host(parent);
920 of_node_put(parent);
921
922 return domain;
923 }
924
925 #endif
926
927 #ifdef CONFIG_ACPI
928
hv_pci_acpi_irq_domain_parent(void)929 static struct irq_domain *hv_pci_acpi_irq_domain_parent(void)
930 {
931 acpi_gsi_domain_disp_fn gsi_domain_disp_fn;
932
933 gsi_domain_disp_fn = acpi_get_gsi_dispatcher();
934 if (!gsi_domain_disp_fn)
935 return NULL;
936 return irq_find_matching_fwnode(gsi_domain_disp_fn(0),
937 DOMAIN_BUS_ANY);
938 }
939
940 #endif
941
hv_pci_irqchip_init(void)942 static int hv_pci_irqchip_init(void)
943 {
944 static struct hv_pci_chip_data *chip_data;
945 struct fwnode_handle *fn = NULL;
946 struct irq_domain *irq_domain_parent = NULL;
947 int ret = -ENOMEM;
948
949 chip_data = kzalloc(sizeof(*chip_data), GFP_KERNEL);
950 if (!chip_data)
951 return ret;
952
953 mutex_init(&chip_data->map_lock);
954 fn = irq_domain_alloc_named_fwnode("hv_vpci_arm64");
955 if (!fn)
956 goto free_chip;
957
958 /*
959 * IRQ domain once enabled, should not be removed since there is no
960 * way to ensure that all the corresponding devices are also gone and
961 * no interrupts will be generated.
962 */
963 #ifdef CONFIG_ACPI
964 if (!acpi_disabled)
965 irq_domain_parent = hv_pci_acpi_irq_domain_parent();
966 #endif
967 #ifdef CONFIG_OF
968 if (!irq_domain_parent)
969 irq_domain_parent = hv_pci_of_irq_domain_parent();
970 #endif
971 if (!irq_domain_parent) {
972 WARN_ONCE(1, "Invalid firmware configuration for VMBus interrupts\n");
973 ret = -EINVAL;
974 goto free_chip;
975 }
976
977 hv_msi_gic_irq_domain = irq_domain_create_hierarchy(irq_domain_parent, 0,
978 HV_PCI_MSI_SPI_NR,
979 fn, &hv_pci_domain_ops,
980 chip_data);
981
982 if (!hv_msi_gic_irq_domain) {
983 pr_err("Failed to create Hyper-V arm64 vPCI MSI IRQ domain\n");
984 goto free_chip;
985 }
986
987 return 0;
988
989 free_chip:
990 kfree(chip_data);
991 if (fn)
992 irq_domain_free_fwnode(fn);
993
994 return ret;
995 }
996
hv_pci_get_root_domain(void)997 static struct irq_domain *hv_pci_get_root_domain(void)
998 {
999 return hv_msi_gic_irq_domain;
1000 }
1001
1002 /*
1003 * SPIs are used for interrupts of PCI devices and SPIs is managed via GICD
1004 * registers which Hyper-V already supports, so no hypercall needed.
1005 */
hv_arch_irq_unmask(struct irq_data * data)1006 static void hv_arch_irq_unmask(struct irq_data *data) { }
1007 #endif /* CONFIG_ARM64 */
1008
1009 /**
1010 * hv_pci_generic_compl() - Invoked for a completion packet
1011 * @context: Set up by the sender of the packet.
1012 * @resp: The response packet
1013 * @resp_packet_size: Size in bytes of the packet
1014 *
1015 * This function is used to trigger an event and report status
1016 * for any message for which the completion packet contains a
1017 * status and nothing else.
1018 */
hv_pci_generic_compl(void * context,struct pci_response * resp,int resp_packet_size)1019 static void hv_pci_generic_compl(void *context, struct pci_response *resp,
1020 int resp_packet_size)
1021 {
1022 struct hv_pci_compl *comp_pkt = context;
1023
1024 comp_pkt->completion_status = resp->status;
1025 complete(&comp_pkt->host_event);
1026 }
1027
1028 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
1029 u32 wslot);
1030
get_pcichild(struct hv_pci_dev * hpdev)1031 static void get_pcichild(struct hv_pci_dev *hpdev)
1032 {
1033 refcount_inc(&hpdev->refs);
1034 }
1035
put_pcichild(struct hv_pci_dev * hpdev)1036 static void put_pcichild(struct hv_pci_dev *hpdev)
1037 {
1038 if (refcount_dec_and_test(&hpdev->refs))
1039 kfree(hpdev);
1040 }
1041
1042 /*
1043 * There is no good way to get notified from vmbus_onoffer_rescind(),
1044 * so let's use polling here, since this is not a hot path.
1045 */
wait_for_response(struct hv_device * hdev,struct completion * comp)1046 static int wait_for_response(struct hv_device *hdev,
1047 struct completion *comp)
1048 {
1049 while (true) {
1050 if (hdev->channel->rescind) {
1051 dev_warn_once(&hdev->device, "The device is gone.\n");
1052 return -ENODEV;
1053 }
1054
1055 if (wait_for_completion_timeout(comp, HZ / 10))
1056 break;
1057 }
1058
1059 return 0;
1060 }
1061
1062 /**
1063 * devfn_to_wslot() - Convert from Linux PCI slot to Windows
1064 * @devfn: The Linux representation of PCI slot
1065 *
1066 * Windows uses a slightly different representation of PCI slot.
1067 *
1068 * Return: The Windows representation
1069 */
devfn_to_wslot(int devfn)1070 static u32 devfn_to_wslot(int devfn)
1071 {
1072 union win_slot_encoding wslot;
1073
1074 wslot.slot = 0;
1075 wslot.bits.dev = PCI_SLOT(devfn);
1076 wslot.bits.func = PCI_FUNC(devfn);
1077
1078 return wslot.slot;
1079 }
1080
1081 /**
1082 * wslot_to_devfn() - Convert from Windows PCI slot to Linux
1083 * @wslot: The Windows representation of PCI slot
1084 *
1085 * Windows uses a slightly different representation of PCI slot.
1086 *
1087 * Return: The Linux representation
1088 */
wslot_to_devfn(u32 wslot)1089 static int wslot_to_devfn(u32 wslot)
1090 {
1091 union win_slot_encoding slot_no;
1092
1093 slot_no.slot = wslot;
1094 return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func);
1095 }
1096
hv_pci_read_mmio(struct device * dev,phys_addr_t gpa,int size,u32 * val)1097 static void hv_pci_read_mmio(struct device *dev, phys_addr_t gpa, int size, u32 *val)
1098 {
1099 struct hv_mmio_read_input *in;
1100 struct hv_mmio_read_output *out;
1101 u64 ret;
1102
1103 /*
1104 * Must be called with interrupts disabled so it is safe
1105 * to use the per-cpu input argument page. Use it for
1106 * both input and output.
1107 */
1108 in = *this_cpu_ptr(hyperv_pcpu_input_arg);
1109 out = *this_cpu_ptr(hyperv_pcpu_input_arg) + sizeof(*in);
1110 in->gpa = gpa;
1111 in->size = size;
1112
1113 ret = hv_do_hypercall(HVCALL_MMIO_READ, in, out);
1114 if (hv_result_success(ret)) {
1115 switch (size) {
1116 case 1:
1117 *val = *(u8 *)(out->data);
1118 break;
1119 case 2:
1120 *val = *(u16 *)(out->data);
1121 break;
1122 default:
1123 *val = *(u32 *)(out->data);
1124 break;
1125 }
1126 } else
1127 dev_err(dev, "MMIO read hypercall error %llx addr %llx size %d\n",
1128 ret, gpa, size);
1129 }
1130
hv_pci_write_mmio(struct device * dev,phys_addr_t gpa,int size,u32 val)1131 static void hv_pci_write_mmio(struct device *dev, phys_addr_t gpa, int size, u32 val)
1132 {
1133 struct hv_mmio_write_input *in;
1134 u64 ret;
1135
1136 /*
1137 * Must be called with interrupts disabled so it is safe
1138 * to use the per-cpu input argument memory.
1139 */
1140 in = *this_cpu_ptr(hyperv_pcpu_input_arg);
1141 in->gpa = gpa;
1142 in->size = size;
1143 switch (size) {
1144 case 1:
1145 *(u8 *)(in->data) = val;
1146 break;
1147 case 2:
1148 *(u16 *)(in->data) = val;
1149 break;
1150 default:
1151 *(u32 *)(in->data) = val;
1152 break;
1153 }
1154
1155 ret = hv_do_hypercall(HVCALL_MMIO_WRITE, in, NULL);
1156 if (!hv_result_success(ret))
1157 dev_err(dev, "MMIO write hypercall error %llx addr %llx size %d\n",
1158 ret, gpa, size);
1159 }
1160
1161 /*
1162 * PCI Configuration Space for these root PCI buses is implemented as a pair
1163 * of pages in memory-mapped I/O space. Writing to the first page chooses
1164 * the PCI function being written or read. Once the first page has been
1165 * written to, the following page maps in the entire configuration space of
1166 * the function.
1167 */
1168
1169 /**
1170 * _hv_pcifront_read_config() - Internal PCI config read
1171 * @hpdev: The PCI driver's representation of the device
1172 * @where: Offset within config space
1173 * @size: Size of the transfer
1174 * @val: Pointer to the buffer receiving the data
1175 */
_hv_pcifront_read_config(struct hv_pci_dev * hpdev,int where,int size,u32 * val)1176 static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where,
1177 int size, u32 *val)
1178 {
1179 struct hv_pcibus_device *hbus = hpdev->hbus;
1180 struct device *dev = &hbus->hdev->device;
1181 int offset = where + CFG_PAGE_OFFSET;
1182 unsigned long flags;
1183
1184 /*
1185 * If the attempt is to read the IDs or the ROM BAR, simulate that.
1186 */
1187 if (where + size <= PCI_COMMAND) {
1188 memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size);
1189 } else if (where >= PCI_CLASS_REVISION && where + size <=
1190 PCI_CACHE_LINE_SIZE) {
1191 memcpy(val, ((u8 *)&hpdev->desc.rev) + where -
1192 PCI_CLASS_REVISION, size);
1193 } else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <=
1194 PCI_ROM_ADDRESS) {
1195 memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where -
1196 PCI_SUBSYSTEM_VENDOR_ID, size);
1197 } else if (where >= PCI_ROM_ADDRESS && where + size <=
1198 PCI_CAPABILITY_LIST) {
1199 /* ROM BARs are unimplemented */
1200 *val = 0;
1201 } else if ((where >= PCI_INTERRUPT_LINE && where + size <= PCI_INTERRUPT_PIN) ||
1202 (where >= PCI_INTERRUPT_PIN && where + size <= PCI_MIN_GNT)) {
1203 /*
1204 * Interrupt Line and Interrupt PIN are hard-wired to zero
1205 * because this front-end only supports message-signaled
1206 * interrupts.
1207 */
1208 *val = 0;
1209 } else if (where + size <= CFG_PAGE_SIZE) {
1210
1211 spin_lock_irqsave(&hbus->config_lock, flags);
1212 if (hbus->use_calls) {
1213 phys_addr_t addr = hbus->mem_config->start + offset;
1214
1215 hv_pci_write_mmio(dev, hbus->mem_config->start, 4,
1216 hpdev->desc.win_slot.slot);
1217 hv_pci_read_mmio(dev, addr, size, val);
1218 } else {
1219 void __iomem *addr = hbus->cfg_addr + offset;
1220
1221 /* Choose the function to be read. (See comment above) */
1222 writel(hpdev->desc.win_slot.slot, hbus->cfg_addr);
1223 /* Make sure the function was chosen before reading. */
1224 mb();
1225 /* Read from that function's config space. */
1226 switch (size) {
1227 case 1:
1228 *val = readb(addr);
1229 break;
1230 case 2:
1231 *val = readw(addr);
1232 break;
1233 default:
1234 *val = readl(addr);
1235 break;
1236 }
1237 /*
1238 * Make sure the read was done before we release the
1239 * spinlock allowing consecutive reads/writes.
1240 */
1241 mb();
1242 }
1243 spin_unlock_irqrestore(&hbus->config_lock, flags);
1244 } else {
1245 dev_err(dev, "Attempt to read beyond a function's config space.\n");
1246 }
1247 }
1248
hv_pcifront_get_vendor_id(struct hv_pci_dev * hpdev)1249 static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev)
1250 {
1251 struct hv_pcibus_device *hbus = hpdev->hbus;
1252 struct device *dev = &hbus->hdev->device;
1253 u32 val;
1254 u16 ret;
1255 unsigned long flags;
1256
1257 spin_lock_irqsave(&hbus->config_lock, flags);
1258
1259 if (hbus->use_calls) {
1260 phys_addr_t addr = hbus->mem_config->start +
1261 CFG_PAGE_OFFSET + PCI_VENDOR_ID;
1262
1263 hv_pci_write_mmio(dev, hbus->mem_config->start, 4,
1264 hpdev->desc.win_slot.slot);
1265 hv_pci_read_mmio(dev, addr, 2, &val);
1266 ret = val; /* Truncates to 16 bits */
1267 } else {
1268 void __iomem *addr = hbus->cfg_addr + CFG_PAGE_OFFSET +
1269 PCI_VENDOR_ID;
1270 /* Choose the function to be read. (See comment above) */
1271 writel(hpdev->desc.win_slot.slot, hbus->cfg_addr);
1272 /* Make sure the function was chosen before we start reading. */
1273 mb();
1274 /* Read from that function's config space. */
1275 ret = readw(addr);
1276 /*
1277 * mb() is not required here, because the
1278 * spin_unlock_irqrestore() is a barrier.
1279 */
1280 }
1281
1282 spin_unlock_irqrestore(&hbus->config_lock, flags);
1283
1284 return ret;
1285 }
1286
1287 /**
1288 * _hv_pcifront_write_config() - Internal PCI config write
1289 * @hpdev: The PCI driver's representation of the device
1290 * @where: Offset within config space
1291 * @size: Size of the transfer
1292 * @val: The data being transferred
1293 */
_hv_pcifront_write_config(struct hv_pci_dev * hpdev,int where,int size,u32 val)1294 static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where,
1295 int size, u32 val)
1296 {
1297 struct hv_pcibus_device *hbus = hpdev->hbus;
1298 struct device *dev = &hbus->hdev->device;
1299 int offset = where + CFG_PAGE_OFFSET;
1300 unsigned long flags;
1301
1302 if (where >= PCI_SUBSYSTEM_VENDOR_ID &&
1303 where + size <= PCI_CAPABILITY_LIST) {
1304 /* SSIDs and ROM BARs are read-only */
1305 } else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) {
1306 spin_lock_irqsave(&hbus->config_lock, flags);
1307
1308 if (hbus->use_calls) {
1309 phys_addr_t addr = hbus->mem_config->start + offset;
1310
1311 hv_pci_write_mmio(dev, hbus->mem_config->start, 4,
1312 hpdev->desc.win_slot.slot);
1313 hv_pci_write_mmio(dev, addr, size, val);
1314 } else {
1315 void __iomem *addr = hbus->cfg_addr + offset;
1316
1317 /* Choose the function to write. (See comment above) */
1318 writel(hpdev->desc.win_slot.slot, hbus->cfg_addr);
1319 /* Make sure the function was chosen before writing. */
1320 wmb();
1321 /* Write to that function's config space. */
1322 switch (size) {
1323 case 1:
1324 writeb(val, addr);
1325 break;
1326 case 2:
1327 writew(val, addr);
1328 break;
1329 default:
1330 writel(val, addr);
1331 break;
1332 }
1333 /*
1334 * Make sure the write was done before we release the
1335 * spinlock allowing consecutive reads/writes.
1336 */
1337 mb();
1338 }
1339 spin_unlock_irqrestore(&hbus->config_lock, flags);
1340 } else {
1341 dev_err(dev, "Attempt to write beyond a function's config space.\n");
1342 }
1343 }
1344
1345 /**
1346 * hv_pcifront_read_config() - Read configuration space
1347 * @bus: PCI Bus structure
1348 * @devfn: Device/function
1349 * @where: Offset from base
1350 * @size: Byte/word/dword
1351 * @val: Value to be read
1352 *
1353 * Return: PCIBIOS_SUCCESSFUL on success
1354 * PCIBIOS_DEVICE_NOT_FOUND on failure
1355 */
hv_pcifront_read_config(struct pci_bus * bus,unsigned int devfn,int where,int size,u32 * val)1356 static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn,
1357 int where, int size, u32 *val)
1358 {
1359 struct hv_pcibus_device *hbus =
1360 container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
1361 struct hv_pci_dev *hpdev;
1362
1363 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
1364 if (!hpdev)
1365 return PCIBIOS_DEVICE_NOT_FOUND;
1366
1367 _hv_pcifront_read_config(hpdev, where, size, val);
1368
1369 put_pcichild(hpdev);
1370 return PCIBIOS_SUCCESSFUL;
1371 }
1372
1373 /**
1374 * hv_pcifront_write_config() - Write configuration space
1375 * @bus: PCI Bus structure
1376 * @devfn: Device/function
1377 * @where: Offset from base
1378 * @size: Byte/word/dword
1379 * @val: Value to be written to device
1380 *
1381 * Return: PCIBIOS_SUCCESSFUL on success
1382 * PCIBIOS_DEVICE_NOT_FOUND on failure
1383 */
hv_pcifront_write_config(struct pci_bus * bus,unsigned int devfn,int where,int size,u32 val)1384 static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn,
1385 int where, int size, u32 val)
1386 {
1387 struct hv_pcibus_device *hbus =
1388 container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
1389 struct hv_pci_dev *hpdev;
1390
1391 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
1392 if (!hpdev)
1393 return PCIBIOS_DEVICE_NOT_FOUND;
1394
1395 _hv_pcifront_write_config(hpdev, where, size, val);
1396
1397 put_pcichild(hpdev);
1398 return PCIBIOS_SUCCESSFUL;
1399 }
1400
1401 /* PCIe operations */
1402 static struct pci_ops hv_pcifront_ops = {
1403 .read = hv_pcifront_read_config,
1404 .write = hv_pcifront_write_config,
1405 };
1406
1407 /*
1408 * Paravirtual backchannel
1409 *
1410 * Hyper-V SR-IOV provides a backchannel mechanism in software for
1411 * communication between a VF driver and a PF driver. These
1412 * "configuration blocks" are similar in concept to PCI configuration space,
1413 * but instead of doing reads and writes in 32-bit chunks through a very slow
1414 * path, packets of up to 128 bytes can be sent or received asynchronously.
1415 *
1416 * Nearly every SR-IOV device contains just such a communications channel in
1417 * hardware, so using this one in software is usually optional. Using the
1418 * software channel, however, allows driver implementers to leverage software
1419 * tools that fuzz the communications channel looking for vulnerabilities.
1420 *
1421 * The usage model for these packets puts the responsibility for reading or
1422 * writing on the VF driver. The VF driver sends a read or a write packet,
1423 * indicating which "block" is being referred to by number.
1424 *
1425 * If the PF driver wishes to initiate communication, it can "invalidate" one or
1426 * more of the first 64 blocks. This invalidation is delivered via a callback
1427 * supplied to the VF driver by this driver.
1428 *
1429 * No protocol is implied, except that supplied by the PF and VF drivers.
1430 */
1431
1432 struct hv_read_config_compl {
1433 struct hv_pci_compl comp_pkt;
1434 void *buf;
1435 unsigned int len;
1436 unsigned int bytes_returned;
1437 };
1438
1439 /**
1440 * hv_pci_read_config_compl() - Invoked when a response packet
1441 * for a read config block operation arrives.
1442 * @context: Identifies the read config operation
1443 * @resp: The response packet itself
1444 * @resp_packet_size: Size in bytes of the response packet
1445 */
hv_pci_read_config_compl(void * context,struct pci_response * resp,int resp_packet_size)1446 static void hv_pci_read_config_compl(void *context, struct pci_response *resp,
1447 int resp_packet_size)
1448 {
1449 struct hv_read_config_compl *comp = context;
1450 struct pci_read_block_response *read_resp =
1451 (struct pci_read_block_response *)resp;
1452 unsigned int data_len, hdr_len;
1453
1454 hdr_len = offsetof(struct pci_read_block_response, bytes);
1455 if (resp_packet_size < hdr_len) {
1456 comp->comp_pkt.completion_status = -1;
1457 goto out;
1458 }
1459
1460 data_len = resp_packet_size - hdr_len;
1461 if (data_len > 0 && read_resp->status == 0) {
1462 comp->bytes_returned = min(comp->len, data_len);
1463 memcpy(comp->buf, read_resp->bytes, comp->bytes_returned);
1464 } else {
1465 comp->bytes_returned = 0;
1466 }
1467
1468 comp->comp_pkt.completion_status = read_resp->status;
1469 out:
1470 complete(&comp->comp_pkt.host_event);
1471 }
1472
1473 /**
1474 * hv_read_config_block() - Sends a read config block request to
1475 * the back-end driver running in the Hyper-V parent partition.
1476 * @pdev: The PCI driver's representation for this device.
1477 * @buf: Buffer into which the config block will be copied.
1478 * @len: Size in bytes of buf.
1479 * @block_id: Identifies the config block which has been requested.
1480 * @bytes_returned: Size which came back from the back-end driver.
1481 *
1482 * Return: 0 on success, -errno on failure
1483 */
hv_read_config_block(struct pci_dev * pdev,void * buf,unsigned int len,unsigned int block_id,unsigned int * bytes_returned)1484 static int hv_read_config_block(struct pci_dev *pdev, void *buf,
1485 unsigned int len, unsigned int block_id,
1486 unsigned int *bytes_returned)
1487 {
1488 struct hv_pcibus_device *hbus =
1489 container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1490 sysdata);
1491 struct {
1492 struct pci_packet pkt;
1493 char buf[sizeof(struct pci_read_block)];
1494 } pkt;
1495 struct hv_read_config_compl comp_pkt;
1496 struct pci_read_block *read_blk;
1497 int ret;
1498
1499 if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
1500 return -EINVAL;
1501
1502 init_completion(&comp_pkt.comp_pkt.host_event);
1503 comp_pkt.buf = buf;
1504 comp_pkt.len = len;
1505
1506 memset(&pkt, 0, sizeof(pkt));
1507 pkt.pkt.completion_func = hv_pci_read_config_compl;
1508 pkt.pkt.compl_ctxt = &comp_pkt;
1509 read_blk = (struct pci_read_block *)pkt.buf;
1510 read_blk->message_type.type = PCI_READ_BLOCK;
1511 read_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
1512 read_blk->block_id = block_id;
1513 read_blk->bytes_requested = len;
1514
1515 ret = vmbus_sendpacket(hbus->hdev->channel, read_blk,
1516 sizeof(*read_blk), (unsigned long)&pkt.pkt,
1517 VM_PKT_DATA_INBAND,
1518 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1519 if (ret)
1520 return ret;
1521
1522 ret = wait_for_response(hbus->hdev, &comp_pkt.comp_pkt.host_event);
1523 if (ret)
1524 return ret;
1525
1526 if (comp_pkt.comp_pkt.completion_status != 0 ||
1527 comp_pkt.bytes_returned == 0) {
1528 dev_err(&hbus->hdev->device,
1529 "Read Config Block failed: 0x%x, bytes_returned=%d\n",
1530 comp_pkt.comp_pkt.completion_status,
1531 comp_pkt.bytes_returned);
1532 return -EIO;
1533 }
1534
1535 *bytes_returned = comp_pkt.bytes_returned;
1536 return 0;
1537 }
1538
1539 /**
1540 * hv_pci_write_config_compl() - Invoked when a response packet for a write
1541 * config block operation arrives.
1542 * @context: Identifies the write config operation
1543 * @resp: The response packet itself
1544 * @resp_packet_size: Size in bytes of the response packet
1545 */
hv_pci_write_config_compl(void * context,struct pci_response * resp,int resp_packet_size)1546 static void hv_pci_write_config_compl(void *context, struct pci_response *resp,
1547 int resp_packet_size)
1548 {
1549 struct hv_pci_compl *comp_pkt = context;
1550
1551 comp_pkt->completion_status = resp->status;
1552 complete(&comp_pkt->host_event);
1553 }
1554
1555 /**
1556 * hv_write_config_block() - Sends a write config block request to the
1557 * back-end driver running in the Hyper-V parent partition.
1558 * @pdev: The PCI driver's representation for this device.
1559 * @buf: Buffer from which the config block will be copied.
1560 * @len: Size in bytes of buf.
1561 * @block_id: Identifies the config block which is being written.
1562 *
1563 * Return: 0 on success, -errno on failure
1564 */
hv_write_config_block(struct pci_dev * pdev,void * buf,unsigned int len,unsigned int block_id)1565 static int hv_write_config_block(struct pci_dev *pdev, void *buf,
1566 unsigned int len, unsigned int block_id)
1567 {
1568 struct hv_pcibus_device *hbus =
1569 container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1570 sysdata);
1571 struct {
1572 struct pci_packet pkt;
1573 char buf[sizeof(struct pci_write_block)];
1574 u32 reserved;
1575 } pkt;
1576 struct hv_pci_compl comp_pkt;
1577 struct pci_write_block *write_blk;
1578 u32 pkt_size;
1579 int ret;
1580
1581 if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
1582 return -EINVAL;
1583
1584 init_completion(&comp_pkt.host_event);
1585
1586 memset(&pkt, 0, sizeof(pkt));
1587 pkt.pkt.completion_func = hv_pci_write_config_compl;
1588 pkt.pkt.compl_ctxt = &comp_pkt;
1589 write_blk = (struct pci_write_block *)pkt.buf;
1590 write_blk->message_type.type = PCI_WRITE_BLOCK;
1591 write_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
1592 write_blk->block_id = block_id;
1593 write_blk->byte_count = len;
1594 memcpy(write_blk->bytes, buf, len);
1595 pkt_size = offsetof(struct pci_write_block, bytes) + len;
1596 /*
1597 * This quirk is required on some hosts shipped around 2018, because
1598 * these hosts don't check the pkt_size correctly (new hosts have been
1599 * fixed since early 2019). The quirk is also safe on very old hosts
1600 * and new hosts, because, on them, what really matters is the length
1601 * specified in write_blk->byte_count.
1602 */
1603 pkt_size += sizeof(pkt.reserved);
1604
1605 ret = vmbus_sendpacket(hbus->hdev->channel, write_blk, pkt_size,
1606 (unsigned long)&pkt.pkt, VM_PKT_DATA_INBAND,
1607 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1608 if (ret)
1609 return ret;
1610
1611 ret = wait_for_response(hbus->hdev, &comp_pkt.host_event);
1612 if (ret)
1613 return ret;
1614
1615 if (comp_pkt.completion_status != 0) {
1616 dev_err(&hbus->hdev->device,
1617 "Write Config Block failed: 0x%x\n",
1618 comp_pkt.completion_status);
1619 return -EIO;
1620 }
1621
1622 return 0;
1623 }
1624
1625 /**
1626 * hv_register_block_invalidate() - Invoked when a config block invalidation
1627 * arrives from the back-end driver.
1628 * @pdev: The PCI driver's representation for this device.
1629 * @context: Identifies the device.
1630 * @block_invalidate: Identifies all of the blocks being invalidated.
1631 *
1632 * Return: 0 on success, -errno on failure
1633 */
hv_register_block_invalidate(struct pci_dev * pdev,void * context,void (* block_invalidate)(void * context,u64 block_mask))1634 static int hv_register_block_invalidate(struct pci_dev *pdev, void *context,
1635 void (*block_invalidate)(void *context,
1636 u64 block_mask))
1637 {
1638 struct hv_pcibus_device *hbus =
1639 container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1640 sysdata);
1641 struct hv_pci_dev *hpdev;
1642
1643 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1644 if (!hpdev)
1645 return -ENODEV;
1646
1647 hpdev->block_invalidate = block_invalidate;
1648 hpdev->invalidate_context = context;
1649
1650 put_pcichild(hpdev);
1651 return 0;
1652
1653 }
1654
1655 /* Interrupt management hooks */
hv_int_desc_free(struct hv_pci_dev * hpdev,struct tran_int_desc * int_desc)1656 static void hv_int_desc_free(struct hv_pci_dev *hpdev,
1657 struct tran_int_desc *int_desc)
1658 {
1659 struct pci_delete_interrupt *int_pkt;
1660 struct {
1661 struct pci_packet pkt;
1662 u8 buffer[sizeof(struct pci_delete_interrupt)];
1663 } ctxt;
1664
1665 if (!int_desc->vector_count) {
1666 kfree(int_desc);
1667 return;
1668 }
1669 memset(&ctxt, 0, sizeof(ctxt));
1670 int_pkt = (struct pci_delete_interrupt *)ctxt.buffer;
1671 int_pkt->message_type.type =
1672 PCI_DELETE_INTERRUPT_MESSAGE;
1673 int_pkt->wslot.slot = hpdev->desc.win_slot.slot;
1674 int_pkt->int_desc = *int_desc;
1675 vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt),
1676 0, VM_PKT_DATA_INBAND, 0);
1677 kfree(int_desc);
1678 }
1679
1680 /**
1681 * hv_msi_free() - Free the MSI.
1682 * @domain: The interrupt domain pointer
1683 * @irq: Identifies the IRQ.
1684 *
1685 * The Hyper-V parent partition and hypervisor are tracking the
1686 * messages that are in use, keeping the interrupt redirection
1687 * table up to date. This callback sends a message that frees
1688 * the IRT entry and related tracking nonsense.
1689 */
hv_msi_free(struct irq_domain * domain,unsigned int irq)1690 static void hv_msi_free(struct irq_domain *domain, unsigned int irq)
1691 {
1692 struct hv_pcibus_device *hbus;
1693 struct hv_pci_dev *hpdev;
1694 struct pci_dev *pdev;
1695 struct tran_int_desc *int_desc;
1696 struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq);
1697 struct msi_desc *msi = irq_data_get_msi_desc(irq_data);
1698
1699 pdev = msi_desc_to_pci_dev(msi);
1700 hbus = domain->host_data;
1701 int_desc = irq_data_get_irq_chip_data(irq_data);
1702 if (!int_desc)
1703 return;
1704
1705 irq_data->chip_data = NULL;
1706 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1707 if (!hpdev) {
1708 kfree(int_desc);
1709 return;
1710 }
1711
1712 hv_int_desc_free(hpdev, int_desc);
1713 put_pcichild(hpdev);
1714 }
1715
hv_irq_mask(struct irq_data * data)1716 static void hv_irq_mask(struct irq_data *data)
1717 {
1718 if (data->parent_data->chip->irq_mask)
1719 irq_chip_mask_parent(data);
1720 }
1721
hv_irq_unmask(struct irq_data * data)1722 static void hv_irq_unmask(struct irq_data *data)
1723 {
1724 hv_arch_irq_unmask(data);
1725
1726 if (data->parent_data->chip->irq_unmask)
1727 irq_chip_unmask_parent(data);
1728 }
1729
1730 struct compose_comp_ctxt {
1731 struct hv_pci_compl comp_pkt;
1732 struct tran_int_desc int_desc;
1733 };
1734
hv_pci_compose_compl(void * context,struct pci_response * resp,int resp_packet_size)1735 static void hv_pci_compose_compl(void *context, struct pci_response *resp,
1736 int resp_packet_size)
1737 {
1738 struct compose_comp_ctxt *comp_pkt = context;
1739 struct pci_create_int_response *int_resp =
1740 (struct pci_create_int_response *)resp;
1741
1742 if (resp_packet_size < sizeof(*int_resp)) {
1743 comp_pkt->comp_pkt.completion_status = -1;
1744 goto out;
1745 }
1746 comp_pkt->comp_pkt.completion_status = resp->status;
1747 comp_pkt->int_desc = int_resp->int_desc;
1748 out:
1749 complete(&comp_pkt->comp_pkt.host_event);
1750 }
1751
hv_compose_msi_req_v1(struct pci_create_interrupt * int_pkt,u32 slot,u8 vector,u16 vector_count)1752 static u32 hv_compose_msi_req_v1(
1753 struct pci_create_interrupt *int_pkt,
1754 u32 slot, u8 vector, u16 vector_count)
1755 {
1756 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE;
1757 int_pkt->wslot.slot = slot;
1758 int_pkt->int_desc.vector = vector;
1759 int_pkt->int_desc.vector_count = vector_count;
1760 int_pkt->int_desc.delivery_mode = DELIVERY_MODE;
1761
1762 /*
1763 * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in
1764 * hv_irq_unmask().
1765 */
1766 int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL;
1767
1768 return sizeof(*int_pkt);
1769 }
1770
1771 /*
1772 * The vCPU selected by hv_compose_multi_msi_req_get_cpu() and
1773 * hv_compose_msi_req_get_cpu() is a "dummy" vCPU because the final vCPU to be
1774 * interrupted is specified later in hv_irq_unmask() and communicated to Hyper-V
1775 * via the HVCALL_RETARGET_INTERRUPT hypercall. But the choice of dummy vCPU is
1776 * not irrelevant because Hyper-V chooses the physical CPU to handle the
1777 * interrupts based on the vCPU specified in message sent to the vPCI VSP in
1778 * hv_compose_msi_msg(). Hyper-V's choice of pCPU is not visible to the guest,
1779 * but assigning too many vPCI device interrupts to the same pCPU can cause a
1780 * performance bottleneck. So we spread out the dummy vCPUs to influence Hyper-V
1781 * to spread out the pCPUs that it selects.
1782 *
1783 * For the single-MSI and MSI-X cases, it's OK for hv_compose_msi_req_get_cpu()
1784 * to always return the same dummy vCPU, because a second call to
1785 * hv_compose_msi_msg() contains the "real" vCPU, causing Hyper-V to choose a
1786 * new pCPU for the interrupt. But for the multi-MSI case, the second call to
1787 * hv_compose_msi_msg() exits without sending a message to the vPCI VSP, so the
1788 * original dummy vCPU is used. This dummy vCPU must be round-robin'ed so that
1789 * the pCPUs are spread out. All interrupts for a multi-MSI device end up using
1790 * the same pCPU, even though the vCPUs will be spread out by later calls
1791 * to hv_irq_unmask(), but that is the best we can do now.
1792 *
1793 * With Hyper-V in Nov 2022, the HVCALL_RETARGET_INTERRUPT hypercall does *not*
1794 * cause Hyper-V to reselect the pCPU based on the specified vCPU. Such an
1795 * enhancement is planned for a future version. With that enhancement, the
1796 * dummy vCPU selection won't matter, and interrupts for the same multi-MSI
1797 * device will be spread across multiple pCPUs.
1798 */
1799
1800 /*
1801 * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten
1802 * by subsequent retarget in hv_irq_unmask().
1803 */
hv_compose_msi_req_get_cpu(const struct cpumask * affinity)1804 static int hv_compose_msi_req_get_cpu(const struct cpumask *affinity)
1805 {
1806 return cpumask_first_and(affinity, cpu_online_mask);
1807 }
1808
1809 /*
1810 * Make sure the dummy vCPU values for multi-MSI don't all point to vCPU0.
1811 */
hv_compose_multi_msi_req_get_cpu(void)1812 static int hv_compose_multi_msi_req_get_cpu(void)
1813 {
1814 static DEFINE_SPINLOCK(multi_msi_cpu_lock);
1815
1816 /* -1 means starting with CPU 0 */
1817 static int cpu_next = -1;
1818
1819 unsigned long flags;
1820 int cpu;
1821
1822 spin_lock_irqsave(&multi_msi_cpu_lock, flags);
1823
1824 cpu_next = cpumask_next_wrap(cpu_next, cpu_online_mask);
1825 cpu = cpu_next;
1826
1827 spin_unlock_irqrestore(&multi_msi_cpu_lock, flags);
1828
1829 return cpu;
1830 }
1831
hv_compose_msi_req_v2(struct pci_create_interrupt2 * int_pkt,int cpu,u32 slot,u8 vector,u16 vector_count)1832 static u32 hv_compose_msi_req_v2(
1833 struct pci_create_interrupt2 *int_pkt, int cpu,
1834 u32 slot, u8 vector, u16 vector_count)
1835 {
1836 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2;
1837 int_pkt->wslot.slot = slot;
1838 int_pkt->int_desc.vector = vector;
1839 int_pkt->int_desc.vector_count = vector_count;
1840 int_pkt->int_desc.delivery_mode = DELIVERY_MODE;
1841 int_pkt->int_desc.processor_array[0] =
1842 hv_cpu_number_to_vp_number(cpu);
1843 int_pkt->int_desc.processor_count = 1;
1844
1845 return sizeof(*int_pkt);
1846 }
1847
hv_compose_msi_req_v3(struct pci_create_interrupt3 * int_pkt,int cpu,u32 slot,u32 vector,u16 vector_count)1848 static u32 hv_compose_msi_req_v3(
1849 struct pci_create_interrupt3 *int_pkt, int cpu,
1850 u32 slot, u32 vector, u16 vector_count)
1851 {
1852 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE3;
1853 int_pkt->wslot.slot = slot;
1854 int_pkt->int_desc.vector = vector;
1855 int_pkt->int_desc.reserved = 0;
1856 int_pkt->int_desc.vector_count = vector_count;
1857 int_pkt->int_desc.delivery_mode = DELIVERY_MODE;
1858 int_pkt->int_desc.processor_array[0] =
1859 hv_cpu_number_to_vp_number(cpu);
1860 int_pkt->int_desc.processor_count = 1;
1861
1862 return sizeof(*int_pkt);
1863 }
1864
1865 /**
1866 * hv_compose_msi_msg() - Supplies a valid MSI address/data
1867 * @data: Everything about this MSI
1868 * @msg: Buffer that is filled in by this function
1869 *
1870 * This function unpacks the IRQ looking for target CPU set, IDT
1871 * vector and mode and sends a message to the parent partition
1872 * asking for a mapping for that tuple in this partition. The
1873 * response supplies a data value and address to which that data
1874 * should be written to trigger that interrupt.
1875 */
hv_compose_msi_msg(struct irq_data * data,struct msi_msg * msg)1876 static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
1877 {
1878 struct hv_pcibus_device *hbus;
1879 struct vmbus_channel *channel;
1880 struct hv_pci_dev *hpdev;
1881 struct pci_bus *pbus;
1882 struct pci_dev *pdev;
1883 const struct cpumask *dest;
1884 struct compose_comp_ctxt comp;
1885 struct tran_int_desc *int_desc;
1886 struct msi_desc *msi_desc;
1887 /*
1888 * vector_count should be u16: see hv_msi_desc, hv_msi_desc2
1889 * and hv_msi_desc3. vector must be u32: see hv_msi_desc3.
1890 */
1891 u16 vector_count;
1892 u32 vector;
1893 struct {
1894 struct pci_packet pci_pkt;
1895 union {
1896 struct pci_create_interrupt v1;
1897 struct pci_create_interrupt2 v2;
1898 struct pci_create_interrupt3 v3;
1899 } int_pkts;
1900 } __packed ctxt;
1901 bool multi_msi;
1902 u64 trans_id;
1903 u32 size;
1904 int ret;
1905 int cpu;
1906
1907 msi_desc = irq_data_get_msi_desc(data);
1908 multi_msi = !msi_desc->pci.msi_attrib.is_msix &&
1909 msi_desc->nvec_used > 1;
1910
1911 /* Reuse the previous allocation */
1912 if (data->chip_data && multi_msi) {
1913 int_desc = data->chip_data;
1914 msg->address_hi = int_desc->address >> 32;
1915 msg->address_lo = int_desc->address & 0xffffffff;
1916 msg->data = int_desc->data;
1917 return;
1918 }
1919
1920 pdev = msi_desc_to_pci_dev(msi_desc);
1921 dest = irq_data_get_effective_affinity_mask(data);
1922 pbus = pdev->bus;
1923 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
1924 channel = hbus->hdev->channel;
1925 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1926 if (!hpdev)
1927 goto return_null_message;
1928
1929 /* Free any previous message that might have already been composed. */
1930 if (data->chip_data && !multi_msi) {
1931 int_desc = data->chip_data;
1932 data->chip_data = NULL;
1933 hv_int_desc_free(hpdev, int_desc);
1934 }
1935
1936 int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC);
1937 if (!int_desc)
1938 goto drop_reference;
1939
1940 if (multi_msi) {
1941 /*
1942 * If this is not the first MSI of Multi MSI, we already have
1943 * a mapping. Can exit early.
1944 */
1945 if (msi_desc->irq != data->irq) {
1946 data->chip_data = int_desc;
1947 int_desc->address = msi_desc->msg.address_lo |
1948 (u64)msi_desc->msg.address_hi << 32;
1949 int_desc->data = msi_desc->msg.data +
1950 (data->irq - msi_desc->irq);
1951 msg->address_hi = msi_desc->msg.address_hi;
1952 msg->address_lo = msi_desc->msg.address_lo;
1953 msg->data = int_desc->data;
1954 put_pcichild(hpdev);
1955 return;
1956 }
1957 /*
1958 * The vector we select here is a dummy value. The correct
1959 * value gets sent to the hypervisor in unmask(). This needs
1960 * to be aligned with the count, and also not zero. Multi-msi
1961 * is powers of 2 up to 32, so 32 will always work here.
1962 */
1963 vector = 32;
1964 vector_count = msi_desc->nvec_used;
1965 cpu = hv_compose_multi_msi_req_get_cpu();
1966 } else {
1967 vector = hv_msi_get_int_vector(data);
1968 vector_count = 1;
1969 cpu = hv_compose_msi_req_get_cpu(dest);
1970 }
1971
1972 /*
1973 * hv_compose_msi_req_v1 and v2 are for x86 only, meaning 'vector'
1974 * can't exceed u8. Cast 'vector' down to u8 for v1/v2 explicitly
1975 * for better readability.
1976 */
1977 memset(&ctxt, 0, sizeof(ctxt));
1978 init_completion(&comp.comp_pkt.host_event);
1979 ctxt.pci_pkt.completion_func = hv_pci_compose_compl;
1980 ctxt.pci_pkt.compl_ctxt = ∁
1981
1982 switch (hbus->protocol_version) {
1983 case PCI_PROTOCOL_VERSION_1_1:
1984 size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1,
1985 hpdev->desc.win_slot.slot,
1986 (u8)vector,
1987 vector_count);
1988 break;
1989
1990 case PCI_PROTOCOL_VERSION_1_2:
1991 case PCI_PROTOCOL_VERSION_1_3:
1992 size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2,
1993 cpu,
1994 hpdev->desc.win_slot.slot,
1995 (u8)vector,
1996 vector_count);
1997 break;
1998
1999 case PCI_PROTOCOL_VERSION_1_4:
2000 size = hv_compose_msi_req_v3(&ctxt.int_pkts.v3,
2001 cpu,
2002 hpdev->desc.win_slot.slot,
2003 vector,
2004 vector_count);
2005 break;
2006
2007 default:
2008 /* As we only negotiate protocol versions known to this driver,
2009 * this path should never hit. However, this is it not a hot
2010 * path so we print a message to aid future updates.
2011 */
2012 dev_err(&hbus->hdev->device,
2013 "Unexpected vPCI protocol, update driver.");
2014 goto free_int_desc;
2015 }
2016
2017 ret = vmbus_sendpacket_getid(hpdev->hbus->hdev->channel, &ctxt.int_pkts,
2018 size, (unsigned long)&ctxt.pci_pkt,
2019 &trans_id, VM_PKT_DATA_INBAND,
2020 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2021 if (ret) {
2022 dev_err(&hbus->hdev->device,
2023 "Sending request for interrupt failed: 0x%x",
2024 comp.comp_pkt.completion_status);
2025 goto free_int_desc;
2026 }
2027
2028 /*
2029 * Prevents hv_pci_onchannelcallback() from running concurrently
2030 * in the tasklet.
2031 */
2032 tasklet_disable_in_atomic(&channel->callback_event);
2033
2034 /*
2035 * Since this function is called with IRQ locks held, can't
2036 * do normal wait for completion; instead poll.
2037 */
2038 while (!try_wait_for_completion(&comp.comp_pkt.host_event)) {
2039 unsigned long flags;
2040
2041 /* 0xFFFF means an invalid PCI VENDOR ID. */
2042 if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) {
2043 dev_err_once(&hbus->hdev->device,
2044 "the device has gone\n");
2045 goto enable_tasklet;
2046 }
2047
2048 /*
2049 * Make sure that the ring buffer data structure doesn't get
2050 * freed while we dereference the ring buffer pointer. Test
2051 * for the channel's onchannel_callback being NULL within a
2052 * sched_lock critical section. See also the inline comments
2053 * in vmbus_reset_channel_cb().
2054 */
2055 spin_lock_irqsave(&channel->sched_lock, flags);
2056 if (unlikely(channel->onchannel_callback == NULL)) {
2057 spin_unlock_irqrestore(&channel->sched_lock, flags);
2058 goto enable_tasklet;
2059 }
2060 hv_pci_onchannelcallback(hbus);
2061 spin_unlock_irqrestore(&channel->sched_lock, flags);
2062
2063 udelay(100);
2064 }
2065
2066 tasklet_enable(&channel->callback_event);
2067
2068 if (comp.comp_pkt.completion_status < 0) {
2069 dev_err(&hbus->hdev->device,
2070 "Request for interrupt failed: 0x%x",
2071 comp.comp_pkt.completion_status);
2072 goto free_int_desc;
2073 }
2074
2075 /*
2076 * Record the assignment so that this can be unwound later. Using
2077 * irq_set_chip_data() here would be appropriate, but the lock it takes
2078 * is already held.
2079 */
2080 *int_desc = comp.int_desc;
2081 data->chip_data = int_desc;
2082
2083 /* Pass up the result. */
2084 msg->address_hi = comp.int_desc.address >> 32;
2085 msg->address_lo = comp.int_desc.address & 0xffffffff;
2086 msg->data = comp.int_desc.data;
2087
2088 put_pcichild(hpdev);
2089 return;
2090
2091 enable_tasklet:
2092 tasklet_enable(&channel->callback_event);
2093 /*
2094 * The completion packet on the stack becomes invalid after 'return';
2095 * remove the ID from the VMbus requestor if the identifier is still
2096 * mapped to/associated with the packet. (The identifier could have
2097 * been 're-used', i.e., already removed and (re-)mapped.)
2098 *
2099 * Cf. hv_pci_onchannelcallback().
2100 */
2101 vmbus_request_addr_match(channel, trans_id, (unsigned long)&ctxt.pci_pkt);
2102 free_int_desc:
2103 kfree(int_desc);
2104 drop_reference:
2105 put_pcichild(hpdev);
2106 return_null_message:
2107 msg->address_hi = 0;
2108 msg->address_lo = 0;
2109 msg->data = 0;
2110 }
2111
hv_pcie_init_dev_msi_info(struct device * dev,struct irq_domain * domain,struct irq_domain * real_parent,struct msi_domain_info * info)2112 static bool hv_pcie_init_dev_msi_info(struct device *dev, struct irq_domain *domain,
2113 struct irq_domain *real_parent, struct msi_domain_info *info)
2114 {
2115 struct irq_chip *chip = info->chip;
2116
2117 if (!msi_lib_init_dev_msi_info(dev, domain, real_parent, info))
2118 return false;
2119
2120 info->ops->msi_prepare = hv_msi_prepare;
2121
2122 chip->irq_set_affinity = irq_chip_set_affinity_parent;
2123
2124 if (IS_ENABLED(CONFIG_X86))
2125 chip->flags |= IRQCHIP_MOVE_DEFERRED;
2126
2127 return true;
2128 }
2129
2130 #define HV_PCIE_MSI_FLAGS_REQUIRED (MSI_FLAG_USE_DEF_DOM_OPS | \
2131 MSI_FLAG_USE_DEF_CHIP_OPS | \
2132 MSI_FLAG_PCI_MSI_MASK_PARENT)
2133 #define HV_PCIE_MSI_FLAGS_SUPPORTED (MSI_FLAG_MULTI_PCI_MSI | \
2134 MSI_FLAG_PCI_MSIX | \
2135 MSI_FLAG_PCI_MSIX_ALLOC_DYN | \
2136 MSI_GENERIC_FLAGS_MASK)
2137
2138 static const struct msi_parent_ops hv_pcie_msi_parent_ops = {
2139 .required_flags = HV_PCIE_MSI_FLAGS_REQUIRED,
2140 .supported_flags = HV_PCIE_MSI_FLAGS_SUPPORTED,
2141 .bus_select_token = DOMAIN_BUS_PCI_MSI,
2142 .chip_flags = HV_MSI_CHIP_FLAGS,
2143 .prefix = "HV-",
2144 .init_dev_msi_info = hv_pcie_init_dev_msi_info,
2145 };
2146
2147 /* HW Interrupt Chip Descriptor */
2148 static struct irq_chip hv_msi_irq_chip = {
2149 .name = "Hyper-V PCIe MSI",
2150 .irq_compose_msi_msg = hv_compose_msi_msg,
2151 .irq_set_affinity = irq_chip_set_affinity_parent,
2152 .irq_ack = irq_chip_ack_parent,
2153 .irq_eoi = irq_chip_eoi_parent,
2154 .irq_mask = hv_irq_mask,
2155 .irq_unmask = hv_irq_unmask,
2156 };
2157
hv_pcie_domain_alloc(struct irq_domain * d,unsigned int virq,unsigned int nr_irqs,void * arg)2158 static int hv_pcie_domain_alloc(struct irq_domain *d, unsigned int virq, unsigned int nr_irqs,
2159 void *arg)
2160 {
2161 /*
2162 * TODO: Allocating and populating struct tran_int_desc in hv_compose_msi_msg()
2163 * should be moved here.
2164 */
2165 int ret;
2166
2167 ret = irq_domain_alloc_irqs_parent(d, virq, nr_irqs, arg);
2168 if (ret < 0)
2169 return ret;
2170
2171 for (int i = 0; i < nr_irqs; i++) {
2172 irq_domain_set_hwirq_and_chip(d, virq + i, 0, &hv_msi_irq_chip, NULL);
2173 if (IS_ENABLED(CONFIG_X86))
2174 __irq_set_handler(virq + i, handle_edge_irq, 0, "edge");
2175 }
2176
2177 return 0;
2178 }
2179
hv_pcie_domain_free(struct irq_domain * d,unsigned int virq,unsigned int nr_irqs)2180 static void hv_pcie_domain_free(struct irq_domain *d, unsigned int virq, unsigned int nr_irqs)
2181 {
2182 for (int i = 0; i < nr_irqs; i++)
2183 hv_msi_free(d, virq + i);
2184
2185 irq_domain_free_irqs_top(d, virq, nr_irqs);
2186 }
2187
2188 static const struct irq_domain_ops hv_pcie_domain_ops = {
2189 .alloc = hv_pcie_domain_alloc,
2190 .free = hv_pcie_domain_free,
2191 };
2192
2193 /**
2194 * hv_pcie_init_irq_domain() - Initialize IRQ domain
2195 * @hbus: The root PCI bus
2196 *
2197 * This function creates an IRQ domain which will be used for
2198 * interrupts from devices that have been passed through. These
2199 * devices only support MSI and MSI-X, not line-based interrupts
2200 * or simulations of line-based interrupts through PCIe's
2201 * fabric-layer messages. Because interrupts are remapped, we
2202 * can support multi-message MSI here.
2203 *
2204 * Return: '0' on success and error value on failure
2205 */
hv_pcie_init_irq_domain(struct hv_pcibus_device * hbus)2206 static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus)
2207 {
2208 struct irq_domain_info info = {
2209 .fwnode = hbus->fwnode,
2210 .ops = &hv_pcie_domain_ops,
2211 .host_data = hbus,
2212 .parent = hv_pci_get_root_domain(),
2213 };
2214
2215 hbus->irq_domain = msi_create_parent_irq_domain(&info, &hv_pcie_msi_parent_ops);
2216 if (!hbus->irq_domain) {
2217 dev_err(&hbus->hdev->device,
2218 "Failed to build an MSI IRQ domain\n");
2219 return -ENODEV;
2220 }
2221
2222 dev_set_msi_domain(&hbus->bridge->dev, hbus->irq_domain);
2223
2224 return 0;
2225 }
2226
2227 /**
2228 * get_bar_size() - Get the address space consumed by a BAR
2229 * @bar_val: Value that a BAR returned after -1 was written
2230 * to it.
2231 *
2232 * This function returns the size of the BAR, rounded up to 1
2233 * page. It has to be rounded up because the hypervisor's page
2234 * table entry that maps the BAR into the VM can't specify an
2235 * offset within a page. The invariant is that the hypervisor
2236 * must place any BARs of smaller than page length at the
2237 * beginning of a page.
2238 *
2239 * Return: Size in bytes of the consumed MMIO space.
2240 */
get_bar_size(u64 bar_val)2241 static u64 get_bar_size(u64 bar_val)
2242 {
2243 return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)),
2244 PAGE_SIZE);
2245 }
2246
2247 /**
2248 * survey_child_resources() - Total all MMIO requirements
2249 * @hbus: Root PCI bus, as understood by this driver
2250 */
survey_child_resources(struct hv_pcibus_device * hbus)2251 static void survey_child_resources(struct hv_pcibus_device *hbus)
2252 {
2253 struct hv_pci_dev *hpdev;
2254 resource_size_t bar_size = 0;
2255 unsigned long flags;
2256 struct completion *event;
2257 u64 bar_val;
2258 int i;
2259
2260 /* If nobody is waiting on the answer, don't compute it. */
2261 event = xchg(&hbus->survey_event, NULL);
2262 if (!event)
2263 return;
2264
2265 /* If the answer has already been computed, go with it. */
2266 if (hbus->low_mmio_space || hbus->high_mmio_space) {
2267 complete(event);
2268 return;
2269 }
2270
2271 spin_lock_irqsave(&hbus->device_list_lock, flags);
2272
2273 /*
2274 * Due to an interesting quirk of the PCI spec, all memory regions
2275 * for a child device are a power of 2 in size and aligned in memory,
2276 * so it's sufficient to just add them up without tracking alignment.
2277 */
2278 list_for_each_entry(hpdev, &hbus->children, list_entry) {
2279 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
2280 if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO)
2281 dev_err(&hbus->hdev->device,
2282 "There's an I/O BAR in this list!\n");
2283
2284 if (hpdev->probed_bar[i] != 0) {
2285 /*
2286 * A probed BAR has all the upper bits set that
2287 * can be changed.
2288 */
2289
2290 bar_val = hpdev->probed_bar[i];
2291 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
2292 bar_val |=
2293 ((u64)hpdev->probed_bar[++i] << 32);
2294 else
2295 bar_val |= 0xffffffff00000000ULL;
2296
2297 bar_size = get_bar_size(bar_val);
2298
2299 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
2300 hbus->high_mmio_space += bar_size;
2301 else
2302 hbus->low_mmio_space += bar_size;
2303 }
2304 }
2305 }
2306
2307 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2308 complete(event);
2309 }
2310
2311 /**
2312 * prepopulate_bars() - Fill in BARs with defaults
2313 * @hbus: Root PCI bus, as understood by this driver
2314 *
2315 * The core PCI driver code seems much, much happier if the BARs
2316 * for a device have values upon first scan. So fill them in.
2317 * The algorithm below works down from large sizes to small,
2318 * attempting to pack the assignments optimally. The assumption,
2319 * enforced in other parts of the code, is that the beginning of
2320 * the memory-mapped I/O space will be aligned on the largest
2321 * BAR size.
2322 */
prepopulate_bars(struct hv_pcibus_device * hbus)2323 static void prepopulate_bars(struct hv_pcibus_device *hbus)
2324 {
2325 resource_size_t high_size = 0;
2326 resource_size_t low_size = 0;
2327 resource_size_t high_base = 0;
2328 resource_size_t low_base = 0;
2329 resource_size_t bar_size;
2330 struct hv_pci_dev *hpdev;
2331 unsigned long flags;
2332 u64 bar_val;
2333 u32 command;
2334 bool high;
2335 int i;
2336
2337 if (hbus->low_mmio_space) {
2338 low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
2339 low_base = hbus->low_mmio_res->start;
2340 }
2341
2342 if (hbus->high_mmio_space) {
2343 high_size = 1ULL <<
2344 (63 - __builtin_clzll(hbus->high_mmio_space));
2345 high_base = hbus->high_mmio_res->start;
2346 }
2347
2348 spin_lock_irqsave(&hbus->device_list_lock, flags);
2349
2350 /*
2351 * Clear the memory enable bit, in case it's already set. This occurs
2352 * in the suspend path of hibernation, where the device is suspended,
2353 * resumed and suspended again: see hibernation_snapshot() and
2354 * hibernation_platform_enter().
2355 *
2356 * If the memory enable bit is already set, Hyper-V silently ignores
2357 * the below BAR updates, and the related PCI device driver can not
2358 * work, because reading from the device register(s) always returns
2359 * 0xFFFFFFFF (PCI_ERROR_RESPONSE).
2360 */
2361 list_for_each_entry(hpdev, &hbus->children, list_entry) {
2362 _hv_pcifront_read_config(hpdev, PCI_COMMAND, 2, &command);
2363 command &= ~PCI_COMMAND_MEMORY;
2364 _hv_pcifront_write_config(hpdev, PCI_COMMAND, 2, command);
2365 }
2366
2367 /* Pick addresses for the BARs. */
2368 do {
2369 list_for_each_entry(hpdev, &hbus->children, list_entry) {
2370 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
2371 bar_val = hpdev->probed_bar[i];
2372 if (bar_val == 0)
2373 continue;
2374 high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64;
2375 if (high) {
2376 bar_val |=
2377 ((u64)hpdev->probed_bar[i + 1]
2378 << 32);
2379 } else {
2380 bar_val |= 0xffffffffULL << 32;
2381 }
2382 bar_size = get_bar_size(bar_val);
2383 if (high) {
2384 if (high_size != bar_size) {
2385 i++;
2386 continue;
2387 }
2388 _hv_pcifront_write_config(hpdev,
2389 PCI_BASE_ADDRESS_0 + (4 * i),
2390 4,
2391 (u32)(high_base & 0xffffff00));
2392 i++;
2393 _hv_pcifront_write_config(hpdev,
2394 PCI_BASE_ADDRESS_0 + (4 * i),
2395 4, (u32)(high_base >> 32));
2396 high_base += bar_size;
2397 } else {
2398 if (low_size != bar_size)
2399 continue;
2400 _hv_pcifront_write_config(hpdev,
2401 PCI_BASE_ADDRESS_0 + (4 * i),
2402 4,
2403 (u32)(low_base & 0xffffff00));
2404 low_base += bar_size;
2405 }
2406 }
2407 if (high_size <= 1 && low_size <= 1) {
2408 /*
2409 * No need to set the PCI_COMMAND_MEMORY bit as
2410 * the core PCI driver doesn't require the bit
2411 * to be pre-set. Actually here we intentionally
2412 * keep the bit off so that the PCI BAR probing
2413 * in the core PCI driver doesn't cause Hyper-V
2414 * to unnecessarily unmap/map the virtual BARs
2415 * from/to the physical BARs multiple times.
2416 * This reduces the VM boot time significantly
2417 * if the BAR sizes are huge.
2418 */
2419 break;
2420 }
2421 }
2422
2423 high_size >>= 1;
2424 low_size >>= 1;
2425 } while (high_size || low_size);
2426
2427 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2428 }
2429
2430 /*
2431 * Assign entries in sysfs pci slot directory.
2432 *
2433 * Note that this function does not need to lock the children list
2434 * because it is called from pci_devices_present_work which
2435 * is serialized with hv_eject_device_work because they are on the
2436 * same ordered workqueue. Therefore hbus->children list will not change
2437 * even when pci_create_slot sleeps.
2438 */
hv_pci_assign_slots(struct hv_pcibus_device * hbus)2439 static void hv_pci_assign_slots(struct hv_pcibus_device *hbus)
2440 {
2441 struct hv_pci_dev *hpdev;
2442 char name[SLOT_NAME_SIZE];
2443 int slot_nr;
2444
2445 list_for_each_entry(hpdev, &hbus->children, list_entry) {
2446 if (hpdev->pci_slot)
2447 continue;
2448
2449 slot_nr = PCI_SLOT(wslot_to_devfn(hpdev->desc.win_slot.slot));
2450 snprintf(name, SLOT_NAME_SIZE, "%u", hpdev->desc.ser);
2451 hpdev->pci_slot = pci_create_slot(hbus->bridge->bus, slot_nr,
2452 name, NULL);
2453 if (IS_ERR(hpdev->pci_slot)) {
2454 pr_warn("pci_create slot %s failed\n", name);
2455 hpdev->pci_slot = NULL;
2456 }
2457 }
2458 }
2459
2460 /*
2461 * Remove entries in sysfs pci slot directory.
2462 */
hv_pci_remove_slots(struct hv_pcibus_device * hbus)2463 static void hv_pci_remove_slots(struct hv_pcibus_device *hbus)
2464 {
2465 struct hv_pci_dev *hpdev;
2466
2467 list_for_each_entry(hpdev, &hbus->children, list_entry) {
2468 if (!hpdev->pci_slot)
2469 continue;
2470 pci_destroy_slot(hpdev->pci_slot);
2471 hpdev->pci_slot = NULL;
2472 }
2473 }
2474
2475 /*
2476 * Set NUMA node for the devices on the bus
2477 */
hv_pci_assign_numa_node(struct hv_pcibus_device * hbus)2478 static void hv_pci_assign_numa_node(struct hv_pcibus_device *hbus)
2479 {
2480 struct pci_dev *dev;
2481 struct pci_bus *bus = hbus->bridge->bus;
2482 struct hv_pci_dev *hv_dev;
2483
2484 list_for_each_entry(dev, &bus->devices, bus_list) {
2485 hv_dev = get_pcichild_wslot(hbus, devfn_to_wslot(dev->devfn));
2486 if (!hv_dev)
2487 continue;
2488
2489 if (hv_dev->desc.flags & HV_PCI_DEVICE_FLAG_NUMA_AFFINITY &&
2490 hv_dev->desc.virtual_numa_node < num_possible_nodes())
2491 /*
2492 * The kernel may boot with some NUMA nodes offline
2493 * (e.g. in a KDUMP kernel) or with NUMA disabled via
2494 * "numa=off". In those cases, adjust the host provided
2495 * NUMA node to a valid NUMA node used by the kernel.
2496 */
2497 set_dev_node(&dev->dev,
2498 numa_map_to_online_node(
2499 hv_dev->desc.virtual_numa_node));
2500
2501 put_pcichild(hv_dev);
2502 }
2503 }
2504
2505 /**
2506 * create_root_hv_pci_bus() - Expose a new root PCI bus
2507 * @hbus: Root PCI bus, as understood by this driver
2508 *
2509 * Return: 0 on success, -errno on failure
2510 */
create_root_hv_pci_bus(struct hv_pcibus_device * hbus)2511 static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus)
2512 {
2513 int error;
2514 struct pci_host_bridge *bridge = hbus->bridge;
2515
2516 bridge->dev.parent = &hbus->hdev->device;
2517 bridge->sysdata = &hbus->sysdata;
2518 bridge->ops = &hv_pcifront_ops;
2519
2520 error = pci_scan_root_bus_bridge(bridge);
2521 if (error)
2522 return error;
2523
2524 pci_lock_rescan_remove();
2525 hv_pci_assign_numa_node(hbus);
2526 pci_bus_assign_resources(bridge->bus);
2527 hv_pci_assign_slots(hbus);
2528 pci_bus_add_devices(bridge->bus);
2529 pci_unlock_rescan_remove();
2530 hbus->state = hv_pcibus_installed;
2531 return 0;
2532 }
2533
2534 struct q_res_req_compl {
2535 struct completion host_event;
2536 struct hv_pci_dev *hpdev;
2537 };
2538
2539 /**
2540 * q_resource_requirements() - Query Resource Requirements
2541 * @context: The completion context.
2542 * @resp: The response that came from the host.
2543 * @resp_packet_size: The size in bytes of resp.
2544 *
2545 * This function is invoked on completion of a Query Resource
2546 * Requirements packet.
2547 */
q_resource_requirements(void * context,struct pci_response * resp,int resp_packet_size)2548 static void q_resource_requirements(void *context, struct pci_response *resp,
2549 int resp_packet_size)
2550 {
2551 struct q_res_req_compl *completion = context;
2552 struct pci_q_res_req_response *q_res_req =
2553 (struct pci_q_res_req_response *)resp;
2554 s32 status;
2555 int i;
2556
2557 status = (resp_packet_size < sizeof(*q_res_req)) ? -1 : resp->status;
2558 if (status < 0) {
2559 dev_err(&completion->hpdev->hbus->hdev->device,
2560 "query resource requirements failed: %x\n",
2561 status);
2562 } else {
2563 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
2564 completion->hpdev->probed_bar[i] =
2565 q_res_req->probed_bar[i];
2566 }
2567 }
2568
2569 complete(&completion->host_event);
2570 }
2571
2572 /**
2573 * new_pcichild_device() - Create a new child device
2574 * @hbus: The internal struct tracking this root PCI bus.
2575 * @desc: The information supplied so far from the host
2576 * about the device.
2577 *
2578 * This function creates the tracking structure for a new child
2579 * device and kicks off the process of figuring out what it is.
2580 *
2581 * Return: Pointer to the new tracking struct
2582 */
new_pcichild_device(struct hv_pcibus_device * hbus,struct hv_pcidev_description * desc)2583 static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus,
2584 struct hv_pcidev_description *desc)
2585 {
2586 struct hv_pci_dev *hpdev;
2587 struct pci_child_message *res_req;
2588 struct q_res_req_compl comp_pkt;
2589 struct {
2590 struct pci_packet init_packet;
2591 u8 buffer[sizeof(struct pci_child_message)];
2592 } pkt;
2593 unsigned long flags;
2594 int ret;
2595
2596 hpdev = kzalloc(sizeof(*hpdev), GFP_KERNEL);
2597 if (!hpdev)
2598 return NULL;
2599
2600 hpdev->hbus = hbus;
2601
2602 memset(&pkt, 0, sizeof(pkt));
2603 init_completion(&comp_pkt.host_event);
2604 comp_pkt.hpdev = hpdev;
2605 pkt.init_packet.compl_ctxt = &comp_pkt;
2606 pkt.init_packet.completion_func = q_resource_requirements;
2607 res_req = (struct pci_child_message *)pkt.buffer;
2608 res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS;
2609 res_req->wslot.slot = desc->win_slot.slot;
2610
2611 ret = vmbus_sendpacket(hbus->hdev->channel, res_req,
2612 sizeof(struct pci_child_message),
2613 (unsigned long)&pkt.init_packet,
2614 VM_PKT_DATA_INBAND,
2615 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2616 if (ret)
2617 goto error;
2618
2619 if (wait_for_response(hbus->hdev, &comp_pkt.host_event))
2620 goto error;
2621
2622 hpdev->desc = *desc;
2623 refcount_set(&hpdev->refs, 1);
2624 get_pcichild(hpdev);
2625 spin_lock_irqsave(&hbus->device_list_lock, flags);
2626
2627 list_add_tail(&hpdev->list_entry, &hbus->children);
2628 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2629 return hpdev;
2630
2631 error:
2632 kfree(hpdev);
2633 return NULL;
2634 }
2635
2636 /**
2637 * get_pcichild_wslot() - Find device from slot
2638 * @hbus: Root PCI bus, as understood by this driver
2639 * @wslot: Location on the bus
2640 *
2641 * This function looks up a PCI device and returns the internal
2642 * representation of it. It acquires a reference on it, so that
2643 * the device won't be deleted while somebody is using it. The
2644 * caller is responsible for calling put_pcichild() to release
2645 * this reference.
2646 *
2647 * Return: Internal representation of a PCI device
2648 */
get_pcichild_wslot(struct hv_pcibus_device * hbus,u32 wslot)2649 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
2650 u32 wslot)
2651 {
2652 unsigned long flags;
2653 struct hv_pci_dev *iter, *hpdev = NULL;
2654
2655 spin_lock_irqsave(&hbus->device_list_lock, flags);
2656 list_for_each_entry(iter, &hbus->children, list_entry) {
2657 if (iter->desc.win_slot.slot == wslot) {
2658 hpdev = iter;
2659 get_pcichild(hpdev);
2660 break;
2661 }
2662 }
2663 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2664
2665 return hpdev;
2666 }
2667
2668 /**
2669 * pci_devices_present_work() - Handle new list of child devices
2670 * @work: Work struct embedded in struct hv_dr_work
2671 *
2672 * "Bus Relations" is the Windows term for "children of this
2673 * bus." The terminology is preserved here for people trying to
2674 * debug the interaction between Hyper-V and Linux. This
2675 * function is called when the parent partition reports a list
2676 * of functions that should be observed under this PCI Express
2677 * port (bus).
2678 *
2679 * This function updates the list, and must tolerate being
2680 * called multiple times with the same information. The typical
2681 * number of child devices is one, with very atypical cases
2682 * involving three or four, so the algorithms used here can be
2683 * simple and inefficient.
2684 *
2685 * It must also treat the omission of a previously observed device as
2686 * notification that the device no longer exists.
2687 *
2688 * Note that this function is serialized with hv_eject_device_work(),
2689 * because both are pushed to the ordered workqueue hbus->wq.
2690 */
pci_devices_present_work(struct work_struct * work)2691 static void pci_devices_present_work(struct work_struct *work)
2692 {
2693 u32 child_no;
2694 bool found;
2695 struct hv_pcidev_description *new_desc;
2696 struct hv_pci_dev *hpdev;
2697 struct hv_pcibus_device *hbus;
2698 struct list_head removed;
2699 struct hv_dr_work *dr_wrk;
2700 struct hv_dr_state *dr = NULL;
2701 unsigned long flags;
2702
2703 dr_wrk = container_of(work, struct hv_dr_work, wrk);
2704 hbus = dr_wrk->bus;
2705 kfree(dr_wrk);
2706
2707 INIT_LIST_HEAD(&removed);
2708
2709 /* Pull this off the queue and process it if it was the last one. */
2710 spin_lock_irqsave(&hbus->device_list_lock, flags);
2711 while (!list_empty(&hbus->dr_list)) {
2712 dr = list_first_entry(&hbus->dr_list, struct hv_dr_state,
2713 list_entry);
2714 list_del(&dr->list_entry);
2715
2716 /* Throw this away if the list still has stuff in it. */
2717 if (!list_empty(&hbus->dr_list)) {
2718 kfree(dr);
2719 continue;
2720 }
2721 }
2722 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2723
2724 if (!dr)
2725 return;
2726
2727 mutex_lock(&hbus->state_lock);
2728
2729 /* First, mark all existing children as reported missing. */
2730 spin_lock_irqsave(&hbus->device_list_lock, flags);
2731 list_for_each_entry(hpdev, &hbus->children, list_entry) {
2732 hpdev->reported_missing = true;
2733 }
2734 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2735
2736 /* Next, add back any reported devices. */
2737 for (child_no = 0; child_no < dr->device_count; child_no++) {
2738 found = false;
2739 new_desc = &dr->func[child_no];
2740
2741 spin_lock_irqsave(&hbus->device_list_lock, flags);
2742 list_for_each_entry(hpdev, &hbus->children, list_entry) {
2743 if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) &&
2744 (hpdev->desc.v_id == new_desc->v_id) &&
2745 (hpdev->desc.d_id == new_desc->d_id) &&
2746 (hpdev->desc.ser == new_desc->ser)) {
2747 hpdev->reported_missing = false;
2748 found = true;
2749 }
2750 }
2751 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2752
2753 if (!found) {
2754 hpdev = new_pcichild_device(hbus, new_desc);
2755 if (!hpdev)
2756 dev_err(&hbus->hdev->device,
2757 "couldn't record a child device.\n");
2758 }
2759 }
2760
2761 /* Move missing children to a list on the stack. */
2762 spin_lock_irqsave(&hbus->device_list_lock, flags);
2763 do {
2764 found = false;
2765 list_for_each_entry(hpdev, &hbus->children, list_entry) {
2766 if (hpdev->reported_missing) {
2767 found = true;
2768 put_pcichild(hpdev);
2769 list_move_tail(&hpdev->list_entry, &removed);
2770 break;
2771 }
2772 }
2773 } while (found);
2774 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2775
2776 /* Delete everything that should no longer exist. */
2777 while (!list_empty(&removed)) {
2778 hpdev = list_first_entry(&removed, struct hv_pci_dev,
2779 list_entry);
2780 list_del(&hpdev->list_entry);
2781
2782 if (hpdev->pci_slot)
2783 pci_destroy_slot(hpdev->pci_slot);
2784
2785 put_pcichild(hpdev);
2786 }
2787
2788 switch (hbus->state) {
2789 case hv_pcibus_installed:
2790 /*
2791 * Tell the core to rescan bus
2792 * because there may have been changes.
2793 */
2794 pci_lock_rescan_remove();
2795 pci_scan_child_bus(hbus->bridge->bus);
2796 hv_pci_assign_numa_node(hbus);
2797 hv_pci_assign_slots(hbus);
2798 pci_unlock_rescan_remove();
2799 break;
2800
2801 case hv_pcibus_init:
2802 case hv_pcibus_probed:
2803 survey_child_resources(hbus);
2804 break;
2805
2806 default:
2807 break;
2808 }
2809
2810 mutex_unlock(&hbus->state_lock);
2811
2812 kfree(dr);
2813 }
2814
2815 /**
2816 * hv_pci_start_relations_work() - Queue work to start device discovery
2817 * @hbus: Root PCI bus, as understood by this driver
2818 * @dr: The list of children returned from host
2819 *
2820 * Return: 0 on success, -errno on failure
2821 */
hv_pci_start_relations_work(struct hv_pcibus_device * hbus,struct hv_dr_state * dr)2822 static int hv_pci_start_relations_work(struct hv_pcibus_device *hbus,
2823 struct hv_dr_state *dr)
2824 {
2825 struct hv_dr_work *dr_wrk;
2826 unsigned long flags;
2827 bool pending_dr;
2828
2829 if (hbus->state == hv_pcibus_removing) {
2830 dev_info(&hbus->hdev->device,
2831 "PCI VMBus BUS_RELATIONS: ignored\n");
2832 return -ENOENT;
2833 }
2834
2835 dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT);
2836 if (!dr_wrk)
2837 return -ENOMEM;
2838
2839 INIT_WORK(&dr_wrk->wrk, pci_devices_present_work);
2840 dr_wrk->bus = hbus;
2841
2842 spin_lock_irqsave(&hbus->device_list_lock, flags);
2843 /*
2844 * If pending_dr is true, we have already queued a work,
2845 * which will see the new dr. Otherwise, we need to
2846 * queue a new work.
2847 */
2848 pending_dr = !list_empty(&hbus->dr_list);
2849 list_add_tail(&dr->list_entry, &hbus->dr_list);
2850 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2851
2852 if (pending_dr)
2853 kfree(dr_wrk);
2854 else
2855 queue_work(hbus->wq, &dr_wrk->wrk);
2856
2857 return 0;
2858 }
2859
2860 /**
2861 * hv_pci_devices_present() - Handle list of new children
2862 * @hbus: Root PCI bus, as understood by this driver
2863 * @relations: Packet from host listing children
2864 *
2865 * Process a new list of devices on the bus. The list of devices is
2866 * discovered by VSP and sent to us via VSP message PCI_BUS_RELATIONS,
2867 * whenever a new list of devices for this bus appears.
2868 */
hv_pci_devices_present(struct hv_pcibus_device * hbus,struct pci_bus_relations * relations)2869 static void hv_pci_devices_present(struct hv_pcibus_device *hbus,
2870 struct pci_bus_relations *relations)
2871 {
2872 struct hv_dr_state *dr;
2873 int i;
2874
2875 dr = kzalloc(struct_size(dr, func, relations->device_count),
2876 GFP_NOWAIT);
2877 if (!dr)
2878 return;
2879
2880 dr->device_count = relations->device_count;
2881 for (i = 0; i < dr->device_count; i++) {
2882 dr->func[i].v_id = relations->func[i].v_id;
2883 dr->func[i].d_id = relations->func[i].d_id;
2884 dr->func[i].rev = relations->func[i].rev;
2885 dr->func[i].prog_intf = relations->func[i].prog_intf;
2886 dr->func[i].subclass = relations->func[i].subclass;
2887 dr->func[i].base_class = relations->func[i].base_class;
2888 dr->func[i].subsystem_id = relations->func[i].subsystem_id;
2889 dr->func[i].win_slot = relations->func[i].win_slot;
2890 dr->func[i].ser = relations->func[i].ser;
2891 }
2892
2893 if (hv_pci_start_relations_work(hbus, dr))
2894 kfree(dr);
2895 }
2896
2897 /**
2898 * hv_pci_devices_present2() - Handle list of new children
2899 * @hbus: Root PCI bus, as understood by this driver
2900 * @relations: Packet from host listing children
2901 *
2902 * This function is the v2 version of hv_pci_devices_present()
2903 */
hv_pci_devices_present2(struct hv_pcibus_device * hbus,struct pci_bus_relations2 * relations)2904 static void hv_pci_devices_present2(struct hv_pcibus_device *hbus,
2905 struct pci_bus_relations2 *relations)
2906 {
2907 struct hv_dr_state *dr;
2908 int i;
2909
2910 dr = kzalloc(struct_size(dr, func, relations->device_count),
2911 GFP_NOWAIT);
2912 if (!dr)
2913 return;
2914
2915 dr->device_count = relations->device_count;
2916 for (i = 0; i < dr->device_count; i++) {
2917 dr->func[i].v_id = relations->func[i].v_id;
2918 dr->func[i].d_id = relations->func[i].d_id;
2919 dr->func[i].rev = relations->func[i].rev;
2920 dr->func[i].prog_intf = relations->func[i].prog_intf;
2921 dr->func[i].subclass = relations->func[i].subclass;
2922 dr->func[i].base_class = relations->func[i].base_class;
2923 dr->func[i].subsystem_id = relations->func[i].subsystem_id;
2924 dr->func[i].win_slot = relations->func[i].win_slot;
2925 dr->func[i].ser = relations->func[i].ser;
2926 dr->func[i].flags = relations->func[i].flags;
2927 dr->func[i].virtual_numa_node =
2928 relations->func[i].virtual_numa_node;
2929 }
2930
2931 if (hv_pci_start_relations_work(hbus, dr))
2932 kfree(dr);
2933 }
2934
2935 /**
2936 * hv_eject_device_work() - Asynchronously handles ejection
2937 * @work: Work struct embedded in internal device struct
2938 *
2939 * This function handles ejecting a device. Windows will
2940 * attempt to gracefully eject a device, waiting 60 seconds to
2941 * hear back from the guest OS that this completed successfully.
2942 * If this timer expires, the device will be forcibly removed.
2943 */
hv_eject_device_work(struct work_struct * work)2944 static void hv_eject_device_work(struct work_struct *work)
2945 {
2946 struct pci_eject_response *ejct_pkt;
2947 struct hv_pcibus_device *hbus;
2948 struct hv_pci_dev *hpdev;
2949 struct pci_dev *pdev;
2950 unsigned long flags;
2951 int wslot;
2952 struct {
2953 struct pci_packet pkt;
2954 u8 buffer[sizeof(struct pci_eject_response)];
2955 } ctxt;
2956
2957 hpdev = container_of(work, struct hv_pci_dev, wrk);
2958 hbus = hpdev->hbus;
2959
2960 mutex_lock(&hbus->state_lock);
2961
2962 /*
2963 * Ejection can come before or after the PCI bus has been set up, so
2964 * attempt to find it and tear down the bus state, if it exists. This
2965 * must be done without constructs like pci_domain_nr(hbus->bridge->bus)
2966 * because hbus->bridge->bus may not exist yet.
2967 */
2968 wslot = wslot_to_devfn(hpdev->desc.win_slot.slot);
2969 pdev = pci_get_domain_bus_and_slot(hbus->bridge->domain_nr, 0, wslot);
2970 if (pdev) {
2971 pci_lock_rescan_remove();
2972 pci_stop_and_remove_bus_device(pdev);
2973 pci_dev_put(pdev);
2974 pci_unlock_rescan_remove();
2975 }
2976
2977 spin_lock_irqsave(&hbus->device_list_lock, flags);
2978 list_del(&hpdev->list_entry);
2979 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2980
2981 if (hpdev->pci_slot)
2982 pci_destroy_slot(hpdev->pci_slot);
2983
2984 memset(&ctxt, 0, sizeof(ctxt));
2985 ejct_pkt = (struct pci_eject_response *)ctxt.buffer;
2986 ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE;
2987 ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot;
2988 vmbus_sendpacket(hbus->hdev->channel, ejct_pkt,
2989 sizeof(*ejct_pkt), 0,
2990 VM_PKT_DATA_INBAND, 0);
2991
2992 /* For the get_pcichild() in hv_pci_eject_device() */
2993 put_pcichild(hpdev);
2994 /* For the two refs got in new_pcichild_device() */
2995 put_pcichild(hpdev);
2996 put_pcichild(hpdev);
2997 /* hpdev has been freed. Do not use it any more. */
2998
2999 mutex_unlock(&hbus->state_lock);
3000 }
3001
3002 /**
3003 * hv_pci_eject_device() - Handles device ejection
3004 * @hpdev: Internal device tracking struct
3005 *
3006 * This function is invoked when an ejection packet arrives. It
3007 * just schedules work so that we don't re-enter the packet
3008 * delivery code handling the ejection.
3009 */
hv_pci_eject_device(struct hv_pci_dev * hpdev)3010 static void hv_pci_eject_device(struct hv_pci_dev *hpdev)
3011 {
3012 struct hv_pcibus_device *hbus = hpdev->hbus;
3013 struct hv_device *hdev = hbus->hdev;
3014
3015 if (hbus->state == hv_pcibus_removing) {
3016 dev_info(&hdev->device, "PCI VMBus EJECT: ignored\n");
3017 return;
3018 }
3019
3020 get_pcichild(hpdev);
3021 INIT_WORK(&hpdev->wrk, hv_eject_device_work);
3022 queue_work(hbus->wq, &hpdev->wrk);
3023 }
3024
3025 /**
3026 * hv_pci_onchannelcallback() - Handles incoming packets
3027 * @context: Internal bus tracking struct
3028 *
3029 * This function is invoked whenever the host sends a packet to
3030 * this channel (which is private to this root PCI bus).
3031 */
hv_pci_onchannelcallback(void * context)3032 static void hv_pci_onchannelcallback(void *context)
3033 {
3034 const int packet_size = 0x100;
3035 int ret;
3036 struct hv_pcibus_device *hbus = context;
3037 struct vmbus_channel *chan = hbus->hdev->channel;
3038 u32 bytes_recvd;
3039 u64 req_id, req_addr;
3040 struct vmpacket_descriptor *desc;
3041 unsigned char *buffer;
3042 int bufferlen = packet_size;
3043 struct pci_packet *comp_packet;
3044 struct pci_response *response;
3045 struct pci_incoming_message *new_message;
3046 struct pci_bus_relations *bus_rel;
3047 struct pci_bus_relations2 *bus_rel2;
3048 struct pci_dev_inval_block *inval;
3049 struct pci_dev_incoming *dev_message;
3050 struct hv_pci_dev *hpdev;
3051 unsigned long flags;
3052
3053 buffer = kmalloc(bufferlen, GFP_ATOMIC);
3054 if (!buffer)
3055 return;
3056
3057 while (1) {
3058 ret = vmbus_recvpacket_raw(chan, buffer, bufferlen,
3059 &bytes_recvd, &req_id);
3060
3061 if (ret == -ENOBUFS) {
3062 kfree(buffer);
3063 /* Handle large packet */
3064 bufferlen = bytes_recvd;
3065 buffer = kmalloc(bytes_recvd, GFP_ATOMIC);
3066 if (!buffer)
3067 return;
3068 continue;
3069 }
3070
3071 /* Zero length indicates there are no more packets. */
3072 if (ret || !bytes_recvd)
3073 break;
3074
3075 /*
3076 * All incoming packets must be at least as large as a
3077 * response.
3078 */
3079 if (bytes_recvd <= sizeof(struct pci_response))
3080 continue;
3081 desc = (struct vmpacket_descriptor *)buffer;
3082
3083 switch (desc->type) {
3084 case VM_PKT_COMP:
3085
3086 lock_requestor(chan, flags);
3087 req_addr = __vmbus_request_addr_match(chan, req_id,
3088 VMBUS_RQST_ADDR_ANY);
3089 if (req_addr == VMBUS_RQST_ERROR) {
3090 unlock_requestor(chan, flags);
3091 dev_err(&hbus->hdev->device,
3092 "Invalid transaction ID %llx\n",
3093 req_id);
3094 break;
3095 }
3096 comp_packet = (struct pci_packet *)req_addr;
3097 response = (struct pci_response *)buffer;
3098 /*
3099 * Call ->completion_func() within the critical section to make
3100 * sure that the packet pointer is still valid during the call:
3101 * here 'valid' means that there's a task still waiting for the
3102 * completion, and that the packet data is still on the waiting
3103 * task's stack. Cf. hv_compose_msi_msg().
3104 */
3105 comp_packet->completion_func(comp_packet->compl_ctxt,
3106 response,
3107 bytes_recvd);
3108 unlock_requestor(chan, flags);
3109 break;
3110
3111 case VM_PKT_DATA_INBAND:
3112
3113 new_message = (struct pci_incoming_message *)buffer;
3114 switch (new_message->message_type.type) {
3115 case PCI_BUS_RELATIONS:
3116
3117 bus_rel = (struct pci_bus_relations *)buffer;
3118 if (bytes_recvd < sizeof(*bus_rel) ||
3119 bytes_recvd <
3120 struct_size(bus_rel, func,
3121 bus_rel->device_count)) {
3122 dev_err(&hbus->hdev->device,
3123 "bus relations too small\n");
3124 break;
3125 }
3126
3127 hv_pci_devices_present(hbus, bus_rel);
3128 break;
3129
3130 case PCI_BUS_RELATIONS2:
3131
3132 bus_rel2 = (struct pci_bus_relations2 *)buffer;
3133 if (bytes_recvd < sizeof(*bus_rel2) ||
3134 bytes_recvd <
3135 struct_size(bus_rel2, func,
3136 bus_rel2->device_count)) {
3137 dev_err(&hbus->hdev->device,
3138 "bus relations v2 too small\n");
3139 break;
3140 }
3141
3142 hv_pci_devices_present2(hbus, bus_rel2);
3143 break;
3144
3145 case PCI_EJECT:
3146
3147 dev_message = (struct pci_dev_incoming *)buffer;
3148 if (bytes_recvd < sizeof(*dev_message)) {
3149 dev_err(&hbus->hdev->device,
3150 "eject message too small\n");
3151 break;
3152 }
3153 hpdev = get_pcichild_wslot(hbus,
3154 dev_message->wslot.slot);
3155 if (hpdev) {
3156 hv_pci_eject_device(hpdev);
3157 put_pcichild(hpdev);
3158 }
3159 break;
3160
3161 case PCI_INVALIDATE_BLOCK:
3162
3163 inval = (struct pci_dev_inval_block *)buffer;
3164 if (bytes_recvd < sizeof(*inval)) {
3165 dev_err(&hbus->hdev->device,
3166 "invalidate message too small\n");
3167 break;
3168 }
3169 hpdev = get_pcichild_wslot(hbus,
3170 inval->wslot.slot);
3171 if (hpdev) {
3172 if (hpdev->block_invalidate) {
3173 hpdev->block_invalidate(
3174 hpdev->invalidate_context,
3175 inval->block_mask);
3176 }
3177 put_pcichild(hpdev);
3178 }
3179 break;
3180
3181 default:
3182 dev_warn(&hbus->hdev->device,
3183 "Unimplemented protocol message %x\n",
3184 new_message->message_type.type);
3185 break;
3186 }
3187 break;
3188
3189 default:
3190 dev_err(&hbus->hdev->device,
3191 "unhandled packet type %d, tid %llx len %d\n",
3192 desc->type, req_id, bytes_recvd);
3193 break;
3194 }
3195 }
3196
3197 kfree(buffer);
3198 }
3199
3200 /**
3201 * hv_pci_protocol_negotiation() - Set up protocol
3202 * @hdev: VMBus's tracking struct for this root PCI bus.
3203 * @version: Array of supported channel protocol versions in
3204 * the order of probing - highest go first.
3205 * @num_version: Number of elements in the version array.
3206 *
3207 * This driver is intended to support running on Windows 10
3208 * (server) and later versions. It will not run on earlier
3209 * versions, as they assume that many of the operations which
3210 * Linux needs accomplished with a spinlock held were done via
3211 * asynchronous messaging via VMBus. Windows 10 increases the
3212 * surface area of PCI emulation so that these actions can take
3213 * place by suspending a virtual processor for their duration.
3214 *
3215 * This function negotiates the channel protocol version,
3216 * failing if the host doesn't support the necessary protocol
3217 * level.
3218 */
hv_pci_protocol_negotiation(struct hv_device * hdev,enum pci_protocol_version_t version[],int num_version)3219 static int hv_pci_protocol_negotiation(struct hv_device *hdev,
3220 enum pci_protocol_version_t version[],
3221 int num_version)
3222 {
3223 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3224 struct pci_version_request *version_req;
3225 struct hv_pci_compl comp_pkt;
3226 struct pci_packet *pkt;
3227 int ret;
3228 int i;
3229
3230 /*
3231 * Initiate the handshake with the host and negotiate
3232 * a version that the host can support. We start with the
3233 * highest version number and go down if the host cannot
3234 * support it.
3235 */
3236 pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL);
3237 if (!pkt)
3238 return -ENOMEM;
3239
3240 init_completion(&comp_pkt.host_event);
3241 pkt->completion_func = hv_pci_generic_compl;
3242 pkt->compl_ctxt = &comp_pkt;
3243 version_req = (struct pci_version_request *)(pkt + 1);
3244 version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION;
3245
3246 for (i = 0; i < num_version; i++) {
3247 version_req->protocol_version = version[i];
3248 ret = vmbus_sendpacket(hdev->channel, version_req,
3249 sizeof(struct pci_version_request),
3250 (unsigned long)pkt, VM_PKT_DATA_INBAND,
3251 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3252 if (!ret)
3253 ret = wait_for_response(hdev, &comp_pkt.host_event);
3254
3255 if (ret) {
3256 dev_err(&hdev->device,
3257 "PCI Pass-through VSP failed to request version: %d",
3258 ret);
3259 goto exit;
3260 }
3261
3262 if (comp_pkt.completion_status >= 0) {
3263 hbus->protocol_version = version[i];
3264 dev_info(&hdev->device,
3265 "PCI VMBus probing: Using version %#x\n",
3266 hbus->protocol_version);
3267 goto exit;
3268 }
3269
3270 if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) {
3271 dev_err(&hdev->device,
3272 "PCI Pass-through VSP failed version request: %#x",
3273 comp_pkt.completion_status);
3274 ret = -EPROTO;
3275 goto exit;
3276 }
3277
3278 reinit_completion(&comp_pkt.host_event);
3279 }
3280
3281 dev_err(&hdev->device,
3282 "PCI pass-through VSP failed to find supported version");
3283 ret = -EPROTO;
3284
3285 exit:
3286 kfree(pkt);
3287 return ret;
3288 }
3289
3290 /**
3291 * hv_pci_free_bridge_windows() - Release memory regions for the
3292 * bus
3293 * @hbus: Root PCI bus, as understood by this driver
3294 */
hv_pci_free_bridge_windows(struct hv_pcibus_device * hbus)3295 static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus)
3296 {
3297 /*
3298 * Set the resources back to the way they looked when they
3299 * were allocated by setting IORESOURCE_BUSY again.
3300 */
3301
3302 if (hbus->low_mmio_space && hbus->low_mmio_res) {
3303 hbus->low_mmio_res->flags |= IORESOURCE_BUSY;
3304 vmbus_free_mmio(hbus->low_mmio_res->start,
3305 resource_size(hbus->low_mmio_res));
3306 }
3307
3308 if (hbus->high_mmio_space && hbus->high_mmio_res) {
3309 hbus->high_mmio_res->flags |= IORESOURCE_BUSY;
3310 vmbus_free_mmio(hbus->high_mmio_res->start,
3311 resource_size(hbus->high_mmio_res));
3312 }
3313 }
3314
3315 /**
3316 * hv_pci_allocate_bridge_windows() - Allocate memory regions
3317 * for the bus
3318 * @hbus: Root PCI bus, as understood by this driver
3319 *
3320 * This function calls vmbus_allocate_mmio(), which is itself a
3321 * bit of a compromise. Ideally, we might change the pnp layer
3322 * in the kernel such that it comprehends either PCI devices
3323 * which are "grandchildren of ACPI," with some intermediate bus
3324 * node (in this case, VMBus) or change it such that it
3325 * understands VMBus. The pnp layer, however, has been declared
3326 * deprecated, and not subject to change.
3327 *
3328 * The workaround, implemented here, is to ask VMBus to allocate
3329 * MMIO space for this bus. VMBus itself knows which ranges are
3330 * appropriate by looking at its own ACPI objects. Then, after
3331 * these ranges are claimed, they're modified to look like they
3332 * would have looked if the ACPI and pnp code had allocated
3333 * bridge windows. These descriptors have to exist in this form
3334 * in order to satisfy the code which will get invoked when the
3335 * endpoint PCI function driver calls request_mem_region() or
3336 * request_mem_region_exclusive().
3337 *
3338 * Return: 0 on success, -errno on failure
3339 */
hv_pci_allocate_bridge_windows(struct hv_pcibus_device * hbus)3340 static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus)
3341 {
3342 resource_size_t align;
3343 int ret;
3344
3345 if (hbus->low_mmio_space) {
3346 align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
3347 ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0,
3348 (u64)(u32)0xffffffff,
3349 hbus->low_mmio_space,
3350 align, false);
3351 if (ret) {
3352 dev_err(&hbus->hdev->device,
3353 "Need %#llx of low MMIO space. Consider reconfiguring the VM.\n",
3354 hbus->low_mmio_space);
3355 return ret;
3356 }
3357
3358 /* Modify this resource to become a bridge window. */
3359 hbus->low_mmio_res->flags |= IORESOURCE_WINDOW;
3360 hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY;
3361 pci_add_resource(&hbus->bridge->windows, hbus->low_mmio_res);
3362 }
3363
3364 if (hbus->high_mmio_space) {
3365 align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space));
3366 ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev,
3367 0x100000000, -1,
3368 hbus->high_mmio_space, align,
3369 false);
3370 if (ret) {
3371 dev_err(&hbus->hdev->device,
3372 "Need %#llx of high MMIO space. Consider reconfiguring the VM.\n",
3373 hbus->high_mmio_space);
3374 goto release_low_mmio;
3375 }
3376
3377 /* Modify this resource to become a bridge window. */
3378 hbus->high_mmio_res->flags |= IORESOURCE_WINDOW;
3379 hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY;
3380 pci_add_resource(&hbus->bridge->windows, hbus->high_mmio_res);
3381 }
3382
3383 return 0;
3384
3385 release_low_mmio:
3386 if (hbus->low_mmio_res) {
3387 vmbus_free_mmio(hbus->low_mmio_res->start,
3388 resource_size(hbus->low_mmio_res));
3389 }
3390
3391 return ret;
3392 }
3393
3394 /**
3395 * hv_allocate_config_window() - Find MMIO space for PCI Config
3396 * @hbus: Root PCI bus, as understood by this driver
3397 *
3398 * This function claims memory-mapped I/O space for accessing
3399 * configuration space for the functions on this bus.
3400 *
3401 * Return: 0 on success, -errno on failure
3402 */
hv_allocate_config_window(struct hv_pcibus_device * hbus)3403 static int hv_allocate_config_window(struct hv_pcibus_device *hbus)
3404 {
3405 int ret;
3406
3407 /*
3408 * Set up a region of MMIO space to use for accessing configuration
3409 * space.
3410 */
3411 ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1,
3412 PCI_CONFIG_MMIO_LENGTH, 0x1000, false);
3413 if (ret)
3414 return ret;
3415
3416 /*
3417 * vmbus_allocate_mmio() gets used for allocating both device endpoint
3418 * resource claims (those which cannot be overlapped) and the ranges
3419 * which are valid for the children of this bus, which are intended
3420 * to be overlapped by those children. Set the flag on this claim
3421 * meaning that this region can't be overlapped.
3422 */
3423
3424 hbus->mem_config->flags |= IORESOURCE_BUSY;
3425
3426 return 0;
3427 }
3428
hv_free_config_window(struct hv_pcibus_device * hbus)3429 static void hv_free_config_window(struct hv_pcibus_device *hbus)
3430 {
3431 vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH);
3432 }
3433
3434 static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs);
3435
3436 /**
3437 * hv_pci_enter_d0() - Bring the "bus" into the D0 power state
3438 * @hdev: VMBus's tracking struct for this root PCI bus
3439 *
3440 * Return: 0 on success, -errno on failure
3441 */
hv_pci_enter_d0(struct hv_device * hdev)3442 static int hv_pci_enter_d0(struct hv_device *hdev)
3443 {
3444 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3445 struct pci_bus_d0_entry *d0_entry;
3446 struct hv_pci_compl comp_pkt;
3447 struct pci_packet *pkt;
3448 bool retry = true;
3449 int ret;
3450
3451 enter_d0_retry:
3452 /*
3453 * Tell the host that the bus is ready to use, and moved into the
3454 * powered-on state. This includes telling the host which region
3455 * of memory-mapped I/O space has been chosen for configuration space
3456 * access.
3457 */
3458 pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL);
3459 if (!pkt)
3460 return -ENOMEM;
3461
3462 init_completion(&comp_pkt.host_event);
3463 pkt->completion_func = hv_pci_generic_compl;
3464 pkt->compl_ctxt = &comp_pkt;
3465 d0_entry = (struct pci_bus_d0_entry *)(pkt + 1);
3466 d0_entry->message_type.type = PCI_BUS_D0ENTRY;
3467 d0_entry->mmio_base = hbus->mem_config->start;
3468
3469 ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry),
3470 (unsigned long)pkt, VM_PKT_DATA_INBAND,
3471 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3472 if (!ret)
3473 ret = wait_for_response(hdev, &comp_pkt.host_event);
3474
3475 if (ret)
3476 goto exit;
3477
3478 /*
3479 * In certain case (Kdump) the pci device of interest was
3480 * not cleanly shut down and resource is still held on host
3481 * side, the host could return invalid device status.
3482 * We need to explicitly request host to release the resource
3483 * and try to enter D0 again.
3484 */
3485 if (comp_pkt.completion_status < 0 && retry) {
3486 retry = false;
3487
3488 dev_err(&hdev->device, "Retrying D0 Entry\n");
3489
3490 /*
3491 * Hv_pci_bus_exit() calls hv_send_resource_released()
3492 * to free up resources of its child devices.
3493 * In the kdump kernel we need to set the
3494 * wslot_res_allocated to 255 so it scans all child
3495 * devices to release resources allocated in the
3496 * normal kernel before panic happened.
3497 */
3498 hbus->wslot_res_allocated = 255;
3499
3500 ret = hv_pci_bus_exit(hdev, true);
3501
3502 if (ret == 0) {
3503 kfree(pkt);
3504 goto enter_d0_retry;
3505 }
3506 dev_err(&hdev->device,
3507 "Retrying D0 failed with ret %d\n", ret);
3508 }
3509
3510 if (comp_pkt.completion_status < 0) {
3511 dev_err(&hdev->device,
3512 "PCI Pass-through VSP failed D0 Entry with status %x\n",
3513 comp_pkt.completion_status);
3514 ret = -EPROTO;
3515 goto exit;
3516 }
3517
3518 ret = 0;
3519
3520 exit:
3521 kfree(pkt);
3522 return ret;
3523 }
3524
3525 /**
3526 * hv_pci_query_relations() - Ask host to send list of child
3527 * devices
3528 * @hdev: VMBus's tracking struct for this root PCI bus
3529 *
3530 * Return: 0 on success, -errno on failure
3531 */
hv_pci_query_relations(struct hv_device * hdev)3532 static int hv_pci_query_relations(struct hv_device *hdev)
3533 {
3534 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3535 struct pci_message message;
3536 struct completion comp;
3537 int ret;
3538
3539 /* Ask the host to send along the list of child devices */
3540 init_completion(&comp);
3541 if (cmpxchg(&hbus->survey_event, NULL, &comp))
3542 return -ENOTEMPTY;
3543
3544 memset(&message, 0, sizeof(message));
3545 message.type = PCI_QUERY_BUS_RELATIONS;
3546
3547 ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message),
3548 0, VM_PKT_DATA_INBAND, 0);
3549 if (!ret)
3550 ret = wait_for_response(hdev, &comp);
3551
3552 /*
3553 * In the case of fast device addition/removal, it's possible that
3554 * vmbus_sendpacket() or wait_for_response() returns -ENODEV but we
3555 * already got a PCI_BUS_RELATIONS* message from the host and the
3556 * channel callback already scheduled a work to hbus->wq, which can be
3557 * running pci_devices_present_work() -> survey_child_resources() ->
3558 * complete(&hbus->survey_event), even after hv_pci_query_relations()
3559 * exits and the stack variable 'comp' is no longer valid; as a result,
3560 * a hang or a page fault may happen when the complete() calls
3561 * raw_spin_lock_irqsave(). Flush hbus->wq before we exit from
3562 * hv_pci_query_relations() to avoid the issues. Note: if 'ret' is
3563 * -ENODEV, there can't be any more work item scheduled to hbus->wq
3564 * after the flush_workqueue(): see vmbus_onoffer_rescind() ->
3565 * vmbus_reset_channel_cb(), vmbus_rescind_cleanup() ->
3566 * channel->rescind = true.
3567 */
3568 flush_workqueue(hbus->wq);
3569
3570 return ret;
3571 }
3572
3573 /**
3574 * hv_send_resources_allocated() - Report local resource choices
3575 * @hdev: VMBus's tracking struct for this root PCI bus
3576 *
3577 * The host OS is expecting to be sent a request as a message
3578 * which contains all the resources that the device will use.
3579 * The response contains those same resources, "translated"
3580 * which is to say, the values which should be used by the
3581 * hardware, when it delivers an interrupt. (MMIO resources are
3582 * used in local terms.) This is nice for Windows, and lines up
3583 * with the FDO/PDO split, which doesn't exist in Linux. Linux
3584 * is deeply expecting to scan an emulated PCI configuration
3585 * space. So this message is sent here only to drive the state
3586 * machine on the host forward.
3587 *
3588 * Return: 0 on success, -errno on failure
3589 */
hv_send_resources_allocated(struct hv_device * hdev)3590 static int hv_send_resources_allocated(struct hv_device *hdev)
3591 {
3592 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3593 struct pci_resources_assigned *res_assigned;
3594 struct pci_resources_assigned2 *res_assigned2;
3595 struct hv_pci_compl comp_pkt;
3596 struct hv_pci_dev *hpdev;
3597 struct pci_packet *pkt;
3598 size_t size_res;
3599 int wslot;
3600 int ret;
3601
3602 size_res = (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2)
3603 ? sizeof(*res_assigned) : sizeof(*res_assigned2);
3604
3605 pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL);
3606 if (!pkt)
3607 return -ENOMEM;
3608
3609 ret = 0;
3610
3611 for (wslot = 0; wslot < 256; wslot++) {
3612 hpdev = get_pcichild_wslot(hbus, wslot);
3613 if (!hpdev)
3614 continue;
3615
3616 memset(pkt, 0, sizeof(*pkt) + size_res);
3617 init_completion(&comp_pkt.host_event);
3618 pkt->completion_func = hv_pci_generic_compl;
3619 pkt->compl_ctxt = &comp_pkt;
3620
3621 if (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2) {
3622 res_assigned =
3623 (struct pci_resources_assigned *)(pkt + 1);
3624 res_assigned->message_type.type =
3625 PCI_RESOURCES_ASSIGNED;
3626 res_assigned->wslot.slot = hpdev->desc.win_slot.slot;
3627 } else {
3628 res_assigned2 =
3629 (struct pci_resources_assigned2 *)(pkt + 1);
3630 res_assigned2->message_type.type =
3631 PCI_RESOURCES_ASSIGNED2;
3632 res_assigned2->wslot.slot = hpdev->desc.win_slot.slot;
3633 }
3634 put_pcichild(hpdev);
3635
3636 ret = vmbus_sendpacket(hdev->channel, pkt + 1,
3637 size_res, (unsigned long)pkt,
3638 VM_PKT_DATA_INBAND,
3639 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3640 if (!ret)
3641 ret = wait_for_response(hdev, &comp_pkt.host_event);
3642 if (ret)
3643 break;
3644
3645 if (comp_pkt.completion_status < 0) {
3646 ret = -EPROTO;
3647 dev_err(&hdev->device,
3648 "resource allocated returned 0x%x",
3649 comp_pkt.completion_status);
3650 break;
3651 }
3652
3653 hbus->wslot_res_allocated = wslot;
3654 }
3655
3656 kfree(pkt);
3657 return ret;
3658 }
3659
3660 /**
3661 * hv_send_resources_released() - Report local resources
3662 * released
3663 * @hdev: VMBus's tracking struct for this root PCI bus
3664 *
3665 * Return: 0 on success, -errno on failure
3666 */
hv_send_resources_released(struct hv_device * hdev)3667 static int hv_send_resources_released(struct hv_device *hdev)
3668 {
3669 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3670 struct pci_child_message pkt;
3671 struct hv_pci_dev *hpdev;
3672 int wslot;
3673 int ret;
3674
3675 for (wslot = hbus->wslot_res_allocated; wslot >= 0; wslot--) {
3676 hpdev = get_pcichild_wslot(hbus, wslot);
3677 if (!hpdev)
3678 continue;
3679
3680 memset(&pkt, 0, sizeof(pkt));
3681 pkt.message_type.type = PCI_RESOURCES_RELEASED;
3682 pkt.wslot.slot = hpdev->desc.win_slot.slot;
3683
3684 put_pcichild(hpdev);
3685
3686 ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0,
3687 VM_PKT_DATA_INBAND, 0);
3688 if (ret)
3689 return ret;
3690
3691 hbus->wslot_res_allocated = wslot - 1;
3692 }
3693
3694 hbus->wslot_res_allocated = -1;
3695
3696 return 0;
3697 }
3698
3699 #define HVPCI_DOM_MAP_SIZE (64 * 1024)
3700 static DECLARE_BITMAP(hvpci_dom_map, HVPCI_DOM_MAP_SIZE);
3701
3702 /*
3703 * PCI domain number 0 is used by emulated devices on Gen1 VMs, so define 0
3704 * as invalid for passthrough PCI devices of this driver.
3705 */
3706 #define HVPCI_DOM_INVALID 0
3707
3708 /**
3709 * hv_get_dom_num() - Get a valid PCI domain number
3710 * Check if the PCI domain number is in use, and return another number if
3711 * it is in use.
3712 *
3713 * @dom: Requested domain number
3714 *
3715 * return: domain number on success, HVPCI_DOM_INVALID on failure
3716 */
hv_get_dom_num(u16 dom)3717 static u16 hv_get_dom_num(u16 dom)
3718 {
3719 unsigned int i;
3720
3721 if (test_and_set_bit(dom, hvpci_dom_map) == 0)
3722 return dom;
3723
3724 for_each_clear_bit(i, hvpci_dom_map, HVPCI_DOM_MAP_SIZE) {
3725 if (test_and_set_bit(i, hvpci_dom_map) == 0)
3726 return i;
3727 }
3728
3729 return HVPCI_DOM_INVALID;
3730 }
3731
3732 /**
3733 * hv_put_dom_num() - Mark the PCI domain number as free
3734 * @dom: Domain number to be freed
3735 */
hv_put_dom_num(u16 dom)3736 static void hv_put_dom_num(u16 dom)
3737 {
3738 clear_bit(dom, hvpci_dom_map);
3739 }
3740
3741 /**
3742 * hv_pci_probe() - New VMBus channel probe, for a root PCI bus
3743 * @hdev: VMBus's tracking struct for this root PCI bus
3744 * @dev_id: Identifies the device itself
3745 *
3746 * Return: 0 on success, -errno on failure
3747 */
hv_pci_probe(struct hv_device * hdev,const struct hv_vmbus_device_id * dev_id)3748 static int hv_pci_probe(struct hv_device *hdev,
3749 const struct hv_vmbus_device_id *dev_id)
3750 {
3751 struct pci_host_bridge *bridge;
3752 struct hv_pcibus_device *hbus;
3753 u16 dom_req, dom;
3754 char *name;
3755 int ret;
3756
3757 bridge = devm_pci_alloc_host_bridge(&hdev->device, 0);
3758 if (!bridge)
3759 return -ENOMEM;
3760
3761 hbus = kzalloc(sizeof(*hbus), GFP_KERNEL);
3762 if (!hbus)
3763 return -ENOMEM;
3764
3765 hbus->bridge = bridge;
3766 mutex_init(&hbus->state_lock);
3767 hbus->state = hv_pcibus_init;
3768 hbus->wslot_res_allocated = -1;
3769
3770 /*
3771 * The PCI bus "domain" is what is called "segment" in ACPI and other
3772 * specs. Pull it from the instance ID, to get something usually
3773 * unique. In rare cases of collision, we will find out another number
3774 * not in use.
3775 *
3776 * Note that, since this code only runs in a Hyper-V VM, Hyper-V
3777 * together with this guest driver can guarantee that (1) The only
3778 * domain used by Gen1 VMs for something that looks like a physical
3779 * PCI bus (which is actually emulated by the hypervisor) is domain 0.
3780 * (2) There will be no overlap between domains (after fixing possible
3781 * collisions) in the same VM.
3782 */
3783 dom_req = hdev->dev_instance.b[5] << 8 | hdev->dev_instance.b[4];
3784 dom = hv_get_dom_num(dom_req);
3785
3786 if (dom == HVPCI_DOM_INVALID) {
3787 dev_err(&hdev->device,
3788 "Unable to use dom# 0x%x or other numbers", dom_req);
3789 ret = -EINVAL;
3790 goto free_bus;
3791 }
3792
3793 if (dom != dom_req)
3794 dev_info(&hdev->device,
3795 "PCI dom# 0x%x has collision, using 0x%x",
3796 dom_req, dom);
3797
3798 hbus->bridge->domain_nr = dom;
3799 #ifdef CONFIG_X86
3800 hbus->sysdata.domain = dom;
3801 hbus->use_calls = !!(ms_hyperv.hints & HV_X64_USE_MMIO_HYPERCALLS);
3802 #elif defined(CONFIG_ARM64)
3803 /*
3804 * Set the PCI bus parent to be the corresponding VMbus
3805 * device. Then the VMbus device will be assigned as the
3806 * ACPI companion in pcibios_root_bridge_prepare() and
3807 * pci_dma_configure() will propagate device coherence
3808 * information to devices created on the bus.
3809 */
3810 hbus->sysdata.parent = hdev->device.parent;
3811 hbus->use_calls = false;
3812 #endif
3813
3814 hbus->hdev = hdev;
3815 INIT_LIST_HEAD(&hbus->children);
3816 INIT_LIST_HEAD(&hbus->dr_list);
3817 spin_lock_init(&hbus->config_lock);
3818 spin_lock_init(&hbus->device_list_lock);
3819 hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0,
3820 hbus->bridge->domain_nr);
3821 if (!hbus->wq) {
3822 ret = -ENOMEM;
3823 goto free_dom;
3824 }
3825
3826 hdev->channel->next_request_id_callback = vmbus_next_request_id;
3827 hdev->channel->request_addr_callback = vmbus_request_addr;
3828 hdev->channel->rqstor_size = HV_PCI_RQSTOR_SIZE;
3829
3830 ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
3831 hv_pci_onchannelcallback, hbus);
3832 if (ret)
3833 goto destroy_wq;
3834
3835 hv_set_drvdata(hdev, hbus);
3836
3837 ret = hv_pci_protocol_negotiation(hdev, pci_protocol_versions,
3838 ARRAY_SIZE(pci_protocol_versions));
3839 if (ret)
3840 goto close;
3841
3842 ret = hv_allocate_config_window(hbus);
3843 if (ret)
3844 goto close;
3845
3846 hbus->cfg_addr = ioremap(hbus->mem_config->start,
3847 PCI_CONFIG_MMIO_LENGTH);
3848 if (!hbus->cfg_addr) {
3849 dev_err(&hdev->device,
3850 "Unable to map a virtual address for config space\n");
3851 ret = -ENOMEM;
3852 goto free_config;
3853 }
3854
3855 name = kasprintf(GFP_KERNEL, "%pUL", &hdev->dev_instance);
3856 if (!name) {
3857 ret = -ENOMEM;
3858 goto unmap;
3859 }
3860
3861 hbus->fwnode = irq_domain_alloc_named_fwnode(name);
3862 kfree(name);
3863 if (!hbus->fwnode) {
3864 ret = -ENOMEM;
3865 goto unmap;
3866 }
3867
3868 ret = hv_pcie_init_irq_domain(hbus);
3869 if (ret)
3870 goto free_fwnode;
3871
3872 ret = hv_pci_query_relations(hdev);
3873 if (ret)
3874 goto free_irq_domain;
3875
3876 mutex_lock(&hbus->state_lock);
3877
3878 ret = hv_pci_enter_d0(hdev);
3879 if (ret)
3880 goto release_state_lock;
3881
3882 ret = hv_pci_allocate_bridge_windows(hbus);
3883 if (ret)
3884 goto exit_d0;
3885
3886 ret = hv_send_resources_allocated(hdev);
3887 if (ret)
3888 goto free_windows;
3889
3890 prepopulate_bars(hbus);
3891
3892 hbus->state = hv_pcibus_probed;
3893
3894 ret = create_root_hv_pci_bus(hbus);
3895 if (ret)
3896 goto free_windows;
3897
3898 mutex_unlock(&hbus->state_lock);
3899 return 0;
3900
3901 free_windows:
3902 hv_pci_free_bridge_windows(hbus);
3903 exit_d0:
3904 (void) hv_pci_bus_exit(hdev, true);
3905 release_state_lock:
3906 mutex_unlock(&hbus->state_lock);
3907 free_irq_domain:
3908 irq_domain_remove(hbus->irq_domain);
3909 free_fwnode:
3910 irq_domain_free_fwnode(hbus->fwnode);
3911 unmap:
3912 iounmap(hbus->cfg_addr);
3913 free_config:
3914 hv_free_config_window(hbus);
3915 close:
3916 vmbus_close(hdev->channel);
3917 destroy_wq:
3918 destroy_workqueue(hbus->wq);
3919 free_dom:
3920 hv_put_dom_num(hbus->bridge->domain_nr);
3921 free_bus:
3922 kfree(hbus);
3923 return ret;
3924 }
3925
hv_pci_bus_exit(struct hv_device * hdev,bool keep_devs)3926 static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs)
3927 {
3928 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3929 struct vmbus_channel *chan = hdev->channel;
3930 struct {
3931 struct pci_packet teardown_packet;
3932 u8 buffer[sizeof(struct pci_message)];
3933 } pkt;
3934 struct pci_message *msg;
3935 struct hv_pci_compl comp_pkt;
3936 struct hv_pci_dev *hpdev, *tmp;
3937 unsigned long flags;
3938 u64 trans_id;
3939 int ret;
3940
3941 /*
3942 * After the host sends the RESCIND_CHANNEL message, it doesn't
3943 * access the per-channel ringbuffer any longer.
3944 */
3945 if (chan->rescind)
3946 return 0;
3947
3948 if (!keep_devs) {
3949 struct list_head removed;
3950
3951 /* Move all present children to the list on stack */
3952 INIT_LIST_HEAD(&removed);
3953 spin_lock_irqsave(&hbus->device_list_lock, flags);
3954 list_for_each_entry_safe(hpdev, tmp, &hbus->children, list_entry)
3955 list_move_tail(&hpdev->list_entry, &removed);
3956 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
3957
3958 /* Remove all children in the list */
3959 list_for_each_entry_safe(hpdev, tmp, &removed, list_entry) {
3960 list_del(&hpdev->list_entry);
3961 if (hpdev->pci_slot)
3962 pci_destroy_slot(hpdev->pci_slot);
3963 /* For the two refs got in new_pcichild_device() */
3964 put_pcichild(hpdev);
3965 put_pcichild(hpdev);
3966 }
3967 }
3968
3969 ret = hv_send_resources_released(hdev);
3970 if (ret) {
3971 dev_err(&hdev->device,
3972 "Couldn't send resources released packet(s)\n");
3973 return ret;
3974 }
3975
3976 memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet));
3977 init_completion(&comp_pkt.host_event);
3978 pkt.teardown_packet.completion_func = hv_pci_generic_compl;
3979 pkt.teardown_packet.compl_ctxt = &comp_pkt;
3980 msg = (struct pci_message *)pkt.buffer;
3981 msg->type = PCI_BUS_D0EXIT;
3982
3983 ret = vmbus_sendpacket_getid(chan, msg, sizeof(*msg),
3984 (unsigned long)&pkt.teardown_packet,
3985 &trans_id, VM_PKT_DATA_INBAND,
3986 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3987 if (ret)
3988 return ret;
3989
3990 if (wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ) == 0) {
3991 /*
3992 * The completion packet on the stack becomes invalid after
3993 * 'return'; remove the ID from the VMbus requestor if the
3994 * identifier is still mapped to/associated with the packet.
3995 *
3996 * Cf. hv_pci_onchannelcallback().
3997 */
3998 vmbus_request_addr_match(chan, trans_id,
3999 (unsigned long)&pkt.teardown_packet);
4000 return -ETIMEDOUT;
4001 }
4002
4003 return 0;
4004 }
4005
4006 /**
4007 * hv_pci_remove() - Remove routine for this VMBus channel
4008 * @hdev: VMBus's tracking struct for this root PCI bus
4009 */
hv_pci_remove(struct hv_device * hdev)4010 static void hv_pci_remove(struct hv_device *hdev)
4011 {
4012 struct hv_pcibus_device *hbus;
4013
4014 hbus = hv_get_drvdata(hdev);
4015 if (hbus->state == hv_pcibus_installed) {
4016 tasklet_disable(&hdev->channel->callback_event);
4017 hbus->state = hv_pcibus_removing;
4018 tasklet_enable(&hdev->channel->callback_event);
4019 destroy_workqueue(hbus->wq);
4020 hbus->wq = NULL;
4021 /*
4022 * At this point, no work is running or can be scheduled
4023 * on hbus-wq. We can't race with hv_pci_devices_present()
4024 * or hv_pci_eject_device(), it's safe to proceed.
4025 */
4026
4027 /* Remove the bus from PCI's point of view. */
4028 pci_lock_rescan_remove();
4029 pci_stop_root_bus(hbus->bridge->bus);
4030 hv_pci_remove_slots(hbus);
4031 pci_remove_root_bus(hbus->bridge->bus);
4032 pci_unlock_rescan_remove();
4033 }
4034
4035 hv_pci_bus_exit(hdev, false);
4036
4037 vmbus_close(hdev->channel);
4038
4039 iounmap(hbus->cfg_addr);
4040 hv_free_config_window(hbus);
4041 hv_pci_free_bridge_windows(hbus);
4042 irq_domain_remove(hbus->irq_domain);
4043 irq_domain_free_fwnode(hbus->fwnode);
4044
4045 hv_put_dom_num(hbus->bridge->domain_nr);
4046
4047 kfree(hbus);
4048 }
4049
hv_pci_suspend(struct hv_device * hdev)4050 static int hv_pci_suspend(struct hv_device *hdev)
4051 {
4052 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
4053 enum hv_pcibus_state old_state;
4054 int ret;
4055
4056 /*
4057 * hv_pci_suspend() must make sure there are no pending work items
4058 * before calling vmbus_close(), since it runs in a process context
4059 * as a callback in dpm_suspend(). When it starts to run, the channel
4060 * callback hv_pci_onchannelcallback(), which runs in a tasklet
4061 * context, can be still running concurrently and scheduling new work
4062 * items onto hbus->wq in hv_pci_devices_present() and
4063 * hv_pci_eject_device(), and the work item handlers can access the
4064 * vmbus channel, which can be being closed by hv_pci_suspend(), e.g.
4065 * the work item handler pci_devices_present_work() ->
4066 * new_pcichild_device() writes to the vmbus channel.
4067 *
4068 * To eliminate the race, hv_pci_suspend() disables the channel
4069 * callback tasklet, sets hbus->state to hv_pcibus_removing, and
4070 * re-enables the tasklet. This way, when hv_pci_suspend() proceeds,
4071 * it knows that no new work item can be scheduled, and then it flushes
4072 * hbus->wq and safely closes the vmbus channel.
4073 */
4074 tasklet_disable(&hdev->channel->callback_event);
4075
4076 /* Change the hbus state to prevent new work items. */
4077 old_state = hbus->state;
4078 if (hbus->state == hv_pcibus_installed)
4079 hbus->state = hv_pcibus_removing;
4080
4081 tasklet_enable(&hdev->channel->callback_event);
4082
4083 if (old_state != hv_pcibus_installed)
4084 return -EINVAL;
4085
4086 flush_workqueue(hbus->wq);
4087
4088 ret = hv_pci_bus_exit(hdev, true);
4089 if (ret)
4090 return ret;
4091
4092 vmbus_close(hdev->channel);
4093
4094 return 0;
4095 }
4096
hv_pci_restore_msi_msg(struct pci_dev * pdev,void * arg)4097 static int hv_pci_restore_msi_msg(struct pci_dev *pdev, void *arg)
4098 {
4099 struct irq_data *irq_data;
4100 struct msi_desc *entry;
4101
4102 if (!pdev->msi_enabled && !pdev->msix_enabled)
4103 return 0;
4104
4105 guard(msi_descs_lock)(&pdev->dev);
4106 msi_for_each_desc(entry, &pdev->dev, MSI_DESC_ASSOCIATED) {
4107 irq_data = irq_get_irq_data(entry->irq);
4108 if (WARN_ON_ONCE(!irq_data))
4109 return -EINVAL;
4110 hv_compose_msi_msg(irq_data, &entry->msg);
4111 }
4112 return 0;
4113 }
4114
4115 /*
4116 * Upon resume, pci_restore_msi_state() -> ... -> __pci_write_msi_msg()
4117 * directly writes the MSI/MSI-X registers via MMIO, but since Hyper-V
4118 * doesn't trap and emulate the MMIO accesses, here hv_compose_msi_msg()
4119 * must be used to ask Hyper-V to re-create the IOMMU Interrupt Remapping
4120 * Table entries.
4121 */
hv_pci_restore_msi_state(struct hv_pcibus_device * hbus)4122 static void hv_pci_restore_msi_state(struct hv_pcibus_device *hbus)
4123 {
4124 pci_walk_bus(hbus->bridge->bus, hv_pci_restore_msi_msg, NULL);
4125 }
4126
hv_pci_resume(struct hv_device * hdev)4127 static int hv_pci_resume(struct hv_device *hdev)
4128 {
4129 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
4130 enum pci_protocol_version_t version[1];
4131 int ret;
4132
4133 hbus->state = hv_pcibus_init;
4134
4135 hdev->channel->next_request_id_callback = vmbus_next_request_id;
4136 hdev->channel->request_addr_callback = vmbus_request_addr;
4137 hdev->channel->rqstor_size = HV_PCI_RQSTOR_SIZE;
4138
4139 ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
4140 hv_pci_onchannelcallback, hbus);
4141 if (ret)
4142 return ret;
4143
4144 /* Only use the version that was in use before hibernation. */
4145 version[0] = hbus->protocol_version;
4146 ret = hv_pci_protocol_negotiation(hdev, version, 1);
4147 if (ret)
4148 goto out;
4149
4150 ret = hv_pci_query_relations(hdev);
4151 if (ret)
4152 goto out;
4153
4154 mutex_lock(&hbus->state_lock);
4155
4156 ret = hv_pci_enter_d0(hdev);
4157 if (ret)
4158 goto release_state_lock;
4159
4160 ret = hv_send_resources_allocated(hdev);
4161 if (ret)
4162 goto release_state_lock;
4163
4164 prepopulate_bars(hbus);
4165
4166 hv_pci_restore_msi_state(hbus);
4167
4168 hbus->state = hv_pcibus_installed;
4169 mutex_unlock(&hbus->state_lock);
4170 return 0;
4171
4172 release_state_lock:
4173 mutex_unlock(&hbus->state_lock);
4174 out:
4175 vmbus_close(hdev->channel);
4176 return ret;
4177 }
4178
4179 static const struct hv_vmbus_device_id hv_pci_id_table[] = {
4180 /* PCI Pass-through Class ID */
4181 /* 44C4F61D-4444-4400-9D52-802E27EDE19F */
4182 { HV_PCIE_GUID, },
4183 { },
4184 };
4185
4186 MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table);
4187
4188 static struct hv_driver hv_pci_drv = {
4189 .name = "hv_pci",
4190 .id_table = hv_pci_id_table,
4191 .probe = hv_pci_probe,
4192 .remove = hv_pci_remove,
4193 .suspend = hv_pci_suspend,
4194 .resume = hv_pci_resume,
4195 };
4196
exit_hv_pci_drv(void)4197 static void __exit exit_hv_pci_drv(void)
4198 {
4199 vmbus_driver_unregister(&hv_pci_drv);
4200
4201 hvpci_block_ops.read_block = NULL;
4202 hvpci_block_ops.write_block = NULL;
4203 hvpci_block_ops.reg_blk_invalidate = NULL;
4204 }
4205
init_hv_pci_drv(void)4206 static int __init init_hv_pci_drv(void)
4207 {
4208 int ret;
4209
4210 if (!hv_is_hyperv_initialized())
4211 return -ENODEV;
4212
4213 if (hv_root_partition() && !hv_nested)
4214 return -ENODEV;
4215
4216 ret = hv_pci_irqchip_init();
4217 if (ret)
4218 return ret;
4219
4220 /* Set the invalid domain number's bit, so it will not be used */
4221 set_bit(HVPCI_DOM_INVALID, hvpci_dom_map);
4222
4223 /* Initialize PCI block r/w interface */
4224 hvpci_block_ops.read_block = hv_read_config_block;
4225 hvpci_block_ops.write_block = hv_write_config_block;
4226 hvpci_block_ops.reg_blk_invalidate = hv_register_block_invalidate;
4227
4228 return vmbus_driver_register(&hv_pci_drv);
4229 }
4230
4231 module_init(init_hv_pci_drv);
4232 module_exit(exit_hv_pci_drv);
4233
4234 MODULE_DESCRIPTION("Hyper-V PCI");
4235 MODULE_LICENSE("GPL v2");
4236