xref: /linux/drivers/gpu/drm/panthor/panthor_drv.c (revision 6dfafbd0299a60bfb5d5e277fdf100037c7ded07)
1 // SPDX-License-Identifier: GPL-2.0 or MIT
2 /* Copyright 2018 Marty E. Plummer <hanetzer@startmail.com> */
3 /* Copyright 2019 Linaro, Ltd., Rob Herring <robh@kernel.org> */
4 /* Copyright 2019 Collabora ltd. */
5 
6 #ifdef CONFIG_ARM_ARCH_TIMER
7 #include <asm/arch_timer.h>
8 #endif
9 
10 #include <linux/list.h>
11 #include <linux/module.h>
12 #include <linux/of_platform.h>
13 #include <linux/pagemap.h>
14 #include <linux/platform_device.h>
15 #include <linux/pm_runtime.h>
16 #include <linux/time64.h>
17 
18 #include <drm/drm_auth.h>
19 #include <drm/drm_debugfs.h>
20 #include <drm/drm_drv.h>
21 #include <drm/drm_exec.h>
22 #include <drm/drm_ioctl.h>
23 #include <drm/drm_print.h>
24 #include <drm/drm_syncobj.h>
25 #include <drm/drm_utils.h>
26 #include <drm/gpu_scheduler.h>
27 #include <drm/panthor_drm.h>
28 
29 #include "panthor_devfreq.h"
30 #include "panthor_device.h"
31 #include "panthor_fw.h"
32 #include "panthor_gem.h"
33 #include "panthor_gpu.h"
34 #include "panthor_heap.h"
35 #include "panthor_mmu.h"
36 #include "panthor_regs.h"
37 #include "panthor_sched.h"
38 
39 /**
40  * DOC: user <-> kernel object copy helpers.
41  */
42 
43 /**
44  * panthor_set_uobj() - Copy kernel object to user object.
45  * @usr_ptr: Users pointer.
46  * @usr_size: Size of the user object.
47  * @min_size: Minimum size for this object.
48  * @kern_size: Size of the kernel object.
49  * @in: Address of the kernel object to copy.
50  *
51  * Helper automating kernel -> user object copies.
52  *
53  * Don't use this function directly, use PANTHOR_UOBJ_SET() instead.
54  *
55  * Return: 0 on success, a negative error code otherwise.
56  */
57 static int
58 panthor_set_uobj(u64 usr_ptr, u32 usr_size, u32 min_size, u32 kern_size, const void *in)
59 {
60 	/* User size shouldn't be smaller than the minimal object size. */
61 	if (usr_size < min_size)
62 		return -EINVAL;
63 
64 	if (copy_to_user(u64_to_user_ptr(usr_ptr), in, min_t(u32, usr_size, kern_size)))
65 		return -EFAULT;
66 
67 	/* When the kernel object is smaller than the user object, we fill the gap with
68 	 * zeros.
69 	 */
70 	if (usr_size > kern_size &&
71 	    clear_user(u64_to_user_ptr(usr_ptr + kern_size), usr_size - kern_size)) {
72 		return -EFAULT;
73 	}
74 
75 	return 0;
76 }
77 
78 /**
79  * panthor_get_uobj_array() - Copy a user object array into a kernel accessible object array.
80  * @in: The object array to copy.
81  * @min_stride: Minimum array stride.
82  * @obj_size: Kernel object size.
83  *
84  * Helper automating user -> kernel object copies.
85  *
86  * Don't use this function directly, use PANTHOR_UOBJ_GET_ARRAY() instead.
87  *
88  * Return: newly allocated object array or an ERR_PTR on error.
89  */
90 static void *
91 panthor_get_uobj_array(const struct drm_panthor_obj_array *in, u32 min_stride,
92 		       u32 obj_size)
93 {
94 	int ret = 0;
95 	void *out_alloc;
96 
97 	if (!in->count)
98 		return NULL;
99 
100 	/* User stride must be at least the minimum object size, otherwise it might
101 	 * lack useful information.
102 	 */
103 	if (in->stride < min_stride)
104 		return ERR_PTR(-EINVAL);
105 
106 	out_alloc = kvmalloc_array(in->count, obj_size, GFP_KERNEL);
107 	if (!out_alloc)
108 		return ERR_PTR(-ENOMEM);
109 
110 	if (obj_size == in->stride) {
111 		/* Fast path when user/kernel have the same uAPI header version. */
112 		if (copy_from_user(out_alloc, u64_to_user_ptr(in->array),
113 				   (unsigned long)obj_size * in->count))
114 			ret = -EFAULT;
115 	} else {
116 		void __user *in_ptr = u64_to_user_ptr(in->array);
117 		void *out_ptr = out_alloc;
118 
119 		/* If the sizes differ, we need to copy elements one by one. */
120 		for (u32 i = 0; i < in->count; i++) {
121 			ret = copy_struct_from_user(out_ptr, obj_size, in_ptr, in->stride);
122 			if (ret)
123 				break;
124 
125 			out_ptr += obj_size;
126 			in_ptr += in->stride;
127 		}
128 	}
129 
130 	if (ret) {
131 		kvfree(out_alloc);
132 		return ERR_PTR(ret);
133 	}
134 
135 	return out_alloc;
136 }
137 
138 /**
139  * PANTHOR_UOBJ_MIN_SIZE_INTERNAL() - Get the minimum user object size
140  * @_typename: Object type.
141  * @_last_mandatory_field: Last mandatory field.
142  *
143  * Get the minimum user object size based on the last mandatory field name,
144  * A.K.A, the name of the last field of the structure at the time this
145  * structure was added to the uAPI.
146  *
147  * Don't use directly, use PANTHOR_UOBJ_DECL() instead.
148  */
149 #define PANTHOR_UOBJ_MIN_SIZE_INTERNAL(_typename, _last_mandatory_field) \
150 	(offsetof(_typename, _last_mandatory_field) + \
151 	 sizeof(((_typename *)NULL)->_last_mandatory_field))
152 
153 /**
154  * PANTHOR_UOBJ_DECL() - Declare a new uAPI object whose subject to
155  * evolutions.
156  * @_typename: Object type.
157  * @_last_mandatory_field: Last mandatory field.
158  *
159  * Should be used to extend the PANTHOR_UOBJ_MIN_SIZE() list.
160  */
161 #define PANTHOR_UOBJ_DECL(_typename, _last_mandatory_field) \
162 	_typename : PANTHOR_UOBJ_MIN_SIZE_INTERNAL(_typename, _last_mandatory_field)
163 
164 /**
165  * PANTHOR_UOBJ_MIN_SIZE() - Get the minimum size of a given uAPI object
166  * @_obj_name: Object to get the minimum size of.
167  *
168  * Don't use this macro directly, it's automatically called by
169  * PANTHOR_UOBJ_{SET,GET_ARRAY}().
170  */
171 #define PANTHOR_UOBJ_MIN_SIZE(_obj_name) \
172 	_Generic(_obj_name, \
173 		 PANTHOR_UOBJ_DECL(struct drm_panthor_gpu_info, tiler_present), \
174 		 PANTHOR_UOBJ_DECL(struct drm_panthor_csif_info, pad), \
175 		 PANTHOR_UOBJ_DECL(struct drm_panthor_timestamp_info, current_timestamp), \
176 		 PANTHOR_UOBJ_DECL(struct drm_panthor_group_priorities_info, pad), \
177 		 PANTHOR_UOBJ_DECL(struct drm_panthor_sync_op, timeline_value), \
178 		 PANTHOR_UOBJ_DECL(struct drm_panthor_queue_submit, syncs), \
179 		 PANTHOR_UOBJ_DECL(struct drm_panthor_queue_create, ringbuf_size), \
180 		 PANTHOR_UOBJ_DECL(struct drm_panthor_vm_bind_op, syncs))
181 
182 /**
183  * PANTHOR_UOBJ_SET() - Copy a kernel object to a user object.
184  * @_dest_usr_ptr: User pointer to copy to.
185  * @_usr_size: Size of the user object.
186  * @_src_obj: Kernel object to copy (not a pointer).
187  *
188  * Return: 0 on success, a negative error code otherwise.
189  */
190 #define PANTHOR_UOBJ_SET(_dest_usr_ptr, _usr_size, _src_obj) \
191 	panthor_set_uobj(_dest_usr_ptr, _usr_size, \
192 			 PANTHOR_UOBJ_MIN_SIZE(_src_obj), \
193 			 sizeof(_src_obj), &(_src_obj))
194 
195 /**
196  * PANTHOR_UOBJ_GET_ARRAY() - Copy a user object array to a kernel accessible
197  * object array.
198  * @_dest_array: Local variable that will hold the newly allocated kernel
199  * object array.
200  * @_uobj_array: The drm_panthor_obj_array object describing the user object
201  * array.
202  *
203  * Return: 0 on success, a negative error code otherwise.
204  */
205 #define PANTHOR_UOBJ_GET_ARRAY(_dest_array, _uobj_array) \
206 	({ \
207 		typeof(_dest_array) _tmp; \
208 		_tmp = panthor_get_uobj_array(_uobj_array, \
209 					      PANTHOR_UOBJ_MIN_SIZE((_dest_array)[0]), \
210 					      sizeof((_dest_array)[0])); \
211 		if (!IS_ERR(_tmp)) \
212 			_dest_array = _tmp; \
213 		PTR_ERR_OR_ZERO(_tmp); \
214 	})
215 
216 /**
217  * struct panthor_sync_signal - Represent a synchronization object point to attach
218  * our job fence to.
219  *
220  * This structure is here to keep track of fences that are currently bound to
221  * a specific syncobj point.
222  *
223  * At the beginning of a job submission, the fence
224  * is retrieved from the syncobj itself, and can be NULL if no fence was attached
225  * to this point.
226  *
227  * At the end, it points to the fence of the last job that had a
228  * %DRM_PANTHOR_SYNC_OP_SIGNAL on this syncobj.
229  *
230  * With jobs being submitted in batches, the fence might change several times during
231  * the process, allowing one job to wait on a job that's part of the same submission
232  * but appears earlier in the drm_panthor_group_submit::queue_submits array.
233  */
234 struct panthor_sync_signal {
235 	/** @node: list_head to track signal ops within a submit operation */
236 	struct list_head node;
237 
238 	/** @handle: The syncobj handle. */
239 	u32 handle;
240 
241 	/**
242 	 * @point: The syncobj point.
243 	 *
244 	 * Zero for regular syncobjs, and non-zero for timeline syncobjs.
245 	 */
246 	u64 point;
247 
248 	/**
249 	 * @syncobj: The sync object pointed by @handle.
250 	 */
251 	struct drm_syncobj *syncobj;
252 
253 	/**
254 	 * @chain: Chain object used to link the new fence to an existing
255 	 * timeline syncobj.
256 	 *
257 	 * NULL for regular syncobj, non-NULL for timeline syncobjs.
258 	 */
259 	struct dma_fence_chain *chain;
260 
261 	/**
262 	 * @fence: The fence to assign to the syncobj or syncobj-point.
263 	 */
264 	struct dma_fence *fence;
265 };
266 
267 /**
268  * struct panthor_job_ctx - Job context
269  */
270 struct panthor_job_ctx {
271 	/** @job: The job that is about to be submitted to drm_sched. */
272 	struct drm_sched_job *job;
273 
274 	/** @syncops: Array of sync operations. */
275 	struct drm_panthor_sync_op *syncops;
276 
277 	/** @syncop_count: Number of sync operations. */
278 	u32 syncop_count;
279 };
280 
281 /**
282  * struct panthor_submit_ctx - Submission context
283  *
284  * Anything that's related to a submission (%DRM_IOCTL_PANTHOR_VM_BIND or
285  * %DRM_IOCTL_PANTHOR_GROUP_SUBMIT) is kept here, so we can automate the
286  * initialization and cleanup steps.
287  */
288 struct panthor_submit_ctx {
289 	/** @file: DRM file this submission happens on. */
290 	struct drm_file *file;
291 
292 	/**
293 	 * @signals: List of struct panthor_sync_signal.
294 	 *
295 	 * %DRM_PANTHOR_SYNC_OP_SIGNAL operations will be recorded here,
296 	 * and %DRM_PANTHOR_SYNC_OP_WAIT will first check if an entry
297 	 * matching the syncobj+point exists before calling
298 	 * drm_syncobj_find_fence(). This allows us to describe dependencies
299 	 * existing between jobs that are part of the same batch.
300 	 */
301 	struct list_head signals;
302 
303 	/** @jobs: Array of jobs. */
304 	struct panthor_job_ctx *jobs;
305 
306 	/** @job_count: Number of entries in the @jobs array. */
307 	u32 job_count;
308 
309 	/** @exec: drm_exec context used to acquire and prepare resv objects. */
310 	struct drm_exec exec;
311 };
312 
313 #define PANTHOR_SYNC_OP_FLAGS_MASK \
314 	(DRM_PANTHOR_SYNC_OP_HANDLE_TYPE_MASK | DRM_PANTHOR_SYNC_OP_SIGNAL)
315 
316 static bool sync_op_is_signal(const struct drm_panthor_sync_op *sync_op)
317 {
318 	return !!(sync_op->flags & DRM_PANTHOR_SYNC_OP_SIGNAL);
319 }
320 
321 static bool sync_op_is_wait(const struct drm_panthor_sync_op *sync_op)
322 {
323 	/* Note that DRM_PANTHOR_SYNC_OP_WAIT == 0 */
324 	return !(sync_op->flags & DRM_PANTHOR_SYNC_OP_SIGNAL);
325 }
326 
327 /**
328  * panthor_check_sync_op() - Check drm_panthor_sync_op fields
329  * @sync_op: The sync operation to check.
330  *
331  * Return: 0 on success, -EINVAL otherwise.
332  */
333 static int
334 panthor_check_sync_op(const struct drm_panthor_sync_op *sync_op)
335 {
336 	u8 handle_type;
337 
338 	if (sync_op->flags & ~PANTHOR_SYNC_OP_FLAGS_MASK)
339 		return -EINVAL;
340 
341 	handle_type = sync_op->flags & DRM_PANTHOR_SYNC_OP_HANDLE_TYPE_MASK;
342 	if (handle_type != DRM_PANTHOR_SYNC_OP_HANDLE_TYPE_SYNCOBJ &&
343 	    handle_type != DRM_PANTHOR_SYNC_OP_HANDLE_TYPE_TIMELINE_SYNCOBJ)
344 		return -EINVAL;
345 
346 	if (handle_type == DRM_PANTHOR_SYNC_OP_HANDLE_TYPE_SYNCOBJ &&
347 	    sync_op->timeline_value != 0)
348 		return -EINVAL;
349 
350 	return 0;
351 }
352 
353 /**
354  * panthor_sync_signal_free() - Release resources and free a panthor_sync_signal object
355  * @sig_sync: Signal object to free.
356  */
357 static void
358 panthor_sync_signal_free(struct panthor_sync_signal *sig_sync)
359 {
360 	if (!sig_sync)
361 		return;
362 
363 	drm_syncobj_put(sig_sync->syncobj);
364 	dma_fence_chain_free(sig_sync->chain);
365 	dma_fence_put(sig_sync->fence);
366 	kfree(sig_sync);
367 }
368 
369 /**
370  * panthor_submit_ctx_add_sync_signal() - Add a signal operation to a submit context
371  * @ctx: Context to add the signal operation to.
372  * @handle: Syncobj handle.
373  * @point: Syncobj point.
374  *
375  * Return: 0 on success, otherwise negative error value.
376  */
377 static int
378 panthor_submit_ctx_add_sync_signal(struct panthor_submit_ctx *ctx, u32 handle, u64 point)
379 {
380 	struct panthor_sync_signal *sig_sync;
381 	struct dma_fence *cur_fence;
382 	int ret;
383 
384 	sig_sync = kzalloc(sizeof(*sig_sync), GFP_KERNEL);
385 	if (!sig_sync)
386 		return -ENOMEM;
387 
388 	sig_sync->handle = handle;
389 	sig_sync->point = point;
390 
391 	if (point > 0) {
392 		sig_sync->chain = dma_fence_chain_alloc();
393 		if (!sig_sync->chain) {
394 			ret = -ENOMEM;
395 			goto err_free_sig_sync;
396 		}
397 	}
398 
399 	sig_sync->syncobj = drm_syncobj_find(ctx->file, handle);
400 	if (!sig_sync->syncobj) {
401 		ret = -EINVAL;
402 		goto err_free_sig_sync;
403 	}
404 
405 	/* Retrieve the current fence attached to that point. It's
406 	 * perfectly fine to get a NULL fence here, it just means there's
407 	 * no fence attached to that point yet.
408 	 */
409 	if (!drm_syncobj_find_fence(ctx->file, handle, point, 0, &cur_fence))
410 		sig_sync->fence = cur_fence;
411 
412 	list_add_tail(&sig_sync->node, &ctx->signals);
413 
414 	return 0;
415 
416 err_free_sig_sync:
417 	panthor_sync_signal_free(sig_sync);
418 	return ret;
419 }
420 
421 /**
422  * panthor_submit_ctx_search_sync_signal() - Search an existing signal operation in a
423  * submit context.
424  * @ctx: Context to search the signal operation in.
425  * @handle: Syncobj handle.
426  * @point: Syncobj point.
427  *
428  * Return: A valid panthor_sync_signal object if found, NULL otherwise.
429  */
430 static struct panthor_sync_signal *
431 panthor_submit_ctx_search_sync_signal(struct panthor_submit_ctx *ctx, u32 handle, u64 point)
432 {
433 	struct panthor_sync_signal *sig_sync;
434 
435 	list_for_each_entry(sig_sync, &ctx->signals, node) {
436 		if (handle == sig_sync->handle && point == sig_sync->point)
437 			return sig_sync;
438 	}
439 
440 	return NULL;
441 }
442 
443 /**
444  * panthor_submit_ctx_add_job() - Add a job to a submit context
445  * @ctx: Context to search the signal operation in.
446  * @idx: Index of the job in the context.
447  * @job: Job to add.
448  * @syncs: Sync operations provided by userspace.
449  *
450  * Return: 0 on success, a negative error code otherwise.
451  */
452 static int
453 panthor_submit_ctx_add_job(struct panthor_submit_ctx *ctx, u32 idx,
454 			   struct drm_sched_job *job,
455 			   const struct drm_panthor_obj_array *syncs)
456 {
457 	int ret;
458 
459 	ctx->jobs[idx].job = job;
460 
461 	ret = PANTHOR_UOBJ_GET_ARRAY(ctx->jobs[idx].syncops, syncs);
462 	if (ret)
463 		return ret;
464 
465 	ctx->jobs[idx].syncop_count = syncs->count;
466 	return 0;
467 }
468 
469 /**
470  * panthor_submit_ctx_get_sync_signal() - Search signal operation and add one if none was found.
471  * @ctx: Context to search the signal operation in.
472  * @handle: Syncobj handle.
473  * @point: Syncobj point.
474  *
475  * Return: 0 on success, a negative error code otherwise.
476  */
477 static int
478 panthor_submit_ctx_get_sync_signal(struct panthor_submit_ctx *ctx, u32 handle, u64 point)
479 {
480 	struct panthor_sync_signal *sig_sync;
481 
482 	sig_sync = panthor_submit_ctx_search_sync_signal(ctx, handle, point);
483 	if (sig_sync)
484 		return 0;
485 
486 	return panthor_submit_ctx_add_sync_signal(ctx, handle, point);
487 }
488 
489 /**
490  * panthor_submit_ctx_update_job_sync_signal_fences() - Update fences
491  * on the signal operations specified by a job.
492  * @ctx: Context to search the signal operation in.
493  * @job_idx: Index of the job to operate on.
494  *
495  * Return: 0 on success, a negative error code otherwise.
496  */
497 static int
498 panthor_submit_ctx_update_job_sync_signal_fences(struct panthor_submit_ctx *ctx,
499 						 u32 job_idx)
500 {
501 	struct panthor_device *ptdev = container_of(ctx->file->minor->dev,
502 						    struct panthor_device,
503 						    base);
504 	struct dma_fence *done_fence = &ctx->jobs[job_idx].job->s_fence->finished;
505 	const struct drm_panthor_sync_op *sync_ops = ctx->jobs[job_idx].syncops;
506 	u32 sync_op_count = ctx->jobs[job_idx].syncop_count;
507 
508 	for (u32 i = 0; i < sync_op_count; i++) {
509 		struct dma_fence *old_fence;
510 		struct panthor_sync_signal *sig_sync;
511 
512 		if (!sync_op_is_signal(&sync_ops[i]))
513 			continue;
514 
515 		sig_sync = panthor_submit_ctx_search_sync_signal(ctx, sync_ops[i].handle,
516 								 sync_ops[i].timeline_value);
517 		if (drm_WARN_ON(&ptdev->base, !sig_sync))
518 			return -EINVAL;
519 
520 		old_fence = sig_sync->fence;
521 		sig_sync->fence = dma_fence_get(done_fence);
522 		dma_fence_put(old_fence);
523 
524 		if (drm_WARN_ON(&ptdev->base, !sig_sync->fence))
525 			return -EINVAL;
526 	}
527 
528 	return 0;
529 }
530 
531 /**
532  * panthor_submit_ctx_collect_job_signal_ops() - Iterate over all job signal operations
533  * and add them to the context.
534  * @ctx: Context to search the signal operation in.
535  * @job_idx: Index of the job to operate on.
536  *
537  * Return: 0 on success, a negative error code otherwise.
538  */
539 static int
540 panthor_submit_ctx_collect_job_signal_ops(struct panthor_submit_ctx *ctx,
541 					  u32 job_idx)
542 {
543 	const struct drm_panthor_sync_op *sync_ops = ctx->jobs[job_idx].syncops;
544 	u32 sync_op_count = ctx->jobs[job_idx].syncop_count;
545 
546 	for (u32 i = 0; i < sync_op_count; i++) {
547 		int ret;
548 
549 		if (!sync_op_is_signal(&sync_ops[i]))
550 			continue;
551 
552 		ret = panthor_check_sync_op(&sync_ops[i]);
553 		if (ret)
554 			return ret;
555 
556 		ret = panthor_submit_ctx_get_sync_signal(ctx,
557 							 sync_ops[i].handle,
558 							 sync_ops[i].timeline_value);
559 		if (ret)
560 			return ret;
561 	}
562 
563 	return 0;
564 }
565 
566 /**
567  * panthor_submit_ctx_push_fences() - Iterate over the signal array, and for each entry, push
568  * the currently assigned fence to the associated syncobj.
569  * @ctx: Context to push fences on.
570  *
571  * This is the last step of a submission procedure, and is done once we know the submission
572  * is effective and job fences are guaranteed to be signaled in finite time.
573  */
574 static void
575 panthor_submit_ctx_push_fences(struct panthor_submit_ctx *ctx)
576 {
577 	struct panthor_sync_signal *sig_sync;
578 
579 	list_for_each_entry(sig_sync, &ctx->signals, node) {
580 		if (sig_sync->chain) {
581 			drm_syncobj_add_point(sig_sync->syncobj, sig_sync->chain,
582 					      sig_sync->fence, sig_sync->point);
583 			sig_sync->chain = NULL;
584 		} else {
585 			drm_syncobj_replace_fence(sig_sync->syncobj, sig_sync->fence);
586 		}
587 	}
588 }
589 
590 /**
591  * panthor_submit_ctx_add_sync_deps_to_job() - Add sync wait operations as
592  * job dependencies.
593  * @ctx: Submit context.
594  * @job_idx: Index of the job to operate on.
595  *
596  * Return: 0 on success, a negative error code otherwise.
597  */
598 static int
599 panthor_submit_ctx_add_sync_deps_to_job(struct panthor_submit_ctx *ctx,
600 					u32 job_idx)
601 {
602 	struct panthor_device *ptdev = container_of(ctx->file->minor->dev,
603 						    struct panthor_device,
604 						    base);
605 	const struct drm_panthor_sync_op *sync_ops = ctx->jobs[job_idx].syncops;
606 	struct drm_sched_job *job = ctx->jobs[job_idx].job;
607 	u32 sync_op_count = ctx->jobs[job_idx].syncop_count;
608 	int ret = 0;
609 
610 	for (u32 i = 0; i < sync_op_count; i++) {
611 		struct panthor_sync_signal *sig_sync;
612 		struct dma_fence *fence;
613 
614 		if (!sync_op_is_wait(&sync_ops[i]))
615 			continue;
616 
617 		ret = panthor_check_sync_op(&sync_ops[i]);
618 		if (ret)
619 			return ret;
620 
621 		sig_sync = panthor_submit_ctx_search_sync_signal(ctx, sync_ops[i].handle,
622 								 sync_ops[i].timeline_value);
623 		if (sig_sync) {
624 			if (drm_WARN_ON(&ptdev->base, !sig_sync->fence))
625 				return -EINVAL;
626 
627 			fence = dma_fence_get(sig_sync->fence);
628 		} else {
629 			ret = drm_syncobj_find_fence(ctx->file, sync_ops[i].handle,
630 						     sync_ops[i].timeline_value,
631 						     0, &fence);
632 			if (ret)
633 				return ret;
634 		}
635 
636 		ret = drm_sched_job_add_dependency(job, fence);
637 		if (ret)
638 			return ret;
639 	}
640 
641 	return 0;
642 }
643 
644 /**
645  * panthor_submit_ctx_collect_jobs_signal_ops() - Collect all signal operations
646  * and add them to the submit context.
647  * @ctx: Submit context.
648  *
649  * Return: 0 on success, a negative error code otherwise.
650  */
651 static int
652 panthor_submit_ctx_collect_jobs_signal_ops(struct panthor_submit_ctx *ctx)
653 {
654 	for (u32 i = 0; i < ctx->job_count; i++) {
655 		int ret;
656 
657 		ret = panthor_submit_ctx_collect_job_signal_ops(ctx, i);
658 		if (ret)
659 			return ret;
660 	}
661 
662 	return 0;
663 }
664 
665 /**
666  * panthor_submit_ctx_add_deps_and_arm_jobs() - Add jobs dependencies and arm jobs
667  * @ctx: Submit context.
668  *
669  * Must be called after the resv preparation has been taken care of.
670  *
671  * Return: 0 on success, a negative error code otherwise.
672  */
673 static int
674 panthor_submit_ctx_add_deps_and_arm_jobs(struct panthor_submit_ctx *ctx)
675 {
676 	for (u32 i = 0; i < ctx->job_count; i++) {
677 		int ret;
678 
679 		ret = panthor_submit_ctx_add_sync_deps_to_job(ctx, i);
680 		if (ret)
681 			return ret;
682 
683 		drm_sched_job_arm(ctx->jobs[i].job);
684 
685 		ret = panthor_submit_ctx_update_job_sync_signal_fences(ctx, i);
686 		if (ret)
687 			return ret;
688 	}
689 
690 	return 0;
691 }
692 
693 /**
694  * panthor_submit_ctx_push_jobs() - Push jobs to their scheduling entities.
695  * @ctx: Submit context.
696  * @upd_resvs: Callback used to update reservation objects that were previously
697  * preapred.
698  */
699 static void
700 panthor_submit_ctx_push_jobs(struct panthor_submit_ctx *ctx,
701 			     void (*upd_resvs)(struct drm_exec *, struct drm_sched_job *))
702 {
703 	for (u32 i = 0; i < ctx->job_count; i++) {
704 		upd_resvs(&ctx->exec, ctx->jobs[i].job);
705 		drm_sched_entity_push_job(ctx->jobs[i].job);
706 
707 		/* Job is owned by the scheduler now. */
708 		ctx->jobs[i].job = NULL;
709 	}
710 
711 	panthor_submit_ctx_push_fences(ctx);
712 }
713 
714 /**
715  * panthor_submit_ctx_init() - Initializes a submission context
716  * @ctx: Submit context to initialize.
717  * @file: drm_file this submission happens on.
718  * @job_count: Number of jobs that will be submitted.
719  *
720  * Return: 0 on success, a negative error code otherwise.
721  */
722 static int panthor_submit_ctx_init(struct panthor_submit_ctx *ctx,
723 				   struct drm_file *file, u32 job_count)
724 {
725 	ctx->jobs = kvmalloc_array(job_count, sizeof(*ctx->jobs),
726 				   GFP_KERNEL | __GFP_ZERO);
727 	if (!ctx->jobs)
728 		return -ENOMEM;
729 
730 	ctx->file = file;
731 	ctx->job_count = job_count;
732 	INIT_LIST_HEAD(&ctx->signals);
733 	drm_exec_init(&ctx->exec,
734 		      DRM_EXEC_INTERRUPTIBLE_WAIT | DRM_EXEC_IGNORE_DUPLICATES,
735 		      0);
736 	return 0;
737 }
738 
739 /**
740  * panthor_submit_ctx_cleanup() - Cleanup a submission context
741  * @ctx: Submit context to cleanup.
742  * @job_put: Job put callback.
743  */
744 static void panthor_submit_ctx_cleanup(struct panthor_submit_ctx *ctx,
745 				       void (*job_put)(struct drm_sched_job *))
746 {
747 	struct panthor_sync_signal *sig_sync, *tmp;
748 	unsigned long i;
749 
750 	drm_exec_fini(&ctx->exec);
751 
752 	list_for_each_entry_safe(sig_sync, tmp, &ctx->signals, node)
753 		panthor_sync_signal_free(sig_sync);
754 
755 	for (i = 0; i < ctx->job_count; i++) {
756 		job_put(ctx->jobs[i].job);
757 		kvfree(ctx->jobs[i].syncops);
758 	}
759 
760 	kvfree(ctx->jobs);
761 }
762 
763 static int panthor_query_timestamp_info(struct panthor_device *ptdev,
764 					struct drm_panthor_timestamp_info *arg)
765 {
766 	int ret;
767 
768 	ret = panthor_device_resume_and_get(ptdev);
769 	if (ret)
770 		return ret;
771 
772 #ifdef CONFIG_ARM_ARCH_TIMER
773 	arg->timestamp_frequency = arch_timer_get_cntfrq();
774 #else
775 	arg->timestamp_frequency = 0;
776 #endif
777 	arg->current_timestamp = gpu_read64_counter(ptdev, GPU_TIMESTAMP);
778 	arg->timestamp_offset = gpu_read64(ptdev, GPU_TIMESTAMP_OFFSET);
779 
780 	pm_runtime_put(ptdev->base.dev);
781 	return 0;
782 }
783 
784 static int group_priority_permit(struct drm_file *file,
785 				 u8 priority)
786 {
787 	/* Ensure that priority is valid */
788 	if (priority > PANTHOR_GROUP_PRIORITY_REALTIME)
789 		return -EINVAL;
790 
791 	/* Medium priority and below are always allowed */
792 	if (priority <= PANTHOR_GROUP_PRIORITY_MEDIUM)
793 		return 0;
794 
795 	/* Higher priorities require CAP_SYS_NICE or DRM_MASTER */
796 	if (capable(CAP_SYS_NICE) || drm_is_current_master(file))
797 		return 0;
798 
799 	return -EACCES;
800 }
801 
802 static void panthor_query_group_priorities_info(struct drm_file *file,
803 						struct drm_panthor_group_priorities_info *arg)
804 {
805 	int prio;
806 
807 	memset(arg, 0, sizeof(*arg));
808 	for (prio = PANTHOR_GROUP_PRIORITY_REALTIME; prio >= 0; prio--) {
809 		if (!group_priority_permit(file, prio))
810 			arg->allowed_mask |= BIT(prio);
811 	}
812 }
813 
814 static int panthor_ioctl_dev_query(struct drm_device *ddev, void *data, struct drm_file *file)
815 {
816 	struct panthor_device *ptdev = container_of(ddev, struct panthor_device, base);
817 	struct drm_panthor_dev_query *args = data;
818 	struct drm_panthor_timestamp_info timestamp_info;
819 	struct drm_panthor_group_priorities_info priorities_info;
820 	int ret;
821 
822 	if (!args->pointer) {
823 		switch (args->type) {
824 		case DRM_PANTHOR_DEV_QUERY_GPU_INFO:
825 			args->size = sizeof(ptdev->gpu_info);
826 			return 0;
827 
828 		case DRM_PANTHOR_DEV_QUERY_CSIF_INFO:
829 			args->size = sizeof(ptdev->csif_info);
830 			return 0;
831 
832 		case DRM_PANTHOR_DEV_QUERY_TIMESTAMP_INFO:
833 			args->size = sizeof(timestamp_info);
834 			return 0;
835 
836 		case DRM_PANTHOR_DEV_QUERY_GROUP_PRIORITIES_INFO:
837 			args->size = sizeof(priorities_info);
838 			return 0;
839 
840 		default:
841 			return -EINVAL;
842 		}
843 	}
844 
845 	switch (args->type) {
846 	case DRM_PANTHOR_DEV_QUERY_GPU_INFO:
847 		return PANTHOR_UOBJ_SET(args->pointer, args->size, ptdev->gpu_info);
848 
849 	case DRM_PANTHOR_DEV_QUERY_CSIF_INFO:
850 		return PANTHOR_UOBJ_SET(args->pointer, args->size, ptdev->csif_info);
851 
852 	case DRM_PANTHOR_DEV_QUERY_TIMESTAMP_INFO:
853 		ret = panthor_query_timestamp_info(ptdev, &timestamp_info);
854 
855 		if (ret)
856 			return ret;
857 
858 		return PANTHOR_UOBJ_SET(args->pointer, args->size, timestamp_info);
859 
860 	case DRM_PANTHOR_DEV_QUERY_GROUP_PRIORITIES_INFO:
861 		panthor_query_group_priorities_info(file, &priorities_info);
862 		return PANTHOR_UOBJ_SET(args->pointer, args->size, priorities_info);
863 
864 	default:
865 		return -EINVAL;
866 	}
867 }
868 
869 #define PANTHOR_VM_CREATE_FLAGS			0
870 
871 static int panthor_ioctl_vm_create(struct drm_device *ddev, void *data,
872 				   struct drm_file *file)
873 {
874 	struct panthor_device *ptdev = container_of(ddev, struct panthor_device, base);
875 	struct panthor_file *pfile = file->driver_priv;
876 	struct drm_panthor_vm_create *args = data;
877 	int cookie, ret;
878 
879 	if (!drm_dev_enter(ddev, &cookie))
880 		return -ENODEV;
881 
882 	ret = panthor_vm_pool_create_vm(ptdev, pfile->vms,  args);
883 	if (ret >= 0) {
884 		args->id = ret;
885 		ret = 0;
886 	}
887 
888 	drm_dev_exit(cookie);
889 	return ret;
890 }
891 
892 static int panthor_ioctl_vm_destroy(struct drm_device *ddev, void *data,
893 				    struct drm_file *file)
894 {
895 	struct panthor_file *pfile = file->driver_priv;
896 	struct drm_panthor_vm_destroy *args = data;
897 
898 	if (args->pad)
899 		return -EINVAL;
900 
901 	return panthor_vm_pool_destroy_vm(pfile->vms, args->id);
902 }
903 
904 #define PANTHOR_BO_FLAGS		DRM_PANTHOR_BO_NO_MMAP
905 
906 static int panthor_ioctl_bo_create(struct drm_device *ddev, void *data,
907 				   struct drm_file *file)
908 {
909 	struct panthor_file *pfile = file->driver_priv;
910 	struct drm_panthor_bo_create *args = data;
911 	struct panthor_vm *vm = NULL;
912 	int cookie, ret;
913 
914 	if (!drm_dev_enter(ddev, &cookie))
915 		return -ENODEV;
916 
917 	if (!args->size || args->pad ||
918 	    (args->flags & ~PANTHOR_BO_FLAGS)) {
919 		ret = -EINVAL;
920 		goto out_dev_exit;
921 	}
922 
923 	if (args->exclusive_vm_id) {
924 		vm = panthor_vm_pool_get_vm(pfile->vms, args->exclusive_vm_id);
925 		if (!vm) {
926 			ret = -EINVAL;
927 			goto out_dev_exit;
928 		}
929 	}
930 
931 	ret = panthor_gem_create_with_handle(file, ddev, vm, &args->size,
932 					     args->flags, &args->handle);
933 
934 	panthor_vm_put(vm);
935 
936 out_dev_exit:
937 	drm_dev_exit(cookie);
938 	return ret;
939 }
940 
941 static int panthor_ioctl_bo_mmap_offset(struct drm_device *ddev, void *data,
942 					struct drm_file *file)
943 {
944 	struct drm_panthor_bo_mmap_offset *args = data;
945 	struct panthor_gem_object *bo;
946 	struct drm_gem_object *obj;
947 	int ret;
948 
949 	if (args->pad)
950 		return -EINVAL;
951 
952 	obj = drm_gem_object_lookup(file, args->handle);
953 	if (!obj)
954 		return -ENOENT;
955 
956 	bo = to_panthor_bo(obj);
957 	if (bo->flags & DRM_PANTHOR_BO_NO_MMAP) {
958 		ret = -EPERM;
959 		goto out;
960 	}
961 
962 	ret = drm_gem_create_mmap_offset(obj);
963 	if (ret)
964 		goto out;
965 
966 	args->offset = drm_vma_node_offset_addr(&obj->vma_node);
967 
968 out:
969 	drm_gem_object_put(obj);
970 	return ret;
971 }
972 
973 static int panthor_ioctl_group_submit(struct drm_device *ddev, void *data,
974 				      struct drm_file *file)
975 {
976 	struct panthor_file *pfile = file->driver_priv;
977 	struct drm_panthor_group_submit *args = data;
978 	struct drm_panthor_queue_submit *jobs_args;
979 	struct panthor_submit_ctx ctx;
980 	int ret = 0, cookie;
981 
982 	if (args->pad)
983 		return -EINVAL;
984 
985 	if (!drm_dev_enter(ddev, &cookie))
986 		return -ENODEV;
987 
988 	ret = PANTHOR_UOBJ_GET_ARRAY(jobs_args, &args->queue_submits);
989 	if (ret)
990 		goto out_dev_exit;
991 
992 	ret = panthor_submit_ctx_init(&ctx, file, args->queue_submits.count);
993 	if (ret)
994 		goto out_free_jobs_args;
995 
996 	/* Create jobs and attach sync operations */
997 	for (u32 i = 0; i < args->queue_submits.count; i++) {
998 		const struct drm_panthor_queue_submit *qsubmit = &jobs_args[i];
999 		struct drm_sched_job *job;
1000 
1001 		job = panthor_job_create(pfile, args->group_handle, qsubmit,
1002 					 file->client_id);
1003 		if (IS_ERR(job)) {
1004 			ret = PTR_ERR(job);
1005 			goto out_cleanup_submit_ctx;
1006 		}
1007 
1008 		ret = panthor_submit_ctx_add_job(&ctx, i, job, &qsubmit->syncs);
1009 		if (ret)
1010 			goto out_cleanup_submit_ctx;
1011 	}
1012 
1013 	/*
1014 	 * Collect signal operations on all jobs, such that each job can pick
1015 	 * from it for its dependencies and update the fence to signal when the
1016 	 * job is submitted.
1017 	 */
1018 	ret = panthor_submit_ctx_collect_jobs_signal_ops(&ctx);
1019 	if (ret)
1020 		goto out_cleanup_submit_ctx;
1021 
1022 	/*
1023 	 * We acquire/prepare revs on all jobs before proceeding with the
1024 	 * dependency registration.
1025 	 *
1026 	 * This is solving two problems:
1027 	 * 1. drm_sched_job_arm() and drm_sched_entity_push_job() must be
1028 	 *    protected by a lock to make sure no concurrent access to the same
1029 	 *    entity get interleaved, which would mess up with the fence seqno
1030 	 *    ordering. Luckily, one of the resv being acquired is the VM resv,
1031 	 *    and a scheduling entity is only bound to a single VM. As soon as
1032 	 *    we acquire the VM resv, we should be safe.
1033 	 * 2. Jobs might depend on fences that were issued by previous jobs in
1034 	 *    the same batch, so we can't add dependencies on all jobs before
1035 	 *    arming previous jobs and registering the fence to the signal
1036 	 *    array, otherwise we might miss dependencies, or point to an
1037 	 *    outdated fence.
1038 	 */
1039 	if (args->queue_submits.count > 0) {
1040 		/* All jobs target the same group, so they also point to the same VM. */
1041 		struct panthor_vm *vm = panthor_job_vm(ctx.jobs[0].job);
1042 
1043 		drm_exec_until_all_locked(&ctx.exec) {
1044 			ret = panthor_vm_prepare_mapped_bos_resvs(&ctx.exec, vm,
1045 								  args->queue_submits.count);
1046 		}
1047 
1048 		if (ret)
1049 			goto out_cleanup_submit_ctx;
1050 	}
1051 
1052 	/*
1053 	 * Now that resvs are locked/prepared, we can iterate over each job to
1054 	 * add the dependencies, arm the job fence, register the job fence to
1055 	 * the signal array.
1056 	 */
1057 	ret = panthor_submit_ctx_add_deps_and_arm_jobs(&ctx);
1058 	if (ret)
1059 		goto out_cleanup_submit_ctx;
1060 
1061 	/* Nothing can fail after that point, so we can make our job fences
1062 	 * visible to the outside world. Push jobs and set the job fences to
1063 	 * the resv slots we reserved.  This also pushes the fences to the
1064 	 * syncobjs that are part of the signal array.
1065 	 */
1066 	panthor_submit_ctx_push_jobs(&ctx, panthor_job_update_resvs);
1067 
1068 out_cleanup_submit_ctx:
1069 	panthor_submit_ctx_cleanup(&ctx, panthor_job_put);
1070 
1071 out_free_jobs_args:
1072 	kvfree(jobs_args);
1073 
1074 out_dev_exit:
1075 	drm_dev_exit(cookie);
1076 	return ret;
1077 }
1078 
1079 static int panthor_ioctl_group_destroy(struct drm_device *ddev, void *data,
1080 				       struct drm_file *file)
1081 {
1082 	struct panthor_file *pfile = file->driver_priv;
1083 	struct drm_panthor_group_destroy *args = data;
1084 
1085 	if (args->pad)
1086 		return -EINVAL;
1087 
1088 	return panthor_group_destroy(pfile, args->group_handle);
1089 }
1090 
1091 static int panthor_ioctl_group_create(struct drm_device *ddev, void *data,
1092 				      struct drm_file *file)
1093 {
1094 	struct panthor_file *pfile = file->driver_priv;
1095 	struct drm_panthor_group_create *args = data;
1096 	struct drm_panthor_queue_create *queue_args;
1097 	int ret;
1098 
1099 	if (!args->queues.count || args->queues.count > MAX_CS_PER_CSG)
1100 		return -EINVAL;
1101 
1102 	ret = PANTHOR_UOBJ_GET_ARRAY(queue_args, &args->queues);
1103 	if (ret)
1104 		return ret;
1105 
1106 	ret = group_priority_permit(file, args->priority);
1107 	if (ret)
1108 		goto out;
1109 
1110 	ret = panthor_group_create(pfile, args, queue_args, file->client_id);
1111 	if (ret < 0)
1112 		goto out;
1113 	args->group_handle = ret;
1114 	ret = 0;
1115 
1116 out:
1117 	kvfree(queue_args);
1118 	return ret;
1119 }
1120 
1121 static int panthor_ioctl_group_get_state(struct drm_device *ddev, void *data,
1122 					 struct drm_file *file)
1123 {
1124 	struct panthor_file *pfile = file->driver_priv;
1125 	struct drm_panthor_group_get_state *args = data;
1126 
1127 	return panthor_group_get_state(pfile, args);
1128 }
1129 
1130 static int panthor_ioctl_tiler_heap_create(struct drm_device *ddev, void *data,
1131 					   struct drm_file *file)
1132 {
1133 	struct panthor_file *pfile = file->driver_priv;
1134 	struct drm_panthor_tiler_heap_create *args = data;
1135 	struct panthor_heap_pool *pool;
1136 	struct panthor_vm *vm;
1137 	int ret;
1138 
1139 	vm = panthor_vm_pool_get_vm(pfile->vms, args->vm_id);
1140 	if (!vm)
1141 		return -EINVAL;
1142 
1143 	pool = panthor_vm_get_heap_pool(vm, true);
1144 	if (IS_ERR(pool)) {
1145 		ret = PTR_ERR(pool);
1146 		goto out_put_vm;
1147 	}
1148 
1149 	ret = panthor_heap_create(pool,
1150 				  args->initial_chunk_count,
1151 				  args->chunk_size,
1152 				  args->max_chunks,
1153 				  args->target_in_flight,
1154 				  &args->tiler_heap_ctx_gpu_va,
1155 				  &args->first_heap_chunk_gpu_va);
1156 	if (ret < 0)
1157 		goto out_put_heap_pool;
1158 
1159 	/* Heap pools are per-VM. We combine the VM and HEAP id to make
1160 	 * a unique heap handle.
1161 	 */
1162 	args->handle = (args->vm_id << 16) | ret;
1163 	ret = 0;
1164 
1165 out_put_heap_pool:
1166 	panthor_heap_pool_put(pool);
1167 
1168 out_put_vm:
1169 	panthor_vm_put(vm);
1170 	return ret;
1171 }
1172 
1173 static int panthor_ioctl_tiler_heap_destroy(struct drm_device *ddev, void *data,
1174 					    struct drm_file *file)
1175 {
1176 	struct panthor_file *pfile = file->driver_priv;
1177 	struct drm_panthor_tiler_heap_destroy *args = data;
1178 	struct panthor_heap_pool *pool;
1179 	struct panthor_vm *vm;
1180 	int ret;
1181 
1182 	if (args->pad)
1183 		return -EINVAL;
1184 
1185 	vm = panthor_vm_pool_get_vm(pfile->vms, args->handle >> 16);
1186 	if (!vm)
1187 		return -EINVAL;
1188 
1189 	pool = panthor_vm_get_heap_pool(vm, false);
1190 	if (IS_ERR(pool)) {
1191 		ret = PTR_ERR(pool);
1192 		goto out_put_vm;
1193 	}
1194 
1195 	ret = panthor_heap_destroy(pool, args->handle & GENMASK(15, 0));
1196 	panthor_heap_pool_put(pool);
1197 
1198 out_put_vm:
1199 	panthor_vm_put(vm);
1200 	return ret;
1201 }
1202 
1203 static int panthor_ioctl_vm_bind_async(struct drm_device *ddev,
1204 				       struct drm_panthor_vm_bind *args,
1205 				       struct drm_file *file)
1206 {
1207 	struct panthor_file *pfile = file->driver_priv;
1208 	struct drm_panthor_vm_bind_op *jobs_args;
1209 	struct panthor_submit_ctx ctx;
1210 	struct panthor_vm *vm;
1211 	int ret = 0;
1212 
1213 	vm = panthor_vm_pool_get_vm(pfile->vms, args->vm_id);
1214 	if (!vm)
1215 		return -EINVAL;
1216 
1217 	ret = PANTHOR_UOBJ_GET_ARRAY(jobs_args, &args->ops);
1218 	if (ret)
1219 		goto out_put_vm;
1220 
1221 	ret = panthor_submit_ctx_init(&ctx, file, args->ops.count);
1222 	if (ret)
1223 		goto out_free_jobs_args;
1224 
1225 	for (u32 i = 0; i < args->ops.count; i++) {
1226 		struct drm_panthor_vm_bind_op *op = &jobs_args[i];
1227 		struct drm_sched_job *job;
1228 
1229 		job = panthor_vm_bind_job_create(file, vm, op);
1230 		if (IS_ERR(job)) {
1231 			ret = PTR_ERR(job);
1232 			goto out_cleanup_submit_ctx;
1233 		}
1234 
1235 		ret = panthor_submit_ctx_add_job(&ctx, i, job, &op->syncs);
1236 		if (ret)
1237 			goto out_cleanup_submit_ctx;
1238 	}
1239 
1240 	ret = panthor_submit_ctx_collect_jobs_signal_ops(&ctx);
1241 	if (ret)
1242 		goto out_cleanup_submit_ctx;
1243 
1244 	/* Prepare reservation objects for each VM_BIND job. */
1245 	drm_exec_until_all_locked(&ctx.exec) {
1246 		for (u32 i = 0; i < ctx.job_count; i++) {
1247 			ret = panthor_vm_bind_job_prepare_resvs(&ctx.exec, ctx.jobs[i].job);
1248 			drm_exec_retry_on_contention(&ctx.exec);
1249 			if (ret)
1250 				goto out_cleanup_submit_ctx;
1251 		}
1252 	}
1253 
1254 	ret = panthor_submit_ctx_add_deps_and_arm_jobs(&ctx);
1255 	if (ret)
1256 		goto out_cleanup_submit_ctx;
1257 
1258 	/* Nothing can fail after that point. */
1259 	panthor_submit_ctx_push_jobs(&ctx, panthor_vm_bind_job_update_resvs);
1260 
1261 out_cleanup_submit_ctx:
1262 	panthor_submit_ctx_cleanup(&ctx, panthor_vm_bind_job_put);
1263 
1264 out_free_jobs_args:
1265 	kvfree(jobs_args);
1266 
1267 out_put_vm:
1268 	panthor_vm_put(vm);
1269 	return ret;
1270 }
1271 
1272 static int panthor_ioctl_vm_bind_sync(struct drm_device *ddev,
1273 				      struct drm_panthor_vm_bind *args,
1274 				      struct drm_file *file)
1275 {
1276 	struct panthor_file *pfile = file->driver_priv;
1277 	struct drm_panthor_vm_bind_op *jobs_args;
1278 	struct panthor_vm *vm;
1279 	int ret;
1280 
1281 	vm = panthor_vm_pool_get_vm(pfile->vms, args->vm_id);
1282 	if (!vm)
1283 		return -EINVAL;
1284 
1285 	ret = PANTHOR_UOBJ_GET_ARRAY(jobs_args, &args->ops);
1286 	if (ret)
1287 		goto out_put_vm;
1288 
1289 	for (u32 i = 0; i < args->ops.count; i++) {
1290 		ret = panthor_vm_bind_exec_sync_op(file, vm, &jobs_args[i]);
1291 		if (ret) {
1292 			/* Update ops.count so the user knows where things failed. */
1293 			args->ops.count = i;
1294 			break;
1295 		}
1296 	}
1297 
1298 	kvfree(jobs_args);
1299 
1300 out_put_vm:
1301 	panthor_vm_put(vm);
1302 	return ret;
1303 }
1304 
1305 #define PANTHOR_VM_BIND_FLAGS DRM_PANTHOR_VM_BIND_ASYNC
1306 
1307 static int panthor_ioctl_vm_bind(struct drm_device *ddev, void *data,
1308 				 struct drm_file *file)
1309 {
1310 	struct drm_panthor_vm_bind *args = data;
1311 	int cookie, ret;
1312 
1313 	if (!drm_dev_enter(ddev, &cookie))
1314 		return -ENODEV;
1315 
1316 	if (args->flags & DRM_PANTHOR_VM_BIND_ASYNC)
1317 		ret = panthor_ioctl_vm_bind_async(ddev, args, file);
1318 	else
1319 		ret = panthor_ioctl_vm_bind_sync(ddev, args, file);
1320 
1321 	drm_dev_exit(cookie);
1322 	return ret;
1323 }
1324 
1325 static int panthor_ioctl_vm_get_state(struct drm_device *ddev, void *data,
1326 				      struct drm_file *file)
1327 {
1328 	struct panthor_file *pfile = file->driver_priv;
1329 	struct drm_panthor_vm_get_state *args = data;
1330 	struct panthor_vm *vm;
1331 
1332 	vm = panthor_vm_pool_get_vm(pfile->vms, args->vm_id);
1333 	if (!vm)
1334 		return -EINVAL;
1335 
1336 	if (panthor_vm_is_unusable(vm))
1337 		args->state = DRM_PANTHOR_VM_STATE_UNUSABLE;
1338 	else
1339 		args->state = DRM_PANTHOR_VM_STATE_USABLE;
1340 
1341 	panthor_vm_put(vm);
1342 	return 0;
1343 }
1344 
1345 static int panthor_ioctl_bo_set_label(struct drm_device *ddev, void *data,
1346 				      struct drm_file *file)
1347 {
1348 	struct drm_panthor_bo_set_label *args = data;
1349 	struct drm_gem_object *obj;
1350 	const char *label = NULL;
1351 	int ret = 0;
1352 
1353 	if (args->pad)
1354 		return -EINVAL;
1355 
1356 	obj = drm_gem_object_lookup(file, args->handle);
1357 	if (!obj)
1358 		return -ENOENT;
1359 
1360 	if (args->label) {
1361 		label = strndup_user((const char __user *)(uintptr_t)args->label,
1362 				     PANTHOR_BO_LABEL_MAXLEN);
1363 		if (IS_ERR(label)) {
1364 			ret = PTR_ERR(label);
1365 			if (ret == -EINVAL)
1366 				ret = -E2BIG;
1367 			goto err_put_obj;
1368 		}
1369 	}
1370 
1371 	/*
1372 	 * We treat passing a label of length 0 and passing a NULL label
1373 	 * differently, because even though they might seem conceptually
1374 	 * similar, future uses of the BO label might expect a different
1375 	 * behaviour in each case.
1376 	 */
1377 	panthor_gem_bo_set_label(obj, label);
1378 
1379 err_put_obj:
1380 	drm_gem_object_put(obj);
1381 
1382 	return ret;
1383 }
1384 
1385 static int panthor_ioctl_set_user_mmio_offset(struct drm_device *ddev,
1386 					      void *data, struct drm_file *file)
1387 {
1388 	struct drm_panthor_set_user_mmio_offset *args = data;
1389 	struct panthor_file *pfile = file->driver_priv;
1390 
1391 	if (args->offset != DRM_PANTHOR_USER_MMIO_OFFSET_32BIT &&
1392 	    args->offset != DRM_PANTHOR_USER_MMIO_OFFSET_64BIT)
1393 		return -EINVAL;
1394 
1395 	WRITE_ONCE(pfile->user_mmio.offset, args->offset);
1396 	return 0;
1397 }
1398 
1399 static int
1400 panthor_open(struct drm_device *ddev, struct drm_file *file)
1401 {
1402 	struct panthor_device *ptdev = container_of(ddev, struct panthor_device, base);
1403 	struct panthor_file *pfile;
1404 	int ret;
1405 
1406 	pfile = kzalloc(sizeof(*pfile), GFP_KERNEL);
1407 	if (!pfile)
1408 		return -ENOMEM;
1409 
1410 	pfile->ptdev = ptdev;
1411 	pfile->user_mmio.offset = DRM_PANTHOR_USER_MMIO_OFFSET;
1412 
1413 #ifdef CONFIG_ARM64
1414 	/*
1415 	 * With 32-bit systems being limited by the 32-bit representation of
1416 	 * mmap2's pgoffset field, we need to make the MMIO offset arch
1417 	 * specific.
1418 	 */
1419 	if (test_tsk_thread_flag(current, TIF_32BIT))
1420 		pfile->user_mmio.offset = DRM_PANTHOR_USER_MMIO_OFFSET_32BIT;
1421 #endif
1422 
1423 
1424 	ret = panthor_vm_pool_create(pfile);
1425 	if (ret)
1426 		goto err_free_file;
1427 
1428 	ret = panthor_group_pool_create(pfile);
1429 	if (ret)
1430 		goto err_destroy_vm_pool;
1431 
1432 	file->driver_priv = pfile;
1433 	return 0;
1434 
1435 err_destroy_vm_pool:
1436 	panthor_vm_pool_destroy(pfile);
1437 
1438 err_free_file:
1439 	kfree(pfile);
1440 	return ret;
1441 }
1442 
1443 static void
1444 panthor_postclose(struct drm_device *ddev, struct drm_file *file)
1445 {
1446 	struct panthor_file *pfile = file->driver_priv;
1447 
1448 	panthor_group_pool_destroy(pfile);
1449 	panthor_vm_pool_destroy(pfile);
1450 
1451 	kfree(pfile);
1452 }
1453 
1454 static const struct drm_ioctl_desc panthor_drm_driver_ioctls[] = {
1455 #define PANTHOR_IOCTL(n, func, flags) \
1456 	DRM_IOCTL_DEF_DRV(PANTHOR_##n, panthor_ioctl_##func, flags)
1457 
1458 	PANTHOR_IOCTL(DEV_QUERY, dev_query, DRM_RENDER_ALLOW),
1459 	PANTHOR_IOCTL(VM_CREATE, vm_create, DRM_RENDER_ALLOW),
1460 	PANTHOR_IOCTL(VM_DESTROY, vm_destroy, DRM_RENDER_ALLOW),
1461 	PANTHOR_IOCTL(VM_BIND, vm_bind, DRM_RENDER_ALLOW),
1462 	PANTHOR_IOCTL(VM_GET_STATE, vm_get_state, DRM_RENDER_ALLOW),
1463 	PANTHOR_IOCTL(BO_CREATE, bo_create, DRM_RENDER_ALLOW),
1464 	PANTHOR_IOCTL(BO_MMAP_OFFSET, bo_mmap_offset, DRM_RENDER_ALLOW),
1465 	PANTHOR_IOCTL(GROUP_CREATE, group_create, DRM_RENDER_ALLOW),
1466 	PANTHOR_IOCTL(GROUP_DESTROY, group_destroy, DRM_RENDER_ALLOW),
1467 	PANTHOR_IOCTL(GROUP_GET_STATE, group_get_state, DRM_RENDER_ALLOW),
1468 	PANTHOR_IOCTL(TILER_HEAP_CREATE, tiler_heap_create, DRM_RENDER_ALLOW),
1469 	PANTHOR_IOCTL(TILER_HEAP_DESTROY, tiler_heap_destroy, DRM_RENDER_ALLOW),
1470 	PANTHOR_IOCTL(GROUP_SUBMIT, group_submit, DRM_RENDER_ALLOW),
1471 	PANTHOR_IOCTL(BO_SET_LABEL, bo_set_label, DRM_RENDER_ALLOW),
1472 	PANTHOR_IOCTL(SET_USER_MMIO_OFFSET, set_user_mmio_offset, DRM_RENDER_ALLOW),
1473 };
1474 
1475 static int panthor_mmap(struct file *filp, struct vm_area_struct *vma)
1476 {
1477 	struct drm_file *file = filp->private_data;
1478 	struct panthor_file *pfile = file->driver_priv;
1479 	struct panthor_device *ptdev = pfile->ptdev;
1480 	u64 offset = (u64)vma->vm_pgoff << PAGE_SHIFT;
1481 	u64 user_mmio_offset;
1482 	int ret, cookie;
1483 
1484 	if (!drm_dev_enter(file->minor->dev, &cookie))
1485 		return -ENODEV;
1486 
1487 	/* Adjust the user MMIO offset to match the offset used kernel side.
1488 	 * We use a local variable with a READ_ONCE() here to make sure
1489 	 * the user_mmio_offset we use for the is_user_mmio_mapping() check
1490 	 * hasn't changed when we do the offset adjustment.
1491 	 */
1492 	user_mmio_offset = READ_ONCE(pfile->user_mmio.offset);
1493 	if (offset >= user_mmio_offset) {
1494 		offset -= user_mmio_offset;
1495 		offset += DRM_PANTHOR_USER_MMIO_OFFSET;
1496 		vma->vm_pgoff = offset >> PAGE_SHIFT;
1497 		ret = panthor_device_mmap_io(ptdev, vma);
1498 	} else {
1499 		ret = drm_gem_mmap(filp, vma);
1500 	}
1501 
1502 	drm_dev_exit(cookie);
1503 	return ret;
1504 }
1505 
1506 static void panthor_gpu_show_fdinfo(struct panthor_device *ptdev,
1507 				    struct panthor_file *pfile,
1508 				    struct drm_printer *p)
1509 {
1510 	if (ptdev->profile_mask & PANTHOR_DEVICE_PROFILING_ALL)
1511 		panthor_fdinfo_gather_group_samples(pfile);
1512 
1513 	if (ptdev->profile_mask & PANTHOR_DEVICE_PROFILING_TIMESTAMP) {
1514 #ifdef CONFIG_ARM_ARCH_TIMER
1515 		drm_printf(p, "drm-engine-panthor:\t%llu ns\n",
1516 			   DIV_ROUND_UP_ULL((pfile->stats.time * NSEC_PER_SEC),
1517 					    arch_timer_get_cntfrq()));
1518 #endif
1519 	}
1520 	if (ptdev->profile_mask & PANTHOR_DEVICE_PROFILING_CYCLES)
1521 		drm_printf(p, "drm-cycles-panthor:\t%llu\n", pfile->stats.cycles);
1522 
1523 	drm_printf(p, "drm-maxfreq-panthor:\t%lu Hz\n", ptdev->fast_rate);
1524 	drm_printf(p, "drm-curfreq-panthor:\t%lu Hz\n",
1525 		   panthor_devfreq_get_freq(ptdev));
1526 }
1527 
1528 static void panthor_show_internal_memory_stats(struct drm_printer *p, struct drm_file *file)
1529 {
1530 	char *drv_name = file->minor->dev->driver->name;
1531 	struct panthor_file *pfile = file->driver_priv;
1532 	struct drm_memory_stats stats = {0};
1533 
1534 	panthor_fdinfo_gather_group_mem_info(pfile, &stats);
1535 	panthor_vm_heaps_sizes(pfile, &stats);
1536 
1537 	drm_fdinfo_print_size(p, drv_name, "resident", "memory", stats.resident);
1538 	drm_fdinfo_print_size(p, drv_name, "active", "memory", stats.active);
1539 }
1540 
1541 static void panthor_show_fdinfo(struct drm_printer *p, struct drm_file *file)
1542 {
1543 	struct drm_device *dev = file->minor->dev;
1544 	struct panthor_device *ptdev = container_of(dev, struct panthor_device, base);
1545 
1546 	panthor_gpu_show_fdinfo(ptdev, file->driver_priv, p);
1547 	panthor_show_internal_memory_stats(p, file);
1548 
1549 	drm_show_memory_stats(p, file);
1550 }
1551 
1552 static const struct file_operations panthor_drm_driver_fops = {
1553 	.owner = THIS_MODULE,
1554 	.open = drm_open,
1555 	.release = drm_release,
1556 	.unlocked_ioctl = drm_ioctl,
1557 	.compat_ioctl = drm_compat_ioctl,
1558 	.poll = drm_poll,
1559 	.read = drm_read,
1560 	.llseek = noop_llseek,
1561 	.mmap = panthor_mmap,
1562 	.show_fdinfo = drm_show_fdinfo,
1563 	.fop_flags = FOP_UNSIGNED_OFFSET,
1564 };
1565 
1566 #ifdef CONFIG_DEBUG_FS
1567 static int panthor_gems_show(struct seq_file *m, void *data)
1568 {
1569 	struct drm_info_node *node = m->private;
1570 	struct drm_device *dev = node->minor->dev;
1571 	struct panthor_device *ptdev = container_of(dev, struct panthor_device, base);
1572 
1573 	panthor_gem_debugfs_print_bos(ptdev, m);
1574 
1575 	return 0;
1576 }
1577 
1578 static struct drm_info_list panthor_debugfs_list[] = {
1579 	{"gems", panthor_gems_show, 0, NULL},
1580 };
1581 
1582 static int panthor_gems_debugfs_init(struct drm_minor *minor)
1583 {
1584 	drm_debugfs_create_files(panthor_debugfs_list,
1585 				 ARRAY_SIZE(panthor_debugfs_list),
1586 				 minor->debugfs_root, minor);
1587 
1588 	return 0;
1589 }
1590 
1591 static void panthor_debugfs_init(struct drm_minor *minor)
1592 {
1593 	panthor_mmu_debugfs_init(minor);
1594 	panthor_gems_debugfs_init(minor);
1595 }
1596 #endif
1597 
1598 /*
1599  * PanCSF driver version:
1600  * - 1.0 - initial interface
1601  * - 1.1 - adds DEV_QUERY_TIMESTAMP_INFO query
1602  * - 1.2 - adds DEV_QUERY_GROUP_PRIORITIES_INFO query
1603  *       - adds PANTHOR_GROUP_PRIORITY_REALTIME priority
1604  * - 1.3 - adds DRM_PANTHOR_GROUP_STATE_INNOCENT flag
1605  * - 1.4 - adds DRM_IOCTL_PANTHOR_BO_SET_LABEL ioctl
1606  * - 1.5 - adds DRM_PANTHOR_SET_USER_MMIO_OFFSET ioctl
1607  */
1608 static const struct drm_driver panthor_drm_driver = {
1609 	.driver_features = DRIVER_RENDER | DRIVER_GEM | DRIVER_SYNCOBJ |
1610 			   DRIVER_SYNCOBJ_TIMELINE | DRIVER_GEM_GPUVA,
1611 	.open = panthor_open,
1612 	.postclose = panthor_postclose,
1613 	.show_fdinfo = panthor_show_fdinfo,
1614 	.ioctls = panthor_drm_driver_ioctls,
1615 	.num_ioctls = ARRAY_SIZE(panthor_drm_driver_ioctls),
1616 	.fops = &panthor_drm_driver_fops,
1617 	.name = "panthor",
1618 	.desc = "Panthor DRM driver",
1619 	.major = 1,
1620 	.minor = 5,
1621 
1622 	.gem_create_object = panthor_gem_create_object,
1623 	.gem_prime_import_sg_table = drm_gem_shmem_prime_import_sg_table,
1624 #ifdef CONFIG_DEBUG_FS
1625 	.debugfs_init = panthor_debugfs_init,
1626 #endif
1627 };
1628 
1629 static int panthor_probe(struct platform_device *pdev)
1630 {
1631 	struct panthor_device *ptdev;
1632 
1633 	ptdev = devm_drm_dev_alloc(&pdev->dev, &panthor_drm_driver,
1634 				   struct panthor_device, base);
1635 	if (IS_ERR(ptdev))
1636 		return -ENOMEM;
1637 
1638 	platform_set_drvdata(pdev, ptdev);
1639 
1640 	return panthor_device_init(ptdev);
1641 }
1642 
1643 static void panthor_remove(struct platform_device *pdev)
1644 {
1645 	struct panthor_device *ptdev = platform_get_drvdata(pdev);
1646 
1647 	panthor_device_unplug(ptdev);
1648 }
1649 
1650 static ssize_t profiling_show(struct device *dev,
1651 			      struct device_attribute *attr,
1652 			      char *buf)
1653 {
1654 	struct panthor_device *ptdev = dev_get_drvdata(dev);
1655 
1656 	return sysfs_emit(buf, "%d\n", ptdev->profile_mask);
1657 }
1658 
1659 static ssize_t profiling_store(struct device *dev,
1660 			       struct device_attribute *attr,
1661 			       const char *buf, size_t len)
1662 {
1663 	struct panthor_device *ptdev = dev_get_drvdata(dev);
1664 	u32 value;
1665 	int err;
1666 
1667 	err = kstrtou32(buf, 0, &value);
1668 	if (err)
1669 		return err;
1670 
1671 	if ((value & ~PANTHOR_DEVICE_PROFILING_ALL) != 0)
1672 		return -EINVAL;
1673 
1674 	ptdev->profile_mask = value;
1675 
1676 	return len;
1677 }
1678 
1679 static DEVICE_ATTR_RW(profiling);
1680 
1681 static struct attribute *panthor_attrs[] = {
1682 	&dev_attr_profiling.attr,
1683 	NULL,
1684 };
1685 
1686 ATTRIBUTE_GROUPS(panthor);
1687 
1688 static const struct panthor_soc_data soc_data_mediatek_mt8196 = {
1689 	.asn_hash_enable = true,
1690 	.asn_hash = { 0xb, 0xe, 0x0, },
1691 };
1692 
1693 static const struct of_device_id dt_match[] = {
1694 	{ .compatible = "mediatek,mt8196-mali", .data = &soc_data_mediatek_mt8196, },
1695 	{ .compatible = "rockchip,rk3588-mali" },
1696 	{ .compatible = "arm,mali-valhall-csf" },
1697 	{}
1698 };
1699 MODULE_DEVICE_TABLE(of, dt_match);
1700 
1701 static DEFINE_RUNTIME_DEV_PM_OPS(panthor_pm_ops,
1702 				 panthor_device_suspend,
1703 				 panthor_device_resume,
1704 				 NULL);
1705 
1706 static struct platform_driver panthor_driver = {
1707 	.probe = panthor_probe,
1708 	.remove = panthor_remove,
1709 	.driver = {
1710 		.name = "panthor",
1711 		.pm = pm_ptr(&panthor_pm_ops),
1712 		.of_match_table = dt_match,
1713 		.dev_groups = panthor_groups,
1714 	},
1715 };
1716 
1717 /*
1718  * Workqueue used to cleanup stuff.
1719  *
1720  * We create a dedicated workqueue so we can drain on unplug and
1721  * make sure all resources are freed before the module is unloaded.
1722  */
1723 struct workqueue_struct *panthor_cleanup_wq;
1724 
1725 static int __init panthor_init(void)
1726 {
1727 	int ret;
1728 
1729 	ret = panthor_mmu_pt_cache_init();
1730 	if (ret)
1731 		return ret;
1732 
1733 	panthor_cleanup_wq = alloc_workqueue("panthor-cleanup", WQ_UNBOUND, 0);
1734 	if (!panthor_cleanup_wq) {
1735 		pr_err("panthor: Failed to allocate the workqueues");
1736 		ret = -ENOMEM;
1737 		goto err_mmu_pt_cache_fini;
1738 	}
1739 
1740 	ret = platform_driver_register(&panthor_driver);
1741 	if (ret)
1742 		goto err_destroy_cleanup_wq;
1743 
1744 	return 0;
1745 
1746 err_destroy_cleanup_wq:
1747 	destroy_workqueue(panthor_cleanup_wq);
1748 
1749 err_mmu_pt_cache_fini:
1750 	panthor_mmu_pt_cache_fini();
1751 	return ret;
1752 }
1753 module_init(panthor_init);
1754 
1755 static void __exit panthor_exit(void)
1756 {
1757 	platform_driver_unregister(&panthor_driver);
1758 	destroy_workqueue(panthor_cleanup_wq);
1759 	panthor_mmu_pt_cache_fini();
1760 }
1761 module_exit(panthor_exit);
1762 
1763 MODULE_AUTHOR("Panthor Project Developers");
1764 MODULE_DESCRIPTION("Panthor DRM Driver");
1765 MODULE_LICENSE("Dual MIT/GPL");
1766