xref: /linux/arch/riscv/include/asm/pgtable.h (revision ddb7a62af2e766eabb4ab7080e6ed8d6b8915302)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012 Regents of the University of California
4  */
5 
6 #ifndef _ASM_RISCV_PGTABLE_H
7 #define _ASM_RISCV_PGTABLE_H
8 
9 #include <linux/mmzone.h>
10 #include <linux/sizes.h>
11 
12 #include <asm/pgtable-bits.h>
13 
14 #ifndef CONFIG_MMU
15 #ifdef CONFIG_RELOCATABLE
16 #define KERNEL_LINK_ADDR	UL(0)
17 #else
18 #define KERNEL_LINK_ADDR	_AC(CONFIG_PHYS_RAM_BASE, UL)
19 #endif
20 #define KERN_VIRT_SIZE		(UL(-1))
21 #else
22 
23 #define ADDRESS_SPACE_END	(UL(-1))
24 
25 #ifdef CONFIG_64BIT
26 /* Leave 2GB for kernel and BPF at the end of the address space */
27 #define KERNEL_LINK_ADDR	(ADDRESS_SPACE_END - SZ_2G + 1)
28 #else
29 #define KERNEL_LINK_ADDR	PAGE_OFFSET
30 #endif
31 
32 /* Number of entries in the page global directory */
33 #define PTRS_PER_PGD    (PAGE_SIZE / sizeof(pgd_t))
34 /* Number of entries in the page table */
35 #define PTRS_PER_PTE    (PAGE_SIZE / sizeof(pte_t))
36 
37 /*
38  * Half of the kernel address space (1/4 of the entries of the page global
39  * directory) is for the direct mapping.
40  */
41 #define KERN_VIRT_SIZE          ((PTRS_PER_PGD / 2 * PGDIR_SIZE) / 2)
42 
43 #define VMALLOC_SIZE     (KERN_VIRT_SIZE >> 1)
44 #define VMALLOC_END      PAGE_OFFSET
45 #define VMALLOC_START    (PAGE_OFFSET - VMALLOC_SIZE)
46 
47 #define BPF_JIT_REGION_SIZE	(SZ_128M)
48 #ifdef CONFIG_64BIT
49 #define BPF_JIT_REGION_START	(BPF_JIT_REGION_END - BPF_JIT_REGION_SIZE)
50 #define BPF_JIT_REGION_END	(MODULES_END)
51 #else
52 #define BPF_JIT_REGION_START	(PAGE_OFFSET - BPF_JIT_REGION_SIZE)
53 #define BPF_JIT_REGION_END	(VMALLOC_END)
54 #endif
55 
56 /* Modules always live before the kernel */
57 #ifdef CONFIG_64BIT
58 /* This is used to define the end of the KASAN shadow region */
59 #define MODULES_LOWEST_VADDR	(KERNEL_LINK_ADDR - SZ_2G)
60 #define MODULES_VADDR		(PFN_ALIGN((unsigned long)&_end) - SZ_2G)
61 #define MODULES_END		(PFN_ALIGN((unsigned long)&_start))
62 #else
63 #define MODULES_VADDR		VMALLOC_START
64 #define MODULES_END		VMALLOC_END
65 #endif
66 
67 /*
68  * Roughly size the vmemmap space to be large enough to fit enough
69  * struct pages to map half the virtual address space. Then
70  * position vmemmap directly below the VMALLOC region.
71  */
72 #define VA_BITS_SV32 32
73 #ifdef CONFIG_64BIT
74 #define VA_BITS_SV39 39
75 #define VA_BITS_SV48 48
76 #define VA_BITS_SV57 57
77 
78 #define VA_BITS		(pgtable_l5_enabled ? \
79 				VA_BITS_SV57 : (pgtable_l4_enabled ? VA_BITS_SV48 : VA_BITS_SV39))
80 #else
81 #define VA_BITS		VA_BITS_SV32
82 #endif
83 
84 #define VMEMMAP_SHIFT \
85 	(VA_BITS - PAGE_SHIFT - 1 + STRUCT_PAGE_MAX_SHIFT)
86 #define VMEMMAP_SIZE	BIT(VMEMMAP_SHIFT)
87 #define VMEMMAP_END	VMALLOC_START
88 #define VMEMMAP_START	(VMALLOC_START - VMEMMAP_SIZE)
89 
90 /*
91  * Define vmemmap for pfn_to_page & page_to_pfn calls. Needed if kernel
92  * is configured with CONFIG_SPARSEMEM_VMEMMAP enabled.
93  */
94 #define vmemmap		((struct page *)VMEMMAP_START - vmemmap_start_pfn)
95 
96 #define PCI_IO_SIZE      SZ_16M
97 #define PCI_IO_END       VMEMMAP_START
98 #define PCI_IO_START     (PCI_IO_END - PCI_IO_SIZE)
99 
100 #define FIXADDR_TOP      PCI_IO_START
101 #ifdef CONFIG_64BIT
102 #define MAX_FDT_SIZE	 PMD_SIZE
103 #define FIX_FDT_SIZE	 (MAX_FDT_SIZE + SZ_2M)
104 #define FIXADDR_SIZE     (PMD_SIZE + FIX_FDT_SIZE)
105 #else
106 #define MAX_FDT_SIZE	 PGDIR_SIZE
107 #define FIX_FDT_SIZE	 MAX_FDT_SIZE
108 #define FIXADDR_SIZE     (PGDIR_SIZE + FIX_FDT_SIZE)
109 #endif
110 #define FIXADDR_START    (FIXADDR_TOP - FIXADDR_SIZE)
111 
112 #endif
113 
114 #ifndef __ASSEMBLY__
115 
116 #include <asm/page.h>
117 #include <asm/tlbflush.h>
118 #include <linux/mm_types.h>
119 #include <asm/compat.h>
120 #include <asm/cpufeature.h>
121 
122 #define __page_val_to_pfn(_val)  (((_val) & _PAGE_PFN_MASK) >> _PAGE_PFN_SHIFT)
123 
124 #ifdef CONFIG_64BIT
125 #include <asm/pgtable-64.h>
126 
127 #define VA_USER_SV39 (UL(1) << (VA_BITS_SV39 - 1))
128 #define VA_USER_SV48 (UL(1) << (VA_BITS_SV48 - 1))
129 #define VA_USER_SV57 (UL(1) << (VA_BITS_SV57 - 1))
130 
131 #define MMAP_VA_BITS_64 ((VA_BITS >= VA_BITS_SV48) ? VA_BITS_SV48 : VA_BITS)
132 #define MMAP_MIN_VA_BITS_64 (VA_BITS_SV39)
133 #define MMAP_VA_BITS (is_compat_task() ? VA_BITS_SV32 : MMAP_VA_BITS_64)
134 #define MMAP_MIN_VA_BITS (is_compat_task() ? VA_BITS_SV32 : MMAP_MIN_VA_BITS_64)
135 #else
136 #include <asm/pgtable-32.h>
137 #endif /* CONFIG_64BIT */
138 
139 #include <linux/page_table_check.h>
140 
141 #ifdef CONFIG_XIP_KERNEL
142 #define XIP_FIXUP(addr) ({							\
143 	extern char _sdata[], _start[], _end[];					\
144 	uintptr_t __rom_start_data = CONFIG_XIP_PHYS_ADDR			\
145 				+ (uintptr_t)&_sdata - (uintptr_t)&_start;	\
146 	uintptr_t __rom_end_data = CONFIG_XIP_PHYS_ADDR				\
147 				+ (uintptr_t)&_end - (uintptr_t)&_start;	\
148 	uintptr_t __a = (uintptr_t)(addr);					\
149 	(__a >= __rom_start_data && __a < __rom_end_data) ?			\
150 		__a - __rom_start_data + CONFIG_PHYS_RAM_BASE :	__a;		\
151 	})
152 #else
153 #define XIP_FIXUP(addr)		(addr)
154 #endif /* CONFIG_XIP_KERNEL */
155 
156 struct pt_alloc_ops {
157 	pte_t *(*get_pte_virt)(phys_addr_t pa);
158 	phys_addr_t (*alloc_pte)(uintptr_t va);
159 #ifndef __PAGETABLE_PMD_FOLDED
160 	pmd_t *(*get_pmd_virt)(phys_addr_t pa);
161 	phys_addr_t (*alloc_pmd)(uintptr_t va);
162 	pud_t *(*get_pud_virt)(phys_addr_t pa);
163 	phys_addr_t (*alloc_pud)(uintptr_t va);
164 	p4d_t *(*get_p4d_virt)(phys_addr_t pa);
165 	phys_addr_t (*alloc_p4d)(uintptr_t va);
166 #endif
167 };
168 
169 extern struct pt_alloc_ops pt_ops __meminitdata;
170 
171 #ifdef CONFIG_MMU
172 /* Number of PGD entries that a user-mode program can use */
173 #define USER_PTRS_PER_PGD   (TASK_SIZE / PGDIR_SIZE)
174 
175 /* Page protection bits */
176 #define _PAGE_BASE	(_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_USER)
177 
178 #define PAGE_NONE		__pgprot(_PAGE_PROT_NONE | _PAGE_READ)
179 #define PAGE_READ		__pgprot(_PAGE_BASE | _PAGE_READ)
180 #define PAGE_WRITE		__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_WRITE)
181 #define PAGE_EXEC		__pgprot(_PAGE_BASE | _PAGE_EXEC)
182 #define PAGE_READ_EXEC		__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
183 #define PAGE_WRITE_EXEC		__pgprot(_PAGE_BASE | _PAGE_READ |	\
184 					 _PAGE_EXEC | _PAGE_WRITE)
185 
186 #define PAGE_COPY		PAGE_READ
187 #define PAGE_COPY_EXEC		PAGE_READ_EXEC
188 #define PAGE_SHARED		PAGE_WRITE
189 #define PAGE_SHARED_EXEC	PAGE_WRITE_EXEC
190 
191 #define _PAGE_KERNEL		(_PAGE_READ \
192 				| _PAGE_WRITE \
193 				| _PAGE_PRESENT \
194 				| _PAGE_ACCESSED \
195 				| _PAGE_DIRTY \
196 				| _PAGE_GLOBAL)
197 
198 #define PAGE_KERNEL		__pgprot(_PAGE_KERNEL)
199 #define PAGE_KERNEL_READ	__pgprot(_PAGE_KERNEL & ~_PAGE_WRITE)
200 #define PAGE_KERNEL_EXEC	__pgprot(_PAGE_KERNEL | _PAGE_EXEC)
201 #define PAGE_KERNEL_READ_EXEC	__pgprot((_PAGE_KERNEL & ~_PAGE_WRITE) \
202 					 | _PAGE_EXEC)
203 
204 #define PAGE_TABLE		__pgprot(_PAGE_TABLE)
205 
206 #define _PAGE_IOREMAP	((_PAGE_KERNEL & ~_PAGE_MTMASK) | _PAGE_IO)
207 #define PAGE_KERNEL_IO		__pgprot(_PAGE_IOREMAP)
208 
209 extern pgd_t swapper_pg_dir[];
210 extern pgd_t trampoline_pg_dir[];
211 extern pgd_t early_pg_dir[];
212 
213 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmd_present(pmd_t pmd)214 static inline int pmd_present(pmd_t pmd)
215 {
216 	/*
217 	 * Checking for _PAGE_LEAF is needed too because:
218 	 * When splitting a THP, split_huge_page() will temporarily clear
219 	 * the present bit, in this situation, pmd_present() and
220 	 * pmd_trans_huge() still needs to return true.
221 	 */
222 	return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE | _PAGE_LEAF));
223 }
224 #else
pmd_present(pmd_t pmd)225 static inline int pmd_present(pmd_t pmd)
226 {
227 	return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
228 }
229 #endif
230 
pmd_none(pmd_t pmd)231 static inline int pmd_none(pmd_t pmd)
232 {
233 	return (pmd_val(pmd) == 0);
234 }
235 
pmd_bad(pmd_t pmd)236 static inline int pmd_bad(pmd_t pmd)
237 {
238 	return !pmd_present(pmd) || (pmd_val(pmd) & _PAGE_LEAF);
239 }
240 
241 #define pmd_leaf	pmd_leaf
pmd_leaf(pmd_t pmd)242 static inline bool pmd_leaf(pmd_t pmd)
243 {
244 	return pmd_present(pmd) && (pmd_val(pmd) & _PAGE_LEAF);
245 }
246 
set_pmd(pmd_t * pmdp,pmd_t pmd)247 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
248 {
249 	WRITE_ONCE(*pmdp, pmd);
250 }
251 
pmd_clear(pmd_t * pmdp)252 static inline void pmd_clear(pmd_t *pmdp)
253 {
254 	set_pmd(pmdp, __pmd(0));
255 }
256 
pfn_pgd(unsigned long pfn,pgprot_t prot)257 static inline pgd_t pfn_pgd(unsigned long pfn, pgprot_t prot)
258 {
259 	unsigned long prot_val = pgprot_val(prot);
260 
261 	ALT_THEAD_PMA(prot_val);
262 
263 	return __pgd((pfn << _PAGE_PFN_SHIFT) | prot_val);
264 }
265 
_pgd_pfn(pgd_t pgd)266 static inline unsigned long _pgd_pfn(pgd_t pgd)
267 {
268 	return __page_val_to_pfn(pgd_val(pgd));
269 }
270 
pmd_page(pmd_t pmd)271 static inline struct page *pmd_page(pmd_t pmd)
272 {
273 	return pfn_to_page(__page_val_to_pfn(pmd_val(pmd)));
274 }
275 
pmd_page_vaddr(pmd_t pmd)276 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
277 {
278 	return (unsigned long)pfn_to_virt(__page_val_to_pfn(pmd_val(pmd)));
279 }
280 
pmd_pte(pmd_t pmd)281 static inline pte_t pmd_pte(pmd_t pmd)
282 {
283 	return __pte(pmd_val(pmd));
284 }
285 
pud_pte(pud_t pud)286 static inline pte_t pud_pte(pud_t pud)
287 {
288 	return __pte(pud_val(pud));
289 }
290 
291 #ifdef CONFIG_RISCV_ISA_SVNAPOT
292 
has_svnapot(void)293 static __always_inline bool has_svnapot(void)
294 {
295 	return riscv_has_extension_likely(RISCV_ISA_EXT_SVNAPOT);
296 }
297 
pte_napot(pte_t pte)298 static inline unsigned long pte_napot(pte_t pte)
299 {
300 	return pte_val(pte) & _PAGE_NAPOT;
301 }
302 
pte_mknapot(pte_t pte,unsigned int order)303 static inline pte_t pte_mknapot(pte_t pte, unsigned int order)
304 {
305 	int pos = order - 1 + _PAGE_PFN_SHIFT;
306 	unsigned long napot_bit = BIT(pos);
307 	unsigned long napot_mask = ~GENMASK(pos, _PAGE_PFN_SHIFT);
308 
309 	return __pte((pte_val(pte) & napot_mask) | napot_bit | _PAGE_NAPOT);
310 }
311 
312 #else
313 
has_svnapot(void)314 static __always_inline bool has_svnapot(void) { return false; }
315 
pte_napot(pte_t pte)316 static inline unsigned long pte_napot(pte_t pte)
317 {
318 	return 0;
319 }
320 
321 #endif /* CONFIG_RISCV_ISA_SVNAPOT */
322 
323 /* Yields the page frame number (PFN) of a page table entry */
pte_pfn(pte_t pte)324 static inline unsigned long pte_pfn(pte_t pte)
325 {
326 	unsigned long res  = __page_val_to_pfn(pte_val(pte));
327 
328 	if (has_svnapot() && pte_napot(pte))
329 		res = res & (res - 1UL);
330 
331 	return res;
332 }
333 
334 #define pte_page(x)     pfn_to_page(pte_pfn(x))
335 
336 /* Constructs a page table entry */
pfn_pte(unsigned long pfn,pgprot_t prot)337 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot)
338 {
339 	unsigned long prot_val = pgprot_val(prot);
340 
341 	ALT_THEAD_PMA(prot_val);
342 
343 	return __pte((pfn << _PAGE_PFN_SHIFT) | prot_val);
344 }
345 
346 #define pte_pgprot pte_pgprot
pte_pgprot(pte_t pte)347 static inline pgprot_t pte_pgprot(pte_t pte)
348 {
349 	unsigned long pfn = pte_pfn(pte);
350 
351 	return __pgprot(pte_val(pfn_pte(pfn, __pgprot(0))) ^ pte_val(pte));
352 }
353 
pte_present(pte_t pte)354 static inline int pte_present(pte_t pte)
355 {
356 	return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
357 }
358 
359 #define pte_accessible pte_accessible
pte_accessible(struct mm_struct * mm,pte_t a)360 static inline unsigned long pte_accessible(struct mm_struct *mm, pte_t a)
361 {
362 	if (pte_val(a) & _PAGE_PRESENT)
363 		return true;
364 
365 	if ((pte_val(a) & _PAGE_PROT_NONE) &&
366 	    atomic_read(&mm->tlb_flush_pending))
367 		return true;
368 
369 	return false;
370 }
371 
pte_none(pte_t pte)372 static inline int pte_none(pte_t pte)
373 {
374 	return (pte_val(pte) == 0);
375 }
376 
pte_write(pte_t pte)377 static inline int pte_write(pte_t pte)
378 {
379 	return pte_val(pte) & _PAGE_WRITE;
380 }
381 
pte_exec(pte_t pte)382 static inline int pte_exec(pte_t pte)
383 {
384 	return pte_val(pte) & _PAGE_EXEC;
385 }
386 
pte_user(pte_t pte)387 static inline int pte_user(pte_t pte)
388 {
389 	return pte_val(pte) & _PAGE_USER;
390 }
391 
pte_huge(pte_t pte)392 static inline int pte_huge(pte_t pte)
393 {
394 	return pte_present(pte) && (pte_val(pte) & _PAGE_LEAF);
395 }
396 
pte_dirty(pte_t pte)397 static inline int pte_dirty(pte_t pte)
398 {
399 	return pte_val(pte) & _PAGE_DIRTY;
400 }
401 
pte_young(pte_t pte)402 static inline int pte_young(pte_t pte)
403 {
404 	return pte_val(pte) & _PAGE_ACCESSED;
405 }
406 
pte_special(pte_t pte)407 static inline int pte_special(pte_t pte)
408 {
409 	return pte_val(pte) & _PAGE_SPECIAL;
410 }
411 
412 /* static inline pte_t pte_rdprotect(pte_t pte) */
413 
pte_wrprotect(pte_t pte)414 static inline pte_t pte_wrprotect(pte_t pte)
415 {
416 	return __pte(pte_val(pte) & ~(_PAGE_WRITE));
417 }
418 
419 /* static inline pte_t pte_mkread(pte_t pte) */
420 
pte_mkwrite_novma(pte_t pte)421 static inline pte_t pte_mkwrite_novma(pte_t pte)
422 {
423 	return __pte(pte_val(pte) | _PAGE_WRITE);
424 }
425 
426 /* static inline pte_t pte_mkexec(pte_t pte) */
427 
pte_mkdirty(pte_t pte)428 static inline pte_t pte_mkdirty(pte_t pte)
429 {
430 	return __pte(pte_val(pte) | _PAGE_DIRTY);
431 }
432 
pte_mkclean(pte_t pte)433 static inline pte_t pte_mkclean(pte_t pte)
434 {
435 	return __pte(pte_val(pte) & ~(_PAGE_DIRTY));
436 }
437 
pte_mkyoung(pte_t pte)438 static inline pte_t pte_mkyoung(pte_t pte)
439 {
440 	return __pte(pte_val(pte) | _PAGE_ACCESSED);
441 }
442 
pte_mkold(pte_t pte)443 static inline pte_t pte_mkold(pte_t pte)
444 {
445 	return __pte(pte_val(pte) & ~(_PAGE_ACCESSED));
446 }
447 
pte_mkspecial(pte_t pte)448 static inline pte_t pte_mkspecial(pte_t pte)
449 {
450 	return __pte(pte_val(pte) | _PAGE_SPECIAL);
451 }
452 
pte_mkhuge(pte_t pte)453 static inline pte_t pte_mkhuge(pte_t pte)
454 {
455 	return pte;
456 }
457 
458 #ifdef CONFIG_RISCV_ISA_SVNAPOT
459 #define pte_leaf_size(pte)	(pte_napot(pte) ?				\
460 					napot_cont_size(napot_cont_order(pte)) :\
461 					PAGE_SIZE)
462 #endif
463 
464 #ifdef CONFIG_NUMA_BALANCING
465 /*
466  * See the comment in include/asm-generic/pgtable.h
467  */
pte_protnone(pte_t pte)468 static inline int pte_protnone(pte_t pte)
469 {
470 	return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE)) == _PAGE_PROT_NONE;
471 }
472 
pmd_protnone(pmd_t pmd)473 static inline int pmd_protnone(pmd_t pmd)
474 {
475 	return pte_protnone(pmd_pte(pmd));
476 }
477 #endif
478 
479 /* Modify page protection bits */
pte_modify(pte_t pte,pgprot_t newprot)480 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
481 {
482 	unsigned long newprot_val = pgprot_val(newprot);
483 
484 	ALT_THEAD_PMA(newprot_val);
485 
486 	return __pte((pte_val(pte) & _PAGE_CHG_MASK) | newprot_val);
487 }
488 
489 #define pgd_ERROR(e) \
490 	pr_err("%s:%d: bad pgd " PTE_FMT ".\n", __FILE__, __LINE__, pgd_val(e))
491 
492 
493 /* Commit new configuration to MMU hardware */
update_mmu_cache_range(struct vm_fault * vmf,struct vm_area_struct * vma,unsigned long address,pte_t * ptep,unsigned int nr)494 static inline void update_mmu_cache_range(struct vm_fault *vmf,
495 		struct vm_area_struct *vma, unsigned long address,
496 		pte_t *ptep, unsigned int nr)
497 {
498 	asm goto(ALTERNATIVE("nop", "j %l[svvptc]", 0, RISCV_ISA_EXT_SVVPTC, 1)
499 		 : : : : svvptc);
500 
501 	/*
502 	 * The kernel assumes that TLBs don't cache invalid entries, but
503 	 * in RISC-V, SFENCE.VMA specifies an ordering constraint, not a
504 	 * cache flush; it is necessary even after writing invalid entries.
505 	 * Relying on flush_tlb_fix_spurious_fault would suffice, but
506 	 * the extra traps reduce performance.  So, eagerly SFENCE.VMA.
507 	 */
508 	while (nr--)
509 		local_flush_tlb_page(address + nr * PAGE_SIZE);
510 
511 svvptc:;
512 	/*
513 	 * Svvptc guarantees that the new valid pte will be visible within
514 	 * a bounded timeframe, so when the uarch does not cache invalid
515 	 * entries, we don't have to do anything.
516 	 */
517 }
518 #define update_mmu_cache(vma, addr, ptep) \
519 	update_mmu_cache_range(NULL, vma, addr, ptep, 1)
520 
521 #define update_mmu_tlb_range(vma, addr, ptep, nr) \
522 	update_mmu_cache_range(NULL, vma, addr, ptep, nr)
523 
update_mmu_cache_pmd(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)524 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
525 		unsigned long address, pmd_t *pmdp)
526 {
527 	pte_t *ptep = (pte_t *)pmdp;
528 
529 	update_mmu_cache(vma, address, ptep);
530 }
531 
532 #define __HAVE_ARCH_PTE_SAME
pte_same(pte_t pte_a,pte_t pte_b)533 static inline int pte_same(pte_t pte_a, pte_t pte_b)
534 {
535 	return pte_val(pte_a) == pte_val(pte_b);
536 }
537 
538 /*
539  * Certain architectures need to do special things when PTEs within
540  * a page table are directly modified.  Thus, the following hook is
541  * made available.
542  */
set_pte(pte_t * ptep,pte_t pteval)543 static inline void set_pte(pte_t *ptep, pte_t pteval)
544 {
545 	WRITE_ONCE(*ptep, pteval);
546 }
547 
548 void flush_icache_pte(struct mm_struct *mm, pte_t pte);
549 
__set_pte_at(struct mm_struct * mm,pte_t * ptep,pte_t pteval)550 static inline void __set_pte_at(struct mm_struct *mm, pte_t *ptep, pte_t pteval)
551 {
552 	if (pte_present(pteval) && pte_exec(pteval))
553 		flush_icache_pte(mm, pteval);
554 
555 	set_pte(ptep, pteval);
556 }
557 
558 #define PFN_PTE_SHIFT		_PAGE_PFN_SHIFT
559 
set_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pteval,unsigned int nr)560 static inline void set_ptes(struct mm_struct *mm, unsigned long addr,
561 		pte_t *ptep, pte_t pteval, unsigned int nr)
562 {
563 	page_table_check_ptes_set(mm, ptep, pteval, nr);
564 
565 	for (;;) {
566 		__set_pte_at(mm, ptep, pteval);
567 		if (--nr == 0)
568 			break;
569 		ptep++;
570 		pte_val(pteval) += 1 << _PAGE_PFN_SHIFT;
571 	}
572 }
573 #define set_ptes set_ptes
574 
pte_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)575 static inline void pte_clear(struct mm_struct *mm,
576 	unsigned long addr, pte_t *ptep)
577 {
578 	__set_pte_at(mm, ptep, __pte(0));
579 }
580 
581 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS	/* defined in mm/pgtable.c */
582 extern int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address,
583 				 pte_t *ptep, pte_t entry, int dirty);
584 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG	/* defined in mm/pgtable.c */
585 extern int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long address,
586 				     pte_t *ptep);
587 
588 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long address,pte_t * ptep)589 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
590 				       unsigned long address, pte_t *ptep)
591 {
592 	pte_t pte = __pte(atomic_long_xchg((atomic_long_t *)ptep, 0));
593 
594 	page_table_check_pte_clear(mm, pte);
595 
596 	return pte;
597 }
598 
599 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
ptep_set_wrprotect(struct mm_struct * mm,unsigned long address,pte_t * ptep)600 static inline void ptep_set_wrprotect(struct mm_struct *mm,
601 				      unsigned long address, pte_t *ptep)
602 {
603 	atomic_long_and(~(unsigned long)_PAGE_WRITE, (atomic_long_t *)ptep);
604 }
605 
606 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
ptep_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)607 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
608 					 unsigned long address, pte_t *ptep)
609 {
610 	/*
611 	 * This comment is borrowed from x86, but applies equally to RISC-V:
612 	 *
613 	 * Clearing the accessed bit without a TLB flush
614 	 * doesn't cause data corruption. [ It could cause incorrect
615 	 * page aging and the (mistaken) reclaim of hot pages, but the
616 	 * chance of that should be relatively low. ]
617 	 *
618 	 * So as a performance optimization don't flush the TLB when
619 	 * clearing the accessed bit, it will eventually be flushed by
620 	 * a context switch or a VM operation anyway. [ In the rare
621 	 * event of it not getting flushed for a long time the delay
622 	 * shouldn't really matter because there's no real memory
623 	 * pressure for swapout to react to. ]
624 	 */
625 	return ptep_test_and_clear_young(vma, address, ptep);
626 }
627 
628 #define pgprot_nx pgprot_nx
pgprot_nx(pgprot_t _prot)629 static inline pgprot_t pgprot_nx(pgprot_t _prot)
630 {
631 	return __pgprot(pgprot_val(_prot) & ~_PAGE_EXEC);
632 }
633 
634 #define pgprot_noncached pgprot_noncached
pgprot_noncached(pgprot_t _prot)635 static inline pgprot_t pgprot_noncached(pgprot_t _prot)
636 {
637 	unsigned long prot = pgprot_val(_prot);
638 
639 	prot &= ~_PAGE_MTMASK;
640 	prot |= _PAGE_IO;
641 
642 	return __pgprot(prot);
643 }
644 
645 #define pgprot_writecombine pgprot_writecombine
pgprot_writecombine(pgprot_t _prot)646 static inline pgprot_t pgprot_writecombine(pgprot_t _prot)
647 {
648 	unsigned long prot = pgprot_val(_prot);
649 
650 	prot &= ~_PAGE_MTMASK;
651 	prot |= _PAGE_NOCACHE;
652 
653 	return __pgprot(prot);
654 }
655 
656 /*
657  * Both Svade and Svadu control the hardware behavior when the PTE A/D bits need to be set. By
658  * default the M-mode firmware enables the hardware updating scheme when only Svadu is present in
659  * DT.
660  */
661 #define arch_has_hw_pte_young arch_has_hw_pte_young
arch_has_hw_pte_young(void)662 static inline bool arch_has_hw_pte_young(void)
663 {
664 	return riscv_has_extension_unlikely(RISCV_ISA_EXT_SVADU);
665 }
666 
667 /*
668  * THP functions
669  */
pte_pmd(pte_t pte)670 static inline pmd_t pte_pmd(pte_t pte)
671 {
672 	return __pmd(pte_val(pte));
673 }
674 
pte_pud(pte_t pte)675 static inline pud_t pte_pud(pte_t pte)
676 {
677 	return __pud(pte_val(pte));
678 }
679 
pmd_mkhuge(pmd_t pmd)680 static inline pmd_t pmd_mkhuge(pmd_t pmd)
681 {
682 	return pmd;
683 }
684 
pmd_mkinvalid(pmd_t pmd)685 static inline pmd_t pmd_mkinvalid(pmd_t pmd)
686 {
687 	return __pmd(pmd_val(pmd) & ~(_PAGE_PRESENT|_PAGE_PROT_NONE));
688 }
689 
690 #define __pmd_to_phys(pmd)  (__page_val_to_pfn(pmd_val(pmd)) << PAGE_SHIFT)
691 
pmd_pfn(pmd_t pmd)692 static inline unsigned long pmd_pfn(pmd_t pmd)
693 {
694 	return ((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT);
695 }
696 
697 #define __pud_to_phys(pud)  (__page_val_to_pfn(pud_val(pud)) << PAGE_SHIFT)
698 
699 #define pud_pfn pud_pfn
pud_pfn(pud_t pud)700 static inline unsigned long pud_pfn(pud_t pud)
701 {
702 	return ((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT);
703 }
704 
705 #define pmd_pgprot pmd_pgprot
pmd_pgprot(pmd_t pmd)706 static inline pgprot_t pmd_pgprot(pmd_t pmd)
707 {
708 	return pte_pgprot(pmd_pte(pmd));
709 }
710 
711 #define pud_pgprot pud_pgprot
pud_pgprot(pud_t pud)712 static inline pgprot_t pud_pgprot(pud_t pud)
713 {
714 	return pte_pgprot(pud_pte(pud));
715 }
716 
pmd_modify(pmd_t pmd,pgprot_t newprot)717 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
718 {
719 	return pte_pmd(pte_modify(pmd_pte(pmd), newprot));
720 }
721 
722 #define pmd_write pmd_write
pmd_write(pmd_t pmd)723 static inline int pmd_write(pmd_t pmd)
724 {
725 	return pte_write(pmd_pte(pmd));
726 }
727 
728 #define pud_write pud_write
pud_write(pud_t pud)729 static inline int pud_write(pud_t pud)
730 {
731 	return pte_write(pud_pte(pud));
732 }
733 
734 #define pmd_dirty pmd_dirty
pmd_dirty(pmd_t pmd)735 static inline int pmd_dirty(pmd_t pmd)
736 {
737 	return pte_dirty(pmd_pte(pmd));
738 }
739 
740 #define pmd_young pmd_young
pmd_young(pmd_t pmd)741 static inline int pmd_young(pmd_t pmd)
742 {
743 	return pte_young(pmd_pte(pmd));
744 }
745 
pmd_user(pmd_t pmd)746 static inline int pmd_user(pmd_t pmd)
747 {
748 	return pte_user(pmd_pte(pmd));
749 }
750 
pmd_mkold(pmd_t pmd)751 static inline pmd_t pmd_mkold(pmd_t pmd)
752 {
753 	return pte_pmd(pte_mkold(pmd_pte(pmd)));
754 }
755 
pmd_mkyoung(pmd_t pmd)756 static inline pmd_t pmd_mkyoung(pmd_t pmd)
757 {
758 	return pte_pmd(pte_mkyoung(pmd_pte(pmd)));
759 }
760 
pmd_mkwrite_novma(pmd_t pmd)761 static inline pmd_t pmd_mkwrite_novma(pmd_t pmd)
762 {
763 	return pte_pmd(pte_mkwrite_novma(pmd_pte(pmd)));
764 }
765 
pmd_wrprotect(pmd_t pmd)766 static inline pmd_t pmd_wrprotect(pmd_t pmd)
767 {
768 	return pte_pmd(pte_wrprotect(pmd_pte(pmd)));
769 }
770 
pmd_mkclean(pmd_t pmd)771 static inline pmd_t pmd_mkclean(pmd_t pmd)
772 {
773 	return pte_pmd(pte_mkclean(pmd_pte(pmd)));
774 }
775 
pmd_mkdirty(pmd_t pmd)776 static inline pmd_t pmd_mkdirty(pmd_t pmd)
777 {
778 	return pte_pmd(pte_mkdirty(pmd_pte(pmd)));
779 }
780 
781 #ifdef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP
pmd_special(pmd_t pmd)782 static inline bool pmd_special(pmd_t pmd)
783 {
784 	return pte_special(pmd_pte(pmd));
785 }
786 
pmd_mkspecial(pmd_t pmd)787 static inline pmd_t pmd_mkspecial(pmd_t pmd)
788 {
789 	return pte_pmd(pte_mkspecial(pmd_pte(pmd)));
790 }
791 #endif
792 
793 #ifdef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP
pud_special(pud_t pud)794 static inline bool pud_special(pud_t pud)
795 {
796 	return pte_special(pud_pte(pud));
797 }
798 
pud_mkspecial(pud_t pud)799 static inline pud_t pud_mkspecial(pud_t pud)
800 {
801 	return pte_pud(pte_mkspecial(pud_pte(pud)));
802 }
803 #endif
804 
set_pmd_at(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,pmd_t pmd)805 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
806 				pmd_t *pmdp, pmd_t pmd)
807 {
808 	page_table_check_pmd_set(mm, pmdp, pmd);
809 	return __set_pte_at(mm, (pte_t *)pmdp, pmd_pte(pmd));
810 }
811 
set_pud_at(struct mm_struct * mm,unsigned long addr,pud_t * pudp,pud_t pud)812 static inline void set_pud_at(struct mm_struct *mm, unsigned long addr,
813 				pud_t *pudp, pud_t pud)
814 {
815 	page_table_check_pud_set(mm, pudp, pud);
816 	return __set_pte_at(mm, (pte_t *)pudp, pud_pte(pud));
817 }
818 
819 #ifdef CONFIG_PAGE_TABLE_CHECK
pte_user_accessible_page(pte_t pte)820 static inline bool pte_user_accessible_page(pte_t pte)
821 {
822 	return pte_present(pte) && pte_user(pte);
823 }
824 
pmd_user_accessible_page(pmd_t pmd)825 static inline bool pmd_user_accessible_page(pmd_t pmd)
826 {
827 	return pmd_leaf(pmd) && pmd_user(pmd);
828 }
829 
pud_user_accessible_page(pud_t pud)830 static inline bool pud_user_accessible_page(pud_t pud)
831 {
832 	return pud_leaf(pud) && pud_user(pud);
833 }
834 #endif
835 
836 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmd_trans_huge(pmd_t pmd)837 static inline int pmd_trans_huge(pmd_t pmd)
838 {
839 	return pmd_leaf(pmd);
840 }
841 
842 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
pmdp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t entry,int dirty)843 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
844 					unsigned long address, pmd_t *pmdp,
845 					pmd_t entry, int dirty)
846 {
847 	return ptep_set_access_flags(vma, address, (pte_t *)pmdp, pmd_pte(entry), dirty);
848 }
849 
850 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)851 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
852 					unsigned long address, pmd_t *pmdp)
853 {
854 	return ptep_test_and_clear_young(vma, address, (pte_t *)pmdp);
855 }
856 
857 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)858 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
859 					unsigned long address, pmd_t *pmdp)
860 {
861 	pmd_t pmd = __pmd(atomic_long_xchg((atomic_long_t *)pmdp, 0));
862 
863 	page_table_check_pmd_clear(mm, pmd);
864 
865 	return pmd;
866 }
867 
868 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)869 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
870 					unsigned long address, pmd_t *pmdp)
871 {
872 	ptep_set_wrprotect(mm, address, (pte_t *)pmdp);
873 }
874 
875 #define pmdp_establish pmdp_establish
pmdp_establish(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t pmd)876 static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
877 				unsigned long address, pmd_t *pmdp, pmd_t pmd)
878 {
879 	page_table_check_pmd_set(vma->vm_mm, pmdp, pmd);
880 	return __pmd(atomic_long_xchg((atomic_long_t *)pmdp, pmd_val(pmd)));
881 }
882 
883 #define pmdp_collapse_flush pmdp_collapse_flush
884 extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
885 				 unsigned long address, pmd_t *pmdp);
886 
pud_wrprotect(pud_t pud)887 static inline pud_t pud_wrprotect(pud_t pud)
888 {
889 	return pte_pud(pte_wrprotect(pud_pte(pud)));
890 }
891 
pud_trans_huge(pud_t pud)892 static inline int pud_trans_huge(pud_t pud)
893 {
894 	return pud_leaf(pud);
895 }
896 
pud_dirty(pud_t pud)897 static inline int pud_dirty(pud_t pud)
898 {
899 	return pte_dirty(pud_pte(pud));
900 }
901 
pud_mkyoung(pud_t pud)902 static inline pud_t pud_mkyoung(pud_t pud)
903 {
904 	return pte_pud(pte_mkyoung(pud_pte(pud)));
905 }
906 
pud_mkold(pud_t pud)907 static inline pud_t pud_mkold(pud_t pud)
908 {
909 	return pte_pud(pte_mkold(pud_pte(pud)));
910 }
911 
pud_mkdirty(pud_t pud)912 static inline pud_t pud_mkdirty(pud_t pud)
913 {
914 	return pte_pud(pte_mkdirty(pud_pte(pud)));
915 }
916 
pud_mkclean(pud_t pud)917 static inline pud_t pud_mkclean(pud_t pud)
918 {
919 	return pte_pud(pte_mkclean(pud_pte(pud)));
920 }
921 
pud_mkwrite(pud_t pud)922 static inline pud_t pud_mkwrite(pud_t pud)
923 {
924 	return pte_pud(pte_mkwrite_novma(pud_pte(pud)));
925 }
926 
pud_mkhuge(pud_t pud)927 static inline pud_t pud_mkhuge(pud_t pud)
928 {
929 	return pud;
930 }
931 
pudp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pud_t * pudp,pud_t entry,int dirty)932 static inline int pudp_set_access_flags(struct vm_area_struct *vma,
933 					unsigned long address, pud_t *pudp,
934 					pud_t entry, int dirty)
935 {
936 	return ptep_set_access_flags(vma, address, (pte_t *)pudp, pud_pte(entry), dirty);
937 }
938 
pudp_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pud_t * pudp)939 static inline int pudp_test_and_clear_young(struct vm_area_struct *vma,
940 					    unsigned long address, pud_t *pudp)
941 {
942 	return ptep_test_and_clear_young(vma, address, (pte_t *)pudp);
943 }
944 
pud_young(pud_t pud)945 static inline int pud_young(pud_t pud)
946 {
947 	return pte_young(pud_pte(pud));
948 }
949 
update_mmu_cache_pud(struct vm_area_struct * vma,unsigned long address,pud_t * pudp)950 static inline void update_mmu_cache_pud(struct vm_area_struct *vma,
951 					unsigned long address, pud_t *pudp)
952 {
953 	pte_t *ptep = (pte_t *)pudp;
954 
955 	update_mmu_cache(vma, address, ptep);
956 }
957 
pudp_establish(struct vm_area_struct * vma,unsigned long address,pud_t * pudp,pud_t pud)958 static inline pud_t pudp_establish(struct vm_area_struct *vma,
959 				   unsigned long address, pud_t *pudp, pud_t pud)
960 {
961 	page_table_check_pud_set(vma->vm_mm, pudp, pud);
962 	return __pud(atomic_long_xchg((atomic_long_t *)pudp, pud_val(pud)));
963 }
964 
pud_mkinvalid(pud_t pud)965 static inline pud_t pud_mkinvalid(pud_t pud)
966 {
967 	return __pud(pud_val(pud) & ~(_PAGE_PRESENT | _PAGE_PROT_NONE));
968 }
969 
970 extern pud_t pudp_invalidate(struct vm_area_struct *vma, unsigned long address,
971 			     pud_t *pudp);
972 
pud_modify(pud_t pud,pgprot_t newprot)973 static inline pud_t pud_modify(pud_t pud, pgprot_t newprot)
974 {
975 	return pte_pud(pte_modify(pud_pte(pud), newprot));
976 }
977 
978 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
979 
980 /*
981  * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that
982  * are !pte_none() && !pte_present().
983  *
984  * Format of swap PTE:
985  *	bit            0:	_PAGE_PRESENT (zero)
986  *	bit       1 to 3:       _PAGE_LEAF (zero)
987  *	bit            5:	_PAGE_PROT_NONE (zero)
988  *	bit            6:	exclusive marker
989  *	bits      7 to 11:	swap type
990  *	bits 12 to XLEN-1:	swap offset
991  */
992 #define __SWP_TYPE_SHIFT	7
993 #define __SWP_TYPE_BITS		5
994 #define __SWP_TYPE_MASK		((1UL << __SWP_TYPE_BITS) - 1)
995 #define __SWP_OFFSET_SHIFT	(__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
996 
997 #define MAX_SWAPFILES_CHECK()	\
998 	BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
999 
1000 #define __swp_type(x)	(((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
1001 #define __swp_offset(x)	((x).val >> __SWP_OFFSET_SHIFT)
1002 #define __swp_entry(type, offset) ((swp_entry_t) \
1003 	{ (((type) & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT) | \
1004 	  ((offset) << __SWP_OFFSET_SHIFT) })
1005 
1006 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
1007 #define __swp_entry_to_pte(x)	((pte_t) { (x).val })
1008 
pte_swp_exclusive(pte_t pte)1009 static inline bool pte_swp_exclusive(pte_t pte)
1010 {
1011 	return pte_val(pte) & _PAGE_SWP_EXCLUSIVE;
1012 }
1013 
pte_swp_mkexclusive(pte_t pte)1014 static inline pte_t pte_swp_mkexclusive(pte_t pte)
1015 {
1016 	return __pte(pte_val(pte) | _PAGE_SWP_EXCLUSIVE);
1017 }
1018 
pte_swp_clear_exclusive(pte_t pte)1019 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
1020 {
1021 	return __pte(pte_val(pte) & ~_PAGE_SWP_EXCLUSIVE);
1022 }
1023 
1024 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1025 #define __pmd_to_swp_entry(pmd) ((swp_entry_t) { pmd_val(pmd) })
1026 #define __swp_entry_to_pmd(swp) __pmd((swp).val)
1027 #endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
1028 
1029 /*
1030  * In the RV64 Linux scheme, we give the user half of the virtual-address space
1031  * and give the kernel the other (upper) half.
1032  */
1033 #ifdef CONFIG_64BIT
1034 #define KERN_VIRT_START	(-(BIT(VA_BITS)) + TASK_SIZE)
1035 #else
1036 #define KERN_VIRT_START	FIXADDR_START
1037 #endif
1038 
1039 /*
1040  * Task size is 0x4000000000 for RV64 or 0x9fc00000 for RV32.
1041  * Note that PGDIR_SIZE must evenly divide TASK_SIZE.
1042  * Task size is:
1043  * -        0x9fc00000	(~2.5GB) for RV32.
1044  * -      0x4000000000	( 256GB) for RV64 using SV39 mmu
1045  * -    0x800000000000	( 128TB) for RV64 using SV48 mmu
1046  * - 0x100000000000000	(  64PB) for RV64 using SV57 mmu
1047  *
1048  * Note that PGDIR_SIZE must evenly divide TASK_SIZE since "RISC-V
1049  * Instruction Set Manual Volume II: Privileged Architecture" states that
1050  * "load and store effective addresses, which are 64bits, must have bits
1051  * 63–48 all equal to bit 47, or else a page-fault exception will occur."
1052  * Similarly for SV57, bits 63–57 must be equal to bit 56.
1053  */
1054 #ifdef CONFIG_64BIT
1055 #define TASK_SIZE_64	(PGDIR_SIZE * PTRS_PER_PGD / 2)
1056 
1057 #ifdef CONFIG_COMPAT
1058 #define TASK_SIZE_32	(_AC(0x80000000, UL) - PAGE_SIZE)
1059 #define TASK_SIZE	(is_compat_task() ? \
1060 			 TASK_SIZE_32 : TASK_SIZE_64)
1061 #else
1062 #define TASK_SIZE	TASK_SIZE_64
1063 #endif
1064 
1065 #else
1066 #define TASK_SIZE	FIXADDR_START
1067 #endif
1068 
1069 #else /* CONFIG_MMU */
1070 
1071 #define PAGE_SHARED		__pgprot(0)
1072 #define PAGE_KERNEL		__pgprot(0)
1073 #define swapper_pg_dir		NULL
1074 #define TASK_SIZE		_AC(-1, UL)
1075 #define VMALLOC_START		_AC(0, UL)
1076 #define VMALLOC_END		TASK_SIZE
1077 
1078 #endif /* !CONFIG_MMU */
1079 
1080 extern char _start[];
1081 extern void *_dtb_early_va;
1082 extern uintptr_t _dtb_early_pa;
1083 #if defined(CONFIG_XIP_KERNEL) && defined(CONFIG_MMU)
1084 #define dtb_early_va	(*(void **)XIP_FIXUP(&_dtb_early_va))
1085 #define dtb_early_pa	(*(uintptr_t *)XIP_FIXUP(&_dtb_early_pa))
1086 #else
1087 #define dtb_early_va	_dtb_early_va
1088 #define dtb_early_pa	_dtb_early_pa
1089 #endif /* CONFIG_XIP_KERNEL */
1090 extern u64 satp_mode;
1091 
1092 void paging_init(void);
1093 void misc_mem_init(void);
1094 
1095 /*
1096  * ZERO_PAGE is a global shared page that is always zero,
1097  * used for zero-mapped memory areas, etc.
1098  */
1099 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
1100 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
1101 
1102 /*
1103  * Use set_p*_safe(), and elide TLB flushing, when confident that *no*
1104  * TLB flush will be required as a result of the "set". For example, use
1105  * in scenarios where it is known ahead of time that the routine is
1106  * setting non-present entries, or re-setting an existing entry to the
1107  * same value. Otherwise, use the typical "set" helpers and flush the
1108  * TLB.
1109  */
1110 #define set_p4d_safe(p4dp, p4d) \
1111 ({ \
1112 	WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \
1113 	set_p4d(p4dp, p4d); \
1114 })
1115 
1116 #define set_pgd_safe(pgdp, pgd) \
1117 ({ \
1118 	WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \
1119 	set_pgd(pgdp, pgd); \
1120 })
1121 #endif /* !__ASSEMBLY__ */
1122 
1123 #endif /* _ASM_RISCV_PGTABLE_H */
1124