1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * Copyright (C) 2012 Regents of the University of California
4 */
5
6 #ifndef _ASM_RISCV_PGTABLE_H
7 #define _ASM_RISCV_PGTABLE_H
8
9 #include <linux/mmzone.h>
10 #include <linux/sizes.h>
11
12 #include <asm/pgtable-bits.h>
13
14 #ifndef CONFIG_MMU
15 #ifdef CONFIG_RELOCATABLE
16 #define KERNEL_LINK_ADDR UL(0)
17 #else
18 #define KERNEL_LINK_ADDR _AC(CONFIG_PHYS_RAM_BASE, UL)
19 #endif
20 #define KERN_VIRT_SIZE (UL(-1))
21 #else
22
23 #define ADDRESS_SPACE_END (UL(-1))
24
25 #ifdef CONFIG_64BIT
26 /* Leave 2GB for kernel and BPF at the end of the address space */
27 #define KERNEL_LINK_ADDR (ADDRESS_SPACE_END - SZ_2G + 1)
28 #else
29 #define KERNEL_LINK_ADDR PAGE_OFFSET
30 #endif
31
32 /* Number of entries in the page global directory */
33 #define PTRS_PER_PGD (PAGE_SIZE / sizeof(pgd_t))
34 /* Number of entries in the page table */
35 #define PTRS_PER_PTE (PAGE_SIZE / sizeof(pte_t))
36
37 /*
38 * Half of the kernel address space (1/4 of the entries of the page global
39 * directory) is for the direct mapping.
40 */
41 #define KERN_VIRT_SIZE ((PTRS_PER_PGD / 2 * PGDIR_SIZE) / 2)
42
43 #define VMALLOC_SIZE (KERN_VIRT_SIZE >> 1)
44 #define VMALLOC_END PAGE_OFFSET
45 #define VMALLOC_START (PAGE_OFFSET - VMALLOC_SIZE)
46
47 #define BPF_JIT_REGION_SIZE (SZ_128M)
48 #ifdef CONFIG_64BIT
49 #define BPF_JIT_REGION_START (BPF_JIT_REGION_END - BPF_JIT_REGION_SIZE)
50 #define BPF_JIT_REGION_END (MODULES_END)
51 #else
52 #define BPF_JIT_REGION_START (PAGE_OFFSET - BPF_JIT_REGION_SIZE)
53 #define BPF_JIT_REGION_END (VMALLOC_END)
54 #endif
55
56 /* Modules always live before the kernel */
57 #ifdef CONFIG_64BIT
58 /* This is used to define the end of the KASAN shadow region */
59 #define MODULES_LOWEST_VADDR (KERNEL_LINK_ADDR - SZ_2G)
60 #define MODULES_VADDR (PFN_ALIGN((unsigned long)&_end) - SZ_2G)
61 #define MODULES_END (PFN_ALIGN((unsigned long)&_start))
62 #else
63 #define MODULES_VADDR VMALLOC_START
64 #define MODULES_END VMALLOC_END
65 #endif
66
67 /*
68 * Roughly size the vmemmap space to be large enough to fit enough
69 * struct pages to map half the virtual address space. Then
70 * position vmemmap directly below the VMALLOC region.
71 */
72 #define VA_BITS_SV32 32
73 #ifdef CONFIG_64BIT
74 #define VA_BITS_SV39 39
75 #define VA_BITS_SV48 48
76 #define VA_BITS_SV57 57
77
78 #define VA_BITS (pgtable_l5_enabled ? \
79 VA_BITS_SV57 : (pgtable_l4_enabled ? VA_BITS_SV48 : VA_BITS_SV39))
80 #else
81 #define VA_BITS VA_BITS_SV32
82 #endif
83
84 #define VMEMMAP_SHIFT \
85 (VA_BITS - PAGE_SHIFT - 1 + STRUCT_PAGE_MAX_SHIFT)
86 #define VMEMMAP_SIZE BIT(VMEMMAP_SHIFT)
87 #define VMEMMAP_END VMALLOC_START
88 #define VMEMMAP_START (VMALLOC_START - VMEMMAP_SIZE)
89
90 /*
91 * Define vmemmap for pfn_to_page & page_to_pfn calls. Needed if kernel
92 * is configured with CONFIG_SPARSEMEM_VMEMMAP enabled.
93 */
94 #define vmemmap ((struct page *)VMEMMAP_START - vmemmap_start_pfn)
95
96 #define PCI_IO_SIZE SZ_16M
97 #define PCI_IO_END VMEMMAP_START
98 #define PCI_IO_START (PCI_IO_END - PCI_IO_SIZE)
99
100 #define FIXADDR_TOP PCI_IO_START
101 #ifdef CONFIG_64BIT
102 #define MAX_FDT_SIZE PMD_SIZE
103 #define FIX_FDT_SIZE (MAX_FDT_SIZE + SZ_2M)
104 #define FIXADDR_SIZE (PMD_SIZE + FIX_FDT_SIZE)
105 #else
106 #define MAX_FDT_SIZE PGDIR_SIZE
107 #define FIX_FDT_SIZE MAX_FDT_SIZE
108 #define FIXADDR_SIZE (PGDIR_SIZE + FIX_FDT_SIZE)
109 #endif
110 #define FIXADDR_START (FIXADDR_TOP - FIXADDR_SIZE)
111
112 #endif
113
114 #ifndef __ASSEMBLY__
115
116 #include <asm/page.h>
117 #include <asm/tlbflush.h>
118 #include <linux/mm_types.h>
119 #include <asm/compat.h>
120 #include <asm/cpufeature.h>
121
122 #define __page_val_to_pfn(_val) (((_val) & _PAGE_PFN_MASK) >> _PAGE_PFN_SHIFT)
123
124 #ifdef CONFIG_64BIT
125 #include <asm/pgtable-64.h>
126
127 #define VA_USER_SV39 (UL(1) << (VA_BITS_SV39 - 1))
128 #define VA_USER_SV48 (UL(1) << (VA_BITS_SV48 - 1))
129 #define VA_USER_SV57 (UL(1) << (VA_BITS_SV57 - 1))
130
131 #define MMAP_VA_BITS_64 ((VA_BITS >= VA_BITS_SV48) ? VA_BITS_SV48 : VA_BITS)
132 #define MMAP_MIN_VA_BITS_64 (VA_BITS_SV39)
133 #define MMAP_VA_BITS (is_compat_task() ? VA_BITS_SV32 : MMAP_VA_BITS_64)
134 #define MMAP_MIN_VA_BITS (is_compat_task() ? VA_BITS_SV32 : MMAP_MIN_VA_BITS_64)
135 #else
136 #include <asm/pgtable-32.h>
137 #endif /* CONFIG_64BIT */
138
139 #include <linux/page_table_check.h>
140
141 #ifdef CONFIG_XIP_KERNEL
142 #define XIP_FIXUP(addr) ({ \
143 extern char _sdata[], _start[], _end[]; \
144 uintptr_t __rom_start_data = CONFIG_XIP_PHYS_ADDR \
145 + (uintptr_t)&_sdata - (uintptr_t)&_start; \
146 uintptr_t __rom_end_data = CONFIG_XIP_PHYS_ADDR \
147 + (uintptr_t)&_end - (uintptr_t)&_start; \
148 uintptr_t __a = (uintptr_t)(addr); \
149 (__a >= __rom_start_data && __a < __rom_end_data) ? \
150 __a - __rom_start_data + CONFIG_PHYS_RAM_BASE : __a; \
151 })
152 #else
153 #define XIP_FIXUP(addr) (addr)
154 #endif /* CONFIG_XIP_KERNEL */
155
156 struct pt_alloc_ops {
157 pte_t *(*get_pte_virt)(phys_addr_t pa);
158 phys_addr_t (*alloc_pte)(uintptr_t va);
159 #ifndef __PAGETABLE_PMD_FOLDED
160 pmd_t *(*get_pmd_virt)(phys_addr_t pa);
161 phys_addr_t (*alloc_pmd)(uintptr_t va);
162 pud_t *(*get_pud_virt)(phys_addr_t pa);
163 phys_addr_t (*alloc_pud)(uintptr_t va);
164 p4d_t *(*get_p4d_virt)(phys_addr_t pa);
165 phys_addr_t (*alloc_p4d)(uintptr_t va);
166 #endif
167 };
168
169 extern struct pt_alloc_ops pt_ops __meminitdata;
170
171 #ifdef CONFIG_MMU
172 /* Number of PGD entries that a user-mode program can use */
173 #define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
174
175 /* Page protection bits */
176 #define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_USER)
177
178 #define PAGE_NONE __pgprot(_PAGE_PROT_NONE | _PAGE_READ)
179 #define PAGE_READ __pgprot(_PAGE_BASE | _PAGE_READ)
180 #define PAGE_WRITE __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_WRITE)
181 #define PAGE_EXEC __pgprot(_PAGE_BASE | _PAGE_EXEC)
182 #define PAGE_READ_EXEC __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
183 #define PAGE_WRITE_EXEC __pgprot(_PAGE_BASE | _PAGE_READ | \
184 _PAGE_EXEC | _PAGE_WRITE)
185
186 #define PAGE_COPY PAGE_READ
187 #define PAGE_COPY_EXEC PAGE_READ_EXEC
188 #define PAGE_SHARED PAGE_WRITE
189 #define PAGE_SHARED_EXEC PAGE_WRITE_EXEC
190
191 #define _PAGE_KERNEL (_PAGE_READ \
192 | _PAGE_WRITE \
193 | _PAGE_PRESENT \
194 | _PAGE_ACCESSED \
195 | _PAGE_DIRTY \
196 | _PAGE_GLOBAL)
197
198 #define PAGE_KERNEL __pgprot(_PAGE_KERNEL)
199 #define PAGE_KERNEL_READ __pgprot(_PAGE_KERNEL & ~_PAGE_WRITE)
200 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_KERNEL | _PAGE_EXEC)
201 #define PAGE_KERNEL_READ_EXEC __pgprot((_PAGE_KERNEL & ~_PAGE_WRITE) \
202 | _PAGE_EXEC)
203
204 #define PAGE_TABLE __pgprot(_PAGE_TABLE)
205
206 #define _PAGE_IOREMAP ((_PAGE_KERNEL & ~_PAGE_MTMASK) | _PAGE_IO)
207 #define PAGE_KERNEL_IO __pgprot(_PAGE_IOREMAP)
208
209 extern pgd_t swapper_pg_dir[];
210 extern pgd_t trampoline_pg_dir[];
211 extern pgd_t early_pg_dir[];
212
213 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmd_present(pmd_t pmd)214 static inline int pmd_present(pmd_t pmd)
215 {
216 /*
217 * Checking for _PAGE_LEAF is needed too because:
218 * When splitting a THP, split_huge_page() will temporarily clear
219 * the present bit, in this situation, pmd_present() and
220 * pmd_trans_huge() still needs to return true.
221 */
222 return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE | _PAGE_LEAF));
223 }
224 #else
pmd_present(pmd_t pmd)225 static inline int pmd_present(pmd_t pmd)
226 {
227 return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
228 }
229 #endif
230
pmd_none(pmd_t pmd)231 static inline int pmd_none(pmd_t pmd)
232 {
233 return (pmd_val(pmd) == 0);
234 }
235
pmd_bad(pmd_t pmd)236 static inline int pmd_bad(pmd_t pmd)
237 {
238 return !pmd_present(pmd) || (pmd_val(pmd) & _PAGE_LEAF);
239 }
240
241 #define pmd_leaf pmd_leaf
pmd_leaf(pmd_t pmd)242 static inline bool pmd_leaf(pmd_t pmd)
243 {
244 return pmd_present(pmd) && (pmd_val(pmd) & _PAGE_LEAF);
245 }
246
set_pmd(pmd_t * pmdp,pmd_t pmd)247 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
248 {
249 WRITE_ONCE(*pmdp, pmd);
250 }
251
pmd_clear(pmd_t * pmdp)252 static inline void pmd_clear(pmd_t *pmdp)
253 {
254 set_pmd(pmdp, __pmd(0));
255 }
256
pfn_pgd(unsigned long pfn,pgprot_t prot)257 static inline pgd_t pfn_pgd(unsigned long pfn, pgprot_t prot)
258 {
259 unsigned long prot_val = pgprot_val(prot);
260
261 ALT_THEAD_PMA(prot_val);
262
263 return __pgd((pfn << _PAGE_PFN_SHIFT) | prot_val);
264 }
265
_pgd_pfn(pgd_t pgd)266 static inline unsigned long _pgd_pfn(pgd_t pgd)
267 {
268 return __page_val_to_pfn(pgd_val(pgd));
269 }
270
pmd_page(pmd_t pmd)271 static inline struct page *pmd_page(pmd_t pmd)
272 {
273 return pfn_to_page(__page_val_to_pfn(pmd_val(pmd)));
274 }
275
pmd_page_vaddr(pmd_t pmd)276 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
277 {
278 return (unsigned long)pfn_to_virt(__page_val_to_pfn(pmd_val(pmd)));
279 }
280
pmd_pte(pmd_t pmd)281 static inline pte_t pmd_pte(pmd_t pmd)
282 {
283 return __pte(pmd_val(pmd));
284 }
285
pud_pte(pud_t pud)286 static inline pte_t pud_pte(pud_t pud)
287 {
288 return __pte(pud_val(pud));
289 }
290
291 #ifdef CONFIG_RISCV_ISA_SVNAPOT
292
has_svnapot(void)293 static __always_inline bool has_svnapot(void)
294 {
295 return riscv_has_extension_likely(RISCV_ISA_EXT_SVNAPOT);
296 }
297
pte_napot(pte_t pte)298 static inline unsigned long pte_napot(pte_t pte)
299 {
300 return pte_val(pte) & _PAGE_NAPOT;
301 }
302
pte_mknapot(pte_t pte,unsigned int order)303 static inline pte_t pte_mknapot(pte_t pte, unsigned int order)
304 {
305 int pos = order - 1 + _PAGE_PFN_SHIFT;
306 unsigned long napot_bit = BIT(pos);
307 unsigned long napot_mask = ~GENMASK(pos, _PAGE_PFN_SHIFT);
308
309 return __pte((pte_val(pte) & napot_mask) | napot_bit | _PAGE_NAPOT);
310 }
311
312 #else
313
has_svnapot(void)314 static __always_inline bool has_svnapot(void) { return false; }
315
pte_napot(pte_t pte)316 static inline unsigned long pte_napot(pte_t pte)
317 {
318 return 0;
319 }
320
321 #endif /* CONFIG_RISCV_ISA_SVNAPOT */
322
323 /* Yields the page frame number (PFN) of a page table entry */
pte_pfn(pte_t pte)324 static inline unsigned long pte_pfn(pte_t pte)
325 {
326 unsigned long res = __page_val_to_pfn(pte_val(pte));
327
328 if (has_svnapot() && pte_napot(pte))
329 res = res & (res - 1UL);
330
331 return res;
332 }
333
334 #define pte_page(x) pfn_to_page(pte_pfn(x))
335
336 /* Constructs a page table entry */
pfn_pte(unsigned long pfn,pgprot_t prot)337 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot)
338 {
339 unsigned long prot_val = pgprot_val(prot);
340
341 ALT_THEAD_PMA(prot_val);
342
343 return __pte((pfn << _PAGE_PFN_SHIFT) | prot_val);
344 }
345
346 #define pte_pgprot pte_pgprot
pte_pgprot(pte_t pte)347 static inline pgprot_t pte_pgprot(pte_t pte)
348 {
349 unsigned long pfn = pte_pfn(pte);
350
351 return __pgprot(pte_val(pfn_pte(pfn, __pgprot(0))) ^ pte_val(pte));
352 }
353
pte_present(pte_t pte)354 static inline int pte_present(pte_t pte)
355 {
356 return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
357 }
358
359 #define pte_accessible pte_accessible
pte_accessible(struct mm_struct * mm,pte_t a)360 static inline unsigned long pte_accessible(struct mm_struct *mm, pte_t a)
361 {
362 if (pte_val(a) & _PAGE_PRESENT)
363 return true;
364
365 if ((pte_val(a) & _PAGE_PROT_NONE) &&
366 atomic_read(&mm->tlb_flush_pending))
367 return true;
368
369 return false;
370 }
371
pte_none(pte_t pte)372 static inline int pte_none(pte_t pte)
373 {
374 return (pte_val(pte) == 0);
375 }
376
pte_write(pte_t pte)377 static inline int pte_write(pte_t pte)
378 {
379 return pte_val(pte) & _PAGE_WRITE;
380 }
381
pte_exec(pte_t pte)382 static inline int pte_exec(pte_t pte)
383 {
384 return pte_val(pte) & _PAGE_EXEC;
385 }
386
pte_user(pte_t pte)387 static inline int pte_user(pte_t pte)
388 {
389 return pte_val(pte) & _PAGE_USER;
390 }
391
pte_huge(pte_t pte)392 static inline int pte_huge(pte_t pte)
393 {
394 return pte_present(pte) && (pte_val(pte) & _PAGE_LEAF);
395 }
396
pte_dirty(pte_t pte)397 static inline int pte_dirty(pte_t pte)
398 {
399 return pte_val(pte) & _PAGE_DIRTY;
400 }
401
pte_young(pte_t pte)402 static inline int pte_young(pte_t pte)
403 {
404 return pte_val(pte) & _PAGE_ACCESSED;
405 }
406
pte_special(pte_t pte)407 static inline int pte_special(pte_t pte)
408 {
409 return pte_val(pte) & _PAGE_SPECIAL;
410 }
411
412 /* static inline pte_t pte_rdprotect(pte_t pte) */
413
pte_wrprotect(pte_t pte)414 static inline pte_t pte_wrprotect(pte_t pte)
415 {
416 return __pte(pte_val(pte) & ~(_PAGE_WRITE));
417 }
418
419 /* static inline pte_t pte_mkread(pte_t pte) */
420
pte_mkwrite_novma(pte_t pte)421 static inline pte_t pte_mkwrite_novma(pte_t pte)
422 {
423 return __pte(pte_val(pte) | _PAGE_WRITE);
424 }
425
426 /* static inline pte_t pte_mkexec(pte_t pte) */
427
pte_mkdirty(pte_t pte)428 static inline pte_t pte_mkdirty(pte_t pte)
429 {
430 return __pte(pte_val(pte) | _PAGE_DIRTY);
431 }
432
pte_mkclean(pte_t pte)433 static inline pte_t pte_mkclean(pte_t pte)
434 {
435 return __pte(pte_val(pte) & ~(_PAGE_DIRTY));
436 }
437
pte_mkyoung(pte_t pte)438 static inline pte_t pte_mkyoung(pte_t pte)
439 {
440 return __pte(pte_val(pte) | _PAGE_ACCESSED);
441 }
442
pte_mkold(pte_t pte)443 static inline pte_t pte_mkold(pte_t pte)
444 {
445 return __pte(pte_val(pte) & ~(_PAGE_ACCESSED));
446 }
447
pte_mkspecial(pte_t pte)448 static inline pte_t pte_mkspecial(pte_t pte)
449 {
450 return __pte(pte_val(pte) | _PAGE_SPECIAL);
451 }
452
pte_mkhuge(pte_t pte)453 static inline pte_t pte_mkhuge(pte_t pte)
454 {
455 return pte;
456 }
457
458 #ifdef CONFIG_RISCV_ISA_SVNAPOT
459 #define pte_leaf_size(pte) (pte_napot(pte) ? \
460 napot_cont_size(napot_cont_order(pte)) :\
461 PAGE_SIZE)
462 #endif
463
464 #ifdef CONFIG_NUMA_BALANCING
465 /*
466 * See the comment in include/asm-generic/pgtable.h
467 */
pte_protnone(pte_t pte)468 static inline int pte_protnone(pte_t pte)
469 {
470 return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE)) == _PAGE_PROT_NONE;
471 }
472
pmd_protnone(pmd_t pmd)473 static inline int pmd_protnone(pmd_t pmd)
474 {
475 return pte_protnone(pmd_pte(pmd));
476 }
477 #endif
478
479 /* Modify page protection bits */
pte_modify(pte_t pte,pgprot_t newprot)480 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
481 {
482 unsigned long newprot_val = pgprot_val(newprot);
483
484 ALT_THEAD_PMA(newprot_val);
485
486 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | newprot_val);
487 }
488
489 #define pgd_ERROR(e) \
490 pr_err("%s:%d: bad pgd " PTE_FMT ".\n", __FILE__, __LINE__, pgd_val(e))
491
492
493 /* Commit new configuration to MMU hardware */
update_mmu_cache_range(struct vm_fault * vmf,struct vm_area_struct * vma,unsigned long address,pte_t * ptep,unsigned int nr)494 static inline void update_mmu_cache_range(struct vm_fault *vmf,
495 struct vm_area_struct *vma, unsigned long address,
496 pte_t *ptep, unsigned int nr)
497 {
498 asm goto(ALTERNATIVE("nop", "j %l[svvptc]", 0, RISCV_ISA_EXT_SVVPTC, 1)
499 : : : : svvptc);
500
501 /*
502 * The kernel assumes that TLBs don't cache invalid entries, but
503 * in RISC-V, SFENCE.VMA specifies an ordering constraint, not a
504 * cache flush; it is necessary even after writing invalid entries.
505 * Relying on flush_tlb_fix_spurious_fault would suffice, but
506 * the extra traps reduce performance. So, eagerly SFENCE.VMA.
507 */
508 while (nr--)
509 local_flush_tlb_page(address + nr * PAGE_SIZE);
510
511 svvptc:;
512 /*
513 * Svvptc guarantees that the new valid pte will be visible within
514 * a bounded timeframe, so when the uarch does not cache invalid
515 * entries, we don't have to do anything.
516 */
517 }
518 #define update_mmu_cache(vma, addr, ptep) \
519 update_mmu_cache_range(NULL, vma, addr, ptep, 1)
520
521 #define update_mmu_tlb_range(vma, addr, ptep, nr) \
522 update_mmu_cache_range(NULL, vma, addr, ptep, nr)
523
update_mmu_cache_pmd(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)524 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
525 unsigned long address, pmd_t *pmdp)
526 {
527 pte_t *ptep = (pte_t *)pmdp;
528
529 update_mmu_cache(vma, address, ptep);
530 }
531
532 #define __HAVE_ARCH_PTE_SAME
pte_same(pte_t pte_a,pte_t pte_b)533 static inline int pte_same(pte_t pte_a, pte_t pte_b)
534 {
535 return pte_val(pte_a) == pte_val(pte_b);
536 }
537
538 /*
539 * Certain architectures need to do special things when PTEs within
540 * a page table are directly modified. Thus, the following hook is
541 * made available.
542 */
set_pte(pte_t * ptep,pte_t pteval)543 static inline void set_pte(pte_t *ptep, pte_t pteval)
544 {
545 WRITE_ONCE(*ptep, pteval);
546 }
547
548 void flush_icache_pte(struct mm_struct *mm, pte_t pte);
549
__set_pte_at(struct mm_struct * mm,pte_t * ptep,pte_t pteval)550 static inline void __set_pte_at(struct mm_struct *mm, pte_t *ptep, pte_t pteval)
551 {
552 if (pte_present(pteval) && pte_exec(pteval))
553 flush_icache_pte(mm, pteval);
554
555 set_pte(ptep, pteval);
556 }
557
558 #define PFN_PTE_SHIFT _PAGE_PFN_SHIFT
559
set_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pteval,unsigned int nr)560 static inline void set_ptes(struct mm_struct *mm, unsigned long addr,
561 pte_t *ptep, pte_t pteval, unsigned int nr)
562 {
563 page_table_check_ptes_set(mm, ptep, pteval, nr);
564
565 for (;;) {
566 __set_pte_at(mm, ptep, pteval);
567 if (--nr == 0)
568 break;
569 ptep++;
570 pte_val(pteval) += 1 << _PAGE_PFN_SHIFT;
571 }
572 }
573 #define set_ptes set_ptes
574
pte_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)575 static inline void pte_clear(struct mm_struct *mm,
576 unsigned long addr, pte_t *ptep)
577 {
578 __set_pte_at(mm, ptep, __pte(0));
579 }
580
581 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS /* defined in mm/pgtable.c */
582 extern int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address,
583 pte_t *ptep, pte_t entry, int dirty);
584 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG /* defined in mm/pgtable.c */
585 extern int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long address,
586 pte_t *ptep);
587
588 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long address,pte_t * ptep)589 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
590 unsigned long address, pte_t *ptep)
591 {
592 pte_t pte = __pte(atomic_long_xchg((atomic_long_t *)ptep, 0));
593
594 page_table_check_pte_clear(mm, pte);
595
596 return pte;
597 }
598
599 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
ptep_set_wrprotect(struct mm_struct * mm,unsigned long address,pte_t * ptep)600 static inline void ptep_set_wrprotect(struct mm_struct *mm,
601 unsigned long address, pte_t *ptep)
602 {
603 atomic_long_and(~(unsigned long)_PAGE_WRITE, (atomic_long_t *)ptep);
604 }
605
606 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
ptep_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)607 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
608 unsigned long address, pte_t *ptep)
609 {
610 /*
611 * This comment is borrowed from x86, but applies equally to RISC-V:
612 *
613 * Clearing the accessed bit without a TLB flush
614 * doesn't cause data corruption. [ It could cause incorrect
615 * page aging and the (mistaken) reclaim of hot pages, but the
616 * chance of that should be relatively low. ]
617 *
618 * So as a performance optimization don't flush the TLB when
619 * clearing the accessed bit, it will eventually be flushed by
620 * a context switch or a VM operation anyway. [ In the rare
621 * event of it not getting flushed for a long time the delay
622 * shouldn't really matter because there's no real memory
623 * pressure for swapout to react to. ]
624 */
625 return ptep_test_and_clear_young(vma, address, ptep);
626 }
627
628 #define pgprot_nx pgprot_nx
pgprot_nx(pgprot_t _prot)629 static inline pgprot_t pgprot_nx(pgprot_t _prot)
630 {
631 return __pgprot(pgprot_val(_prot) & ~_PAGE_EXEC);
632 }
633
634 #define pgprot_noncached pgprot_noncached
pgprot_noncached(pgprot_t _prot)635 static inline pgprot_t pgprot_noncached(pgprot_t _prot)
636 {
637 unsigned long prot = pgprot_val(_prot);
638
639 prot &= ~_PAGE_MTMASK;
640 prot |= _PAGE_IO;
641
642 return __pgprot(prot);
643 }
644
645 #define pgprot_writecombine pgprot_writecombine
pgprot_writecombine(pgprot_t _prot)646 static inline pgprot_t pgprot_writecombine(pgprot_t _prot)
647 {
648 unsigned long prot = pgprot_val(_prot);
649
650 prot &= ~_PAGE_MTMASK;
651 prot |= _PAGE_NOCACHE;
652
653 return __pgprot(prot);
654 }
655
656 /*
657 * Both Svade and Svadu control the hardware behavior when the PTE A/D bits need to be set. By
658 * default the M-mode firmware enables the hardware updating scheme when only Svadu is present in
659 * DT.
660 */
661 #define arch_has_hw_pte_young arch_has_hw_pte_young
arch_has_hw_pte_young(void)662 static inline bool arch_has_hw_pte_young(void)
663 {
664 return riscv_has_extension_unlikely(RISCV_ISA_EXT_SVADU);
665 }
666
667 /*
668 * THP functions
669 */
pte_pmd(pte_t pte)670 static inline pmd_t pte_pmd(pte_t pte)
671 {
672 return __pmd(pte_val(pte));
673 }
674
pte_pud(pte_t pte)675 static inline pud_t pte_pud(pte_t pte)
676 {
677 return __pud(pte_val(pte));
678 }
679
pmd_mkhuge(pmd_t pmd)680 static inline pmd_t pmd_mkhuge(pmd_t pmd)
681 {
682 return pmd;
683 }
684
pmd_mkinvalid(pmd_t pmd)685 static inline pmd_t pmd_mkinvalid(pmd_t pmd)
686 {
687 return __pmd(pmd_val(pmd) & ~(_PAGE_PRESENT|_PAGE_PROT_NONE));
688 }
689
690 #define __pmd_to_phys(pmd) (__page_val_to_pfn(pmd_val(pmd)) << PAGE_SHIFT)
691
pmd_pfn(pmd_t pmd)692 static inline unsigned long pmd_pfn(pmd_t pmd)
693 {
694 return ((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT);
695 }
696
697 #define __pud_to_phys(pud) (__page_val_to_pfn(pud_val(pud)) << PAGE_SHIFT)
698
699 #define pud_pfn pud_pfn
pud_pfn(pud_t pud)700 static inline unsigned long pud_pfn(pud_t pud)
701 {
702 return ((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT);
703 }
704
705 #define pmd_pgprot pmd_pgprot
pmd_pgprot(pmd_t pmd)706 static inline pgprot_t pmd_pgprot(pmd_t pmd)
707 {
708 return pte_pgprot(pmd_pte(pmd));
709 }
710
711 #define pud_pgprot pud_pgprot
pud_pgprot(pud_t pud)712 static inline pgprot_t pud_pgprot(pud_t pud)
713 {
714 return pte_pgprot(pud_pte(pud));
715 }
716
pmd_modify(pmd_t pmd,pgprot_t newprot)717 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
718 {
719 return pte_pmd(pte_modify(pmd_pte(pmd), newprot));
720 }
721
722 #define pmd_write pmd_write
pmd_write(pmd_t pmd)723 static inline int pmd_write(pmd_t pmd)
724 {
725 return pte_write(pmd_pte(pmd));
726 }
727
728 #define pud_write pud_write
pud_write(pud_t pud)729 static inline int pud_write(pud_t pud)
730 {
731 return pte_write(pud_pte(pud));
732 }
733
734 #define pmd_dirty pmd_dirty
pmd_dirty(pmd_t pmd)735 static inline int pmd_dirty(pmd_t pmd)
736 {
737 return pte_dirty(pmd_pte(pmd));
738 }
739
740 #define pmd_young pmd_young
pmd_young(pmd_t pmd)741 static inline int pmd_young(pmd_t pmd)
742 {
743 return pte_young(pmd_pte(pmd));
744 }
745
pmd_user(pmd_t pmd)746 static inline int pmd_user(pmd_t pmd)
747 {
748 return pte_user(pmd_pte(pmd));
749 }
750
pmd_mkold(pmd_t pmd)751 static inline pmd_t pmd_mkold(pmd_t pmd)
752 {
753 return pte_pmd(pte_mkold(pmd_pte(pmd)));
754 }
755
pmd_mkyoung(pmd_t pmd)756 static inline pmd_t pmd_mkyoung(pmd_t pmd)
757 {
758 return pte_pmd(pte_mkyoung(pmd_pte(pmd)));
759 }
760
pmd_mkwrite_novma(pmd_t pmd)761 static inline pmd_t pmd_mkwrite_novma(pmd_t pmd)
762 {
763 return pte_pmd(pte_mkwrite_novma(pmd_pte(pmd)));
764 }
765
pmd_wrprotect(pmd_t pmd)766 static inline pmd_t pmd_wrprotect(pmd_t pmd)
767 {
768 return pte_pmd(pte_wrprotect(pmd_pte(pmd)));
769 }
770
pmd_mkclean(pmd_t pmd)771 static inline pmd_t pmd_mkclean(pmd_t pmd)
772 {
773 return pte_pmd(pte_mkclean(pmd_pte(pmd)));
774 }
775
pmd_mkdirty(pmd_t pmd)776 static inline pmd_t pmd_mkdirty(pmd_t pmd)
777 {
778 return pte_pmd(pte_mkdirty(pmd_pte(pmd)));
779 }
780
781 #ifdef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP
pmd_special(pmd_t pmd)782 static inline bool pmd_special(pmd_t pmd)
783 {
784 return pte_special(pmd_pte(pmd));
785 }
786
pmd_mkspecial(pmd_t pmd)787 static inline pmd_t pmd_mkspecial(pmd_t pmd)
788 {
789 return pte_pmd(pte_mkspecial(pmd_pte(pmd)));
790 }
791 #endif
792
793 #ifdef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP
pud_special(pud_t pud)794 static inline bool pud_special(pud_t pud)
795 {
796 return pte_special(pud_pte(pud));
797 }
798
pud_mkspecial(pud_t pud)799 static inline pud_t pud_mkspecial(pud_t pud)
800 {
801 return pte_pud(pte_mkspecial(pud_pte(pud)));
802 }
803 #endif
804
set_pmd_at(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,pmd_t pmd)805 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
806 pmd_t *pmdp, pmd_t pmd)
807 {
808 page_table_check_pmd_set(mm, pmdp, pmd);
809 return __set_pte_at(mm, (pte_t *)pmdp, pmd_pte(pmd));
810 }
811
set_pud_at(struct mm_struct * mm,unsigned long addr,pud_t * pudp,pud_t pud)812 static inline void set_pud_at(struct mm_struct *mm, unsigned long addr,
813 pud_t *pudp, pud_t pud)
814 {
815 page_table_check_pud_set(mm, pudp, pud);
816 return __set_pte_at(mm, (pte_t *)pudp, pud_pte(pud));
817 }
818
819 #ifdef CONFIG_PAGE_TABLE_CHECK
pte_user_accessible_page(pte_t pte)820 static inline bool pte_user_accessible_page(pte_t pte)
821 {
822 return pte_present(pte) && pte_user(pte);
823 }
824
pmd_user_accessible_page(pmd_t pmd)825 static inline bool pmd_user_accessible_page(pmd_t pmd)
826 {
827 return pmd_leaf(pmd) && pmd_user(pmd);
828 }
829
pud_user_accessible_page(pud_t pud)830 static inline bool pud_user_accessible_page(pud_t pud)
831 {
832 return pud_leaf(pud) && pud_user(pud);
833 }
834 #endif
835
836 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmd_trans_huge(pmd_t pmd)837 static inline int pmd_trans_huge(pmd_t pmd)
838 {
839 return pmd_leaf(pmd);
840 }
841
842 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
pmdp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t entry,int dirty)843 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
844 unsigned long address, pmd_t *pmdp,
845 pmd_t entry, int dirty)
846 {
847 return ptep_set_access_flags(vma, address, (pte_t *)pmdp, pmd_pte(entry), dirty);
848 }
849
850 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)851 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
852 unsigned long address, pmd_t *pmdp)
853 {
854 return ptep_test_and_clear_young(vma, address, (pte_t *)pmdp);
855 }
856
857 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)858 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
859 unsigned long address, pmd_t *pmdp)
860 {
861 pmd_t pmd = __pmd(atomic_long_xchg((atomic_long_t *)pmdp, 0));
862
863 page_table_check_pmd_clear(mm, pmd);
864
865 return pmd;
866 }
867
868 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)869 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
870 unsigned long address, pmd_t *pmdp)
871 {
872 ptep_set_wrprotect(mm, address, (pte_t *)pmdp);
873 }
874
875 #define pmdp_establish pmdp_establish
pmdp_establish(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t pmd)876 static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
877 unsigned long address, pmd_t *pmdp, pmd_t pmd)
878 {
879 page_table_check_pmd_set(vma->vm_mm, pmdp, pmd);
880 return __pmd(atomic_long_xchg((atomic_long_t *)pmdp, pmd_val(pmd)));
881 }
882
883 #define pmdp_collapse_flush pmdp_collapse_flush
884 extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
885 unsigned long address, pmd_t *pmdp);
886
pud_wrprotect(pud_t pud)887 static inline pud_t pud_wrprotect(pud_t pud)
888 {
889 return pte_pud(pte_wrprotect(pud_pte(pud)));
890 }
891
pud_trans_huge(pud_t pud)892 static inline int pud_trans_huge(pud_t pud)
893 {
894 return pud_leaf(pud);
895 }
896
pud_dirty(pud_t pud)897 static inline int pud_dirty(pud_t pud)
898 {
899 return pte_dirty(pud_pte(pud));
900 }
901
pud_mkyoung(pud_t pud)902 static inline pud_t pud_mkyoung(pud_t pud)
903 {
904 return pte_pud(pte_mkyoung(pud_pte(pud)));
905 }
906
pud_mkold(pud_t pud)907 static inline pud_t pud_mkold(pud_t pud)
908 {
909 return pte_pud(pte_mkold(pud_pte(pud)));
910 }
911
pud_mkdirty(pud_t pud)912 static inline pud_t pud_mkdirty(pud_t pud)
913 {
914 return pte_pud(pte_mkdirty(pud_pte(pud)));
915 }
916
pud_mkclean(pud_t pud)917 static inline pud_t pud_mkclean(pud_t pud)
918 {
919 return pte_pud(pte_mkclean(pud_pte(pud)));
920 }
921
pud_mkwrite(pud_t pud)922 static inline pud_t pud_mkwrite(pud_t pud)
923 {
924 return pte_pud(pte_mkwrite_novma(pud_pte(pud)));
925 }
926
pud_mkhuge(pud_t pud)927 static inline pud_t pud_mkhuge(pud_t pud)
928 {
929 return pud;
930 }
931
pudp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pud_t * pudp,pud_t entry,int dirty)932 static inline int pudp_set_access_flags(struct vm_area_struct *vma,
933 unsigned long address, pud_t *pudp,
934 pud_t entry, int dirty)
935 {
936 return ptep_set_access_flags(vma, address, (pte_t *)pudp, pud_pte(entry), dirty);
937 }
938
pudp_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pud_t * pudp)939 static inline int pudp_test_and_clear_young(struct vm_area_struct *vma,
940 unsigned long address, pud_t *pudp)
941 {
942 return ptep_test_and_clear_young(vma, address, (pte_t *)pudp);
943 }
944
pud_young(pud_t pud)945 static inline int pud_young(pud_t pud)
946 {
947 return pte_young(pud_pte(pud));
948 }
949
update_mmu_cache_pud(struct vm_area_struct * vma,unsigned long address,pud_t * pudp)950 static inline void update_mmu_cache_pud(struct vm_area_struct *vma,
951 unsigned long address, pud_t *pudp)
952 {
953 pte_t *ptep = (pte_t *)pudp;
954
955 update_mmu_cache(vma, address, ptep);
956 }
957
pudp_establish(struct vm_area_struct * vma,unsigned long address,pud_t * pudp,pud_t pud)958 static inline pud_t pudp_establish(struct vm_area_struct *vma,
959 unsigned long address, pud_t *pudp, pud_t pud)
960 {
961 page_table_check_pud_set(vma->vm_mm, pudp, pud);
962 return __pud(atomic_long_xchg((atomic_long_t *)pudp, pud_val(pud)));
963 }
964
pud_mkinvalid(pud_t pud)965 static inline pud_t pud_mkinvalid(pud_t pud)
966 {
967 return __pud(pud_val(pud) & ~(_PAGE_PRESENT | _PAGE_PROT_NONE));
968 }
969
970 extern pud_t pudp_invalidate(struct vm_area_struct *vma, unsigned long address,
971 pud_t *pudp);
972
pud_modify(pud_t pud,pgprot_t newprot)973 static inline pud_t pud_modify(pud_t pud, pgprot_t newprot)
974 {
975 return pte_pud(pte_modify(pud_pte(pud), newprot));
976 }
977
978 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
979
980 /*
981 * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that
982 * are !pte_none() && !pte_present().
983 *
984 * Format of swap PTE:
985 * bit 0: _PAGE_PRESENT (zero)
986 * bit 1 to 3: _PAGE_LEAF (zero)
987 * bit 5: _PAGE_PROT_NONE (zero)
988 * bit 6: exclusive marker
989 * bits 7 to 11: swap type
990 * bits 12 to XLEN-1: swap offset
991 */
992 #define __SWP_TYPE_SHIFT 7
993 #define __SWP_TYPE_BITS 5
994 #define __SWP_TYPE_MASK ((1UL << __SWP_TYPE_BITS) - 1)
995 #define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
996
997 #define MAX_SWAPFILES_CHECK() \
998 BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
999
1000 #define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
1001 #define __swp_offset(x) ((x).val >> __SWP_OFFSET_SHIFT)
1002 #define __swp_entry(type, offset) ((swp_entry_t) \
1003 { (((type) & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT) | \
1004 ((offset) << __SWP_OFFSET_SHIFT) })
1005
1006 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1007 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1008
pte_swp_exclusive(pte_t pte)1009 static inline bool pte_swp_exclusive(pte_t pte)
1010 {
1011 return pte_val(pte) & _PAGE_SWP_EXCLUSIVE;
1012 }
1013
pte_swp_mkexclusive(pte_t pte)1014 static inline pte_t pte_swp_mkexclusive(pte_t pte)
1015 {
1016 return __pte(pte_val(pte) | _PAGE_SWP_EXCLUSIVE);
1017 }
1018
pte_swp_clear_exclusive(pte_t pte)1019 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
1020 {
1021 return __pte(pte_val(pte) & ~_PAGE_SWP_EXCLUSIVE);
1022 }
1023
1024 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1025 #define __pmd_to_swp_entry(pmd) ((swp_entry_t) { pmd_val(pmd) })
1026 #define __swp_entry_to_pmd(swp) __pmd((swp).val)
1027 #endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
1028
1029 /*
1030 * In the RV64 Linux scheme, we give the user half of the virtual-address space
1031 * and give the kernel the other (upper) half.
1032 */
1033 #ifdef CONFIG_64BIT
1034 #define KERN_VIRT_START (-(BIT(VA_BITS)) + TASK_SIZE)
1035 #else
1036 #define KERN_VIRT_START FIXADDR_START
1037 #endif
1038
1039 /*
1040 * Task size is 0x4000000000 for RV64 or 0x9fc00000 for RV32.
1041 * Note that PGDIR_SIZE must evenly divide TASK_SIZE.
1042 * Task size is:
1043 * - 0x9fc00000 (~2.5GB) for RV32.
1044 * - 0x4000000000 ( 256GB) for RV64 using SV39 mmu
1045 * - 0x800000000000 ( 128TB) for RV64 using SV48 mmu
1046 * - 0x100000000000000 ( 64PB) for RV64 using SV57 mmu
1047 *
1048 * Note that PGDIR_SIZE must evenly divide TASK_SIZE since "RISC-V
1049 * Instruction Set Manual Volume II: Privileged Architecture" states that
1050 * "load and store effective addresses, which are 64bits, must have bits
1051 * 63–48 all equal to bit 47, or else a page-fault exception will occur."
1052 * Similarly for SV57, bits 63–57 must be equal to bit 56.
1053 */
1054 #ifdef CONFIG_64BIT
1055 #define TASK_SIZE_64 (PGDIR_SIZE * PTRS_PER_PGD / 2)
1056
1057 #ifdef CONFIG_COMPAT
1058 #define TASK_SIZE_32 (_AC(0x80000000, UL) - PAGE_SIZE)
1059 #define TASK_SIZE (is_compat_task() ? \
1060 TASK_SIZE_32 : TASK_SIZE_64)
1061 #else
1062 #define TASK_SIZE TASK_SIZE_64
1063 #endif
1064
1065 #else
1066 #define TASK_SIZE FIXADDR_START
1067 #endif
1068
1069 #else /* CONFIG_MMU */
1070
1071 #define PAGE_SHARED __pgprot(0)
1072 #define PAGE_KERNEL __pgprot(0)
1073 #define swapper_pg_dir NULL
1074 #define TASK_SIZE _AC(-1, UL)
1075 #define VMALLOC_START _AC(0, UL)
1076 #define VMALLOC_END TASK_SIZE
1077
1078 #endif /* !CONFIG_MMU */
1079
1080 extern char _start[];
1081 extern void *_dtb_early_va;
1082 extern uintptr_t _dtb_early_pa;
1083 #if defined(CONFIG_XIP_KERNEL) && defined(CONFIG_MMU)
1084 #define dtb_early_va (*(void **)XIP_FIXUP(&_dtb_early_va))
1085 #define dtb_early_pa (*(uintptr_t *)XIP_FIXUP(&_dtb_early_pa))
1086 #else
1087 #define dtb_early_va _dtb_early_va
1088 #define dtb_early_pa _dtb_early_pa
1089 #endif /* CONFIG_XIP_KERNEL */
1090 extern u64 satp_mode;
1091
1092 void paging_init(void);
1093 void misc_mem_init(void);
1094
1095 /*
1096 * ZERO_PAGE is a global shared page that is always zero,
1097 * used for zero-mapped memory areas, etc.
1098 */
1099 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
1100 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
1101
1102 /*
1103 * Use set_p*_safe(), and elide TLB flushing, when confident that *no*
1104 * TLB flush will be required as a result of the "set". For example, use
1105 * in scenarios where it is known ahead of time that the routine is
1106 * setting non-present entries, or re-setting an existing entry to the
1107 * same value. Otherwise, use the typical "set" helpers and flush the
1108 * TLB.
1109 */
1110 #define set_p4d_safe(p4dp, p4d) \
1111 ({ \
1112 WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \
1113 set_p4d(p4dp, p4d); \
1114 })
1115
1116 #define set_pgd_safe(pgdp, pgd) \
1117 ({ \
1118 WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \
1119 set_pgd(pgdp, pgd); \
1120 })
1121 #endif /* !__ASSEMBLY__ */
1122
1123 #endif /* _ASM_RISCV_PGTABLE_H */
1124