xref: /linux/fs/proc/task_mmu.c (revision 44331bd6a6107a33f8082521b227ffa4ec063a40)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/pagewalk.h>
3 #include <linux/mm_inline.h>
4 #include <linux/hugetlb.h>
5 #include <linux/huge_mm.h>
6 #include <linux/mount.h>
7 #include <linux/ksm.h>
8 #include <linux/seq_file.h>
9 #include <linux/highmem.h>
10 #include <linux/ptrace.h>
11 #include <linux/slab.h>
12 #include <linux/pagemap.h>
13 #include <linux/mempolicy.h>
14 #include <linux/rmap.h>
15 #include <linux/swap.h>
16 #include <linux/sched/mm.h>
17 #include <linux/leafops.h>
18 #include <linux/mmu_notifier.h>
19 #include <linux/page_idle.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/uaccess.h>
22 #include <linux/pkeys.h>
23 #include <linux/minmax.h>
24 #include <linux/overflow.h>
25 #include <linux/buildid.h>
26 
27 #include <asm/elf.h>
28 #include <asm/tlb.h>
29 #include <asm/tlbflush.h>
30 #include "internal.h"
31 
32 #define SENTINEL_VMA_END	-1
33 #define SENTINEL_VMA_GATE	-2
34 
35 #define SEQ_PUT_DEC(str, val) \
36 		seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
37 void task_mem(struct seq_file *m, struct mm_struct *mm)
38 {
39 	unsigned long text, lib, swap, anon, file, shmem;
40 	unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
41 
42 	anon = get_mm_counter_sum(mm, MM_ANONPAGES);
43 	file = get_mm_counter_sum(mm, MM_FILEPAGES);
44 	shmem = get_mm_counter_sum(mm, MM_SHMEMPAGES);
45 
46 	/*
47 	 * Note: to minimize their overhead, mm maintains hiwater_vm and
48 	 * hiwater_rss only when about to *lower* total_vm or rss.  Any
49 	 * collector of these hiwater stats must therefore get total_vm
50 	 * and rss too, which will usually be the higher.  Barriers? not
51 	 * worth the effort, such snapshots can always be inconsistent.
52 	 */
53 	hiwater_vm = total_vm = mm->total_vm;
54 	if (hiwater_vm < mm->hiwater_vm)
55 		hiwater_vm = mm->hiwater_vm;
56 	hiwater_rss = total_rss = anon + file + shmem;
57 	if (hiwater_rss < mm->hiwater_rss)
58 		hiwater_rss = mm->hiwater_rss;
59 
60 	/* split executable areas between text and lib */
61 	text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
62 	text = min(text, mm->exec_vm << PAGE_SHIFT);
63 	lib = (mm->exec_vm << PAGE_SHIFT) - text;
64 
65 	swap = get_mm_counter_sum(mm, MM_SWAPENTS);
66 	SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
67 	SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
68 	SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
69 	SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
70 	SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
71 	SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
72 	SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
73 	SEQ_PUT_DEC(" kB\nRssFile:\t", file);
74 	SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
75 	SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
76 	SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
77 	seq_put_decimal_ull_width(m,
78 		    " kB\nVmExe:\t", text >> 10, 8);
79 	seq_put_decimal_ull_width(m,
80 		    " kB\nVmLib:\t", lib >> 10, 8);
81 	seq_put_decimal_ull_width(m,
82 		    " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
83 	SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
84 	seq_puts(m, " kB\n");
85 	hugetlb_report_usage(m, mm);
86 }
87 #undef SEQ_PUT_DEC
88 
89 unsigned long task_vsize(struct mm_struct *mm)
90 {
91 	return PAGE_SIZE * mm->total_vm;
92 }
93 
94 unsigned long task_statm(struct mm_struct *mm,
95 			 unsigned long *shared, unsigned long *text,
96 			 unsigned long *data, unsigned long *resident)
97 {
98 	*shared = get_mm_counter_sum(mm, MM_FILEPAGES) +
99 			get_mm_counter_sum(mm, MM_SHMEMPAGES);
100 	*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
101 								>> PAGE_SHIFT;
102 	*data = mm->data_vm + mm->stack_vm;
103 	*resident = *shared + get_mm_counter_sum(mm, MM_ANONPAGES);
104 	return mm->total_vm;
105 }
106 
107 #ifdef CONFIG_NUMA
108 /*
109  * Save get_task_policy() for show_numa_map().
110  */
111 static void hold_task_mempolicy(struct proc_maps_private *priv)
112 {
113 	struct task_struct *task = priv->task;
114 
115 	task_lock(task);
116 	priv->task_mempolicy = get_task_policy(task);
117 	mpol_get(priv->task_mempolicy);
118 	task_unlock(task);
119 }
120 static void release_task_mempolicy(struct proc_maps_private *priv)
121 {
122 	mpol_put(priv->task_mempolicy);
123 }
124 #else
125 static void hold_task_mempolicy(struct proc_maps_private *priv)
126 {
127 }
128 static void release_task_mempolicy(struct proc_maps_private *priv)
129 {
130 }
131 #endif
132 
133 #ifdef CONFIG_PER_VMA_LOCK
134 
135 static void reset_lock_ctx(struct proc_maps_locking_ctx *lock_ctx)
136 {
137 	lock_ctx->locked_vma = NULL;
138 	lock_ctx->mmap_locked = false;
139 }
140 
141 static void unlock_ctx_vma(struct proc_maps_locking_ctx *lock_ctx)
142 {
143 	if (lock_ctx->locked_vma) {
144 		vma_end_read(lock_ctx->locked_vma);
145 		lock_ctx->locked_vma = NULL;
146 	}
147 }
148 
149 static const struct seq_operations proc_pid_maps_op;
150 
151 static inline bool lock_vma_range(struct seq_file *m,
152 				  struct proc_maps_locking_ctx *lock_ctx)
153 {
154 	/*
155 	 * smaps and numa_maps perform page table walk, therefore require
156 	 * mmap_lock but maps can be read with locking just the vma and
157 	 * walking the vma tree under rcu read protection.
158 	 */
159 	if (m->op != &proc_pid_maps_op) {
160 		if (mmap_read_lock_killable(lock_ctx->mm))
161 			return false;
162 
163 		lock_ctx->mmap_locked = true;
164 	} else {
165 		rcu_read_lock();
166 		reset_lock_ctx(lock_ctx);
167 	}
168 
169 	return true;
170 }
171 
172 static inline void unlock_vma_range(struct proc_maps_locking_ctx *lock_ctx)
173 {
174 	if (lock_ctx->mmap_locked) {
175 		mmap_read_unlock(lock_ctx->mm);
176 	} else {
177 		unlock_ctx_vma(lock_ctx);
178 		rcu_read_unlock();
179 	}
180 }
181 
182 static struct vm_area_struct *get_next_vma(struct proc_maps_private *priv,
183 					   loff_t last_pos)
184 {
185 	struct proc_maps_locking_ctx *lock_ctx = &priv->lock_ctx;
186 	struct vm_area_struct *vma;
187 
188 	if (lock_ctx->mmap_locked)
189 		return vma_next(&priv->iter);
190 
191 	unlock_ctx_vma(lock_ctx);
192 	vma = lock_next_vma(lock_ctx->mm, &priv->iter, last_pos);
193 	if (!IS_ERR_OR_NULL(vma))
194 		lock_ctx->locked_vma = vma;
195 
196 	return vma;
197 }
198 
199 static inline bool fallback_to_mmap_lock(struct proc_maps_private *priv,
200 					 loff_t pos)
201 {
202 	struct proc_maps_locking_ctx *lock_ctx = &priv->lock_ctx;
203 
204 	if (lock_ctx->mmap_locked)
205 		return false;
206 
207 	rcu_read_unlock();
208 	mmap_read_lock(lock_ctx->mm);
209 	/* Reinitialize the iterator after taking mmap_lock */
210 	vma_iter_set(&priv->iter, pos);
211 	lock_ctx->mmap_locked = true;
212 
213 	return true;
214 }
215 
216 #else /* CONFIG_PER_VMA_LOCK */
217 
218 static inline bool lock_vma_range(struct seq_file *m,
219 				  struct proc_maps_locking_ctx *lock_ctx)
220 {
221 	return mmap_read_lock_killable(lock_ctx->mm) == 0;
222 }
223 
224 static inline void unlock_vma_range(struct proc_maps_locking_ctx *lock_ctx)
225 {
226 	mmap_read_unlock(lock_ctx->mm);
227 }
228 
229 static struct vm_area_struct *get_next_vma(struct proc_maps_private *priv,
230 					   loff_t last_pos)
231 {
232 	return vma_next(&priv->iter);
233 }
234 
235 static inline bool fallback_to_mmap_lock(struct proc_maps_private *priv,
236 					 loff_t pos)
237 {
238 	return false;
239 }
240 
241 #endif /* CONFIG_PER_VMA_LOCK */
242 
243 static struct vm_area_struct *proc_get_vma(struct seq_file *m, loff_t *ppos)
244 {
245 	struct proc_maps_private *priv = m->private;
246 	struct vm_area_struct *vma;
247 
248 retry:
249 	vma = get_next_vma(priv, *ppos);
250 	/* EINTR of EAGAIN is possible */
251 	if (IS_ERR(vma)) {
252 		if (PTR_ERR(vma) == -EAGAIN && fallback_to_mmap_lock(priv, *ppos))
253 			goto retry;
254 
255 		return vma;
256 	}
257 
258 	/* Store previous position to be able to restart if needed */
259 	priv->last_pos = *ppos;
260 	if (vma) {
261 		/*
262 		 * Track the end of the reported vma to ensure position changes
263 		 * even if previous vma was merged with the next vma and we
264 		 * found the extended vma with the same vm_start.
265 		 */
266 		*ppos = vma->vm_end;
267 	} else {
268 		*ppos = SENTINEL_VMA_GATE;
269 		vma = get_gate_vma(priv->lock_ctx.mm);
270 	}
271 
272 	return vma;
273 }
274 
275 static void *m_start(struct seq_file *m, loff_t *ppos)
276 {
277 	struct proc_maps_private *priv = m->private;
278 	struct proc_maps_locking_ctx *lock_ctx;
279 	loff_t last_addr = *ppos;
280 	struct mm_struct *mm;
281 
282 	/* See m_next(). Zero at the start or after lseek. */
283 	if (last_addr == SENTINEL_VMA_END)
284 		return NULL;
285 
286 	priv->task = get_proc_task(priv->inode);
287 	if (!priv->task)
288 		return ERR_PTR(-ESRCH);
289 
290 	lock_ctx = &priv->lock_ctx;
291 	mm = lock_ctx->mm;
292 	if (!mm || !mmget_not_zero(mm)) {
293 		put_task_struct(priv->task);
294 		priv->task = NULL;
295 		return NULL;
296 	}
297 
298 	if (!lock_vma_range(m, lock_ctx)) {
299 		mmput(mm);
300 		put_task_struct(priv->task);
301 		priv->task = NULL;
302 		return ERR_PTR(-EINTR);
303 	}
304 
305 	/*
306 	 * Reset current position if last_addr was set before
307 	 * and it's not a sentinel.
308 	 */
309 	if (last_addr > 0)
310 		*ppos = last_addr = priv->last_pos;
311 	vma_iter_init(&priv->iter, mm, (unsigned long)last_addr);
312 	hold_task_mempolicy(priv);
313 	if (last_addr == SENTINEL_VMA_GATE)
314 		return get_gate_vma(mm);
315 
316 	return proc_get_vma(m, ppos);
317 }
318 
319 static void *m_next(struct seq_file *m, void *v, loff_t *ppos)
320 {
321 	if (*ppos == SENTINEL_VMA_GATE) {
322 		*ppos = SENTINEL_VMA_END;
323 		return NULL;
324 	}
325 	return proc_get_vma(m, ppos);
326 }
327 
328 static void m_stop(struct seq_file *m, void *v)
329 {
330 	struct proc_maps_private *priv = m->private;
331 	struct mm_struct *mm = priv->lock_ctx.mm;
332 
333 	if (!priv->task)
334 		return;
335 
336 	release_task_mempolicy(priv);
337 	unlock_vma_range(&priv->lock_ctx);
338 	mmput(mm);
339 	put_task_struct(priv->task);
340 	priv->task = NULL;
341 }
342 
343 static int proc_maps_open(struct inode *inode, struct file *file,
344 			const struct seq_operations *ops, int psize)
345 {
346 	struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
347 
348 	if (!priv)
349 		return -ENOMEM;
350 
351 	priv->inode = inode;
352 	priv->lock_ctx.mm = proc_mem_open(inode, PTRACE_MODE_READ);
353 	if (IS_ERR(priv->lock_ctx.mm)) {
354 		int err = PTR_ERR(priv->lock_ctx.mm);
355 
356 		seq_release_private(inode, file);
357 		return err;
358 	}
359 
360 	return 0;
361 }
362 
363 static int proc_map_release(struct inode *inode, struct file *file)
364 {
365 	struct seq_file *seq = file->private_data;
366 	struct proc_maps_private *priv = seq->private;
367 
368 	if (priv->lock_ctx.mm)
369 		mmdrop(priv->lock_ctx.mm);
370 
371 	return seq_release_private(inode, file);
372 }
373 
374 static int do_maps_open(struct inode *inode, struct file *file,
375 			const struct seq_operations *ops)
376 {
377 	return proc_maps_open(inode, file, ops,
378 				sizeof(struct proc_maps_private));
379 }
380 
381 static void get_vma_name(struct vm_area_struct *vma,
382 			 const struct path **path,
383 			 const char **name,
384 			 const char **name_fmt)
385 {
386 	struct anon_vma_name *anon_name = vma->vm_mm ? anon_vma_name(vma) : NULL;
387 
388 	*name = NULL;
389 	*path = NULL;
390 	*name_fmt = NULL;
391 
392 	/*
393 	 * Print the dentry name for named mappings, and a
394 	 * special [heap] marker for the heap:
395 	 */
396 	if (vma->vm_file) {
397 		/*
398 		 * If user named this anon shared memory via
399 		 * prctl(PR_SET_VMA ..., use the provided name.
400 		 */
401 		if (anon_name) {
402 			*name_fmt = "[anon_shmem:%s]";
403 			*name = anon_name->name;
404 		} else {
405 			*path = file_user_path(vma->vm_file);
406 		}
407 		return;
408 	}
409 
410 	if (vma->vm_ops && vma->vm_ops->name) {
411 		*name = vma->vm_ops->name(vma);
412 		if (*name)
413 			return;
414 	}
415 
416 	*name = arch_vma_name(vma);
417 	if (*name)
418 		return;
419 
420 	if (!vma->vm_mm) {
421 		*name = "[vdso]";
422 		return;
423 	}
424 
425 	if (vma_is_initial_heap(vma)) {
426 		*name = "[heap]";
427 		return;
428 	}
429 
430 	if (vma_is_initial_stack(vma)) {
431 		*name = "[stack]";
432 		return;
433 	}
434 
435 	if (anon_name) {
436 		*name_fmt = "[anon:%s]";
437 		*name = anon_name->name;
438 		return;
439 	}
440 }
441 
442 static void show_vma_header_prefix(struct seq_file *m,
443 				   unsigned long start, unsigned long end,
444 				   vm_flags_t flags, unsigned long long pgoff,
445 				   dev_t dev, unsigned long ino)
446 {
447 	seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
448 	seq_put_hex_ll(m, NULL, start, 8);
449 	seq_put_hex_ll(m, "-", end, 8);
450 	seq_putc(m, ' ');
451 	seq_putc(m, flags & VM_READ ? 'r' : '-');
452 	seq_putc(m, flags & VM_WRITE ? 'w' : '-');
453 	seq_putc(m, flags & VM_EXEC ? 'x' : '-');
454 	seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
455 	seq_put_hex_ll(m, " ", pgoff, 8);
456 	seq_put_hex_ll(m, " ", MAJOR(dev), 2);
457 	seq_put_hex_ll(m, ":", MINOR(dev), 2);
458 	seq_put_decimal_ull(m, " ", ino);
459 	seq_putc(m, ' ');
460 }
461 
462 static void
463 show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
464 {
465 	const struct path *path;
466 	const char *name_fmt, *name;
467 	vm_flags_t flags = vma->vm_flags;
468 	unsigned long ino = 0;
469 	unsigned long long pgoff = 0;
470 	unsigned long start, end;
471 	dev_t dev = 0;
472 
473 	if (vma->vm_file) {
474 		const struct inode *inode = file_user_inode(vma->vm_file);
475 
476 		dev = inode->i_sb->s_dev;
477 		ino = inode->i_ino;
478 		pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
479 	}
480 
481 	start = vma->vm_start;
482 	end = vma->vm_end;
483 	show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
484 
485 	get_vma_name(vma, &path, &name, &name_fmt);
486 	if (path) {
487 		seq_pad(m, ' ');
488 		seq_path(m, path, "\n");
489 	} else if (name_fmt) {
490 		seq_pad(m, ' ');
491 		seq_printf(m, name_fmt, name);
492 	} else if (name) {
493 		seq_pad(m, ' ');
494 		seq_puts(m, name);
495 	}
496 	seq_putc(m, '\n');
497 }
498 
499 static int show_map(struct seq_file *m, void *v)
500 {
501 	show_map_vma(m, v);
502 	return 0;
503 }
504 
505 static const struct seq_operations proc_pid_maps_op = {
506 	.start	= m_start,
507 	.next	= m_next,
508 	.stop	= m_stop,
509 	.show	= show_map
510 };
511 
512 static int pid_maps_open(struct inode *inode, struct file *file)
513 {
514 	return do_maps_open(inode, file, &proc_pid_maps_op);
515 }
516 
517 #define PROCMAP_QUERY_VMA_FLAGS (				\
518 		PROCMAP_QUERY_VMA_READABLE |			\
519 		PROCMAP_QUERY_VMA_WRITABLE |			\
520 		PROCMAP_QUERY_VMA_EXECUTABLE |			\
521 		PROCMAP_QUERY_VMA_SHARED			\
522 )
523 
524 #define PROCMAP_QUERY_VALID_FLAGS_MASK (			\
525 		PROCMAP_QUERY_COVERING_OR_NEXT_VMA |		\
526 		PROCMAP_QUERY_FILE_BACKED_VMA |			\
527 		PROCMAP_QUERY_VMA_FLAGS				\
528 )
529 
530 #ifdef CONFIG_PER_VMA_LOCK
531 
532 static int query_vma_setup(struct proc_maps_locking_ctx *lock_ctx)
533 {
534 	reset_lock_ctx(lock_ctx);
535 
536 	return 0;
537 }
538 
539 static void query_vma_teardown(struct proc_maps_locking_ctx *lock_ctx)
540 {
541 	if (lock_ctx->mmap_locked) {
542 		mmap_read_unlock(lock_ctx->mm);
543 		lock_ctx->mmap_locked = false;
544 	} else {
545 		unlock_ctx_vma(lock_ctx);
546 	}
547 }
548 
549 static struct vm_area_struct *query_vma_find_by_addr(struct proc_maps_locking_ctx *lock_ctx,
550 						     unsigned long addr)
551 {
552 	struct mm_struct *mm = lock_ctx->mm;
553 	struct vm_area_struct *vma;
554 	struct vma_iterator vmi;
555 
556 	if (lock_ctx->mmap_locked)
557 		return find_vma(mm, addr);
558 
559 	/* Unlock previously locked VMA and find the next one under RCU */
560 	unlock_ctx_vma(lock_ctx);
561 	rcu_read_lock();
562 	vma_iter_init(&vmi, mm, addr);
563 	vma = lock_next_vma(mm, &vmi, addr);
564 	rcu_read_unlock();
565 
566 	if (!vma)
567 		return NULL;
568 
569 	if (!IS_ERR(vma)) {
570 		lock_ctx->locked_vma = vma;
571 		return vma;
572 	}
573 
574 	if (PTR_ERR(vma) == -EAGAIN) {
575 		/* Fallback to mmap_lock on vma->vm_refcnt overflow */
576 		mmap_read_lock(mm);
577 		vma = find_vma(mm, addr);
578 		lock_ctx->mmap_locked = true;
579 	}
580 
581 	return vma;
582 }
583 
584 #else /* CONFIG_PER_VMA_LOCK */
585 
586 static int query_vma_setup(struct proc_maps_locking_ctx *lock_ctx)
587 {
588 	return mmap_read_lock_killable(lock_ctx->mm);
589 }
590 
591 static void query_vma_teardown(struct proc_maps_locking_ctx *lock_ctx)
592 {
593 	mmap_read_unlock(lock_ctx->mm);
594 }
595 
596 static struct vm_area_struct *query_vma_find_by_addr(struct proc_maps_locking_ctx *lock_ctx,
597 						     unsigned long addr)
598 {
599 	return find_vma(lock_ctx->mm, addr);
600 }
601 
602 #endif  /* CONFIG_PER_VMA_LOCK */
603 
604 static struct vm_area_struct *query_matching_vma(struct proc_maps_locking_ctx *lock_ctx,
605 						 unsigned long addr, u32 flags)
606 {
607 	struct vm_area_struct *vma;
608 
609 next_vma:
610 	vma = query_vma_find_by_addr(lock_ctx, addr);
611 	if (IS_ERR(vma))
612 		return vma;
613 
614 	if (!vma)
615 		goto no_vma;
616 
617 	/* user requested only file-backed VMA, keep iterating */
618 	if ((flags & PROCMAP_QUERY_FILE_BACKED_VMA) && !vma->vm_file)
619 		goto skip_vma;
620 
621 	/* VMA permissions should satisfy query flags */
622 	if (flags & PROCMAP_QUERY_VMA_FLAGS) {
623 		u32 perm = 0;
624 
625 		if (flags & PROCMAP_QUERY_VMA_READABLE)
626 			perm |= VM_READ;
627 		if (flags & PROCMAP_QUERY_VMA_WRITABLE)
628 			perm |= VM_WRITE;
629 		if (flags & PROCMAP_QUERY_VMA_EXECUTABLE)
630 			perm |= VM_EXEC;
631 		if (flags & PROCMAP_QUERY_VMA_SHARED)
632 			perm |= VM_MAYSHARE;
633 
634 		if ((vma->vm_flags & perm) != perm)
635 			goto skip_vma;
636 	}
637 
638 	/* found covering VMA or user is OK with the matching next VMA */
639 	if ((flags & PROCMAP_QUERY_COVERING_OR_NEXT_VMA) || vma->vm_start <= addr)
640 		return vma;
641 
642 skip_vma:
643 	/*
644 	 * If the user needs closest matching VMA, keep iterating.
645 	 */
646 	addr = vma->vm_end;
647 	if (flags & PROCMAP_QUERY_COVERING_OR_NEXT_VMA)
648 		goto next_vma;
649 
650 no_vma:
651 	return ERR_PTR(-ENOENT);
652 }
653 
654 static int do_procmap_query(struct mm_struct *mm, void __user *uarg)
655 {
656 	struct proc_maps_locking_ctx lock_ctx = { .mm = mm };
657 	struct procmap_query karg;
658 	struct vm_area_struct *vma;
659 	struct file *vm_file = NULL;
660 	const char *name = NULL;
661 	char build_id_buf[BUILD_ID_SIZE_MAX], *name_buf = NULL;
662 	__u64 usize;
663 	int err;
664 
665 	if (copy_from_user(&usize, (void __user *)uarg, sizeof(usize)))
666 		return -EFAULT;
667 	/* argument struct can never be that large, reject abuse */
668 	if (usize > PAGE_SIZE)
669 		return -E2BIG;
670 	/* argument struct should have at least query_flags and query_addr fields */
671 	if (usize < offsetofend(struct procmap_query, query_addr))
672 		return -EINVAL;
673 	err = copy_struct_from_user(&karg, sizeof(karg), uarg, usize);
674 	if (err)
675 		return err;
676 
677 	/* reject unknown flags */
678 	if (karg.query_flags & ~PROCMAP_QUERY_VALID_FLAGS_MASK)
679 		return -EINVAL;
680 	/* either both buffer address and size are set, or both should be zero */
681 	if (!!karg.vma_name_size != !!karg.vma_name_addr)
682 		return -EINVAL;
683 	if (!!karg.build_id_size != !!karg.build_id_addr)
684 		return -EINVAL;
685 
686 	if (!mm || !mmget_not_zero(mm))
687 		return -ESRCH;
688 
689 	err = query_vma_setup(&lock_ctx);
690 	if (err) {
691 		mmput(mm);
692 		return err;
693 	}
694 
695 	vma = query_matching_vma(&lock_ctx, karg.query_addr, karg.query_flags);
696 	if (IS_ERR(vma)) {
697 		err = PTR_ERR(vma);
698 		vma = NULL;
699 		goto out;
700 	}
701 
702 	karg.vma_start = vma->vm_start;
703 	karg.vma_end = vma->vm_end;
704 
705 	karg.vma_flags = 0;
706 	if (vma->vm_flags & VM_READ)
707 		karg.vma_flags |= PROCMAP_QUERY_VMA_READABLE;
708 	if (vma->vm_flags & VM_WRITE)
709 		karg.vma_flags |= PROCMAP_QUERY_VMA_WRITABLE;
710 	if (vma->vm_flags & VM_EXEC)
711 		karg.vma_flags |= PROCMAP_QUERY_VMA_EXECUTABLE;
712 	if (vma->vm_flags & VM_MAYSHARE)
713 		karg.vma_flags |= PROCMAP_QUERY_VMA_SHARED;
714 
715 	karg.vma_page_size = vma_kernel_pagesize(vma);
716 
717 	if (vma->vm_file) {
718 		const struct inode *inode = file_user_inode(vma->vm_file);
719 
720 		karg.vma_offset = ((__u64)vma->vm_pgoff) << PAGE_SHIFT;
721 		karg.dev_major = MAJOR(inode->i_sb->s_dev);
722 		karg.dev_minor = MINOR(inode->i_sb->s_dev);
723 		karg.inode = inode->i_ino;
724 	} else {
725 		karg.vma_offset = 0;
726 		karg.dev_major = 0;
727 		karg.dev_minor = 0;
728 		karg.inode = 0;
729 	}
730 
731 	if (karg.vma_name_size) {
732 		size_t name_buf_sz = min_t(size_t, PATH_MAX, karg.vma_name_size);
733 		const struct path *path;
734 		const char *name_fmt;
735 		size_t name_sz = 0;
736 
737 		get_vma_name(vma, &path, &name, &name_fmt);
738 
739 		if (path || name_fmt || name) {
740 			name_buf = kmalloc(name_buf_sz, GFP_KERNEL);
741 			if (!name_buf) {
742 				err = -ENOMEM;
743 				goto out;
744 			}
745 		}
746 		if (path) {
747 			name = d_path(path, name_buf, name_buf_sz);
748 			if (IS_ERR(name)) {
749 				err = PTR_ERR(name);
750 				goto out;
751 			}
752 			name_sz = name_buf + name_buf_sz - name;
753 		} else if (name || name_fmt) {
754 			name_sz = 1 + snprintf(name_buf, name_buf_sz, name_fmt ?: "%s", name);
755 			name = name_buf;
756 		}
757 		if (name_sz > name_buf_sz) {
758 			err = -ENAMETOOLONG;
759 			goto out;
760 		}
761 		karg.vma_name_size = name_sz;
762 	}
763 
764 	if (karg.build_id_size && vma->vm_file)
765 		vm_file = get_file(vma->vm_file);
766 
767 	/* unlock vma or mmap_lock, and put mm_struct before copying data to user */
768 	query_vma_teardown(&lock_ctx);
769 	mmput(mm);
770 
771 	if (karg.build_id_size) {
772 		__u32 build_id_sz;
773 
774 		if (vm_file)
775 			err = build_id_parse_file(vm_file, build_id_buf, &build_id_sz);
776 		else
777 			err = -ENOENT;
778 		if (err) {
779 			karg.build_id_size = 0;
780 		} else {
781 			if (karg.build_id_size < build_id_sz) {
782 				err = -ENAMETOOLONG;
783 				goto out_file;
784 			}
785 			karg.build_id_size = build_id_sz;
786 		}
787 	}
788 
789 	if (vm_file)
790 		fput(vm_file);
791 
792 	if (karg.vma_name_size && copy_to_user(u64_to_user_ptr(karg.vma_name_addr),
793 					       name, karg.vma_name_size)) {
794 		kfree(name_buf);
795 		return -EFAULT;
796 	}
797 	kfree(name_buf);
798 
799 	if (karg.build_id_size && copy_to_user(u64_to_user_ptr(karg.build_id_addr),
800 					       build_id_buf, karg.build_id_size))
801 		return -EFAULT;
802 
803 	if (copy_to_user(uarg, &karg, min_t(size_t, sizeof(karg), usize)))
804 		return -EFAULT;
805 
806 	return 0;
807 
808 out:
809 	query_vma_teardown(&lock_ctx);
810 	mmput(mm);
811 out_file:
812 	if (vm_file)
813 		fput(vm_file);
814 	kfree(name_buf);
815 	return err;
816 }
817 
818 static long procfs_procmap_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
819 {
820 	struct seq_file *seq = file->private_data;
821 	struct proc_maps_private *priv = seq->private;
822 
823 	switch (cmd) {
824 	case PROCMAP_QUERY:
825 		/* priv->lock_ctx.mm is set during file open operation */
826 		return do_procmap_query(priv->lock_ctx.mm, (void __user *)arg);
827 	default:
828 		return -ENOIOCTLCMD;
829 	}
830 }
831 
832 const struct file_operations proc_pid_maps_operations = {
833 	.open		= pid_maps_open,
834 	.read		= seq_read,
835 	.llseek		= seq_lseek,
836 	.release	= proc_map_release,
837 	.unlocked_ioctl = procfs_procmap_ioctl,
838 	.compat_ioctl	= compat_ptr_ioctl,
839 };
840 
841 /*
842  * Proportional Set Size(PSS): my share of RSS.
843  *
844  * PSS of a process is the count of pages it has in memory, where each
845  * page is divided by the number of processes sharing it.  So if a
846  * process has 1000 pages all to itself, and 1000 shared with one other
847  * process, its PSS will be 1500.
848  *
849  * To keep (accumulated) division errors low, we adopt a 64bit
850  * fixed-point pss counter to minimize division errors. So (pss >>
851  * PSS_SHIFT) would be the real byte count.
852  *
853  * A shift of 12 before division means (assuming 4K page size):
854  * 	- 1M 3-user-pages add up to 8KB errors;
855  * 	- supports mapcount up to 2^24, or 16M;
856  * 	- supports PSS up to 2^52 bytes, or 4PB.
857  */
858 #define PSS_SHIFT 12
859 
860 #ifdef CONFIG_PROC_PAGE_MONITOR
861 struct mem_size_stats {
862 	unsigned long resident;
863 	unsigned long shared_clean;
864 	unsigned long shared_dirty;
865 	unsigned long private_clean;
866 	unsigned long private_dirty;
867 	unsigned long referenced;
868 	unsigned long anonymous;
869 	unsigned long lazyfree;
870 	unsigned long anonymous_thp;
871 	unsigned long shmem_thp;
872 	unsigned long file_thp;
873 	unsigned long swap;
874 	unsigned long shared_hugetlb;
875 	unsigned long private_hugetlb;
876 	unsigned long ksm;
877 	u64 pss;
878 	u64 pss_anon;
879 	u64 pss_file;
880 	u64 pss_shmem;
881 	u64 pss_dirty;
882 	u64 pss_locked;
883 	u64 swap_pss;
884 };
885 
886 static void smaps_page_accumulate(struct mem_size_stats *mss,
887 		struct folio *folio, unsigned long size, unsigned long pss,
888 		bool dirty, bool locked, bool private)
889 {
890 	mss->pss += pss;
891 
892 	if (folio_test_anon(folio))
893 		mss->pss_anon += pss;
894 	else if (folio_test_swapbacked(folio))
895 		mss->pss_shmem += pss;
896 	else
897 		mss->pss_file += pss;
898 
899 	if (locked)
900 		mss->pss_locked += pss;
901 
902 	if (dirty || folio_test_dirty(folio)) {
903 		mss->pss_dirty += pss;
904 		if (private)
905 			mss->private_dirty += size;
906 		else
907 			mss->shared_dirty += size;
908 	} else {
909 		if (private)
910 			mss->private_clean += size;
911 		else
912 			mss->shared_clean += size;
913 	}
914 }
915 
916 static void smaps_account(struct mem_size_stats *mss, struct page *page,
917 		bool compound, bool young, bool dirty, bool locked,
918 		bool present)
919 {
920 	struct folio *folio = page_folio(page);
921 	int i, nr = compound ? compound_nr(page) : 1;
922 	unsigned long size = nr * PAGE_SIZE;
923 	bool exclusive;
924 	int mapcount;
925 
926 	/*
927 	 * First accumulate quantities that depend only on |size| and the type
928 	 * of the compound page.
929 	 */
930 	if (folio_test_anon(folio)) {
931 		mss->anonymous += size;
932 		if (!folio_test_swapbacked(folio) && !dirty &&
933 		    !folio_test_dirty(folio))
934 			mss->lazyfree += size;
935 	}
936 
937 	if (folio_test_ksm(folio))
938 		mss->ksm += size;
939 
940 	mss->resident += size;
941 	/* Accumulate the size in pages that have been accessed. */
942 	if (young || folio_test_young(folio) || folio_test_referenced(folio))
943 		mss->referenced += size;
944 
945 	/*
946 	 * Then accumulate quantities that may depend on sharing, or that may
947 	 * differ page-by-page.
948 	 *
949 	 * refcount == 1 for present entries guarantees that the folio is mapped
950 	 * exactly once. For large folios this implies that exactly one
951 	 * PTE/PMD/... maps (a part of) this folio.
952 	 *
953 	 * Treat all non-present entries (where relying on the mapcount and
954 	 * refcount doesn't make sense) as "maybe shared, but not sure how
955 	 * often". We treat device private entries as being fake-present.
956 	 *
957 	 * Note that it would not be safe to read the mapcount especially for
958 	 * pages referenced by migration entries, even with the PTL held.
959 	 */
960 	if (folio_ref_count(folio) == 1 || !present) {
961 		smaps_page_accumulate(mss, folio, size, size << PSS_SHIFT,
962 				      dirty, locked, present);
963 		return;
964 	}
965 
966 	if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) {
967 		mapcount = folio_average_page_mapcount(folio);
968 		exclusive = !folio_maybe_mapped_shared(folio);
969 	}
970 
971 	/*
972 	 * We obtain a snapshot of the mapcount. Without holding the folio lock
973 	 * this snapshot can be slightly wrong as we cannot always read the
974 	 * mapcount atomically.
975 	 */
976 	for (i = 0; i < nr; i++, page++) {
977 		unsigned long pss = PAGE_SIZE << PSS_SHIFT;
978 
979 		if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT)) {
980 			mapcount = folio_precise_page_mapcount(folio, page);
981 			exclusive = mapcount < 2;
982 		}
983 
984 		if (mapcount >= 2)
985 			pss /= mapcount;
986 		smaps_page_accumulate(mss, folio, PAGE_SIZE, pss,
987 				dirty, locked, exclusive);
988 	}
989 }
990 
991 #ifdef CONFIG_SHMEM
992 static int smaps_pte_hole(unsigned long addr, unsigned long end,
993 			  __always_unused int depth, struct mm_walk *walk)
994 {
995 	struct mem_size_stats *mss = walk->private;
996 	struct vm_area_struct *vma = walk->vma;
997 
998 	mss->swap += shmem_partial_swap_usage(walk->vma->vm_file->f_mapping,
999 					      linear_page_index(vma, addr),
1000 					      linear_page_index(vma, end));
1001 
1002 	return 0;
1003 }
1004 #else
1005 #define smaps_pte_hole		NULL
1006 #endif /* CONFIG_SHMEM */
1007 
1008 static void smaps_pte_hole_lookup(unsigned long addr, struct mm_walk *walk)
1009 {
1010 #ifdef CONFIG_SHMEM
1011 	if (walk->ops->pte_hole) {
1012 		/* depth is not used */
1013 		smaps_pte_hole(addr, addr + PAGE_SIZE, 0, walk);
1014 	}
1015 #endif
1016 }
1017 
1018 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
1019 		struct mm_walk *walk)
1020 {
1021 	struct mem_size_stats *mss = walk->private;
1022 	struct vm_area_struct *vma = walk->vma;
1023 	bool locked = !!(vma->vm_flags & VM_LOCKED);
1024 	struct page *page = NULL;
1025 	bool present = false, young = false, dirty = false;
1026 	pte_t ptent = ptep_get(pte);
1027 
1028 	if (pte_present(ptent)) {
1029 		page = vm_normal_page(vma, addr, ptent);
1030 		young = pte_young(ptent);
1031 		dirty = pte_dirty(ptent);
1032 		present = true;
1033 	} else if (pte_none(ptent)) {
1034 		smaps_pte_hole_lookup(addr, walk);
1035 	} else {
1036 		const softleaf_t entry = softleaf_from_pte(ptent);
1037 
1038 		if (softleaf_is_swap(entry)) {
1039 			int mapcount;
1040 
1041 			mss->swap += PAGE_SIZE;
1042 			mapcount = swp_swapcount(entry);
1043 			if (mapcount >= 2) {
1044 				u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
1045 
1046 				do_div(pss_delta, mapcount);
1047 				mss->swap_pss += pss_delta;
1048 			} else {
1049 				mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
1050 			}
1051 		} else if (softleaf_has_pfn(entry)) {
1052 			if (softleaf_is_device_private(entry))
1053 				present = true;
1054 			page = softleaf_to_page(entry);
1055 		}
1056 	}
1057 
1058 	if (!page)
1059 		return;
1060 
1061 	smaps_account(mss, page, false, young, dirty, locked, present);
1062 }
1063 
1064 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1065 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
1066 		struct mm_walk *walk)
1067 {
1068 	struct mem_size_stats *mss = walk->private;
1069 	struct vm_area_struct *vma = walk->vma;
1070 	bool locked = !!(vma->vm_flags & VM_LOCKED);
1071 	struct page *page = NULL;
1072 	bool present = false;
1073 	struct folio *folio;
1074 
1075 	if (pmd_none(*pmd))
1076 		return;
1077 	if (pmd_present(*pmd)) {
1078 		page = vm_normal_page_pmd(vma, addr, *pmd);
1079 		present = true;
1080 	} else if (unlikely(thp_migration_supported())) {
1081 		const softleaf_t entry = softleaf_from_pmd(*pmd);
1082 
1083 		if (softleaf_has_pfn(entry))
1084 			page = softleaf_to_page(entry);
1085 	}
1086 	if (IS_ERR_OR_NULL(page))
1087 		return;
1088 	folio = page_folio(page);
1089 	if (folio_test_anon(folio))
1090 		mss->anonymous_thp += HPAGE_PMD_SIZE;
1091 	else if (folio_test_swapbacked(folio))
1092 		mss->shmem_thp += HPAGE_PMD_SIZE;
1093 	else if (folio_is_zone_device(folio))
1094 		/* pass */;
1095 	else
1096 		mss->file_thp += HPAGE_PMD_SIZE;
1097 
1098 	smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd),
1099 		      locked, present);
1100 }
1101 #else
1102 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
1103 		struct mm_walk *walk)
1104 {
1105 }
1106 #endif
1107 
1108 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
1109 			   struct mm_walk *walk)
1110 {
1111 	struct vm_area_struct *vma = walk->vma;
1112 	pte_t *pte;
1113 	spinlock_t *ptl;
1114 
1115 	ptl = pmd_trans_huge_lock(pmd, vma);
1116 	if (ptl) {
1117 		smaps_pmd_entry(pmd, addr, walk);
1118 		spin_unlock(ptl);
1119 		goto out;
1120 	}
1121 
1122 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1123 	if (!pte) {
1124 		walk->action = ACTION_AGAIN;
1125 		return 0;
1126 	}
1127 	for (; addr != end; pte++, addr += PAGE_SIZE)
1128 		smaps_pte_entry(pte, addr, walk);
1129 	pte_unmap_unlock(pte - 1, ptl);
1130 out:
1131 	cond_resched();
1132 	return 0;
1133 }
1134 
1135 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
1136 {
1137 	/*
1138 	 * Don't forget to update Documentation/ on changes.
1139 	 *
1140 	 * The length of the second argument of mnemonics[]
1141 	 * needs to be 3 instead of previously set 2
1142 	 * (i.e. from [BITS_PER_LONG][2] to [BITS_PER_LONG][3])
1143 	 * to avoid spurious
1144 	 * -Werror=unterminated-string-initialization warning
1145 	 *  with GCC 15
1146 	 */
1147 	static const char mnemonics[BITS_PER_LONG][3] = {
1148 		/*
1149 		 * In case if we meet a flag we don't know about.
1150 		 */
1151 		[0 ... (BITS_PER_LONG-1)] = "??",
1152 
1153 		[ilog2(VM_READ)]	= "rd",
1154 		[ilog2(VM_WRITE)]	= "wr",
1155 		[ilog2(VM_EXEC)]	= "ex",
1156 		[ilog2(VM_SHARED)]	= "sh",
1157 		[ilog2(VM_MAYREAD)]	= "mr",
1158 		[ilog2(VM_MAYWRITE)]	= "mw",
1159 		[ilog2(VM_MAYEXEC)]	= "me",
1160 		[ilog2(VM_MAYSHARE)]	= "ms",
1161 		[ilog2(VM_GROWSDOWN)]	= "gd",
1162 		[ilog2(VM_PFNMAP)]	= "pf",
1163 		[ilog2(VM_MAYBE_GUARD)]	= "gu",
1164 		[ilog2(VM_LOCKED)]	= "lo",
1165 		[ilog2(VM_IO)]		= "io",
1166 		[ilog2(VM_SEQ_READ)]	= "sr",
1167 		[ilog2(VM_RAND_READ)]	= "rr",
1168 		[ilog2(VM_DONTCOPY)]	= "dc",
1169 		[ilog2(VM_DONTEXPAND)]	= "de",
1170 		[ilog2(VM_LOCKONFAULT)]	= "lf",
1171 		[ilog2(VM_ACCOUNT)]	= "ac",
1172 		[ilog2(VM_NORESERVE)]	= "nr",
1173 		[ilog2(VM_HUGETLB)]	= "ht",
1174 		[ilog2(VM_SYNC)]	= "sf",
1175 		[ilog2(VM_ARCH_1)]	= "ar",
1176 		[ilog2(VM_WIPEONFORK)]	= "wf",
1177 		[ilog2(VM_DONTDUMP)]	= "dd",
1178 #ifdef CONFIG_ARM64_BTI
1179 		[ilog2(VM_ARM64_BTI)]	= "bt",
1180 #endif
1181 #ifdef CONFIG_MEM_SOFT_DIRTY
1182 		[ilog2(VM_SOFTDIRTY)]	= "sd",
1183 #endif
1184 		[ilog2(VM_MIXEDMAP)]	= "mm",
1185 		[ilog2(VM_HUGEPAGE)]	= "hg",
1186 		[ilog2(VM_NOHUGEPAGE)]	= "nh",
1187 		[ilog2(VM_MERGEABLE)]	= "mg",
1188 		[ilog2(VM_UFFD_MISSING)]= "um",
1189 		[ilog2(VM_UFFD_WP)]	= "uw",
1190 #ifdef CONFIG_ARM64_MTE
1191 		[ilog2(VM_MTE)]		= "mt",
1192 		[ilog2(VM_MTE_ALLOWED)]	= "",
1193 #endif
1194 #ifdef CONFIG_ARCH_HAS_PKEYS
1195 		/* These come out via ProtectionKey: */
1196 		[ilog2(VM_PKEY_BIT0)]	= "",
1197 		[ilog2(VM_PKEY_BIT1)]	= "",
1198 		[ilog2(VM_PKEY_BIT2)]	= "",
1199 #if CONFIG_ARCH_PKEY_BITS > 3
1200 		[ilog2(VM_PKEY_BIT3)]	= "",
1201 #endif
1202 #if CONFIG_ARCH_PKEY_BITS > 4
1203 		[ilog2(VM_PKEY_BIT4)]	= "",
1204 #endif
1205 #endif /* CONFIG_ARCH_HAS_PKEYS */
1206 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1207 		[ilog2(VM_UFFD_MINOR)]	= "ui",
1208 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
1209 #ifdef CONFIG_ARCH_HAS_USER_SHADOW_STACK
1210 		[ilog2(VM_SHADOW_STACK)] = "ss",
1211 #endif
1212 #if defined(CONFIG_64BIT) || defined(CONFIG_PPC32)
1213 		[ilog2(VM_DROPPABLE)] = "dp",
1214 #endif
1215 #ifdef CONFIG_64BIT
1216 		[ilog2(VM_SEALED)] = "sl",
1217 #endif
1218 	};
1219 	size_t i;
1220 
1221 	seq_puts(m, "VmFlags: ");
1222 	for (i = 0; i < BITS_PER_LONG; i++) {
1223 		if (!mnemonics[i][0])
1224 			continue;
1225 		if (vma->vm_flags & (1UL << i))
1226 			seq_printf(m, "%s ", mnemonics[i]);
1227 	}
1228 	seq_putc(m, '\n');
1229 }
1230 
1231 #ifdef CONFIG_HUGETLB_PAGE
1232 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
1233 				 unsigned long addr, unsigned long end,
1234 				 struct mm_walk *walk)
1235 {
1236 	struct mem_size_stats *mss = walk->private;
1237 	struct vm_area_struct *vma = walk->vma;
1238 	struct folio *folio = NULL;
1239 	bool present = false;
1240 	spinlock_t *ptl;
1241 	pte_t ptent;
1242 
1243 	ptl = huge_pte_lock(hstate_vma(vma), walk->mm, pte);
1244 	ptent = huge_ptep_get(walk->mm, addr, pte);
1245 	if (pte_present(ptent)) {
1246 		folio = page_folio(pte_page(ptent));
1247 		present = true;
1248 	} else {
1249 		const softleaf_t entry = softleaf_from_pte(ptent);
1250 
1251 		if (softleaf_has_pfn(entry))
1252 			folio = softleaf_to_folio(entry);
1253 	}
1254 
1255 	if (folio) {
1256 		/* We treat non-present entries as "maybe shared". */
1257 		if (!present || folio_maybe_mapped_shared(folio) ||
1258 		    hugetlb_pmd_shared(pte))
1259 			mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
1260 		else
1261 			mss->private_hugetlb += huge_page_size(hstate_vma(vma));
1262 	}
1263 	spin_unlock(ptl);
1264 	return 0;
1265 }
1266 #else
1267 #define smaps_hugetlb_range	NULL
1268 #endif /* HUGETLB_PAGE */
1269 
1270 static const struct mm_walk_ops smaps_walk_ops = {
1271 	.pmd_entry		= smaps_pte_range,
1272 	.hugetlb_entry		= smaps_hugetlb_range,
1273 	.walk_lock		= PGWALK_RDLOCK,
1274 };
1275 
1276 static const struct mm_walk_ops smaps_shmem_walk_ops = {
1277 	.pmd_entry		= smaps_pte_range,
1278 	.hugetlb_entry		= smaps_hugetlb_range,
1279 	.pte_hole		= smaps_pte_hole,
1280 	.walk_lock		= PGWALK_RDLOCK,
1281 };
1282 
1283 /*
1284  * Gather mem stats from @vma with the indicated beginning
1285  * address @start, and keep them in @mss.
1286  *
1287  * Use vm_start of @vma as the beginning address if @start is 0.
1288  */
1289 static void smap_gather_stats(struct vm_area_struct *vma,
1290 		struct mem_size_stats *mss, unsigned long start)
1291 {
1292 	const struct mm_walk_ops *ops = &smaps_walk_ops;
1293 
1294 	/* Invalid start */
1295 	if (start >= vma->vm_end)
1296 		return;
1297 
1298 	if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
1299 		/*
1300 		 * For shared or readonly shmem mappings we know that all
1301 		 * swapped out pages belong to the shmem object, and we can
1302 		 * obtain the swap value much more efficiently. For private
1303 		 * writable mappings, we might have COW pages that are
1304 		 * not affected by the parent swapped out pages of the shmem
1305 		 * object, so we have to distinguish them during the page walk.
1306 		 * Unless we know that the shmem object (or the part mapped by
1307 		 * our VMA) has no swapped out pages at all.
1308 		 */
1309 		unsigned long shmem_swapped = shmem_swap_usage(vma);
1310 
1311 		if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
1312 					!(vma->vm_flags & VM_WRITE))) {
1313 			mss->swap += shmem_swapped;
1314 		} else {
1315 			ops = &smaps_shmem_walk_ops;
1316 		}
1317 	}
1318 
1319 	/* mmap_lock is held in m_start */
1320 	if (!start)
1321 		walk_page_vma(vma, ops, mss);
1322 	else
1323 		walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss);
1324 }
1325 
1326 #define SEQ_PUT_DEC(str, val) \
1327 		seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
1328 
1329 /* Show the contents common for smaps and smaps_rollup */
1330 static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
1331 	bool rollup_mode)
1332 {
1333 	SEQ_PUT_DEC("Rss:            ", mss->resident);
1334 	SEQ_PUT_DEC(" kB\nPss:            ", mss->pss >> PSS_SHIFT);
1335 	SEQ_PUT_DEC(" kB\nPss_Dirty:      ", mss->pss_dirty >> PSS_SHIFT);
1336 	if (rollup_mode) {
1337 		/*
1338 		 * These are meaningful only for smaps_rollup, otherwise two of
1339 		 * them are zero, and the other one is the same as Pss.
1340 		 */
1341 		SEQ_PUT_DEC(" kB\nPss_Anon:       ",
1342 			mss->pss_anon >> PSS_SHIFT);
1343 		SEQ_PUT_DEC(" kB\nPss_File:       ",
1344 			mss->pss_file >> PSS_SHIFT);
1345 		SEQ_PUT_DEC(" kB\nPss_Shmem:      ",
1346 			mss->pss_shmem >> PSS_SHIFT);
1347 	}
1348 	SEQ_PUT_DEC(" kB\nShared_Clean:   ", mss->shared_clean);
1349 	SEQ_PUT_DEC(" kB\nShared_Dirty:   ", mss->shared_dirty);
1350 	SEQ_PUT_DEC(" kB\nPrivate_Clean:  ", mss->private_clean);
1351 	SEQ_PUT_DEC(" kB\nPrivate_Dirty:  ", mss->private_dirty);
1352 	SEQ_PUT_DEC(" kB\nReferenced:     ", mss->referenced);
1353 	SEQ_PUT_DEC(" kB\nAnonymous:      ", mss->anonymous);
1354 	SEQ_PUT_DEC(" kB\nKSM:            ", mss->ksm);
1355 	SEQ_PUT_DEC(" kB\nLazyFree:       ", mss->lazyfree);
1356 	SEQ_PUT_DEC(" kB\nAnonHugePages:  ", mss->anonymous_thp);
1357 	SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
1358 	SEQ_PUT_DEC(" kB\nFilePmdMapped:  ", mss->file_thp);
1359 	SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
1360 	seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
1361 				  mss->private_hugetlb >> 10, 7);
1362 	SEQ_PUT_DEC(" kB\nSwap:           ", mss->swap);
1363 	SEQ_PUT_DEC(" kB\nSwapPss:        ",
1364 					mss->swap_pss >> PSS_SHIFT);
1365 	SEQ_PUT_DEC(" kB\nLocked:         ",
1366 					mss->pss_locked >> PSS_SHIFT);
1367 	seq_puts(m, " kB\n");
1368 }
1369 
1370 static int show_smap(struct seq_file *m, void *v)
1371 {
1372 	struct vm_area_struct *vma = v;
1373 	struct mem_size_stats mss = {};
1374 
1375 	smap_gather_stats(vma, &mss, 0);
1376 
1377 	show_map_vma(m, vma);
1378 
1379 	SEQ_PUT_DEC("Size:           ", vma->vm_end - vma->vm_start);
1380 	SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
1381 	SEQ_PUT_DEC(" kB\nMMUPageSize:    ", vma_mmu_pagesize(vma));
1382 	seq_puts(m, " kB\n");
1383 
1384 	__show_smap(m, &mss, false);
1385 
1386 	seq_printf(m, "THPeligible:    %8u\n",
1387 		   !!thp_vma_allowable_orders(vma, vma->vm_flags, TVA_SMAPS,
1388 					      THP_ORDERS_ALL));
1389 
1390 	if (arch_pkeys_enabled())
1391 		seq_printf(m, "ProtectionKey:  %8u\n", vma_pkey(vma));
1392 	show_smap_vma_flags(m, vma);
1393 
1394 	return 0;
1395 }
1396 
1397 static int show_smaps_rollup(struct seq_file *m, void *v)
1398 {
1399 	struct proc_maps_private *priv = m->private;
1400 	struct mem_size_stats mss = {};
1401 	struct mm_struct *mm = priv->lock_ctx.mm;
1402 	struct vm_area_struct *vma;
1403 	unsigned long vma_start = 0, last_vma_end = 0;
1404 	int ret = 0;
1405 	VMA_ITERATOR(vmi, mm, 0);
1406 
1407 	priv->task = get_proc_task(priv->inode);
1408 	if (!priv->task)
1409 		return -ESRCH;
1410 
1411 	if (!mm || !mmget_not_zero(mm)) {
1412 		ret = -ESRCH;
1413 		goto out_put_task;
1414 	}
1415 
1416 	ret = mmap_read_lock_killable(mm);
1417 	if (ret)
1418 		goto out_put_mm;
1419 
1420 	hold_task_mempolicy(priv);
1421 	vma = vma_next(&vmi);
1422 
1423 	if (unlikely(!vma))
1424 		goto empty_set;
1425 
1426 	vma_start = vma->vm_start;
1427 	do {
1428 		smap_gather_stats(vma, &mss, 0);
1429 		last_vma_end = vma->vm_end;
1430 
1431 		/*
1432 		 * Release mmap_lock temporarily if someone wants to
1433 		 * access it for write request.
1434 		 */
1435 		if (mmap_lock_is_contended(mm)) {
1436 			vma_iter_invalidate(&vmi);
1437 			mmap_read_unlock(mm);
1438 			ret = mmap_read_lock_killable(mm);
1439 			if (ret) {
1440 				release_task_mempolicy(priv);
1441 				goto out_put_mm;
1442 			}
1443 
1444 			/*
1445 			 * After dropping the lock, there are four cases to
1446 			 * consider. See the following example for explanation.
1447 			 *
1448 			 *   +------+------+-----------+
1449 			 *   | VMA1 | VMA2 | VMA3      |
1450 			 *   +------+------+-----------+
1451 			 *   |      |      |           |
1452 			 *  4k     8k     16k         400k
1453 			 *
1454 			 * Suppose we drop the lock after reading VMA2 due to
1455 			 * contention, then we get:
1456 			 *
1457 			 *	last_vma_end = 16k
1458 			 *
1459 			 * 1) VMA2 is freed, but VMA3 exists:
1460 			 *
1461 			 *    vma_next(vmi) will return VMA3.
1462 			 *    In this case, just continue from VMA3.
1463 			 *
1464 			 * 2) VMA2 still exists:
1465 			 *
1466 			 *    vma_next(vmi) will return VMA3.
1467 			 *    In this case, just continue from VMA3.
1468 			 *
1469 			 * 3) No more VMAs can be found:
1470 			 *
1471 			 *    vma_next(vmi) will return NULL.
1472 			 *    No more things to do, just break.
1473 			 *
1474 			 * 4) (last_vma_end - 1) is the middle of a vma (VMA'):
1475 			 *
1476 			 *    vma_next(vmi) will return VMA' whose range
1477 			 *    contains last_vma_end.
1478 			 *    Iterate VMA' from last_vma_end.
1479 			 */
1480 			vma = vma_next(&vmi);
1481 			/* Case 3 above */
1482 			if (!vma)
1483 				break;
1484 
1485 			/* Case 1 and 2 above */
1486 			if (vma->vm_start >= last_vma_end) {
1487 				smap_gather_stats(vma, &mss, 0);
1488 				last_vma_end = vma->vm_end;
1489 				continue;
1490 			}
1491 
1492 			/* Case 4 above */
1493 			if (vma->vm_end > last_vma_end) {
1494 				smap_gather_stats(vma, &mss, last_vma_end);
1495 				last_vma_end = vma->vm_end;
1496 			}
1497 		}
1498 	} for_each_vma(vmi, vma);
1499 
1500 empty_set:
1501 	show_vma_header_prefix(m, vma_start, last_vma_end, 0, 0, 0, 0);
1502 	seq_pad(m, ' ');
1503 	seq_puts(m, "[rollup]\n");
1504 
1505 	__show_smap(m, &mss, true);
1506 
1507 	release_task_mempolicy(priv);
1508 	mmap_read_unlock(mm);
1509 
1510 out_put_mm:
1511 	mmput(mm);
1512 out_put_task:
1513 	put_task_struct(priv->task);
1514 	priv->task = NULL;
1515 
1516 	return ret;
1517 }
1518 #undef SEQ_PUT_DEC
1519 
1520 static const struct seq_operations proc_pid_smaps_op = {
1521 	.start	= m_start,
1522 	.next	= m_next,
1523 	.stop	= m_stop,
1524 	.show	= show_smap
1525 };
1526 
1527 static int pid_smaps_open(struct inode *inode, struct file *file)
1528 {
1529 	return do_maps_open(inode, file, &proc_pid_smaps_op);
1530 }
1531 
1532 static int smaps_rollup_open(struct inode *inode, struct file *file)
1533 {
1534 	int ret;
1535 	struct proc_maps_private *priv;
1536 
1537 	priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
1538 	if (!priv)
1539 		return -ENOMEM;
1540 
1541 	ret = single_open(file, show_smaps_rollup, priv);
1542 	if (ret)
1543 		goto out_free;
1544 
1545 	priv->inode = inode;
1546 	priv->lock_ctx.mm = proc_mem_open(inode, PTRACE_MODE_READ);
1547 	if (IS_ERR_OR_NULL(priv->lock_ctx.mm)) {
1548 		ret = priv->lock_ctx.mm ? PTR_ERR(priv->lock_ctx.mm) : -ESRCH;
1549 
1550 		single_release(inode, file);
1551 		goto out_free;
1552 	}
1553 
1554 	return 0;
1555 
1556 out_free:
1557 	kfree(priv);
1558 	return ret;
1559 }
1560 
1561 static int smaps_rollup_release(struct inode *inode, struct file *file)
1562 {
1563 	struct seq_file *seq = file->private_data;
1564 	struct proc_maps_private *priv = seq->private;
1565 
1566 	if (priv->lock_ctx.mm)
1567 		mmdrop(priv->lock_ctx.mm);
1568 
1569 	kfree(priv);
1570 	return single_release(inode, file);
1571 }
1572 
1573 const struct file_operations proc_pid_smaps_operations = {
1574 	.open		= pid_smaps_open,
1575 	.read		= seq_read,
1576 	.llseek		= seq_lseek,
1577 	.release	= proc_map_release,
1578 };
1579 
1580 const struct file_operations proc_pid_smaps_rollup_operations = {
1581 	.open		= smaps_rollup_open,
1582 	.read		= seq_read,
1583 	.llseek		= seq_lseek,
1584 	.release	= smaps_rollup_release,
1585 };
1586 
1587 enum clear_refs_types {
1588 	CLEAR_REFS_ALL = 1,
1589 	CLEAR_REFS_ANON,
1590 	CLEAR_REFS_MAPPED,
1591 	CLEAR_REFS_SOFT_DIRTY,
1592 	CLEAR_REFS_MM_HIWATER_RSS,
1593 	CLEAR_REFS_LAST,
1594 };
1595 
1596 struct clear_refs_private {
1597 	enum clear_refs_types type;
1598 };
1599 
1600 static inline bool pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1601 {
1602 	struct folio *folio;
1603 
1604 	if (!pte_write(pte))
1605 		return false;
1606 	if (!is_cow_mapping(vma->vm_flags))
1607 		return false;
1608 	if (likely(!mm_flags_test(MMF_HAS_PINNED, vma->vm_mm)))
1609 		return false;
1610 	folio = vm_normal_folio(vma, addr, pte);
1611 	if (!folio)
1612 		return false;
1613 	return folio_maybe_dma_pinned(folio);
1614 }
1615 
1616 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1617 		unsigned long addr, pte_t *pte)
1618 {
1619 	if (!pgtable_supports_soft_dirty())
1620 		return;
1621 	/*
1622 	 * The soft-dirty tracker uses #PF-s to catch writes
1623 	 * to pages, so write-protect the pte as well. See the
1624 	 * Documentation/admin-guide/mm/soft-dirty.rst for full description
1625 	 * of how soft-dirty works.
1626 	 */
1627 	pte_t ptent = ptep_get(pte);
1628 
1629 	if (pte_none(ptent))
1630 		return;
1631 
1632 	if (pte_present(ptent)) {
1633 		pte_t old_pte;
1634 
1635 		if (pte_is_pinned(vma, addr, ptent))
1636 			return;
1637 		old_pte = ptep_modify_prot_start(vma, addr, pte);
1638 		ptent = pte_wrprotect(old_pte);
1639 		ptent = pte_clear_soft_dirty(ptent);
1640 		ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
1641 	} else {
1642 		ptent = pte_swp_clear_soft_dirty(ptent);
1643 		set_pte_at(vma->vm_mm, addr, pte, ptent);
1644 	}
1645 }
1646 
1647 #if defined(CONFIG_TRANSPARENT_HUGEPAGE)
1648 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1649 		unsigned long addr, pmd_t *pmdp)
1650 {
1651 	pmd_t old, pmd = *pmdp;
1652 
1653 	if (!pgtable_supports_soft_dirty())
1654 		return;
1655 
1656 	if (pmd_present(pmd)) {
1657 		/* See comment in change_huge_pmd() */
1658 		old = pmdp_invalidate(vma, addr, pmdp);
1659 		if (pmd_dirty(old))
1660 			pmd = pmd_mkdirty(pmd);
1661 		if (pmd_young(old))
1662 			pmd = pmd_mkyoung(pmd);
1663 
1664 		pmd = pmd_wrprotect(pmd);
1665 		pmd = pmd_clear_soft_dirty(pmd);
1666 
1667 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1668 	} else if (pmd_is_migration_entry(pmd)) {
1669 		pmd = pmd_swp_clear_soft_dirty(pmd);
1670 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1671 	}
1672 }
1673 #else
1674 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1675 		unsigned long addr, pmd_t *pmdp)
1676 {
1677 }
1678 #endif
1679 
1680 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1681 				unsigned long end, struct mm_walk *walk)
1682 {
1683 	struct clear_refs_private *cp = walk->private;
1684 	struct vm_area_struct *vma = walk->vma;
1685 	pte_t *pte, ptent;
1686 	spinlock_t *ptl;
1687 	struct folio *folio;
1688 
1689 	ptl = pmd_trans_huge_lock(pmd, vma);
1690 	if (ptl) {
1691 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1692 			clear_soft_dirty_pmd(vma, addr, pmd);
1693 			goto out;
1694 		}
1695 
1696 		if (!pmd_present(*pmd))
1697 			goto out;
1698 
1699 		folio = pmd_folio(*pmd);
1700 
1701 		/* Clear accessed and referenced bits. */
1702 		pmdp_test_and_clear_young(vma, addr, pmd);
1703 		folio_test_clear_young(folio);
1704 		folio_clear_referenced(folio);
1705 out:
1706 		spin_unlock(ptl);
1707 		return 0;
1708 	}
1709 
1710 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1711 	if (!pte) {
1712 		walk->action = ACTION_AGAIN;
1713 		return 0;
1714 	}
1715 	for (; addr != end; pte++, addr += PAGE_SIZE) {
1716 		ptent = ptep_get(pte);
1717 
1718 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1719 			clear_soft_dirty(vma, addr, pte);
1720 			continue;
1721 		}
1722 
1723 		if (!pte_present(ptent))
1724 			continue;
1725 
1726 		folio = vm_normal_folio(vma, addr, ptent);
1727 		if (!folio)
1728 			continue;
1729 
1730 		/* Clear accessed and referenced bits. */
1731 		ptep_test_and_clear_young(vma, addr, pte);
1732 		folio_test_clear_young(folio);
1733 		folio_clear_referenced(folio);
1734 	}
1735 	pte_unmap_unlock(pte - 1, ptl);
1736 	cond_resched();
1737 	return 0;
1738 }
1739 
1740 static int clear_refs_test_walk(unsigned long start, unsigned long end,
1741 				struct mm_walk *walk)
1742 {
1743 	struct clear_refs_private *cp = walk->private;
1744 	struct vm_area_struct *vma = walk->vma;
1745 
1746 	if (vma->vm_flags & VM_PFNMAP)
1747 		return 1;
1748 
1749 	/*
1750 	 * Writing 1 to /proc/pid/clear_refs affects all pages.
1751 	 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1752 	 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1753 	 * Writing 4 to /proc/pid/clear_refs affects all pages.
1754 	 */
1755 	if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1756 		return 1;
1757 	if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1758 		return 1;
1759 	return 0;
1760 }
1761 
1762 static const struct mm_walk_ops clear_refs_walk_ops = {
1763 	.pmd_entry		= clear_refs_pte_range,
1764 	.test_walk		= clear_refs_test_walk,
1765 	.walk_lock		= PGWALK_WRLOCK,
1766 };
1767 
1768 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1769 				size_t count, loff_t *ppos)
1770 {
1771 	struct task_struct *task;
1772 	char buffer[PROC_NUMBUF] = {};
1773 	struct mm_struct *mm;
1774 	struct vm_area_struct *vma;
1775 	enum clear_refs_types type;
1776 	int itype;
1777 	int rv;
1778 
1779 	if (count > sizeof(buffer) - 1)
1780 		count = sizeof(buffer) - 1;
1781 	if (copy_from_user(buffer, buf, count))
1782 		return -EFAULT;
1783 	rv = kstrtoint(strstrip(buffer), 10, &itype);
1784 	if (rv < 0)
1785 		return rv;
1786 	type = (enum clear_refs_types)itype;
1787 	if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1788 		return -EINVAL;
1789 
1790 	task = get_proc_task(file_inode(file));
1791 	if (!task)
1792 		return -ESRCH;
1793 	mm = get_task_mm(task);
1794 	if (mm) {
1795 		VMA_ITERATOR(vmi, mm, 0);
1796 		struct mmu_notifier_range range;
1797 		struct clear_refs_private cp = {
1798 			.type = type,
1799 		};
1800 
1801 		if (mmap_write_lock_killable(mm)) {
1802 			count = -EINTR;
1803 			goto out_mm;
1804 		}
1805 		if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1806 			/*
1807 			 * Writing 5 to /proc/pid/clear_refs resets the peak
1808 			 * resident set size to this mm's current rss value.
1809 			 */
1810 			reset_mm_hiwater_rss(mm);
1811 			goto out_unlock;
1812 		}
1813 
1814 		if (type == CLEAR_REFS_SOFT_DIRTY) {
1815 			for_each_vma(vmi, vma) {
1816 				if (!(vma->vm_flags & VM_SOFTDIRTY))
1817 					continue;
1818 				vm_flags_clear(vma, VM_SOFTDIRTY);
1819 				vma_set_page_prot(vma);
1820 			}
1821 
1822 			inc_tlb_flush_pending(mm);
1823 			mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
1824 						0, mm, 0, -1UL);
1825 			mmu_notifier_invalidate_range_start(&range);
1826 		}
1827 		walk_page_range(mm, 0, -1, &clear_refs_walk_ops, &cp);
1828 		if (type == CLEAR_REFS_SOFT_DIRTY) {
1829 			mmu_notifier_invalidate_range_end(&range);
1830 			flush_tlb_mm(mm);
1831 			dec_tlb_flush_pending(mm);
1832 		}
1833 out_unlock:
1834 		mmap_write_unlock(mm);
1835 out_mm:
1836 		mmput(mm);
1837 	}
1838 	put_task_struct(task);
1839 
1840 	return count;
1841 }
1842 
1843 const struct file_operations proc_clear_refs_operations = {
1844 	.write		= clear_refs_write,
1845 	.llseek		= noop_llseek,
1846 };
1847 
1848 typedef struct {
1849 	u64 pme;
1850 } pagemap_entry_t;
1851 
1852 struct pagemapread {
1853 	int pos, len;		/* units: PM_ENTRY_BYTES, not bytes */
1854 	pagemap_entry_t *buffer;
1855 	bool show_pfn;
1856 };
1857 
1858 #define PAGEMAP_WALK_SIZE	(PMD_SIZE)
1859 #define PAGEMAP_WALK_MASK	(PMD_MASK)
1860 
1861 #define PM_ENTRY_BYTES		sizeof(pagemap_entry_t)
1862 #define PM_PFRAME_BITS		55
1863 #define PM_PFRAME_MASK		GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1864 #define PM_SOFT_DIRTY		BIT_ULL(55)
1865 #define PM_MMAP_EXCLUSIVE	BIT_ULL(56)
1866 #define PM_UFFD_WP		BIT_ULL(57)
1867 #define PM_GUARD_REGION		BIT_ULL(58)
1868 #define PM_FILE			BIT_ULL(61)
1869 #define PM_SWAP			BIT_ULL(62)
1870 #define PM_PRESENT		BIT_ULL(63)
1871 
1872 #define PM_END_OF_BUFFER    1
1873 
1874 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1875 {
1876 	return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1877 }
1878 
1879 static int add_to_pagemap(pagemap_entry_t *pme, struct pagemapread *pm)
1880 {
1881 	pm->buffer[pm->pos++] = *pme;
1882 	if (pm->pos >= pm->len)
1883 		return PM_END_OF_BUFFER;
1884 	return 0;
1885 }
1886 
1887 static bool __folio_page_mapped_exclusively(struct folio *folio, struct page *page)
1888 {
1889 	if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT))
1890 		return folio_precise_page_mapcount(folio, page) == 1;
1891 	return !folio_maybe_mapped_shared(folio);
1892 }
1893 
1894 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1895 			    __always_unused int depth, struct mm_walk *walk)
1896 {
1897 	struct pagemapread *pm = walk->private;
1898 	unsigned long addr = start;
1899 	int err = 0;
1900 
1901 	while (addr < end) {
1902 		struct vm_area_struct *vma = find_vma(walk->mm, addr);
1903 		pagemap_entry_t pme = make_pme(0, 0);
1904 		/* End of address space hole, which we mark as non-present. */
1905 		unsigned long hole_end;
1906 
1907 		if (vma)
1908 			hole_end = min(end, vma->vm_start);
1909 		else
1910 			hole_end = end;
1911 
1912 		for (; addr < hole_end; addr += PAGE_SIZE) {
1913 			err = add_to_pagemap(&pme, pm);
1914 			if (err)
1915 				goto out;
1916 		}
1917 
1918 		if (!vma)
1919 			break;
1920 
1921 		/* Addresses in the VMA. */
1922 		if (vma->vm_flags & VM_SOFTDIRTY)
1923 			pme = make_pme(0, PM_SOFT_DIRTY);
1924 		for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1925 			err = add_to_pagemap(&pme, pm);
1926 			if (err)
1927 				goto out;
1928 		}
1929 	}
1930 out:
1931 	return err;
1932 }
1933 
1934 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1935 		struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1936 {
1937 	u64 frame = 0, flags = 0;
1938 	struct page *page = NULL;
1939 	struct folio *folio;
1940 
1941 	if (pte_none(pte))
1942 		goto out;
1943 
1944 	if (pte_present(pte)) {
1945 		if (pm->show_pfn)
1946 			frame = pte_pfn(pte);
1947 		flags |= PM_PRESENT;
1948 		page = vm_normal_page(vma, addr, pte);
1949 		if (pte_soft_dirty(pte))
1950 			flags |= PM_SOFT_DIRTY;
1951 		if (pte_uffd_wp(pte))
1952 			flags |= PM_UFFD_WP;
1953 	} else {
1954 		softleaf_t entry;
1955 
1956 		if (pte_swp_soft_dirty(pte))
1957 			flags |= PM_SOFT_DIRTY;
1958 		if (pte_swp_uffd_wp(pte))
1959 			flags |= PM_UFFD_WP;
1960 		entry = softleaf_from_pte(pte);
1961 		if (pm->show_pfn) {
1962 			pgoff_t offset;
1963 
1964 			/*
1965 			 * For PFN swap offsets, keeping the offset field
1966 			 * to be PFN only to be compatible with old smaps.
1967 			 */
1968 			if (softleaf_has_pfn(entry))
1969 				offset = softleaf_to_pfn(entry);
1970 			else
1971 				offset = swp_offset(entry);
1972 			frame = swp_type(entry) |
1973 			    (offset << MAX_SWAPFILES_SHIFT);
1974 		}
1975 		flags |= PM_SWAP;
1976 		if (softleaf_has_pfn(entry))
1977 			page = softleaf_to_page(entry);
1978 		if (softleaf_is_uffd_wp_marker(entry))
1979 			flags |= PM_UFFD_WP;
1980 		if (softleaf_is_guard_marker(entry))
1981 			flags |=  PM_GUARD_REGION;
1982 	}
1983 
1984 	if (page) {
1985 		folio = page_folio(page);
1986 		if (!folio_test_anon(folio))
1987 			flags |= PM_FILE;
1988 		if ((flags & PM_PRESENT) &&
1989 		    __folio_page_mapped_exclusively(folio, page))
1990 			flags |= PM_MMAP_EXCLUSIVE;
1991 	}
1992 
1993 out:
1994 	if (vma->vm_flags & VM_SOFTDIRTY)
1995 		flags |= PM_SOFT_DIRTY;
1996 
1997 	return make_pme(frame, flags);
1998 }
1999 
2000 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2001 static int pagemap_pmd_range_thp(pmd_t *pmdp, unsigned long addr,
2002 		unsigned long end, struct vm_area_struct *vma,
2003 		struct pagemapread *pm)
2004 {
2005 	unsigned int idx = (addr & ~PMD_MASK) >> PAGE_SHIFT;
2006 	u64 flags = 0, frame = 0;
2007 	pmd_t pmd = *pmdp;
2008 	struct page *page = NULL;
2009 	struct folio *folio = NULL;
2010 	int err = 0;
2011 
2012 	if (vma->vm_flags & VM_SOFTDIRTY)
2013 		flags |= PM_SOFT_DIRTY;
2014 
2015 	if (pmd_none(pmd))
2016 		goto populate_pagemap;
2017 
2018 	if (pmd_present(pmd)) {
2019 		page = pmd_page(pmd);
2020 
2021 		flags |= PM_PRESENT;
2022 		if (pmd_soft_dirty(pmd))
2023 			flags |= PM_SOFT_DIRTY;
2024 		if (pmd_uffd_wp(pmd))
2025 			flags |= PM_UFFD_WP;
2026 		if (pm->show_pfn)
2027 			frame = pmd_pfn(pmd) + idx;
2028 	} else if (thp_migration_supported()) {
2029 		const softleaf_t entry = softleaf_from_pmd(pmd);
2030 		unsigned long offset;
2031 
2032 		if (pm->show_pfn) {
2033 			if (softleaf_has_pfn(entry))
2034 				offset = softleaf_to_pfn(entry) + idx;
2035 			else
2036 				offset = swp_offset(entry) + idx;
2037 			frame = swp_type(entry) |
2038 				(offset << MAX_SWAPFILES_SHIFT);
2039 		}
2040 		flags |= PM_SWAP;
2041 		if (pmd_swp_soft_dirty(pmd))
2042 			flags |= PM_SOFT_DIRTY;
2043 		if (pmd_swp_uffd_wp(pmd))
2044 			flags |= PM_UFFD_WP;
2045 		VM_WARN_ON_ONCE(!pmd_is_migration_entry(pmd));
2046 		page = softleaf_to_page(entry);
2047 	}
2048 
2049 	if (page) {
2050 		folio = page_folio(page);
2051 		if (!folio_test_anon(folio))
2052 			flags |= PM_FILE;
2053 	}
2054 
2055 populate_pagemap:
2056 	for (; addr != end; addr += PAGE_SIZE, idx++) {
2057 		u64 cur_flags = flags;
2058 		pagemap_entry_t pme;
2059 
2060 		if (folio && (flags & PM_PRESENT) &&
2061 		    __folio_page_mapped_exclusively(folio, page))
2062 			cur_flags |= PM_MMAP_EXCLUSIVE;
2063 
2064 		pme = make_pme(frame, cur_flags);
2065 		err = add_to_pagemap(&pme, pm);
2066 		if (err)
2067 			break;
2068 		if (pm->show_pfn) {
2069 			if (flags & PM_PRESENT)
2070 				frame++;
2071 			else if (flags & PM_SWAP)
2072 				frame += (1 << MAX_SWAPFILES_SHIFT);
2073 		}
2074 	}
2075 	return err;
2076 }
2077 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2078 
2079 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
2080 			     struct mm_walk *walk)
2081 {
2082 	struct vm_area_struct *vma = walk->vma;
2083 	struct pagemapread *pm = walk->private;
2084 	spinlock_t *ptl;
2085 	pte_t *pte, *orig_pte;
2086 	int err = 0;
2087 
2088 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2089 	ptl = pmd_trans_huge_lock(pmdp, vma);
2090 	if (ptl) {
2091 		err = pagemap_pmd_range_thp(pmdp, addr, end, vma, pm);
2092 		spin_unlock(ptl);
2093 		return err;
2094 	}
2095 #endif
2096 
2097 	/*
2098 	 * We can assume that @vma always points to a valid one and @end never
2099 	 * goes beyond vma->vm_end.
2100 	 */
2101 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
2102 	if (!pte) {
2103 		walk->action = ACTION_AGAIN;
2104 		return err;
2105 	}
2106 	for (; addr < end; pte++, addr += PAGE_SIZE) {
2107 		pagemap_entry_t pme;
2108 
2109 		pme = pte_to_pagemap_entry(pm, vma, addr, ptep_get(pte));
2110 		err = add_to_pagemap(&pme, pm);
2111 		if (err)
2112 			break;
2113 	}
2114 	pte_unmap_unlock(orig_pte, ptl);
2115 
2116 	cond_resched();
2117 
2118 	return err;
2119 }
2120 
2121 #ifdef CONFIG_HUGETLB_PAGE
2122 /* This function walks within one hugetlb entry in the single call */
2123 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
2124 				 unsigned long addr, unsigned long end,
2125 				 struct mm_walk *walk)
2126 {
2127 	struct pagemapread *pm = walk->private;
2128 	struct vm_area_struct *vma = walk->vma;
2129 	u64 flags = 0, frame = 0;
2130 	spinlock_t *ptl;
2131 	int err = 0;
2132 	pte_t pte;
2133 
2134 	if (vma->vm_flags & VM_SOFTDIRTY)
2135 		flags |= PM_SOFT_DIRTY;
2136 
2137 	ptl = huge_pte_lock(hstate_vma(vma), walk->mm, ptep);
2138 	pte = huge_ptep_get(walk->mm, addr, ptep);
2139 	if (pte_present(pte)) {
2140 		struct folio *folio = page_folio(pte_page(pte));
2141 
2142 		if (!folio_test_anon(folio))
2143 			flags |= PM_FILE;
2144 
2145 		if (!folio_maybe_mapped_shared(folio) &&
2146 		    !hugetlb_pmd_shared(ptep))
2147 			flags |= PM_MMAP_EXCLUSIVE;
2148 
2149 		if (huge_pte_uffd_wp(pte))
2150 			flags |= PM_UFFD_WP;
2151 
2152 		flags |= PM_PRESENT;
2153 		if (pm->show_pfn)
2154 			frame = pte_pfn(pte) +
2155 				((addr & ~hmask) >> PAGE_SHIFT);
2156 	} else if (pte_swp_uffd_wp_any(pte)) {
2157 		flags |= PM_UFFD_WP;
2158 	}
2159 
2160 	for (; addr != end; addr += PAGE_SIZE) {
2161 		pagemap_entry_t pme = make_pme(frame, flags);
2162 
2163 		err = add_to_pagemap(&pme, pm);
2164 		if (err)
2165 			break;
2166 		if (pm->show_pfn && (flags & PM_PRESENT))
2167 			frame++;
2168 	}
2169 
2170 	spin_unlock(ptl);
2171 	cond_resched();
2172 
2173 	return err;
2174 }
2175 #else
2176 #define pagemap_hugetlb_range	NULL
2177 #endif /* HUGETLB_PAGE */
2178 
2179 static const struct mm_walk_ops pagemap_ops = {
2180 	.pmd_entry	= pagemap_pmd_range,
2181 	.pte_hole	= pagemap_pte_hole,
2182 	.hugetlb_entry	= pagemap_hugetlb_range,
2183 	.walk_lock	= PGWALK_RDLOCK,
2184 };
2185 
2186 /*
2187  * /proc/pid/pagemap - an array mapping virtual pages to pfns
2188  *
2189  * For each page in the address space, this file contains one 64-bit entry
2190  * consisting of the following:
2191  *
2192  * Bits 0-54  page frame number (PFN) if present
2193  * Bits 0-4   swap type if swapped
2194  * Bits 5-54  swap offset if swapped
2195  * Bit  55    pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
2196  * Bit  56    page exclusively mapped
2197  * Bit  57    pte is uffd-wp write-protected
2198  * Bit  58    pte is a guard region
2199  * Bits 59-60 zero
2200  * Bit  61    page is file-page or shared-anon
2201  * Bit  62    page swapped
2202  * Bit  63    page present
2203  *
2204  * If the page is not present but in swap, then the PFN contains an
2205  * encoding of the swap file number and the page's offset into the
2206  * swap. Unmapped pages return a null PFN. This allows determining
2207  * precisely which pages are mapped (or in swap) and comparing mapped
2208  * pages between processes.
2209  *
2210  * Efficient users of this interface will use /proc/pid/maps to
2211  * determine which areas of memory are actually mapped and llseek to
2212  * skip over unmapped regions.
2213  */
2214 static ssize_t pagemap_read(struct file *file, char __user *buf,
2215 			    size_t count, loff_t *ppos)
2216 {
2217 	struct mm_struct *mm = file->private_data;
2218 	struct pagemapread pm;
2219 	unsigned long src;
2220 	unsigned long svpfn;
2221 	unsigned long start_vaddr;
2222 	unsigned long end_vaddr;
2223 	int ret = 0, copied = 0;
2224 
2225 	if (!mm || !mmget_not_zero(mm))
2226 		goto out;
2227 
2228 	ret = -EINVAL;
2229 	/* file position must be aligned */
2230 	if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
2231 		goto out_mm;
2232 
2233 	ret = 0;
2234 	if (!count)
2235 		goto out_mm;
2236 
2237 	/* do not disclose physical addresses: attack vector */
2238 	pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
2239 
2240 	pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
2241 	pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
2242 	ret = -ENOMEM;
2243 	if (!pm.buffer)
2244 		goto out_mm;
2245 
2246 	src = *ppos;
2247 	svpfn = src / PM_ENTRY_BYTES;
2248 	end_vaddr = mm->task_size;
2249 
2250 	/* watch out for wraparound */
2251 	start_vaddr = end_vaddr;
2252 	if (svpfn <= (ULONG_MAX >> PAGE_SHIFT)) {
2253 		unsigned long end;
2254 
2255 		ret = mmap_read_lock_killable(mm);
2256 		if (ret)
2257 			goto out_free;
2258 		start_vaddr = untagged_addr_remote(mm, svpfn << PAGE_SHIFT);
2259 		mmap_read_unlock(mm);
2260 
2261 		end = start_vaddr + ((count / PM_ENTRY_BYTES) << PAGE_SHIFT);
2262 		if (end >= start_vaddr && end < mm->task_size)
2263 			end_vaddr = end;
2264 	}
2265 
2266 	/* Ensure the address is inside the task */
2267 	if (start_vaddr > mm->task_size)
2268 		start_vaddr = end_vaddr;
2269 
2270 	ret = 0;
2271 	while (count && (start_vaddr < end_vaddr)) {
2272 		int len;
2273 		unsigned long end;
2274 
2275 		pm.pos = 0;
2276 		end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
2277 		/* overflow ? */
2278 		if (end < start_vaddr || end > end_vaddr)
2279 			end = end_vaddr;
2280 		ret = mmap_read_lock_killable(mm);
2281 		if (ret)
2282 			goto out_free;
2283 		ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm);
2284 		mmap_read_unlock(mm);
2285 		start_vaddr = end;
2286 
2287 		len = min(count, PM_ENTRY_BYTES * pm.pos);
2288 		if (copy_to_user(buf, pm.buffer, len)) {
2289 			ret = -EFAULT;
2290 			goto out_free;
2291 		}
2292 		copied += len;
2293 		buf += len;
2294 		count -= len;
2295 	}
2296 	*ppos += copied;
2297 	if (!ret || ret == PM_END_OF_BUFFER)
2298 		ret = copied;
2299 
2300 out_free:
2301 	kfree(pm.buffer);
2302 out_mm:
2303 	mmput(mm);
2304 out:
2305 	return ret;
2306 }
2307 
2308 static int pagemap_open(struct inode *inode, struct file *file)
2309 {
2310 	struct mm_struct *mm;
2311 
2312 	mm = proc_mem_open(inode, PTRACE_MODE_READ);
2313 	if (IS_ERR_OR_NULL(mm))
2314 		return mm ? PTR_ERR(mm) : -ESRCH;
2315 	file->private_data = mm;
2316 	return 0;
2317 }
2318 
2319 static int pagemap_release(struct inode *inode, struct file *file)
2320 {
2321 	struct mm_struct *mm = file->private_data;
2322 
2323 	if (mm)
2324 		mmdrop(mm);
2325 	return 0;
2326 }
2327 
2328 #define PM_SCAN_CATEGORIES	(PAGE_IS_WPALLOWED | PAGE_IS_WRITTEN |	\
2329 				 PAGE_IS_FILE |	PAGE_IS_PRESENT |	\
2330 				 PAGE_IS_SWAPPED | PAGE_IS_PFNZERO |	\
2331 				 PAGE_IS_HUGE | PAGE_IS_SOFT_DIRTY |	\
2332 				 PAGE_IS_GUARD)
2333 #define PM_SCAN_FLAGS		(PM_SCAN_WP_MATCHING | PM_SCAN_CHECK_WPASYNC)
2334 
2335 struct pagemap_scan_private {
2336 	struct pm_scan_arg arg;
2337 	unsigned long masks_of_interest, cur_vma_category;
2338 	struct page_region *vec_buf;
2339 	unsigned long vec_buf_len, vec_buf_index, found_pages;
2340 	struct page_region __user *vec_out;
2341 };
2342 
2343 static unsigned long pagemap_page_category(struct pagemap_scan_private *p,
2344 					   struct vm_area_struct *vma,
2345 					   unsigned long addr, pte_t pte)
2346 {
2347 	unsigned long categories;
2348 
2349 	if (pte_none(pte))
2350 		return 0;
2351 
2352 	if (pte_present(pte)) {
2353 		struct page *page;
2354 
2355 		categories = PAGE_IS_PRESENT;
2356 
2357 		if (!pte_uffd_wp(pte))
2358 			categories |= PAGE_IS_WRITTEN;
2359 
2360 		if (p->masks_of_interest & PAGE_IS_FILE) {
2361 			page = vm_normal_page(vma, addr, pte);
2362 			if (page && !PageAnon(page))
2363 				categories |= PAGE_IS_FILE;
2364 		}
2365 
2366 		if (is_zero_pfn(pte_pfn(pte)))
2367 			categories |= PAGE_IS_PFNZERO;
2368 		if (pte_soft_dirty(pte))
2369 			categories |= PAGE_IS_SOFT_DIRTY;
2370 	} else {
2371 		softleaf_t entry;
2372 
2373 		categories = PAGE_IS_SWAPPED;
2374 
2375 		if (!pte_swp_uffd_wp_any(pte))
2376 			categories |= PAGE_IS_WRITTEN;
2377 
2378 		entry = softleaf_from_pte(pte);
2379 		if (softleaf_is_guard_marker(entry))
2380 			categories |= PAGE_IS_GUARD;
2381 		else if ((p->masks_of_interest & PAGE_IS_FILE) &&
2382 			 softleaf_has_pfn(entry) &&
2383 			 !folio_test_anon(softleaf_to_folio(entry)))
2384 			categories |= PAGE_IS_FILE;
2385 
2386 		if (pte_swp_soft_dirty(pte))
2387 			categories |= PAGE_IS_SOFT_DIRTY;
2388 	}
2389 
2390 	return categories;
2391 }
2392 
2393 static void make_uffd_wp_pte(struct vm_area_struct *vma,
2394 			     unsigned long addr, pte_t *pte, pte_t ptent)
2395 {
2396 	if (pte_present(ptent)) {
2397 		pte_t old_pte;
2398 
2399 		old_pte = ptep_modify_prot_start(vma, addr, pte);
2400 		ptent = pte_mkuffd_wp(old_pte);
2401 		ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
2402 	} else if (pte_none(ptent)) {
2403 		set_pte_at(vma->vm_mm, addr, pte,
2404 			   make_pte_marker(PTE_MARKER_UFFD_WP));
2405 	} else {
2406 		ptent = pte_swp_mkuffd_wp(ptent);
2407 		set_pte_at(vma->vm_mm, addr, pte, ptent);
2408 	}
2409 }
2410 
2411 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2412 static unsigned long pagemap_thp_category(struct pagemap_scan_private *p,
2413 					  struct vm_area_struct *vma,
2414 					  unsigned long addr, pmd_t pmd)
2415 {
2416 	unsigned long categories = PAGE_IS_HUGE;
2417 
2418 	if (pmd_none(pmd))
2419 		return categories;
2420 
2421 	if (pmd_present(pmd)) {
2422 		struct page *page;
2423 
2424 		categories |= PAGE_IS_PRESENT;
2425 		if (!pmd_uffd_wp(pmd))
2426 			categories |= PAGE_IS_WRITTEN;
2427 
2428 		if (p->masks_of_interest & PAGE_IS_FILE) {
2429 			page = vm_normal_page_pmd(vma, addr, pmd);
2430 			if (page && !PageAnon(page))
2431 				categories |= PAGE_IS_FILE;
2432 		}
2433 
2434 		if (is_huge_zero_pmd(pmd))
2435 			categories |= PAGE_IS_PFNZERO;
2436 		if (pmd_soft_dirty(pmd))
2437 			categories |= PAGE_IS_SOFT_DIRTY;
2438 	} else {
2439 		categories |= PAGE_IS_SWAPPED;
2440 		if (!pmd_swp_uffd_wp(pmd))
2441 			categories |= PAGE_IS_WRITTEN;
2442 		if (pmd_swp_soft_dirty(pmd))
2443 			categories |= PAGE_IS_SOFT_DIRTY;
2444 
2445 		if (p->masks_of_interest & PAGE_IS_FILE) {
2446 			const softleaf_t entry = softleaf_from_pmd(pmd);
2447 
2448 			if (softleaf_has_pfn(entry) &&
2449 			    !folio_test_anon(softleaf_to_folio(entry)))
2450 				categories |= PAGE_IS_FILE;
2451 		}
2452 	}
2453 
2454 	return categories;
2455 }
2456 
2457 static void make_uffd_wp_pmd(struct vm_area_struct *vma,
2458 			     unsigned long addr, pmd_t *pmdp)
2459 {
2460 	pmd_t old, pmd = *pmdp;
2461 
2462 	if (pmd_present(pmd)) {
2463 		old = pmdp_invalidate_ad(vma, addr, pmdp);
2464 		pmd = pmd_mkuffd_wp(old);
2465 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
2466 	} else if (pmd_is_migration_entry(pmd)) {
2467 		pmd = pmd_swp_mkuffd_wp(pmd);
2468 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
2469 	}
2470 }
2471 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2472 
2473 #ifdef CONFIG_HUGETLB_PAGE
2474 static unsigned long pagemap_hugetlb_category(pte_t pte)
2475 {
2476 	unsigned long categories = PAGE_IS_HUGE;
2477 
2478 	if (pte_none(pte))
2479 		return categories;
2480 
2481 	/*
2482 	 * According to pagemap_hugetlb_range(), file-backed HugeTLB
2483 	 * page cannot be swapped. So PAGE_IS_FILE is not checked for
2484 	 * swapped pages.
2485 	 */
2486 	if (pte_present(pte)) {
2487 		categories |= PAGE_IS_PRESENT;
2488 
2489 		if (!huge_pte_uffd_wp(pte))
2490 			categories |= PAGE_IS_WRITTEN;
2491 		if (!PageAnon(pte_page(pte)))
2492 			categories |= PAGE_IS_FILE;
2493 		if (is_zero_pfn(pte_pfn(pte)))
2494 			categories |= PAGE_IS_PFNZERO;
2495 		if (pte_soft_dirty(pte))
2496 			categories |= PAGE_IS_SOFT_DIRTY;
2497 	} else {
2498 		categories |= PAGE_IS_SWAPPED;
2499 
2500 		if (!pte_swp_uffd_wp_any(pte))
2501 			categories |= PAGE_IS_WRITTEN;
2502 		if (pte_swp_soft_dirty(pte))
2503 			categories |= PAGE_IS_SOFT_DIRTY;
2504 	}
2505 
2506 	return categories;
2507 }
2508 
2509 static void make_uffd_wp_huge_pte(struct vm_area_struct *vma,
2510 				  unsigned long addr, pte_t *ptep,
2511 				  pte_t ptent)
2512 {
2513 	const unsigned long psize = huge_page_size(hstate_vma(vma));
2514 	softleaf_t entry;
2515 
2516 	if (huge_pte_none(ptent)) {
2517 		set_huge_pte_at(vma->vm_mm, addr, ptep,
2518 				make_pte_marker(PTE_MARKER_UFFD_WP), psize);
2519 		return;
2520 	}
2521 
2522 	entry = softleaf_from_pte(ptent);
2523 	if (softleaf_is_hwpoison(entry) || softleaf_is_marker(entry))
2524 		return;
2525 
2526 	if (softleaf_is_migration(entry))
2527 		set_huge_pte_at(vma->vm_mm, addr, ptep,
2528 				pte_swp_mkuffd_wp(ptent), psize);
2529 	else
2530 		huge_ptep_modify_prot_commit(vma, addr, ptep, ptent,
2531 					     huge_pte_mkuffd_wp(ptent));
2532 }
2533 #endif /* CONFIG_HUGETLB_PAGE */
2534 
2535 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
2536 static void pagemap_scan_backout_range(struct pagemap_scan_private *p,
2537 				       unsigned long addr, unsigned long end)
2538 {
2539 	struct page_region *cur_buf = &p->vec_buf[p->vec_buf_index];
2540 
2541 	if (!p->vec_buf)
2542 		return;
2543 
2544 	if (cur_buf->start != addr)
2545 		cur_buf->end = addr;
2546 	else
2547 		cur_buf->start = cur_buf->end = 0;
2548 
2549 	p->found_pages -= (end - addr) / PAGE_SIZE;
2550 }
2551 #endif
2552 
2553 static bool pagemap_scan_is_interesting_page(unsigned long categories,
2554 					     const struct pagemap_scan_private *p)
2555 {
2556 	categories ^= p->arg.category_inverted;
2557 	if ((categories & p->arg.category_mask) != p->arg.category_mask)
2558 		return false;
2559 	if (p->arg.category_anyof_mask && !(categories & p->arg.category_anyof_mask))
2560 		return false;
2561 
2562 	return true;
2563 }
2564 
2565 static bool pagemap_scan_is_interesting_vma(unsigned long categories,
2566 					    const struct pagemap_scan_private *p)
2567 {
2568 	unsigned long required = p->arg.category_mask & PAGE_IS_WPALLOWED;
2569 
2570 	categories ^= p->arg.category_inverted;
2571 	if ((categories & required) != required)
2572 		return false;
2573 
2574 	return true;
2575 }
2576 
2577 static int pagemap_scan_test_walk(unsigned long start, unsigned long end,
2578 				  struct mm_walk *walk)
2579 {
2580 	struct pagemap_scan_private *p = walk->private;
2581 	struct vm_area_struct *vma = walk->vma;
2582 	unsigned long vma_category = 0;
2583 	bool wp_allowed = userfaultfd_wp_async(vma) &&
2584 	    userfaultfd_wp_use_markers(vma);
2585 
2586 	if (!wp_allowed) {
2587 		/* User requested explicit failure over wp-async capability */
2588 		if (p->arg.flags & PM_SCAN_CHECK_WPASYNC)
2589 			return -EPERM;
2590 		/*
2591 		 * User requires wr-protect, and allows silently skipping
2592 		 * unsupported vmas.
2593 		 */
2594 		if (p->arg.flags & PM_SCAN_WP_MATCHING)
2595 			return 1;
2596 		/*
2597 		 * Then the request doesn't involve wr-protects at all,
2598 		 * fall through to the rest checks, and allow vma walk.
2599 		 */
2600 	}
2601 
2602 	if (vma->vm_flags & VM_PFNMAP)
2603 		return 1;
2604 
2605 	if (wp_allowed)
2606 		vma_category |= PAGE_IS_WPALLOWED;
2607 
2608 	if (vma->vm_flags & VM_SOFTDIRTY)
2609 		vma_category |= PAGE_IS_SOFT_DIRTY;
2610 
2611 	if (!pagemap_scan_is_interesting_vma(vma_category, p))
2612 		return 1;
2613 
2614 	p->cur_vma_category = vma_category;
2615 
2616 	return 0;
2617 }
2618 
2619 static bool pagemap_scan_push_range(unsigned long categories,
2620 				    struct pagemap_scan_private *p,
2621 				    unsigned long addr, unsigned long end)
2622 {
2623 	struct page_region *cur_buf = &p->vec_buf[p->vec_buf_index];
2624 
2625 	/*
2626 	 * When there is no output buffer provided at all, the sentinel values
2627 	 * won't match here. There is no other way for `cur_buf->end` to be
2628 	 * non-zero other than it being non-empty.
2629 	 */
2630 	if (addr == cur_buf->end && categories == cur_buf->categories) {
2631 		cur_buf->end = end;
2632 		return true;
2633 	}
2634 
2635 	if (cur_buf->end) {
2636 		if (p->vec_buf_index >= p->vec_buf_len - 1)
2637 			return false;
2638 
2639 		cur_buf = &p->vec_buf[++p->vec_buf_index];
2640 	}
2641 
2642 	cur_buf->start = addr;
2643 	cur_buf->end = end;
2644 	cur_buf->categories = categories;
2645 
2646 	return true;
2647 }
2648 
2649 static int pagemap_scan_output(unsigned long categories,
2650 			       struct pagemap_scan_private *p,
2651 			       unsigned long addr, unsigned long *end)
2652 {
2653 	unsigned long n_pages, total_pages;
2654 	int ret = 0;
2655 
2656 	if (!p->vec_buf)
2657 		return 0;
2658 
2659 	categories &= p->arg.return_mask;
2660 
2661 	n_pages = (*end - addr) / PAGE_SIZE;
2662 	if (check_add_overflow(p->found_pages, n_pages, &total_pages) ||
2663 	    total_pages > p->arg.max_pages) {
2664 		size_t n_too_much = total_pages - p->arg.max_pages;
2665 		*end -= n_too_much * PAGE_SIZE;
2666 		n_pages -= n_too_much;
2667 		ret = -ENOSPC;
2668 	}
2669 
2670 	if (!pagemap_scan_push_range(categories, p, addr, *end)) {
2671 		*end = addr;
2672 		n_pages = 0;
2673 		ret = -ENOSPC;
2674 	}
2675 
2676 	p->found_pages += n_pages;
2677 	if (ret)
2678 		p->arg.walk_end = *end;
2679 
2680 	return ret;
2681 }
2682 
2683 static int pagemap_scan_thp_entry(pmd_t *pmd, unsigned long start,
2684 				  unsigned long end, struct mm_walk *walk)
2685 {
2686 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2687 	struct pagemap_scan_private *p = walk->private;
2688 	struct vm_area_struct *vma = walk->vma;
2689 	unsigned long categories;
2690 	spinlock_t *ptl;
2691 	int ret = 0;
2692 
2693 	ptl = pmd_trans_huge_lock(pmd, vma);
2694 	if (!ptl)
2695 		return -ENOENT;
2696 
2697 	categories = p->cur_vma_category |
2698 		     pagemap_thp_category(p, vma, start, *pmd);
2699 
2700 	if (!pagemap_scan_is_interesting_page(categories, p))
2701 		goto out_unlock;
2702 
2703 	ret = pagemap_scan_output(categories, p, start, &end);
2704 	if (start == end)
2705 		goto out_unlock;
2706 
2707 	if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2708 		goto out_unlock;
2709 	if (~categories & PAGE_IS_WRITTEN)
2710 		goto out_unlock;
2711 
2712 	/*
2713 	 * Break huge page into small pages if the WP operation
2714 	 * needs to be performed on a portion of the huge page.
2715 	 */
2716 	if (end != start + HPAGE_SIZE) {
2717 		spin_unlock(ptl);
2718 		split_huge_pmd(vma, pmd, start);
2719 		pagemap_scan_backout_range(p, start, end);
2720 		/* Report as if there was no THP */
2721 		return -ENOENT;
2722 	}
2723 
2724 	make_uffd_wp_pmd(vma, start, pmd);
2725 	flush_tlb_range(vma, start, end);
2726 out_unlock:
2727 	spin_unlock(ptl);
2728 	return ret;
2729 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
2730 	return -ENOENT;
2731 #endif
2732 }
2733 
2734 static int pagemap_scan_pmd_entry(pmd_t *pmd, unsigned long start,
2735 				  unsigned long end, struct mm_walk *walk)
2736 {
2737 	struct pagemap_scan_private *p = walk->private;
2738 	struct vm_area_struct *vma = walk->vma;
2739 	unsigned long addr, flush_end = 0;
2740 	pte_t *pte, *start_pte;
2741 	spinlock_t *ptl;
2742 	int ret;
2743 
2744 	ret = pagemap_scan_thp_entry(pmd, start, end, walk);
2745 	if (ret != -ENOENT)
2746 		return ret;
2747 
2748 	ret = 0;
2749 	start_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl);
2750 	if (!pte) {
2751 		walk->action = ACTION_AGAIN;
2752 		return 0;
2753 	}
2754 
2755 	lazy_mmu_mode_enable();
2756 
2757 	if ((p->arg.flags & PM_SCAN_WP_MATCHING) && !p->vec_out) {
2758 		/* Fast path for performing exclusive WP */
2759 		for (addr = start; addr != end; pte++, addr += PAGE_SIZE) {
2760 			pte_t ptent = ptep_get(pte);
2761 
2762 			if ((pte_present(ptent) && pte_uffd_wp(ptent)) ||
2763 			    pte_swp_uffd_wp_any(ptent))
2764 				continue;
2765 			make_uffd_wp_pte(vma, addr, pte, ptent);
2766 			if (!flush_end)
2767 				start = addr;
2768 			flush_end = addr + PAGE_SIZE;
2769 		}
2770 		goto flush_and_return;
2771 	}
2772 
2773 	if (!p->arg.category_anyof_mask && !p->arg.category_inverted &&
2774 	    p->arg.category_mask == PAGE_IS_WRITTEN &&
2775 	    p->arg.return_mask == PAGE_IS_WRITTEN) {
2776 		for (addr = start; addr < end; pte++, addr += PAGE_SIZE) {
2777 			unsigned long next = addr + PAGE_SIZE;
2778 			pte_t ptent = ptep_get(pte);
2779 
2780 			if ((pte_present(ptent) && pte_uffd_wp(ptent)) ||
2781 			    pte_swp_uffd_wp_any(ptent))
2782 				continue;
2783 			ret = pagemap_scan_output(p->cur_vma_category | PAGE_IS_WRITTEN,
2784 						  p, addr, &next);
2785 			if (next == addr)
2786 				break;
2787 			if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2788 				continue;
2789 			make_uffd_wp_pte(vma, addr, pte, ptent);
2790 			if (!flush_end)
2791 				start = addr;
2792 			flush_end = next;
2793 		}
2794 		goto flush_and_return;
2795 	}
2796 
2797 	for (addr = start; addr != end; pte++, addr += PAGE_SIZE) {
2798 		pte_t ptent = ptep_get(pte);
2799 		unsigned long categories = p->cur_vma_category |
2800 					   pagemap_page_category(p, vma, addr, ptent);
2801 		unsigned long next = addr + PAGE_SIZE;
2802 
2803 		if (!pagemap_scan_is_interesting_page(categories, p))
2804 			continue;
2805 
2806 		ret = pagemap_scan_output(categories, p, addr, &next);
2807 		if (next == addr)
2808 			break;
2809 
2810 		if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2811 			continue;
2812 		if (~categories & PAGE_IS_WRITTEN)
2813 			continue;
2814 
2815 		make_uffd_wp_pte(vma, addr, pte, ptent);
2816 		if (!flush_end)
2817 			start = addr;
2818 		flush_end = next;
2819 	}
2820 
2821 flush_and_return:
2822 	if (flush_end)
2823 		flush_tlb_range(vma, start, addr);
2824 
2825 	lazy_mmu_mode_disable();
2826 	pte_unmap_unlock(start_pte, ptl);
2827 
2828 	cond_resched();
2829 	return ret;
2830 }
2831 
2832 #ifdef CONFIG_HUGETLB_PAGE
2833 static int pagemap_scan_hugetlb_entry(pte_t *ptep, unsigned long hmask,
2834 				      unsigned long start, unsigned long end,
2835 				      struct mm_walk *walk)
2836 {
2837 	struct pagemap_scan_private *p = walk->private;
2838 	struct vm_area_struct *vma = walk->vma;
2839 	unsigned long categories;
2840 	spinlock_t *ptl;
2841 	int ret = 0;
2842 	pte_t pte;
2843 
2844 	if (~p->arg.flags & PM_SCAN_WP_MATCHING) {
2845 		/* Go the short route when not write-protecting pages. */
2846 
2847 		pte = huge_ptep_get(walk->mm, start, ptep);
2848 		categories = p->cur_vma_category | pagemap_hugetlb_category(pte);
2849 
2850 		if (!pagemap_scan_is_interesting_page(categories, p))
2851 			return 0;
2852 
2853 		return pagemap_scan_output(categories, p, start, &end);
2854 	}
2855 
2856 	i_mmap_lock_write(vma->vm_file->f_mapping);
2857 	ptl = huge_pte_lock(hstate_vma(vma), vma->vm_mm, ptep);
2858 
2859 	pte = huge_ptep_get(walk->mm, start, ptep);
2860 	categories = p->cur_vma_category | pagemap_hugetlb_category(pte);
2861 
2862 	if (!pagemap_scan_is_interesting_page(categories, p))
2863 		goto out_unlock;
2864 
2865 	ret = pagemap_scan_output(categories, p, start, &end);
2866 	if (start == end)
2867 		goto out_unlock;
2868 
2869 	if (~categories & PAGE_IS_WRITTEN)
2870 		goto out_unlock;
2871 
2872 	if (end != start + HPAGE_SIZE) {
2873 		/* Partial HugeTLB page WP isn't possible. */
2874 		pagemap_scan_backout_range(p, start, end);
2875 		p->arg.walk_end = start;
2876 		ret = 0;
2877 		goto out_unlock;
2878 	}
2879 
2880 	make_uffd_wp_huge_pte(vma, start, ptep, pte);
2881 	flush_hugetlb_tlb_range(vma, start, end);
2882 
2883 out_unlock:
2884 	spin_unlock(ptl);
2885 	i_mmap_unlock_write(vma->vm_file->f_mapping);
2886 
2887 	return ret;
2888 }
2889 #else
2890 #define pagemap_scan_hugetlb_entry NULL
2891 #endif
2892 
2893 static int pagemap_scan_pte_hole(unsigned long addr, unsigned long end,
2894 				 int depth, struct mm_walk *walk)
2895 {
2896 	struct pagemap_scan_private *p = walk->private;
2897 	struct vm_area_struct *vma = walk->vma;
2898 	int ret, err;
2899 
2900 	if (!vma || !pagemap_scan_is_interesting_page(p->cur_vma_category, p))
2901 		return 0;
2902 
2903 	ret = pagemap_scan_output(p->cur_vma_category, p, addr, &end);
2904 	if (addr == end)
2905 		return ret;
2906 
2907 	if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2908 		return ret;
2909 
2910 	err = uffd_wp_range(vma, addr, end - addr, true);
2911 	if (err < 0)
2912 		ret = err;
2913 
2914 	return ret;
2915 }
2916 
2917 static const struct mm_walk_ops pagemap_scan_ops = {
2918 	.test_walk = pagemap_scan_test_walk,
2919 	.pmd_entry = pagemap_scan_pmd_entry,
2920 	.pte_hole = pagemap_scan_pte_hole,
2921 	.hugetlb_entry = pagemap_scan_hugetlb_entry,
2922 };
2923 
2924 static int pagemap_scan_get_args(struct pm_scan_arg *arg,
2925 				 unsigned long uarg)
2926 {
2927 	if (copy_from_user(arg, (void __user *)uarg, sizeof(*arg)))
2928 		return -EFAULT;
2929 
2930 	if (arg->size != sizeof(struct pm_scan_arg))
2931 		return -EINVAL;
2932 
2933 	/* Validate requested features */
2934 	if (arg->flags & ~PM_SCAN_FLAGS)
2935 		return -EINVAL;
2936 	if ((arg->category_inverted | arg->category_mask |
2937 	     arg->category_anyof_mask | arg->return_mask) & ~PM_SCAN_CATEGORIES)
2938 		return -EINVAL;
2939 
2940 	arg->start = untagged_addr((unsigned long)arg->start);
2941 	arg->end = untagged_addr((unsigned long)arg->end);
2942 	arg->vec = untagged_addr((unsigned long)arg->vec);
2943 
2944 	/* Validate memory pointers */
2945 	if (!IS_ALIGNED(arg->start, PAGE_SIZE))
2946 		return -EINVAL;
2947 	if (!access_ok((void __user *)(long)arg->start, arg->end - arg->start))
2948 		return -EFAULT;
2949 	if (!arg->vec && arg->vec_len)
2950 		return -EINVAL;
2951 	if (UINT_MAX == SIZE_MAX && arg->vec_len > SIZE_MAX)
2952 		return -EINVAL;
2953 	if (arg->vec && !access_ok((void __user *)(long)arg->vec,
2954 				   size_mul(arg->vec_len, sizeof(struct page_region))))
2955 		return -EFAULT;
2956 
2957 	/* Fixup default values */
2958 	arg->end = ALIGN(arg->end, PAGE_SIZE);
2959 	arg->walk_end = 0;
2960 	if (!arg->max_pages)
2961 		arg->max_pages = ULONG_MAX;
2962 
2963 	return 0;
2964 }
2965 
2966 static int pagemap_scan_writeback_args(struct pm_scan_arg *arg,
2967 				       unsigned long uargl)
2968 {
2969 	struct pm_scan_arg __user *uarg	= (void __user *)uargl;
2970 
2971 	if (copy_to_user(&uarg->walk_end, &arg->walk_end, sizeof(arg->walk_end)))
2972 		return -EFAULT;
2973 
2974 	return 0;
2975 }
2976 
2977 static int pagemap_scan_init_bounce_buffer(struct pagemap_scan_private *p)
2978 {
2979 	if (!p->arg.vec_len)
2980 		return 0;
2981 
2982 	p->vec_buf_len = min_t(size_t, PAGEMAP_WALK_SIZE >> PAGE_SHIFT,
2983 			       p->arg.vec_len);
2984 	p->vec_buf = kmalloc_array(p->vec_buf_len, sizeof(*p->vec_buf),
2985 				   GFP_KERNEL);
2986 	if (!p->vec_buf)
2987 		return -ENOMEM;
2988 
2989 	p->vec_buf->start = p->vec_buf->end = 0;
2990 	p->vec_out = (struct page_region __user *)(long)p->arg.vec;
2991 
2992 	return 0;
2993 }
2994 
2995 static long pagemap_scan_flush_buffer(struct pagemap_scan_private *p)
2996 {
2997 	const struct page_region *buf = p->vec_buf;
2998 	long n = p->vec_buf_index;
2999 
3000 	if (!p->vec_buf)
3001 		return 0;
3002 
3003 	if (buf[n].end != buf[n].start)
3004 		n++;
3005 
3006 	if (!n)
3007 		return 0;
3008 
3009 	if (copy_to_user(p->vec_out, buf, n * sizeof(*buf)))
3010 		return -EFAULT;
3011 
3012 	p->arg.vec_len -= n;
3013 	p->vec_out += n;
3014 
3015 	p->vec_buf_index = 0;
3016 	p->vec_buf_len = min_t(size_t, p->vec_buf_len, p->arg.vec_len);
3017 	p->vec_buf->start = p->vec_buf->end = 0;
3018 
3019 	return n;
3020 }
3021 
3022 static long do_pagemap_scan(struct mm_struct *mm, unsigned long uarg)
3023 {
3024 	struct pagemap_scan_private p = {0};
3025 	unsigned long walk_start;
3026 	size_t n_ranges_out = 0;
3027 	int ret;
3028 
3029 	ret = pagemap_scan_get_args(&p.arg, uarg);
3030 	if (ret)
3031 		return ret;
3032 
3033 	p.masks_of_interest = p.arg.category_mask | p.arg.category_anyof_mask |
3034 			      p.arg.return_mask;
3035 	ret = pagemap_scan_init_bounce_buffer(&p);
3036 	if (ret)
3037 		return ret;
3038 
3039 	for (walk_start = p.arg.start; walk_start < p.arg.end;
3040 			walk_start = p.arg.walk_end) {
3041 		struct mmu_notifier_range range;
3042 		long n_out;
3043 
3044 		if (fatal_signal_pending(current)) {
3045 			ret = -EINTR;
3046 			break;
3047 		}
3048 
3049 		ret = mmap_read_lock_killable(mm);
3050 		if (ret)
3051 			break;
3052 
3053 		/* Protection change for the range is going to happen. */
3054 		if (p.arg.flags & PM_SCAN_WP_MATCHING) {
3055 			mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 0,
3056 						mm, walk_start, p.arg.end);
3057 			mmu_notifier_invalidate_range_start(&range);
3058 		}
3059 
3060 		ret = walk_page_range(mm, walk_start, p.arg.end,
3061 				      &pagemap_scan_ops, &p);
3062 
3063 		if (p.arg.flags & PM_SCAN_WP_MATCHING)
3064 			mmu_notifier_invalidate_range_end(&range);
3065 
3066 		mmap_read_unlock(mm);
3067 
3068 		n_out = pagemap_scan_flush_buffer(&p);
3069 		if (n_out < 0)
3070 			ret = n_out;
3071 		else
3072 			n_ranges_out += n_out;
3073 
3074 		if (ret != -ENOSPC)
3075 			break;
3076 
3077 		if (p.arg.vec_len == 0 || p.found_pages == p.arg.max_pages)
3078 			break;
3079 	}
3080 
3081 	/* ENOSPC signifies early stop (buffer full) from the walk. */
3082 	if (!ret || ret == -ENOSPC)
3083 		ret = n_ranges_out;
3084 
3085 	/* The walk_end isn't set when ret is zero */
3086 	if (!p.arg.walk_end)
3087 		p.arg.walk_end = p.arg.end;
3088 	if (pagemap_scan_writeback_args(&p.arg, uarg))
3089 		ret = -EFAULT;
3090 
3091 	kfree(p.vec_buf);
3092 	return ret;
3093 }
3094 
3095 static long do_pagemap_cmd(struct file *file, unsigned int cmd,
3096 			   unsigned long arg)
3097 {
3098 	struct mm_struct *mm = file->private_data;
3099 
3100 	switch (cmd) {
3101 	case PAGEMAP_SCAN:
3102 		return do_pagemap_scan(mm, arg);
3103 
3104 	default:
3105 		return -EINVAL;
3106 	}
3107 }
3108 
3109 const struct file_operations proc_pagemap_operations = {
3110 	.llseek		= mem_lseek, /* borrow this */
3111 	.read		= pagemap_read,
3112 	.open		= pagemap_open,
3113 	.release	= pagemap_release,
3114 	.unlocked_ioctl = do_pagemap_cmd,
3115 	.compat_ioctl	= do_pagemap_cmd,
3116 };
3117 #endif /* CONFIG_PROC_PAGE_MONITOR */
3118 
3119 #ifdef CONFIG_NUMA
3120 
3121 struct numa_maps {
3122 	unsigned long pages;
3123 	unsigned long anon;
3124 	unsigned long active;
3125 	unsigned long writeback;
3126 	unsigned long mapcount_max;
3127 	unsigned long dirty;
3128 	unsigned long swapcache;
3129 	unsigned long node[MAX_NUMNODES];
3130 };
3131 
3132 struct numa_maps_private {
3133 	struct proc_maps_private proc_maps;
3134 	struct numa_maps md;
3135 };
3136 
3137 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
3138 			unsigned long nr_pages)
3139 {
3140 	struct folio *folio = page_folio(page);
3141 	int count;
3142 
3143 	if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT))
3144 		count = folio_precise_page_mapcount(folio, page);
3145 	else
3146 		count = folio_average_page_mapcount(folio);
3147 
3148 	md->pages += nr_pages;
3149 	if (pte_dirty || folio_test_dirty(folio))
3150 		md->dirty += nr_pages;
3151 
3152 	if (folio_test_swapcache(folio))
3153 		md->swapcache += nr_pages;
3154 
3155 	if (folio_test_active(folio) || folio_test_unevictable(folio))
3156 		md->active += nr_pages;
3157 
3158 	if (folio_test_writeback(folio))
3159 		md->writeback += nr_pages;
3160 
3161 	if (folio_test_anon(folio))
3162 		md->anon += nr_pages;
3163 
3164 	if (count > md->mapcount_max)
3165 		md->mapcount_max = count;
3166 
3167 	md->node[folio_nid(folio)] += nr_pages;
3168 }
3169 
3170 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
3171 		unsigned long addr)
3172 {
3173 	struct page *page;
3174 	int nid;
3175 
3176 	if (!pte_present(pte))
3177 		return NULL;
3178 
3179 	page = vm_normal_page(vma, addr, pte);
3180 	if (!page || is_zone_device_page(page))
3181 		return NULL;
3182 
3183 	if (PageReserved(page))
3184 		return NULL;
3185 
3186 	nid = page_to_nid(page);
3187 	if (!node_isset(nid, node_states[N_MEMORY]))
3188 		return NULL;
3189 
3190 	return page;
3191 }
3192 
3193 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3194 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
3195 					      struct vm_area_struct *vma,
3196 					      unsigned long addr)
3197 {
3198 	struct page *page;
3199 	int nid;
3200 
3201 	if (!pmd_present(pmd))
3202 		return NULL;
3203 
3204 	page = vm_normal_page_pmd(vma, addr, pmd);
3205 	if (!page)
3206 		return NULL;
3207 
3208 	if (PageReserved(page))
3209 		return NULL;
3210 
3211 	nid = page_to_nid(page);
3212 	if (!node_isset(nid, node_states[N_MEMORY]))
3213 		return NULL;
3214 
3215 	return page;
3216 }
3217 #endif
3218 
3219 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
3220 		unsigned long end, struct mm_walk *walk)
3221 {
3222 	struct numa_maps *md = walk->private;
3223 	struct vm_area_struct *vma = walk->vma;
3224 	spinlock_t *ptl;
3225 	pte_t *orig_pte;
3226 	pte_t *pte;
3227 
3228 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3229 	ptl = pmd_trans_huge_lock(pmd, vma);
3230 	if (ptl) {
3231 		struct page *page;
3232 
3233 		page = can_gather_numa_stats_pmd(*pmd, vma, addr);
3234 		if (page)
3235 			gather_stats(page, md, pmd_dirty(*pmd),
3236 				     HPAGE_PMD_SIZE/PAGE_SIZE);
3237 		spin_unlock(ptl);
3238 		return 0;
3239 	}
3240 #endif
3241 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
3242 	if (!pte) {
3243 		walk->action = ACTION_AGAIN;
3244 		return 0;
3245 	}
3246 	do {
3247 		pte_t ptent = ptep_get(pte);
3248 		struct page *page = can_gather_numa_stats(ptent, vma, addr);
3249 		if (!page)
3250 			continue;
3251 		gather_stats(page, md, pte_dirty(ptent), 1);
3252 
3253 	} while (pte++, addr += PAGE_SIZE, addr != end);
3254 	pte_unmap_unlock(orig_pte, ptl);
3255 	cond_resched();
3256 	return 0;
3257 }
3258 #ifdef CONFIG_HUGETLB_PAGE
3259 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
3260 		unsigned long addr, unsigned long end, struct mm_walk *walk)
3261 {
3262 	pte_t huge_pte;
3263 	struct numa_maps *md;
3264 	struct page *page;
3265 	spinlock_t *ptl;
3266 
3267 	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
3268 	huge_pte = huge_ptep_get(walk->mm, addr, pte);
3269 	if (!pte_present(huge_pte))
3270 		goto out;
3271 
3272 	page = pte_page(huge_pte);
3273 
3274 	md = walk->private;
3275 	gather_stats(page, md, pte_dirty(huge_pte), 1);
3276 out:
3277 	spin_unlock(ptl);
3278 	return 0;
3279 }
3280 
3281 #else
3282 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
3283 		unsigned long addr, unsigned long end, struct mm_walk *walk)
3284 {
3285 	return 0;
3286 }
3287 #endif
3288 
3289 static const struct mm_walk_ops show_numa_ops = {
3290 	.hugetlb_entry = gather_hugetlb_stats,
3291 	.pmd_entry = gather_pte_stats,
3292 	.walk_lock = PGWALK_RDLOCK,
3293 };
3294 
3295 /*
3296  * Display pages allocated per node and memory policy via /proc.
3297  */
3298 static int show_numa_map(struct seq_file *m, void *v)
3299 {
3300 	struct numa_maps_private *numa_priv = m->private;
3301 	struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
3302 	struct vm_area_struct *vma = v;
3303 	struct numa_maps *md = &numa_priv->md;
3304 	struct file *file = vma->vm_file;
3305 	struct mm_struct *mm = vma->vm_mm;
3306 	char buffer[64];
3307 	struct mempolicy *pol;
3308 	pgoff_t ilx;
3309 	int nid;
3310 
3311 	if (!mm)
3312 		return 0;
3313 
3314 	/* Ensure we start with an empty set of numa_maps statistics. */
3315 	memset(md, 0, sizeof(*md));
3316 
3317 	pol = __get_vma_policy(vma, vma->vm_start, &ilx);
3318 	if (pol) {
3319 		mpol_to_str(buffer, sizeof(buffer), pol);
3320 		mpol_cond_put(pol);
3321 	} else {
3322 		mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
3323 	}
3324 
3325 	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
3326 
3327 	if (file) {
3328 		seq_puts(m, " file=");
3329 		seq_path(m, file_user_path(file), "\n\t= ");
3330 	} else if (vma_is_initial_heap(vma)) {
3331 		seq_puts(m, " heap");
3332 	} else if (vma_is_initial_stack(vma)) {
3333 		seq_puts(m, " stack");
3334 	}
3335 
3336 	if (is_vm_hugetlb_page(vma))
3337 		seq_puts(m, " huge");
3338 
3339 	/* mmap_lock is held by m_start */
3340 	walk_page_vma(vma, &show_numa_ops, md);
3341 
3342 	if (!md->pages)
3343 		goto out;
3344 
3345 	if (md->anon)
3346 		seq_printf(m, " anon=%lu", md->anon);
3347 
3348 	if (md->dirty)
3349 		seq_printf(m, " dirty=%lu", md->dirty);
3350 
3351 	if (md->pages != md->anon && md->pages != md->dirty)
3352 		seq_printf(m, " mapped=%lu", md->pages);
3353 
3354 	if (md->mapcount_max > 1)
3355 		seq_printf(m, " mapmax=%lu", md->mapcount_max);
3356 
3357 	if (md->swapcache)
3358 		seq_printf(m, " swapcache=%lu", md->swapcache);
3359 
3360 	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
3361 		seq_printf(m, " active=%lu", md->active);
3362 
3363 	if (md->writeback)
3364 		seq_printf(m, " writeback=%lu", md->writeback);
3365 
3366 	for_each_node_state(nid, N_MEMORY)
3367 		if (md->node[nid])
3368 			seq_printf(m, " N%d=%lu", nid, md->node[nid]);
3369 
3370 	seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
3371 out:
3372 	seq_putc(m, '\n');
3373 	return 0;
3374 }
3375 
3376 static const struct seq_operations proc_pid_numa_maps_op = {
3377 	.start  = m_start,
3378 	.next   = m_next,
3379 	.stop   = m_stop,
3380 	.show   = show_numa_map,
3381 };
3382 
3383 static int pid_numa_maps_open(struct inode *inode, struct file *file)
3384 {
3385 	return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
3386 				sizeof(struct numa_maps_private));
3387 }
3388 
3389 const struct file_operations proc_pid_numa_maps_operations = {
3390 	.open		= pid_numa_maps_open,
3391 	.read		= seq_read,
3392 	.llseek		= seq_lseek,
3393 	.release	= proc_map_release,
3394 };
3395 
3396 #endif /* CONFIG_NUMA */
3397