xref: /linux/fs/btrfs/super.c (revision 3f1c07fc21c68bd3bd2df9d2c9441f6485e934d9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/module.h>
8 #include <linux/fs.h>
9 #include <linux/pagemap.h>
10 #include <linux/highmem.h>
11 #include <linux/time.h>
12 #include <linux/init.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/writeback.h>
18 #include <linux/statfs.h>
19 #include <linux/compat.h>
20 #include <linux/parser.h>
21 #include <linux/ctype.h>
22 #include <linux/namei.h>
23 #include <linux/miscdevice.h>
24 #include <linux/magic.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/crc32c.h>
28 #include <linux/btrfs.h>
29 #include <linux/security.h>
30 #include <linux/fs_parser.h>
31 #include "messages.h"
32 #include "delayed-inode.h"
33 #include "ctree.h"
34 #include "disk-io.h"
35 #include "transaction.h"
36 #include "btrfs_inode.h"
37 #include "direct-io.h"
38 #include "props.h"
39 #include "xattr.h"
40 #include "bio.h"
41 #include "export.h"
42 #include "compression.h"
43 #include "dev-replace.h"
44 #include "free-space-cache.h"
45 #include "backref.h"
46 #include "space-info.h"
47 #include "sysfs.h"
48 #include "zoned.h"
49 #include "tests/btrfs-tests.h"
50 #include "block-group.h"
51 #include "discard.h"
52 #include "qgroup.h"
53 #include "raid56.h"
54 #include "fs.h"
55 #include "accessors.h"
56 #include "defrag.h"
57 #include "dir-item.h"
58 #include "ioctl.h"
59 #include "scrub.h"
60 #include "verity.h"
61 #include "super.h"
62 #include "extent-tree.h"
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/btrfs.h>
65 
66 static const struct super_operations btrfs_super_ops;
67 static struct file_system_type btrfs_fs_type;
68 
btrfs_put_super(struct super_block * sb)69 static void btrfs_put_super(struct super_block *sb)
70 {
71 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
72 
73 	btrfs_info(fs_info, "last unmount of filesystem %pU", fs_info->fs_devices->fsid);
74 	close_ctree(fs_info);
75 }
76 
77 /* Store the mount options related information. */
78 struct btrfs_fs_context {
79 	char *subvol_name;
80 	u64 subvol_objectid;
81 	u64 max_inline;
82 	u32 commit_interval;
83 	u32 metadata_ratio;
84 	u32 thread_pool_size;
85 	unsigned long long mount_opt;
86 	unsigned long compress_type:4;
87 	int compress_level;
88 	refcount_t refs;
89 };
90 
91 static void btrfs_emit_options(struct btrfs_fs_info *info,
92 			       struct btrfs_fs_context *old);
93 
94 enum {
95 	Opt_acl,
96 	Opt_clear_cache,
97 	Opt_commit_interval,
98 	Opt_compress,
99 	Opt_compress_force,
100 	Opt_compress_force_type,
101 	Opt_compress_type,
102 	Opt_degraded,
103 	Opt_device,
104 	Opt_fatal_errors,
105 	Opt_flushoncommit,
106 	Opt_max_inline,
107 	Opt_barrier,
108 	Opt_datacow,
109 	Opt_datasum,
110 	Opt_defrag,
111 	Opt_discard,
112 	Opt_discard_mode,
113 	Opt_ratio,
114 	Opt_rescan_uuid_tree,
115 	Opt_skip_balance,
116 	Opt_space_cache,
117 	Opt_space_cache_version,
118 	Opt_ssd,
119 	Opt_ssd_spread,
120 	Opt_subvol,
121 	Opt_subvol_empty,
122 	Opt_subvolid,
123 	Opt_thread_pool,
124 	Opt_treelog,
125 	Opt_user_subvol_rm_allowed,
126 	Opt_norecovery,
127 
128 	/* Rescue options */
129 	Opt_rescue,
130 	Opt_usebackuproot,
131 
132 	/* Debugging options */
133 	Opt_enospc_debug,
134 #ifdef CONFIG_BTRFS_DEBUG
135 	Opt_fragment, Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
136 	Opt_ref_verify,
137 	Opt_ref_tracker,
138 #endif
139 	Opt_err,
140 };
141 
142 enum {
143 	Opt_fatal_errors_panic,
144 	Opt_fatal_errors_bug,
145 };
146 
147 static const struct constant_table btrfs_parameter_fatal_errors[] = {
148 	{ "panic", Opt_fatal_errors_panic },
149 	{ "bug", Opt_fatal_errors_bug },
150 	{}
151 };
152 
153 enum {
154 	Opt_discard_sync,
155 	Opt_discard_async,
156 };
157 
158 static const struct constant_table btrfs_parameter_discard[] = {
159 	{ "sync", Opt_discard_sync },
160 	{ "async", Opt_discard_async },
161 	{}
162 };
163 
164 enum {
165 	Opt_space_cache_v1,
166 	Opt_space_cache_v2,
167 };
168 
169 static const struct constant_table btrfs_parameter_space_cache[] = {
170 	{ "v1", Opt_space_cache_v1 },
171 	{ "v2", Opt_space_cache_v2 },
172 	{}
173 };
174 
175 enum {
176 	Opt_rescue_usebackuproot,
177 	Opt_rescue_nologreplay,
178 	Opt_rescue_ignorebadroots,
179 	Opt_rescue_ignoredatacsums,
180 	Opt_rescue_ignoremetacsums,
181 	Opt_rescue_ignoresuperflags,
182 	Opt_rescue_parameter_all,
183 };
184 
185 static const struct constant_table btrfs_parameter_rescue[] = {
186 	{ "usebackuproot", Opt_rescue_usebackuproot },
187 	{ "nologreplay", Opt_rescue_nologreplay },
188 	{ "ignorebadroots", Opt_rescue_ignorebadroots },
189 	{ "ibadroots", Opt_rescue_ignorebadroots },
190 	{ "ignoredatacsums", Opt_rescue_ignoredatacsums },
191 	{ "ignoremetacsums", Opt_rescue_ignoremetacsums},
192 	{ "ignoresuperflags", Opt_rescue_ignoresuperflags},
193 	{ "idatacsums", Opt_rescue_ignoredatacsums },
194 	{ "imetacsums", Opt_rescue_ignoremetacsums},
195 	{ "isuperflags", Opt_rescue_ignoresuperflags},
196 	{ "all", Opt_rescue_parameter_all },
197 	{}
198 };
199 
200 #ifdef CONFIG_BTRFS_DEBUG
201 enum {
202 	Opt_fragment_parameter_data,
203 	Opt_fragment_parameter_metadata,
204 	Opt_fragment_parameter_all,
205 };
206 
207 static const struct constant_table btrfs_parameter_fragment[] = {
208 	{ "data", Opt_fragment_parameter_data },
209 	{ "metadata", Opt_fragment_parameter_metadata },
210 	{ "all", Opt_fragment_parameter_all },
211 	{}
212 };
213 #endif
214 
215 static const struct fs_parameter_spec btrfs_fs_parameters[] = {
216 	fsparam_flag_no("acl", Opt_acl),
217 	fsparam_flag_no("autodefrag", Opt_defrag),
218 	fsparam_flag_no("barrier", Opt_barrier),
219 	fsparam_flag("clear_cache", Opt_clear_cache),
220 	fsparam_u32("commit", Opt_commit_interval),
221 	fsparam_flag("compress", Opt_compress),
222 	fsparam_string("compress", Opt_compress_type),
223 	fsparam_flag("compress-force", Opt_compress_force),
224 	fsparam_string("compress-force", Opt_compress_force_type),
225 	fsparam_flag_no("datacow", Opt_datacow),
226 	fsparam_flag_no("datasum", Opt_datasum),
227 	fsparam_flag("degraded", Opt_degraded),
228 	fsparam_string("device", Opt_device),
229 	fsparam_flag_no("discard", Opt_discard),
230 	fsparam_enum("discard", Opt_discard_mode, btrfs_parameter_discard),
231 	fsparam_enum("fatal_errors", Opt_fatal_errors, btrfs_parameter_fatal_errors),
232 	fsparam_flag_no("flushoncommit", Opt_flushoncommit),
233 	fsparam_string("max_inline", Opt_max_inline),
234 	fsparam_u32("metadata_ratio", Opt_ratio),
235 	fsparam_flag("rescan_uuid_tree", Opt_rescan_uuid_tree),
236 	fsparam_flag("skip_balance", Opt_skip_balance),
237 	fsparam_flag_no("space_cache", Opt_space_cache),
238 	fsparam_enum("space_cache", Opt_space_cache_version, btrfs_parameter_space_cache),
239 	fsparam_flag_no("ssd", Opt_ssd),
240 	fsparam_flag_no("ssd_spread", Opt_ssd_spread),
241 	fsparam_string("subvol", Opt_subvol),
242 	fsparam_flag("subvol=", Opt_subvol_empty),
243 	fsparam_u64("subvolid", Opt_subvolid),
244 	fsparam_u32("thread_pool", Opt_thread_pool),
245 	fsparam_flag_no("treelog", Opt_treelog),
246 	fsparam_flag("user_subvol_rm_allowed", Opt_user_subvol_rm_allowed),
247 
248 	/* Rescue options. */
249 	fsparam_enum("rescue", Opt_rescue, btrfs_parameter_rescue),
250 	/* Deprecated, with alias rescue=usebackuproot */
251 	__fsparam(NULL, "usebackuproot", Opt_usebackuproot, fs_param_deprecated, NULL),
252 	/* For compatibility only, alias for "rescue=nologreplay". */
253 	fsparam_flag("norecovery", Opt_norecovery),
254 
255 	/* Debugging options. */
256 	fsparam_flag_no("enospc_debug", Opt_enospc_debug),
257 #ifdef CONFIG_BTRFS_DEBUG
258 	fsparam_enum("fragment", Opt_fragment, btrfs_parameter_fragment),
259 	fsparam_flag("ref_tracker", Opt_ref_tracker),
260 	fsparam_flag("ref_verify", Opt_ref_verify),
261 #endif
262 	{}
263 };
264 
btrfs_match_compress_type(const char * string,const char * type,bool may_have_level)265 static bool btrfs_match_compress_type(const char *string, const char *type, bool may_have_level)
266 {
267 	const int len = strlen(type);
268 
269 	return (strncmp(string, type, len) == 0) &&
270 		((may_have_level && string[len] == ':') || string[len] == '\0');
271 }
272 
btrfs_parse_compress(struct btrfs_fs_context * ctx,const struct fs_parameter * param,int opt)273 static int btrfs_parse_compress(struct btrfs_fs_context *ctx,
274 				const struct fs_parameter *param, int opt)
275 {
276 	const char *string = param->string;
277 	int ret;
278 
279 	/*
280 	 * Provide the same semantics as older kernels that don't use fs
281 	 * context, specifying the "compress" option clears "force-compress"
282 	 * without the need to pass "compress-force=[no|none]" before
283 	 * specifying "compress".
284 	 */
285 	if (opt != Opt_compress_force && opt != Opt_compress_force_type)
286 		btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
287 
288 	if (opt == Opt_compress || opt == Opt_compress_force) {
289 		ctx->compress_type = BTRFS_COMPRESS_ZLIB;
290 		ctx->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
291 		btrfs_set_opt(ctx->mount_opt, COMPRESS);
292 		btrfs_clear_opt(ctx->mount_opt, NODATACOW);
293 		btrfs_clear_opt(ctx->mount_opt, NODATASUM);
294 	} else if (btrfs_match_compress_type(string, "zlib", true)) {
295 		ctx->compress_type = BTRFS_COMPRESS_ZLIB;
296 		ret = btrfs_compress_str2level(BTRFS_COMPRESS_ZLIB, string + 4,
297 					       &ctx->compress_level);
298 		if (ret < 0)
299 			goto error;
300 		btrfs_set_opt(ctx->mount_opt, COMPRESS);
301 		btrfs_clear_opt(ctx->mount_opt, NODATACOW);
302 		btrfs_clear_opt(ctx->mount_opt, NODATASUM);
303 	} else if (btrfs_match_compress_type(string, "lzo", true)) {
304 		ctx->compress_type = BTRFS_COMPRESS_LZO;
305 		ret = btrfs_compress_str2level(BTRFS_COMPRESS_LZO, string + 3,
306 					       &ctx->compress_level);
307 		if (ret < 0)
308 			goto error;
309 		if (string[3] == ':' && string[4])
310 			btrfs_warn(NULL, "Compression level ignored for LZO");
311 		btrfs_set_opt(ctx->mount_opt, COMPRESS);
312 		btrfs_clear_opt(ctx->mount_opt, NODATACOW);
313 		btrfs_clear_opt(ctx->mount_opt, NODATASUM);
314 	} else if (btrfs_match_compress_type(string, "zstd", true)) {
315 		ctx->compress_type = BTRFS_COMPRESS_ZSTD;
316 		ret = btrfs_compress_str2level(BTRFS_COMPRESS_ZSTD, string + 4,
317 					       &ctx->compress_level);
318 		if (ret < 0)
319 			goto error;
320 		btrfs_set_opt(ctx->mount_opt, COMPRESS);
321 		btrfs_clear_opt(ctx->mount_opt, NODATACOW);
322 		btrfs_clear_opt(ctx->mount_opt, NODATASUM);
323 	} else if (btrfs_match_compress_type(string, "no", false) ||
324 		   btrfs_match_compress_type(string, "none", false)) {
325 		ctx->compress_level = 0;
326 		ctx->compress_type = 0;
327 		btrfs_clear_opt(ctx->mount_opt, COMPRESS);
328 		btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
329 	} else {
330 		ret = -EINVAL;
331 		goto error;
332 	}
333 	return 0;
334 error:
335 	btrfs_err(NULL, "failed to parse compression option '%s'", string);
336 	return ret;
337 
338 }
339 
btrfs_parse_param(struct fs_context * fc,struct fs_parameter * param)340 static int btrfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
341 {
342 	struct btrfs_fs_context *ctx = fc->fs_private;
343 	struct fs_parse_result result;
344 	int opt;
345 
346 	opt = fs_parse(fc, btrfs_fs_parameters, param, &result);
347 	if (opt < 0)
348 		return opt;
349 
350 	switch (opt) {
351 	case Opt_degraded:
352 		btrfs_set_opt(ctx->mount_opt, DEGRADED);
353 		break;
354 	case Opt_subvol_empty:
355 		/*
356 		 * This exists because we used to allow it on accident, so we're
357 		 * keeping it to maintain ABI.  See 37becec95ac3 ("Btrfs: allow
358 		 * empty subvol= again").
359 		 */
360 		break;
361 	case Opt_subvol:
362 		kfree(ctx->subvol_name);
363 		ctx->subvol_name = kstrdup(param->string, GFP_KERNEL);
364 		if (!ctx->subvol_name)
365 			return -ENOMEM;
366 		break;
367 	case Opt_subvolid:
368 		ctx->subvol_objectid = result.uint_64;
369 
370 		/* subvolid=0 means give me the original fs_tree. */
371 		if (!ctx->subvol_objectid)
372 			ctx->subvol_objectid = BTRFS_FS_TREE_OBJECTID;
373 		break;
374 	case Opt_device: {
375 		struct btrfs_device *device;
376 
377 		mutex_lock(&uuid_mutex);
378 		device = btrfs_scan_one_device(param->string, false);
379 		mutex_unlock(&uuid_mutex);
380 		if (IS_ERR(device))
381 			return PTR_ERR(device);
382 		break;
383 	}
384 	case Opt_datasum:
385 		if (result.negated) {
386 			btrfs_set_opt(ctx->mount_opt, NODATASUM);
387 		} else {
388 			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
389 			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
390 		}
391 		break;
392 	case Opt_datacow:
393 		if (result.negated) {
394 			btrfs_clear_opt(ctx->mount_opt, COMPRESS);
395 			btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
396 			btrfs_set_opt(ctx->mount_opt, NODATACOW);
397 			btrfs_set_opt(ctx->mount_opt, NODATASUM);
398 		} else {
399 			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
400 		}
401 		break;
402 	case Opt_compress_force:
403 	case Opt_compress_force_type:
404 		btrfs_set_opt(ctx->mount_opt, FORCE_COMPRESS);
405 		fallthrough;
406 	case Opt_compress:
407 	case Opt_compress_type:
408 		if (btrfs_parse_compress(ctx, param, opt))
409 			return -EINVAL;
410 		break;
411 	case Opt_ssd:
412 		if (result.negated) {
413 			btrfs_set_opt(ctx->mount_opt, NOSSD);
414 			btrfs_clear_opt(ctx->mount_opt, SSD);
415 			btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD);
416 		} else {
417 			btrfs_set_opt(ctx->mount_opt, SSD);
418 			btrfs_clear_opt(ctx->mount_opt, NOSSD);
419 		}
420 		break;
421 	case Opt_ssd_spread:
422 		if (result.negated) {
423 			btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD);
424 		} else {
425 			btrfs_set_opt(ctx->mount_opt, SSD);
426 			btrfs_set_opt(ctx->mount_opt, SSD_SPREAD);
427 			btrfs_clear_opt(ctx->mount_opt, NOSSD);
428 		}
429 		break;
430 	case Opt_barrier:
431 		if (result.negated)
432 			btrfs_set_opt(ctx->mount_opt, NOBARRIER);
433 		else
434 			btrfs_clear_opt(ctx->mount_opt, NOBARRIER);
435 		break;
436 	case Opt_thread_pool:
437 		if (result.uint_32 == 0) {
438 			btrfs_err(NULL, "invalid value 0 for thread_pool");
439 			return -EINVAL;
440 		}
441 		ctx->thread_pool_size = result.uint_32;
442 		break;
443 	case Opt_max_inline:
444 		ctx->max_inline = memparse(param->string, NULL);
445 		break;
446 	case Opt_acl:
447 		if (result.negated) {
448 			fc->sb_flags &= ~SB_POSIXACL;
449 		} else {
450 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
451 			fc->sb_flags |= SB_POSIXACL;
452 #else
453 			btrfs_err(NULL, "support for ACL not compiled in");
454 			return -EINVAL;
455 #endif
456 		}
457 		/*
458 		 * VFS limits the ability to toggle ACL on and off via remount,
459 		 * despite every file system allowing this.  This seems to be
460 		 * an oversight since we all do, but it'll fail if we're
461 		 * remounting.  So don't set the mask here, we'll check it in
462 		 * btrfs_reconfigure and do the toggling ourselves.
463 		 */
464 		if (fc->purpose != FS_CONTEXT_FOR_RECONFIGURE)
465 			fc->sb_flags_mask |= SB_POSIXACL;
466 		break;
467 	case Opt_treelog:
468 		if (result.negated)
469 			btrfs_set_opt(ctx->mount_opt, NOTREELOG);
470 		else
471 			btrfs_clear_opt(ctx->mount_opt, NOTREELOG);
472 		break;
473 	case Opt_norecovery:
474 		btrfs_info(NULL,
475 "'norecovery' is for compatibility only, recommended to use 'rescue=nologreplay'");
476 		btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
477 		break;
478 	case Opt_flushoncommit:
479 		if (result.negated)
480 			btrfs_clear_opt(ctx->mount_opt, FLUSHONCOMMIT);
481 		else
482 			btrfs_set_opt(ctx->mount_opt, FLUSHONCOMMIT);
483 		break;
484 	case Opt_ratio:
485 		ctx->metadata_ratio = result.uint_32;
486 		break;
487 	case Opt_discard:
488 		if (result.negated) {
489 			btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC);
490 			btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
491 			btrfs_set_opt(ctx->mount_opt, NODISCARD);
492 		} else {
493 			btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC);
494 			btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
495 		}
496 		break;
497 	case Opt_discard_mode:
498 		switch (result.uint_32) {
499 		case Opt_discard_sync:
500 			btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
501 			btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC);
502 			break;
503 		case Opt_discard_async:
504 			btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC);
505 			btrfs_set_opt(ctx->mount_opt, DISCARD_ASYNC);
506 			break;
507 		default:
508 			btrfs_err(NULL, "unrecognized discard mode value %s",
509 				  param->key);
510 			return -EINVAL;
511 		}
512 		btrfs_clear_opt(ctx->mount_opt, NODISCARD);
513 		break;
514 	case Opt_space_cache:
515 		if (result.negated) {
516 			btrfs_set_opt(ctx->mount_opt, NOSPACECACHE);
517 			btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE);
518 			btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
519 		} else {
520 			btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
521 			btrfs_set_opt(ctx->mount_opt, SPACE_CACHE);
522 		}
523 		break;
524 	case Opt_space_cache_version:
525 		switch (result.uint_32) {
526 		case Opt_space_cache_v1:
527 			btrfs_set_opt(ctx->mount_opt, SPACE_CACHE);
528 			btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
529 			break;
530 		case Opt_space_cache_v2:
531 			btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE);
532 			btrfs_set_opt(ctx->mount_opt, FREE_SPACE_TREE);
533 			break;
534 		default:
535 			btrfs_err(NULL, "unrecognized space_cache value %s",
536 				  param->key);
537 			return -EINVAL;
538 		}
539 		break;
540 	case Opt_rescan_uuid_tree:
541 		btrfs_set_opt(ctx->mount_opt, RESCAN_UUID_TREE);
542 		break;
543 	case Opt_clear_cache:
544 		btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE);
545 		break;
546 	case Opt_user_subvol_rm_allowed:
547 		btrfs_set_opt(ctx->mount_opt, USER_SUBVOL_RM_ALLOWED);
548 		break;
549 	case Opt_enospc_debug:
550 		if (result.negated)
551 			btrfs_clear_opt(ctx->mount_opt, ENOSPC_DEBUG);
552 		else
553 			btrfs_set_opt(ctx->mount_opt, ENOSPC_DEBUG);
554 		break;
555 	case Opt_defrag:
556 		if (result.negated)
557 			btrfs_clear_opt(ctx->mount_opt, AUTO_DEFRAG);
558 		else
559 			btrfs_set_opt(ctx->mount_opt, AUTO_DEFRAG);
560 		break;
561 	case Opt_usebackuproot:
562 		btrfs_warn(NULL,
563 			   "'usebackuproot' is deprecated, use 'rescue=usebackuproot' instead");
564 		btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT);
565 
566 		/* If we're loading the backup roots we can't trust the space cache. */
567 		btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE);
568 		break;
569 	case Opt_skip_balance:
570 		btrfs_set_opt(ctx->mount_opt, SKIP_BALANCE);
571 		break;
572 	case Opt_fatal_errors:
573 		switch (result.uint_32) {
574 		case Opt_fatal_errors_panic:
575 			btrfs_set_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR);
576 			break;
577 		case Opt_fatal_errors_bug:
578 			btrfs_clear_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR);
579 			break;
580 		default:
581 			btrfs_err(NULL, "unrecognized fatal_errors value %s",
582 				  param->key);
583 			return -EINVAL;
584 		}
585 		break;
586 	case Opt_commit_interval:
587 		ctx->commit_interval = result.uint_32;
588 		if (ctx->commit_interval > BTRFS_WARNING_COMMIT_INTERVAL) {
589 			btrfs_warn(NULL, "excessive commit interval %u, use with care",
590 				   ctx->commit_interval);
591 		}
592 		if (ctx->commit_interval == 0)
593 			ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
594 		break;
595 	case Opt_rescue:
596 		switch (result.uint_32) {
597 		case Opt_rescue_usebackuproot:
598 			btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT);
599 			break;
600 		case Opt_rescue_nologreplay:
601 			btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
602 			break;
603 		case Opt_rescue_ignorebadroots:
604 			btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS);
605 			break;
606 		case Opt_rescue_ignoredatacsums:
607 			btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS);
608 			break;
609 		case Opt_rescue_ignoremetacsums:
610 			btrfs_set_opt(ctx->mount_opt, IGNOREMETACSUMS);
611 			break;
612 		case Opt_rescue_ignoresuperflags:
613 			btrfs_set_opt(ctx->mount_opt, IGNORESUPERFLAGS);
614 			break;
615 		case Opt_rescue_parameter_all:
616 			btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS);
617 			btrfs_set_opt(ctx->mount_opt, IGNOREMETACSUMS);
618 			btrfs_set_opt(ctx->mount_opt, IGNORESUPERFLAGS);
619 			btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS);
620 			btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
621 			break;
622 		default:
623 			btrfs_info(NULL, "unrecognized rescue option '%s'",
624 				   param->key);
625 			return -EINVAL;
626 		}
627 		break;
628 #ifdef CONFIG_BTRFS_DEBUG
629 	case Opt_fragment:
630 		switch (result.uint_32) {
631 		case Opt_fragment_parameter_all:
632 			btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA);
633 			btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA);
634 			break;
635 		case Opt_fragment_parameter_metadata:
636 			btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA);
637 			break;
638 		case Opt_fragment_parameter_data:
639 			btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA);
640 			break;
641 		default:
642 			btrfs_info(NULL, "unrecognized fragment option '%s'",
643 				   param->key);
644 			return -EINVAL;
645 		}
646 		break;
647 	case Opt_ref_verify:
648 		btrfs_set_opt(ctx->mount_opt, REF_VERIFY);
649 		break;
650 	case Opt_ref_tracker:
651 		btrfs_set_opt(ctx->mount_opt, REF_TRACKER);
652 		break;
653 #endif
654 	default:
655 		btrfs_err(NULL, "unrecognized mount option '%s'", param->key);
656 		return -EINVAL;
657 	}
658 
659 	return 0;
660 }
661 
662 /*
663  * Some options only have meaning at mount time and shouldn't persist across
664  * remounts, or be displayed. Clear these at the end of mount and remount code
665  * paths.
666  */
btrfs_clear_oneshot_options(struct btrfs_fs_info * fs_info)667 static void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
668 {
669 	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
670 	btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
671 	btrfs_clear_opt(fs_info->mount_opt, NOSPACECACHE);
672 }
673 
check_ro_option(const struct btrfs_fs_info * fs_info,unsigned long long mount_opt,unsigned long long opt,const char * opt_name)674 static bool check_ro_option(const struct btrfs_fs_info *fs_info,
675 			    unsigned long long mount_opt, unsigned long long opt,
676 			    const char *opt_name)
677 {
678 	if (mount_opt & opt) {
679 		btrfs_err(fs_info, "%s must be used with ro mount option",
680 			  opt_name);
681 		return true;
682 	}
683 	return false;
684 }
685 
btrfs_check_options(const struct btrfs_fs_info * info,unsigned long long * mount_opt,unsigned long flags)686 bool btrfs_check_options(const struct btrfs_fs_info *info,
687 			 unsigned long long *mount_opt,
688 			 unsigned long flags)
689 {
690 	bool ret = true;
691 
692 	if (!(flags & SB_RDONLY) &&
693 	    (check_ro_option(info, *mount_opt, BTRFS_MOUNT_NOLOGREPLAY, "nologreplay") ||
694 	     check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREBADROOTS, "ignorebadroots") ||
695 	     check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREDATACSUMS, "ignoredatacsums") ||
696 	     check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREMETACSUMS, "ignoremetacsums") ||
697 	     check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNORESUPERFLAGS, "ignoresuperflags")))
698 		ret = false;
699 
700 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
701 	    !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE) &&
702 	    !btrfs_raw_test_opt(*mount_opt, CLEAR_CACHE)) {
703 		btrfs_err(info, "cannot disable free-space-tree");
704 		ret = false;
705 	}
706 	if (btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE) &&
707 	     !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE)) {
708 		btrfs_err(info, "cannot disable free-space-tree with block-group-tree feature");
709 		ret = false;
710 	}
711 
712 	if (btrfs_check_mountopts_zoned(info, mount_opt))
713 		ret = false;
714 
715 	if (!test_bit(BTRFS_FS_STATE_REMOUNTING, &info->fs_state)) {
716 		if (btrfs_raw_test_opt(*mount_opt, SPACE_CACHE)) {
717 			btrfs_warn(info,
718 "space cache v1 is being deprecated and will be removed in a future release, please use -o space_cache=v2");
719 		}
720 	}
721 
722 	return ret;
723 }
724 
725 /*
726  * This is subtle, we only call this during open_ctree().  We need to pre-load
727  * the mount options with the on-disk settings.  Before the new mount API took
728  * effect we would do this on mount and remount.  With the new mount API we'll
729  * only do this on the initial mount.
730  *
731  * This isn't a change in behavior, because we're using the current state of the
732  * file system to set the current mount options.  If you mounted with special
733  * options to disable these features and then remounted we wouldn't revert the
734  * settings, because mounting without these features cleared the on-disk
735  * settings, so this being called on re-mount is not needed.
736  */
btrfs_set_free_space_cache_settings(struct btrfs_fs_info * fs_info)737 void btrfs_set_free_space_cache_settings(struct btrfs_fs_info *fs_info)
738 {
739 	if (fs_info->sectorsize < PAGE_SIZE) {
740 		btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
741 		if (!btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
742 			btrfs_info(fs_info,
743 				   "forcing free space tree for sector size %u with page size %lu",
744 				   fs_info->sectorsize, PAGE_SIZE);
745 			btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
746 		}
747 	}
748 
749 	/*
750 	 * At this point our mount options are populated, so we only mess with
751 	 * these settings if we don't have any settings already.
752 	 */
753 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE))
754 		return;
755 
756 	if (btrfs_is_zoned(fs_info) &&
757 	    btrfs_free_space_cache_v1_active(fs_info)) {
758 		btrfs_info(fs_info, "zoned: clearing existing space cache");
759 		btrfs_set_super_cache_generation(fs_info->super_copy, 0);
760 		return;
761 	}
762 
763 	if (btrfs_test_opt(fs_info, SPACE_CACHE))
764 		return;
765 
766 	if (btrfs_test_opt(fs_info, NOSPACECACHE))
767 		return;
768 
769 	/*
770 	 * At this point we don't have explicit options set by the user, set
771 	 * them ourselves based on the state of the file system.
772 	 */
773 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
774 		btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
775 	else if (btrfs_free_space_cache_v1_active(fs_info))
776 		btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
777 }
778 
set_device_specific_options(struct btrfs_fs_info * fs_info)779 static void set_device_specific_options(struct btrfs_fs_info *fs_info)
780 {
781 	if (!btrfs_test_opt(fs_info, NOSSD) &&
782 	    !fs_info->fs_devices->rotating)
783 		btrfs_set_opt(fs_info->mount_opt, SSD);
784 
785 	/*
786 	 * For devices supporting discard turn on discard=async automatically,
787 	 * unless it's already set or disabled. This could be turned off by
788 	 * nodiscard for the same mount.
789 	 *
790 	 * The zoned mode piggy backs on the discard functionality for
791 	 * resetting a zone. There is no reason to delay the zone reset as it is
792 	 * fast enough. So, do not enable async discard for zoned mode.
793 	 */
794 	if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) ||
795 	      btrfs_test_opt(fs_info, DISCARD_ASYNC) ||
796 	      btrfs_test_opt(fs_info, NODISCARD)) &&
797 	    fs_info->fs_devices->discardable &&
798 	    !btrfs_is_zoned(fs_info))
799 		btrfs_set_opt(fs_info->mount_opt, DISCARD_ASYNC);
800 }
801 
btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info * fs_info,u64 subvol_objectid)802 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
803 					  u64 subvol_objectid)
804 {
805 	struct btrfs_root *root = fs_info->tree_root;
806 	struct btrfs_root *fs_root = NULL;
807 	struct btrfs_root_ref *root_ref;
808 	struct btrfs_inode_ref *inode_ref;
809 	struct btrfs_key key;
810 	BTRFS_PATH_AUTO_FREE(path);
811 	char *name = NULL, *ptr;
812 	u64 dirid;
813 	int len;
814 	int ret;
815 
816 	path = btrfs_alloc_path();
817 	if (!path)
818 		return ERR_PTR(-ENOMEM);
819 
820 	name = kmalloc(PATH_MAX, GFP_KERNEL);
821 	if (!name) {
822 		ret = -ENOMEM;
823 		goto err;
824 	}
825 	ptr = name + PATH_MAX - 1;
826 	ptr[0] = '\0';
827 
828 	/*
829 	 * Walk up the subvolume trees in the tree of tree roots by root
830 	 * backrefs until we hit the top-level subvolume.
831 	 */
832 	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
833 		key.objectid = subvol_objectid;
834 		key.type = BTRFS_ROOT_BACKREF_KEY;
835 		key.offset = (u64)-1;
836 
837 		ret = btrfs_search_backwards(root, &key, path);
838 		if (ret < 0) {
839 			goto err;
840 		} else if (ret > 0) {
841 			ret = -ENOENT;
842 			goto err;
843 		}
844 
845 		subvol_objectid = key.offset;
846 
847 		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
848 					  struct btrfs_root_ref);
849 		len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
850 		ptr -= len + 1;
851 		if (ptr < name) {
852 			ret = -ENAMETOOLONG;
853 			goto err;
854 		}
855 		read_extent_buffer(path->nodes[0], ptr + 1,
856 				   (unsigned long)(root_ref + 1), len);
857 		ptr[0] = '/';
858 		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
859 		btrfs_release_path(path);
860 
861 		fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true);
862 		if (IS_ERR(fs_root)) {
863 			ret = PTR_ERR(fs_root);
864 			fs_root = NULL;
865 			goto err;
866 		}
867 
868 		/*
869 		 * Walk up the filesystem tree by inode refs until we hit the
870 		 * root directory.
871 		 */
872 		while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
873 			key.objectid = dirid;
874 			key.type = BTRFS_INODE_REF_KEY;
875 			key.offset = (u64)-1;
876 
877 			ret = btrfs_search_backwards(fs_root, &key, path);
878 			if (ret < 0) {
879 				goto err;
880 			} else if (ret > 0) {
881 				ret = -ENOENT;
882 				goto err;
883 			}
884 
885 			dirid = key.offset;
886 
887 			inode_ref = btrfs_item_ptr(path->nodes[0],
888 						   path->slots[0],
889 						   struct btrfs_inode_ref);
890 			len = btrfs_inode_ref_name_len(path->nodes[0],
891 						       inode_ref);
892 			ptr -= len + 1;
893 			if (ptr < name) {
894 				ret = -ENAMETOOLONG;
895 				goto err;
896 			}
897 			read_extent_buffer(path->nodes[0], ptr + 1,
898 					   (unsigned long)(inode_ref + 1), len);
899 			ptr[0] = '/';
900 			btrfs_release_path(path);
901 		}
902 		btrfs_put_root(fs_root);
903 		fs_root = NULL;
904 	}
905 
906 	if (ptr == name + PATH_MAX - 1) {
907 		name[0] = '/';
908 		name[1] = '\0';
909 	} else {
910 		memmove(name, ptr, name + PATH_MAX - ptr);
911 	}
912 	return name;
913 
914 err:
915 	btrfs_put_root(fs_root);
916 	kfree(name);
917 	return ERR_PTR(ret);
918 }
919 
get_default_subvol_objectid(struct btrfs_fs_info * fs_info,u64 * objectid)920 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
921 {
922 	struct btrfs_root *root = fs_info->tree_root;
923 	struct btrfs_dir_item *di;
924 	BTRFS_PATH_AUTO_FREE(path);
925 	struct btrfs_key location;
926 	struct fscrypt_str name = FSTR_INIT("default", 7);
927 	u64 dir_id;
928 
929 	path = btrfs_alloc_path();
930 	if (!path)
931 		return -ENOMEM;
932 
933 	/*
934 	 * Find the "default" dir item which points to the root item that we
935 	 * will mount by default if we haven't been given a specific subvolume
936 	 * to mount.
937 	 */
938 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
939 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, &name, 0);
940 	if (IS_ERR(di)) {
941 		return PTR_ERR(di);
942 	}
943 	if (!di) {
944 		/*
945 		 * Ok the default dir item isn't there.  This is weird since
946 		 * it's always been there, but don't freak out, just try and
947 		 * mount the top-level subvolume.
948 		 */
949 		*objectid = BTRFS_FS_TREE_OBJECTID;
950 		return 0;
951 	}
952 
953 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
954 	*objectid = location.objectid;
955 	return 0;
956 }
957 
btrfs_fill_super(struct super_block * sb,struct btrfs_fs_devices * fs_devices)958 static int btrfs_fill_super(struct super_block *sb,
959 			    struct btrfs_fs_devices *fs_devices)
960 {
961 	struct btrfs_inode *inode;
962 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
963 	int ret;
964 
965 	sb->s_maxbytes = MAX_LFS_FILESIZE;
966 	sb->s_magic = BTRFS_SUPER_MAGIC;
967 	sb->s_op = &btrfs_super_ops;
968 	set_default_d_op(sb, &btrfs_dentry_operations);
969 	sb->s_export_op = &btrfs_export_ops;
970 #ifdef CONFIG_FS_VERITY
971 	sb->s_vop = &btrfs_verityops;
972 #endif
973 	sb->s_xattr = btrfs_xattr_handlers;
974 	sb->s_time_gran = 1;
975 	sb->s_iflags |= SB_I_CGROUPWB | SB_I_ALLOW_HSM;
976 
977 	ret = super_setup_bdi(sb);
978 	if (ret) {
979 		btrfs_err(fs_info, "super_setup_bdi failed");
980 		return ret;
981 	}
982 
983 	ret = open_ctree(sb, fs_devices);
984 	if (ret) {
985 		btrfs_err(fs_info, "open_ctree failed: %d", ret);
986 		return ret;
987 	}
988 
989 	btrfs_emit_options(fs_info, NULL);
990 
991 	inode = btrfs_iget(BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root);
992 	if (IS_ERR(inode)) {
993 		ret = PTR_ERR(inode);
994 		btrfs_handle_fs_error(fs_info, ret, NULL);
995 		goto fail_close;
996 	}
997 
998 	sb->s_root = d_make_root(&inode->vfs_inode);
999 	if (!sb->s_root) {
1000 		ret = -ENOMEM;
1001 		goto fail_close;
1002 	}
1003 
1004 	sb->s_flags |= SB_ACTIVE;
1005 	return 0;
1006 
1007 fail_close:
1008 	close_ctree(fs_info);
1009 	return ret;
1010 }
1011 
btrfs_sync_fs(struct super_block * sb,int wait)1012 int btrfs_sync_fs(struct super_block *sb, int wait)
1013 {
1014 	struct btrfs_trans_handle *trans;
1015 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1016 	struct btrfs_root *root = fs_info->tree_root;
1017 
1018 	trace_btrfs_sync_fs(fs_info, wait);
1019 
1020 	if (!wait) {
1021 		filemap_flush(fs_info->btree_inode->i_mapping);
1022 		return 0;
1023 	}
1024 
1025 	btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL);
1026 
1027 	trans = btrfs_attach_transaction_barrier(root);
1028 	if (IS_ERR(trans)) {
1029 		/* no transaction, don't bother */
1030 		if (PTR_ERR(trans) == -ENOENT) {
1031 			/*
1032 			 * Exit unless we have some pending changes
1033 			 * that need to go through commit
1034 			 */
1035 			if (!test_bit(BTRFS_FS_NEED_TRANS_COMMIT,
1036 				      &fs_info->flags))
1037 				return 0;
1038 			/*
1039 			 * A non-blocking test if the fs is frozen. We must not
1040 			 * start a new transaction here otherwise a deadlock
1041 			 * happens. The pending operations are delayed to the
1042 			 * next commit after thawing.
1043 			 */
1044 			if (sb_start_write_trylock(sb))
1045 				sb_end_write(sb);
1046 			else
1047 				return 0;
1048 			trans = btrfs_start_transaction(root, 0);
1049 		}
1050 		if (IS_ERR(trans))
1051 			return PTR_ERR(trans);
1052 	}
1053 	return btrfs_commit_transaction(trans);
1054 }
1055 
print_rescue_option(struct seq_file * seq,const char * s,bool * printed)1056 static void print_rescue_option(struct seq_file *seq, const char *s, bool *printed)
1057 {
1058 	seq_printf(seq, "%s%s", (*printed) ? ":" : ",rescue=", s);
1059 	*printed = true;
1060 }
1061 
btrfs_show_options(struct seq_file * seq,struct dentry * dentry)1062 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1063 {
1064 	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1065 	const char *compress_type;
1066 	const char *subvol_name;
1067 	bool printed = false;
1068 
1069 	if (btrfs_test_opt(info, DEGRADED))
1070 		seq_puts(seq, ",degraded");
1071 	if (btrfs_test_opt(info, NODATASUM))
1072 		seq_puts(seq, ",nodatasum");
1073 	if (btrfs_test_opt(info, NODATACOW))
1074 		seq_puts(seq, ",nodatacow");
1075 	if (btrfs_test_opt(info, NOBARRIER))
1076 		seq_puts(seq, ",nobarrier");
1077 	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1078 		seq_printf(seq, ",max_inline=%llu", info->max_inline);
1079 	if (info->thread_pool_size !=  min_t(unsigned long,
1080 					     num_online_cpus() + 2, 8))
1081 		seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1082 	if (btrfs_test_opt(info, COMPRESS)) {
1083 		compress_type = btrfs_compress_type2str(info->compress_type);
1084 		if (btrfs_test_opt(info, FORCE_COMPRESS))
1085 			seq_printf(seq, ",compress-force=%s", compress_type);
1086 		else
1087 			seq_printf(seq, ",compress=%s", compress_type);
1088 		if (info->compress_level && info->compress_type != BTRFS_COMPRESS_LZO)
1089 			seq_printf(seq, ":%d", info->compress_level);
1090 	}
1091 	if (btrfs_test_opt(info, NOSSD))
1092 		seq_puts(seq, ",nossd");
1093 	if (btrfs_test_opt(info, SSD_SPREAD))
1094 		seq_puts(seq, ",ssd_spread");
1095 	else if (btrfs_test_opt(info, SSD))
1096 		seq_puts(seq, ",ssd");
1097 	if (btrfs_test_opt(info, NOTREELOG))
1098 		seq_puts(seq, ",notreelog");
1099 	if (btrfs_test_opt(info, NOLOGREPLAY))
1100 		print_rescue_option(seq, "nologreplay", &printed);
1101 	if (btrfs_test_opt(info, USEBACKUPROOT))
1102 		print_rescue_option(seq, "usebackuproot", &printed);
1103 	if (btrfs_test_opt(info, IGNOREBADROOTS))
1104 		print_rescue_option(seq, "ignorebadroots", &printed);
1105 	if (btrfs_test_opt(info, IGNOREDATACSUMS))
1106 		print_rescue_option(seq, "ignoredatacsums", &printed);
1107 	if (btrfs_test_opt(info, IGNOREMETACSUMS))
1108 		print_rescue_option(seq, "ignoremetacsums", &printed);
1109 	if (btrfs_test_opt(info, IGNORESUPERFLAGS))
1110 		print_rescue_option(seq, "ignoresuperflags", &printed);
1111 	if (btrfs_test_opt(info, FLUSHONCOMMIT))
1112 		seq_puts(seq, ",flushoncommit");
1113 	if (btrfs_test_opt(info, DISCARD_SYNC))
1114 		seq_puts(seq, ",discard");
1115 	if (btrfs_test_opt(info, DISCARD_ASYNC))
1116 		seq_puts(seq, ",discard=async");
1117 	if (!(info->sb->s_flags & SB_POSIXACL))
1118 		seq_puts(seq, ",noacl");
1119 	if (btrfs_free_space_cache_v1_active(info))
1120 		seq_puts(seq, ",space_cache");
1121 	else if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
1122 		seq_puts(seq, ",space_cache=v2");
1123 	else
1124 		seq_puts(seq, ",nospace_cache");
1125 	if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1126 		seq_puts(seq, ",rescan_uuid_tree");
1127 	if (btrfs_test_opt(info, CLEAR_CACHE))
1128 		seq_puts(seq, ",clear_cache");
1129 	if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1130 		seq_puts(seq, ",user_subvol_rm_allowed");
1131 	if (btrfs_test_opt(info, ENOSPC_DEBUG))
1132 		seq_puts(seq, ",enospc_debug");
1133 	if (btrfs_test_opt(info, AUTO_DEFRAG))
1134 		seq_puts(seq, ",autodefrag");
1135 	if (btrfs_test_opt(info, SKIP_BALANCE))
1136 		seq_puts(seq, ",skip_balance");
1137 	if (info->metadata_ratio)
1138 		seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1139 	if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1140 		seq_puts(seq, ",fatal_errors=panic");
1141 	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1142 		seq_printf(seq, ",commit=%u", info->commit_interval);
1143 #ifdef CONFIG_BTRFS_DEBUG
1144 	if (btrfs_test_opt(info, FRAGMENT_DATA))
1145 		seq_puts(seq, ",fragment=data");
1146 	if (btrfs_test_opt(info, FRAGMENT_METADATA))
1147 		seq_puts(seq, ",fragment=metadata");
1148 #endif
1149 	if (btrfs_test_opt(info, REF_VERIFY))
1150 		seq_puts(seq, ",ref_verify");
1151 	if (btrfs_test_opt(info, REF_TRACKER))
1152 		seq_puts(seq, ",ref_tracker");
1153 	seq_printf(seq, ",subvolid=%llu", btrfs_root_id(BTRFS_I(d_inode(dentry))->root));
1154 	subvol_name = btrfs_get_subvol_name_from_objectid(info,
1155 			btrfs_root_id(BTRFS_I(d_inode(dentry))->root));
1156 	if (!IS_ERR(subvol_name)) {
1157 		seq_show_option(seq, "subvol", subvol_name);
1158 		kfree(subvol_name);
1159 	}
1160 	return 0;
1161 }
1162 
1163 /*
1164  * subvolumes are identified by ino 256
1165  */
is_subvolume_inode(struct inode * inode)1166 static inline bool is_subvolume_inode(struct inode *inode)
1167 {
1168 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1169 		return true;
1170 	return false;
1171 }
1172 
mount_subvol(const char * subvol_name,u64 subvol_objectid,struct vfsmount * mnt)1173 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1174 				   struct vfsmount *mnt)
1175 {
1176 	struct dentry *root;
1177 	int ret;
1178 
1179 	if (!subvol_name) {
1180 		if (!subvol_objectid) {
1181 			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1182 							  &subvol_objectid);
1183 			if (ret) {
1184 				root = ERR_PTR(ret);
1185 				goto out;
1186 			}
1187 		}
1188 		subvol_name = btrfs_get_subvol_name_from_objectid(
1189 					btrfs_sb(mnt->mnt_sb), subvol_objectid);
1190 		if (IS_ERR(subvol_name)) {
1191 			root = ERR_CAST(subvol_name);
1192 			subvol_name = NULL;
1193 			goto out;
1194 		}
1195 
1196 	}
1197 
1198 	root = mount_subtree(mnt, subvol_name);
1199 	/* mount_subtree() drops our reference on the vfsmount. */
1200 	mnt = NULL;
1201 
1202 	if (!IS_ERR(root)) {
1203 		struct super_block *s = root->d_sb;
1204 		struct btrfs_fs_info *fs_info = btrfs_sb(s);
1205 		struct inode *root_inode = d_inode(root);
1206 		u64 root_objectid = btrfs_root_id(BTRFS_I(root_inode)->root);
1207 
1208 		ret = 0;
1209 		if (!is_subvolume_inode(root_inode)) {
1210 			btrfs_err(fs_info, "'%s' is not a valid subvolume",
1211 			       subvol_name);
1212 			ret = -EINVAL;
1213 		}
1214 		if (subvol_objectid && root_objectid != subvol_objectid) {
1215 			/*
1216 			 * This will also catch a race condition where a
1217 			 * subvolume which was passed by ID is renamed and
1218 			 * another subvolume is renamed over the old location.
1219 			 */
1220 			btrfs_err(fs_info,
1221 				  "subvol '%s' does not match subvolid %llu",
1222 				  subvol_name, subvol_objectid);
1223 			ret = -EINVAL;
1224 		}
1225 		if (ret) {
1226 			dput(root);
1227 			root = ERR_PTR(ret);
1228 			deactivate_locked_super(s);
1229 		}
1230 	}
1231 
1232 out:
1233 	mntput(mnt);
1234 	kfree(subvol_name);
1235 	return root;
1236 }
1237 
btrfs_resize_thread_pool(struct btrfs_fs_info * fs_info,u32 new_pool_size,u32 old_pool_size)1238 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1239 				     u32 new_pool_size, u32 old_pool_size)
1240 {
1241 	if (new_pool_size == old_pool_size)
1242 		return;
1243 
1244 	fs_info->thread_pool_size = new_pool_size;
1245 
1246 	btrfs_info(fs_info, "resize thread pool %d -> %d",
1247 	       old_pool_size, new_pool_size);
1248 
1249 	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1250 	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1251 	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1252 	workqueue_set_max_active(fs_info->endio_workers, new_pool_size);
1253 	workqueue_set_max_active(fs_info->endio_meta_workers, new_pool_size);
1254 	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1255 	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1256 	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1257 }
1258 
btrfs_remount_begin(struct btrfs_fs_info * fs_info,unsigned long long old_opts,int flags)1259 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1260 				       unsigned long long old_opts, int flags)
1261 {
1262 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1263 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1264 	     (flags & SB_RDONLY))) {
1265 		/* wait for any defraggers to finish */
1266 		wait_event(fs_info->transaction_wait,
1267 			   (atomic_read(&fs_info->defrag_running) == 0));
1268 		if (flags & SB_RDONLY)
1269 			sync_filesystem(fs_info->sb);
1270 	}
1271 }
1272 
btrfs_remount_cleanup(struct btrfs_fs_info * fs_info,unsigned long long old_opts)1273 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1274 					 unsigned long long old_opts)
1275 {
1276 	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
1277 
1278 	/*
1279 	 * We need to cleanup all defraggable inodes if the autodefragment is
1280 	 * close or the filesystem is read only.
1281 	 */
1282 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1283 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1284 		btrfs_cleanup_defrag_inodes(fs_info);
1285 	}
1286 
1287 	/* If we toggled discard async */
1288 	if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1289 	    btrfs_test_opt(fs_info, DISCARD_ASYNC))
1290 		btrfs_discard_resume(fs_info);
1291 	else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1292 		 !btrfs_test_opt(fs_info, DISCARD_ASYNC))
1293 		btrfs_discard_cleanup(fs_info);
1294 
1295 	/* If we toggled space cache */
1296 	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info))
1297 		btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
1298 }
1299 
btrfs_remount_rw(struct btrfs_fs_info * fs_info)1300 static int btrfs_remount_rw(struct btrfs_fs_info *fs_info)
1301 {
1302 	int ret;
1303 
1304 	if (BTRFS_FS_ERROR(fs_info)) {
1305 		btrfs_err(fs_info,
1306 			  "remounting read-write after error is not allowed");
1307 		return -EINVAL;
1308 	}
1309 
1310 	if (fs_info->fs_devices->rw_devices == 0)
1311 		return -EACCES;
1312 
1313 	if (!btrfs_check_rw_degradable(fs_info, NULL)) {
1314 		btrfs_warn(fs_info,
1315 			   "too many missing devices, writable remount is not allowed");
1316 		return -EACCES;
1317 	}
1318 
1319 	if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1320 		btrfs_warn(fs_info,
1321 			   "mount required to replay tree-log, cannot remount read-write");
1322 		return -EINVAL;
1323 	}
1324 
1325 	/*
1326 	 * NOTE: when remounting with a change that does writes, don't put it
1327 	 * anywhere above this point, as we are not sure to be safe to write
1328 	 * until we pass the above checks.
1329 	 */
1330 	ret = btrfs_start_pre_rw_mount(fs_info);
1331 	if (ret)
1332 		return ret;
1333 
1334 	btrfs_clear_sb_rdonly(fs_info->sb);
1335 
1336 	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1337 
1338 	/*
1339 	 * If we've gone from readonly -> read-write, we need to get our
1340 	 * sync/async discard lists in the right state.
1341 	 */
1342 	btrfs_discard_resume(fs_info);
1343 
1344 	return 0;
1345 }
1346 
btrfs_remount_ro(struct btrfs_fs_info * fs_info)1347 static int btrfs_remount_ro(struct btrfs_fs_info *fs_info)
1348 {
1349 	/*
1350 	 * This also happens on 'umount -rf' or on shutdown, when the
1351 	 * filesystem is busy.
1352 	 */
1353 	cancel_work_sync(&fs_info->async_reclaim_work);
1354 	cancel_work_sync(&fs_info->async_data_reclaim_work);
1355 
1356 	btrfs_discard_cleanup(fs_info);
1357 
1358 	/* Wait for the uuid_scan task to finish */
1359 	down(&fs_info->uuid_tree_rescan_sem);
1360 	/* Avoid complains from lockdep et al. */
1361 	up(&fs_info->uuid_tree_rescan_sem);
1362 
1363 	btrfs_set_sb_rdonly(fs_info->sb);
1364 
1365 	/*
1366 	 * Setting SB_RDONLY will put the cleaner thread to sleep at the next
1367 	 * loop if it's already active.  If it's already asleep, we'll leave
1368 	 * unused block groups on disk until we're mounted read-write again
1369 	 * unless we clean them up here.
1370 	 */
1371 	btrfs_delete_unused_bgs(fs_info);
1372 
1373 	/*
1374 	 * The cleaner task could be already running before we set the flag
1375 	 * BTRFS_FS_STATE_RO (and SB_RDONLY in the superblock).  We must make
1376 	 * sure that after we finish the remount, i.e. after we call
1377 	 * btrfs_commit_super(), the cleaner can no longer start a transaction
1378 	 * - either because it was dropping a dead root, running delayed iputs
1379 	 *   or deleting an unused block group (the cleaner picked a block
1380 	 *   group from the list of unused block groups before we were able to
1381 	 *   in the previous call to btrfs_delete_unused_bgs()).
1382 	 */
1383 	wait_on_bit(&fs_info->flags, BTRFS_FS_CLEANER_RUNNING, TASK_UNINTERRUPTIBLE);
1384 
1385 	/*
1386 	 * We've set the superblock to RO mode, so we might have made the
1387 	 * cleaner task sleep without running all pending delayed iputs. Go
1388 	 * through all the delayed iputs here, so that if an unmount happens
1389 	 * without remounting RW we don't end up at finishing close_ctree()
1390 	 * with a non-empty list of delayed iputs.
1391 	 */
1392 	btrfs_run_delayed_iputs(fs_info);
1393 
1394 	btrfs_dev_replace_suspend_for_unmount(fs_info);
1395 	btrfs_scrub_cancel(fs_info);
1396 	btrfs_pause_balance(fs_info);
1397 
1398 	/*
1399 	 * Pause the qgroup rescan worker if it is running. We don't want it to
1400 	 * be still running after we are in RO mode, as after that, by the time
1401 	 * we unmount, it might have left a transaction open, so we would leak
1402 	 * the transaction and/or crash.
1403 	 */
1404 	btrfs_qgroup_wait_for_completion(fs_info, false);
1405 
1406 	return btrfs_commit_super(fs_info);
1407 }
1408 
btrfs_ctx_to_info(struct btrfs_fs_info * fs_info,struct btrfs_fs_context * ctx)1409 static void btrfs_ctx_to_info(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx)
1410 {
1411 	fs_info->max_inline = ctx->max_inline;
1412 	fs_info->commit_interval = ctx->commit_interval;
1413 	fs_info->metadata_ratio = ctx->metadata_ratio;
1414 	fs_info->thread_pool_size = ctx->thread_pool_size;
1415 	fs_info->mount_opt = ctx->mount_opt;
1416 	fs_info->compress_type = ctx->compress_type;
1417 	fs_info->compress_level = ctx->compress_level;
1418 }
1419 
btrfs_info_to_ctx(struct btrfs_fs_info * fs_info,struct btrfs_fs_context * ctx)1420 static void btrfs_info_to_ctx(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx)
1421 {
1422 	ctx->max_inline = fs_info->max_inline;
1423 	ctx->commit_interval = fs_info->commit_interval;
1424 	ctx->metadata_ratio = fs_info->metadata_ratio;
1425 	ctx->thread_pool_size = fs_info->thread_pool_size;
1426 	ctx->mount_opt = fs_info->mount_opt;
1427 	ctx->compress_type = fs_info->compress_type;
1428 	ctx->compress_level = fs_info->compress_level;
1429 }
1430 
1431 #define btrfs_info_if_set(fs_info, old_ctx, opt, fmt, args...)			\
1432 do {										\
1433 	if ((!old_ctx || !btrfs_raw_test_opt(old_ctx->mount_opt, opt)) &&	\
1434 	    btrfs_raw_test_opt(fs_info->mount_opt, opt))			\
1435 		btrfs_info(fs_info, fmt, ##args);				\
1436 } while (0)
1437 
1438 #define btrfs_info_if_unset(fs_info, old_ctx, opt, fmt, args...)	\
1439 do {									\
1440 	if ((old_ctx && btrfs_raw_test_opt(old_ctx->mount_opt, opt)) &&	\
1441 	    !btrfs_raw_test_opt(fs_info->mount_opt, opt))		\
1442 		btrfs_info(fs_info, fmt, ##args);			\
1443 } while (0)
1444 
btrfs_emit_options(struct btrfs_fs_info * info,struct btrfs_fs_context * old)1445 static void btrfs_emit_options(struct btrfs_fs_info *info,
1446 			       struct btrfs_fs_context *old)
1447 {
1448 	btrfs_info_if_set(info, old, NODATASUM, "setting nodatasum");
1449 	btrfs_info_if_set(info, old, DEGRADED, "allowing degraded mounts");
1450 	btrfs_info_if_set(info, old, NODATACOW, "setting nodatacow");
1451 	btrfs_info_if_set(info, old, SSD, "enabling ssd optimizations");
1452 	btrfs_info_if_set(info, old, SSD_SPREAD, "using spread ssd allocation scheme");
1453 	btrfs_info_if_set(info, old, NOBARRIER, "turning off barriers");
1454 	btrfs_info_if_set(info, old, NOTREELOG, "disabling tree log");
1455 	btrfs_info_if_set(info, old, NOLOGREPLAY, "disabling log replay at mount time");
1456 	btrfs_info_if_set(info, old, FLUSHONCOMMIT, "turning on flush-on-commit");
1457 	btrfs_info_if_set(info, old, DISCARD_SYNC, "turning on sync discard");
1458 	btrfs_info_if_set(info, old, DISCARD_ASYNC, "turning on async discard");
1459 	btrfs_info_if_set(info, old, FREE_SPACE_TREE, "enabling free space tree");
1460 	btrfs_info_if_set(info, old, SPACE_CACHE, "enabling disk space caching");
1461 	btrfs_info_if_set(info, old, CLEAR_CACHE, "force clearing of disk cache");
1462 	btrfs_info_if_set(info, old, AUTO_DEFRAG, "enabling auto defrag");
1463 	btrfs_info_if_set(info, old, FRAGMENT_DATA, "fragmenting data");
1464 	btrfs_info_if_set(info, old, FRAGMENT_METADATA, "fragmenting metadata");
1465 	btrfs_info_if_set(info, old, REF_VERIFY, "doing ref verification");
1466 	btrfs_info_if_set(info, old, USEBACKUPROOT, "trying to use backup root at mount time");
1467 	btrfs_info_if_set(info, old, IGNOREBADROOTS, "ignoring bad roots");
1468 	btrfs_info_if_set(info, old, IGNOREDATACSUMS, "ignoring data csums");
1469 	btrfs_info_if_set(info, old, IGNOREMETACSUMS, "ignoring meta csums");
1470 	btrfs_info_if_set(info, old, IGNORESUPERFLAGS, "ignoring unknown super block flags");
1471 
1472 	btrfs_info_if_unset(info, old, NODATASUM, "setting datasum");
1473 	btrfs_info_if_unset(info, old, NODATACOW, "setting datacow");
1474 	btrfs_info_if_unset(info, old, SSD, "not using ssd optimizations");
1475 	btrfs_info_if_unset(info, old, SSD_SPREAD, "not using spread ssd allocation scheme");
1476 	btrfs_info_if_unset(info, old, NOBARRIER, "turning on barriers");
1477 	btrfs_info_if_unset(info, old, NOTREELOG, "enabling tree log");
1478 	btrfs_info_if_unset(info, old, SPACE_CACHE, "disabling disk space caching");
1479 	btrfs_info_if_unset(info, old, FREE_SPACE_TREE, "disabling free space tree");
1480 	btrfs_info_if_unset(info, old, AUTO_DEFRAG, "disabling auto defrag");
1481 	btrfs_info_if_unset(info, old, COMPRESS, "use no compression");
1482 
1483 	/* Did the compression settings change? */
1484 	if (btrfs_test_opt(info, COMPRESS) &&
1485 	    (!old ||
1486 	     old->compress_type != info->compress_type ||
1487 	     old->compress_level != info->compress_level ||
1488 	     (!btrfs_raw_test_opt(old->mount_opt, FORCE_COMPRESS) &&
1489 	      btrfs_raw_test_opt(info->mount_opt, FORCE_COMPRESS)))) {
1490 		const char *compress_type = btrfs_compress_type2str(info->compress_type);
1491 
1492 		btrfs_info(info, "%s %s compression, level %d",
1493 			   btrfs_test_opt(info, FORCE_COMPRESS) ? "force" : "use",
1494 			   compress_type, info->compress_level);
1495 	}
1496 
1497 	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1498 		btrfs_info(info, "max_inline set to %llu", info->max_inline);
1499 }
1500 
btrfs_reconfigure(struct fs_context * fc)1501 static int btrfs_reconfigure(struct fs_context *fc)
1502 {
1503 	struct super_block *sb = fc->root->d_sb;
1504 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1505 	struct btrfs_fs_context *ctx = fc->fs_private;
1506 	struct btrfs_fs_context old_ctx;
1507 	int ret = 0;
1508 	bool mount_reconfigure = (fc->s_fs_info != NULL);
1509 
1510 	btrfs_info_to_ctx(fs_info, &old_ctx);
1511 
1512 	/*
1513 	 * This is our "bind mount" trick, we don't want to allow the user to do
1514 	 * anything other than mount a different ro/rw and a different subvol,
1515 	 * all of the mount options should be maintained.
1516 	 */
1517 	if (mount_reconfigure)
1518 		ctx->mount_opt = old_ctx.mount_opt;
1519 
1520 	sync_filesystem(sb);
1521 	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1522 
1523 	if (!btrfs_check_options(fs_info, &ctx->mount_opt, fc->sb_flags))
1524 		return -EINVAL;
1525 
1526 	ret = btrfs_check_features(fs_info, !(fc->sb_flags & SB_RDONLY));
1527 	if (ret < 0)
1528 		return ret;
1529 
1530 	btrfs_ctx_to_info(fs_info, ctx);
1531 	btrfs_remount_begin(fs_info, old_ctx.mount_opt, fc->sb_flags);
1532 	btrfs_resize_thread_pool(fs_info, fs_info->thread_pool_size,
1533 				 old_ctx.thread_pool_size);
1534 
1535 	if ((bool)btrfs_test_opt(fs_info, FREE_SPACE_TREE) !=
1536 	    (bool)btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
1537 	    (!sb_rdonly(sb) || (fc->sb_flags & SB_RDONLY))) {
1538 		btrfs_warn(fs_info,
1539 		"remount supports changing free space tree only from RO to RW");
1540 		/* Make sure free space cache options match the state on disk. */
1541 		if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
1542 			btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1543 			btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
1544 		}
1545 		if (btrfs_free_space_cache_v1_active(fs_info)) {
1546 			btrfs_clear_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1547 			btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
1548 		}
1549 	}
1550 
1551 	ret = 0;
1552 	if (!sb_rdonly(sb) && (fc->sb_flags & SB_RDONLY))
1553 		ret = btrfs_remount_ro(fs_info);
1554 	else if (sb_rdonly(sb) && !(fc->sb_flags & SB_RDONLY))
1555 		ret = btrfs_remount_rw(fs_info);
1556 	if (ret)
1557 		goto restore;
1558 
1559 	/*
1560 	 * If we set the mask during the parameter parsing VFS would reject the
1561 	 * remount.  Here we can set the mask and the value will be updated
1562 	 * appropriately.
1563 	 */
1564 	if ((fc->sb_flags & SB_POSIXACL) != (sb->s_flags & SB_POSIXACL))
1565 		fc->sb_flags_mask |= SB_POSIXACL;
1566 
1567 	btrfs_emit_options(fs_info, &old_ctx);
1568 	wake_up_process(fs_info->transaction_kthread);
1569 	btrfs_remount_cleanup(fs_info, old_ctx.mount_opt);
1570 	btrfs_clear_oneshot_options(fs_info);
1571 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1572 
1573 	return 0;
1574 restore:
1575 	btrfs_ctx_to_info(fs_info, &old_ctx);
1576 	btrfs_remount_cleanup(fs_info, old_ctx.mount_opt);
1577 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1578 	return ret;
1579 }
1580 
1581 /* Used to sort the devices by max_avail(descending sort) */
btrfs_cmp_device_free_bytes(const void * a,const void * b)1582 static int btrfs_cmp_device_free_bytes(const void *a, const void *b)
1583 {
1584 	const struct btrfs_device_info *dev_info1 = a;
1585 	const struct btrfs_device_info *dev_info2 = b;
1586 
1587 	if (dev_info1->max_avail > dev_info2->max_avail)
1588 		return -1;
1589 	else if (dev_info1->max_avail < dev_info2->max_avail)
1590 		return 1;
1591 	return 0;
1592 }
1593 
1594 /*
1595  * sort the devices by max_avail, in which max free extent size of each device
1596  * is stored.(Descending Sort)
1597  */
btrfs_descending_sort_devices(struct btrfs_device_info * devices,size_t nr_devices)1598 static inline void btrfs_descending_sort_devices(
1599 					struct btrfs_device_info *devices,
1600 					size_t nr_devices)
1601 {
1602 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1603 	     btrfs_cmp_device_free_bytes, NULL);
1604 }
1605 
1606 /*
1607  * The helper to calc the free space on the devices that can be used to store
1608  * file data.
1609  */
btrfs_calc_avail_data_space(struct btrfs_fs_info * fs_info,u64 * free_bytes)1610 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
1611 					      u64 *free_bytes)
1612 {
1613 	struct btrfs_device_info AUTO_KFREE(devices_info);
1614 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1615 	struct btrfs_device *device;
1616 	u64 type;
1617 	u64 avail_space;
1618 	u64 min_stripe_size;
1619 	int num_stripes = 1;
1620 	int i = 0, nr_devices;
1621 	const struct btrfs_raid_attr *rattr;
1622 
1623 	/*
1624 	 * We aren't under the device list lock, so this is racy-ish, but good
1625 	 * enough for our purposes.
1626 	 */
1627 	nr_devices = fs_info->fs_devices->open_devices;
1628 	if (!nr_devices) {
1629 		smp_mb();
1630 		nr_devices = fs_info->fs_devices->open_devices;
1631 		ASSERT(nr_devices);
1632 		if (!nr_devices) {
1633 			*free_bytes = 0;
1634 			return 0;
1635 		}
1636 	}
1637 
1638 	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1639 			       GFP_KERNEL);
1640 	if (!devices_info)
1641 		return -ENOMEM;
1642 
1643 	/* calc min stripe number for data space allocation */
1644 	type = btrfs_data_alloc_profile(fs_info);
1645 	rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)];
1646 
1647 	if (type & BTRFS_BLOCK_GROUP_RAID0)
1648 		num_stripes = nr_devices;
1649 	else if (type & BTRFS_BLOCK_GROUP_RAID1_MASK)
1650 		num_stripes = rattr->ncopies;
1651 	else if (type & BTRFS_BLOCK_GROUP_RAID10)
1652 		num_stripes = 4;
1653 
1654 	/* Adjust for more than 1 stripe per device */
1655 	min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN;
1656 
1657 	rcu_read_lock();
1658 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1659 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1660 						&device->dev_state) ||
1661 		    !device->bdev ||
1662 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
1663 			continue;
1664 
1665 		if (i >= nr_devices)
1666 			break;
1667 
1668 		avail_space = device->total_bytes - device->bytes_used;
1669 
1670 		/* align with stripe_len */
1671 		avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN);
1672 
1673 		/*
1674 		 * Ensure we have at least min_stripe_size on top of the
1675 		 * reserved space on the device.
1676 		 */
1677 		if (avail_space <= BTRFS_DEVICE_RANGE_RESERVED + min_stripe_size)
1678 			continue;
1679 
1680 		avail_space -= BTRFS_DEVICE_RANGE_RESERVED;
1681 
1682 		devices_info[i].dev = device;
1683 		devices_info[i].max_avail = avail_space;
1684 
1685 		i++;
1686 	}
1687 	rcu_read_unlock();
1688 
1689 	nr_devices = i;
1690 
1691 	btrfs_descending_sort_devices(devices_info, nr_devices);
1692 
1693 	i = nr_devices - 1;
1694 	avail_space = 0;
1695 	while (nr_devices >= rattr->devs_min) {
1696 		num_stripes = min(num_stripes, nr_devices);
1697 
1698 		if (devices_info[i].max_avail >= min_stripe_size) {
1699 			int j;
1700 			u64 alloc_size;
1701 
1702 			avail_space += devices_info[i].max_avail * num_stripes;
1703 			alloc_size = devices_info[i].max_avail;
1704 			for (j = i + 1 - num_stripes; j <= i; j++)
1705 				devices_info[j].max_avail -= alloc_size;
1706 		}
1707 		i--;
1708 		nr_devices--;
1709 	}
1710 
1711 	*free_bytes = avail_space;
1712 	return 0;
1713 }
1714 
1715 /*
1716  * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
1717  *
1718  * If there's a redundant raid level at DATA block groups, use the respective
1719  * multiplier to scale the sizes.
1720  *
1721  * Unused device space usage is based on simulating the chunk allocator
1722  * algorithm that respects the device sizes and order of allocations.  This is
1723  * a close approximation of the actual use but there are other factors that may
1724  * change the result (like a new metadata chunk).
1725  *
1726  * If metadata is exhausted, f_bavail will be 0.
1727  */
btrfs_statfs(struct dentry * dentry,struct kstatfs * buf)1728 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1729 {
1730 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1731 	struct btrfs_super_block *disk_super = fs_info->super_copy;
1732 	struct btrfs_space_info *found;
1733 	u64 total_used = 0;
1734 	u64 total_free_data = 0;
1735 	u64 total_free_meta = 0;
1736 	u32 bits = fs_info->sectorsize_bits;
1737 	__be32 *fsid = (__be32 *)fs_info->fs_devices->fsid;
1738 	unsigned factor = 1;
1739 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
1740 	int ret;
1741 	u64 thresh = 0;
1742 	int mixed = 0;
1743 
1744 	list_for_each_entry(found, &fs_info->space_info, list) {
1745 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1746 			int i;
1747 
1748 			total_free_data += found->disk_total - found->disk_used;
1749 			total_free_data -=
1750 				btrfs_account_ro_block_groups_free_space(found);
1751 
1752 			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1753 				if (!list_empty(&found->block_groups[i]))
1754 					factor = btrfs_bg_type_to_factor(
1755 						btrfs_raid_array[i].bg_flag);
1756 			}
1757 		}
1758 
1759 		/*
1760 		 * Metadata in mixed block group profiles are accounted in data
1761 		 */
1762 		if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
1763 			if (found->flags & BTRFS_BLOCK_GROUP_DATA)
1764 				mixed = 1;
1765 			else
1766 				total_free_meta += found->disk_total -
1767 					found->disk_used;
1768 		}
1769 
1770 		total_used += found->disk_used;
1771 	}
1772 
1773 	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
1774 	buf->f_blocks >>= bits;
1775 	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
1776 
1777 	/* Account global block reserve as used, it's in logical size already */
1778 	spin_lock(&block_rsv->lock);
1779 	/* Mixed block groups accounting is not byte-accurate, avoid overflow */
1780 	if (buf->f_bfree >= block_rsv->size >> bits)
1781 		buf->f_bfree -= block_rsv->size >> bits;
1782 	else
1783 		buf->f_bfree = 0;
1784 	spin_unlock(&block_rsv->lock);
1785 
1786 	buf->f_bavail = div_u64(total_free_data, factor);
1787 	ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
1788 	if (ret)
1789 		return ret;
1790 	buf->f_bavail += div_u64(total_free_data, factor);
1791 	buf->f_bavail = buf->f_bavail >> bits;
1792 
1793 	/*
1794 	 * We calculate the remaining metadata space minus global reserve. If
1795 	 * this is (supposedly) smaller than zero, there's no space. But this
1796 	 * does not hold in practice, the exhausted state happens where's still
1797 	 * some positive delta. So we apply some guesswork and compare the
1798 	 * delta to a 4M threshold.  (Practically observed delta was ~2M.)
1799 	 *
1800 	 * We probably cannot calculate the exact threshold value because this
1801 	 * depends on the internal reservations requested by various
1802 	 * operations, so some operations that consume a few metadata will
1803 	 * succeed even if the Avail is zero. But this is better than the other
1804 	 * way around.
1805 	 */
1806 	thresh = SZ_4M;
1807 
1808 	/*
1809 	 * We only want to claim there's no available space if we can no longer
1810 	 * allocate chunks for our metadata profile and our global reserve will
1811 	 * not fit in the free metadata space.  If we aren't ->full then we
1812 	 * still can allocate chunks and thus are fine using the currently
1813 	 * calculated f_bavail.
1814 	 */
1815 	if (!mixed && block_rsv->space_info->full &&
1816 	    (total_free_meta < thresh || total_free_meta - thresh < block_rsv->size))
1817 		buf->f_bavail = 0;
1818 
1819 	buf->f_type = BTRFS_SUPER_MAGIC;
1820 	buf->f_bsize = fs_info->sectorsize;
1821 	buf->f_namelen = BTRFS_NAME_LEN;
1822 
1823 	/* We treat it as constant endianness (it doesn't matter _which_)
1824 	   because we want the fsid to come out the same whether mounted
1825 	   on a big-endian or little-endian host */
1826 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1827 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1828 	/* Mask in the root object ID too, to disambiguate subvols */
1829 	buf->f_fsid.val[0] ^= btrfs_root_id(BTRFS_I(d_inode(dentry))->root) >> 32;
1830 	buf->f_fsid.val[1] ^= btrfs_root_id(BTRFS_I(d_inode(dentry))->root);
1831 
1832 	return 0;
1833 }
1834 
btrfs_fc_test_super(struct super_block * sb,struct fs_context * fc)1835 static int btrfs_fc_test_super(struct super_block *sb, struct fs_context *fc)
1836 {
1837 	struct btrfs_fs_info *p = fc->s_fs_info;
1838 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1839 
1840 	return fs_info->fs_devices == p->fs_devices;
1841 }
1842 
btrfs_get_tree_super(struct fs_context * fc)1843 static int btrfs_get_tree_super(struct fs_context *fc)
1844 {
1845 	struct btrfs_fs_info *fs_info = fc->s_fs_info;
1846 	struct btrfs_fs_context *ctx = fc->fs_private;
1847 	struct btrfs_fs_devices *fs_devices = NULL;
1848 	struct btrfs_device *device;
1849 	struct super_block *sb;
1850 	blk_mode_t mode = sb_open_mode(fc->sb_flags);
1851 	int ret;
1852 
1853 	btrfs_ctx_to_info(fs_info, ctx);
1854 	mutex_lock(&uuid_mutex);
1855 
1856 	/*
1857 	 * With 'true' passed to btrfs_scan_one_device() (mount time) we expect
1858 	 * either a valid device or an error.
1859 	 */
1860 	device = btrfs_scan_one_device(fc->source, true);
1861 	ASSERT(device != NULL);
1862 	if (IS_ERR(device)) {
1863 		mutex_unlock(&uuid_mutex);
1864 		return PTR_ERR(device);
1865 	}
1866 	fs_devices = device->fs_devices;
1867 	/*
1868 	 * We cannot hold uuid_mutex calling sget_fc(), it will lead to a
1869 	 * locking order reversal with s_umount.
1870 	 *
1871 	 * So here we increase the holding number of fs_devices, this will ensure
1872 	 * the fs_devices itself won't be freed.
1873 	 */
1874 	btrfs_fs_devices_inc_holding(fs_devices);
1875 	fs_info->fs_devices = fs_devices;
1876 	mutex_unlock(&uuid_mutex);
1877 
1878 
1879 	sb = sget_fc(fc, btrfs_fc_test_super, set_anon_super_fc);
1880 	if (IS_ERR(sb)) {
1881 		mutex_lock(&uuid_mutex);
1882 		btrfs_fs_devices_dec_holding(fs_devices);
1883 		/*
1884 		 * Since the fs_devices is not opened, it can be freed at any
1885 		 * time after unlocking uuid_mutex.  We need to avoid double
1886 		 * free through put_fs_context()->btrfs_free_fs_info().
1887 		 * So here we reset fs_info->fs_devices to NULL, and let the
1888 		 * regular fs_devices reclaim path to handle it.
1889 		 *
1890 		 * This applies to all later branches where no fs_devices is
1891 		 * opened.
1892 		 */
1893 		fs_info->fs_devices = NULL;
1894 		mutex_unlock(&uuid_mutex);
1895 		return PTR_ERR(sb);
1896 	}
1897 
1898 	if (sb->s_root) {
1899 		/*
1900 		 * Not the first mount of the fs thus got an existing super block.
1901 		 * Will reuse the returned super block, fs_info and fs_devices.
1902 		 *
1903 		 * fc->s_fs_info is not touched and will be later freed by
1904 		 * put_fs_context() through btrfs_free_fs_context().
1905 		 */
1906 		ASSERT(fc->s_fs_info == fs_info);
1907 
1908 		mutex_lock(&uuid_mutex);
1909 		btrfs_fs_devices_dec_holding(fs_devices);
1910 		fs_info->fs_devices = NULL;
1911 		mutex_unlock(&uuid_mutex);
1912 		/*
1913 		 * At this stage we may have RO flag mismatch between
1914 		 * fc->sb_flags and sb->s_flags.  Caller should detect such
1915 		 * mismatch and reconfigure with sb->s_umount rwsem held if
1916 		 * needed.
1917 		 */
1918 	} else {
1919 		struct block_device *bdev;
1920 
1921 		/*
1922 		 * The first mount of the fs thus a new superblock, fc->s_fs_info
1923 		 * must be NULL, and the ownership of our fs_info and fs_devices is
1924 		 * transferred to the super block.
1925 		 */
1926 		ASSERT(fc->s_fs_info == NULL);
1927 
1928 		mutex_lock(&uuid_mutex);
1929 		btrfs_fs_devices_dec_holding(fs_devices);
1930 		ret = btrfs_open_devices(fs_devices, mode, sb);
1931 		if (ret < 0)
1932 			fs_info->fs_devices = NULL;
1933 		mutex_unlock(&uuid_mutex);
1934 		if (ret < 0) {
1935 			deactivate_locked_super(sb);
1936 			return ret;
1937 		}
1938 		if (!(fc->sb_flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1939 			deactivate_locked_super(sb);
1940 			return -EACCES;
1941 		}
1942 		set_device_specific_options(fs_info);
1943 		bdev = fs_devices->latest_dev->bdev;
1944 		snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev);
1945 		shrinker_debugfs_rename(sb->s_shrink, "sb-btrfs:%s", sb->s_id);
1946 		ret = btrfs_fill_super(sb, fs_devices);
1947 		if (ret) {
1948 			deactivate_locked_super(sb);
1949 			return ret;
1950 		}
1951 	}
1952 
1953 	btrfs_clear_oneshot_options(fs_info);
1954 
1955 	fc->root = dget(sb->s_root);
1956 	return 0;
1957 }
1958 
1959 /*
1960  * Ever since commit 0723a0473fb4 ("btrfs: allow mounting btrfs subvolumes
1961  * with different ro/rw options") the following works:
1962  *
1963  *        (i) mount /dev/sda3 -o subvol=foo,ro /mnt/foo
1964  *       (ii) mount /dev/sda3 -o subvol=bar,rw /mnt/bar
1965  *
1966  * which looks nice and innocent but is actually pretty intricate and deserves
1967  * a long comment.
1968  *
1969  * On another filesystem a subvolume mount is close to something like:
1970  *
1971  *	(iii) # create rw superblock + initial mount
1972  *	      mount -t xfs /dev/sdb /opt/
1973  *
1974  *	      # create ro bind mount
1975  *	      mount --bind -o ro /opt/foo /mnt/foo
1976  *
1977  *	      # unmount initial mount
1978  *	      umount /opt
1979  *
1980  * Of course, there's some special subvolume sauce and there's the fact that the
1981  * sb->s_root dentry is really swapped after mount_subtree(). But conceptually
1982  * it's very close and will help us understand the issue.
1983  *
1984  * The old mount API didn't cleanly distinguish between a mount being made ro
1985  * and a superblock being made ro.  The only way to change the ro state of
1986  * either object was by passing ms_rdonly. If a new mount was created via
1987  * mount(2) such as:
1988  *
1989  *      mount("/dev/sdb", "/mnt", "xfs", ms_rdonly, null);
1990  *
1991  * the MS_RDONLY flag being specified had two effects:
1992  *
1993  * (1) MNT_READONLY was raised -> the resulting mount got
1994  *     @mnt->mnt_flags |= MNT_READONLY raised.
1995  *
1996  * (2) MS_RDONLY was passed to the filesystem's mount method and the filesystems
1997  *     made the superblock ro. Note, how SB_RDONLY has the same value as
1998  *     ms_rdonly and is raised whenever MS_RDONLY is passed through mount(2).
1999  *
2000  * Creating a subtree mount via (iii) ends up leaving a rw superblock with a
2001  * subtree mounted ro.
2002  *
2003  * But consider the effect on the old mount API on btrfs subvolume mounting
2004  * which combines the distinct step in (iii) into a single step.
2005  *
2006  * By issuing (i) both the mount and the superblock are turned ro. Now when (ii)
2007  * is issued the superblock is ro and thus even if the mount created for (ii) is
2008  * rw it wouldn't help. Hence, btrfs needed to transition the superblock from ro
2009  * to rw for (ii) which it did using an internal remount call.
2010  *
2011  * IOW, subvolume mounting was inherently complicated due to the ambiguity of
2012  * MS_RDONLY in mount(2). Note, this ambiguity has mount(8) always translate
2013  * "ro" to MS_RDONLY. IOW, in both (i) and (ii) "ro" becomes MS_RDONLY when
2014  * passed by mount(8) to mount(2).
2015  *
2016  * Enter the new mount API. The new mount API disambiguates making a mount ro
2017  * and making a superblock ro.
2018  *
2019  * (3) To turn a mount ro the MOUNT_ATTR_ONLY flag can be used with either
2020  *     fsmount() or mount_setattr() this is a pure VFS level change for a
2021  *     specific mount or mount tree that is never seen by the filesystem itself.
2022  *
2023  * (4) To turn a superblock ro the "ro" flag must be used with
2024  *     fsconfig(FSCONFIG_SET_FLAG, "ro"). This option is seen by the filesystem
2025  *     in fc->sb_flags.
2026  *
2027  * But, currently the util-linux mount command already utilizes the new mount
2028  * API and is still setting fsconfig(FSCONFIG_SET_FLAG, "ro") no matter if it's
2029  * btrfs or not, setting the whole super block RO.  To make per-subvolume mounting
2030  * work with different options work we need to keep backward compatibility.
2031  */
btrfs_reconfigure_for_mount(struct fs_context * fc)2032 static int btrfs_reconfigure_for_mount(struct fs_context *fc)
2033 {
2034 	int ret = 0;
2035 
2036 	if (!(fc->sb_flags & SB_RDONLY) && (fc->root->d_sb->s_flags & SB_RDONLY))
2037 		ret = btrfs_reconfigure(fc);
2038 
2039 	return ret;
2040 }
2041 
btrfs_get_tree_subvol(struct fs_context * fc)2042 static int btrfs_get_tree_subvol(struct fs_context *fc)
2043 {
2044 	struct btrfs_fs_info *fs_info = NULL;
2045 	struct btrfs_fs_context *ctx = fc->fs_private;
2046 	struct fs_context *dup_fc;
2047 	struct dentry *dentry;
2048 	struct vfsmount *mnt;
2049 	int ret = 0;
2050 
2051 	/*
2052 	 * Setup a dummy root and fs_info for test/set super.  This is because
2053 	 * we don't actually fill this stuff out until open_ctree, but we need
2054 	 * then open_ctree will properly initialize the file system specific
2055 	 * settings later.  btrfs_init_fs_info initializes the static elements
2056 	 * of the fs_info (locks and such) to make cleanup easier if we find a
2057 	 * superblock with our given fs_devices later on at sget() time.
2058 	 */
2059 	fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
2060 	if (!fs_info)
2061 		return -ENOMEM;
2062 
2063 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
2064 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
2065 	if (!fs_info->super_copy || !fs_info->super_for_commit) {
2066 		/*
2067 		 * Dont call btrfs_free_fs_info() to free it as it's still
2068 		 * initialized partially.
2069 		 */
2070 		kfree(fs_info->super_copy);
2071 		kfree(fs_info->super_for_commit);
2072 		kvfree(fs_info);
2073 		return -ENOMEM;
2074 	}
2075 	btrfs_init_fs_info(fs_info);
2076 
2077 	dup_fc = vfs_dup_fs_context(fc);
2078 	if (IS_ERR(dup_fc)) {
2079 		btrfs_free_fs_info(fs_info);
2080 		return PTR_ERR(dup_fc);
2081 	}
2082 
2083 	/*
2084 	 * When we do the sget_fc this gets transferred to the sb, so we only
2085 	 * need to set it on the dup_fc as this is what creates the super block.
2086 	 */
2087 	dup_fc->s_fs_info = fs_info;
2088 
2089 	ret = btrfs_get_tree_super(dup_fc);
2090 	if (ret)
2091 		goto error;
2092 
2093 	ret = btrfs_reconfigure_for_mount(dup_fc);
2094 	up_write(&dup_fc->root->d_sb->s_umount);
2095 	if (ret)
2096 		goto error;
2097 	mnt = vfs_create_mount(dup_fc);
2098 	put_fs_context(dup_fc);
2099 	if (IS_ERR(mnt))
2100 		return PTR_ERR(mnt);
2101 
2102 	/*
2103 	 * This free's ->subvol_name, because if it isn't set we have to
2104 	 * allocate a buffer to hold the subvol_name, so we just drop our
2105 	 * reference to it here.
2106 	 */
2107 	dentry = mount_subvol(ctx->subvol_name, ctx->subvol_objectid, mnt);
2108 	ctx->subvol_name = NULL;
2109 	if (IS_ERR(dentry))
2110 		return PTR_ERR(dentry);
2111 
2112 	fc->root = dentry;
2113 	return 0;
2114 error:
2115 	put_fs_context(dup_fc);
2116 	return ret;
2117 }
2118 
btrfs_get_tree(struct fs_context * fc)2119 static int btrfs_get_tree(struct fs_context *fc)
2120 {
2121 	ASSERT(fc->s_fs_info == NULL);
2122 
2123 	return btrfs_get_tree_subvol(fc);
2124 }
2125 
btrfs_kill_super(struct super_block * sb)2126 static void btrfs_kill_super(struct super_block *sb)
2127 {
2128 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2129 	kill_anon_super(sb);
2130 	btrfs_free_fs_info(fs_info);
2131 }
2132 
btrfs_free_fs_context(struct fs_context * fc)2133 static void btrfs_free_fs_context(struct fs_context *fc)
2134 {
2135 	struct btrfs_fs_context *ctx = fc->fs_private;
2136 	struct btrfs_fs_info *fs_info = fc->s_fs_info;
2137 
2138 	if (fs_info)
2139 		btrfs_free_fs_info(fs_info);
2140 
2141 	if (ctx && refcount_dec_and_test(&ctx->refs)) {
2142 		kfree(ctx->subvol_name);
2143 		kfree(ctx);
2144 	}
2145 }
2146 
btrfs_dup_fs_context(struct fs_context * fc,struct fs_context * src_fc)2147 static int btrfs_dup_fs_context(struct fs_context *fc, struct fs_context *src_fc)
2148 {
2149 	struct btrfs_fs_context *ctx = src_fc->fs_private;
2150 
2151 	/*
2152 	 * Give a ref to our ctx to this dup, as we want to keep it around for
2153 	 * our original fc so we can have the subvolume name or objectid.
2154 	 *
2155 	 * We unset ->source in the original fc because the dup needs it for
2156 	 * mounting, and then once we free the dup it'll free ->source, so we
2157 	 * need to make sure we're only pointing to it in one fc.
2158 	 */
2159 	refcount_inc(&ctx->refs);
2160 	fc->fs_private = ctx;
2161 	fc->source = src_fc->source;
2162 	src_fc->source = NULL;
2163 	return 0;
2164 }
2165 
2166 static const struct fs_context_operations btrfs_fs_context_ops = {
2167 	.parse_param	= btrfs_parse_param,
2168 	.reconfigure	= btrfs_reconfigure,
2169 	.get_tree	= btrfs_get_tree,
2170 	.dup		= btrfs_dup_fs_context,
2171 	.free		= btrfs_free_fs_context,
2172 };
2173 
btrfs_init_fs_context(struct fs_context * fc)2174 static int btrfs_init_fs_context(struct fs_context *fc)
2175 {
2176 	struct btrfs_fs_context *ctx;
2177 
2178 	ctx = kzalloc(sizeof(struct btrfs_fs_context), GFP_KERNEL);
2179 	if (!ctx)
2180 		return -ENOMEM;
2181 
2182 	refcount_set(&ctx->refs, 1);
2183 	fc->fs_private = ctx;
2184 	fc->ops = &btrfs_fs_context_ops;
2185 
2186 	if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2187 		btrfs_info_to_ctx(btrfs_sb(fc->root->d_sb), ctx);
2188 	} else {
2189 		ctx->thread_pool_size =
2190 			min_t(unsigned long, num_online_cpus() + 2, 8);
2191 		ctx->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2192 		ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2193 	}
2194 
2195 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
2196 	fc->sb_flags |= SB_POSIXACL;
2197 #endif
2198 	fc->sb_flags |= SB_I_VERSION;
2199 
2200 	return 0;
2201 }
2202 
2203 static struct file_system_type btrfs_fs_type = {
2204 	.owner			= THIS_MODULE,
2205 	.name			= "btrfs",
2206 	.init_fs_context	= btrfs_init_fs_context,
2207 	.parameters		= btrfs_fs_parameters,
2208 	.kill_sb		= btrfs_kill_super,
2209 	.fs_flags		= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA |
2210 				  FS_ALLOW_IDMAP | FS_MGTIME,
2211  };
2212 
2213 MODULE_ALIAS_FS("btrfs");
2214 
btrfs_control_open(struct inode * inode,struct file * file)2215 static int btrfs_control_open(struct inode *inode, struct file *file)
2216 {
2217 	/*
2218 	 * The control file's private_data is used to hold the
2219 	 * transaction when it is started and is used to keep
2220 	 * track of whether a transaction is already in progress.
2221 	 */
2222 	file->private_data = NULL;
2223 	return 0;
2224 }
2225 
2226 /*
2227  * Used by /dev/btrfs-control for devices ioctls.
2228  */
btrfs_control_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2229 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2230 				unsigned long arg)
2231 {
2232 	struct btrfs_ioctl_vol_args *vol;
2233 	struct btrfs_device *device = NULL;
2234 	dev_t devt = 0;
2235 	int ret = -ENOTTY;
2236 
2237 	if (!capable(CAP_SYS_ADMIN))
2238 		return -EPERM;
2239 
2240 	vol = memdup_user((void __user *)arg, sizeof(*vol));
2241 	if (IS_ERR(vol))
2242 		return PTR_ERR(vol);
2243 	ret = btrfs_check_ioctl_vol_args_path(vol);
2244 	if (ret < 0)
2245 		goto out;
2246 
2247 	switch (cmd) {
2248 	case BTRFS_IOC_SCAN_DEV:
2249 		mutex_lock(&uuid_mutex);
2250 		/*
2251 		 * Scanning outside of mount can return NULL which would turn
2252 		 * into 0 error code.
2253 		 */
2254 		device = btrfs_scan_one_device(vol->name, false);
2255 		ret = PTR_ERR_OR_ZERO(device);
2256 		mutex_unlock(&uuid_mutex);
2257 		break;
2258 	case BTRFS_IOC_FORGET_DEV:
2259 		if (vol->name[0] != 0) {
2260 			ret = lookup_bdev(vol->name, &devt);
2261 			if (ret)
2262 				break;
2263 		}
2264 		ret = btrfs_forget_devices(devt);
2265 		break;
2266 	case BTRFS_IOC_DEVICES_READY:
2267 		mutex_lock(&uuid_mutex);
2268 		/*
2269 		 * Scanning outside of mount can return NULL which would turn
2270 		 * into 0 error code.
2271 		 */
2272 		device = btrfs_scan_one_device(vol->name, false);
2273 		if (IS_ERR_OR_NULL(device)) {
2274 			mutex_unlock(&uuid_mutex);
2275 			ret = PTR_ERR_OR_ZERO(device);
2276 			break;
2277 		}
2278 		ret = !(device->fs_devices->num_devices ==
2279 			device->fs_devices->total_devices);
2280 		mutex_unlock(&uuid_mutex);
2281 		break;
2282 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2283 		ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2284 		break;
2285 	}
2286 
2287 out:
2288 	kfree(vol);
2289 	return ret;
2290 }
2291 
btrfs_freeze(struct super_block * sb)2292 static int btrfs_freeze(struct super_block *sb)
2293 {
2294 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2295 
2296 	set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2297 	/*
2298 	 * We don't need a barrier here, we'll wait for any transaction that
2299 	 * could be in progress on other threads (and do delayed iputs that
2300 	 * we want to avoid on a frozen filesystem), or do the commit
2301 	 * ourselves.
2302 	 */
2303 	return btrfs_commit_current_transaction(fs_info->tree_root);
2304 }
2305 
check_dev_super(struct btrfs_device * dev)2306 static int check_dev_super(struct btrfs_device *dev)
2307 {
2308 	struct btrfs_fs_info *fs_info = dev->fs_info;
2309 	struct btrfs_super_block *sb;
2310 	u64 last_trans;
2311 	u16 csum_type;
2312 	int ret = 0;
2313 
2314 	/* This should be called with fs still frozen. */
2315 	ASSERT(test_bit(BTRFS_FS_FROZEN, &fs_info->flags));
2316 
2317 	/* Missing dev, no need to check. */
2318 	if (!dev->bdev)
2319 		return 0;
2320 
2321 	/* Only need to check the primary super block. */
2322 	sb = btrfs_read_disk_super(dev->bdev, 0, true);
2323 	if (IS_ERR(sb))
2324 		return PTR_ERR(sb);
2325 
2326 	/* Verify the checksum. */
2327 	csum_type = btrfs_super_csum_type(sb);
2328 	if (unlikely(csum_type != btrfs_super_csum_type(fs_info->super_copy))) {
2329 		btrfs_err(fs_info, "csum type changed, has %u expect %u",
2330 			  csum_type, btrfs_super_csum_type(fs_info->super_copy));
2331 		ret = -EUCLEAN;
2332 		goto out;
2333 	}
2334 
2335 	if (unlikely(btrfs_check_super_csum(fs_info, sb))) {
2336 		btrfs_err(fs_info, "csum for on-disk super block no longer matches");
2337 		ret = -EUCLEAN;
2338 		goto out;
2339 	}
2340 
2341 	/* Btrfs_validate_super() includes fsid check against super->fsid. */
2342 	ret = btrfs_validate_super(fs_info, sb, 0);
2343 	if (ret < 0)
2344 		goto out;
2345 
2346 	last_trans = btrfs_get_last_trans_committed(fs_info);
2347 	if (unlikely(btrfs_super_generation(sb) != last_trans)) {
2348 		btrfs_err(fs_info, "transid mismatch, has %llu expect %llu",
2349 			  btrfs_super_generation(sb), last_trans);
2350 		ret = -EUCLEAN;
2351 		goto out;
2352 	}
2353 out:
2354 	btrfs_release_disk_super(sb);
2355 	return ret;
2356 }
2357 
btrfs_unfreeze(struct super_block * sb)2358 static int btrfs_unfreeze(struct super_block *sb)
2359 {
2360 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2361 	struct btrfs_device *device;
2362 	int ret = 0;
2363 
2364 	/*
2365 	 * Make sure the fs is not changed by accident (like hibernation then
2366 	 * modified by other OS).
2367 	 * If we found anything wrong, we mark the fs error immediately.
2368 	 *
2369 	 * And since the fs is frozen, no one can modify the fs yet, thus
2370 	 * we don't need to hold device_list_mutex.
2371 	 */
2372 	list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
2373 		ret = check_dev_super(device);
2374 		if (ret < 0) {
2375 			btrfs_handle_fs_error(fs_info, ret,
2376 				"super block on devid %llu got modified unexpectedly",
2377 				device->devid);
2378 			break;
2379 		}
2380 	}
2381 	clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2382 
2383 	/*
2384 	 * We still return 0, to allow VFS layer to unfreeze the fs even the
2385 	 * above checks failed. Since the fs is either fine or read-only, we're
2386 	 * safe to continue, without causing further damage.
2387 	 */
2388 	return 0;
2389 }
2390 
btrfs_show_devname(struct seq_file * m,struct dentry * root)2391 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2392 {
2393 	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2394 
2395 	/*
2396 	 * There should be always a valid pointer in latest_dev, it may be stale
2397 	 * for a short moment in case it's being deleted but still valid until
2398 	 * the end of RCU grace period.
2399 	 */
2400 	rcu_read_lock();
2401 	seq_escape(m, btrfs_dev_name(fs_info->fs_devices->latest_dev), " \t\n\\");
2402 	rcu_read_unlock();
2403 
2404 	return 0;
2405 }
2406 
btrfs_nr_cached_objects(struct super_block * sb,struct shrink_control * sc)2407 static long btrfs_nr_cached_objects(struct super_block *sb, struct shrink_control *sc)
2408 {
2409 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2410 	const s64 nr = percpu_counter_sum_positive(&fs_info->evictable_extent_maps);
2411 
2412 	trace_btrfs_extent_map_shrinker_count(fs_info, nr);
2413 
2414 	return nr;
2415 }
2416 
btrfs_free_cached_objects(struct super_block * sb,struct shrink_control * sc)2417 static long btrfs_free_cached_objects(struct super_block *sb, struct shrink_control *sc)
2418 {
2419 	const long nr_to_scan = min_t(unsigned long, LONG_MAX, sc->nr_to_scan);
2420 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2421 
2422 	btrfs_free_extent_maps(fs_info, nr_to_scan);
2423 
2424 	/* The extent map shrinker runs asynchronously, so always return 0. */
2425 	return 0;
2426 }
2427 
2428 #ifdef CONFIG_BTRFS_EXPERIMENTAL
btrfs_remove_bdev(struct super_block * sb,struct block_device * bdev)2429 static int btrfs_remove_bdev(struct super_block *sb, struct block_device *bdev)
2430 {
2431 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2432 	struct btrfs_device *device;
2433 	struct btrfs_dev_lookup_args lookup_args = { .devt = bdev->bd_dev };
2434 	bool can_rw;
2435 
2436 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2437 	device = btrfs_find_device(fs_info->fs_devices, &lookup_args);
2438 	if (!device) {
2439 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2440 		/* Device not found, should not affect the running fs, just give a warning. */
2441 		btrfs_warn(fs_info, "unable to find btrfs device for block device '%pg'", bdev);
2442 		return 0;
2443 	}
2444 	/*
2445 	 * The to-be-removed device is already missing?
2446 	 *
2447 	 * That's weird but no special handling needed and can exit right now.
2448 	 */
2449 	if (unlikely(test_and_set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))) {
2450 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2451 		btrfs_warn(fs_info, "btrfs device id %llu is already missing", device->devid);
2452 		return 0;
2453 	}
2454 
2455 	device->fs_devices->missing_devices++;
2456 	if (test_and_clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2457 		list_del_init(&device->dev_alloc_list);
2458 		WARN_ON(device->fs_devices->rw_devices < 1);
2459 		device->fs_devices->rw_devices--;
2460 	}
2461 	can_rw = btrfs_check_rw_degradable(fs_info, device);
2462 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2463 	/*
2464 	 * Now device is considered missing, btrfs_device_name() won't give a
2465 	 * meaningful result anymore, so only output the devid.
2466 	 */
2467 	if (unlikely(!can_rw)) {
2468 		btrfs_crit(fs_info,
2469 		"btrfs device id %llu has gone missing, can not maintain read-write",
2470 			   device->devid);
2471 		return -EIO;
2472 	}
2473 	btrfs_warn(fs_info,
2474 		   "btrfs device id %llu has gone missing, continue as degraded",
2475 		   device->devid);
2476 	btrfs_set_opt(fs_info->mount_opt, DEGRADED);
2477 	return 0;
2478 }
2479 
btrfs_shutdown(struct super_block * sb)2480 static void btrfs_shutdown(struct super_block *sb)
2481 {
2482 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2483 
2484 	btrfs_force_shutdown(fs_info);
2485 }
2486 #endif
2487 
2488 static const struct super_operations btrfs_super_ops = {
2489 	.drop_inode	= btrfs_drop_inode,
2490 	.evict_inode	= btrfs_evict_inode,
2491 	.put_super	= btrfs_put_super,
2492 	.sync_fs	= btrfs_sync_fs,
2493 	.show_options	= btrfs_show_options,
2494 	.show_devname	= btrfs_show_devname,
2495 	.alloc_inode	= btrfs_alloc_inode,
2496 	.destroy_inode	= btrfs_destroy_inode,
2497 	.free_inode	= btrfs_free_inode,
2498 	.statfs		= btrfs_statfs,
2499 	.freeze_fs	= btrfs_freeze,
2500 	.unfreeze_fs	= btrfs_unfreeze,
2501 	.nr_cached_objects = btrfs_nr_cached_objects,
2502 	.free_cached_objects = btrfs_free_cached_objects,
2503 #ifdef CONFIG_BTRFS_EXPERIMENTAL
2504 	.remove_bdev	= btrfs_remove_bdev,
2505 	.shutdown	= btrfs_shutdown,
2506 #endif
2507 };
2508 
2509 static const struct file_operations btrfs_ctl_fops = {
2510 	.open = btrfs_control_open,
2511 	.unlocked_ioctl	 = btrfs_control_ioctl,
2512 	.compat_ioctl = compat_ptr_ioctl,
2513 	.owner	 = THIS_MODULE,
2514 	.llseek = noop_llseek,
2515 };
2516 
2517 static struct miscdevice btrfs_misc = {
2518 	.minor		= BTRFS_MINOR,
2519 	.name		= "btrfs-control",
2520 	.fops		= &btrfs_ctl_fops
2521 };
2522 
2523 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2524 MODULE_ALIAS("devname:btrfs-control");
2525 
btrfs_interface_init(void)2526 static int __init btrfs_interface_init(void)
2527 {
2528 	return misc_register(&btrfs_misc);
2529 }
2530 
btrfs_interface_exit(void)2531 static __cold void btrfs_interface_exit(void)
2532 {
2533 	misc_deregister(&btrfs_misc);
2534 }
2535 
btrfs_print_mod_info(void)2536 static int __init btrfs_print_mod_info(void)
2537 {
2538 	static const char options[] = ""
2539 #ifdef CONFIG_BTRFS_EXPERIMENTAL
2540 			", experimental=on"
2541 #endif
2542 #ifdef CONFIG_BTRFS_DEBUG
2543 			", debug=on"
2544 #endif
2545 #ifdef CONFIG_BTRFS_ASSERT
2546 			", assert=on"
2547 #endif
2548 #ifdef CONFIG_BLK_DEV_ZONED
2549 			", zoned=yes"
2550 #else
2551 			", zoned=no"
2552 #endif
2553 #ifdef CONFIG_FS_VERITY
2554 			", fsverity=yes"
2555 #else
2556 			", fsverity=no"
2557 #endif
2558 			;
2559 
2560 #ifdef CONFIG_BTRFS_EXPERIMENTAL
2561 	if (btrfs_get_mod_read_policy() == NULL)
2562 		pr_info("Btrfs loaded%s\n", options);
2563 	else
2564 		pr_info("Btrfs loaded%s, read_policy=%s\n",
2565 			 options, btrfs_get_mod_read_policy());
2566 #else
2567 	pr_info("Btrfs loaded%s\n", options);
2568 #endif
2569 
2570 	return 0;
2571 }
2572 
register_btrfs(void)2573 static int register_btrfs(void)
2574 {
2575 	return register_filesystem(&btrfs_fs_type);
2576 }
2577 
unregister_btrfs(void)2578 static void unregister_btrfs(void)
2579 {
2580 	unregister_filesystem(&btrfs_fs_type);
2581 }
2582 
2583 /* Helper structure for long init/exit functions. */
2584 struct init_sequence {
2585 	int (*init_func)(void);
2586 	/* Can be NULL if the init_func doesn't need cleanup. */
2587 	void (*exit_func)(void);
2588 };
2589 
2590 static const struct init_sequence mod_init_seq[] = {
2591 	{
2592 		.init_func = btrfs_props_init,
2593 		.exit_func = NULL,
2594 	}, {
2595 		.init_func = btrfs_init_sysfs,
2596 		.exit_func = btrfs_exit_sysfs,
2597 	}, {
2598 		.init_func = btrfs_init_compress,
2599 		.exit_func = btrfs_exit_compress,
2600 	}, {
2601 		.init_func = btrfs_init_cachep,
2602 		.exit_func = btrfs_destroy_cachep,
2603 	}, {
2604 		.init_func = btrfs_init_dio,
2605 		.exit_func = btrfs_destroy_dio,
2606 	}, {
2607 		.init_func = btrfs_transaction_init,
2608 		.exit_func = btrfs_transaction_exit,
2609 	}, {
2610 		.init_func = btrfs_ctree_init,
2611 		.exit_func = btrfs_ctree_exit,
2612 	}, {
2613 		.init_func = btrfs_free_space_init,
2614 		.exit_func = btrfs_free_space_exit,
2615 	}, {
2616 		.init_func = btrfs_extent_state_init_cachep,
2617 		.exit_func = btrfs_extent_state_free_cachep,
2618 	}, {
2619 		.init_func = extent_buffer_init_cachep,
2620 		.exit_func = extent_buffer_free_cachep,
2621 	}, {
2622 		.init_func = btrfs_bioset_init,
2623 		.exit_func = btrfs_bioset_exit,
2624 	}, {
2625 		.init_func = btrfs_extent_map_init,
2626 		.exit_func = btrfs_extent_map_exit,
2627 #ifdef CONFIG_BTRFS_EXPERIMENTAL
2628 	}, {
2629 		.init_func = btrfs_read_policy_init,
2630 		.exit_func = NULL,
2631 #endif
2632 	}, {
2633 		.init_func = ordered_data_init,
2634 		.exit_func = ordered_data_exit,
2635 	}, {
2636 		.init_func = btrfs_delayed_inode_init,
2637 		.exit_func = btrfs_delayed_inode_exit,
2638 	}, {
2639 		.init_func = btrfs_auto_defrag_init,
2640 		.exit_func = btrfs_auto_defrag_exit,
2641 	}, {
2642 		.init_func = btrfs_delayed_ref_init,
2643 		.exit_func = btrfs_delayed_ref_exit,
2644 	}, {
2645 		.init_func = btrfs_prelim_ref_init,
2646 		.exit_func = btrfs_prelim_ref_exit,
2647 	}, {
2648 		.init_func = btrfs_interface_init,
2649 		.exit_func = btrfs_interface_exit,
2650 	}, {
2651 		.init_func = btrfs_print_mod_info,
2652 		.exit_func = NULL,
2653 	}, {
2654 		.init_func = btrfs_run_sanity_tests,
2655 		.exit_func = NULL,
2656 	}, {
2657 		.init_func = register_btrfs,
2658 		.exit_func = unregister_btrfs,
2659 	}
2660 };
2661 
2662 static bool mod_init_result[ARRAY_SIZE(mod_init_seq)];
2663 
btrfs_exit_btrfs_fs(void)2664 static __always_inline void btrfs_exit_btrfs_fs(void)
2665 {
2666 	int i;
2667 
2668 	for (i = ARRAY_SIZE(mod_init_seq) - 1; i >= 0; i--) {
2669 		if (!mod_init_result[i])
2670 			continue;
2671 		if (mod_init_seq[i].exit_func)
2672 			mod_init_seq[i].exit_func();
2673 		mod_init_result[i] = false;
2674 	}
2675 }
2676 
exit_btrfs_fs(void)2677 static void __exit exit_btrfs_fs(void)
2678 {
2679 	btrfs_exit_btrfs_fs();
2680 	btrfs_cleanup_fs_uuids();
2681 }
2682 
init_btrfs_fs(void)2683 static int __init init_btrfs_fs(void)
2684 {
2685 	int ret;
2686 	int i;
2687 
2688 	for (i = 0; i < ARRAY_SIZE(mod_init_seq); i++) {
2689 		ASSERT(!mod_init_result[i]);
2690 		ret = mod_init_seq[i].init_func();
2691 		if (ret < 0) {
2692 			btrfs_exit_btrfs_fs();
2693 			return ret;
2694 		}
2695 		mod_init_result[i] = true;
2696 	}
2697 	return 0;
2698 }
2699 
2700 late_initcall(init_btrfs_fs);
2701 module_exit(exit_btrfs_fs)
2702 
2703 MODULE_DESCRIPTION("B-Tree File System (BTRFS)");
2704 MODULE_LICENSE("GPL");
2705 MODULE_SOFTDEP("pre: crc32c");
2706 MODULE_SOFTDEP("pre: xxhash64");
2707 MODULE_SOFTDEP("pre: sha256");
2708 MODULE_SOFTDEP("pre: blake2b-256");
2709