1 // SPDX-License-Identifier: GPL-2.0-only
2 /******************************************************************************
3 * emulate.c
4 *
5 * Generic x86 (32-bit and 64-bit) instruction decoder and emulator.
6 *
7 * Copyright (c) 2005 Keir Fraser
8 *
9 * Linux coding style, mod r/m decoder, segment base fixes, real-mode
10 * privileged instructions:
11 *
12 * Copyright (C) 2006 Qumranet
13 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
14 *
15 * Avi Kivity <avi@qumranet.com>
16 * Yaniv Kamay <yaniv@qumranet.com>
17 *
18 * From: xen-unstable 10676:af9809f51f81a3c43f276f00c81a52ef558afda4
19 */
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22 #include <linux/kvm_host.h>
23 #include "kvm_cache_regs.h"
24 #include "kvm_emulate.h"
25 #include <linux/stringify.h>
26 #include <asm/debugreg.h>
27 #include <asm/nospec-branch.h>
28 #include <asm/ibt.h>
29
30 #include "x86.h"
31 #include "tss.h"
32 #include "mmu.h"
33 #include "pmu.h"
34
35 /*
36 * Operand types
37 */
38 #define OpNone 0ull
39 #define OpImplicit 1ull /* No generic decode */
40 #define OpReg 2ull /* Register */
41 #define OpMem 3ull /* Memory */
42 #define OpAcc 4ull /* Accumulator: AL/AX/EAX/RAX */
43 #define OpDI 5ull /* ES:DI/EDI/RDI */
44 #define OpMem64 6ull /* Memory, 64-bit */
45 #define OpImmUByte 7ull /* Zero-extended 8-bit immediate */
46 #define OpDX 8ull /* DX register */
47 #define OpCL 9ull /* CL register (for shifts) */
48 #define OpImmByte 10ull /* 8-bit sign extended immediate */
49 #define OpOne 11ull /* Implied 1 */
50 #define OpImm 12ull /* Sign extended up to 32-bit immediate */
51 #define OpMem16 13ull /* Memory operand (16-bit). */
52 #define OpMem32 14ull /* Memory operand (32-bit). */
53 #define OpImmU 15ull /* Immediate operand, zero extended */
54 #define OpSI 16ull /* SI/ESI/RSI */
55 #define OpImmFAddr 17ull /* Immediate far address */
56 #define OpMemFAddr 18ull /* Far address in memory */
57 #define OpImmU16 19ull /* Immediate operand, 16 bits, zero extended */
58 #define OpES 20ull /* ES */
59 #define OpCS 21ull /* CS */
60 #define OpSS 22ull /* SS */
61 #define OpDS 23ull /* DS */
62 #define OpFS 24ull /* FS */
63 #define OpGS 25ull /* GS */
64 #define OpMem8 26ull /* 8-bit zero extended memory operand */
65 #define OpImm64 27ull /* Sign extended 16/32/64-bit immediate */
66 #define OpXLat 28ull /* memory at BX/EBX/RBX + zero-extended AL */
67 #define OpAccLo 29ull /* Low part of extended acc (AX/AX/EAX/RAX) */
68 #define OpAccHi 30ull /* High part of extended acc (-/DX/EDX/RDX) */
69
70 #define OpBits 5 /* Width of operand field */
71 #define OpMask ((1ull << OpBits) - 1)
72
73 /*
74 * Opcode effective-address decode tables.
75 * Note that we only emulate instructions that have at least one memory
76 * operand (excluding implicit stack references). We assume that stack
77 * references and instruction fetches will never occur in special memory
78 * areas that require emulation. So, for example, 'mov <imm>,<reg>' need
79 * not be handled.
80 */
81
82 /* Operand sizes: 8-bit operands or specified/overridden size. */
83 #define ByteOp (1<<0) /* 8-bit operands. */
84 /* Destination operand type. */
85 #define DstShift 1
86 #define ImplicitOps (OpImplicit << DstShift)
87 #define DstReg (OpReg << DstShift)
88 #define DstMem (OpMem << DstShift)
89 #define DstAcc (OpAcc << DstShift)
90 #define DstDI (OpDI << DstShift)
91 #define DstMem64 (OpMem64 << DstShift)
92 #define DstMem16 (OpMem16 << DstShift)
93 #define DstImmUByte (OpImmUByte << DstShift)
94 #define DstDX (OpDX << DstShift)
95 #define DstAccLo (OpAccLo << DstShift)
96 #define DstMask (OpMask << DstShift)
97 /* Source operand type. */
98 #define SrcShift 6
99 #define SrcNone (OpNone << SrcShift)
100 #define SrcReg (OpReg << SrcShift)
101 #define SrcMem (OpMem << SrcShift)
102 #define SrcMem16 (OpMem16 << SrcShift)
103 #define SrcMem32 (OpMem32 << SrcShift)
104 #define SrcImm (OpImm << SrcShift)
105 #define SrcImmByte (OpImmByte << SrcShift)
106 #define SrcOne (OpOne << SrcShift)
107 #define SrcImmUByte (OpImmUByte << SrcShift)
108 #define SrcImmU (OpImmU << SrcShift)
109 #define SrcSI (OpSI << SrcShift)
110 #define SrcXLat (OpXLat << SrcShift)
111 #define SrcImmFAddr (OpImmFAddr << SrcShift)
112 #define SrcMemFAddr (OpMemFAddr << SrcShift)
113 #define SrcAcc (OpAcc << SrcShift)
114 #define SrcImmU16 (OpImmU16 << SrcShift)
115 #define SrcImm64 (OpImm64 << SrcShift)
116 #define SrcDX (OpDX << SrcShift)
117 #define SrcMem8 (OpMem8 << SrcShift)
118 #define SrcAccHi (OpAccHi << SrcShift)
119 #define SrcMask (OpMask << SrcShift)
120 #define BitOp (1<<11)
121 #define MemAbs (1<<12) /* Memory operand is absolute displacement */
122 #define String (1<<13) /* String instruction (rep capable) */
123 #define Stack (1<<14) /* Stack instruction (push/pop) */
124 #define GroupMask (7<<15) /* Opcode uses one of the group mechanisms */
125 #define Group (1<<15) /* Bits 3:5 of modrm byte extend opcode */
126 #define GroupDual (2<<15) /* Alternate decoding of mod == 3 */
127 #define Prefix (3<<15) /* Instruction varies with 66/f2/f3 prefix */
128 #define RMExt (4<<15) /* Opcode extension in ModRM r/m if mod == 3 */
129 #define Escape (5<<15) /* Escape to coprocessor instruction */
130 #define InstrDual (6<<15) /* Alternate instruction decoding of mod == 3 */
131 #define ModeDual (7<<15) /* Different instruction for 32/64 bit */
132 #define Sse (1<<18) /* SSE Vector instruction */
133 /* Generic ModRM decode. */
134 #define ModRM (1<<19)
135 /* Destination is only written; never read. */
136 #define Mov (1<<20)
137 /* Misc flags */
138 #define Prot (1<<21) /* instruction generates #UD if not in prot-mode */
139 #define EmulateOnUD (1<<22) /* Emulate if unsupported by the host */
140 #define NoAccess (1<<23) /* Don't access memory (lea/invlpg/verr etc) */
141 #define Op3264 (1<<24) /* Operand is 64b in long mode, 32b otherwise */
142 #define Undefined (1<<25) /* No Such Instruction */
143 #define Lock (1<<26) /* lock prefix is allowed for the instruction */
144 #define Priv (1<<27) /* instruction generates #GP if current CPL != 0 */
145 #define No64 (1<<28)
146 #define PageTable (1 << 29) /* instruction used to write page table */
147 #define NotImpl (1 << 30) /* instruction is not implemented */
148 /* Source 2 operand type */
149 #define Src2Shift (31)
150 #define Src2None (OpNone << Src2Shift)
151 #define Src2Mem (OpMem << Src2Shift)
152 #define Src2CL (OpCL << Src2Shift)
153 #define Src2ImmByte (OpImmByte << Src2Shift)
154 #define Src2One (OpOne << Src2Shift)
155 #define Src2Imm (OpImm << Src2Shift)
156 #define Src2ES (OpES << Src2Shift)
157 #define Src2CS (OpCS << Src2Shift)
158 #define Src2SS (OpSS << Src2Shift)
159 #define Src2DS (OpDS << Src2Shift)
160 #define Src2FS (OpFS << Src2Shift)
161 #define Src2GS (OpGS << Src2Shift)
162 #define Src2Mask (OpMask << Src2Shift)
163 #define Mmx ((u64)1 << 40) /* MMX Vector instruction */
164 #define AlignMask ((u64)7 << 41)
165 #define Aligned ((u64)1 << 41) /* Explicitly aligned (e.g. MOVDQA) */
166 #define Unaligned ((u64)2 << 41) /* Explicitly unaligned (e.g. MOVDQU) */
167 #define Avx ((u64)3 << 41) /* Advanced Vector Extensions */
168 #define Aligned16 ((u64)4 << 41) /* Aligned to 16 byte boundary (e.g. FXSAVE) */
169 #define Fastop ((u64)1 << 44) /* Use opcode::u.fastop */
170 #define NoWrite ((u64)1 << 45) /* No writeback */
171 #define SrcWrite ((u64)1 << 46) /* Write back src operand */
172 #define NoMod ((u64)1 << 47) /* Mod field is ignored */
173 #define Intercept ((u64)1 << 48) /* Has valid intercept field */
174 #define CheckPerm ((u64)1 << 49) /* Has valid check_perm field */
175 #define PrivUD ((u64)1 << 51) /* #UD instead of #GP on CPL > 0 */
176 #define NearBranch ((u64)1 << 52) /* Near branches */
177 #define No16 ((u64)1 << 53) /* No 16 bit operand */
178 #define IncSP ((u64)1 << 54) /* SP is incremented before ModRM calc */
179 #define TwoMemOp ((u64)1 << 55) /* Instruction has two memory operand */
180 #define IsBranch ((u64)1 << 56) /* Instruction is considered a branch. */
181
182 #define DstXacc (DstAccLo | SrcAccHi | SrcWrite)
183
184 #define X2(x...) x, x
185 #define X3(x...) X2(x), x
186 #define X4(x...) X2(x), X2(x)
187 #define X5(x...) X4(x), x
188 #define X6(x...) X4(x), X2(x)
189 #define X7(x...) X4(x), X3(x)
190 #define X8(x...) X4(x), X4(x)
191 #define X16(x...) X8(x), X8(x)
192
193 struct opcode {
194 u64 flags;
195 u8 intercept;
196 u8 pad[7];
197 union {
198 int (*execute)(struct x86_emulate_ctxt *ctxt);
199 const struct opcode *group;
200 const struct group_dual *gdual;
201 const struct gprefix *gprefix;
202 const struct escape *esc;
203 const struct instr_dual *idual;
204 const struct mode_dual *mdual;
205 void (*fastop)(struct fastop *fake);
206 } u;
207 int (*check_perm)(struct x86_emulate_ctxt *ctxt);
208 };
209
210 struct group_dual {
211 struct opcode mod012[8];
212 struct opcode mod3[8];
213 };
214
215 struct gprefix {
216 struct opcode pfx_no;
217 struct opcode pfx_66;
218 struct opcode pfx_f2;
219 struct opcode pfx_f3;
220 };
221
222 struct escape {
223 struct opcode op[8];
224 struct opcode high[64];
225 };
226
227 struct instr_dual {
228 struct opcode mod012;
229 struct opcode mod3;
230 };
231
232 struct mode_dual {
233 struct opcode mode32;
234 struct opcode mode64;
235 };
236
237 #define EFLG_RESERVED_ZEROS_MASK 0xffc0802a
238
239 enum x86_transfer_type {
240 X86_TRANSFER_NONE,
241 X86_TRANSFER_CALL_JMP,
242 X86_TRANSFER_RET,
243 X86_TRANSFER_TASK_SWITCH,
244 };
245
writeback_registers(struct x86_emulate_ctxt * ctxt)246 static void writeback_registers(struct x86_emulate_ctxt *ctxt)
247 {
248 unsigned long dirty = ctxt->regs_dirty;
249 unsigned reg;
250
251 for_each_set_bit(reg, &dirty, NR_EMULATOR_GPRS)
252 ctxt->ops->write_gpr(ctxt, reg, ctxt->_regs[reg]);
253 }
254
invalidate_registers(struct x86_emulate_ctxt * ctxt)255 static void invalidate_registers(struct x86_emulate_ctxt *ctxt)
256 {
257 ctxt->regs_dirty = 0;
258 ctxt->regs_valid = 0;
259 }
260
261 /*
262 * These EFLAGS bits are restored from saved value during emulation, and
263 * any changes are written back to the saved value after emulation.
264 */
265 #define EFLAGS_MASK (X86_EFLAGS_OF|X86_EFLAGS_SF|X86_EFLAGS_ZF|X86_EFLAGS_AF|\
266 X86_EFLAGS_PF|X86_EFLAGS_CF)
267
268 #ifdef CONFIG_X86_64
269 #define ON64(x) x
270 #else
271 #define ON64(x)
272 #endif
273
274 /*
275 * fastop functions have a special calling convention:
276 *
277 * dst: rax (in/out)
278 * src: rdx (in/out)
279 * src2: rcx (in)
280 * flags: rflags (in/out)
281 * ex: rsi (in:fastop pointer, out:zero if exception)
282 *
283 * Moreover, they are all exactly FASTOP_SIZE bytes long, so functions for
284 * different operand sizes can be reached by calculation, rather than a jump
285 * table (which would be bigger than the code).
286 *
287 * The 16 byte alignment, considering 5 bytes for the RET thunk, 3 for ENDBR
288 * and 1 for the straight line speculation INT3, leaves 7 bytes for the
289 * body of the function. Currently none is larger than 4.
290 */
291 static int fastop(struct x86_emulate_ctxt *ctxt, fastop_t fop);
292
293 #define FASTOP_SIZE 16
294
295 #define __FOP_FUNC(name) \
296 ".align " __stringify(FASTOP_SIZE) " \n\t" \
297 ".type " name ", @function \n\t" \
298 name ":\n\t" \
299 ASM_ENDBR \
300 IBT_NOSEAL(name)
301
302 #define FOP_FUNC(name) \
303 __FOP_FUNC(#name)
304
305 #define __FOP_RET(name) \
306 "11: " ASM_RET \
307 ".size " name ", .-" name "\n\t"
308
309 #define FOP_RET(name) \
310 __FOP_RET(#name)
311
312 #define __FOP_START(op, align) \
313 extern void em_##op(struct fastop *fake); \
314 asm(".pushsection .text, \"ax\" \n\t" \
315 ".global em_" #op " \n\t" \
316 ".align " __stringify(align) " \n\t" \
317 "em_" #op ":\n\t"
318
319 #define FOP_START(op) __FOP_START(op, FASTOP_SIZE)
320
321 #define FOP_END \
322 ".popsection")
323
324 #define __FOPNOP(name) \
325 __FOP_FUNC(name) \
326 __FOP_RET(name)
327
328 #define FOPNOP() \
329 __FOPNOP(__stringify(__UNIQUE_ID(nop)))
330
331 #define FOP1E(op, dst) \
332 __FOP_FUNC(#op "_" #dst) \
333 "10: " #op " %" #dst " \n\t" \
334 __FOP_RET(#op "_" #dst)
335
336 #define FOP1EEX(op, dst) \
337 FOP1E(op, dst) _ASM_EXTABLE_TYPE_REG(10b, 11b, EX_TYPE_ZERO_REG, %%esi)
338
339 #define FASTOP1(op) \
340 FOP_START(op) \
341 FOP1E(op##b, al) \
342 FOP1E(op##w, ax) \
343 FOP1E(op##l, eax) \
344 ON64(FOP1E(op##q, rax)) \
345 FOP_END
346
347 /* 1-operand, using src2 (for MUL/DIV r/m) */
348 #define FASTOP1SRC2(op, name) \
349 FOP_START(name) \
350 FOP1E(op, cl) \
351 FOP1E(op, cx) \
352 FOP1E(op, ecx) \
353 ON64(FOP1E(op, rcx)) \
354 FOP_END
355
356 /* 1-operand, using src2 (for MUL/DIV r/m), with exceptions */
357 #define FASTOP1SRC2EX(op, name) \
358 FOP_START(name) \
359 FOP1EEX(op, cl) \
360 FOP1EEX(op, cx) \
361 FOP1EEX(op, ecx) \
362 ON64(FOP1EEX(op, rcx)) \
363 FOP_END
364
365 #define FOP2E(op, dst, src) \
366 __FOP_FUNC(#op "_" #dst "_" #src) \
367 #op " %" #src ", %" #dst " \n\t" \
368 __FOP_RET(#op "_" #dst "_" #src)
369
370 #define FASTOP2(op) \
371 FOP_START(op) \
372 FOP2E(op##b, al, dl) \
373 FOP2E(op##w, ax, dx) \
374 FOP2E(op##l, eax, edx) \
375 ON64(FOP2E(op##q, rax, rdx)) \
376 FOP_END
377
378 /* 2 operand, word only */
379 #define FASTOP2W(op) \
380 FOP_START(op) \
381 FOPNOP() \
382 FOP2E(op##w, ax, dx) \
383 FOP2E(op##l, eax, edx) \
384 ON64(FOP2E(op##q, rax, rdx)) \
385 FOP_END
386
387 /* 2 operand, src is CL */
388 #define FASTOP2CL(op) \
389 FOP_START(op) \
390 FOP2E(op##b, al, cl) \
391 FOP2E(op##w, ax, cl) \
392 FOP2E(op##l, eax, cl) \
393 ON64(FOP2E(op##q, rax, cl)) \
394 FOP_END
395
396 /* 2 operand, src and dest are reversed */
397 #define FASTOP2R(op, name) \
398 FOP_START(name) \
399 FOP2E(op##b, dl, al) \
400 FOP2E(op##w, dx, ax) \
401 FOP2E(op##l, edx, eax) \
402 ON64(FOP2E(op##q, rdx, rax)) \
403 FOP_END
404
405 #define FOP3E(op, dst, src, src2) \
406 __FOP_FUNC(#op "_" #dst "_" #src "_" #src2) \
407 #op " %" #src2 ", %" #src ", %" #dst " \n\t"\
408 __FOP_RET(#op "_" #dst "_" #src "_" #src2)
409
410 /* 3-operand, word-only, src2=cl */
411 #define FASTOP3WCL(op) \
412 FOP_START(op) \
413 FOPNOP() \
414 FOP3E(op##w, ax, dx, cl) \
415 FOP3E(op##l, eax, edx, cl) \
416 ON64(FOP3E(op##q, rax, rdx, cl)) \
417 FOP_END
418
419 /* Special case for SETcc - 1 instruction per cc */
420 #define FOP_SETCC(op) \
421 FOP_FUNC(op) \
422 #op " %al \n\t" \
423 FOP_RET(op)
424
425 FOP_START(setcc)
426 FOP_SETCC(seto)
427 FOP_SETCC(setno)
428 FOP_SETCC(setc)
429 FOP_SETCC(setnc)
430 FOP_SETCC(setz)
431 FOP_SETCC(setnz)
432 FOP_SETCC(setbe)
433 FOP_SETCC(setnbe)
434 FOP_SETCC(sets)
435 FOP_SETCC(setns)
436 FOP_SETCC(setp)
437 FOP_SETCC(setnp)
438 FOP_SETCC(setl)
439 FOP_SETCC(setnl)
440 FOP_SETCC(setle)
441 FOP_SETCC(setnle)
442 FOP_END;
443
444 FOP_START(salc)
445 FOP_FUNC(salc)
446 "pushf; sbb %al, %al; popf \n\t"
447 FOP_RET(salc)
448 FOP_END;
449
450 /*
451 * XXX: inoutclob user must know where the argument is being expanded.
452 * Using asm goto would allow us to remove _fault.
453 */
454 #define asm_safe(insn, inoutclob...) \
455 ({ \
456 int _fault = 0; \
457 \
458 asm volatile("1:" insn "\n" \
459 "2:\n" \
460 _ASM_EXTABLE_TYPE_REG(1b, 2b, EX_TYPE_ONE_REG, %[_fault]) \
461 : [_fault] "+r"(_fault) inoutclob ); \
462 \
463 _fault ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE; \
464 })
465
emulator_check_intercept(struct x86_emulate_ctxt * ctxt,enum x86_intercept intercept,enum x86_intercept_stage stage)466 static int emulator_check_intercept(struct x86_emulate_ctxt *ctxt,
467 enum x86_intercept intercept,
468 enum x86_intercept_stage stage)
469 {
470 struct x86_instruction_info info = {
471 .intercept = intercept,
472 .rep_prefix = ctxt->rep_prefix,
473 .modrm_mod = ctxt->modrm_mod,
474 .modrm_reg = ctxt->modrm_reg,
475 .modrm_rm = ctxt->modrm_rm,
476 .src_val = ctxt->src.val64,
477 .dst_val = ctxt->dst.val64,
478 .src_bytes = ctxt->src.bytes,
479 .dst_bytes = ctxt->dst.bytes,
480 .ad_bytes = ctxt->ad_bytes,
481 .next_rip = ctxt->eip,
482 };
483
484 return ctxt->ops->intercept(ctxt, &info, stage);
485 }
486
assign_masked(ulong * dest,ulong src,ulong mask)487 static void assign_masked(ulong *dest, ulong src, ulong mask)
488 {
489 *dest = (*dest & ~mask) | (src & mask);
490 }
491
assign_register(unsigned long * reg,u64 val,int bytes)492 static void assign_register(unsigned long *reg, u64 val, int bytes)
493 {
494 /* The 4-byte case *is* correct: in 64-bit mode we zero-extend. */
495 switch (bytes) {
496 case 1:
497 *(u8 *)reg = (u8)val;
498 break;
499 case 2:
500 *(u16 *)reg = (u16)val;
501 break;
502 case 4:
503 *reg = (u32)val;
504 break; /* 64b: zero-extend */
505 case 8:
506 *reg = val;
507 break;
508 }
509 }
510
ad_mask(struct x86_emulate_ctxt * ctxt)511 static inline unsigned long ad_mask(struct x86_emulate_ctxt *ctxt)
512 {
513 return (1UL << (ctxt->ad_bytes << 3)) - 1;
514 }
515
stack_mask(struct x86_emulate_ctxt * ctxt)516 static ulong stack_mask(struct x86_emulate_ctxt *ctxt)
517 {
518 u16 sel;
519 struct desc_struct ss;
520
521 if (ctxt->mode == X86EMUL_MODE_PROT64)
522 return ~0UL;
523 ctxt->ops->get_segment(ctxt, &sel, &ss, NULL, VCPU_SREG_SS);
524 return ~0U >> ((ss.d ^ 1) * 16); /* d=0: 0xffff; d=1: 0xffffffff */
525 }
526
stack_size(struct x86_emulate_ctxt * ctxt)527 static int stack_size(struct x86_emulate_ctxt *ctxt)
528 {
529 return (__fls(stack_mask(ctxt)) + 1) >> 3;
530 }
531
532 /* Access/update address held in a register, based on addressing mode. */
533 static inline unsigned long
address_mask(struct x86_emulate_ctxt * ctxt,unsigned long reg)534 address_mask(struct x86_emulate_ctxt *ctxt, unsigned long reg)
535 {
536 if (ctxt->ad_bytes == sizeof(unsigned long))
537 return reg;
538 else
539 return reg & ad_mask(ctxt);
540 }
541
542 static inline unsigned long
register_address(struct x86_emulate_ctxt * ctxt,int reg)543 register_address(struct x86_emulate_ctxt *ctxt, int reg)
544 {
545 return address_mask(ctxt, reg_read(ctxt, reg));
546 }
547
masked_increment(ulong * reg,ulong mask,int inc)548 static void masked_increment(ulong *reg, ulong mask, int inc)
549 {
550 assign_masked(reg, *reg + inc, mask);
551 }
552
553 static inline void
register_address_increment(struct x86_emulate_ctxt * ctxt,int reg,int inc)554 register_address_increment(struct x86_emulate_ctxt *ctxt, int reg, int inc)
555 {
556 ulong *preg = reg_rmw(ctxt, reg);
557
558 assign_register(preg, *preg + inc, ctxt->ad_bytes);
559 }
560
rsp_increment(struct x86_emulate_ctxt * ctxt,int inc)561 static void rsp_increment(struct x86_emulate_ctxt *ctxt, int inc)
562 {
563 masked_increment(reg_rmw(ctxt, VCPU_REGS_RSP), stack_mask(ctxt), inc);
564 }
565
desc_limit_scaled(struct desc_struct * desc)566 static u32 desc_limit_scaled(struct desc_struct *desc)
567 {
568 u32 limit = get_desc_limit(desc);
569
570 return desc->g ? (limit << 12) | 0xfff : limit;
571 }
572
seg_base(struct x86_emulate_ctxt * ctxt,int seg)573 static unsigned long seg_base(struct x86_emulate_ctxt *ctxt, int seg)
574 {
575 if (ctxt->mode == X86EMUL_MODE_PROT64 && seg < VCPU_SREG_FS)
576 return 0;
577
578 return ctxt->ops->get_cached_segment_base(ctxt, seg);
579 }
580
emulate_exception(struct x86_emulate_ctxt * ctxt,int vec,u32 error,bool valid)581 static int emulate_exception(struct x86_emulate_ctxt *ctxt, int vec,
582 u32 error, bool valid)
583 {
584 if (KVM_EMULATOR_BUG_ON(vec > 0x1f, ctxt))
585 return X86EMUL_UNHANDLEABLE;
586
587 ctxt->exception.vector = vec;
588 ctxt->exception.error_code = error;
589 ctxt->exception.error_code_valid = valid;
590 return X86EMUL_PROPAGATE_FAULT;
591 }
592
emulate_db(struct x86_emulate_ctxt * ctxt)593 static int emulate_db(struct x86_emulate_ctxt *ctxt)
594 {
595 return emulate_exception(ctxt, DB_VECTOR, 0, false);
596 }
597
emulate_gp(struct x86_emulate_ctxt * ctxt,int err)598 static int emulate_gp(struct x86_emulate_ctxt *ctxt, int err)
599 {
600 return emulate_exception(ctxt, GP_VECTOR, err, true);
601 }
602
emulate_ss(struct x86_emulate_ctxt * ctxt,int err)603 static int emulate_ss(struct x86_emulate_ctxt *ctxt, int err)
604 {
605 return emulate_exception(ctxt, SS_VECTOR, err, true);
606 }
607
emulate_ud(struct x86_emulate_ctxt * ctxt)608 static int emulate_ud(struct x86_emulate_ctxt *ctxt)
609 {
610 return emulate_exception(ctxt, UD_VECTOR, 0, false);
611 }
612
emulate_ts(struct x86_emulate_ctxt * ctxt,int err)613 static int emulate_ts(struct x86_emulate_ctxt *ctxt, int err)
614 {
615 return emulate_exception(ctxt, TS_VECTOR, err, true);
616 }
617
emulate_de(struct x86_emulate_ctxt * ctxt)618 static int emulate_de(struct x86_emulate_ctxt *ctxt)
619 {
620 return emulate_exception(ctxt, DE_VECTOR, 0, false);
621 }
622
emulate_nm(struct x86_emulate_ctxt * ctxt)623 static int emulate_nm(struct x86_emulate_ctxt *ctxt)
624 {
625 return emulate_exception(ctxt, NM_VECTOR, 0, false);
626 }
627
get_segment_selector(struct x86_emulate_ctxt * ctxt,unsigned seg)628 static u16 get_segment_selector(struct x86_emulate_ctxt *ctxt, unsigned seg)
629 {
630 u16 selector;
631 struct desc_struct desc;
632
633 ctxt->ops->get_segment(ctxt, &selector, &desc, NULL, seg);
634 return selector;
635 }
636
set_segment_selector(struct x86_emulate_ctxt * ctxt,u16 selector,unsigned seg)637 static void set_segment_selector(struct x86_emulate_ctxt *ctxt, u16 selector,
638 unsigned seg)
639 {
640 u16 dummy;
641 u32 base3;
642 struct desc_struct desc;
643
644 ctxt->ops->get_segment(ctxt, &dummy, &desc, &base3, seg);
645 ctxt->ops->set_segment(ctxt, selector, &desc, base3, seg);
646 }
647
ctxt_virt_addr_bits(struct x86_emulate_ctxt * ctxt)648 static inline u8 ctxt_virt_addr_bits(struct x86_emulate_ctxt *ctxt)
649 {
650 return (ctxt->ops->get_cr(ctxt, 4) & X86_CR4_LA57) ? 57 : 48;
651 }
652
emul_is_noncanonical_address(u64 la,struct x86_emulate_ctxt * ctxt)653 static inline bool emul_is_noncanonical_address(u64 la,
654 struct x86_emulate_ctxt *ctxt)
655 {
656 return !__is_canonical_address(la, ctxt_virt_addr_bits(ctxt));
657 }
658
659 /*
660 * x86 defines three classes of vector instructions: explicitly
661 * aligned, explicitly unaligned, and the rest, which change behaviour
662 * depending on whether they're AVX encoded or not.
663 *
664 * Also included is CMPXCHG16B which is not a vector instruction, yet it is
665 * subject to the same check. FXSAVE and FXRSTOR are checked here too as their
666 * 512 bytes of data must be aligned to a 16 byte boundary.
667 */
insn_alignment(struct x86_emulate_ctxt * ctxt,unsigned size)668 static unsigned insn_alignment(struct x86_emulate_ctxt *ctxt, unsigned size)
669 {
670 u64 alignment = ctxt->d & AlignMask;
671
672 if (likely(size < 16))
673 return 1;
674
675 switch (alignment) {
676 case Unaligned:
677 case Avx:
678 return 1;
679 case Aligned16:
680 return 16;
681 case Aligned:
682 default:
683 return size;
684 }
685 }
686
__linearize(struct x86_emulate_ctxt * ctxt,struct segmented_address addr,unsigned * max_size,unsigned size,enum x86emul_mode mode,ulong * linear,unsigned int flags)687 static __always_inline int __linearize(struct x86_emulate_ctxt *ctxt,
688 struct segmented_address addr,
689 unsigned *max_size, unsigned size,
690 enum x86emul_mode mode, ulong *linear,
691 unsigned int flags)
692 {
693 struct desc_struct desc;
694 bool usable;
695 ulong la;
696 u32 lim;
697 u16 sel;
698 u8 va_bits;
699
700 la = seg_base(ctxt, addr.seg) + addr.ea;
701 *max_size = 0;
702 switch (mode) {
703 case X86EMUL_MODE_PROT64:
704 *linear = la = ctxt->ops->get_untagged_addr(ctxt, la, flags);
705 va_bits = ctxt_virt_addr_bits(ctxt);
706 if (!__is_canonical_address(la, va_bits))
707 goto bad;
708
709 *max_size = min_t(u64, ~0u, (1ull << va_bits) - la);
710 if (size > *max_size)
711 goto bad;
712 break;
713 default:
714 *linear = la = (u32)la;
715 usable = ctxt->ops->get_segment(ctxt, &sel, &desc, NULL,
716 addr.seg);
717 if (!usable)
718 goto bad;
719 /* code segment in protected mode or read-only data segment */
720 if ((((ctxt->mode != X86EMUL_MODE_REAL) && (desc.type & 8)) || !(desc.type & 2)) &&
721 (flags & X86EMUL_F_WRITE))
722 goto bad;
723 /* unreadable code segment */
724 if (!(flags & X86EMUL_F_FETCH) && (desc.type & 8) && !(desc.type & 2))
725 goto bad;
726 lim = desc_limit_scaled(&desc);
727 if (!(desc.type & 8) && (desc.type & 4)) {
728 /* expand-down segment */
729 if (addr.ea <= lim)
730 goto bad;
731 lim = desc.d ? 0xffffffff : 0xffff;
732 }
733 if (addr.ea > lim)
734 goto bad;
735 if (lim == 0xffffffff)
736 *max_size = ~0u;
737 else {
738 *max_size = (u64)lim + 1 - addr.ea;
739 if (size > *max_size)
740 goto bad;
741 }
742 break;
743 }
744 if (la & (insn_alignment(ctxt, size) - 1))
745 return emulate_gp(ctxt, 0);
746 return X86EMUL_CONTINUE;
747 bad:
748 if (addr.seg == VCPU_SREG_SS)
749 return emulate_ss(ctxt, 0);
750 else
751 return emulate_gp(ctxt, 0);
752 }
753
linearize(struct x86_emulate_ctxt * ctxt,struct segmented_address addr,unsigned size,bool write,ulong * linear)754 static int linearize(struct x86_emulate_ctxt *ctxt,
755 struct segmented_address addr,
756 unsigned size, bool write,
757 ulong *linear)
758 {
759 unsigned max_size;
760 return __linearize(ctxt, addr, &max_size, size, ctxt->mode, linear,
761 write ? X86EMUL_F_WRITE : 0);
762 }
763
assign_eip(struct x86_emulate_ctxt * ctxt,ulong dst)764 static inline int assign_eip(struct x86_emulate_ctxt *ctxt, ulong dst)
765 {
766 ulong linear;
767 int rc;
768 unsigned max_size;
769 struct segmented_address addr = { .seg = VCPU_SREG_CS,
770 .ea = dst };
771
772 if (ctxt->op_bytes != sizeof(unsigned long))
773 addr.ea = dst & ((1UL << (ctxt->op_bytes << 3)) - 1);
774 rc = __linearize(ctxt, addr, &max_size, 1, ctxt->mode, &linear,
775 X86EMUL_F_FETCH);
776 if (rc == X86EMUL_CONTINUE)
777 ctxt->_eip = addr.ea;
778 return rc;
779 }
780
emulator_recalc_and_set_mode(struct x86_emulate_ctxt * ctxt)781 static inline int emulator_recalc_and_set_mode(struct x86_emulate_ctxt *ctxt)
782 {
783 u64 efer;
784 struct desc_struct cs;
785 u16 selector;
786 u32 base3;
787
788 ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
789
790 if (!(ctxt->ops->get_cr(ctxt, 0) & X86_CR0_PE)) {
791 /* Real mode. cpu must not have long mode active */
792 if (efer & EFER_LMA)
793 return X86EMUL_UNHANDLEABLE;
794 ctxt->mode = X86EMUL_MODE_REAL;
795 return X86EMUL_CONTINUE;
796 }
797
798 if (ctxt->eflags & X86_EFLAGS_VM) {
799 /* Protected/VM86 mode. cpu must not have long mode active */
800 if (efer & EFER_LMA)
801 return X86EMUL_UNHANDLEABLE;
802 ctxt->mode = X86EMUL_MODE_VM86;
803 return X86EMUL_CONTINUE;
804 }
805
806 if (!ctxt->ops->get_segment(ctxt, &selector, &cs, &base3, VCPU_SREG_CS))
807 return X86EMUL_UNHANDLEABLE;
808
809 if (efer & EFER_LMA) {
810 if (cs.l) {
811 /* Proper long mode */
812 ctxt->mode = X86EMUL_MODE_PROT64;
813 } else if (cs.d) {
814 /* 32 bit compatibility mode*/
815 ctxt->mode = X86EMUL_MODE_PROT32;
816 } else {
817 ctxt->mode = X86EMUL_MODE_PROT16;
818 }
819 } else {
820 /* Legacy 32 bit / 16 bit mode */
821 ctxt->mode = cs.d ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
822 }
823
824 return X86EMUL_CONTINUE;
825 }
826
assign_eip_near(struct x86_emulate_ctxt * ctxt,ulong dst)827 static inline int assign_eip_near(struct x86_emulate_ctxt *ctxt, ulong dst)
828 {
829 return assign_eip(ctxt, dst);
830 }
831
assign_eip_far(struct x86_emulate_ctxt * ctxt,ulong dst)832 static int assign_eip_far(struct x86_emulate_ctxt *ctxt, ulong dst)
833 {
834 int rc = emulator_recalc_and_set_mode(ctxt);
835
836 if (rc != X86EMUL_CONTINUE)
837 return rc;
838
839 return assign_eip(ctxt, dst);
840 }
841
jmp_rel(struct x86_emulate_ctxt * ctxt,int rel)842 static inline int jmp_rel(struct x86_emulate_ctxt *ctxt, int rel)
843 {
844 return assign_eip_near(ctxt, ctxt->_eip + rel);
845 }
846
linear_read_system(struct x86_emulate_ctxt * ctxt,ulong linear,void * data,unsigned size)847 static int linear_read_system(struct x86_emulate_ctxt *ctxt, ulong linear,
848 void *data, unsigned size)
849 {
850 return ctxt->ops->read_std(ctxt, linear, data, size, &ctxt->exception, true);
851 }
852
linear_write_system(struct x86_emulate_ctxt * ctxt,ulong linear,void * data,unsigned int size)853 static int linear_write_system(struct x86_emulate_ctxt *ctxt,
854 ulong linear, void *data,
855 unsigned int size)
856 {
857 return ctxt->ops->write_std(ctxt, linear, data, size, &ctxt->exception, true);
858 }
859
segmented_read_std(struct x86_emulate_ctxt * ctxt,struct segmented_address addr,void * data,unsigned size)860 static int segmented_read_std(struct x86_emulate_ctxt *ctxt,
861 struct segmented_address addr,
862 void *data,
863 unsigned size)
864 {
865 int rc;
866 ulong linear;
867
868 rc = linearize(ctxt, addr, size, false, &linear);
869 if (rc != X86EMUL_CONTINUE)
870 return rc;
871 return ctxt->ops->read_std(ctxt, linear, data, size, &ctxt->exception, false);
872 }
873
segmented_write_std(struct x86_emulate_ctxt * ctxt,struct segmented_address addr,void * data,unsigned int size)874 static int segmented_write_std(struct x86_emulate_ctxt *ctxt,
875 struct segmented_address addr,
876 void *data,
877 unsigned int size)
878 {
879 int rc;
880 ulong linear;
881
882 rc = linearize(ctxt, addr, size, true, &linear);
883 if (rc != X86EMUL_CONTINUE)
884 return rc;
885 return ctxt->ops->write_std(ctxt, linear, data, size, &ctxt->exception, false);
886 }
887
888 /*
889 * Prefetch the remaining bytes of the instruction without crossing page
890 * boundary if they are not in fetch_cache yet.
891 */
__do_insn_fetch_bytes(struct x86_emulate_ctxt * ctxt,int op_size)892 static int __do_insn_fetch_bytes(struct x86_emulate_ctxt *ctxt, int op_size)
893 {
894 int rc;
895 unsigned size, max_size;
896 unsigned long linear;
897 int cur_size = ctxt->fetch.end - ctxt->fetch.data;
898 struct segmented_address addr = { .seg = VCPU_SREG_CS,
899 .ea = ctxt->eip + cur_size };
900
901 /*
902 * We do not know exactly how many bytes will be needed, and
903 * __linearize is expensive, so fetch as much as possible. We
904 * just have to avoid going beyond the 15 byte limit, the end
905 * of the segment, or the end of the page.
906 *
907 * __linearize is called with size 0 so that it does not do any
908 * boundary check itself. Instead, we use max_size to check
909 * against op_size.
910 */
911 rc = __linearize(ctxt, addr, &max_size, 0, ctxt->mode, &linear,
912 X86EMUL_F_FETCH);
913 if (unlikely(rc != X86EMUL_CONTINUE))
914 return rc;
915
916 size = min_t(unsigned, 15UL ^ cur_size, max_size);
917 size = min_t(unsigned, size, PAGE_SIZE - offset_in_page(linear));
918
919 /*
920 * One instruction can only straddle two pages,
921 * and one has been loaded at the beginning of
922 * x86_decode_insn. So, if not enough bytes
923 * still, we must have hit the 15-byte boundary.
924 */
925 if (unlikely(size < op_size))
926 return emulate_gp(ctxt, 0);
927
928 rc = ctxt->ops->fetch(ctxt, linear, ctxt->fetch.end,
929 size, &ctxt->exception);
930 if (unlikely(rc != X86EMUL_CONTINUE))
931 return rc;
932 ctxt->fetch.end += size;
933 return X86EMUL_CONTINUE;
934 }
935
do_insn_fetch_bytes(struct x86_emulate_ctxt * ctxt,unsigned size)936 static __always_inline int do_insn_fetch_bytes(struct x86_emulate_ctxt *ctxt,
937 unsigned size)
938 {
939 unsigned done_size = ctxt->fetch.end - ctxt->fetch.ptr;
940
941 if (unlikely(done_size < size))
942 return __do_insn_fetch_bytes(ctxt, size - done_size);
943 else
944 return X86EMUL_CONTINUE;
945 }
946
947 /* Fetch next part of the instruction being emulated. */
948 #define insn_fetch(_type, _ctxt) \
949 ({ _type _x; \
950 \
951 rc = do_insn_fetch_bytes(_ctxt, sizeof(_type)); \
952 if (rc != X86EMUL_CONTINUE) \
953 goto done; \
954 ctxt->_eip += sizeof(_type); \
955 memcpy(&_x, ctxt->fetch.ptr, sizeof(_type)); \
956 ctxt->fetch.ptr += sizeof(_type); \
957 _x; \
958 })
959
960 #define insn_fetch_arr(_arr, _size, _ctxt) \
961 ({ \
962 rc = do_insn_fetch_bytes(_ctxt, _size); \
963 if (rc != X86EMUL_CONTINUE) \
964 goto done; \
965 ctxt->_eip += (_size); \
966 memcpy(_arr, ctxt->fetch.ptr, _size); \
967 ctxt->fetch.ptr += (_size); \
968 })
969
970 /*
971 * Given the 'reg' portion of a ModRM byte, and a register block, return a
972 * pointer into the block that addresses the relevant register.
973 * @highbyte_regs specifies whether to decode AH,CH,DH,BH.
974 */
decode_register(struct x86_emulate_ctxt * ctxt,u8 modrm_reg,int byteop)975 static void *decode_register(struct x86_emulate_ctxt *ctxt, u8 modrm_reg,
976 int byteop)
977 {
978 void *p;
979 int highbyte_regs = (ctxt->rex_prefix == 0) && byteop;
980
981 if (highbyte_regs && modrm_reg >= 4 && modrm_reg < 8)
982 p = (unsigned char *)reg_rmw(ctxt, modrm_reg & 3) + 1;
983 else
984 p = reg_rmw(ctxt, modrm_reg);
985 return p;
986 }
987
read_descriptor(struct x86_emulate_ctxt * ctxt,struct segmented_address addr,u16 * size,unsigned long * address,int op_bytes)988 static int read_descriptor(struct x86_emulate_ctxt *ctxt,
989 struct segmented_address addr,
990 u16 *size, unsigned long *address, int op_bytes)
991 {
992 int rc;
993
994 if (op_bytes == 2)
995 op_bytes = 3;
996 *address = 0;
997 rc = segmented_read_std(ctxt, addr, size, 2);
998 if (rc != X86EMUL_CONTINUE)
999 return rc;
1000 addr.ea += 2;
1001 rc = segmented_read_std(ctxt, addr, address, op_bytes);
1002 return rc;
1003 }
1004
1005 FASTOP2(add);
1006 FASTOP2(or);
1007 FASTOP2(adc);
1008 FASTOP2(sbb);
1009 FASTOP2(and);
1010 FASTOP2(sub);
1011 FASTOP2(xor);
1012 FASTOP2(cmp);
1013 FASTOP2(test);
1014
1015 FASTOP1SRC2(mul, mul_ex);
1016 FASTOP1SRC2(imul, imul_ex);
1017 FASTOP1SRC2EX(div, div_ex);
1018 FASTOP1SRC2EX(idiv, idiv_ex);
1019
1020 FASTOP3WCL(shld);
1021 FASTOP3WCL(shrd);
1022
1023 FASTOP2W(imul);
1024
1025 FASTOP1(not);
1026 FASTOP1(neg);
1027 FASTOP1(inc);
1028 FASTOP1(dec);
1029
1030 FASTOP2CL(rol);
1031 FASTOP2CL(ror);
1032 FASTOP2CL(rcl);
1033 FASTOP2CL(rcr);
1034 FASTOP2CL(shl);
1035 FASTOP2CL(shr);
1036 FASTOP2CL(sar);
1037
1038 FASTOP2W(bsf);
1039 FASTOP2W(bsr);
1040 FASTOP2W(bt);
1041 FASTOP2W(bts);
1042 FASTOP2W(btr);
1043 FASTOP2W(btc);
1044
1045 FASTOP2(xadd);
1046
1047 FASTOP2R(cmp, cmp_r);
1048
em_bsf_c(struct x86_emulate_ctxt * ctxt)1049 static int em_bsf_c(struct x86_emulate_ctxt *ctxt)
1050 {
1051 /* If src is zero, do not writeback, but update flags */
1052 if (ctxt->src.val == 0)
1053 ctxt->dst.type = OP_NONE;
1054 return fastop(ctxt, em_bsf);
1055 }
1056
em_bsr_c(struct x86_emulate_ctxt * ctxt)1057 static int em_bsr_c(struct x86_emulate_ctxt *ctxt)
1058 {
1059 /* If src is zero, do not writeback, but update flags */
1060 if (ctxt->src.val == 0)
1061 ctxt->dst.type = OP_NONE;
1062 return fastop(ctxt, em_bsr);
1063 }
1064
test_cc(unsigned int condition,unsigned long flags)1065 static __always_inline u8 test_cc(unsigned int condition, unsigned long flags)
1066 {
1067 u8 rc;
1068 void (*fop)(void) = (void *)em_setcc + FASTOP_SIZE * (condition & 0xf);
1069
1070 flags = (flags & EFLAGS_MASK) | X86_EFLAGS_IF;
1071 asm("push %[flags]; popf; " CALL_NOSPEC
1072 : "=a"(rc), ASM_CALL_CONSTRAINT : [thunk_target]"r"(fop), [flags]"r"(flags));
1073 return rc;
1074 }
1075
fetch_register_operand(struct operand * op)1076 static void fetch_register_operand(struct operand *op)
1077 {
1078 switch (op->bytes) {
1079 case 1:
1080 op->val = *(u8 *)op->addr.reg;
1081 break;
1082 case 2:
1083 op->val = *(u16 *)op->addr.reg;
1084 break;
1085 case 4:
1086 op->val = *(u32 *)op->addr.reg;
1087 break;
1088 case 8:
1089 op->val = *(u64 *)op->addr.reg;
1090 break;
1091 }
1092 }
1093
em_fninit(struct x86_emulate_ctxt * ctxt)1094 static int em_fninit(struct x86_emulate_ctxt *ctxt)
1095 {
1096 if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM))
1097 return emulate_nm(ctxt);
1098
1099 kvm_fpu_get();
1100 asm volatile("fninit");
1101 kvm_fpu_put();
1102 return X86EMUL_CONTINUE;
1103 }
1104
em_fnstcw(struct x86_emulate_ctxt * ctxt)1105 static int em_fnstcw(struct x86_emulate_ctxt *ctxt)
1106 {
1107 u16 fcw;
1108
1109 if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM))
1110 return emulate_nm(ctxt);
1111
1112 kvm_fpu_get();
1113 asm volatile("fnstcw %0": "+m"(fcw));
1114 kvm_fpu_put();
1115
1116 ctxt->dst.val = fcw;
1117
1118 return X86EMUL_CONTINUE;
1119 }
1120
em_fnstsw(struct x86_emulate_ctxt * ctxt)1121 static int em_fnstsw(struct x86_emulate_ctxt *ctxt)
1122 {
1123 u16 fsw;
1124
1125 if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM))
1126 return emulate_nm(ctxt);
1127
1128 kvm_fpu_get();
1129 asm volatile("fnstsw %0": "+m"(fsw));
1130 kvm_fpu_put();
1131
1132 ctxt->dst.val = fsw;
1133
1134 return X86EMUL_CONTINUE;
1135 }
1136
decode_register_operand(struct x86_emulate_ctxt * ctxt,struct operand * op)1137 static void decode_register_operand(struct x86_emulate_ctxt *ctxt,
1138 struct operand *op)
1139 {
1140 unsigned int reg;
1141
1142 if (ctxt->d & ModRM)
1143 reg = ctxt->modrm_reg;
1144 else
1145 reg = (ctxt->b & 7) | ((ctxt->rex_prefix & 1) << 3);
1146
1147 if (ctxt->d & Sse) {
1148 op->type = OP_XMM;
1149 op->bytes = 16;
1150 op->addr.xmm = reg;
1151 kvm_read_sse_reg(reg, &op->vec_val);
1152 return;
1153 }
1154 if (ctxt->d & Mmx) {
1155 reg &= 7;
1156 op->type = OP_MM;
1157 op->bytes = 8;
1158 op->addr.mm = reg;
1159 return;
1160 }
1161
1162 op->type = OP_REG;
1163 op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
1164 op->addr.reg = decode_register(ctxt, reg, ctxt->d & ByteOp);
1165
1166 fetch_register_operand(op);
1167 op->orig_val = op->val;
1168 }
1169
adjust_modrm_seg(struct x86_emulate_ctxt * ctxt,int base_reg)1170 static void adjust_modrm_seg(struct x86_emulate_ctxt *ctxt, int base_reg)
1171 {
1172 if (base_reg == VCPU_REGS_RSP || base_reg == VCPU_REGS_RBP)
1173 ctxt->modrm_seg = VCPU_SREG_SS;
1174 }
1175
decode_modrm(struct x86_emulate_ctxt * ctxt,struct operand * op)1176 static int decode_modrm(struct x86_emulate_ctxt *ctxt,
1177 struct operand *op)
1178 {
1179 u8 sib;
1180 int index_reg, base_reg, scale;
1181 int rc = X86EMUL_CONTINUE;
1182 ulong modrm_ea = 0;
1183
1184 ctxt->modrm_reg = ((ctxt->rex_prefix << 1) & 8); /* REX.R */
1185 index_reg = (ctxt->rex_prefix << 2) & 8; /* REX.X */
1186 base_reg = (ctxt->rex_prefix << 3) & 8; /* REX.B */
1187
1188 ctxt->modrm_mod = (ctxt->modrm & 0xc0) >> 6;
1189 ctxt->modrm_reg |= (ctxt->modrm & 0x38) >> 3;
1190 ctxt->modrm_rm = base_reg | (ctxt->modrm & 0x07);
1191 ctxt->modrm_seg = VCPU_SREG_DS;
1192
1193 if (ctxt->modrm_mod == 3 || (ctxt->d & NoMod)) {
1194 op->type = OP_REG;
1195 op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
1196 op->addr.reg = decode_register(ctxt, ctxt->modrm_rm,
1197 ctxt->d & ByteOp);
1198 if (ctxt->d & Sse) {
1199 op->type = OP_XMM;
1200 op->bytes = 16;
1201 op->addr.xmm = ctxt->modrm_rm;
1202 kvm_read_sse_reg(ctxt->modrm_rm, &op->vec_val);
1203 return rc;
1204 }
1205 if (ctxt->d & Mmx) {
1206 op->type = OP_MM;
1207 op->bytes = 8;
1208 op->addr.mm = ctxt->modrm_rm & 7;
1209 return rc;
1210 }
1211 fetch_register_operand(op);
1212 return rc;
1213 }
1214
1215 op->type = OP_MEM;
1216
1217 if (ctxt->ad_bytes == 2) {
1218 unsigned bx = reg_read(ctxt, VCPU_REGS_RBX);
1219 unsigned bp = reg_read(ctxt, VCPU_REGS_RBP);
1220 unsigned si = reg_read(ctxt, VCPU_REGS_RSI);
1221 unsigned di = reg_read(ctxt, VCPU_REGS_RDI);
1222
1223 /* 16-bit ModR/M decode. */
1224 switch (ctxt->modrm_mod) {
1225 case 0:
1226 if (ctxt->modrm_rm == 6)
1227 modrm_ea += insn_fetch(u16, ctxt);
1228 break;
1229 case 1:
1230 modrm_ea += insn_fetch(s8, ctxt);
1231 break;
1232 case 2:
1233 modrm_ea += insn_fetch(u16, ctxt);
1234 break;
1235 }
1236 switch (ctxt->modrm_rm) {
1237 case 0:
1238 modrm_ea += bx + si;
1239 break;
1240 case 1:
1241 modrm_ea += bx + di;
1242 break;
1243 case 2:
1244 modrm_ea += bp + si;
1245 break;
1246 case 3:
1247 modrm_ea += bp + di;
1248 break;
1249 case 4:
1250 modrm_ea += si;
1251 break;
1252 case 5:
1253 modrm_ea += di;
1254 break;
1255 case 6:
1256 if (ctxt->modrm_mod != 0)
1257 modrm_ea += bp;
1258 break;
1259 case 7:
1260 modrm_ea += bx;
1261 break;
1262 }
1263 if (ctxt->modrm_rm == 2 || ctxt->modrm_rm == 3 ||
1264 (ctxt->modrm_rm == 6 && ctxt->modrm_mod != 0))
1265 ctxt->modrm_seg = VCPU_SREG_SS;
1266 modrm_ea = (u16)modrm_ea;
1267 } else {
1268 /* 32/64-bit ModR/M decode. */
1269 if ((ctxt->modrm_rm & 7) == 4) {
1270 sib = insn_fetch(u8, ctxt);
1271 index_reg |= (sib >> 3) & 7;
1272 base_reg |= sib & 7;
1273 scale = sib >> 6;
1274
1275 if ((base_reg & 7) == 5 && ctxt->modrm_mod == 0)
1276 modrm_ea += insn_fetch(s32, ctxt);
1277 else {
1278 modrm_ea += reg_read(ctxt, base_reg);
1279 adjust_modrm_seg(ctxt, base_reg);
1280 /* Increment ESP on POP [ESP] */
1281 if ((ctxt->d & IncSP) &&
1282 base_reg == VCPU_REGS_RSP)
1283 modrm_ea += ctxt->op_bytes;
1284 }
1285 if (index_reg != 4)
1286 modrm_ea += reg_read(ctxt, index_reg) << scale;
1287 } else if ((ctxt->modrm_rm & 7) == 5 && ctxt->modrm_mod == 0) {
1288 modrm_ea += insn_fetch(s32, ctxt);
1289 if (ctxt->mode == X86EMUL_MODE_PROT64)
1290 ctxt->rip_relative = 1;
1291 } else {
1292 base_reg = ctxt->modrm_rm;
1293 modrm_ea += reg_read(ctxt, base_reg);
1294 adjust_modrm_seg(ctxt, base_reg);
1295 }
1296 switch (ctxt->modrm_mod) {
1297 case 1:
1298 modrm_ea += insn_fetch(s8, ctxt);
1299 break;
1300 case 2:
1301 modrm_ea += insn_fetch(s32, ctxt);
1302 break;
1303 }
1304 }
1305 op->addr.mem.ea = modrm_ea;
1306 if (ctxt->ad_bytes != 8)
1307 ctxt->memop.addr.mem.ea = (u32)ctxt->memop.addr.mem.ea;
1308
1309 done:
1310 return rc;
1311 }
1312
decode_abs(struct x86_emulate_ctxt * ctxt,struct operand * op)1313 static int decode_abs(struct x86_emulate_ctxt *ctxt,
1314 struct operand *op)
1315 {
1316 int rc = X86EMUL_CONTINUE;
1317
1318 op->type = OP_MEM;
1319 switch (ctxt->ad_bytes) {
1320 case 2:
1321 op->addr.mem.ea = insn_fetch(u16, ctxt);
1322 break;
1323 case 4:
1324 op->addr.mem.ea = insn_fetch(u32, ctxt);
1325 break;
1326 case 8:
1327 op->addr.mem.ea = insn_fetch(u64, ctxt);
1328 break;
1329 }
1330 done:
1331 return rc;
1332 }
1333
fetch_bit_operand(struct x86_emulate_ctxt * ctxt)1334 static void fetch_bit_operand(struct x86_emulate_ctxt *ctxt)
1335 {
1336 long sv = 0, mask;
1337
1338 if (ctxt->dst.type == OP_MEM && ctxt->src.type == OP_REG) {
1339 mask = ~((long)ctxt->dst.bytes * 8 - 1);
1340
1341 if (ctxt->src.bytes == 2)
1342 sv = (s16)ctxt->src.val & (s16)mask;
1343 else if (ctxt->src.bytes == 4)
1344 sv = (s32)ctxt->src.val & (s32)mask;
1345 else
1346 sv = (s64)ctxt->src.val & (s64)mask;
1347
1348 ctxt->dst.addr.mem.ea = address_mask(ctxt,
1349 ctxt->dst.addr.mem.ea + (sv >> 3));
1350 }
1351
1352 /* only subword offset */
1353 ctxt->src.val &= (ctxt->dst.bytes << 3) - 1;
1354 }
1355
read_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * dest,unsigned size)1356 static int read_emulated(struct x86_emulate_ctxt *ctxt,
1357 unsigned long addr, void *dest, unsigned size)
1358 {
1359 int rc;
1360 struct read_cache *mc = &ctxt->mem_read;
1361
1362 if (mc->pos < mc->end)
1363 goto read_cached;
1364
1365 if (KVM_EMULATOR_BUG_ON((mc->end + size) >= sizeof(mc->data), ctxt))
1366 return X86EMUL_UNHANDLEABLE;
1367
1368 rc = ctxt->ops->read_emulated(ctxt, addr, mc->data + mc->end, size,
1369 &ctxt->exception);
1370 if (rc != X86EMUL_CONTINUE)
1371 return rc;
1372
1373 mc->end += size;
1374
1375 read_cached:
1376 memcpy(dest, mc->data + mc->pos, size);
1377 mc->pos += size;
1378 return X86EMUL_CONTINUE;
1379 }
1380
segmented_read(struct x86_emulate_ctxt * ctxt,struct segmented_address addr,void * data,unsigned size)1381 static int segmented_read(struct x86_emulate_ctxt *ctxt,
1382 struct segmented_address addr,
1383 void *data,
1384 unsigned size)
1385 {
1386 int rc;
1387 ulong linear;
1388
1389 rc = linearize(ctxt, addr, size, false, &linear);
1390 if (rc != X86EMUL_CONTINUE)
1391 return rc;
1392 return read_emulated(ctxt, linear, data, size);
1393 }
1394
segmented_write(struct x86_emulate_ctxt * ctxt,struct segmented_address addr,const void * data,unsigned size)1395 static int segmented_write(struct x86_emulate_ctxt *ctxt,
1396 struct segmented_address addr,
1397 const void *data,
1398 unsigned size)
1399 {
1400 int rc;
1401 ulong linear;
1402
1403 rc = linearize(ctxt, addr, size, true, &linear);
1404 if (rc != X86EMUL_CONTINUE)
1405 return rc;
1406 return ctxt->ops->write_emulated(ctxt, linear, data, size,
1407 &ctxt->exception);
1408 }
1409
segmented_cmpxchg(struct x86_emulate_ctxt * ctxt,struct segmented_address addr,const void * orig_data,const void * data,unsigned size)1410 static int segmented_cmpxchg(struct x86_emulate_ctxt *ctxt,
1411 struct segmented_address addr,
1412 const void *orig_data, const void *data,
1413 unsigned size)
1414 {
1415 int rc;
1416 ulong linear;
1417
1418 rc = linearize(ctxt, addr, size, true, &linear);
1419 if (rc != X86EMUL_CONTINUE)
1420 return rc;
1421 return ctxt->ops->cmpxchg_emulated(ctxt, linear, orig_data, data,
1422 size, &ctxt->exception);
1423 }
1424
pio_in_emulated(struct x86_emulate_ctxt * ctxt,unsigned int size,unsigned short port,void * dest)1425 static int pio_in_emulated(struct x86_emulate_ctxt *ctxt,
1426 unsigned int size, unsigned short port,
1427 void *dest)
1428 {
1429 struct read_cache *rc = &ctxt->io_read;
1430
1431 if (rc->pos == rc->end) { /* refill pio read ahead */
1432 unsigned int in_page, n;
1433 unsigned int count = ctxt->rep_prefix ?
1434 address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) : 1;
1435 in_page = (ctxt->eflags & X86_EFLAGS_DF) ?
1436 offset_in_page(reg_read(ctxt, VCPU_REGS_RDI)) :
1437 PAGE_SIZE - offset_in_page(reg_read(ctxt, VCPU_REGS_RDI));
1438 n = min3(in_page, (unsigned int)sizeof(rc->data) / size, count);
1439 if (n == 0)
1440 n = 1;
1441 rc->pos = rc->end = 0;
1442 if (!ctxt->ops->pio_in_emulated(ctxt, size, port, rc->data, n))
1443 return 0;
1444 rc->end = n * size;
1445 }
1446
1447 if (ctxt->rep_prefix && (ctxt->d & String) &&
1448 !(ctxt->eflags & X86_EFLAGS_DF)) {
1449 ctxt->dst.data = rc->data + rc->pos;
1450 ctxt->dst.type = OP_MEM_STR;
1451 ctxt->dst.count = (rc->end - rc->pos) / size;
1452 rc->pos = rc->end;
1453 } else {
1454 memcpy(dest, rc->data + rc->pos, size);
1455 rc->pos += size;
1456 }
1457 return 1;
1458 }
1459
read_interrupt_descriptor(struct x86_emulate_ctxt * ctxt,u16 index,struct desc_struct * desc)1460 static int read_interrupt_descriptor(struct x86_emulate_ctxt *ctxt,
1461 u16 index, struct desc_struct *desc)
1462 {
1463 struct desc_ptr dt;
1464 ulong addr;
1465
1466 ctxt->ops->get_idt(ctxt, &dt);
1467
1468 if (dt.size < index * 8 + 7)
1469 return emulate_gp(ctxt, index << 3 | 0x2);
1470
1471 addr = dt.address + index * 8;
1472 return linear_read_system(ctxt, addr, desc, sizeof(*desc));
1473 }
1474
get_descriptor_table_ptr(struct x86_emulate_ctxt * ctxt,u16 selector,struct desc_ptr * dt)1475 static void get_descriptor_table_ptr(struct x86_emulate_ctxt *ctxt,
1476 u16 selector, struct desc_ptr *dt)
1477 {
1478 const struct x86_emulate_ops *ops = ctxt->ops;
1479 u32 base3 = 0;
1480
1481 if (selector & 1 << 2) {
1482 struct desc_struct desc;
1483 u16 sel;
1484
1485 memset(dt, 0, sizeof(*dt));
1486 if (!ops->get_segment(ctxt, &sel, &desc, &base3,
1487 VCPU_SREG_LDTR))
1488 return;
1489
1490 dt->size = desc_limit_scaled(&desc); /* what if limit > 65535? */
1491 dt->address = get_desc_base(&desc) | ((u64)base3 << 32);
1492 } else
1493 ops->get_gdt(ctxt, dt);
1494 }
1495
get_descriptor_ptr(struct x86_emulate_ctxt * ctxt,u16 selector,ulong * desc_addr_p)1496 static int get_descriptor_ptr(struct x86_emulate_ctxt *ctxt,
1497 u16 selector, ulong *desc_addr_p)
1498 {
1499 struct desc_ptr dt;
1500 u16 index = selector >> 3;
1501 ulong addr;
1502
1503 get_descriptor_table_ptr(ctxt, selector, &dt);
1504
1505 if (dt.size < index * 8 + 7)
1506 return emulate_gp(ctxt, selector & 0xfffc);
1507
1508 addr = dt.address + index * 8;
1509
1510 #ifdef CONFIG_X86_64
1511 if (addr >> 32 != 0) {
1512 u64 efer = 0;
1513
1514 ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
1515 if (!(efer & EFER_LMA))
1516 addr &= (u32)-1;
1517 }
1518 #endif
1519
1520 *desc_addr_p = addr;
1521 return X86EMUL_CONTINUE;
1522 }
1523
1524 /* allowed just for 8 bytes segments */
read_segment_descriptor(struct x86_emulate_ctxt * ctxt,u16 selector,struct desc_struct * desc,ulong * desc_addr_p)1525 static int read_segment_descriptor(struct x86_emulate_ctxt *ctxt,
1526 u16 selector, struct desc_struct *desc,
1527 ulong *desc_addr_p)
1528 {
1529 int rc;
1530
1531 rc = get_descriptor_ptr(ctxt, selector, desc_addr_p);
1532 if (rc != X86EMUL_CONTINUE)
1533 return rc;
1534
1535 return linear_read_system(ctxt, *desc_addr_p, desc, sizeof(*desc));
1536 }
1537
1538 /* allowed just for 8 bytes segments */
write_segment_descriptor(struct x86_emulate_ctxt * ctxt,u16 selector,struct desc_struct * desc)1539 static int write_segment_descriptor(struct x86_emulate_ctxt *ctxt,
1540 u16 selector, struct desc_struct *desc)
1541 {
1542 int rc;
1543 ulong addr;
1544
1545 rc = get_descriptor_ptr(ctxt, selector, &addr);
1546 if (rc != X86EMUL_CONTINUE)
1547 return rc;
1548
1549 return linear_write_system(ctxt, addr, desc, sizeof(*desc));
1550 }
1551
__load_segment_descriptor(struct x86_emulate_ctxt * ctxt,u16 selector,int seg,u8 cpl,enum x86_transfer_type transfer,struct desc_struct * desc)1552 static int __load_segment_descriptor(struct x86_emulate_ctxt *ctxt,
1553 u16 selector, int seg, u8 cpl,
1554 enum x86_transfer_type transfer,
1555 struct desc_struct *desc)
1556 {
1557 struct desc_struct seg_desc, old_desc;
1558 u8 dpl, rpl;
1559 unsigned err_vec = GP_VECTOR;
1560 u32 err_code = 0;
1561 bool null_selector = !(selector & ~0x3); /* 0000-0003 are null */
1562 ulong desc_addr;
1563 int ret;
1564 u16 dummy;
1565 u32 base3 = 0;
1566
1567 memset(&seg_desc, 0, sizeof(seg_desc));
1568
1569 if (ctxt->mode == X86EMUL_MODE_REAL) {
1570 /* set real mode segment descriptor (keep limit etc. for
1571 * unreal mode) */
1572 ctxt->ops->get_segment(ctxt, &dummy, &seg_desc, NULL, seg);
1573 set_desc_base(&seg_desc, selector << 4);
1574 goto load;
1575 } else if (seg <= VCPU_SREG_GS && ctxt->mode == X86EMUL_MODE_VM86) {
1576 /* VM86 needs a clean new segment descriptor */
1577 set_desc_base(&seg_desc, selector << 4);
1578 set_desc_limit(&seg_desc, 0xffff);
1579 seg_desc.type = 3;
1580 seg_desc.p = 1;
1581 seg_desc.s = 1;
1582 seg_desc.dpl = 3;
1583 goto load;
1584 }
1585
1586 rpl = selector & 3;
1587
1588 /* TR should be in GDT only */
1589 if (seg == VCPU_SREG_TR && (selector & (1 << 2)))
1590 goto exception;
1591
1592 /* NULL selector is not valid for TR, CS and (except for long mode) SS */
1593 if (null_selector) {
1594 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_TR)
1595 goto exception;
1596
1597 if (seg == VCPU_SREG_SS) {
1598 if (ctxt->mode != X86EMUL_MODE_PROT64 || rpl != cpl)
1599 goto exception;
1600
1601 /*
1602 * ctxt->ops->set_segment expects the CPL to be in
1603 * SS.DPL, so fake an expand-up 32-bit data segment.
1604 */
1605 seg_desc.type = 3;
1606 seg_desc.p = 1;
1607 seg_desc.s = 1;
1608 seg_desc.dpl = cpl;
1609 seg_desc.d = 1;
1610 seg_desc.g = 1;
1611 }
1612
1613 /* Skip all following checks */
1614 goto load;
1615 }
1616
1617 ret = read_segment_descriptor(ctxt, selector, &seg_desc, &desc_addr);
1618 if (ret != X86EMUL_CONTINUE)
1619 return ret;
1620
1621 err_code = selector & 0xfffc;
1622 err_vec = (transfer == X86_TRANSFER_TASK_SWITCH) ? TS_VECTOR :
1623 GP_VECTOR;
1624
1625 /* can't load system descriptor into segment selector */
1626 if (seg <= VCPU_SREG_GS && !seg_desc.s) {
1627 if (transfer == X86_TRANSFER_CALL_JMP)
1628 return X86EMUL_UNHANDLEABLE;
1629 goto exception;
1630 }
1631
1632 dpl = seg_desc.dpl;
1633
1634 switch (seg) {
1635 case VCPU_SREG_SS:
1636 /*
1637 * segment is not a writable data segment or segment
1638 * selector's RPL != CPL or DPL != CPL
1639 */
1640 if (rpl != cpl || (seg_desc.type & 0xa) != 0x2 || dpl != cpl)
1641 goto exception;
1642 break;
1643 case VCPU_SREG_CS:
1644 /*
1645 * KVM uses "none" when loading CS as part of emulating Real
1646 * Mode exceptions and IRET (handled above). In all other
1647 * cases, loading CS without a control transfer is a KVM bug.
1648 */
1649 if (WARN_ON_ONCE(transfer == X86_TRANSFER_NONE))
1650 goto exception;
1651
1652 if (!(seg_desc.type & 8))
1653 goto exception;
1654
1655 if (transfer == X86_TRANSFER_RET) {
1656 /* RET can never return to an inner privilege level. */
1657 if (rpl < cpl)
1658 goto exception;
1659 /* Outer-privilege level return is not implemented */
1660 if (rpl > cpl)
1661 return X86EMUL_UNHANDLEABLE;
1662 }
1663 if (transfer == X86_TRANSFER_RET || transfer == X86_TRANSFER_TASK_SWITCH) {
1664 if (seg_desc.type & 4) {
1665 /* conforming */
1666 if (dpl > rpl)
1667 goto exception;
1668 } else {
1669 /* nonconforming */
1670 if (dpl != rpl)
1671 goto exception;
1672 }
1673 } else { /* X86_TRANSFER_CALL_JMP */
1674 if (seg_desc.type & 4) {
1675 /* conforming */
1676 if (dpl > cpl)
1677 goto exception;
1678 } else {
1679 /* nonconforming */
1680 if (rpl > cpl || dpl != cpl)
1681 goto exception;
1682 }
1683 }
1684 /* in long-mode d/b must be clear if l is set */
1685 if (seg_desc.d && seg_desc.l) {
1686 u64 efer = 0;
1687
1688 ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
1689 if (efer & EFER_LMA)
1690 goto exception;
1691 }
1692
1693 /* CS(RPL) <- CPL */
1694 selector = (selector & 0xfffc) | cpl;
1695 break;
1696 case VCPU_SREG_TR:
1697 if (seg_desc.s || (seg_desc.type != 1 && seg_desc.type != 9))
1698 goto exception;
1699 break;
1700 case VCPU_SREG_LDTR:
1701 if (seg_desc.s || seg_desc.type != 2)
1702 goto exception;
1703 break;
1704 default: /* DS, ES, FS, or GS */
1705 /*
1706 * segment is not a data or readable code segment or
1707 * ((segment is a data or nonconforming code segment)
1708 * and ((RPL > DPL) or (CPL > DPL)))
1709 */
1710 if ((seg_desc.type & 0xa) == 0x8 ||
1711 (((seg_desc.type & 0xc) != 0xc) &&
1712 (rpl > dpl || cpl > dpl)))
1713 goto exception;
1714 break;
1715 }
1716
1717 if (!seg_desc.p) {
1718 err_vec = (seg == VCPU_SREG_SS) ? SS_VECTOR : NP_VECTOR;
1719 goto exception;
1720 }
1721
1722 if (seg_desc.s) {
1723 /* mark segment as accessed */
1724 if (!(seg_desc.type & 1)) {
1725 seg_desc.type |= 1;
1726 ret = write_segment_descriptor(ctxt, selector,
1727 &seg_desc);
1728 if (ret != X86EMUL_CONTINUE)
1729 return ret;
1730 }
1731 } else if (ctxt->mode == X86EMUL_MODE_PROT64) {
1732 ret = linear_read_system(ctxt, desc_addr+8, &base3, sizeof(base3));
1733 if (ret != X86EMUL_CONTINUE)
1734 return ret;
1735 if (emul_is_noncanonical_address(get_desc_base(&seg_desc) |
1736 ((u64)base3 << 32), ctxt))
1737 return emulate_gp(ctxt, err_code);
1738 }
1739
1740 if (seg == VCPU_SREG_TR) {
1741 old_desc = seg_desc;
1742 seg_desc.type |= 2; /* busy */
1743 ret = ctxt->ops->cmpxchg_emulated(ctxt, desc_addr, &old_desc, &seg_desc,
1744 sizeof(seg_desc), &ctxt->exception);
1745 if (ret != X86EMUL_CONTINUE)
1746 return ret;
1747 }
1748 load:
1749 ctxt->ops->set_segment(ctxt, selector, &seg_desc, base3, seg);
1750 if (desc)
1751 *desc = seg_desc;
1752 return X86EMUL_CONTINUE;
1753 exception:
1754 return emulate_exception(ctxt, err_vec, err_code, true);
1755 }
1756
load_segment_descriptor(struct x86_emulate_ctxt * ctxt,u16 selector,int seg)1757 static int load_segment_descriptor(struct x86_emulate_ctxt *ctxt,
1758 u16 selector, int seg)
1759 {
1760 u8 cpl = ctxt->ops->cpl(ctxt);
1761
1762 /*
1763 * None of MOV, POP and LSS can load a NULL selector in CPL=3, but
1764 * they can load it at CPL<3 (Intel's manual says only LSS can,
1765 * but it's wrong).
1766 *
1767 * However, the Intel manual says that putting IST=1/DPL=3 in
1768 * an interrupt gate will result in SS=3 (the AMD manual instead
1769 * says it doesn't), so allow SS=3 in __load_segment_descriptor
1770 * and only forbid it here.
1771 */
1772 if (seg == VCPU_SREG_SS && selector == 3 &&
1773 ctxt->mode == X86EMUL_MODE_PROT64)
1774 return emulate_exception(ctxt, GP_VECTOR, 0, true);
1775
1776 return __load_segment_descriptor(ctxt, selector, seg, cpl,
1777 X86_TRANSFER_NONE, NULL);
1778 }
1779
write_register_operand(struct operand * op)1780 static void write_register_operand(struct operand *op)
1781 {
1782 return assign_register(op->addr.reg, op->val, op->bytes);
1783 }
1784
writeback(struct x86_emulate_ctxt * ctxt,struct operand * op)1785 static int writeback(struct x86_emulate_ctxt *ctxt, struct operand *op)
1786 {
1787 switch (op->type) {
1788 case OP_REG:
1789 write_register_operand(op);
1790 break;
1791 case OP_MEM:
1792 if (ctxt->lock_prefix)
1793 return segmented_cmpxchg(ctxt,
1794 op->addr.mem,
1795 &op->orig_val,
1796 &op->val,
1797 op->bytes);
1798 else
1799 return segmented_write(ctxt,
1800 op->addr.mem,
1801 &op->val,
1802 op->bytes);
1803 case OP_MEM_STR:
1804 return segmented_write(ctxt,
1805 op->addr.mem,
1806 op->data,
1807 op->bytes * op->count);
1808 case OP_XMM:
1809 kvm_write_sse_reg(op->addr.xmm, &op->vec_val);
1810 break;
1811 case OP_MM:
1812 kvm_write_mmx_reg(op->addr.mm, &op->mm_val);
1813 break;
1814 case OP_NONE:
1815 /* no writeback */
1816 break;
1817 default:
1818 break;
1819 }
1820 return X86EMUL_CONTINUE;
1821 }
1822
emulate_push(struct x86_emulate_ctxt * ctxt,const void * data,int len)1823 static int emulate_push(struct x86_emulate_ctxt *ctxt, const void *data, int len)
1824 {
1825 struct segmented_address addr;
1826
1827 rsp_increment(ctxt, -len);
1828 addr.ea = reg_read(ctxt, VCPU_REGS_RSP) & stack_mask(ctxt);
1829 addr.seg = VCPU_SREG_SS;
1830
1831 return segmented_write(ctxt, addr, data, len);
1832 }
1833
em_push(struct x86_emulate_ctxt * ctxt)1834 static int em_push(struct x86_emulate_ctxt *ctxt)
1835 {
1836 /* Disable writeback. */
1837 ctxt->dst.type = OP_NONE;
1838 return emulate_push(ctxt, &ctxt->src.val, ctxt->op_bytes);
1839 }
1840
emulate_pop(struct x86_emulate_ctxt * ctxt,void * dest,int len)1841 static int emulate_pop(struct x86_emulate_ctxt *ctxt,
1842 void *dest, int len)
1843 {
1844 int rc;
1845 struct segmented_address addr;
1846
1847 addr.ea = reg_read(ctxt, VCPU_REGS_RSP) & stack_mask(ctxt);
1848 addr.seg = VCPU_SREG_SS;
1849 rc = segmented_read(ctxt, addr, dest, len);
1850 if (rc != X86EMUL_CONTINUE)
1851 return rc;
1852
1853 rsp_increment(ctxt, len);
1854 return rc;
1855 }
1856
em_pop(struct x86_emulate_ctxt * ctxt)1857 static int em_pop(struct x86_emulate_ctxt *ctxt)
1858 {
1859 return emulate_pop(ctxt, &ctxt->dst.val, ctxt->op_bytes);
1860 }
1861
emulate_popf(struct x86_emulate_ctxt * ctxt,void * dest,int len)1862 static int emulate_popf(struct x86_emulate_ctxt *ctxt,
1863 void *dest, int len)
1864 {
1865 int rc;
1866 unsigned long val = 0;
1867 unsigned long change_mask;
1868 int iopl = (ctxt->eflags & X86_EFLAGS_IOPL) >> X86_EFLAGS_IOPL_BIT;
1869 int cpl = ctxt->ops->cpl(ctxt);
1870
1871 rc = emulate_pop(ctxt, &val, len);
1872 if (rc != X86EMUL_CONTINUE)
1873 return rc;
1874
1875 change_mask = X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
1876 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF |
1877 X86_EFLAGS_TF | X86_EFLAGS_DF | X86_EFLAGS_NT |
1878 X86_EFLAGS_AC | X86_EFLAGS_ID;
1879
1880 switch(ctxt->mode) {
1881 case X86EMUL_MODE_PROT64:
1882 case X86EMUL_MODE_PROT32:
1883 case X86EMUL_MODE_PROT16:
1884 if (cpl == 0)
1885 change_mask |= X86_EFLAGS_IOPL;
1886 if (cpl <= iopl)
1887 change_mask |= X86_EFLAGS_IF;
1888 break;
1889 case X86EMUL_MODE_VM86:
1890 if (iopl < 3)
1891 return emulate_gp(ctxt, 0);
1892 change_mask |= X86_EFLAGS_IF;
1893 break;
1894 default: /* real mode */
1895 change_mask |= (X86_EFLAGS_IOPL | X86_EFLAGS_IF);
1896 break;
1897 }
1898
1899 *(unsigned long *)dest =
1900 (ctxt->eflags & ~change_mask) | (val & change_mask);
1901
1902 return rc;
1903 }
1904
em_popf(struct x86_emulate_ctxt * ctxt)1905 static int em_popf(struct x86_emulate_ctxt *ctxt)
1906 {
1907 ctxt->dst.type = OP_REG;
1908 ctxt->dst.addr.reg = &ctxt->eflags;
1909 ctxt->dst.bytes = ctxt->op_bytes;
1910 return emulate_popf(ctxt, &ctxt->dst.val, ctxt->op_bytes);
1911 }
1912
em_enter(struct x86_emulate_ctxt * ctxt)1913 static int em_enter(struct x86_emulate_ctxt *ctxt)
1914 {
1915 int rc;
1916 unsigned frame_size = ctxt->src.val;
1917 unsigned nesting_level = ctxt->src2.val & 31;
1918 ulong rbp;
1919
1920 if (nesting_level)
1921 return X86EMUL_UNHANDLEABLE;
1922
1923 rbp = reg_read(ctxt, VCPU_REGS_RBP);
1924 rc = emulate_push(ctxt, &rbp, stack_size(ctxt));
1925 if (rc != X86EMUL_CONTINUE)
1926 return rc;
1927 assign_masked(reg_rmw(ctxt, VCPU_REGS_RBP), reg_read(ctxt, VCPU_REGS_RSP),
1928 stack_mask(ctxt));
1929 assign_masked(reg_rmw(ctxt, VCPU_REGS_RSP),
1930 reg_read(ctxt, VCPU_REGS_RSP) - frame_size,
1931 stack_mask(ctxt));
1932 return X86EMUL_CONTINUE;
1933 }
1934
em_leave(struct x86_emulate_ctxt * ctxt)1935 static int em_leave(struct x86_emulate_ctxt *ctxt)
1936 {
1937 assign_masked(reg_rmw(ctxt, VCPU_REGS_RSP), reg_read(ctxt, VCPU_REGS_RBP),
1938 stack_mask(ctxt));
1939 return emulate_pop(ctxt, reg_rmw(ctxt, VCPU_REGS_RBP), ctxt->op_bytes);
1940 }
1941
em_push_sreg(struct x86_emulate_ctxt * ctxt)1942 static int em_push_sreg(struct x86_emulate_ctxt *ctxt)
1943 {
1944 int seg = ctxt->src2.val;
1945
1946 ctxt->src.val = get_segment_selector(ctxt, seg);
1947 if (ctxt->op_bytes == 4) {
1948 rsp_increment(ctxt, -2);
1949 ctxt->op_bytes = 2;
1950 }
1951
1952 return em_push(ctxt);
1953 }
1954
em_pop_sreg(struct x86_emulate_ctxt * ctxt)1955 static int em_pop_sreg(struct x86_emulate_ctxt *ctxt)
1956 {
1957 int seg = ctxt->src2.val;
1958 unsigned long selector = 0;
1959 int rc;
1960
1961 rc = emulate_pop(ctxt, &selector, 2);
1962 if (rc != X86EMUL_CONTINUE)
1963 return rc;
1964
1965 if (seg == VCPU_SREG_SS)
1966 ctxt->interruptibility = KVM_X86_SHADOW_INT_MOV_SS;
1967 if (ctxt->op_bytes > 2)
1968 rsp_increment(ctxt, ctxt->op_bytes - 2);
1969
1970 rc = load_segment_descriptor(ctxt, (u16)selector, seg);
1971 return rc;
1972 }
1973
em_pusha(struct x86_emulate_ctxt * ctxt)1974 static int em_pusha(struct x86_emulate_ctxt *ctxt)
1975 {
1976 unsigned long old_esp = reg_read(ctxt, VCPU_REGS_RSP);
1977 int rc = X86EMUL_CONTINUE;
1978 int reg = VCPU_REGS_RAX;
1979
1980 while (reg <= VCPU_REGS_RDI) {
1981 (reg == VCPU_REGS_RSP) ?
1982 (ctxt->src.val = old_esp) : (ctxt->src.val = reg_read(ctxt, reg));
1983
1984 rc = em_push(ctxt);
1985 if (rc != X86EMUL_CONTINUE)
1986 return rc;
1987
1988 ++reg;
1989 }
1990
1991 return rc;
1992 }
1993
em_pushf(struct x86_emulate_ctxt * ctxt)1994 static int em_pushf(struct x86_emulate_ctxt *ctxt)
1995 {
1996 ctxt->src.val = (unsigned long)ctxt->eflags & ~X86_EFLAGS_VM;
1997 return em_push(ctxt);
1998 }
1999
em_popa(struct x86_emulate_ctxt * ctxt)2000 static int em_popa(struct x86_emulate_ctxt *ctxt)
2001 {
2002 int rc = X86EMUL_CONTINUE;
2003 int reg = VCPU_REGS_RDI;
2004 u32 val = 0;
2005
2006 while (reg >= VCPU_REGS_RAX) {
2007 if (reg == VCPU_REGS_RSP) {
2008 rsp_increment(ctxt, ctxt->op_bytes);
2009 --reg;
2010 }
2011
2012 rc = emulate_pop(ctxt, &val, ctxt->op_bytes);
2013 if (rc != X86EMUL_CONTINUE)
2014 break;
2015 assign_register(reg_rmw(ctxt, reg), val, ctxt->op_bytes);
2016 --reg;
2017 }
2018 return rc;
2019 }
2020
__emulate_int_real(struct x86_emulate_ctxt * ctxt,int irq)2021 static int __emulate_int_real(struct x86_emulate_ctxt *ctxt, int irq)
2022 {
2023 const struct x86_emulate_ops *ops = ctxt->ops;
2024 int rc;
2025 struct desc_ptr dt;
2026 gva_t cs_addr;
2027 gva_t eip_addr;
2028 u16 cs, eip;
2029
2030 /* TODO: Add limit checks */
2031 ctxt->src.val = ctxt->eflags;
2032 rc = em_push(ctxt);
2033 if (rc != X86EMUL_CONTINUE)
2034 return rc;
2035
2036 ctxt->eflags &= ~(X86_EFLAGS_IF | X86_EFLAGS_TF | X86_EFLAGS_AC);
2037
2038 ctxt->src.val = get_segment_selector(ctxt, VCPU_SREG_CS);
2039 rc = em_push(ctxt);
2040 if (rc != X86EMUL_CONTINUE)
2041 return rc;
2042
2043 ctxt->src.val = ctxt->_eip;
2044 rc = em_push(ctxt);
2045 if (rc != X86EMUL_CONTINUE)
2046 return rc;
2047
2048 ops->get_idt(ctxt, &dt);
2049
2050 eip_addr = dt.address + (irq << 2);
2051 cs_addr = dt.address + (irq << 2) + 2;
2052
2053 rc = linear_read_system(ctxt, cs_addr, &cs, 2);
2054 if (rc != X86EMUL_CONTINUE)
2055 return rc;
2056
2057 rc = linear_read_system(ctxt, eip_addr, &eip, 2);
2058 if (rc != X86EMUL_CONTINUE)
2059 return rc;
2060
2061 rc = load_segment_descriptor(ctxt, cs, VCPU_SREG_CS);
2062 if (rc != X86EMUL_CONTINUE)
2063 return rc;
2064
2065 ctxt->_eip = eip;
2066
2067 return rc;
2068 }
2069
emulate_int_real(struct x86_emulate_ctxt * ctxt,int irq)2070 int emulate_int_real(struct x86_emulate_ctxt *ctxt, int irq)
2071 {
2072 int rc;
2073
2074 invalidate_registers(ctxt);
2075 rc = __emulate_int_real(ctxt, irq);
2076 if (rc == X86EMUL_CONTINUE)
2077 writeback_registers(ctxt);
2078 return rc;
2079 }
2080
emulate_int(struct x86_emulate_ctxt * ctxt,int irq)2081 static int emulate_int(struct x86_emulate_ctxt *ctxt, int irq)
2082 {
2083 switch(ctxt->mode) {
2084 case X86EMUL_MODE_REAL:
2085 return __emulate_int_real(ctxt, irq);
2086 case X86EMUL_MODE_VM86:
2087 case X86EMUL_MODE_PROT16:
2088 case X86EMUL_MODE_PROT32:
2089 case X86EMUL_MODE_PROT64:
2090 default:
2091 /* Protected mode interrupts unimplemented yet */
2092 return X86EMUL_UNHANDLEABLE;
2093 }
2094 }
2095
emulate_iret_real(struct x86_emulate_ctxt * ctxt)2096 static int emulate_iret_real(struct x86_emulate_ctxt *ctxt)
2097 {
2098 int rc = X86EMUL_CONTINUE;
2099 unsigned long temp_eip = 0;
2100 unsigned long temp_eflags = 0;
2101 unsigned long cs = 0;
2102 unsigned long mask = X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
2103 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_TF |
2104 X86_EFLAGS_IF | X86_EFLAGS_DF | X86_EFLAGS_OF |
2105 X86_EFLAGS_IOPL | X86_EFLAGS_NT | X86_EFLAGS_RF |
2106 X86_EFLAGS_AC | X86_EFLAGS_ID |
2107 X86_EFLAGS_FIXED;
2108 unsigned long vm86_mask = X86_EFLAGS_VM | X86_EFLAGS_VIF |
2109 X86_EFLAGS_VIP;
2110
2111 /* TODO: Add stack limit check */
2112
2113 rc = emulate_pop(ctxt, &temp_eip, ctxt->op_bytes);
2114
2115 if (rc != X86EMUL_CONTINUE)
2116 return rc;
2117
2118 if (temp_eip & ~0xffff)
2119 return emulate_gp(ctxt, 0);
2120
2121 rc = emulate_pop(ctxt, &cs, ctxt->op_bytes);
2122
2123 if (rc != X86EMUL_CONTINUE)
2124 return rc;
2125
2126 rc = emulate_pop(ctxt, &temp_eflags, ctxt->op_bytes);
2127
2128 if (rc != X86EMUL_CONTINUE)
2129 return rc;
2130
2131 rc = load_segment_descriptor(ctxt, (u16)cs, VCPU_SREG_CS);
2132
2133 if (rc != X86EMUL_CONTINUE)
2134 return rc;
2135
2136 ctxt->_eip = temp_eip;
2137
2138 if (ctxt->op_bytes == 4)
2139 ctxt->eflags = ((temp_eflags & mask) | (ctxt->eflags & vm86_mask));
2140 else if (ctxt->op_bytes == 2) {
2141 ctxt->eflags &= ~0xffff;
2142 ctxt->eflags |= temp_eflags;
2143 }
2144
2145 ctxt->eflags &= ~EFLG_RESERVED_ZEROS_MASK; /* Clear reserved zeros */
2146 ctxt->eflags |= X86_EFLAGS_FIXED;
2147 ctxt->ops->set_nmi_mask(ctxt, false);
2148
2149 return rc;
2150 }
2151
em_iret(struct x86_emulate_ctxt * ctxt)2152 static int em_iret(struct x86_emulate_ctxt *ctxt)
2153 {
2154 switch(ctxt->mode) {
2155 case X86EMUL_MODE_REAL:
2156 return emulate_iret_real(ctxt);
2157 case X86EMUL_MODE_VM86:
2158 case X86EMUL_MODE_PROT16:
2159 case X86EMUL_MODE_PROT32:
2160 case X86EMUL_MODE_PROT64:
2161 default:
2162 /* iret from protected mode unimplemented yet */
2163 return X86EMUL_UNHANDLEABLE;
2164 }
2165 }
2166
em_jmp_far(struct x86_emulate_ctxt * ctxt)2167 static int em_jmp_far(struct x86_emulate_ctxt *ctxt)
2168 {
2169 int rc;
2170 unsigned short sel;
2171 struct desc_struct new_desc;
2172 u8 cpl = ctxt->ops->cpl(ctxt);
2173
2174 memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2);
2175
2176 rc = __load_segment_descriptor(ctxt, sel, VCPU_SREG_CS, cpl,
2177 X86_TRANSFER_CALL_JMP,
2178 &new_desc);
2179 if (rc != X86EMUL_CONTINUE)
2180 return rc;
2181
2182 rc = assign_eip_far(ctxt, ctxt->src.val);
2183 /* Error handling is not implemented. */
2184 if (rc != X86EMUL_CONTINUE)
2185 return X86EMUL_UNHANDLEABLE;
2186
2187 return rc;
2188 }
2189
em_jmp_abs(struct x86_emulate_ctxt * ctxt)2190 static int em_jmp_abs(struct x86_emulate_ctxt *ctxt)
2191 {
2192 return assign_eip_near(ctxt, ctxt->src.val);
2193 }
2194
em_call_near_abs(struct x86_emulate_ctxt * ctxt)2195 static int em_call_near_abs(struct x86_emulate_ctxt *ctxt)
2196 {
2197 int rc;
2198 long int old_eip;
2199
2200 old_eip = ctxt->_eip;
2201 rc = assign_eip_near(ctxt, ctxt->src.val);
2202 if (rc != X86EMUL_CONTINUE)
2203 return rc;
2204 ctxt->src.val = old_eip;
2205 rc = em_push(ctxt);
2206 return rc;
2207 }
2208
em_cmpxchg8b(struct x86_emulate_ctxt * ctxt)2209 static int em_cmpxchg8b(struct x86_emulate_ctxt *ctxt)
2210 {
2211 u64 old = ctxt->dst.orig_val64;
2212
2213 if (ctxt->dst.bytes == 16)
2214 return X86EMUL_UNHANDLEABLE;
2215
2216 if (((u32) (old >> 0) != (u32) reg_read(ctxt, VCPU_REGS_RAX)) ||
2217 ((u32) (old >> 32) != (u32) reg_read(ctxt, VCPU_REGS_RDX))) {
2218 *reg_write(ctxt, VCPU_REGS_RAX) = (u32) (old >> 0);
2219 *reg_write(ctxt, VCPU_REGS_RDX) = (u32) (old >> 32);
2220 ctxt->eflags &= ~X86_EFLAGS_ZF;
2221 } else {
2222 ctxt->dst.val64 = ((u64)reg_read(ctxt, VCPU_REGS_RCX) << 32) |
2223 (u32) reg_read(ctxt, VCPU_REGS_RBX);
2224
2225 ctxt->eflags |= X86_EFLAGS_ZF;
2226 }
2227 return X86EMUL_CONTINUE;
2228 }
2229
em_ret(struct x86_emulate_ctxt * ctxt)2230 static int em_ret(struct x86_emulate_ctxt *ctxt)
2231 {
2232 int rc;
2233 unsigned long eip = 0;
2234
2235 rc = emulate_pop(ctxt, &eip, ctxt->op_bytes);
2236 if (rc != X86EMUL_CONTINUE)
2237 return rc;
2238
2239 return assign_eip_near(ctxt, eip);
2240 }
2241
em_ret_far(struct x86_emulate_ctxt * ctxt)2242 static int em_ret_far(struct x86_emulate_ctxt *ctxt)
2243 {
2244 int rc;
2245 unsigned long eip = 0;
2246 unsigned long cs = 0;
2247 int cpl = ctxt->ops->cpl(ctxt);
2248 struct desc_struct new_desc;
2249
2250 rc = emulate_pop(ctxt, &eip, ctxt->op_bytes);
2251 if (rc != X86EMUL_CONTINUE)
2252 return rc;
2253 rc = emulate_pop(ctxt, &cs, ctxt->op_bytes);
2254 if (rc != X86EMUL_CONTINUE)
2255 return rc;
2256 rc = __load_segment_descriptor(ctxt, (u16)cs, VCPU_SREG_CS, cpl,
2257 X86_TRANSFER_RET,
2258 &new_desc);
2259 if (rc != X86EMUL_CONTINUE)
2260 return rc;
2261 rc = assign_eip_far(ctxt, eip);
2262 /* Error handling is not implemented. */
2263 if (rc != X86EMUL_CONTINUE)
2264 return X86EMUL_UNHANDLEABLE;
2265
2266 return rc;
2267 }
2268
em_ret_far_imm(struct x86_emulate_ctxt * ctxt)2269 static int em_ret_far_imm(struct x86_emulate_ctxt *ctxt)
2270 {
2271 int rc;
2272
2273 rc = em_ret_far(ctxt);
2274 if (rc != X86EMUL_CONTINUE)
2275 return rc;
2276 rsp_increment(ctxt, ctxt->src.val);
2277 return X86EMUL_CONTINUE;
2278 }
2279
em_cmpxchg(struct x86_emulate_ctxt * ctxt)2280 static int em_cmpxchg(struct x86_emulate_ctxt *ctxt)
2281 {
2282 /* Save real source value, then compare EAX against destination. */
2283 ctxt->dst.orig_val = ctxt->dst.val;
2284 ctxt->dst.val = reg_read(ctxt, VCPU_REGS_RAX);
2285 ctxt->src.orig_val = ctxt->src.val;
2286 ctxt->src.val = ctxt->dst.orig_val;
2287 fastop(ctxt, em_cmp);
2288
2289 if (ctxt->eflags & X86_EFLAGS_ZF) {
2290 /* Success: write back to memory; no update of EAX */
2291 ctxt->src.type = OP_NONE;
2292 ctxt->dst.val = ctxt->src.orig_val;
2293 } else {
2294 /* Failure: write the value we saw to EAX. */
2295 ctxt->src.type = OP_REG;
2296 ctxt->src.addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX);
2297 ctxt->src.val = ctxt->dst.orig_val;
2298 /* Create write-cycle to dest by writing the same value */
2299 ctxt->dst.val = ctxt->dst.orig_val;
2300 }
2301 return X86EMUL_CONTINUE;
2302 }
2303
em_lseg(struct x86_emulate_ctxt * ctxt)2304 static int em_lseg(struct x86_emulate_ctxt *ctxt)
2305 {
2306 int seg = ctxt->src2.val;
2307 unsigned short sel;
2308 int rc;
2309
2310 memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2);
2311
2312 rc = load_segment_descriptor(ctxt, sel, seg);
2313 if (rc != X86EMUL_CONTINUE)
2314 return rc;
2315
2316 ctxt->dst.val = ctxt->src.val;
2317 return rc;
2318 }
2319
em_rsm(struct x86_emulate_ctxt * ctxt)2320 static int em_rsm(struct x86_emulate_ctxt *ctxt)
2321 {
2322 if (!ctxt->ops->is_smm(ctxt))
2323 return emulate_ud(ctxt);
2324
2325 if (ctxt->ops->leave_smm(ctxt))
2326 ctxt->ops->triple_fault(ctxt);
2327
2328 return emulator_recalc_and_set_mode(ctxt);
2329 }
2330
2331 static void
setup_syscalls_segments(struct desc_struct * cs,struct desc_struct * ss)2332 setup_syscalls_segments(struct desc_struct *cs, struct desc_struct *ss)
2333 {
2334 cs->l = 0; /* will be adjusted later */
2335 set_desc_base(cs, 0); /* flat segment */
2336 cs->g = 1; /* 4kb granularity */
2337 set_desc_limit(cs, 0xfffff); /* 4GB limit */
2338 cs->type = 0x0b; /* Read, Execute, Accessed */
2339 cs->s = 1;
2340 cs->dpl = 0; /* will be adjusted later */
2341 cs->p = 1;
2342 cs->d = 1;
2343 cs->avl = 0;
2344
2345 set_desc_base(ss, 0); /* flat segment */
2346 set_desc_limit(ss, 0xfffff); /* 4GB limit */
2347 ss->g = 1; /* 4kb granularity */
2348 ss->s = 1;
2349 ss->type = 0x03; /* Read/Write, Accessed */
2350 ss->d = 1; /* 32bit stack segment */
2351 ss->dpl = 0;
2352 ss->p = 1;
2353 ss->l = 0;
2354 ss->avl = 0;
2355 }
2356
em_syscall(struct x86_emulate_ctxt * ctxt)2357 static int em_syscall(struct x86_emulate_ctxt *ctxt)
2358 {
2359 const struct x86_emulate_ops *ops = ctxt->ops;
2360 struct desc_struct cs, ss;
2361 u64 msr_data;
2362 u16 cs_sel, ss_sel;
2363 u64 efer = 0;
2364
2365 /* syscall is not available in real mode */
2366 if (ctxt->mode == X86EMUL_MODE_REAL ||
2367 ctxt->mode == X86EMUL_MODE_VM86)
2368 return emulate_ud(ctxt);
2369
2370 /*
2371 * Intel compatible CPUs only support SYSCALL in 64-bit mode, whereas
2372 * AMD allows SYSCALL in any flavor of protected mode. Note, it's
2373 * infeasible to emulate Intel behavior when running on AMD hardware,
2374 * as SYSCALL won't fault in the "wrong" mode, i.e. there is no #UD
2375 * for KVM to trap-and-emulate, unlike emulating AMD on Intel.
2376 */
2377 if (ctxt->mode != X86EMUL_MODE_PROT64 &&
2378 ctxt->ops->guest_cpuid_is_intel_compatible(ctxt))
2379 return emulate_ud(ctxt);
2380
2381 ops->get_msr(ctxt, MSR_EFER, &efer);
2382 if (!(efer & EFER_SCE))
2383 return emulate_ud(ctxt);
2384
2385 setup_syscalls_segments(&cs, &ss);
2386 ops->get_msr(ctxt, MSR_STAR, &msr_data);
2387 msr_data >>= 32;
2388 cs_sel = (u16)(msr_data & 0xfffc);
2389 ss_sel = (u16)(msr_data + 8);
2390
2391 if (efer & EFER_LMA) {
2392 cs.d = 0;
2393 cs.l = 1;
2394 }
2395 ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS);
2396 ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS);
2397
2398 *reg_write(ctxt, VCPU_REGS_RCX) = ctxt->_eip;
2399 if (efer & EFER_LMA) {
2400 #ifdef CONFIG_X86_64
2401 *reg_write(ctxt, VCPU_REGS_R11) = ctxt->eflags;
2402
2403 ops->get_msr(ctxt,
2404 ctxt->mode == X86EMUL_MODE_PROT64 ?
2405 MSR_LSTAR : MSR_CSTAR, &msr_data);
2406 ctxt->_eip = msr_data;
2407
2408 ops->get_msr(ctxt, MSR_SYSCALL_MASK, &msr_data);
2409 ctxt->eflags &= ~msr_data;
2410 ctxt->eflags |= X86_EFLAGS_FIXED;
2411 #endif
2412 } else {
2413 /* legacy mode */
2414 ops->get_msr(ctxt, MSR_STAR, &msr_data);
2415 ctxt->_eip = (u32)msr_data;
2416
2417 ctxt->eflags &= ~(X86_EFLAGS_VM | X86_EFLAGS_IF);
2418 }
2419
2420 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
2421 return X86EMUL_CONTINUE;
2422 }
2423
em_sysenter(struct x86_emulate_ctxt * ctxt)2424 static int em_sysenter(struct x86_emulate_ctxt *ctxt)
2425 {
2426 const struct x86_emulate_ops *ops = ctxt->ops;
2427 struct desc_struct cs, ss;
2428 u64 msr_data;
2429 u16 cs_sel, ss_sel;
2430 u64 efer = 0;
2431
2432 ops->get_msr(ctxt, MSR_EFER, &efer);
2433 /* inject #GP if in real mode */
2434 if (ctxt->mode == X86EMUL_MODE_REAL)
2435 return emulate_gp(ctxt, 0);
2436
2437 /*
2438 * Intel's architecture allows SYSENTER in compatibility mode, but AMD
2439 * does not. Note, AMD does allow SYSENTER in legacy protected mode.
2440 */
2441 if ((ctxt->mode != X86EMUL_MODE_PROT64) && (efer & EFER_LMA) &&
2442 !ctxt->ops->guest_cpuid_is_intel_compatible(ctxt))
2443 return emulate_ud(ctxt);
2444
2445 /* sysenter/sysexit have not been tested in 64bit mode. */
2446 if (ctxt->mode == X86EMUL_MODE_PROT64)
2447 return X86EMUL_UNHANDLEABLE;
2448
2449 ops->get_msr(ctxt, MSR_IA32_SYSENTER_CS, &msr_data);
2450 if ((msr_data & 0xfffc) == 0x0)
2451 return emulate_gp(ctxt, 0);
2452
2453 setup_syscalls_segments(&cs, &ss);
2454 ctxt->eflags &= ~(X86_EFLAGS_VM | X86_EFLAGS_IF);
2455 cs_sel = (u16)msr_data & ~SEGMENT_RPL_MASK;
2456 ss_sel = cs_sel + 8;
2457 if (efer & EFER_LMA) {
2458 cs.d = 0;
2459 cs.l = 1;
2460 }
2461
2462 ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS);
2463 ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS);
2464
2465 ops->get_msr(ctxt, MSR_IA32_SYSENTER_EIP, &msr_data);
2466 ctxt->_eip = (efer & EFER_LMA) ? msr_data : (u32)msr_data;
2467
2468 ops->get_msr(ctxt, MSR_IA32_SYSENTER_ESP, &msr_data);
2469 *reg_write(ctxt, VCPU_REGS_RSP) = (efer & EFER_LMA) ? msr_data :
2470 (u32)msr_data;
2471 if (efer & EFER_LMA)
2472 ctxt->mode = X86EMUL_MODE_PROT64;
2473
2474 return X86EMUL_CONTINUE;
2475 }
2476
em_sysexit(struct x86_emulate_ctxt * ctxt)2477 static int em_sysexit(struct x86_emulate_ctxt *ctxt)
2478 {
2479 const struct x86_emulate_ops *ops = ctxt->ops;
2480 struct desc_struct cs, ss;
2481 u64 msr_data, rcx, rdx;
2482 int usermode;
2483 u16 cs_sel = 0, ss_sel = 0;
2484
2485 /* inject #GP if in real mode or Virtual 8086 mode */
2486 if (ctxt->mode == X86EMUL_MODE_REAL ||
2487 ctxt->mode == X86EMUL_MODE_VM86)
2488 return emulate_gp(ctxt, 0);
2489
2490 setup_syscalls_segments(&cs, &ss);
2491
2492 if ((ctxt->rex_prefix & 0x8) != 0x0)
2493 usermode = X86EMUL_MODE_PROT64;
2494 else
2495 usermode = X86EMUL_MODE_PROT32;
2496
2497 rcx = reg_read(ctxt, VCPU_REGS_RCX);
2498 rdx = reg_read(ctxt, VCPU_REGS_RDX);
2499
2500 cs.dpl = 3;
2501 ss.dpl = 3;
2502 ops->get_msr(ctxt, MSR_IA32_SYSENTER_CS, &msr_data);
2503 switch (usermode) {
2504 case X86EMUL_MODE_PROT32:
2505 cs_sel = (u16)(msr_data + 16);
2506 if ((msr_data & 0xfffc) == 0x0)
2507 return emulate_gp(ctxt, 0);
2508 ss_sel = (u16)(msr_data + 24);
2509 rcx = (u32)rcx;
2510 rdx = (u32)rdx;
2511 break;
2512 case X86EMUL_MODE_PROT64:
2513 cs_sel = (u16)(msr_data + 32);
2514 if (msr_data == 0x0)
2515 return emulate_gp(ctxt, 0);
2516 ss_sel = cs_sel + 8;
2517 cs.d = 0;
2518 cs.l = 1;
2519 if (emul_is_noncanonical_address(rcx, ctxt) ||
2520 emul_is_noncanonical_address(rdx, ctxt))
2521 return emulate_gp(ctxt, 0);
2522 break;
2523 }
2524 cs_sel |= SEGMENT_RPL_MASK;
2525 ss_sel |= SEGMENT_RPL_MASK;
2526
2527 ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS);
2528 ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS);
2529
2530 ctxt->_eip = rdx;
2531 ctxt->mode = usermode;
2532 *reg_write(ctxt, VCPU_REGS_RSP) = rcx;
2533
2534 return X86EMUL_CONTINUE;
2535 }
2536
emulator_bad_iopl(struct x86_emulate_ctxt * ctxt)2537 static bool emulator_bad_iopl(struct x86_emulate_ctxt *ctxt)
2538 {
2539 int iopl;
2540 if (ctxt->mode == X86EMUL_MODE_REAL)
2541 return false;
2542 if (ctxt->mode == X86EMUL_MODE_VM86)
2543 return true;
2544 iopl = (ctxt->eflags & X86_EFLAGS_IOPL) >> X86_EFLAGS_IOPL_BIT;
2545 return ctxt->ops->cpl(ctxt) > iopl;
2546 }
2547
2548 #define VMWARE_PORT_VMPORT (0x5658)
2549 #define VMWARE_PORT_VMRPC (0x5659)
2550
emulator_io_port_access_allowed(struct x86_emulate_ctxt * ctxt,u16 port,u16 len)2551 static bool emulator_io_port_access_allowed(struct x86_emulate_ctxt *ctxt,
2552 u16 port, u16 len)
2553 {
2554 const struct x86_emulate_ops *ops = ctxt->ops;
2555 struct desc_struct tr_seg;
2556 u32 base3;
2557 int r;
2558 u16 tr, io_bitmap_ptr, perm, bit_idx = port & 0x7;
2559 unsigned mask = (1 << len) - 1;
2560 unsigned long base;
2561
2562 /*
2563 * VMware allows access to these ports even if denied
2564 * by TSS I/O permission bitmap. Mimic behavior.
2565 */
2566 if (enable_vmware_backdoor &&
2567 ((port == VMWARE_PORT_VMPORT) || (port == VMWARE_PORT_VMRPC)))
2568 return true;
2569
2570 ops->get_segment(ctxt, &tr, &tr_seg, &base3, VCPU_SREG_TR);
2571 if (!tr_seg.p)
2572 return false;
2573 if (desc_limit_scaled(&tr_seg) < 103)
2574 return false;
2575 base = get_desc_base(&tr_seg);
2576 #ifdef CONFIG_X86_64
2577 base |= ((u64)base3) << 32;
2578 #endif
2579 r = ops->read_std(ctxt, base + 102, &io_bitmap_ptr, 2, NULL, true);
2580 if (r != X86EMUL_CONTINUE)
2581 return false;
2582 if (io_bitmap_ptr + port/8 > desc_limit_scaled(&tr_seg))
2583 return false;
2584 r = ops->read_std(ctxt, base + io_bitmap_ptr + port/8, &perm, 2, NULL, true);
2585 if (r != X86EMUL_CONTINUE)
2586 return false;
2587 if ((perm >> bit_idx) & mask)
2588 return false;
2589 return true;
2590 }
2591
emulator_io_permitted(struct x86_emulate_ctxt * ctxt,u16 port,u16 len)2592 static bool emulator_io_permitted(struct x86_emulate_ctxt *ctxt,
2593 u16 port, u16 len)
2594 {
2595 if (ctxt->perm_ok)
2596 return true;
2597
2598 if (emulator_bad_iopl(ctxt))
2599 if (!emulator_io_port_access_allowed(ctxt, port, len))
2600 return false;
2601
2602 ctxt->perm_ok = true;
2603
2604 return true;
2605 }
2606
string_registers_quirk(struct x86_emulate_ctxt * ctxt)2607 static void string_registers_quirk(struct x86_emulate_ctxt *ctxt)
2608 {
2609 /*
2610 * Intel CPUs mask the counter and pointers in quite strange
2611 * manner when ECX is zero due to REP-string optimizations.
2612 */
2613 #ifdef CONFIG_X86_64
2614 u32 eax, ebx, ecx, edx;
2615
2616 if (ctxt->ad_bytes != 4)
2617 return;
2618
2619 eax = ecx = 0;
2620 ctxt->ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx, true);
2621 if (!is_guest_vendor_intel(ebx, ecx, edx))
2622 return;
2623
2624 *reg_write(ctxt, VCPU_REGS_RCX) = 0;
2625
2626 switch (ctxt->b) {
2627 case 0xa4: /* movsb */
2628 case 0xa5: /* movsd/w */
2629 *reg_rmw(ctxt, VCPU_REGS_RSI) &= (u32)-1;
2630 fallthrough;
2631 case 0xaa: /* stosb */
2632 case 0xab: /* stosd/w */
2633 *reg_rmw(ctxt, VCPU_REGS_RDI) &= (u32)-1;
2634 }
2635 #endif
2636 }
2637
save_state_to_tss16(struct x86_emulate_ctxt * ctxt,struct tss_segment_16 * tss)2638 static void save_state_to_tss16(struct x86_emulate_ctxt *ctxt,
2639 struct tss_segment_16 *tss)
2640 {
2641 tss->ip = ctxt->_eip;
2642 tss->flag = ctxt->eflags;
2643 tss->ax = reg_read(ctxt, VCPU_REGS_RAX);
2644 tss->cx = reg_read(ctxt, VCPU_REGS_RCX);
2645 tss->dx = reg_read(ctxt, VCPU_REGS_RDX);
2646 tss->bx = reg_read(ctxt, VCPU_REGS_RBX);
2647 tss->sp = reg_read(ctxt, VCPU_REGS_RSP);
2648 tss->bp = reg_read(ctxt, VCPU_REGS_RBP);
2649 tss->si = reg_read(ctxt, VCPU_REGS_RSI);
2650 tss->di = reg_read(ctxt, VCPU_REGS_RDI);
2651
2652 tss->es = get_segment_selector(ctxt, VCPU_SREG_ES);
2653 tss->cs = get_segment_selector(ctxt, VCPU_SREG_CS);
2654 tss->ss = get_segment_selector(ctxt, VCPU_SREG_SS);
2655 tss->ds = get_segment_selector(ctxt, VCPU_SREG_DS);
2656 tss->ldt = get_segment_selector(ctxt, VCPU_SREG_LDTR);
2657 }
2658
load_state_from_tss16(struct x86_emulate_ctxt * ctxt,struct tss_segment_16 * tss)2659 static int load_state_from_tss16(struct x86_emulate_ctxt *ctxt,
2660 struct tss_segment_16 *tss)
2661 {
2662 int ret;
2663 u8 cpl;
2664
2665 ctxt->_eip = tss->ip;
2666 ctxt->eflags = tss->flag | 2;
2667 *reg_write(ctxt, VCPU_REGS_RAX) = tss->ax;
2668 *reg_write(ctxt, VCPU_REGS_RCX) = tss->cx;
2669 *reg_write(ctxt, VCPU_REGS_RDX) = tss->dx;
2670 *reg_write(ctxt, VCPU_REGS_RBX) = tss->bx;
2671 *reg_write(ctxt, VCPU_REGS_RSP) = tss->sp;
2672 *reg_write(ctxt, VCPU_REGS_RBP) = tss->bp;
2673 *reg_write(ctxt, VCPU_REGS_RSI) = tss->si;
2674 *reg_write(ctxt, VCPU_REGS_RDI) = tss->di;
2675
2676 /*
2677 * SDM says that segment selectors are loaded before segment
2678 * descriptors
2679 */
2680 set_segment_selector(ctxt, tss->ldt, VCPU_SREG_LDTR);
2681 set_segment_selector(ctxt, tss->es, VCPU_SREG_ES);
2682 set_segment_selector(ctxt, tss->cs, VCPU_SREG_CS);
2683 set_segment_selector(ctxt, tss->ss, VCPU_SREG_SS);
2684 set_segment_selector(ctxt, tss->ds, VCPU_SREG_DS);
2685
2686 cpl = tss->cs & 3;
2687
2688 /*
2689 * Now load segment descriptors. If fault happens at this stage
2690 * it is handled in a context of new task
2691 */
2692 ret = __load_segment_descriptor(ctxt, tss->ldt, VCPU_SREG_LDTR, cpl,
2693 X86_TRANSFER_TASK_SWITCH, NULL);
2694 if (ret != X86EMUL_CONTINUE)
2695 return ret;
2696 ret = __load_segment_descriptor(ctxt, tss->es, VCPU_SREG_ES, cpl,
2697 X86_TRANSFER_TASK_SWITCH, NULL);
2698 if (ret != X86EMUL_CONTINUE)
2699 return ret;
2700 ret = __load_segment_descriptor(ctxt, tss->cs, VCPU_SREG_CS, cpl,
2701 X86_TRANSFER_TASK_SWITCH, NULL);
2702 if (ret != X86EMUL_CONTINUE)
2703 return ret;
2704 ret = __load_segment_descriptor(ctxt, tss->ss, VCPU_SREG_SS, cpl,
2705 X86_TRANSFER_TASK_SWITCH, NULL);
2706 if (ret != X86EMUL_CONTINUE)
2707 return ret;
2708 ret = __load_segment_descriptor(ctxt, tss->ds, VCPU_SREG_DS, cpl,
2709 X86_TRANSFER_TASK_SWITCH, NULL);
2710 if (ret != X86EMUL_CONTINUE)
2711 return ret;
2712
2713 return X86EMUL_CONTINUE;
2714 }
2715
task_switch_16(struct x86_emulate_ctxt * ctxt,u16 old_tss_sel,ulong old_tss_base,struct desc_struct * new_desc)2716 static int task_switch_16(struct x86_emulate_ctxt *ctxt, u16 old_tss_sel,
2717 ulong old_tss_base, struct desc_struct *new_desc)
2718 {
2719 struct tss_segment_16 tss_seg;
2720 int ret;
2721 u32 new_tss_base = get_desc_base(new_desc);
2722
2723 ret = linear_read_system(ctxt, old_tss_base, &tss_seg, sizeof(tss_seg));
2724 if (ret != X86EMUL_CONTINUE)
2725 return ret;
2726
2727 save_state_to_tss16(ctxt, &tss_seg);
2728
2729 ret = linear_write_system(ctxt, old_tss_base, &tss_seg, sizeof(tss_seg));
2730 if (ret != X86EMUL_CONTINUE)
2731 return ret;
2732
2733 ret = linear_read_system(ctxt, new_tss_base, &tss_seg, sizeof(tss_seg));
2734 if (ret != X86EMUL_CONTINUE)
2735 return ret;
2736
2737 if (old_tss_sel != 0xffff) {
2738 tss_seg.prev_task_link = old_tss_sel;
2739
2740 ret = linear_write_system(ctxt, new_tss_base,
2741 &tss_seg.prev_task_link,
2742 sizeof(tss_seg.prev_task_link));
2743 if (ret != X86EMUL_CONTINUE)
2744 return ret;
2745 }
2746
2747 return load_state_from_tss16(ctxt, &tss_seg);
2748 }
2749
save_state_to_tss32(struct x86_emulate_ctxt * ctxt,struct tss_segment_32 * tss)2750 static void save_state_to_tss32(struct x86_emulate_ctxt *ctxt,
2751 struct tss_segment_32 *tss)
2752 {
2753 /* CR3 and ldt selector are not saved intentionally */
2754 tss->eip = ctxt->_eip;
2755 tss->eflags = ctxt->eflags;
2756 tss->eax = reg_read(ctxt, VCPU_REGS_RAX);
2757 tss->ecx = reg_read(ctxt, VCPU_REGS_RCX);
2758 tss->edx = reg_read(ctxt, VCPU_REGS_RDX);
2759 tss->ebx = reg_read(ctxt, VCPU_REGS_RBX);
2760 tss->esp = reg_read(ctxt, VCPU_REGS_RSP);
2761 tss->ebp = reg_read(ctxt, VCPU_REGS_RBP);
2762 tss->esi = reg_read(ctxt, VCPU_REGS_RSI);
2763 tss->edi = reg_read(ctxt, VCPU_REGS_RDI);
2764
2765 tss->es = get_segment_selector(ctxt, VCPU_SREG_ES);
2766 tss->cs = get_segment_selector(ctxt, VCPU_SREG_CS);
2767 tss->ss = get_segment_selector(ctxt, VCPU_SREG_SS);
2768 tss->ds = get_segment_selector(ctxt, VCPU_SREG_DS);
2769 tss->fs = get_segment_selector(ctxt, VCPU_SREG_FS);
2770 tss->gs = get_segment_selector(ctxt, VCPU_SREG_GS);
2771 }
2772
load_state_from_tss32(struct x86_emulate_ctxt * ctxt,struct tss_segment_32 * tss)2773 static int load_state_from_tss32(struct x86_emulate_ctxt *ctxt,
2774 struct tss_segment_32 *tss)
2775 {
2776 int ret;
2777 u8 cpl;
2778
2779 if (ctxt->ops->set_cr(ctxt, 3, tss->cr3))
2780 return emulate_gp(ctxt, 0);
2781 ctxt->_eip = tss->eip;
2782 ctxt->eflags = tss->eflags | 2;
2783
2784 /* General purpose registers */
2785 *reg_write(ctxt, VCPU_REGS_RAX) = tss->eax;
2786 *reg_write(ctxt, VCPU_REGS_RCX) = tss->ecx;
2787 *reg_write(ctxt, VCPU_REGS_RDX) = tss->edx;
2788 *reg_write(ctxt, VCPU_REGS_RBX) = tss->ebx;
2789 *reg_write(ctxt, VCPU_REGS_RSP) = tss->esp;
2790 *reg_write(ctxt, VCPU_REGS_RBP) = tss->ebp;
2791 *reg_write(ctxt, VCPU_REGS_RSI) = tss->esi;
2792 *reg_write(ctxt, VCPU_REGS_RDI) = tss->edi;
2793
2794 /*
2795 * SDM says that segment selectors are loaded before segment
2796 * descriptors. This is important because CPL checks will
2797 * use CS.RPL.
2798 */
2799 set_segment_selector(ctxt, tss->ldt_selector, VCPU_SREG_LDTR);
2800 set_segment_selector(ctxt, tss->es, VCPU_SREG_ES);
2801 set_segment_selector(ctxt, tss->cs, VCPU_SREG_CS);
2802 set_segment_selector(ctxt, tss->ss, VCPU_SREG_SS);
2803 set_segment_selector(ctxt, tss->ds, VCPU_SREG_DS);
2804 set_segment_selector(ctxt, tss->fs, VCPU_SREG_FS);
2805 set_segment_selector(ctxt, tss->gs, VCPU_SREG_GS);
2806
2807 /*
2808 * If we're switching between Protected Mode and VM86, we need to make
2809 * sure to update the mode before loading the segment descriptors so
2810 * that the selectors are interpreted correctly.
2811 */
2812 if (ctxt->eflags & X86_EFLAGS_VM) {
2813 ctxt->mode = X86EMUL_MODE_VM86;
2814 cpl = 3;
2815 } else {
2816 ctxt->mode = X86EMUL_MODE_PROT32;
2817 cpl = tss->cs & 3;
2818 }
2819
2820 /*
2821 * Now load segment descriptors. If fault happens at this stage
2822 * it is handled in a context of new task
2823 */
2824 ret = __load_segment_descriptor(ctxt, tss->ldt_selector, VCPU_SREG_LDTR,
2825 cpl, X86_TRANSFER_TASK_SWITCH, NULL);
2826 if (ret != X86EMUL_CONTINUE)
2827 return ret;
2828 ret = __load_segment_descriptor(ctxt, tss->es, VCPU_SREG_ES, cpl,
2829 X86_TRANSFER_TASK_SWITCH, NULL);
2830 if (ret != X86EMUL_CONTINUE)
2831 return ret;
2832 ret = __load_segment_descriptor(ctxt, tss->cs, VCPU_SREG_CS, cpl,
2833 X86_TRANSFER_TASK_SWITCH, NULL);
2834 if (ret != X86EMUL_CONTINUE)
2835 return ret;
2836 ret = __load_segment_descriptor(ctxt, tss->ss, VCPU_SREG_SS, cpl,
2837 X86_TRANSFER_TASK_SWITCH, NULL);
2838 if (ret != X86EMUL_CONTINUE)
2839 return ret;
2840 ret = __load_segment_descriptor(ctxt, tss->ds, VCPU_SREG_DS, cpl,
2841 X86_TRANSFER_TASK_SWITCH, NULL);
2842 if (ret != X86EMUL_CONTINUE)
2843 return ret;
2844 ret = __load_segment_descriptor(ctxt, tss->fs, VCPU_SREG_FS, cpl,
2845 X86_TRANSFER_TASK_SWITCH, NULL);
2846 if (ret != X86EMUL_CONTINUE)
2847 return ret;
2848 ret = __load_segment_descriptor(ctxt, tss->gs, VCPU_SREG_GS, cpl,
2849 X86_TRANSFER_TASK_SWITCH, NULL);
2850
2851 return ret;
2852 }
2853
task_switch_32(struct x86_emulate_ctxt * ctxt,u16 old_tss_sel,ulong old_tss_base,struct desc_struct * new_desc)2854 static int task_switch_32(struct x86_emulate_ctxt *ctxt, u16 old_tss_sel,
2855 ulong old_tss_base, struct desc_struct *new_desc)
2856 {
2857 struct tss_segment_32 tss_seg;
2858 int ret;
2859 u32 new_tss_base = get_desc_base(new_desc);
2860 u32 eip_offset = offsetof(struct tss_segment_32, eip);
2861 u32 ldt_sel_offset = offsetof(struct tss_segment_32, ldt_selector);
2862
2863 ret = linear_read_system(ctxt, old_tss_base, &tss_seg, sizeof(tss_seg));
2864 if (ret != X86EMUL_CONTINUE)
2865 return ret;
2866
2867 save_state_to_tss32(ctxt, &tss_seg);
2868
2869 /* Only GP registers and segment selectors are saved */
2870 ret = linear_write_system(ctxt, old_tss_base + eip_offset, &tss_seg.eip,
2871 ldt_sel_offset - eip_offset);
2872 if (ret != X86EMUL_CONTINUE)
2873 return ret;
2874
2875 ret = linear_read_system(ctxt, new_tss_base, &tss_seg, sizeof(tss_seg));
2876 if (ret != X86EMUL_CONTINUE)
2877 return ret;
2878
2879 if (old_tss_sel != 0xffff) {
2880 tss_seg.prev_task_link = old_tss_sel;
2881
2882 ret = linear_write_system(ctxt, new_tss_base,
2883 &tss_seg.prev_task_link,
2884 sizeof(tss_seg.prev_task_link));
2885 if (ret != X86EMUL_CONTINUE)
2886 return ret;
2887 }
2888
2889 return load_state_from_tss32(ctxt, &tss_seg);
2890 }
2891
emulator_do_task_switch(struct x86_emulate_ctxt * ctxt,u16 tss_selector,int idt_index,int reason,bool has_error_code,u32 error_code)2892 static int emulator_do_task_switch(struct x86_emulate_ctxt *ctxt,
2893 u16 tss_selector, int idt_index, int reason,
2894 bool has_error_code, u32 error_code)
2895 {
2896 const struct x86_emulate_ops *ops = ctxt->ops;
2897 struct desc_struct curr_tss_desc, next_tss_desc;
2898 int ret;
2899 u16 old_tss_sel = get_segment_selector(ctxt, VCPU_SREG_TR);
2900 ulong old_tss_base =
2901 ops->get_cached_segment_base(ctxt, VCPU_SREG_TR);
2902 u32 desc_limit;
2903 ulong desc_addr, dr7;
2904
2905 /* FIXME: old_tss_base == ~0 ? */
2906
2907 ret = read_segment_descriptor(ctxt, tss_selector, &next_tss_desc, &desc_addr);
2908 if (ret != X86EMUL_CONTINUE)
2909 return ret;
2910 ret = read_segment_descriptor(ctxt, old_tss_sel, &curr_tss_desc, &desc_addr);
2911 if (ret != X86EMUL_CONTINUE)
2912 return ret;
2913
2914 /* FIXME: check that next_tss_desc is tss */
2915
2916 /*
2917 * Check privileges. The three cases are task switch caused by...
2918 *
2919 * 1. jmp/call/int to task gate: Check against DPL of the task gate
2920 * 2. Exception/IRQ/iret: No check is performed
2921 * 3. jmp/call to TSS/task-gate: No check is performed since the
2922 * hardware checks it before exiting.
2923 */
2924 if (reason == TASK_SWITCH_GATE) {
2925 if (idt_index != -1) {
2926 /* Software interrupts */
2927 struct desc_struct task_gate_desc;
2928 int dpl;
2929
2930 ret = read_interrupt_descriptor(ctxt, idt_index,
2931 &task_gate_desc);
2932 if (ret != X86EMUL_CONTINUE)
2933 return ret;
2934
2935 dpl = task_gate_desc.dpl;
2936 if ((tss_selector & 3) > dpl || ops->cpl(ctxt) > dpl)
2937 return emulate_gp(ctxt, (idt_index << 3) | 0x2);
2938 }
2939 }
2940
2941 desc_limit = desc_limit_scaled(&next_tss_desc);
2942 if (!next_tss_desc.p ||
2943 ((desc_limit < 0x67 && (next_tss_desc.type & 8)) ||
2944 desc_limit < 0x2b)) {
2945 return emulate_ts(ctxt, tss_selector & 0xfffc);
2946 }
2947
2948 if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
2949 curr_tss_desc.type &= ~(1 << 1); /* clear busy flag */
2950 write_segment_descriptor(ctxt, old_tss_sel, &curr_tss_desc);
2951 }
2952
2953 if (reason == TASK_SWITCH_IRET)
2954 ctxt->eflags = ctxt->eflags & ~X86_EFLAGS_NT;
2955
2956 /* set back link to prev task only if NT bit is set in eflags
2957 note that old_tss_sel is not used after this point */
2958 if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
2959 old_tss_sel = 0xffff;
2960
2961 if (next_tss_desc.type & 8)
2962 ret = task_switch_32(ctxt, old_tss_sel, old_tss_base, &next_tss_desc);
2963 else
2964 ret = task_switch_16(ctxt, old_tss_sel,
2965 old_tss_base, &next_tss_desc);
2966 if (ret != X86EMUL_CONTINUE)
2967 return ret;
2968
2969 if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE)
2970 ctxt->eflags = ctxt->eflags | X86_EFLAGS_NT;
2971
2972 if (reason != TASK_SWITCH_IRET) {
2973 next_tss_desc.type |= (1 << 1); /* set busy flag */
2974 write_segment_descriptor(ctxt, tss_selector, &next_tss_desc);
2975 }
2976
2977 ops->set_cr(ctxt, 0, ops->get_cr(ctxt, 0) | X86_CR0_TS);
2978 ops->set_segment(ctxt, tss_selector, &next_tss_desc, 0, VCPU_SREG_TR);
2979
2980 if (has_error_code) {
2981 ctxt->op_bytes = ctxt->ad_bytes = (next_tss_desc.type & 8) ? 4 : 2;
2982 ctxt->lock_prefix = 0;
2983 ctxt->src.val = (unsigned long) error_code;
2984 ret = em_push(ctxt);
2985 }
2986
2987 dr7 = ops->get_dr(ctxt, 7);
2988 ops->set_dr(ctxt, 7, dr7 & ~(DR_LOCAL_ENABLE_MASK | DR_LOCAL_SLOWDOWN));
2989
2990 return ret;
2991 }
2992
emulator_task_switch(struct x86_emulate_ctxt * ctxt,u16 tss_selector,int idt_index,int reason,bool has_error_code,u32 error_code)2993 int emulator_task_switch(struct x86_emulate_ctxt *ctxt,
2994 u16 tss_selector, int idt_index, int reason,
2995 bool has_error_code, u32 error_code)
2996 {
2997 int rc;
2998
2999 invalidate_registers(ctxt);
3000 ctxt->_eip = ctxt->eip;
3001 ctxt->dst.type = OP_NONE;
3002
3003 rc = emulator_do_task_switch(ctxt, tss_selector, idt_index, reason,
3004 has_error_code, error_code);
3005
3006 if (rc == X86EMUL_CONTINUE) {
3007 ctxt->eip = ctxt->_eip;
3008 writeback_registers(ctxt);
3009 }
3010
3011 return (rc == X86EMUL_UNHANDLEABLE) ? EMULATION_FAILED : EMULATION_OK;
3012 }
3013
string_addr_inc(struct x86_emulate_ctxt * ctxt,int reg,struct operand * op)3014 static void string_addr_inc(struct x86_emulate_ctxt *ctxt, int reg,
3015 struct operand *op)
3016 {
3017 int df = (ctxt->eflags & X86_EFLAGS_DF) ? -op->count : op->count;
3018
3019 register_address_increment(ctxt, reg, df * op->bytes);
3020 op->addr.mem.ea = register_address(ctxt, reg);
3021 }
3022
em_das(struct x86_emulate_ctxt * ctxt)3023 static int em_das(struct x86_emulate_ctxt *ctxt)
3024 {
3025 u8 al, old_al;
3026 bool af, cf, old_cf;
3027
3028 cf = ctxt->eflags & X86_EFLAGS_CF;
3029 al = ctxt->dst.val;
3030
3031 old_al = al;
3032 old_cf = cf;
3033 cf = false;
3034 af = ctxt->eflags & X86_EFLAGS_AF;
3035 if ((al & 0x0f) > 9 || af) {
3036 al -= 6;
3037 cf = old_cf | (al >= 250);
3038 af = true;
3039 } else {
3040 af = false;
3041 }
3042 if (old_al > 0x99 || old_cf) {
3043 al -= 0x60;
3044 cf = true;
3045 }
3046
3047 ctxt->dst.val = al;
3048 /* Set PF, ZF, SF */
3049 ctxt->src.type = OP_IMM;
3050 ctxt->src.val = 0;
3051 ctxt->src.bytes = 1;
3052 fastop(ctxt, em_or);
3053 ctxt->eflags &= ~(X86_EFLAGS_AF | X86_EFLAGS_CF);
3054 if (cf)
3055 ctxt->eflags |= X86_EFLAGS_CF;
3056 if (af)
3057 ctxt->eflags |= X86_EFLAGS_AF;
3058 return X86EMUL_CONTINUE;
3059 }
3060
em_aam(struct x86_emulate_ctxt * ctxt)3061 static int em_aam(struct x86_emulate_ctxt *ctxt)
3062 {
3063 u8 al, ah;
3064
3065 if (ctxt->src.val == 0)
3066 return emulate_de(ctxt);
3067
3068 al = ctxt->dst.val & 0xff;
3069 ah = al / ctxt->src.val;
3070 al %= ctxt->src.val;
3071
3072 ctxt->dst.val = (ctxt->dst.val & 0xffff0000) | al | (ah << 8);
3073
3074 /* Set PF, ZF, SF */
3075 ctxt->src.type = OP_IMM;
3076 ctxt->src.val = 0;
3077 ctxt->src.bytes = 1;
3078 fastop(ctxt, em_or);
3079
3080 return X86EMUL_CONTINUE;
3081 }
3082
em_aad(struct x86_emulate_ctxt * ctxt)3083 static int em_aad(struct x86_emulate_ctxt *ctxt)
3084 {
3085 u8 al = ctxt->dst.val & 0xff;
3086 u8 ah = (ctxt->dst.val >> 8) & 0xff;
3087
3088 al = (al + (ah * ctxt->src.val)) & 0xff;
3089
3090 ctxt->dst.val = (ctxt->dst.val & 0xffff0000) | al;
3091
3092 /* Set PF, ZF, SF */
3093 ctxt->src.type = OP_IMM;
3094 ctxt->src.val = 0;
3095 ctxt->src.bytes = 1;
3096 fastop(ctxt, em_or);
3097
3098 return X86EMUL_CONTINUE;
3099 }
3100
em_call(struct x86_emulate_ctxt * ctxt)3101 static int em_call(struct x86_emulate_ctxt *ctxt)
3102 {
3103 int rc;
3104 long rel = ctxt->src.val;
3105
3106 ctxt->src.val = (unsigned long)ctxt->_eip;
3107 rc = jmp_rel(ctxt, rel);
3108 if (rc != X86EMUL_CONTINUE)
3109 return rc;
3110 return em_push(ctxt);
3111 }
3112
em_call_far(struct x86_emulate_ctxt * ctxt)3113 static int em_call_far(struct x86_emulate_ctxt *ctxt)
3114 {
3115 u16 sel, old_cs;
3116 ulong old_eip;
3117 int rc;
3118 struct desc_struct old_desc, new_desc;
3119 const struct x86_emulate_ops *ops = ctxt->ops;
3120 int cpl = ctxt->ops->cpl(ctxt);
3121 enum x86emul_mode prev_mode = ctxt->mode;
3122
3123 old_eip = ctxt->_eip;
3124 ops->get_segment(ctxt, &old_cs, &old_desc, NULL, VCPU_SREG_CS);
3125
3126 memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2);
3127 rc = __load_segment_descriptor(ctxt, sel, VCPU_SREG_CS, cpl,
3128 X86_TRANSFER_CALL_JMP, &new_desc);
3129 if (rc != X86EMUL_CONTINUE)
3130 return rc;
3131
3132 rc = assign_eip_far(ctxt, ctxt->src.val);
3133 if (rc != X86EMUL_CONTINUE)
3134 goto fail;
3135
3136 ctxt->src.val = old_cs;
3137 rc = em_push(ctxt);
3138 if (rc != X86EMUL_CONTINUE)
3139 goto fail;
3140
3141 ctxt->src.val = old_eip;
3142 rc = em_push(ctxt);
3143 /* If we failed, we tainted the memory, but the very least we should
3144 restore cs */
3145 if (rc != X86EMUL_CONTINUE) {
3146 pr_warn_once("faulting far call emulation tainted memory\n");
3147 goto fail;
3148 }
3149 return rc;
3150 fail:
3151 ops->set_segment(ctxt, old_cs, &old_desc, 0, VCPU_SREG_CS);
3152 ctxt->mode = prev_mode;
3153 return rc;
3154
3155 }
3156
em_ret_near_imm(struct x86_emulate_ctxt * ctxt)3157 static int em_ret_near_imm(struct x86_emulate_ctxt *ctxt)
3158 {
3159 int rc;
3160 unsigned long eip = 0;
3161
3162 rc = emulate_pop(ctxt, &eip, ctxt->op_bytes);
3163 if (rc != X86EMUL_CONTINUE)
3164 return rc;
3165 rc = assign_eip_near(ctxt, eip);
3166 if (rc != X86EMUL_CONTINUE)
3167 return rc;
3168 rsp_increment(ctxt, ctxt->src.val);
3169 return X86EMUL_CONTINUE;
3170 }
3171
em_xchg(struct x86_emulate_ctxt * ctxt)3172 static int em_xchg(struct x86_emulate_ctxt *ctxt)
3173 {
3174 /* Write back the register source. */
3175 ctxt->src.val = ctxt->dst.val;
3176 write_register_operand(&ctxt->src);
3177
3178 /* Write back the memory destination with implicit LOCK prefix. */
3179 ctxt->dst.val = ctxt->src.orig_val;
3180 ctxt->lock_prefix = 1;
3181 return X86EMUL_CONTINUE;
3182 }
3183
em_imul_3op(struct x86_emulate_ctxt * ctxt)3184 static int em_imul_3op(struct x86_emulate_ctxt *ctxt)
3185 {
3186 ctxt->dst.val = ctxt->src2.val;
3187 return fastop(ctxt, em_imul);
3188 }
3189
em_cwd(struct x86_emulate_ctxt * ctxt)3190 static int em_cwd(struct x86_emulate_ctxt *ctxt)
3191 {
3192 ctxt->dst.type = OP_REG;
3193 ctxt->dst.bytes = ctxt->src.bytes;
3194 ctxt->dst.addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX);
3195 ctxt->dst.val = ~((ctxt->src.val >> (ctxt->src.bytes * 8 - 1)) - 1);
3196
3197 return X86EMUL_CONTINUE;
3198 }
3199
em_rdpid(struct x86_emulate_ctxt * ctxt)3200 static int em_rdpid(struct x86_emulate_ctxt *ctxt)
3201 {
3202 u64 tsc_aux = 0;
3203
3204 if (!ctxt->ops->guest_has_rdpid(ctxt))
3205 return emulate_ud(ctxt);
3206
3207 ctxt->ops->get_msr(ctxt, MSR_TSC_AUX, &tsc_aux);
3208 ctxt->dst.val = tsc_aux;
3209 return X86EMUL_CONTINUE;
3210 }
3211
em_rdtsc(struct x86_emulate_ctxt * ctxt)3212 static int em_rdtsc(struct x86_emulate_ctxt *ctxt)
3213 {
3214 u64 tsc = 0;
3215
3216 ctxt->ops->get_msr(ctxt, MSR_IA32_TSC, &tsc);
3217 *reg_write(ctxt, VCPU_REGS_RAX) = (u32)tsc;
3218 *reg_write(ctxt, VCPU_REGS_RDX) = tsc >> 32;
3219 return X86EMUL_CONTINUE;
3220 }
3221
em_rdpmc(struct x86_emulate_ctxt * ctxt)3222 static int em_rdpmc(struct x86_emulate_ctxt *ctxt)
3223 {
3224 u64 pmc;
3225
3226 if (ctxt->ops->read_pmc(ctxt, reg_read(ctxt, VCPU_REGS_RCX), &pmc))
3227 return emulate_gp(ctxt, 0);
3228 *reg_write(ctxt, VCPU_REGS_RAX) = (u32)pmc;
3229 *reg_write(ctxt, VCPU_REGS_RDX) = pmc >> 32;
3230 return X86EMUL_CONTINUE;
3231 }
3232
em_mov(struct x86_emulate_ctxt * ctxt)3233 static int em_mov(struct x86_emulate_ctxt *ctxt)
3234 {
3235 memcpy(ctxt->dst.valptr, ctxt->src.valptr, sizeof(ctxt->src.valptr));
3236 return X86EMUL_CONTINUE;
3237 }
3238
em_movbe(struct x86_emulate_ctxt * ctxt)3239 static int em_movbe(struct x86_emulate_ctxt *ctxt)
3240 {
3241 u16 tmp;
3242
3243 if (!ctxt->ops->guest_has_movbe(ctxt))
3244 return emulate_ud(ctxt);
3245
3246 switch (ctxt->op_bytes) {
3247 case 2:
3248 /*
3249 * From MOVBE definition: "...When the operand size is 16 bits,
3250 * the upper word of the destination register remains unchanged
3251 * ..."
3252 *
3253 * Both casting ->valptr and ->val to u16 breaks strict aliasing
3254 * rules so we have to do the operation almost per hand.
3255 */
3256 tmp = (u16)ctxt->src.val;
3257 ctxt->dst.val &= ~0xffffUL;
3258 ctxt->dst.val |= (unsigned long)swab16(tmp);
3259 break;
3260 case 4:
3261 ctxt->dst.val = swab32((u32)ctxt->src.val);
3262 break;
3263 case 8:
3264 ctxt->dst.val = swab64(ctxt->src.val);
3265 break;
3266 default:
3267 BUG();
3268 }
3269 return X86EMUL_CONTINUE;
3270 }
3271
em_cr_write(struct x86_emulate_ctxt * ctxt)3272 static int em_cr_write(struct x86_emulate_ctxt *ctxt)
3273 {
3274 int cr_num = ctxt->modrm_reg;
3275 int r;
3276
3277 if (ctxt->ops->set_cr(ctxt, cr_num, ctxt->src.val))
3278 return emulate_gp(ctxt, 0);
3279
3280 /* Disable writeback. */
3281 ctxt->dst.type = OP_NONE;
3282
3283 if (cr_num == 0) {
3284 /*
3285 * CR0 write might have updated CR0.PE and/or CR0.PG
3286 * which can affect the cpu's execution mode.
3287 */
3288 r = emulator_recalc_and_set_mode(ctxt);
3289 if (r != X86EMUL_CONTINUE)
3290 return r;
3291 }
3292
3293 return X86EMUL_CONTINUE;
3294 }
3295
em_dr_write(struct x86_emulate_ctxt * ctxt)3296 static int em_dr_write(struct x86_emulate_ctxt *ctxt)
3297 {
3298 unsigned long val;
3299
3300 if (ctxt->mode == X86EMUL_MODE_PROT64)
3301 val = ctxt->src.val & ~0ULL;
3302 else
3303 val = ctxt->src.val & ~0U;
3304
3305 /* #UD condition is already handled. */
3306 if (ctxt->ops->set_dr(ctxt, ctxt->modrm_reg, val) < 0)
3307 return emulate_gp(ctxt, 0);
3308
3309 /* Disable writeback. */
3310 ctxt->dst.type = OP_NONE;
3311 return X86EMUL_CONTINUE;
3312 }
3313
em_wrmsr(struct x86_emulate_ctxt * ctxt)3314 static int em_wrmsr(struct x86_emulate_ctxt *ctxt)
3315 {
3316 u64 msr_index = reg_read(ctxt, VCPU_REGS_RCX);
3317 u64 msr_data;
3318 int r;
3319
3320 msr_data = (u32)reg_read(ctxt, VCPU_REGS_RAX)
3321 | ((u64)reg_read(ctxt, VCPU_REGS_RDX) << 32);
3322 r = ctxt->ops->set_msr_with_filter(ctxt, msr_index, msr_data);
3323
3324 if (r == X86EMUL_PROPAGATE_FAULT)
3325 return emulate_gp(ctxt, 0);
3326
3327 return r;
3328 }
3329
em_rdmsr(struct x86_emulate_ctxt * ctxt)3330 static int em_rdmsr(struct x86_emulate_ctxt *ctxt)
3331 {
3332 u64 msr_index = reg_read(ctxt, VCPU_REGS_RCX);
3333 u64 msr_data;
3334 int r;
3335
3336 r = ctxt->ops->get_msr_with_filter(ctxt, msr_index, &msr_data);
3337
3338 if (r == X86EMUL_PROPAGATE_FAULT)
3339 return emulate_gp(ctxt, 0);
3340
3341 if (r == X86EMUL_CONTINUE) {
3342 *reg_write(ctxt, VCPU_REGS_RAX) = (u32)msr_data;
3343 *reg_write(ctxt, VCPU_REGS_RDX) = msr_data >> 32;
3344 }
3345 return r;
3346 }
3347
em_store_sreg(struct x86_emulate_ctxt * ctxt,int segment)3348 static int em_store_sreg(struct x86_emulate_ctxt *ctxt, int segment)
3349 {
3350 if (segment > VCPU_SREG_GS &&
3351 (ctxt->ops->get_cr(ctxt, 4) & X86_CR4_UMIP) &&
3352 ctxt->ops->cpl(ctxt) > 0)
3353 return emulate_gp(ctxt, 0);
3354
3355 ctxt->dst.val = get_segment_selector(ctxt, segment);
3356 if (ctxt->dst.bytes == 4 && ctxt->dst.type == OP_MEM)
3357 ctxt->dst.bytes = 2;
3358 return X86EMUL_CONTINUE;
3359 }
3360
em_mov_rm_sreg(struct x86_emulate_ctxt * ctxt)3361 static int em_mov_rm_sreg(struct x86_emulate_ctxt *ctxt)
3362 {
3363 if (ctxt->modrm_reg > VCPU_SREG_GS)
3364 return emulate_ud(ctxt);
3365
3366 return em_store_sreg(ctxt, ctxt->modrm_reg);
3367 }
3368
em_mov_sreg_rm(struct x86_emulate_ctxt * ctxt)3369 static int em_mov_sreg_rm(struct x86_emulate_ctxt *ctxt)
3370 {
3371 u16 sel = ctxt->src.val;
3372
3373 if (ctxt->modrm_reg == VCPU_SREG_CS || ctxt->modrm_reg > VCPU_SREG_GS)
3374 return emulate_ud(ctxt);
3375
3376 if (ctxt->modrm_reg == VCPU_SREG_SS)
3377 ctxt->interruptibility = KVM_X86_SHADOW_INT_MOV_SS;
3378
3379 /* Disable writeback. */
3380 ctxt->dst.type = OP_NONE;
3381 return load_segment_descriptor(ctxt, sel, ctxt->modrm_reg);
3382 }
3383
em_sldt(struct x86_emulate_ctxt * ctxt)3384 static int em_sldt(struct x86_emulate_ctxt *ctxt)
3385 {
3386 return em_store_sreg(ctxt, VCPU_SREG_LDTR);
3387 }
3388
em_lldt(struct x86_emulate_ctxt * ctxt)3389 static int em_lldt(struct x86_emulate_ctxt *ctxt)
3390 {
3391 u16 sel = ctxt->src.val;
3392
3393 /* Disable writeback. */
3394 ctxt->dst.type = OP_NONE;
3395 return load_segment_descriptor(ctxt, sel, VCPU_SREG_LDTR);
3396 }
3397
em_str(struct x86_emulate_ctxt * ctxt)3398 static int em_str(struct x86_emulate_ctxt *ctxt)
3399 {
3400 return em_store_sreg(ctxt, VCPU_SREG_TR);
3401 }
3402
em_ltr(struct x86_emulate_ctxt * ctxt)3403 static int em_ltr(struct x86_emulate_ctxt *ctxt)
3404 {
3405 u16 sel = ctxt->src.val;
3406
3407 /* Disable writeback. */
3408 ctxt->dst.type = OP_NONE;
3409 return load_segment_descriptor(ctxt, sel, VCPU_SREG_TR);
3410 }
3411
em_invlpg(struct x86_emulate_ctxt * ctxt)3412 static int em_invlpg(struct x86_emulate_ctxt *ctxt)
3413 {
3414 int rc;
3415 ulong linear;
3416 unsigned int max_size;
3417
3418 rc = __linearize(ctxt, ctxt->src.addr.mem, &max_size, 1, ctxt->mode,
3419 &linear, X86EMUL_F_INVLPG);
3420 if (rc == X86EMUL_CONTINUE)
3421 ctxt->ops->invlpg(ctxt, linear);
3422 /* Disable writeback. */
3423 ctxt->dst.type = OP_NONE;
3424 return X86EMUL_CONTINUE;
3425 }
3426
em_clts(struct x86_emulate_ctxt * ctxt)3427 static int em_clts(struct x86_emulate_ctxt *ctxt)
3428 {
3429 ulong cr0;
3430
3431 cr0 = ctxt->ops->get_cr(ctxt, 0);
3432 cr0 &= ~X86_CR0_TS;
3433 ctxt->ops->set_cr(ctxt, 0, cr0);
3434 return X86EMUL_CONTINUE;
3435 }
3436
em_hypercall(struct x86_emulate_ctxt * ctxt)3437 static int em_hypercall(struct x86_emulate_ctxt *ctxt)
3438 {
3439 int rc = ctxt->ops->fix_hypercall(ctxt);
3440
3441 if (rc != X86EMUL_CONTINUE)
3442 return rc;
3443
3444 /* Let the processor re-execute the fixed hypercall */
3445 ctxt->_eip = ctxt->eip;
3446 /* Disable writeback. */
3447 ctxt->dst.type = OP_NONE;
3448 return X86EMUL_CONTINUE;
3449 }
3450
emulate_store_desc_ptr(struct x86_emulate_ctxt * ctxt,void (* get)(struct x86_emulate_ctxt * ctxt,struct desc_ptr * ptr))3451 static int emulate_store_desc_ptr(struct x86_emulate_ctxt *ctxt,
3452 void (*get)(struct x86_emulate_ctxt *ctxt,
3453 struct desc_ptr *ptr))
3454 {
3455 struct desc_ptr desc_ptr;
3456
3457 if ((ctxt->ops->get_cr(ctxt, 4) & X86_CR4_UMIP) &&
3458 ctxt->ops->cpl(ctxt) > 0)
3459 return emulate_gp(ctxt, 0);
3460
3461 if (ctxt->mode == X86EMUL_MODE_PROT64)
3462 ctxt->op_bytes = 8;
3463 get(ctxt, &desc_ptr);
3464 if (ctxt->op_bytes == 2) {
3465 ctxt->op_bytes = 4;
3466 desc_ptr.address &= 0x00ffffff;
3467 }
3468 /* Disable writeback. */
3469 ctxt->dst.type = OP_NONE;
3470 return segmented_write_std(ctxt, ctxt->dst.addr.mem,
3471 &desc_ptr, 2 + ctxt->op_bytes);
3472 }
3473
em_sgdt(struct x86_emulate_ctxt * ctxt)3474 static int em_sgdt(struct x86_emulate_ctxt *ctxt)
3475 {
3476 return emulate_store_desc_ptr(ctxt, ctxt->ops->get_gdt);
3477 }
3478
em_sidt(struct x86_emulate_ctxt * ctxt)3479 static int em_sidt(struct x86_emulate_ctxt *ctxt)
3480 {
3481 return emulate_store_desc_ptr(ctxt, ctxt->ops->get_idt);
3482 }
3483
em_lgdt_lidt(struct x86_emulate_ctxt * ctxt,bool lgdt)3484 static int em_lgdt_lidt(struct x86_emulate_ctxt *ctxt, bool lgdt)
3485 {
3486 struct desc_ptr desc_ptr;
3487 int rc;
3488
3489 if (ctxt->mode == X86EMUL_MODE_PROT64)
3490 ctxt->op_bytes = 8;
3491 rc = read_descriptor(ctxt, ctxt->src.addr.mem,
3492 &desc_ptr.size, &desc_ptr.address,
3493 ctxt->op_bytes);
3494 if (rc != X86EMUL_CONTINUE)
3495 return rc;
3496 if (ctxt->mode == X86EMUL_MODE_PROT64 &&
3497 emul_is_noncanonical_address(desc_ptr.address, ctxt))
3498 return emulate_gp(ctxt, 0);
3499 if (lgdt)
3500 ctxt->ops->set_gdt(ctxt, &desc_ptr);
3501 else
3502 ctxt->ops->set_idt(ctxt, &desc_ptr);
3503 /* Disable writeback. */
3504 ctxt->dst.type = OP_NONE;
3505 return X86EMUL_CONTINUE;
3506 }
3507
em_lgdt(struct x86_emulate_ctxt * ctxt)3508 static int em_lgdt(struct x86_emulate_ctxt *ctxt)
3509 {
3510 return em_lgdt_lidt(ctxt, true);
3511 }
3512
em_lidt(struct x86_emulate_ctxt * ctxt)3513 static int em_lidt(struct x86_emulate_ctxt *ctxt)
3514 {
3515 return em_lgdt_lidt(ctxt, false);
3516 }
3517
em_smsw(struct x86_emulate_ctxt * ctxt)3518 static int em_smsw(struct x86_emulate_ctxt *ctxt)
3519 {
3520 if ((ctxt->ops->get_cr(ctxt, 4) & X86_CR4_UMIP) &&
3521 ctxt->ops->cpl(ctxt) > 0)
3522 return emulate_gp(ctxt, 0);
3523
3524 if (ctxt->dst.type == OP_MEM)
3525 ctxt->dst.bytes = 2;
3526 ctxt->dst.val = ctxt->ops->get_cr(ctxt, 0);
3527 return X86EMUL_CONTINUE;
3528 }
3529
em_lmsw(struct x86_emulate_ctxt * ctxt)3530 static int em_lmsw(struct x86_emulate_ctxt *ctxt)
3531 {
3532 ctxt->ops->set_cr(ctxt, 0, (ctxt->ops->get_cr(ctxt, 0) & ~0x0eul)
3533 | (ctxt->src.val & 0x0f));
3534 ctxt->dst.type = OP_NONE;
3535 return X86EMUL_CONTINUE;
3536 }
3537
em_loop(struct x86_emulate_ctxt * ctxt)3538 static int em_loop(struct x86_emulate_ctxt *ctxt)
3539 {
3540 int rc = X86EMUL_CONTINUE;
3541
3542 register_address_increment(ctxt, VCPU_REGS_RCX, -1);
3543 if ((address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) != 0) &&
3544 (ctxt->b == 0xe2 || test_cc(ctxt->b ^ 0x5, ctxt->eflags)))
3545 rc = jmp_rel(ctxt, ctxt->src.val);
3546
3547 return rc;
3548 }
3549
em_jcxz(struct x86_emulate_ctxt * ctxt)3550 static int em_jcxz(struct x86_emulate_ctxt *ctxt)
3551 {
3552 int rc = X86EMUL_CONTINUE;
3553
3554 if (address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) == 0)
3555 rc = jmp_rel(ctxt, ctxt->src.val);
3556
3557 return rc;
3558 }
3559
em_in(struct x86_emulate_ctxt * ctxt)3560 static int em_in(struct x86_emulate_ctxt *ctxt)
3561 {
3562 if (!pio_in_emulated(ctxt, ctxt->dst.bytes, ctxt->src.val,
3563 &ctxt->dst.val))
3564 return X86EMUL_IO_NEEDED;
3565
3566 return X86EMUL_CONTINUE;
3567 }
3568
em_out(struct x86_emulate_ctxt * ctxt)3569 static int em_out(struct x86_emulate_ctxt *ctxt)
3570 {
3571 ctxt->ops->pio_out_emulated(ctxt, ctxt->src.bytes, ctxt->dst.val,
3572 &ctxt->src.val, 1);
3573 /* Disable writeback. */
3574 ctxt->dst.type = OP_NONE;
3575 return X86EMUL_CONTINUE;
3576 }
3577
em_cli(struct x86_emulate_ctxt * ctxt)3578 static int em_cli(struct x86_emulate_ctxt *ctxt)
3579 {
3580 if (emulator_bad_iopl(ctxt))
3581 return emulate_gp(ctxt, 0);
3582
3583 ctxt->eflags &= ~X86_EFLAGS_IF;
3584 return X86EMUL_CONTINUE;
3585 }
3586
em_sti(struct x86_emulate_ctxt * ctxt)3587 static int em_sti(struct x86_emulate_ctxt *ctxt)
3588 {
3589 if (emulator_bad_iopl(ctxt))
3590 return emulate_gp(ctxt, 0);
3591
3592 ctxt->interruptibility = KVM_X86_SHADOW_INT_STI;
3593 ctxt->eflags |= X86_EFLAGS_IF;
3594 return X86EMUL_CONTINUE;
3595 }
3596
em_cpuid(struct x86_emulate_ctxt * ctxt)3597 static int em_cpuid(struct x86_emulate_ctxt *ctxt)
3598 {
3599 u32 eax, ebx, ecx, edx;
3600 u64 msr = 0;
3601
3602 ctxt->ops->get_msr(ctxt, MSR_MISC_FEATURES_ENABLES, &msr);
3603 if (msr & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3604 ctxt->ops->cpl(ctxt)) {
3605 return emulate_gp(ctxt, 0);
3606 }
3607
3608 eax = reg_read(ctxt, VCPU_REGS_RAX);
3609 ecx = reg_read(ctxt, VCPU_REGS_RCX);
3610 ctxt->ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx, false);
3611 *reg_write(ctxt, VCPU_REGS_RAX) = eax;
3612 *reg_write(ctxt, VCPU_REGS_RBX) = ebx;
3613 *reg_write(ctxt, VCPU_REGS_RCX) = ecx;
3614 *reg_write(ctxt, VCPU_REGS_RDX) = edx;
3615 return X86EMUL_CONTINUE;
3616 }
3617
em_sahf(struct x86_emulate_ctxt * ctxt)3618 static int em_sahf(struct x86_emulate_ctxt *ctxt)
3619 {
3620 u32 flags;
3621
3622 flags = X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
3623 X86_EFLAGS_SF;
3624 flags &= *reg_rmw(ctxt, VCPU_REGS_RAX) >> 8;
3625
3626 ctxt->eflags &= ~0xffUL;
3627 ctxt->eflags |= flags | X86_EFLAGS_FIXED;
3628 return X86EMUL_CONTINUE;
3629 }
3630
em_lahf(struct x86_emulate_ctxt * ctxt)3631 static int em_lahf(struct x86_emulate_ctxt *ctxt)
3632 {
3633 *reg_rmw(ctxt, VCPU_REGS_RAX) &= ~0xff00UL;
3634 *reg_rmw(ctxt, VCPU_REGS_RAX) |= (ctxt->eflags & 0xff) << 8;
3635 return X86EMUL_CONTINUE;
3636 }
3637
em_bswap(struct x86_emulate_ctxt * ctxt)3638 static int em_bswap(struct x86_emulate_ctxt *ctxt)
3639 {
3640 switch (ctxt->op_bytes) {
3641 #ifdef CONFIG_X86_64
3642 case 8:
3643 asm("bswap %0" : "+r"(ctxt->dst.val));
3644 break;
3645 #endif
3646 default:
3647 asm("bswap %0" : "+r"(*(u32 *)&ctxt->dst.val));
3648 break;
3649 }
3650 return X86EMUL_CONTINUE;
3651 }
3652
em_clflush(struct x86_emulate_ctxt * ctxt)3653 static int em_clflush(struct x86_emulate_ctxt *ctxt)
3654 {
3655 /* emulating clflush regardless of cpuid */
3656 return X86EMUL_CONTINUE;
3657 }
3658
em_clflushopt(struct x86_emulate_ctxt * ctxt)3659 static int em_clflushopt(struct x86_emulate_ctxt *ctxt)
3660 {
3661 /* emulating clflushopt regardless of cpuid */
3662 return X86EMUL_CONTINUE;
3663 }
3664
em_movsxd(struct x86_emulate_ctxt * ctxt)3665 static int em_movsxd(struct x86_emulate_ctxt *ctxt)
3666 {
3667 ctxt->dst.val = (s32) ctxt->src.val;
3668 return X86EMUL_CONTINUE;
3669 }
3670
check_fxsr(struct x86_emulate_ctxt * ctxt)3671 static int check_fxsr(struct x86_emulate_ctxt *ctxt)
3672 {
3673 if (!ctxt->ops->guest_has_fxsr(ctxt))
3674 return emulate_ud(ctxt);
3675
3676 if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM))
3677 return emulate_nm(ctxt);
3678
3679 /*
3680 * Don't emulate a case that should never be hit, instead of working
3681 * around a lack of fxsave64/fxrstor64 on old compilers.
3682 */
3683 if (ctxt->mode >= X86EMUL_MODE_PROT64)
3684 return X86EMUL_UNHANDLEABLE;
3685
3686 return X86EMUL_CONTINUE;
3687 }
3688
3689 /*
3690 * Hardware doesn't save and restore XMM 0-7 without CR4.OSFXSR, but does save
3691 * and restore MXCSR.
3692 */
__fxstate_size(int nregs)3693 static size_t __fxstate_size(int nregs)
3694 {
3695 return offsetof(struct fxregs_state, xmm_space[0]) + nregs * 16;
3696 }
3697
fxstate_size(struct x86_emulate_ctxt * ctxt)3698 static inline size_t fxstate_size(struct x86_emulate_ctxt *ctxt)
3699 {
3700 bool cr4_osfxsr;
3701 if (ctxt->mode == X86EMUL_MODE_PROT64)
3702 return __fxstate_size(16);
3703
3704 cr4_osfxsr = ctxt->ops->get_cr(ctxt, 4) & X86_CR4_OSFXSR;
3705 return __fxstate_size(cr4_osfxsr ? 8 : 0);
3706 }
3707
3708 /*
3709 * FXSAVE and FXRSTOR have 4 different formats depending on execution mode,
3710 * 1) 16 bit mode
3711 * 2) 32 bit mode
3712 * - like (1), but FIP and FDP (foo) are only 16 bit. At least Intel CPUs
3713 * preserve whole 32 bit values, though, so (1) and (2) are the same wrt.
3714 * save and restore
3715 * 3) 64-bit mode with REX.W prefix
3716 * - like (2), but XMM 8-15 are being saved and restored
3717 * 4) 64-bit mode without REX.W prefix
3718 * - like (3), but FIP and FDP are 64 bit
3719 *
3720 * Emulation uses (3) for (1) and (2) and preserves XMM 8-15 to reach the
3721 * desired result. (4) is not emulated.
3722 *
3723 * Note: Guest and host CPUID.(EAX=07H,ECX=0H):EBX[bit 13] (deprecate FPU CS
3724 * and FPU DS) should match.
3725 */
em_fxsave(struct x86_emulate_ctxt * ctxt)3726 static int em_fxsave(struct x86_emulate_ctxt *ctxt)
3727 {
3728 struct fxregs_state fx_state;
3729 int rc;
3730
3731 rc = check_fxsr(ctxt);
3732 if (rc != X86EMUL_CONTINUE)
3733 return rc;
3734
3735 kvm_fpu_get();
3736
3737 rc = asm_safe("fxsave %[fx]", , [fx] "+m"(fx_state));
3738
3739 kvm_fpu_put();
3740
3741 if (rc != X86EMUL_CONTINUE)
3742 return rc;
3743
3744 return segmented_write_std(ctxt, ctxt->memop.addr.mem, &fx_state,
3745 fxstate_size(ctxt));
3746 }
3747
3748 /*
3749 * FXRSTOR might restore XMM registers not provided by the guest. Fill
3750 * in the host registers (via FXSAVE) instead, so they won't be modified.
3751 * (preemption has to stay disabled until FXRSTOR).
3752 *
3753 * Use noinline to keep the stack for other functions called by callers small.
3754 */
fxregs_fixup(struct fxregs_state * fx_state,const size_t used_size)3755 static noinline int fxregs_fixup(struct fxregs_state *fx_state,
3756 const size_t used_size)
3757 {
3758 struct fxregs_state fx_tmp;
3759 int rc;
3760
3761 rc = asm_safe("fxsave %[fx]", , [fx] "+m"(fx_tmp));
3762 memcpy((void *)fx_state + used_size, (void *)&fx_tmp + used_size,
3763 __fxstate_size(16) - used_size);
3764
3765 return rc;
3766 }
3767
em_fxrstor(struct x86_emulate_ctxt * ctxt)3768 static int em_fxrstor(struct x86_emulate_ctxt *ctxt)
3769 {
3770 struct fxregs_state fx_state;
3771 int rc;
3772 size_t size;
3773
3774 rc = check_fxsr(ctxt);
3775 if (rc != X86EMUL_CONTINUE)
3776 return rc;
3777
3778 size = fxstate_size(ctxt);
3779 rc = segmented_read_std(ctxt, ctxt->memop.addr.mem, &fx_state, size);
3780 if (rc != X86EMUL_CONTINUE)
3781 return rc;
3782
3783 kvm_fpu_get();
3784
3785 if (size < __fxstate_size(16)) {
3786 rc = fxregs_fixup(&fx_state, size);
3787 if (rc != X86EMUL_CONTINUE)
3788 goto out;
3789 }
3790
3791 if (fx_state.mxcsr >> 16) {
3792 rc = emulate_gp(ctxt, 0);
3793 goto out;
3794 }
3795
3796 if (rc == X86EMUL_CONTINUE)
3797 rc = asm_safe("fxrstor %[fx]", : [fx] "m"(fx_state));
3798
3799 out:
3800 kvm_fpu_put();
3801
3802 return rc;
3803 }
3804
em_xsetbv(struct x86_emulate_ctxt * ctxt)3805 static int em_xsetbv(struct x86_emulate_ctxt *ctxt)
3806 {
3807 u32 eax, ecx, edx;
3808
3809 if (!(ctxt->ops->get_cr(ctxt, 4) & X86_CR4_OSXSAVE))
3810 return emulate_ud(ctxt);
3811
3812 eax = reg_read(ctxt, VCPU_REGS_RAX);
3813 edx = reg_read(ctxt, VCPU_REGS_RDX);
3814 ecx = reg_read(ctxt, VCPU_REGS_RCX);
3815
3816 if (ctxt->ops->set_xcr(ctxt, ecx, ((u64)edx << 32) | eax))
3817 return emulate_gp(ctxt, 0);
3818
3819 return X86EMUL_CONTINUE;
3820 }
3821
valid_cr(int nr)3822 static bool valid_cr(int nr)
3823 {
3824 switch (nr) {
3825 case 0:
3826 case 2 ... 4:
3827 case 8:
3828 return true;
3829 default:
3830 return false;
3831 }
3832 }
3833
check_cr_access(struct x86_emulate_ctxt * ctxt)3834 static int check_cr_access(struct x86_emulate_ctxt *ctxt)
3835 {
3836 if (!valid_cr(ctxt->modrm_reg))
3837 return emulate_ud(ctxt);
3838
3839 return X86EMUL_CONTINUE;
3840 }
3841
check_dr_read(struct x86_emulate_ctxt * ctxt)3842 static int check_dr_read(struct x86_emulate_ctxt *ctxt)
3843 {
3844 int dr = ctxt->modrm_reg;
3845 u64 cr4;
3846
3847 if (dr > 7)
3848 return emulate_ud(ctxt);
3849
3850 cr4 = ctxt->ops->get_cr(ctxt, 4);
3851 if ((cr4 & X86_CR4_DE) && (dr == 4 || dr == 5))
3852 return emulate_ud(ctxt);
3853
3854 if (ctxt->ops->get_dr(ctxt, 7) & DR7_GD) {
3855 ulong dr6;
3856
3857 dr6 = ctxt->ops->get_dr(ctxt, 6);
3858 dr6 &= ~DR_TRAP_BITS;
3859 dr6 |= DR6_BD | DR6_ACTIVE_LOW;
3860 ctxt->ops->set_dr(ctxt, 6, dr6);
3861 return emulate_db(ctxt);
3862 }
3863
3864 return X86EMUL_CONTINUE;
3865 }
3866
check_dr_write(struct x86_emulate_ctxt * ctxt)3867 static int check_dr_write(struct x86_emulate_ctxt *ctxt)
3868 {
3869 u64 new_val = ctxt->src.val64;
3870 int dr = ctxt->modrm_reg;
3871
3872 if ((dr == 6 || dr == 7) && (new_val & 0xffffffff00000000ULL))
3873 return emulate_gp(ctxt, 0);
3874
3875 return check_dr_read(ctxt);
3876 }
3877
check_svme(struct x86_emulate_ctxt * ctxt)3878 static int check_svme(struct x86_emulate_ctxt *ctxt)
3879 {
3880 u64 efer = 0;
3881
3882 ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
3883
3884 if (!(efer & EFER_SVME))
3885 return emulate_ud(ctxt);
3886
3887 return X86EMUL_CONTINUE;
3888 }
3889
check_svme_pa(struct x86_emulate_ctxt * ctxt)3890 static int check_svme_pa(struct x86_emulate_ctxt *ctxt)
3891 {
3892 u64 rax = reg_read(ctxt, VCPU_REGS_RAX);
3893
3894 /* Valid physical address? */
3895 if (rax & 0xffff000000000000ULL)
3896 return emulate_gp(ctxt, 0);
3897
3898 return check_svme(ctxt);
3899 }
3900
check_rdtsc(struct x86_emulate_ctxt * ctxt)3901 static int check_rdtsc(struct x86_emulate_ctxt *ctxt)
3902 {
3903 u64 cr4 = ctxt->ops->get_cr(ctxt, 4);
3904
3905 if (cr4 & X86_CR4_TSD && ctxt->ops->cpl(ctxt))
3906 return emulate_gp(ctxt, 0);
3907
3908 return X86EMUL_CONTINUE;
3909 }
3910
check_rdpmc(struct x86_emulate_ctxt * ctxt)3911 static int check_rdpmc(struct x86_emulate_ctxt *ctxt)
3912 {
3913 u64 cr4 = ctxt->ops->get_cr(ctxt, 4);
3914 u64 rcx = reg_read(ctxt, VCPU_REGS_RCX);
3915
3916 /*
3917 * VMware allows access to these Pseduo-PMCs even when read via RDPMC
3918 * in Ring3 when CR4.PCE=0.
3919 */
3920 if (enable_vmware_backdoor && is_vmware_backdoor_pmc(rcx))
3921 return X86EMUL_CONTINUE;
3922
3923 /*
3924 * If CR4.PCE is set, the SDM requires CPL=0 or CR0.PE=0. The CR0.PE
3925 * check however is unnecessary because CPL is always 0 outside
3926 * protected mode.
3927 */
3928 if ((!(cr4 & X86_CR4_PCE) && ctxt->ops->cpl(ctxt)) ||
3929 ctxt->ops->check_rdpmc_early(ctxt, rcx))
3930 return emulate_gp(ctxt, 0);
3931
3932 return X86EMUL_CONTINUE;
3933 }
3934
check_perm_in(struct x86_emulate_ctxt * ctxt)3935 static int check_perm_in(struct x86_emulate_ctxt *ctxt)
3936 {
3937 ctxt->dst.bytes = min(ctxt->dst.bytes, 4u);
3938 if (!emulator_io_permitted(ctxt, ctxt->src.val, ctxt->dst.bytes))
3939 return emulate_gp(ctxt, 0);
3940
3941 return X86EMUL_CONTINUE;
3942 }
3943
check_perm_out(struct x86_emulate_ctxt * ctxt)3944 static int check_perm_out(struct x86_emulate_ctxt *ctxt)
3945 {
3946 ctxt->src.bytes = min(ctxt->src.bytes, 4u);
3947 if (!emulator_io_permitted(ctxt, ctxt->dst.val, ctxt->src.bytes))
3948 return emulate_gp(ctxt, 0);
3949
3950 return X86EMUL_CONTINUE;
3951 }
3952
3953 #define D(_y) { .flags = (_y) }
3954 #define DI(_y, _i) { .flags = (_y)|Intercept, .intercept = x86_intercept_##_i }
3955 #define DIP(_y, _i, _p) { .flags = (_y)|Intercept|CheckPerm, \
3956 .intercept = x86_intercept_##_i, .check_perm = (_p) }
3957 #define N D(NotImpl)
3958 #define EXT(_f, _e) { .flags = ((_f) | RMExt), .u.group = (_e) }
3959 #define G(_f, _g) { .flags = ((_f) | Group | ModRM), .u.group = (_g) }
3960 #define GD(_f, _g) { .flags = ((_f) | GroupDual | ModRM), .u.gdual = (_g) }
3961 #define ID(_f, _i) { .flags = ((_f) | InstrDual | ModRM), .u.idual = (_i) }
3962 #define MD(_f, _m) { .flags = ((_f) | ModeDual), .u.mdual = (_m) }
3963 #define E(_f, _e) { .flags = ((_f) | Escape | ModRM), .u.esc = (_e) }
3964 #define I(_f, _e) { .flags = (_f), .u.execute = (_e) }
3965 #define F(_f, _e) { .flags = (_f) | Fastop, .u.fastop = (_e) }
3966 #define II(_f, _e, _i) \
3967 { .flags = (_f)|Intercept, .u.execute = (_e), .intercept = x86_intercept_##_i }
3968 #define IIP(_f, _e, _i, _p) \
3969 { .flags = (_f)|Intercept|CheckPerm, .u.execute = (_e), \
3970 .intercept = x86_intercept_##_i, .check_perm = (_p) }
3971 #define GP(_f, _g) { .flags = ((_f) | Prefix), .u.gprefix = (_g) }
3972
3973 #define D2bv(_f) D((_f) | ByteOp), D(_f)
3974 #define D2bvIP(_f, _i, _p) DIP((_f) | ByteOp, _i, _p), DIP(_f, _i, _p)
3975 #define I2bv(_f, _e) I((_f) | ByteOp, _e), I(_f, _e)
3976 #define F2bv(_f, _e) F((_f) | ByteOp, _e), F(_f, _e)
3977 #define I2bvIP(_f, _e, _i, _p) \
3978 IIP((_f) | ByteOp, _e, _i, _p), IIP(_f, _e, _i, _p)
3979
3980 #define F6ALU(_f, _e) F2bv((_f) | DstMem | SrcReg | ModRM, _e), \
3981 F2bv(((_f) | DstReg | SrcMem | ModRM) & ~Lock, _e), \
3982 F2bv(((_f) & ~Lock) | DstAcc | SrcImm, _e)
3983
3984 static const struct opcode group7_rm0[] = {
3985 N,
3986 I(SrcNone | Priv | EmulateOnUD, em_hypercall),
3987 N, N, N, N, N, N,
3988 };
3989
3990 static const struct opcode group7_rm1[] = {
3991 DI(SrcNone | Priv, monitor),
3992 DI(SrcNone | Priv, mwait),
3993 N, N, N, N, N, N,
3994 };
3995
3996 static const struct opcode group7_rm2[] = {
3997 N,
3998 II(ImplicitOps | Priv, em_xsetbv, xsetbv),
3999 N, N, N, N, N, N,
4000 };
4001
4002 static const struct opcode group7_rm3[] = {
4003 DIP(SrcNone | Prot | Priv, vmrun, check_svme_pa),
4004 II(SrcNone | Prot | EmulateOnUD, em_hypercall, vmmcall),
4005 DIP(SrcNone | Prot | Priv, vmload, check_svme_pa),
4006 DIP(SrcNone | Prot | Priv, vmsave, check_svme_pa),
4007 DIP(SrcNone | Prot | Priv, stgi, check_svme),
4008 DIP(SrcNone | Prot | Priv, clgi, check_svme),
4009 DIP(SrcNone | Prot | Priv, skinit, check_svme),
4010 DIP(SrcNone | Prot | Priv, invlpga, check_svme),
4011 };
4012
4013 static const struct opcode group7_rm7[] = {
4014 N,
4015 DIP(SrcNone, rdtscp, check_rdtsc),
4016 N, N, N, N, N, N,
4017 };
4018
4019 static const struct opcode group1[] = {
4020 F(Lock, em_add),
4021 F(Lock | PageTable, em_or),
4022 F(Lock, em_adc),
4023 F(Lock, em_sbb),
4024 F(Lock | PageTable, em_and),
4025 F(Lock, em_sub),
4026 F(Lock, em_xor),
4027 F(NoWrite, em_cmp),
4028 };
4029
4030 static const struct opcode group1A[] = {
4031 I(DstMem | SrcNone | Mov | Stack | IncSP | TwoMemOp, em_pop), N, N, N, N, N, N, N,
4032 };
4033
4034 static const struct opcode group2[] = {
4035 F(DstMem | ModRM, em_rol),
4036 F(DstMem | ModRM, em_ror),
4037 F(DstMem | ModRM, em_rcl),
4038 F(DstMem | ModRM, em_rcr),
4039 F(DstMem | ModRM, em_shl),
4040 F(DstMem | ModRM, em_shr),
4041 F(DstMem | ModRM, em_shl),
4042 F(DstMem | ModRM, em_sar),
4043 };
4044
4045 static const struct opcode group3[] = {
4046 F(DstMem | SrcImm | NoWrite, em_test),
4047 F(DstMem | SrcImm | NoWrite, em_test),
4048 F(DstMem | SrcNone | Lock, em_not),
4049 F(DstMem | SrcNone | Lock, em_neg),
4050 F(DstXacc | Src2Mem, em_mul_ex),
4051 F(DstXacc | Src2Mem, em_imul_ex),
4052 F(DstXacc | Src2Mem, em_div_ex),
4053 F(DstXacc | Src2Mem, em_idiv_ex),
4054 };
4055
4056 static const struct opcode group4[] = {
4057 F(ByteOp | DstMem | SrcNone | Lock, em_inc),
4058 F(ByteOp | DstMem | SrcNone | Lock, em_dec),
4059 N, N, N, N, N, N,
4060 };
4061
4062 static const struct opcode group5[] = {
4063 F(DstMem | SrcNone | Lock, em_inc),
4064 F(DstMem | SrcNone | Lock, em_dec),
4065 I(SrcMem | NearBranch | IsBranch, em_call_near_abs),
4066 I(SrcMemFAddr | ImplicitOps | IsBranch, em_call_far),
4067 I(SrcMem | NearBranch | IsBranch, em_jmp_abs),
4068 I(SrcMemFAddr | ImplicitOps | IsBranch, em_jmp_far),
4069 I(SrcMem | Stack | TwoMemOp, em_push), D(Undefined),
4070 };
4071
4072 static const struct opcode group6[] = {
4073 II(Prot | DstMem, em_sldt, sldt),
4074 II(Prot | DstMem, em_str, str),
4075 II(Prot | Priv | SrcMem16, em_lldt, lldt),
4076 II(Prot | Priv | SrcMem16, em_ltr, ltr),
4077 N, N, N, N,
4078 };
4079
4080 static const struct group_dual group7 = { {
4081 II(Mov | DstMem, em_sgdt, sgdt),
4082 II(Mov | DstMem, em_sidt, sidt),
4083 II(SrcMem | Priv, em_lgdt, lgdt),
4084 II(SrcMem | Priv, em_lidt, lidt),
4085 II(SrcNone | DstMem | Mov, em_smsw, smsw), N,
4086 II(SrcMem16 | Mov | Priv, em_lmsw, lmsw),
4087 II(SrcMem | ByteOp | Priv | NoAccess, em_invlpg, invlpg),
4088 }, {
4089 EXT(0, group7_rm0),
4090 EXT(0, group7_rm1),
4091 EXT(0, group7_rm2),
4092 EXT(0, group7_rm3),
4093 II(SrcNone | DstMem | Mov, em_smsw, smsw), N,
4094 II(SrcMem16 | Mov | Priv, em_lmsw, lmsw),
4095 EXT(0, group7_rm7),
4096 } };
4097
4098 static const struct opcode group8[] = {
4099 N, N, N, N,
4100 F(DstMem | SrcImmByte | NoWrite, em_bt),
4101 F(DstMem | SrcImmByte | Lock | PageTable, em_bts),
4102 F(DstMem | SrcImmByte | Lock, em_btr),
4103 F(DstMem | SrcImmByte | Lock | PageTable, em_btc),
4104 };
4105
4106 /*
4107 * The "memory" destination is actually always a register, since we come
4108 * from the register case of group9.
4109 */
4110 static const struct gprefix pfx_0f_c7_7 = {
4111 N, N, N, II(DstMem | ModRM | Op3264 | EmulateOnUD, em_rdpid, rdpid),
4112 };
4113
4114
4115 static const struct group_dual group9 = { {
4116 N, I(DstMem64 | Lock | PageTable, em_cmpxchg8b), N, N, N, N, N, N,
4117 }, {
4118 N, N, N, N, N, N, N,
4119 GP(0, &pfx_0f_c7_7),
4120 } };
4121
4122 static const struct opcode group11[] = {
4123 I(DstMem | SrcImm | Mov | PageTable, em_mov),
4124 X7(D(Undefined)),
4125 };
4126
4127 static const struct gprefix pfx_0f_ae_7 = {
4128 I(SrcMem | ByteOp, em_clflush), I(SrcMem | ByteOp, em_clflushopt), N, N,
4129 };
4130
4131 static const struct group_dual group15 = { {
4132 I(ModRM | Aligned16, em_fxsave),
4133 I(ModRM | Aligned16, em_fxrstor),
4134 N, N, N, N, N, GP(0, &pfx_0f_ae_7),
4135 }, {
4136 N, N, N, N, N, N, N, N,
4137 } };
4138
4139 static const struct gprefix pfx_0f_6f_0f_7f = {
4140 I(Mmx, em_mov), I(Sse | Aligned, em_mov), N, I(Sse | Unaligned, em_mov),
4141 };
4142
4143 static const struct instr_dual instr_dual_0f_2b = {
4144 I(0, em_mov), N
4145 };
4146
4147 static const struct gprefix pfx_0f_2b = {
4148 ID(0, &instr_dual_0f_2b), ID(0, &instr_dual_0f_2b), N, N,
4149 };
4150
4151 static const struct gprefix pfx_0f_10_0f_11 = {
4152 I(Unaligned, em_mov), I(Unaligned, em_mov), N, N,
4153 };
4154
4155 static const struct gprefix pfx_0f_28_0f_29 = {
4156 I(Aligned, em_mov), I(Aligned, em_mov), N, N,
4157 };
4158
4159 static const struct gprefix pfx_0f_e7 = {
4160 N, I(Sse, em_mov), N, N,
4161 };
4162
4163 static const struct escape escape_d9 = { {
4164 N, N, N, N, N, N, N, I(DstMem16 | Mov, em_fnstcw),
4165 }, {
4166 /* 0xC0 - 0xC7 */
4167 N, N, N, N, N, N, N, N,
4168 /* 0xC8 - 0xCF */
4169 N, N, N, N, N, N, N, N,
4170 /* 0xD0 - 0xC7 */
4171 N, N, N, N, N, N, N, N,
4172 /* 0xD8 - 0xDF */
4173 N, N, N, N, N, N, N, N,
4174 /* 0xE0 - 0xE7 */
4175 N, N, N, N, N, N, N, N,
4176 /* 0xE8 - 0xEF */
4177 N, N, N, N, N, N, N, N,
4178 /* 0xF0 - 0xF7 */
4179 N, N, N, N, N, N, N, N,
4180 /* 0xF8 - 0xFF */
4181 N, N, N, N, N, N, N, N,
4182 } };
4183
4184 static const struct escape escape_db = { {
4185 N, N, N, N, N, N, N, N,
4186 }, {
4187 /* 0xC0 - 0xC7 */
4188 N, N, N, N, N, N, N, N,
4189 /* 0xC8 - 0xCF */
4190 N, N, N, N, N, N, N, N,
4191 /* 0xD0 - 0xC7 */
4192 N, N, N, N, N, N, N, N,
4193 /* 0xD8 - 0xDF */
4194 N, N, N, N, N, N, N, N,
4195 /* 0xE0 - 0xE7 */
4196 N, N, N, I(ImplicitOps, em_fninit), N, N, N, N,
4197 /* 0xE8 - 0xEF */
4198 N, N, N, N, N, N, N, N,
4199 /* 0xF0 - 0xF7 */
4200 N, N, N, N, N, N, N, N,
4201 /* 0xF8 - 0xFF */
4202 N, N, N, N, N, N, N, N,
4203 } };
4204
4205 static const struct escape escape_dd = { {
4206 N, N, N, N, N, N, N, I(DstMem16 | Mov, em_fnstsw),
4207 }, {
4208 /* 0xC0 - 0xC7 */
4209 N, N, N, N, N, N, N, N,
4210 /* 0xC8 - 0xCF */
4211 N, N, N, N, N, N, N, N,
4212 /* 0xD0 - 0xC7 */
4213 N, N, N, N, N, N, N, N,
4214 /* 0xD8 - 0xDF */
4215 N, N, N, N, N, N, N, N,
4216 /* 0xE0 - 0xE7 */
4217 N, N, N, N, N, N, N, N,
4218 /* 0xE8 - 0xEF */
4219 N, N, N, N, N, N, N, N,
4220 /* 0xF0 - 0xF7 */
4221 N, N, N, N, N, N, N, N,
4222 /* 0xF8 - 0xFF */
4223 N, N, N, N, N, N, N, N,
4224 } };
4225
4226 static const struct instr_dual instr_dual_0f_c3 = {
4227 I(DstMem | SrcReg | ModRM | No16 | Mov, em_mov), N
4228 };
4229
4230 static const struct mode_dual mode_dual_63 = {
4231 N, I(DstReg | SrcMem32 | ModRM | Mov, em_movsxd)
4232 };
4233
4234 static const struct instr_dual instr_dual_8d = {
4235 D(DstReg | SrcMem | ModRM | NoAccess), N
4236 };
4237
4238 static const struct opcode opcode_table[256] = {
4239 /* 0x00 - 0x07 */
4240 F6ALU(Lock, em_add),
4241 I(ImplicitOps | Stack | No64 | Src2ES, em_push_sreg),
4242 I(ImplicitOps | Stack | No64 | Src2ES, em_pop_sreg),
4243 /* 0x08 - 0x0F */
4244 F6ALU(Lock | PageTable, em_or),
4245 I(ImplicitOps | Stack | No64 | Src2CS, em_push_sreg),
4246 N,
4247 /* 0x10 - 0x17 */
4248 F6ALU(Lock, em_adc),
4249 I(ImplicitOps | Stack | No64 | Src2SS, em_push_sreg),
4250 I(ImplicitOps | Stack | No64 | Src2SS, em_pop_sreg),
4251 /* 0x18 - 0x1F */
4252 F6ALU(Lock, em_sbb),
4253 I(ImplicitOps | Stack | No64 | Src2DS, em_push_sreg),
4254 I(ImplicitOps | Stack | No64 | Src2DS, em_pop_sreg),
4255 /* 0x20 - 0x27 */
4256 F6ALU(Lock | PageTable, em_and), N, N,
4257 /* 0x28 - 0x2F */
4258 F6ALU(Lock, em_sub), N, I(ByteOp | DstAcc | No64, em_das),
4259 /* 0x30 - 0x37 */
4260 F6ALU(Lock, em_xor), N, N,
4261 /* 0x38 - 0x3F */
4262 F6ALU(NoWrite, em_cmp), N, N,
4263 /* 0x40 - 0x4F */
4264 X8(F(DstReg, em_inc)), X8(F(DstReg, em_dec)),
4265 /* 0x50 - 0x57 */
4266 X8(I(SrcReg | Stack, em_push)),
4267 /* 0x58 - 0x5F */
4268 X8(I(DstReg | Stack, em_pop)),
4269 /* 0x60 - 0x67 */
4270 I(ImplicitOps | Stack | No64, em_pusha),
4271 I(ImplicitOps | Stack | No64, em_popa),
4272 N, MD(ModRM, &mode_dual_63),
4273 N, N, N, N,
4274 /* 0x68 - 0x6F */
4275 I(SrcImm | Mov | Stack, em_push),
4276 I(DstReg | SrcMem | ModRM | Src2Imm, em_imul_3op),
4277 I(SrcImmByte | Mov | Stack, em_push),
4278 I(DstReg | SrcMem | ModRM | Src2ImmByte, em_imul_3op),
4279 I2bvIP(DstDI | SrcDX | Mov | String | Unaligned, em_in, ins, check_perm_in), /* insb, insw/insd */
4280 I2bvIP(SrcSI | DstDX | String, em_out, outs, check_perm_out), /* outsb, outsw/outsd */
4281 /* 0x70 - 0x7F */
4282 X16(D(SrcImmByte | NearBranch | IsBranch)),
4283 /* 0x80 - 0x87 */
4284 G(ByteOp | DstMem | SrcImm, group1),
4285 G(DstMem | SrcImm, group1),
4286 G(ByteOp | DstMem | SrcImm | No64, group1),
4287 G(DstMem | SrcImmByte, group1),
4288 F2bv(DstMem | SrcReg | ModRM | NoWrite, em_test),
4289 I2bv(DstMem | SrcReg | ModRM | Lock | PageTable, em_xchg),
4290 /* 0x88 - 0x8F */
4291 I2bv(DstMem | SrcReg | ModRM | Mov | PageTable, em_mov),
4292 I2bv(DstReg | SrcMem | ModRM | Mov, em_mov),
4293 I(DstMem | SrcNone | ModRM | Mov | PageTable, em_mov_rm_sreg),
4294 ID(0, &instr_dual_8d),
4295 I(ImplicitOps | SrcMem16 | ModRM, em_mov_sreg_rm),
4296 G(0, group1A),
4297 /* 0x90 - 0x97 */
4298 DI(SrcAcc | DstReg, pause), X7(D(SrcAcc | DstReg)),
4299 /* 0x98 - 0x9F */
4300 D(DstAcc | SrcNone), I(ImplicitOps | SrcAcc, em_cwd),
4301 I(SrcImmFAddr | No64 | IsBranch, em_call_far), N,
4302 II(ImplicitOps | Stack, em_pushf, pushf),
4303 II(ImplicitOps | Stack, em_popf, popf),
4304 I(ImplicitOps, em_sahf), I(ImplicitOps, em_lahf),
4305 /* 0xA0 - 0xA7 */
4306 I2bv(DstAcc | SrcMem | Mov | MemAbs, em_mov),
4307 I2bv(DstMem | SrcAcc | Mov | MemAbs | PageTable, em_mov),
4308 I2bv(SrcSI | DstDI | Mov | String | TwoMemOp, em_mov),
4309 F2bv(SrcSI | DstDI | String | NoWrite | TwoMemOp, em_cmp_r),
4310 /* 0xA8 - 0xAF */
4311 F2bv(DstAcc | SrcImm | NoWrite, em_test),
4312 I2bv(SrcAcc | DstDI | Mov | String, em_mov),
4313 I2bv(SrcSI | DstAcc | Mov | String, em_mov),
4314 F2bv(SrcAcc | DstDI | String | NoWrite, em_cmp_r),
4315 /* 0xB0 - 0xB7 */
4316 X8(I(ByteOp | DstReg | SrcImm | Mov, em_mov)),
4317 /* 0xB8 - 0xBF */
4318 X8(I(DstReg | SrcImm64 | Mov, em_mov)),
4319 /* 0xC0 - 0xC7 */
4320 G(ByteOp | Src2ImmByte, group2), G(Src2ImmByte, group2),
4321 I(ImplicitOps | NearBranch | SrcImmU16 | IsBranch, em_ret_near_imm),
4322 I(ImplicitOps | NearBranch | IsBranch, em_ret),
4323 I(DstReg | SrcMemFAddr | ModRM | No64 | Src2ES, em_lseg),
4324 I(DstReg | SrcMemFAddr | ModRM | No64 | Src2DS, em_lseg),
4325 G(ByteOp, group11), G(0, group11),
4326 /* 0xC8 - 0xCF */
4327 I(Stack | SrcImmU16 | Src2ImmByte | IsBranch, em_enter),
4328 I(Stack | IsBranch, em_leave),
4329 I(ImplicitOps | SrcImmU16 | IsBranch, em_ret_far_imm),
4330 I(ImplicitOps | IsBranch, em_ret_far),
4331 D(ImplicitOps | IsBranch), DI(SrcImmByte | IsBranch, intn),
4332 D(ImplicitOps | No64 | IsBranch),
4333 II(ImplicitOps | IsBranch, em_iret, iret),
4334 /* 0xD0 - 0xD7 */
4335 G(Src2One | ByteOp, group2), G(Src2One, group2),
4336 G(Src2CL | ByteOp, group2), G(Src2CL, group2),
4337 I(DstAcc | SrcImmUByte | No64, em_aam),
4338 I(DstAcc | SrcImmUByte | No64, em_aad),
4339 F(DstAcc | ByteOp | No64, em_salc),
4340 I(DstAcc | SrcXLat | ByteOp, em_mov),
4341 /* 0xD8 - 0xDF */
4342 N, E(0, &escape_d9), N, E(0, &escape_db), N, E(0, &escape_dd), N, N,
4343 /* 0xE0 - 0xE7 */
4344 X3(I(SrcImmByte | NearBranch | IsBranch, em_loop)),
4345 I(SrcImmByte | NearBranch | IsBranch, em_jcxz),
4346 I2bvIP(SrcImmUByte | DstAcc, em_in, in, check_perm_in),
4347 I2bvIP(SrcAcc | DstImmUByte, em_out, out, check_perm_out),
4348 /* 0xE8 - 0xEF */
4349 I(SrcImm | NearBranch | IsBranch, em_call),
4350 D(SrcImm | ImplicitOps | NearBranch | IsBranch),
4351 I(SrcImmFAddr | No64 | IsBranch, em_jmp_far),
4352 D(SrcImmByte | ImplicitOps | NearBranch | IsBranch),
4353 I2bvIP(SrcDX | DstAcc, em_in, in, check_perm_in),
4354 I2bvIP(SrcAcc | DstDX, em_out, out, check_perm_out),
4355 /* 0xF0 - 0xF7 */
4356 N, DI(ImplicitOps, icebp), N, N,
4357 DI(ImplicitOps | Priv, hlt), D(ImplicitOps),
4358 G(ByteOp, group3), G(0, group3),
4359 /* 0xF8 - 0xFF */
4360 D(ImplicitOps), D(ImplicitOps),
4361 I(ImplicitOps, em_cli), I(ImplicitOps, em_sti),
4362 D(ImplicitOps), D(ImplicitOps), G(0, group4), G(0, group5),
4363 };
4364
4365 static const struct opcode twobyte_table[256] = {
4366 /* 0x00 - 0x0F */
4367 G(0, group6), GD(0, &group7), N, N,
4368 N, I(ImplicitOps | EmulateOnUD | IsBranch, em_syscall),
4369 II(ImplicitOps | Priv, em_clts, clts), N,
4370 DI(ImplicitOps | Priv, invd), DI(ImplicitOps | Priv, wbinvd), N, N,
4371 N, D(ImplicitOps | ModRM | SrcMem | NoAccess), N, N,
4372 /* 0x10 - 0x1F */
4373 GP(ModRM | DstReg | SrcMem | Mov | Sse, &pfx_0f_10_0f_11),
4374 GP(ModRM | DstMem | SrcReg | Mov | Sse, &pfx_0f_10_0f_11),
4375 N, N, N, N, N, N,
4376 D(ImplicitOps | ModRM | SrcMem | NoAccess), /* 4 * prefetch + 4 * reserved NOP */
4377 D(ImplicitOps | ModRM | SrcMem | NoAccess), N, N,
4378 D(ImplicitOps | ModRM | SrcMem | NoAccess), /* 8 * reserved NOP */
4379 D(ImplicitOps | ModRM | SrcMem | NoAccess), /* 8 * reserved NOP */
4380 D(ImplicitOps | ModRM | SrcMem | NoAccess), /* 8 * reserved NOP */
4381 D(ImplicitOps | ModRM | SrcMem | NoAccess), /* NOP + 7 * reserved NOP */
4382 /* 0x20 - 0x2F */
4383 DIP(ModRM | DstMem | Priv | Op3264 | NoMod, cr_read, check_cr_access),
4384 DIP(ModRM | DstMem | Priv | Op3264 | NoMod, dr_read, check_dr_read),
4385 IIP(ModRM | SrcMem | Priv | Op3264 | NoMod, em_cr_write, cr_write,
4386 check_cr_access),
4387 IIP(ModRM | SrcMem | Priv | Op3264 | NoMod, em_dr_write, dr_write,
4388 check_dr_write),
4389 N, N, N, N,
4390 GP(ModRM | DstReg | SrcMem | Mov | Sse, &pfx_0f_28_0f_29),
4391 GP(ModRM | DstMem | SrcReg | Mov | Sse, &pfx_0f_28_0f_29),
4392 N, GP(ModRM | DstMem | SrcReg | Mov | Sse, &pfx_0f_2b),
4393 N, N, N, N,
4394 /* 0x30 - 0x3F */
4395 II(ImplicitOps | Priv, em_wrmsr, wrmsr),
4396 IIP(ImplicitOps, em_rdtsc, rdtsc, check_rdtsc),
4397 II(ImplicitOps | Priv, em_rdmsr, rdmsr),
4398 IIP(ImplicitOps, em_rdpmc, rdpmc, check_rdpmc),
4399 I(ImplicitOps | EmulateOnUD | IsBranch, em_sysenter),
4400 I(ImplicitOps | Priv | EmulateOnUD | IsBranch, em_sysexit),
4401 N, N,
4402 N, N, N, N, N, N, N, N,
4403 /* 0x40 - 0x4F */
4404 X16(D(DstReg | SrcMem | ModRM)),
4405 /* 0x50 - 0x5F */
4406 N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N,
4407 /* 0x60 - 0x6F */
4408 N, N, N, N,
4409 N, N, N, N,
4410 N, N, N, N,
4411 N, N, N, GP(SrcMem | DstReg | ModRM | Mov, &pfx_0f_6f_0f_7f),
4412 /* 0x70 - 0x7F */
4413 N, N, N, N,
4414 N, N, N, N,
4415 N, N, N, N,
4416 N, N, N, GP(SrcReg | DstMem | ModRM | Mov, &pfx_0f_6f_0f_7f),
4417 /* 0x80 - 0x8F */
4418 X16(D(SrcImm | NearBranch | IsBranch)),
4419 /* 0x90 - 0x9F */
4420 X16(D(ByteOp | DstMem | SrcNone | ModRM| Mov)),
4421 /* 0xA0 - 0xA7 */
4422 I(Stack | Src2FS, em_push_sreg), I(Stack | Src2FS, em_pop_sreg),
4423 II(ImplicitOps, em_cpuid, cpuid),
4424 F(DstMem | SrcReg | ModRM | BitOp | NoWrite, em_bt),
4425 F(DstMem | SrcReg | Src2ImmByte | ModRM, em_shld),
4426 F(DstMem | SrcReg | Src2CL | ModRM, em_shld), N, N,
4427 /* 0xA8 - 0xAF */
4428 I(Stack | Src2GS, em_push_sreg), I(Stack | Src2GS, em_pop_sreg),
4429 II(EmulateOnUD | ImplicitOps, em_rsm, rsm),
4430 F(DstMem | SrcReg | ModRM | BitOp | Lock | PageTable, em_bts),
4431 F(DstMem | SrcReg | Src2ImmByte | ModRM, em_shrd),
4432 F(DstMem | SrcReg | Src2CL | ModRM, em_shrd),
4433 GD(0, &group15), F(DstReg | SrcMem | ModRM, em_imul),
4434 /* 0xB0 - 0xB7 */
4435 I2bv(DstMem | SrcReg | ModRM | Lock | PageTable | SrcWrite, em_cmpxchg),
4436 I(DstReg | SrcMemFAddr | ModRM | Src2SS, em_lseg),
4437 F(DstMem | SrcReg | ModRM | BitOp | Lock, em_btr),
4438 I(DstReg | SrcMemFAddr | ModRM | Src2FS, em_lseg),
4439 I(DstReg | SrcMemFAddr | ModRM | Src2GS, em_lseg),
4440 D(DstReg | SrcMem8 | ModRM | Mov), D(DstReg | SrcMem16 | ModRM | Mov),
4441 /* 0xB8 - 0xBF */
4442 N, N,
4443 G(BitOp, group8),
4444 F(DstMem | SrcReg | ModRM | BitOp | Lock | PageTable, em_btc),
4445 I(DstReg | SrcMem | ModRM, em_bsf_c),
4446 I(DstReg | SrcMem | ModRM, em_bsr_c),
4447 D(DstReg | SrcMem8 | ModRM | Mov), D(DstReg | SrcMem16 | ModRM | Mov),
4448 /* 0xC0 - 0xC7 */
4449 F2bv(DstMem | SrcReg | ModRM | SrcWrite | Lock, em_xadd),
4450 N, ID(0, &instr_dual_0f_c3),
4451 N, N, N, GD(0, &group9),
4452 /* 0xC8 - 0xCF */
4453 X8(I(DstReg, em_bswap)),
4454 /* 0xD0 - 0xDF */
4455 N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N,
4456 /* 0xE0 - 0xEF */
4457 N, N, N, N, N, N, N, GP(SrcReg | DstMem | ModRM | Mov, &pfx_0f_e7),
4458 N, N, N, N, N, N, N, N,
4459 /* 0xF0 - 0xFF */
4460 N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N
4461 };
4462
4463 static const struct instr_dual instr_dual_0f_38_f0 = {
4464 I(DstReg | SrcMem | Mov, em_movbe), N
4465 };
4466
4467 static const struct instr_dual instr_dual_0f_38_f1 = {
4468 I(DstMem | SrcReg | Mov, em_movbe), N
4469 };
4470
4471 static const struct gprefix three_byte_0f_38_f0 = {
4472 ID(0, &instr_dual_0f_38_f0), ID(0, &instr_dual_0f_38_f0), N, N
4473 };
4474
4475 static const struct gprefix three_byte_0f_38_f1 = {
4476 ID(0, &instr_dual_0f_38_f1), ID(0, &instr_dual_0f_38_f1), N, N
4477 };
4478
4479 /*
4480 * Insns below are selected by the prefix which indexed by the third opcode
4481 * byte.
4482 */
4483 static const struct opcode opcode_map_0f_38[256] = {
4484 /* 0x00 - 0x7f */
4485 X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), X16(N),
4486 /* 0x80 - 0xef */
4487 X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), X16(N),
4488 /* 0xf0 - 0xf1 */
4489 GP(EmulateOnUD | ModRM, &three_byte_0f_38_f0),
4490 GP(EmulateOnUD | ModRM, &three_byte_0f_38_f1),
4491 /* 0xf2 - 0xff */
4492 N, N, X4(N), X8(N)
4493 };
4494
4495 #undef D
4496 #undef N
4497 #undef G
4498 #undef GD
4499 #undef I
4500 #undef GP
4501 #undef EXT
4502 #undef MD
4503 #undef ID
4504
4505 #undef D2bv
4506 #undef D2bvIP
4507 #undef I2bv
4508 #undef I2bvIP
4509 #undef I6ALU
4510
imm_size(struct x86_emulate_ctxt * ctxt)4511 static unsigned imm_size(struct x86_emulate_ctxt *ctxt)
4512 {
4513 unsigned size;
4514
4515 size = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
4516 if (size == 8)
4517 size = 4;
4518 return size;
4519 }
4520
decode_imm(struct x86_emulate_ctxt * ctxt,struct operand * op,unsigned size,bool sign_extension)4521 static int decode_imm(struct x86_emulate_ctxt *ctxt, struct operand *op,
4522 unsigned size, bool sign_extension)
4523 {
4524 int rc = X86EMUL_CONTINUE;
4525
4526 op->type = OP_IMM;
4527 op->bytes = size;
4528 op->addr.mem.ea = ctxt->_eip;
4529 /* NB. Immediates are sign-extended as necessary. */
4530 switch (op->bytes) {
4531 case 1:
4532 op->val = insn_fetch(s8, ctxt);
4533 break;
4534 case 2:
4535 op->val = insn_fetch(s16, ctxt);
4536 break;
4537 case 4:
4538 op->val = insn_fetch(s32, ctxt);
4539 break;
4540 case 8:
4541 op->val = insn_fetch(s64, ctxt);
4542 break;
4543 }
4544 if (!sign_extension) {
4545 switch (op->bytes) {
4546 case 1:
4547 op->val &= 0xff;
4548 break;
4549 case 2:
4550 op->val &= 0xffff;
4551 break;
4552 case 4:
4553 op->val &= 0xffffffff;
4554 break;
4555 }
4556 }
4557 done:
4558 return rc;
4559 }
4560
decode_operand(struct x86_emulate_ctxt * ctxt,struct operand * op,unsigned d)4561 static int decode_operand(struct x86_emulate_ctxt *ctxt, struct operand *op,
4562 unsigned d)
4563 {
4564 int rc = X86EMUL_CONTINUE;
4565
4566 switch (d) {
4567 case OpReg:
4568 decode_register_operand(ctxt, op);
4569 break;
4570 case OpImmUByte:
4571 rc = decode_imm(ctxt, op, 1, false);
4572 break;
4573 case OpMem:
4574 ctxt->memop.bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
4575 mem_common:
4576 *op = ctxt->memop;
4577 ctxt->memopp = op;
4578 if (ctxt->d & BitOp)
4579 fetch_bit_operand(ctxt);
4580 op->orig_val = op->val;
4581 break;
4582 case OpMem64:
4583 ctxt->memop.bytes = (ctxt->op_bytes == 8) ? 16 : 8;
4584 goto mem_common;
4585 case OpAcc:
4586 op->type = OP_REG;
4587 op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
4588 op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX);
4589 fetch_register_operand(op);
4590 op->orig_val = op->val;
4591 break;
4592 case OpAccLo:
4593 op->type = OP_REG;
4594 op->bytes = (ctxt->d & ByteOp) ? 2 : ctxt->op_bytes;
4595 op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX);
4596 fetch_register_operand(op);
4597 op->orig_val = op->val;
4598 break;
4599 case OpAccHi:
4600 if (ctxt->d & ByteOp) {
4601 op->type = OP_NONE;
4602 break;
4603 }
4604 op->type = OP_REG;
4605 op->bytes = ctxt->op_bytes;
4606 op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX);
4607 fetch_register_operand(op);
4608 op->orig_val = op->val;
4609 break;
4610 case OpDI:
4611 op->type = OP_MEM;
4612 op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
4613 op->addr.mem.ea =
4614 register_address(ctxt, VCPU_REGS_RDI);
4615 op->addr.mem.seg = VCPU_SREG_ES;
4616 op->val = 0;
4617 op->count = 1;
4618 break;
4619 case OpDX:
4620 op->type = OP_REG;
4621 op->bytes = 2;
4622 op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX);
4623 fetch_register_operand(op);
4624 break;
4625 case OpCL:
4626 op->type = OP_IMM;
4627 op->bytes = 1;
4628 op->val = reg_read(ctxt, VCPU_REGS_RCX) & 0xff;
4629 break;
4630 case OpImmByte:
4631 rc = decode_imm(ctxt, op, 1, true);
4632 break;
4633 case OpOne:
4634 op->type = OP_IMM;
4635 op->bytes = 1;
4636 op->val = 1;
4637 break;
4638 case OpImm:
4639 rc = decode_imm(ctxt, op, imm_size(ctxt), true);
4640 break;
4641 case OpImm64:
4642 rc = decode_imm(ctxt, op, ctxt->op_bytes, true);
4643 break;
4644 case OpMem8:
4645 ctxt->memop.bytes = 1;
4646 if (ctxt->memop.type == OP_REG) {
4647 ctxt->memop.addr.reg = decode_register(ctxt,
4648 ctxt->modrm_rm, true);
4649 fetch_register_operand(&ctxt->memop);
4650 }
4651 goto mem_common;
4652 case OpMem16:
4653 ctxt->memop.bytes = 2;
4654 goto mem_common;
4655 case OpMem32:
4656 ctxt->memop.bytes = 4;
4657 goto mem_common;
4658 case OpImmU16:
4659 rc = decode_imm(ctxt, op, 2, false);
4660 break;
4661 case OpImmU:
4662 rc = decode_imm(ctxt, op, imm_size(ctxt), false);
4663 break;
4664 case OpSI:
4665 op->type = OP_MEM;
4666 op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
4667 op->addr.mem.ea =
4668 register_address(ctxt, VCPU_REGS_RSI);
4669 op->addr.mem.seg = ctxt->seg_override;
4670 op->val = 0;
4671 op->count = 1;
4672 break;
4673 case OpXLat:
4674 op->type = OP_MEM;
4675 op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
4676 op->addr.mem.ea =
4677 address_mask(ctxt,
4678 reg_read(ctxt, VCPU_REGS_RBX) +
4679 (reg_read(ctxt, VCPU_REGS_RAX) & 0xff));
4680 op->addr.mem.seg = ctxt->seg_override;
4681 op->val = 0;
4682 break;
4683 case OpImmFAddr:
4684 op->type = OP_IMM;
4685 op->addr.mem.ea = ctxt->_eip;
4686 op->bytes = ctxt->op_bytes + 2;
4687 insn_fetch_arr(op->valptr, op->bytes, ctxt);
4688 break;
4689 case OpMemFAddr:
4690 ctxt->memop.bytes = ctxt->op_bytes + 2;
4691 goto mem_common;
4692 case OpES:
4693 op->type = OP_IMM;
4694 op->val = VCPU_SREG_ES;
4695 break;
4696 case OpCS:
4697 op->type = OP_IMM;
4698 op->val = VCPU_SREG_CS;
4699 break;
4700 case OpSS:
4701 op->type = OP_IMM;
4702 op->val = VCPU_SREG_SS;
4703 break;
4704 case OpDS:
4705 op->type = OP_IMM;
4706 op->val = VCPU_SREG_DS;
4707 break;
4708 case OpFS:
4709 op->type = OP_IMM;
4710 op->val = VCPU_SREG_FS;
4711 break;
4712 case OpGS:
4713 op->type = OP_IMM;
4714 op->val = VCPU_SREG_GS;
4715 break;
4716 case OpImplicit:
4717 /* Special instructions do their own operand decoding. */
4718 default:
4719 op->type = OP_NONE; /* Disable writeback. */
4720 break;
4721 }
4722
4723 done:
4724 return rc;
4725 }
4726
x86_decode_insn(struct x86_emulate_ctxt * ctxt,void * insn,int insn_len,int emulation_type)4727 int x86_decode_insn(struct x86_emulate_ctxt *ctxt, void *insn, int insn_len, int emulation_type)
4728 {
4729 int rc = X86EMUL_CONTINUE;
4730 int mode = ctxt->mode;
4731 int def_op_bytes, def_ad_bytes, goffset, simd_prefix;
4732 bool op_prefix = false;
4733 bool has_seg_override = false;
4734 struct opcode opcode;
4735 u16 dummy;
4736 struct desc_struct desc;
4737
4738 ctxt->memop.type = OP_NONE;
4739 ctxt->memopp = NULL;
4740 ctxt->_eip = ctxt->eip;
4741 ctxt->fetch.ptr = ctxt->fetch.data;
4742 ctxt->fetch.end = ctxt->fetch.data + insn_len;
4743 ctxt->opcode_len = 1;
4744 ctxt->intercept = x86_intercept_none;
4745 if (insn_len > 0)
4746 memcpy(ctxt->fetch.data, insn, insn_len);
4747 else {
4748 rc = __do_insn_fetch_bytes(ctxt, 1);
4749 if (rc != X86EMUL_CONTINUE)
4750 goto done;
4751 }
4752
4753 switch (mode) {
4754 case X86EMUL_MODE_REAL:
4755 case X86EMUL_MODE_VM86:
4756 def_op_bytes = def_ad_bytes = 2;
4757 ctxt->ops->get_segment(ctxt, &dummy, &desc, NULL, VCPU_SREG_CS);
4758 if (desc.d)
4759 def_op_bytes = def_ad_bytes = 4;
4760 break;
4761 case X86EMUL_MODE_PROT16:
4762 def_op_bytes = def_ad_bytes = 2;
4763 break;
4764 case X86EMUL_MODE_PROT32:
4765 def_op_bytes = def_ad_bytes = 4;
4766 break;
4767 #ifdef CONFIG_X86_64
4768 case X86EMUL_MODE_PROT64:
4769 def_op_bytes = 4;
4770 def_ad_bytes = 8;
4771 break;
4772 #endif
4773 default:
4774 return EMULATION_FAILED;
4775 }
4776
4777 ctxt->op_bytes = def_op_bytes;
4778 ctxt->ad_bytes = def_ad_bytes;
4779
4780 /* Legacy prefixes. */
4781 for (;;) {
4782 switch (ctxt->b = insn_fetch(u8, ctxt)) {
4783 case 0x66: /* operand-size override */
4784 op_prefix = true;
4785 /* switch between 2/4 bytes */
4786 ctxt->op_bytes = def_op_bytes ^ 6;
4787 break;
4788 case 0x67: /* address-size override */
4789 if (mode == X86EMUL_MODE_PROT64)
4790 /* switch between 4/8 bytes */
4791 ctxt->ad_bytes = def_ad_bytes ^ 12;
4792 else
4793 /* switch between 2/4 bytes */
4794 ctxt->ad_bytes = def_ad_bytes ^ 6;
4795 break;
4796 case 0x26: /* ES override */
4797 has_seg_override = true;
4798 ctxt->seg_override = VCPU_SREG_ES;
4799 break;
4800 case 0x2e: /* CS override */
4801 has_seg_override = true;
4802 ctxt->seg_override = VCPU_SREG_CS;
4803 break;
4804 case 0x36: /* SS override */
4805 has_seg_override = true;
4806 ctxt->seg_override = VCPU_SREG_SS;
4807 break;
4808 case 0x3e: /* DS override */
4809 has_seg_override = true;
4810 ctxt->seg_override = VCPU_SREG_DS;
4811 break;
4812 case 0x64: /* FS override */
4813 has_seg_override = true;
4814 ctxt->seg_override = VCPU_SREG_FS;
4815 break;
4816 case 0x65: /* GS override */
4817 has_seg_override = true;
4818 ctxt->seg_override = VCPU_SREG_GS;
4819 break;
4820 case 0x40 ... 0x4f: /* REX */
4821 if (mode != X86EMUL_MODE_PROT64)
4822 goto done_prefixes;
4823 ctxt->rex_prefix = ctxt->b;
4824 continue;
4825 case 0xf0: /* LOCK */
4826 ctxt->lock_prefix = 1;
4827 break;
4828 case 0xf2: /* REPNE/REPNZ */
4829 case 0xf3: /* REP/REPE/REPZ */
4830 ctxt->rep_prefix = ctxt->b;
4831 break;
4832 default:
4833 goto done_prefixes;
4834 }
4835
4836 /* Any legacy prefix after a REX prefix nullifies its effect. */
4837
4838 ctxt->rex_prefix = 0;
4839 }
4840
4841 done_prefixes:
4842
4843 /* REX prefix. */
4844 if (ctxt->rex_prefix & 8)
4845 ctxt->op_bytes = 8; /* REX.W */
4846
4847 /* Opcode byte(s). */
4848 opcode = opcode_table[ctxt->b];
4849 /* Two-byte opcode? */
4850 if (ctxt->b == 0x0f) {
4851 ctxt->opcode_len = 2;
4852 ctxt->b = insn_fetch(u8, ctxt);
4853 opcode = twobyte_table[ctxt->b];
4854
4855 /* 0F_38 opcode map */
4856 if (ctxt->b == 0x38) {
4857 ctxt->opcode_len = 3;
4858 ctxt->b = insn_fetch(u8, ctxt);
4859 opcode = opcode_map_0f_38[ctxt->b];
4860 }
4861 }
4862 ctxt->d = opcode.flags;
4863
4864 if (ctxt->d & ModRM)
4865 ctxt->modrm = insn_fetch(u8, ctxt);
4866
4867 /* vex-prefix instructions are not implemented */
4868 if (ctxt->opcode_len == 1 && (ctxt->b == 0xc5 || ctxt->b == 0xc4) &&
4869 (mode == X86EMUL_MODE_PROT64 || (ctxt->modrm & 0xc0) == 0xc0)) {
4870 ctxt->d = NotImpl;
4871 }
4872
4873 while (ctxt->d & GroupMask) {
4874 switch (ctxt->d & GroupMask) {
4875 case Group:
4876 goffset = (ctxt->modrm >> 3) & 7;
4877 opcode = opcode.u.group[goffset];
4878 break;
4879 case GroupDual:
4880 goffset = (ctxt->modrm >> 3) & 7;
4881 if ((ctxt->modrm >> 6) == 3)
4882 opcode = opcode.u.gdual->mod3[goffset];
4883 else
4884 opcode = opcode.u.gdual->mod012[goffset];
4885 break;
4886 case RMExt:
4887 goffset = ctxt->modrm & 7;
4888 opcode = opcode.u.group[goffset];
4889 break;
4890 case Prefix:
4891 if (ctxt->rep_prefix && op_prefix)
4892 return EMULATION_FAILED;
4893 simd_prefix = op_prefix ? 0x66 : ctxt->rep_prefix;
4894 switch (simd_prefix) {
4895 case 0x00: opcode = opcode.u.gprefix->pfx_no; break;
4896 case 0x66: opcode = opcode.u.gprefix->pfx_66; break;
4897 case 0xf2: opcode = opcode.u.gprefix->pfx_f2; break;
4898 case 0xf3: opcode = opcode.u.gprefix->pfx_f3; break;
4899 }
4900 break;
4901 case Escape:
4902 if (ctxt->modrm > 0xbf) {
4903 size_t size = ARRAY_SIZE(opcode.u.esc->high);
4904 u32 index = array_index_nospec(
4905 ctxt->modrm - 0xc0, size);
4906
4907 opcode = opcode.u.esc->high[index];
4908 } else {
4909 opcode = opcode.u.esc->op[(ctxt->modrm >> 3) & 7];
4910 }
4911 break;
4912 case InstrDual:
4913 if ((ctxt->modrm >> 6) == 3)
4914 opcode = opcode.u.idual->mod3;
4915 else
4916 opcode = opcode.u.idual->mod012;
4917 break;
4918 case ModeDual:
4919 if (ctxt->mode == X86EMUL_MODE_PROT64)
4920 opcode = opcode.u.mdual->mode64;
4921 else
4922 opcode = opcode.u.mdual->mode32;
4923 break;
4924 default:
4925 return EMULATION_FAILED;
4926 }
4927
4928 ctxt->d &= ~(u64)GroupMask;
4929 ctxt->d |= opcode.flags;
4930 }
4931
4932 ctxt->is_branch = opcode.flags & IsBranch;
4933
4934 /* Unrecognised? */
4935 if (ctxt->d == 0)
4936 return EMULATION_FAILED;
4937
4938 ctxt->execute = opcode.u.execute;
4939
4940 if (unlikely(emulation_type & EMULTYPE_TRAP_UD) &&
4941 likely(!(ctxt->d & EmulateOnUD)))
4942 return EMULATION_FAILED;
4943
4944 if (unlikely(ctxt->d &
4945 (NotImpl|Stack|Op3264|Sse|Mmx|Intercept|CheckPerm|NearBranch|
4946 No16))) {
4947 /*
4948 * These are copied unconditionally here, and checked unconditionally
4949 * in x86_emulate_insn.
4950 */
4951 ctxt->check_perm = opcode.check_perm;
4952 ctxt->intercept = opcode.intercept;
4953
4954 if (ctxt->d & NotImpl)
4955 return EMULATION_FAILED;
4956
4957 if (mode == X86EMUL_MODE_PROT64) {
4958 if (ctxt->op_bytes == 4 && (ctxt->d & Stack))
4959 ctxt->op_bytes = 8;
4960 else if (ctxt->d & NearBranch)
4961 ctxt->op_bytes = 8;
4962 }
4963
4964 if (ctxt->d & Op3264) {
4965 if (mode == X86EMUL_MODE_PROT64)
4966 ctxt->op_bytes = 8;
4967 else
4968 ctxt->op_bytes = 4;
4969 }
4970
4971 if ((ctxt->d & No16) && ctxt->op_bytes == 2)
4972 ctxt->op_bytes = 4;
4973
4974 if (ctxt->d & Sse)
4975 ctxt->op_bytes = 16;
4976 else if (ctxt->d & Mmx)
4977 ctxt->op_bytes = 8;
4978 }
4979
4980 /* ModRM and SIB bytes. */
4981 if (ctxt->d & ModRM) {
4982 rc = decode_modrm(ctxt, &ctxt->memop);
4983 if (!has_seg_override) {
4984 has_seg_override = true;
4985 ctxt->seg_override = ctxt->modrm_seg;
4986 }
4987 } else if (ctxt->d & MemAbs)
4988 rc = decode_abs(ctxt, &ctxt->memop);
4989 if (rc != X86EMUL_CONTINUE)
4990 goto done;
4991
4992 if (!has_seg_override)
4993 ctxt->seg_override = VCPU_SREG_DS;
4994
4995 ctxt->memop.addr.mem.seg = ctxt->seg_override;
4996
4997 /*
4998 * Decode and fetch the source operand: register, memory
4999 * or immediate.
5000 */
5001 rc = decode_operand(ctxt, &ctxt->src, (ctxt->d >> SrcShift) & OpMask);
5002 if (rc != X86EMUL_CONTINUE)
5003 goto done;
5004
5005 /*
5006 * Decode and fetch the second source operand: register, memory
5007 * or immediate.
5008 */
5009 rc = decode_operand(ctxt, &ctxt->src2, (ctxt->d >> Src2Shift) & OpMask);
5010 if (rc != X86EMUL_CONTINUE)
5011 goto done;
5012
5013 /* Decode and fetch the destination operand: register or memory. */
5014 rc = decode_operand(ctxt, &ctxt->dst, (ctxt->d >> DstShift) & OpMask);
5015
5016 if (ctxt->rip_relative && likely(ctxt->memopp))
5017 ctxt->memopp->addr.mem.ea = address_mask(ctxt,
5018 ctxt->memopp->addr.mem.ea + ctxt->_eip);
5019
5020 done:
5021 if (rc == X86EMUL_PROPAGATE_FAULT)
5022 ctxt->have_exception = true;
5023 return (rc != X86EMUL_CONTINUE) ? EMULATION_FAILED : EMULATION_OK;
5024 }
5025
x86_page_table_writing_insn(struct x86_emulate_ctxt * ctxt)5026 bool x86_page_table_writing_insn(struct x86_emulate_ctxt *ctxt)
5027 {
5028 return ctxt->d & PageTable;
5029 }
5030
string_insn_completed(struct x86_emulate_ctxt * ctxt)5031 static bool string_insn_completed(struct x86_emulate_ctxt *ctxt)
5032 {
5033 /* The second termination condition only applies for REPE
5034 * and REPNE. Test if the repeat string operation prefix is
5035 * REPE/REPZ or REPNE/REPNZ and if it's the case it tests the
5036 * corresponding termination condition according to:
5037 * - if REPE/REPZ and ZF = 0 then done
5038 * - if REPNE/REPNZ and ZF = 1 then done
5039 */
5040 if (((ctxt->b == 0xa6) || (ctxt->b == 0xa7) ||
5041 (ctxt->b == 0xae) || (ctxt->b == 0xaf))
5042 && (((ctxt->rep_prefix == REPE_PREFIX) &&
5043 ((ctxt->eflags & X86_EFLAGS_ZF) == 0))
5044 || ((ctxt->rep_prefix == REPNE_PREFIX) &&
5045 ((ctxt->eflags & X86_EFLAGS_ZF) == X86_EFLAGS_ZF))))
5046 return true;
5047
5048 return false;
5049 }
5050
flush_pending_x87_faults(struct x86_emulate_ctxt * ctxt)5051 static int flush_pending_x87_faults(struct x86_emulate_ctxt *ctxt)
5052 {
5053 int rc;
5054
5055 kvm_fpu_get();
5056 rc = asm_safe("fwait");
5057 kvm_fpu_put();
5058
5059 if (unlikely(rc != X86EMUL_CONTINUE))
5060 return emulate_exception(ctxt, MF_VECTOR, 0, false);
5061
5062 return X86EMUL_CONTINUE;
5063 }
5064
fetch_possible_mmx_operand(struct operand * op)5065 static void fetch_possible_mmx_operand(struct operand *op)
5066 {
5067 if (op->type == OP_MM)
5068 kvm_read_mmx_reg(op->addr.mm, &op->mm_val);
5069 }
5070
fastop(struct x86_emulate_ctxt * ctxt,fastop_t fop)5071 static int fastop(struct x86_emulate_ctxt *ctxt, fastop_t fop)
5072 {
5073 ulong flags = (ctxt->eflags & EFLAGS_MASK) | X86_EFLAGS_IF;
5074
5075 if (!(ctxt->d & ByteOp))
5076 fop += __ffs(ctxt->dst.bytes) * FASTOP_SIZE;
5077
5078 asm("push %[flags]; popf; " CALL_NOSPEC " ; pushf; pop %[flags]\n"
5079 : "+a"(ctxt->dst.val), "+d"(ctxt->src.val), [flags]"+D"(flags),
5080 [thunk_target]"+S"(fop), ASM_CALL_CONSTRAINT
5081 : "c"(ctxt->src2.val));
5082
5083 ctxt->eflags = (ctxt->eflags & ~EFLAGS_MASK) | (flags & EFLAGS_MASK);
5084 if (!fop) /* exception is returned in fop variable */
5085 return emulate_de(ctxt);
5086 return X86EMUL_CONTINUE;
5087 }
5088
init_decode_cache(struct x86_emulate_ctxt * ctxt)5089 void init_decode_cache(struct x86_emulate_ctxt *ctxt)
5090 {
5091 /* Clear fields that are set conditionally but read without a guard. */
5092 ctxt->rip_relative = false;
5093 ctxt->rex_prefix = 0;
5094 ctxt->lock_prefix = 0;
5095 ctxt->rep_prefix = 0;
5096 ctxt->regs_valid = 0;
5097 ctxt->regs_dirty = 0;
5098
5099 ctxt->io_read.pos = 0;
5100 ctxt->io_read.end = 0;
5101 ctxt->mem_read.end = 0;
5102 }
5103
x86_emulate_insn(struct x86_emulate_ctxt * ctxt)5104 int x86_emulate_insn(struct x86_emulate_ctxt *ctxt)
5105 {
5106 const struct x86_emulate_ops *ops = ctxt->ops;
5107 int rc = X86EMUL_CONTINUE;
5108 int saved_dst_type = ctxt->dst.type;
5109 bool is_guest_mode = ctxt->ops->is_guest_mode(ctxt);
5110
5111 ctxt->mem_read.pos = 0;
5112
5113 /* LOCK prefix is allowed only with some instructions */
5114 if (ctxt->lock_prefix && (!(ctxt->d & Lock) || ctxt->dst.type != OP_MEM)) {
5115 rc = emulate_ud(ctxt);
5116 goto done;
5117 }
5118
5119 if ((ctxt->d & SrcMask) == SrcMemFAddr && ctxt->src.type != OP_MEM) {
5120 rc = emulate_ud(ctxt);
5121 goto done;
5122 }
5123
5124 if (unlikely(ctxt->d &
5125 (No64|Undefined|Sse|Mmx|Intercept|CheckPerm|Priv|Prot|String))) {
5126 if ((ctxt->mode == X86EMUL_MODE_PROT64 && (ctxt->d & No64)) ||
5127 (ctxt->d & Undefined)) {
5128 rc = emulate_ud(ctxt);
5129 goto done;
5130 }
5131
5132 if (((ctxt->d & (Sse|Mmx)) && ((ops->get_cr(ctxt, 0) & X86_CR0_EM)))
5133 || ((ctxt->d & Sse) && !(ops->get_cr(ctxt, 4) & X86_CR4_OSFXSR))) {
5134 rc = emulate_ud(ctxt);
5135 goto done;
5136 }
5137
5138 if ((ctxt->d & (Sse|Mmx)) && (ops->get_cr(ctxt, 0) & X86_CR0_TS)) {
5139 rc = emulate_nm(ctxt);
5140 goto done;
5141 }
5142
5143 if (ctxt->d & Mmx) {
5144 rc = flush_pending_x87_faults(ctxt);
5145 if (rc != X86EMUL_CONTINUE)
5146 goto done;
5147 /*
5148 * Now that we know the fpu is exception safe, we can fetch
5149 * operands from it.
5150 */
5151 fetch_possible_mmx_operand(&ctxt->src);
5152 fetch_possible_mmx_operand(&ctxt->src2);
5153 if (!(ctxt->d & Mov))
5154 fetch_possible_mmx_operand(&ctxt->dst);
5155 }
5156
5157 if (unlikely(is_guest_mode) && ctxt->intercept) {
5158 rc = emulator_check_intercept(ctxt, ctxt->intercept,
5159 X86_ICPT_PRE_EXCEPT);
5160 if (rc != X86EMUL_CONTINUE)
5161 goto done;
5162 }
5163
5164 /* Instruction can only be executed in protected mode */
5165 if ((ctxt->d & Prot) && ctxt->mode < X86EMUL_MODE_PROT16) {
5166 rc = emulate_ud(ctxt);
5167 goto done;
5168 }
5169
5170 /* Privileged instruction can be executed only in CPL=0 */
5171 if ((ctxt->d & Priv) && ops->cpl(ctxt)) {
5172 if (ctxt->d & PrivUD)
5173 rc = emulate_ud(ctxt);
5174 else
5175 rc = emulate_gp(ctxt, 0);
5176 goto done;
5177 }
5178
5179 /* Do instruction specific permission checks */
5180 if (ctxt->d & CheckPerm) {
5181 rc = ctxt->check_perm(ctxt);
5182 if (rc != X86EMUL_CONTINUE)
5183 goto done;
5184 }
5185
5186 if (unlikely(is_guest_mode) && (ctxt->d & Intercept)) {
5187 rc = emulator_check_intercept(ctxt, ctxt->intercept,
5188 X86_ICPT_POST_EXCEPT);
5189 if (rc != X86EMUL_CONTINUE)
5190 goto done;
5191 }
5192
5193 if (ctxt->rep_prefix && (ctxt->d & String)) {
5194 /* All REP prefixes have the same first termination condition */
5195 if (address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) == 0) {
5196 string_registers_quirk(ctxt);
5197 ctxt->eip = ctxt->_eip;
5198 ctxt->eflags &= ~X86_EFLAGS_RF;
5199 goto done;
5200 }
5201 }
5202 }
5203
5204 if ((ctxt->src.type == OP_MEM) && !(ctxt->d & NoAccess)) {
5205 rc = segmented_read(ctxt, ctxt->src.addr.mem,
5206 ctxt->src.valptr, ctxt->src.bytes);
5207 if (rc != X86EMUL_CONTINUE)
5208 goto done;
5209 ctxt->src.orig_val64 = ctxt->src.val64;
5210 }
5211
5212 if (ctxt->src2.type == OP_MEM) {
5213 rc = segmented_read(ctxt, ctxt->src2.addr.mem,
5214 &ctxt->src2.val, ctxt->src2.bytes);
5215 if (rc != X86EMUL_CONTINUE)
5216 goto done;
5217 }
5218
5219 if ((ctxt->d & DstMask) == ImplicitOps)
5220 goto special_insn;
5221
5222
5223 if ((ctxt->dst.type == OP_MEM) && !(ctxt->d & Mov)) {
5224 /* optimisation - avoid slow emulated read if Mov */
5225 rc = segmented_read(ctxt, ctxt->dst.addr.mem,
5226 &ctxt->dst.val, ctxt->dst.bytes);
5227 if (rc != X86EMUL_CONTINUE) {
5228 if (!(ctxt->d & NoWrite) &&
5229 rc == X86EMUL_PROPAGATE_FAULT &&
5230 ctxt->exception.vector == PF_VECTOR)
5231 ctxt->exception.error_code |= PFERR_WRITE_MASK;
5232 goto done;
5233 }
5234 }
5235 /* Copy full 64-bit value for CMPXCHG8B. */
5236 ctxt->dst.orig_val64 = ctxt->dst.val64;
5237
5238 special_insn:
5239
5240 if (unlikely(is_guest_mode) && (ctxt->d & Intercept)) {
5241 rc = emulator_check_intercept(ctxt, ctxt->intercept,
5242 X86_ICPT_POST_MEMACCESS);
5243 if (rc != X86EMUL_CONTINUE)
5244 goto done;
5245 }
5246
5247 if (ctxt->rep_prefix && (ctxt->d & String))
5248 ctxt->eflags |= X86_EFLAGS_RF;
5249 else
5250 ctxt->eflags &= ~X86_EFLAGS_RF;
5251
5252 if (ctxt->execute) {
5253 if (ctxt->d & Fastop)
5254 rc = fastop(ctxt, ctxt->fop);
5255 else
5256 rc = ctxt->execute(ctxt);
5257 if (rc != X86EMUL_CONTINUE)
5258 goto done;
5259 goto writeback;
5260 }
5261
5262 if (ctxt->opcode_len == 2)
5263 goto twobyte_insn;
5264 else if (ctxt->opcode_len == 3)
5265 goto threebyte_insn;
5266
5267 switch (ctxt->b) {
5268 case 0x70 ... 0x7f: /* jcc (short) */
5269 if (test_cc(ctxt->b, ctxt->eflags))
5270 rc = jmp_rel(ctxt, ctxt->src.val);
5271 break;
5272 case 0x8d: /* lea r16/r32, m */
5273 ctxt->dst.val = ctxt->src.addr.mem.ea;
5274 break;
5275 case 0x90 ... 0x97: /* nop / xchg reg, rax */
5276 if (ctxt->dst.addr.reg == reg_rmw(ctxt, VCPU_REGS_RAX))
5277 ctxt->dst.type = OP_NONE;
5278 else
5279 rc = em_xchg(ctxt);
5280 break;
5281 case 0x98: /* cbw/cwde/cdqe */
5282 switch (ctxt->op_bytes) {
5283 case 2: ctxt->dst.val = (s8)ctxt->dst.val; break;
5284 case 4: ctxt->dst.val = (s16)ctxt->dst.val; break;
5285 case 8: ctxt->dst.val = (s32)ctxt->dst.val; break;
5286 }
5287 break;
5288 case 0xcc: /* int3 */
5289 rc = emulate_int(ctxt, 3);
5290 break;
5291 case 0xcd: /* int n */
5292 rc = emulate_int(ctxt, ctxt->src.val);
5293 break;
5294 case 0xce: /* into */
5295 if (ctxt->eflags & X86_EFLAGS_OF)
5296 rc = emulate_int(ctxt, 4);
5297 break;
5298 case 0xe9: /* jmp rel */
5299 case 0xeb: /* jmp rel short */
5300 rc = jmp_rel(ctxt, ctxt->src.val);
5301 ctxt->dst.type = OP_NONE; /* Disable writeback. */
5302 break;
5303 case 0xf4: /* hlt */
5304 ctxt->ops->halt(ctxt);
5305 break;
5306 case 0xf5: /* cmc */
5307 /* complement carry flag from eflags reg */
5308 ctxt->eflags ^= X86_EFLAGS_CF;
5309 break;
5310 case 0xf8: /* clc */
5311 ctxt->eflags &= ~X86_EFLAGS_CF;
5312 break;
5313 case 0xf9: /* stc */
5314 ctxt->eflags |= X86_EFLAGS_CF;
5315 break;
5316 case 0xfc: /* cld */
5317 ctxt->eflags &= ~X86_EFLAGS_DF;
5318 break;
5319 case 0xfd: /* std */
5320 ctxt->eflags |= X86_EFLAGS_DF;
5321 break;
5322 default:
5323 goto cannot_emulate;
5324 }
5325
5326 if (rc != X86EMUL_CONTINUE)
5327 goto done;
5328
5329 writeback:
5330 if (ctxt->d & SrcWrite) {
5331 BUG_ON(ctxt->src.type == OP_MEM || ctxt->src.type == OP_MEM_STR);
5332 rc = writeback(ctxt, &ctxt->src);
5333 if (rc != X86EMUL_CONTINUE)
5334 goto done;
5335 }
5336 if (!(ctxt->d & NoWrite)) {
5337 rc = writeback(ctxt, &ctxt->dst);
5338 if (rc != X86EMUL_CONTINUE)
5339 goto done;
5340 }
5341
5342 /*
5343 * restore dst type in case the decoding will be reused
5344 * (happens for string instruction )
5345 */
5346 ctxt->dst.type = saved_dst_type;
5347
5348 if ((ctxt->d & SrcMask) == SrcSI)
5349 string_addr_inc(ctxt, VCPU_REGS_RSI, &ctxt->src);
5350
5351 if ((ctxt->d & DstMask) == DstDI)
5352 string_addr_inc(ctxt, VCPU_REGS_RDI, &ctxt->dst);
5353
5354 if (ctxt->rep_prefix && (ctxt->d & String)) {
5355 unsigned int count;
5356 struct read_cache *r = &ctxt->io_read;
5357 if ((ctxt->d & SrcMask) == SrcSI)
5358 count = ctxt->src.count;
5359 else
5360 count = ctxt->dst.count;
5361 register_address_increment(ctxt, VCPU_REGS_RCX, -count);
5362
5363 if (!string_insn_completed(ctxt)) {
5364 /*
5365 * Re-enter guest when pio read ahead buffer is empty
5366 * or, if it is not used, after each 1024 iteration.
5367 */
5368 if ((r->end != 0 || reg_read(ctxt, VCPU_REGS_RCX) & 0x3ff) &&
5369 (r->end == 0 || r->end != r->pos)) {
5370 /*
5371 * Reset read cache. Usually happens before
5372 * decode, but since instruction is restarted
5373 * we have to do it here.
5374 */
5375 ctxt->mem_read.end = 0;
5376 writeback_registers(ctxt);
5377 return EMULATION_RESTART;
5378 }
5379 goto done; /* skip rip writeback */
5380 }
5381 ctxt->eflags &= ~X86_EFLAGS_RF;
5382 }
5383
5384 ctxt->eip = ctxt->_eip;
5385 if (ctxt->mode != X86EMUL_MODE_PROT64)
5386 ctxt->eip = (u32)ctxt->_eip;
5387
5388 done:
5389 if (rc == X86EMUL_PROPAGATE_FAULT) {
5390 if (KVM_EMULATOR_BUG_ON(ctxt->exception.vector > 0x1f, ctxt))
5391 return EMULATION_FAILED;
5392 ctxt->have_exception = true;
5393 }
5394 if (rc == X86EMUL_INTERCEPTED)
5395 return EMULATION_INTERCEPTED;
5396
5397 if (rc == X86EMUL_CONTINUE)
5398 writeback_registers(ctxt);
5399
5400 return (rc == X86EMUL_UNHANDLEABLE) ? EMULATION_FAILED : EMULATION_OK;
5401
5402 twobyte_insn:
5403 switch (ctxt->b) {
5404 case 0x09: /* wbinvd */
5405 (ctxt->ops->wbinvd)(ctxt);
5406 break;
5407 case 0x08: /* invd */
5408 case 0x0d: /* GrpP (prefetch) */
5409 case 0x18: /* Grp16 (prefetch/nop) */
5410 case 0x1f: /* nop */
5411 break;
5412 case 0x20: /* mov cr, reg */
5413 ctxt->dst.val = ops->get_cr(ctxt, ctxt->modrm_reg);
5414 break;
5415 case 0x21: /* mov from dr to reg */
5416 ctxt->dst.val = ops->get_dr(ctxt, ctxt->modrm_reg);
5417 break;
5418 case 0x40 ... 0x4f: /* cmov */
5419 if (test_cc(ctxt->b, ctxt->eflags))
5420 ctxt->dst.val = ctxt->src.val;
5421 else if (ctxt->op_bytes != 4)
5422 ctxt->dst.type = OP_NONE; /* no writeback */
5423 break;
5424 case 0x80 ... 0x8f: /* jnz rel, etc*/
5425 if (test_cc(ctxt->b, ctxt->eflags))
5426 rc = jmp_rel(ctxt, ctxt->src.val);
5427 break;
5428 case 0x90 ... 0x9f: /* setcc r/m8 */
5429 ctxt->dst.val = test_cc(ctxt->b, ctxt->eflags);
5430 break;
5431 case 0xb6 ... 0xb7: /* movzx */
5432 ctxt->dst.bytes = ctxt->op_bytes;
5433 ctxt->dst.val = (ctxt->src.bytes == 1) ? (u8) ctxt->src.val
5434 : (u16) ctxt->src.val;
5435 break;
5436 case 0xbe ... 0xbf: /* movsx */
5437 ctxt->dst.bytes = ctxt->op_bytes;
5438 ctxt->dst.val = (ctxt->src.bytes == 1) ? (s8) ctxt->src.val :
5439 (s16) ctxt->src.val;
5440 break;
5441 default:
5442 goto cannot_emulate;
5443 }
5444
5445 threebyte_insn:
5446
5447 if (rc != X86EMUL_CONTINUE)
5448 goto done;
5449
5450 goto writeback;
5451
5452 cannot_emulate:
5453 return EMULATION_FAILED;
5454 }
5455
emulator_invalidate_register_cache(struct x86_emulate_ctxt * ctxt)5456 void emulator_invalidate_register_cache(struct x86_emulate_ctxt *ctxt)
5457 {
5458 invalidate_registers(ctxt);
5459 }
5460
emulator_writeback_register_cache(struct x86_emulate_ctxt * ctxt)5461 void emulator_writeback_register_cache(struct x86_emulate_ctxt *ctxt)
5462 {
5463 writeback_registers(ctxt);
5464 }
5465
emulator_can_use_gpa(struct x86_emulate_ctxt * ctxt)5466 bool emulator_can_use_gpa(struct x86_emulate_ctxt *ctxt)
5467 {
5468 if (ctxt->rep_prefix && (ctxt->d & String))
5469 return false;
5470
5471 if (ctxt->d & TwoMemOp)
5472 return false;
5473
5474 return true;
5475 }
5476