xref: /linux/arch/arm/vfp/vfp.h (revision a1c613ae4c322ddd58d5a8539dbfba2a0380a8c0)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  *  linux/arch/arm/vfp/vfp.h
4  *
5  *  Copyright (C) 2004 ARM Limited.
6  *  Written by Deep Blue Solutions Limited.
7  */
8 
vfp_shiftright32jamming(u32 val,unsigned int shift)9 static inline u32 vfp_shiftright32jamming(u32 val, unsigned int shift)
10 {
11 	if (shift) {
12 		if (shift < 32)
13 			val = val >> shift | ((val << (32 - shift)) != 0);
14 		else
15 			val = val != 0;
16 	}
17 	return val;
18 }
19 
vfp_shiftright64jamming(u64 val,unsigned int shift)20 static inline u64 vfp_shiftright64jamming(u64 val, unsigned int shift)
21 {
22 	if (shift) {
23 		if (shift < 64)
24 			val = val >> shift | ((val << (64 - shift)) != 0);
25 		else
26 			val = val != 0;
27 	}
28 	return val;
29 }
30 
vfp_hi64to32jamming(u64 val)31 static inline u32 vfp_hi64to32jamming(u64 val)
32 {
33 	u32 v;
34 
35 	asm(
36 	"cmp	%Q1, #1		@ vfp_hi64to32jamming\n\t"
37 	"movcc	%0, %R1\n\t"
38 	"orrcs	%0, %R1, #1"
39 	: "=r" (v) : "r" (val) : "cc");
40 
41 	return v;
42 }
43 
add128(u64 * resh,u64 * resl,u64 nh,u64 nl,u64 mh,u64 ml)44 static inline void add128(u64 *resh, u64 *resl, u64 nh, u64 nl, u64 mh, u64 ml)
45 {
46 	asm(	"adds	%Q0, %Q2, %Q4\n\t"
47 		"adcs	%R0, %R2, %R4\n\t"
48 		"adcs	%Q1, %Q3, %Q5\n\t"
49 		"adc	%R1, %R3, %R5"
50 	    : "=r" (nl), "=r" (nh)
51 	    : "0" (nl), "1" (nh), "r" (ml), "r" (mh)
52 	    : "cc");
53 	*resh = nh;
54 	*resl = nl;
55 }
56 
sub128(u64 * resh,u64 * resl,u64 nh,u64 nl,u64 mh,u64 ml)57 static inline void sub128(u64 *resh, u64 *resl, u64 nh, u64 nl, u64 mh, u64 ml)
58 {
59 	asm(	"subs	%Q0, %Q2, %Q4\n\t"
60 		"sbcs	%R0, %R2, %R4\n\t"
61 		"sbcs	%Q1, %Q3, %Q5\n\t"
62 		"sbc	%R1, %R3, %R5\n\t"
63 	    : "=r" (nl), "=r" (nh)
64 	    : "0" (nl), "1" (nh), "r" (ml), "r" (mh)
65 	    : "cc");
66 	*resh = nh;
67 	*resl = nl;
68 }
69 
mul64to128(u64 * resh,u64 * resl,u64 n,u64 m)70 static inline void mul64to128(u64 *resh, u64 *resl, u64 n, u64 m)
71 {
72 	u32 nh, nl, mh, ml;
73 	u64 rh, rma, rmb, rl;
74 
75 	nl = n;
76 	ml = m;
77 	rl = (u64)nl * ml;
78 
79 	nh = n >> 32;
80 	rma = (u64)nh * ml;
81 
82 	mh = m >> 32;
83 	rmb = (u64)nl * mh;
84 	rma += rmb;
85 
86 	rh = (u64)nh * mh;
87 	rh += ((u64)(rma < rmb) << 32) + (rma >> 32);
88 
89 	rma <<= 32;
90 	rl += rma;
91 	rh += (rl < rma);
92 
93 	*resl = rl;
94 	*resh = rh;
95 }
96 
shift64left(u64 * resh,u64 * resl,u64 n)97 static inline void shift64left(u64 *resh, u64 *resl, u64 n)
98 {
99 	*resh = n >> 63;
100 	*resl = n << 1;
101 }
102 
vfp_hi64multiply64(u64 n,u64 m)103 static inline u64 vfp_hi64multiply64(u64 n, u64 m)
104 {
105 	u64 rh, rl;
106 	mul64to128(&rh, &rl, n, m);
107 	return rh | (rl != 0);
108 }
109 
vfp_estimate_div128to64(u64 nh,u64 nl,u64 m)110 static inline u64 vfp_estimate_div128to64(u64 nh, u64 nl, u64 m)
111 {
112 	u64 mh, ml, remh, reml, termh, terml, z;
113 
114 	if (nh >= m)
115 		return ~0ULL;
116 	mh = m >> 32;
117 	if (mh << 32 <= nh) {
118 		z = 0xffffffff00000000ULL;
119 	} else {
120 		z = nh;
121 		do_div(z, mh);
122 		z <<= 32;
123 	}
124 	mul64to128(&termh, &terml, m, z);
125 	sub128(&remh, &reml, nh, nl, termh, terml);
126 	ml = m << 32;
127 	while ((s64)remh < 0) {
128 		z -= 0x100000000ULL;
129 		add128(&remh, &reml, remh, reml, mh, ml);
130 	}
131 	remh = (remh << 32) | (reml >> 32);
132 	if (mh << 32 <= remh) {
133 		z |= 0xffffffff;
134 	} else {
135 		do_div(remh, mh);
136 		z |= remh;
137 	}
138 	return z;
139 }
140 
141 /*
142  * Operations on unpacked elements
143  */
144 #define vfp_sign_negate(sign)	(sign ^ 0x8000)
145 
146 /*
147  * Single-precision
148  */
149 struct vfp_single {
150 	s16	exponent;
151 	u16	sign;
152 	u32	significand;
153 };
154 
155 asmlinkage s32 vfp_get_float(unsigned int reg);
156 asmlinkage void vfp_put_float(s32 val, unsigned int reg);
157 
158 /*
159  * VFP_SINGLE_MANTISSA_BITS - number of bits in the mantissa
160  * VFP_SINGLE_EXPONENT_BITS - number of bits in the exponent
161  * VFP_SINGLE_LOW_BITS - number of low bits in the unpacked significand
162  *  which are not propagated to the float upon packing.
163  */
164 #define VFP_SINGLE_MANTISSA_BITS	(23)
165 #define VFP_SINGLE_EXPONENT_BITS	(8)
166 #define VFP_SINGLE_LOW_BITS		(32 - VFP_SINGLE_MANTISSA_BITS - 2)
167 #define VFP_SINGLE_LOW_BITS_MASK	((1 << VFP_SINGLE_LOW_BITS) - 1)
168 
169 /*
170  * The bit in an unpacked float which indicates that it is a quiet NaN
171  */
172 #define VFP_SINGLE_SIGNIFICAND_QNAN	(1 << (VFP_SINGLE_MANTISSA_BITS - 1 + VFP_SINGLE_LOW_BITS))
173 
174 /*
175  * Operations on packed single-precision numbers
176  */
177 #define vfp_single_packed_sign(v)	((v) & 0x80000000)
178 #define vfp_single_packed_negate(v)	((v) ^ 0x80000000)
179 #define vfp_single_packed_abs(v)	((v) & ~0x80000000)
180 #define vfp_single_packed_exponent(v)	(((v) >> VFP_SINGLE_MANTISSA_BITS) & ((1 << VFP_SINGLE_EXPONENT_BITS) - 1))
181 #define vfp_single_packed_mantissa(v)	((v) & ((1 << VFP_SINGLE_MANTISSA_BITS) - 1))
182 
183 /*
184  * Unpack a single-precision float.  Note that this returns the magnitude
185  * of the single-precision float mantissa with the 1. if necessary,
186  * aligned to bit 30.
187  */
vfp_single_unpack(struct vfp_single * s,s32 val)188 static inline void vfp_single_unpack(struct vfp_single *s, s32 val)
189 {
190 	u32 significand;
191 
192 	s->sign = vfp_single_packed_sign(val) >> 16,
193 	s->exponent = vfp_single_packed_exponent(val);
194 
195 	significand = (u32) val;
196 	significand = (significand << (32 - VFP_SINGLE_MANTISSA_BITS)) >> 2;
197 	if (s->exponent && s->exponent != 255)
198 		significand |= 0x40000000;
199 	s->significand = significand;
200 }
201 
202 /*
203  * Re-pack a single-precision float.  This assumes that the float is
204  * already normalised such that the MSB is bit 30, _not_ bit 31.
205  */
vfp_single_pack(struct vfp_single * s)206 static inline s32 vfp_single_pack(struct vfp_single *s)
207 {
208 	u32 val;
209 	val = (s->sign << 16) +
210 	      (s->exponent << VFP_SINGLE_MANTISSA_BITS) +
211 	      (s->significand >> VFP_SINGLE_LOW_BITS);
212 	return (s32)val;
213 }
214 
215 #define VFP_NUMBER		(1<<0)
216 #define VFP_ZERO		(1<<1)
217 #define VFP_DENORMAL		(1<<2)
218 #define VFP_INFINITY		(1<<3)
219 #define VFP_NAN			(1<<4)
220 #define VFP_NAN_SIGNAL		(1<<5)
221 
222 #define VFP_QNAN		(VFP_NAN)
223 #define VFP_SNAN		(VFP_NAN|VFP_NAN_SIGNAL)
224 
vfp_single_type(struct vfp_single * s)225 static inline int vfp_single_type(struct vfp_single *s)
226 {
227 	int type = VFP_NUMBER;
228 	if (s->exponent == 255) {
229 		if (s->significand == 0)
230 			type = VFP_INFINITY;
231 		else if (s->significand & VFP_SINGLE_SIGNIFICAND_QNAN)
232 			type = VFP_QNAN;
233 		else
234 			type = VFP_SNAN;
235 	} else if (s->exponent == 0) {
236 		if (s->significand == 0)
237 			type |= VFP_ZERO;
238 		else
239 			type |= VFP_DENORMAL;
240 	}
241 	return type;
242 }
243 
244 #ifndef DEBUG
245 #define vfp_single_normaliseround(sd,vsd,fpscr,except,func) __vfp_single_normaliseround(sd,vsd,fpscr,except)
246 u32 __vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions);
247 #else
248 u32 vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions, const char *func);
249 #endif
250 
251 /*
252  * Double-precision
253  */
254 struct vfp_double {
255 	s16	exponent;
256 	u16	sign;
257 	u64	significand;
258 };
259 
260 /*
261  * VFP_REG_ZERO is a special register number for vfp_get_double
262  * which returns (double)0.0.  This is useful for the compare with
263  * zero instructions.
264  */
265 #ifdef CONFIG_VFPv3
266 #define VFP_REG_ZERO	32
267 #else
268 #define VFP_REG_ZERO	16
269 #endif
270 asmlinkage u64 vfp_get_double(unsigned int reg);
271 asmlinkage void vfp_put_double(u64 val, unsigned int reg);
272 
273 #define VFP_DOUBLE_MANTISSA_BITS	(52)
274 #define VFP_DOUBLE_EXPONENT_BITS	(11)
275 #define VFP_DOUBLE_LOW_BITS		(64 - VFP_DOUBLE_MANTISSA_BITS - 2)
276 #define VFP_DOUBLE_LOW_BITS_MASK	((1 << VFP_DOUBLE_LOW_BITS) - 1)
277 
278 /*
279  * The bit in an unpacked double which indicates that it is a quiet NaN
280  */
281 #define VFP_DOUBLE_SIGNIFICAND_QNAN	(1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1 + VFP_DOUBLE_LOW_BITS))
282 
283 /*
284  * Operations on packed single-precision numbers
285  */
286 #define vfp_double_packed_sign(v)	((v) & (1ULL << 63))
287 #define vfp_double_packed_negate(v)	((v) ^ (1ULL << 63))
288 #define vfp_double_packed_abs(v)	((v) & ~(1ULL << 63))
289 #define vfp_double_packed_exponent(v)	(((v) >> VFP_DOUBLE_MANTISSA_BITS) & ((1 << VFP_DOUBLE_EXPONENT_BITS) - 1))
290 #define vfp_double_packed_mantissa(v)	((v) & ((1ULL << VFP_DOUBLE_MANTISSA_BITS) - 1))
291 
292 /*
293  * Unpack a double-precision float.  Note that this returns the magnitude
294  * of the double-precision float mantissa with the 1. if necessary,
295  * aligned to bit 62.
296  */
vfp_double_unpack(struct vfp_double * s,s64 val)297 static inline void vfp_double_unpack(struct vfp_double *s, s64 val)
298 {
299 	u64 significand;
300 
301 	s->sign = vfp_double_packed_sign(val) >> 48;
302 	s->exponent = vfp_double_packed_exponent(val);
303 
304 	significand = (u64) val;
305 	significand = (significand << (64 - VFP_DOUBLE_MANTISSA_BITS)) >> 2;
306 	if (s->exponent && s->exponent != 2047)
307 		significand |= (1ULL << 62);
308 	s->significand = significand;
309 }
310 
311 /*
312  * Re-pack a double-precision float.  This assumes that the float is
313  * already normalised such that the MSB is bit 30, _not_ bit 31.
314  */
vfp_double_pack(struct vfp_double * s)315 static inline s64 vfp_double_pack(struct vfp_double *s)
316 {
317 	u64 val;
318 	val = ((u64)s->sign << 48) +
319 	      ((u64)s->exponent << VFP_DOUBLE_MANTISSA_BITS) +
320 	      (s->significand >> VFP_DOUBLE_LOW_BITS);
321 	return (s64)val;
322 }
323 
vfp_double_type(struct vfp_double * s)324 static inline int vfp_double_type(struct vfp_double *s)
325 {
326 	int type = VFP_NUMBER;
327 	if (s->exponent == 2047) {
328 		if (s->significand == 0)
329 			type = VFP_INFINITY;
330 		else if (s->significand & VFP_DOUBLE_SIGNIFICAND_QNAN)
331 			type = VFP_QNAN;
332 		else
333 			type = VFP_SNAN;
334 	} else if (s->exponent == 0) {
335 		if (s->significand == 0)
336 			type |= VFP_ZERO;
337 		else
338 			type |= VFP_DENORMAL;
339 	}
340 	return type;
341 }
342 
343 u32 vfp_double_normaliseround(int dd, struct vfp_double *vd, u32 fpscr, u32 exceptions, const char *func);
344 
345 u32 vfp_estimate_sqrt_significand(u32 exponent, u32 significand);
346 
347 /*
348  * A special flag to tell the normalisation code not to normalise.
349  */
350 #define VFP_NAN_FLAG	0x100
351 
352 /*
353  * A bit pattern used to indicate the initial (unset) value of the
354  * exception mask, in case nothing handles an instruction.  This
355  * doesn't include the NAN flag, which get masked out before
356  * we check for an error.
357  */
358 #define VFP_EXCEPTION_ERROR	((u32)-1 & ~VFP_NAN_FLAG)
359 
360 /*
361  * A flag to tell vfp instruction type.
362  *  OP_SCALAR - this operation always operates in scalar mode
363  *  OP_SD - the instruction exceptionally writes to a single precision result.
364  *  OP_DD - the instruction exceptionally writes to a double precision result.
365  *  OP_SM - the instruction exceptionally reads from a single precision operand.
366  */
367 #define OP_SCALAR	(1 << 0)
368 #define OP_SD		(1 << 1)
369 #define OP_DD		(1 << 1)
370 #define OP_SM		(1 << 2)
371 
372 struct op {
373 	u32 (* const fn)(int dd, int dn, int dm, u32 fpscr);
374 	u32 flags;
375 };
376 
377 asmlinkage void vfp_save_state(void *location, u32 fpexc);
378 asmlinkage u32 vfp_load_state(const void *location);
379