1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/oom_kill.c
4 *
5 * Copyright (C) 1998,2000 Rik van Riel
6 * Thanks go out to Claus Fischer for some serious inspiration and
7 * for goading me into coding this file...
8 * Copyright (C) 2010 Google, Inc.
9 * Rewritten by David Rientjes
10 *
11 * The routines in this file are used to kill a process when
12 * we're seriously out of memory. This gets called from __alloc_pages()
13 * in mm/page_alloc.c when we really run out of memory.
14 *
15 * Since we won't call these routines often (on a well-configured
16 * machine) this file will double as a 'coding guide' and a signpost
17 * for newbie kernel hackers. It features several pointers to major
18 * kernel subsystems and hints as to where to find out what things do.
19 */
20
21 #include <linux/oom.h>
22 #include <linux/mm.h>
23 #include <linux/err.h>
24 #include <linux/gfp.h>
25 #include <linux/sched.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/task.h>
28 #include <linux/sched/debug.h>
29 #include <linux/swap.h>
30 #include <linux/syscalls.h>
31 #include <linux/timex.h>
32 #include <linux/jiffies.h>
33 #include <linux/cpuset.h>
34 #include <linux/export.h>
35 #include <linux/notifier.h>
36 #include <linux/memcontrol.h>
37 #include <linux/mempolicy.h>
38 #include <linux/security.h>
39 #include <linux/ptrace.h>
40 #include <linux/freezer.h>
41 #include <linux/ftrace.h>
42 #include <linux/ratelimit.h>
43 #include <linux/kthread.h>
44 #include <linux/init.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/cred.h>
47 #include <linux/nmi.h>
48
49 #include <asm/tlb.h>
50 #include "internal.h"
51 #include "slab.h"
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/oom.h>
55
56 static int sysctl_panic_on_oom;
57 static int sysctl_oom_kill_allocating_task;
58 static int sysctl_oom_dump_tasks = 1;
59
60 /*
61 * Serializes oom killer invocations (out_of_memory()) from all contexts to
62 * prevent from over eager oom killing (e.g. when the oom killer is invoked
63 * from different domains).
64 *
65 * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled
66 * and mark_oom_victim
67 */
68 DEFINE_MUTEX(oom_lock);
69 /* Serializes oom_score_adj and oom_score_adj_min updates */
70 DEFINE_MUTEX(oom_adj_mutex);
71
is_memcg_oom(struct oom_control * oc)72 static inline bool is_memcg_oom(struct oom_control *oc)
73 {
74 return oc->memcg != NULL;
75 }
76
77 #ifdef CONFIG_NUMA
78 /**
79 * oom_cpuset_eligible() - check task eligibility for kill
80 * @start: task struct of which task to consider
81 * @oc: pointer to struct oom_control
82 *
83 * Task eligibility is determined by whether or not a candidate task, @tsk,
84 * shares the same mempolicy nodes as current if it is bound by such a policy
85 * and whether or not it has the same set of allowed cpuset nodes.
86 *
87 * This function is assuming oom-killer context and 'current' has triggered
88 * the oom-killer.
89 */
oom_cpuset_eligible(struct task_struct * start,struct oom_control * oc)90 static bool oom_cpuset_eligible(struct task_struct *start,
91 struct oom_control *oc)
92 {
93 struct task_struct *tsk;
94 bool ret = false;
95 const nodemask_t *mask = oc->nodemask;
96
97 rcu_read_lock();
98 for_each_thread(start, tsk) {
99 if (mask) {
100 /*
101 * If this is a mempolicy constrained oom, tsk's
102 * cpuset is irrelevant. Only return true if its
103 * mempolicy intersects current, otherwise it may be
104 * needlessly killed.
105 */
106 ret = mempolicy_in_oom_domain(tsk, mask);
107 } else {
108 /*
109 * This is not a mempolicy constrained oom, so only
110 * check the mems of tsk's cpuset.
111 */
112 ret = cpuset_mems_allowed_intersects(current, tsk);
113 }
114 if (ret)
115 break;
116 }
117 rcu_read_unlock();
118
119 return ret;
120 }
121 #else
oom_cpuset_eligible(struct task_struct * tsk,struct oom_control * oc)122 static bool oom_cpuset_eligible(struct task_struct *tsk, struct oom_control *oc)
123 {
124 return true;
125 }
126 #endif /* CONFIG_NUMA */
127
128 /*
129 * The process p may have detached its own ->mm while exiting or through
130 * kthread_use_mm(), but one or more of its subthreads may still have a valid
131 * pointer. Return p, or any of its subthreads with a valid ->mm, with
132 * task_lock() held.
133 */
find_lock_task_mm(struct task_struct * p)134 struct task_struct *find_lock_task_mm(struct task_struct *p)
135 {
136 struct task_struct *t;
137
138 rcu_read_lock();
139
140 for_each_thread(p, t) {
141 task_lock(t);
142 if (likely(t->mm))
143 goto found;
144 task_unlock(t);
145 }
146 t = NULL;
147 found:
148 rcu_read_unlock();
149
150 return t;
151 }
152
153 /*
154 * order == -1 means the oom kill is required by sysrq, otherwise only
155 * for display purposes.
156 */
is_sysrq_oom(struct oom_control * oc)157 static inline bool is_sysrq_oom(struct oom_control *oc)
158 {
159 return oc->order == -1;
160 }
161
162 /* return true if the task is not adequate as candidate victim task. */
oom_unkillable_task(struct task_struct * p)163 static bool oom_unkillable_task(struct task_struct *p)
164 {
165 if (is_global_init(p))
166 return true;
167 if (p->flags & PF_KTHREAD)
168 return true;
169 return false;
170 }
171
172 /*
173 * Check whether unreclaimable slab amount is greater than
174 * all user memory(LRU pages).
175 * dump_unreclaimable_slab() could help in the case that
176 * oom due to too much unreclaimable slab used by kernel.
177 */
should_dump_unreclaim_slab(void)178 static bool should_dump_unreclaim_slab(void)
179 {
180 unsigned long nr_lru;
181
182 nr_lru = global_node_page_state(NR_ACTIVE_ANON) +
183 global_node_page_state(NR_INACTIVE_ANON) +
184 global_node_page_state(NR_ACTIVE_FILE) +
185 global_node_page_state(NR_INACTIVE_FILE) +
186 global_node_page_state(NR_ISOLATED_ANON) +
187 global_node_page_state(NR_ISOLATED_FILE) +
188 global_node_page_state(NR_UNEVICTABLE);
189
190 return (global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B) > nr_lru);
191 }
192
193 /**
194 * oom_badness - heuristic function to determine which candidate task to kill
195 * @p: task struct of which task we should calculate
196 * @totalpages: total present RAM allowed for page allocation
197 *
198 * The heuristic for determining which task to kill is made to be as simple and
199 * predictable as possible. The goal is to return the highest value for the
200 * task consuming the most memory to avoid subsequent oom failures.
201 */
oom_badness(struct task_struct * p,unsigned long totalpages)202 long oom_badness(struct task_struct *p, unsigned long totalpages)
203 {
204 long points;
205 long adj;
206
207 if (oom_unkillable_task(p))
208 return LONG_MIN;
209
210 p = find_lock_task_mm(p);
211 if (!p)
212 return LONG_MIN;
213
214 /*
215 * Do not even consider tasks which are explicitly marked oom
216 * unkillable or have been already oom reaped or the are in
217 * the middle of vfork
218 */
219 adj = (long)p->signal->oom_score_adj;
220 if (adj == OOM_SCORE_ADJ_MIN ||
221 mm_flags_test(MMF_OOM_SKIP, p->mm) ||
222 in_vfork(p)) {
223 task_unlock(p);
224 return LONG_MIN;
225 }
226
227 /*
228 * The baseline for the badness score is the proportion of RAM that each
229 * task's rss, pagetable and swap space use.
230 */
231 points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
232 mm_pgtables_bytes(p->mm) / PAGE_SIZE;
233 task_unlock(p);
234
235 /* Normalize to oom_score_adj units */
236 adj *= totalpages / 1000;
237 points += adj;
238
239 return points;
240 }
241
242 static const char * const oom_constraint_text[] = {
243 [CONSTRAINT_NONE] = "CONSTRAINT_NONE",
244 [CONSTRAINT_CPUSET] = "CONSTRAINT_CPUSET",
245 [CONSTRAINT_MEMORY_POLICY] = "CONSTRAINT_MEMORY_POLICY",
246 [CONSTRAINT_MEMCG] = "CONSTRAINT_MEMCG",
247 };
248
249 /*
250 * Determine the type of allocation constraint.
251 */
constrained_alloc(struct oom_control * oc)252 static enum oom_constraint constrained_alloc(struct oom_control *oc)
253 {
254 struct zone *zone;
255 struct zoneref *z;
256 enum zone_type highest_zoneidx = gfp_zone(oc->gfp_mask);
257 bool cpuset_limited = false;
258 int nid;
259
260 if (is_memcg_oom(oc)) {
261 oc->totalpages = mem_cgroup_get_max(oc->memcg) ?: 1;
262 return CONSTRAINT_MEMCG;
263 }
264
265 /* Default to all available memory */
266 oc->totalpages = totalram_pages() + total_swap_pages;
267
268 if (!IS_ENABLED(CONFIG_NUMA))
269 return CONSTRAINT_NONE;
270
271 if (!oc->zonelist)
272 return CONSTRAINT_NONE;
273 /*
274 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
275 * to kill current.We have to random task kill in this case.
276 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
277 */
278 if (oc->gfp_mask & __GFP_THISNODE)
279 return CONSTRAINT_NONE;
280
281 /*
282 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
283 * the page allocator means a mempolicy is in effect. Cpuset policy
284 * is enforced in get_page_from_freelist().
285 */
286 if (oc->nodemask &&
287 !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
288 oc->totalpages = total_swap_pages;
289 for_each_node_mask(nid, *oc->nodemask)
290 oc->totalpages += node_present_pages(nid);
291 return CONSTRAINT_MEMORY_POLICY;
292 }
293
294 /* Check this allocation failure is caused by cpuset's wall function */
295 for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
296 highest_zoneidx, oc->nodemask)
297 if (!cpuset_zone_allowed(zone, oc->gfp_mask))
298 cpuset_limited = true;
299
300 if (cpuset_limited) {
301 oc->totalpages = total_swap_pages;
302 for_each_node_mask(nid, cpuset_current_mems_allowed)
303 oc->totalpages += node_present_pages(nid);
304 return CONSTRAINT_CPUSET;
305 }
306 return CONSTRAINT_NONE;
307 }
308
oom_evaluate_task(struct task_struct * task,void * arg)309 static int oom_evaluate_task(struct task_struct *task, void *arg)
310 {
311 struct oom_control *oc = arg;
312 long points;
313
314 if (oom_unkillable_task(task))
315 goto next;
316
317 /* p may not have freeable memory in nodemask */
318 if (!is_memcg_oom(oc) && !oom_cpuset_eligible(task, oc))
319 goto next;
320
321 /*
322 * This task already has access to memory reserves and is being killed.
323 * Don't allow any other task to have access to the reserves unless
324 * the task has MMF_OOM_SKIP because chances that it would release
325 * any memory is quite low.
326 */
327 if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
328 if (mm_flags_test(MMF_OOM_SKIP, task->signal->oom_mm))
329 goto next;
330 goto abort;
331 }
332
333 /*
334 * If task is allocating a lot of memory and has been marked to be
335 * killed first if it triggers an oom, then select it.
336 */
337 if (oom_task_origin(task)) {
338 points = LONG_MAX;
339 goto select;
340 }
341
342 points = oom_badness(task, oc->totalpages);
343 if (points == LONG_MIN || points < oc->chosen_points)
344 goto next;
345
346 select:
347 if (oc->chosen)
348 put_task_struct(oc->chosen);
349 get_task_struct(task);
350 oc->chosen = task;
351 oc->chosen_points = points;
352 next:
353 return 0;
354 abort:
355 if (oc->chosen)
356 put_task_struct(oc->chosen);
357 oc->chosen = (void *)-1UL;
358 return 1;
359 }
360
361 /*
362 * Simple selection loop. We choose the process with the highest number of
363 * 'points'. In case scan was aborted, oc->chosen is set to -1.
364 */
select_bad_process(struct oom_control * oc)365 static void select_bad_process(struct oom_control *oc)
366 {
367 oc->chosen_points = LONG_MIN;
368
369 if (is_memcg_oom(oc))
370 mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
371 else {
372 struct task_struct *p;
373
374 rcu_read_lock();
375 for_each_process(p)
376 if (oom_evaluate_task(p, oc))
377 break;
378 rcu_read_unlock();
379 }
380 }
381
dump_task(struct task_struct * p,void * arg)382 static int dump_task(struct task_struct *p, void *arg)
383 {
384 struct oom_control *oc = arg;
385 struct task_struct *task;
386
387 if (oom_unkillable_task(p))
388 return 0;
389
390 /* p may not have freeable memory in nodemask */
391 if (!is_memcg_oom(oc) && !oom_cpuset_eligible(p, oc))
392 return 0;
393
394 task = find_lock_task_mm(p);
395 if (!task) {
396 /*
397 * All of p's threads have already detached their mm's. There's
398 * no need to report them; they can't be oom killed anyway.
399 */
400 return 0;
401 }
402
403 pr_info("[%7d] %5d %5d %8lu %8lu %8lu %8lu %9lu %8ld %8lu %5hd %s\n",
404 task->pid, from_kuid(&init_user_ns, task_uid(task)),
405 task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
406 get_mm_counter(task->mm, MM_ANONPAGES), get_mm_counter(task->mm, MM_FILEPAGES),
407 get_mm_counter(task->mm, MM_SHMEMPAGES), mm_pgtables_bytes(task->mm),
408 get_mm_counter(task->mm, MM_SWAPENTS),
409 task->signal->oom_score_adj, task->comm);
410 task_unlock(task);
411
412 return 0;
413 }
414
415 /**
416 * dump_tasks - dump current memory state of all system tasks
417 * @oc: pointer to struct oom_control
418 *
419 * Dumps the current memory state of all eligible tasks. Tasks not in the same
420 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
421 * are not shown.
422 * State information includes task's pid, uid, tgid, vm size, rss,
423 * pgtables_bytes, swapents, oom_score_adj value, and name.
424 */
dump_tasks(struct oom_control * oc)425 static void dump_tasks(struct oom_control *oc)
426 {
427 pr_info("Tasks state (memory values in pages):\n");
428 pr_info("[ pid ] uid tgid total_vm rss rss_anon rss_file rss_shmem pgtables_bytes swapents oom_score_adj name\n");
429
430 if (is_memcg_oom(oc))
431 mem_cgroup_scan_tasks(oc->memcg, dump_task, oc);
432 else {
433 struct task_struct *p;
434 int i = 0;
435
436 rcu_read_lock();
437 for_each_process(p) {
438 /* Avoid potential softlockup warning */
439 if ((++i & 1023) == 0)
440 touch_softlockup_watchdog();
441 dump_task(p, oc);
442 }
443 rcu_read_unlock();
444 }
445 }
446
dump_oom_victim(struct oom_control * oc,struct task_struct * victim)447 static void dump_oom_victim(struct oom_control *oc, struct task_struct *victim)
448 {
449 /* one line summary of the oom killer context. */
450 pr_info("oom-kill:constraint=%s,nodemask=%*pbl",
451 oom_constraint_text[oc->constraint],
452 nodemask_pr_args(oc->nodemask));
453 cpuset_print_current_mems_allowed();
454 mem_cgroup_print_oom_context(oc->memcg, victim);
455 pr_cont(",task=%s,pid=%d,uid=%d\n", victim->comm, victim->pid,
456 from_kuid(&init_user_ns, task_uid(victim)));
457 }
458
dump_header(struct oom_control * oc)459 static void dump_header(struct oom_control *oc)
460 {
461 pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n",
462 current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order,
463 current->signal->oom_score_adj);
464 if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
465 pr_warn("COMPACTION is disabled!!!\n");
466
467 dump_stack();
468 if (is_memcg_oom(oc))
469 mem_cgroup_print_oom_meminfo(oc->memcg);
470 else {
471 __show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask, gfp_zone(oc->gfp_mask));
472 if (should_dump_unreclaim_slab())
473 dump_unreclaimable_slab();
474 }
475 mem_cgroup_show_protected_memory(oc->memcg);
476 if (sysctl_oom_dump_tasks)
477 dump_tasks(oc);
478 }
479
480 /*
481 * Number of OOM victims in flight
482 */
483 static atomic_t oom_victims = ATOMIC_INIT(0);
484 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
485
486 static bool oom_killer_disabled __read_mostly;
487
488 /*
489 * task->mm can be NULL if the task is the exited group leader. So to
490 * determine whether the task is using a particular mm, we examine all the
491 * task's threads: if one of those is using this mm then this task was also
492 * using it.
493 */
process_shares_mm(const struct task_struct * p,const struct mm_struct * mm)494 bool process_shares_mm(const struct task_struct *p, const struct mm_struct *mm)
495 {
496 const struct task_struct *t;
497
498 for_each_thread(p, t) {
499 const struct mm_struct *t_mm = READ_ONCE(t->mm);
500 if (t_mm)
501 return t_mm == mm;
502 }
503 return false;
504 }
505
506 #ifdef CONFIG_MMU
507 /*
508 * OOM Reaper kernel thread which tries to reap the memory used by the OOM
509 * victim (if that is possible) to help the OOM killer to move on.
510 */
511 static struct task_struct *oom_reaper_th;
512 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
513 static struct task_struct *oom_reaper_list;
514 static DEFINE_SPINLOCK(oom_reaper_lock);
515
__oom_reap_task_mm(struct mm_struct * mm)516 static bool __oom_reap_task_mm(struct mm_struct *mm)
517 {
518 struct vm_area_struct *vma;
519 bool ret = true;
520 MA_STATE(mas, &mm->mm_mt, ULONG_MAX, ULONG_MAX);
521
522 /*
523 * Tell all users of get_user/copy_from_user etc... that the content
524 * is no longer stable. No barriers really needed because unmapping
525 * should imply barriers already and the reader would hit a page fault
526 * if it stumbled over a reaped memory.
527 */
528 mm_flags_set(MMF_UNSTABLE, mm);
529
530 /*
531 * It might start racing with the dying task and compete for shared
532 * resources - e.g. page table lock contention has been observed.
533 * Reduce those races by reaping the oom victim from the other end
534 * of the address space.
535 */
536 mas_for_each_rev(&mas, vma, 0) {
537 if (vma->vm_flags & (VM_HUGETLB|VM_PFNMAP))
538 continue;
539
540 /*
541 * Only anonymous pages have a good chance to be dropped
542 * without additional steps which we cannot afford as we
543 * are OOM already.
544 *
545 * We do not even care about fs backed pages because all
546 * which are reclaimable have already been reclaimed and
547 * we do not want to block exit_mmap by keeping mm ref
548 * count elevated without a good reason.
549 */
550 if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) {
551 struct mmu_notifier_range range;
552 struct mmu_gather tlb;
553
554 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0,
555 mm, vma->vm_start,
556 vma->vm_end);
557 tlb_gather_mmu(&tlb, mm);
558 if (mmu_notifier_invalidate_range_start_nonblock(&range)) {
559 tlb_finish_mmu(&tlb);
560 ret = false;
561 continue;
562 }
563 unmap_page_range(&tlb, vma, range.start, range.end, NULL);
564 mmu_notifier_invalidate_range_end(&range);
565 tlb_finish_mmu(&tlb);
566 }
567 }
568
569 return ret;
570 }
571
572 /*
573 * Reaps the address space of the given task.
574 *
575 * Returns true on success and false if none or part of the address space
576 * has been reclaimed and the caller should retry later.
577 */
oom_reap_task_mm(struct task_struct * tsk,struct mm_struct * mm)578 static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
579 {
580 bool ret = true;
581
582 if (!mmap_read_trylock(mm)) {
583 trace_skip_task_reaping(tsk->pid);
584 return false;
585 }
586
587 /*
588 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't
589 * work on the mm anymore. The check for MMF_OOM_SKIP must run
590 * under mmap_lock for reading because it serializes against the
591 * mmap_write_lock();mmap_write_unlock() cycle in exit_mmap().
592 */
593 if (mm_flags_test(MMF_OOM_SKIP, mm)) {
594 trace_skip_task_reaping(tsk->pid);
595 goto out_unlock;
596 }
597
598 trace_start_task_reaping(tsk->pid);
599
600 /* failed to reap part of the address space. Try again later */
601 ret = __oom_reap_task_mm(mm);
602 if (!ret)
603 goto out_finish;
604
605 pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
606 task_pid_nr(tsk), tsk->comm,
607 K(get_mm_counter(mm, MM_ANONPAGES)),
608 K(get_mm_counter(mm, MM_FILEPAGES)),
609 K(get_mm_counter(mm, MM_SHMEMPAGES)));
610 out_finish:
611 trace_finish_task_reaping(tsk->pid);
612 out_unlock:
613 mmap_read_unlock(mm);
614
615 return ret;
616 }
617
618 #define MAX_OOM_REAP_RETRIES 10
oom_reap_task(struct task_struct * tsk)619 static void oom_reap_task(struct task_struct *tsk)
620 {
621 int attempts = 0;
622 struct mm_struct *mm = tsk->signal->oom_mm;
623
624 /* Retry the mmap_read_trylock(mm) a few times */
625 while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm))
626 schedule_timeout_idle(HZ/10);
627
628 if (attempts <= MAX_OOM_REAP_RETRIES ||
629 mm_flags_test(MMF_OOM_SKIP, mm))
630 goto done;
631
632 pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
633 task_pid_nr(tsk), tsk->comm);
634 sched_show_task(tsk);
635 debug_show_all_locks();
636
637 done:
638 tsk->oom_reaper_list = NULL;
639
640 /*
641 * Hide this mm from OOM killer because it has been either reaped or
642 * somebody can't call mmap_write_unlock(mm).
643 */
644 mm_flags_set(MMF_OOM_SKIP, mm);
645
646 /* Drop a reference taken by queue_oom_reaper */
647 put_task_struct(tsk);
648 }
649
oom_reaper(void * unused)650 static int oom_reaper(void *unused)
651 {
652 set_freezable();
653
654 while (true) {
655 struct task_struct *tsk = NULL;
656
657 wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
658 spin_lock_irq(&oom_reaper_lock);
659 if (oom_reaper_list != NULL) {
660 tsk = oom_reaper_list;
661 oom_reaper_list = tsk->oom_reaper_list;
662 }
663 spin_unlock_irq(&oom_reaper_lock);
664
665 if (tsk)
666 oom_reap_task(tsk);
667 }
668
669 return 0;
670 }
671
wake_oom_reaper(struct timer_list * timer)672 static void wake_oom_reaper(struct timer_list *timer)
673 {
674 struct task_struct *tsk = container_of(timer, struct task_struct,
675 oom_reaper_timer);
676 struct mm_struct *mm = tsk->signal->oom_mm;
677 unsigned long flags;
678
679 /* The victim managed to terminate on its own - see exit_mmap */
680 if (mm_flags_test(MMF_OOM_SKIP, mm)) {
681 put_task_struct(tsk);
682 return;
683 }
684
685 spin_lock_irqsave(&oom_reaper_lock, flags);
686 tsk->oom_reaper_list = oom_reaper_list;
687 oom_reaper_list = tsk;
688 spin_unlock_irqrestore(&oom_reaper_lock, flags);
689 trace_wake_reaper(tsk->pid);
690 wake_up(&oom_reaper_wait);
691 }
692
693 /*
694 * Give the OOM victim time to exit naturally before invoking the oom_reaping.
695 * The timers timeout is arbitrary... the longer it is, the longer the worst
696 * case scenario for the OOM can take. If it is too small, the oom_reaper can
697 * get in the way and release resources needed by the process exit path.
698 * e.g. The futex robust list can sit in Anon|Private memory that gets reaped
699 * before the exit path is able to wake the futex waiters.
700 */
701 #define OOM_REAPER_DELAY (2*HZ)
queue_oom_reaper(struct task_struct * tsk)702 static void queue_oom_reaper(struct task_struct *tsk)
703 {
704 /* mm is already queued? */
705 if (mm_flags_test_and_set(MMF_OOM_REAP_QUEUED, tsk->signal->oom_mm))
706 return;
707
708 get_task_struct(tsk);
709 timer_setup(&tsk->oom_reaper_timer, wake_oom_reaper, 0);
710 tsk->oom_reaper_timer.expires = jiffies + OOM_REAPER_DELAY;
711 add_timer(&tsk->oom_reaper_timer);
712 }
713
714 #ifdef CONFIG_SYSCTL
715 static const struct ctl_table vm_oom_kill_table[] = {
716 {
717 .procname = "panic_on_oom",
718 .data = &sysctl_panic_on_oom,
719 .maxlen = sizeof(sysctl_panic_on_oom),
720 .mode = 0644,
721 .proc_handler = proc_dointvec_minmax,
722 .extra1 = SYSCTL_ZERO,
723 .extra2 = SYSCTL_TWO,
724 },
725 {
726 .procname = "oom_kill_allocating_task",
727 .data = &sysctl_oom_kill_allocating_task,
728 .maxlen = sizeof(sysctl_oom_kill_allocating_task),
729 .mode = 0644,
730 .proc_handler = proc_dointvec,
731 },
732 {
733 .procname = "oom_dump_tasks",
734 .data = &sysctl_oom_dump_tasks,
735 .maxlen = sizeof(sysctl_oom_dump_tasks),
736 .mode = 0644,
737 .proc_handler = proc_dointvec,
738 },
739 };
740 #endif
741
oom_init(void)742 static int __init oom_init(void)
743 {
744 oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
745 #ifdef CONFIG_SYSCTL
746 register_sysctl_init("vm", vm_oom_kill_table);
747 #endif
748 return 0;
749 }
subsys_initcall(oom_init)750 subsys_initcall(oom_init)
751 #else
752 static inline void queue_oom_reaper(struct task_struct *tsk)
753 {
754 }
755 #endif /* CONFIG_MMU */
756
757 /**
758 * mark_oom_victim - mark the given task as OOM victim
759 * @tsk: task to mark
760 *
761 * Has to be called with oom_lock held and never after
762 * oom has been disabled already.
763 *
764 * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
765 * under task_lock or operate on the current).
766 */
767 static void mark_oom_victim(struct task_struct *tsk)
768 {
769 const struct cred *cred;
770 struct mm_struct *mm = tsk->mm;
771
772 WARN_ON(oom_killer_disabled);
773 /* OOM killer might race with memcg OOM */
774 if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
775 return;
776
777 /* oom_mm is bound to the signal struct life time. */
778 if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm))
779 mmgrab(tsk->signal->oom_mm);
780
781 /*
782 * Make sure that the process is woken up from uninterruptible sleep
783 * if it is frozen because OOM killer wouldn't be able to free any
784 * memory and livelock. The freezer will thaw the tasks that are OOM
785 * victims regardless of the PM freezing and cgroup freezing states.
786 */
787 thaw_process(tsk);
788 atomic_inc(&oom_victims);
789 cred = get_task_cred(tsk);
790 trace_mark_victim(tsk, cred->uid.val);
791 put_cred(cred);
792 }
793
794 /**
795 * exit_oom_victim - note the exit of an OOM victim
796 */
exit_oom_victim(void)797 void exit_oom_victim(void)
798 {
799 clear_thread_flag(TIF_MEMDIE);
800
801 if (!atomic_dec_return(&oom_victims))
802 wake_up_all(&oom_victims_wait);
803 }
804
805 /**
806 * oom_killer_enable - enable OOM killer
807 */
oom_killer_enable(void)808 void oom_killer_enable(void)
809 {
810 oom_killer_disabled = false;
811 pr_info("OOM killer enabled.\n");
812 }
813
814 /**
815 * oom_killer_disable - disable OOM killer
816 * @timeout: maximum timeout to wait for oom victims in jiffies
817 *
818 * Forces all page allocations to fail rather than trigger OOM killer.
819 * Will block and wait until all OOM victims are killed or the given
820 * timeout expires.
821 *
822 * The function cannot be called when there are runnable user tasks because
823 * the userspace would see unexpected allocation failures as a result. Any
824 * new usage of this function should be consulted with MM people.
825 *
826 * Returns true if successful and false if the OOM killer cannot be
827 * disabled.
828 */
oom_killer_disable(signed long timeout)829 bool oom_killer_disable(signed long timeout)
830 {
831 signed long ret;
832
833 /*
834 * Make sure to not race with an ongoing OOM killer. Check that the
835 * current is not killed (possibly due to sharing the victim's memory).
836 */
837 if (mutex_lock_killable(&oom_lock))
838 return false;
839 oom_killer_disabled = true;
840 mutex_unlock(&oom_lock);
841
842 ret = wait_event_interruptible_timeout(oom_victims_wait,
843 !atomic_read(&oom_victims), timeout);
844 if (ret <= 0) {
845 oom_killer_enable();
846 return false;
847 }
848 pr_info("OOM killer disabled.\n");
849
850 return true;
851 }
852
__task_will_free_mem(struct task_struct * task)853 static inline bool __task_will_free_mem(struct task_struct *task)
854 {
855 struct signal_struct *sig = task->signal;
856
857 /*
858 * A coredumping process may sleep for an extended period in
859 * coredump_task_exit(), so the oom killer cannot assume that
860 * the process will promptly exit and release memory.
861 */
862 if (sig->core_state)
863 return false;
864
865 if (sig->flags & SIGNAL_GROUP_EXIT)
866 return true;
867
868 if (thread_group_empty(task) && (task->flags & PF_EXITING))
869 return true;
870
871 return false;
872 }
873
874 /*
875 * Checks whether the given task is dying or exiting and likely to
876 * release its address space. This means that all threads and processes
877 * sharing the same mm have to be killed or exiting.
878 * Caller has to make sure that task->mm is stable (hold task_lock or
879 * it operates on the current).
880 */
task_will_free_mem(struct task_struct * task)881 static bool task_will_free_mem(struct task_struct *task)
882 {
883 struct mm_struct *mm = task->mm;
884 struct task_struct *p;
885 bool ret = true;
886
887 /*
888 * Skip tasks without mm because it might have passed its exit_mm and
889 * exit_oom_victim. oom_reaper could have rescued that but do not rely
890 * on that for now. We can consider find_lock_task_mm in future.
891 */
892 if (!mm)
893 return false;
894
895 if (!__task_will_free_mem(task))
896 return false;
897
898 /*
899 * This task has already been drained by the oom reaper so there are
900 * only small chances it will free some more
901 */
902 if (mm_flags_test(MMF_OOM_SKIP, mm))
903 return false;
904
905 if (atomic_read(&mm->mm_users) <= 1)
906 return true;
907
908 /*
909 * Make sure that all tasks which share the mm with the given tasks
910 * are dying as well to make sure that a) nobody pins its mm and
911 * b) the task is also reapable by the oom reaper.
912 */
913 rcu_read_lock();
914 for_each_process(p) {
915 if (!process_shares_mm(p, mm))
916 continue;
917 if (same_thread_group(task, p))
918 continue;
919 ret = __task_will_free_mem(p);
920 if (!ret)
921 break;
922 }
923 rcu_read_unlock();
924
925 return ret;
926 }
927
__oom_kill_process(struct task_struct * victim,const char * message)928 static void __oom_kill_process(struct task_struct *victim, const char *message)
929 {
930 struct task_struct *p;
931 struct mm_struct *mm;
932 bool can_oom_reap = true;
933
934 p = find_lock_task_mm(victim);
935 if (!p) {
936 pr_info("%s: OOM victim %d (%s) is already exiting. Skip killing the task\n",
937 message, task_pid_nr(victim), victim->comm);
938 put_task_struct(victim);
939 return;
940 } else if (victim != p) {
941 get_task_struct(p);
942 put_task_struct(victim);
943 victim = p;
944 }
945
946 /* Get a reference to safely compare mm after task_unlock(victim) */
947 mm = victim->mm;
948 mmgrab(mm);
949
950 /* Raise event before sending signal: task reaper must see this */
951 count_vm_event(OOM_KILL);
952 memcg_memory_event_mm(mm, MEMCG_OOM_KILL);
953
954 /*
955 * We should send SIGKILL before granting access to memory reserves
956 * in order to prevent the OOM victim from depleting the memory
957 * reserves from the user space under its control.
958 */
959 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, victim, PIDTYPE_TGID);
960 mark_oom_victim(victim);
961 pr_err("%s: Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB, UID:%u pgtables:%lukB oom_score_adj:%hd\n",
962 message, task_pid_nr(victim), victim->comm, K(mm->total_vm),
963 K(get_mm_counter(mm, MM_ANONPAGES)),
964 K(get_mm_counter(mm, MM_FILEPAGES)),
965 K(get_mm_counter(mm, MM_SHMEMPAGES)),
966 from_kuid(&init_user_ns, task_uid(victim)),
967 mm_pgtables_bytes(mm) >> 10, victim->signal->oom_score_adj);
968 task_unlock(victim);
969
970 /*
971 * Kill all user processes sharing victim->mm in other thread groups, if
972 * any. They don't get access to memory reserves, though, to avoid
973 * depletion of all memory. This prevents mm->mmap_lock livelock when an
974 * oom killed thread cannot exit because it requires the semaphore and
975 * its contended by another thread trying to allocate memory itself.
976 * That thread will now get access to memory reserves since it has a
977 * pending fatal signal.
978 */
979 rcu_read_lock();
980 for_each_process(p) {
981 if (!process_shares_mm(p, mm))
982 continue;
983 if (same_thread_group(p, victim))
984 continue;
985 if (is_global_init(p)) {
986 can_oom_reap = false;
987 mm_flags_set(MMF_OOM_SKIP, mm);
988 pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
989 task_pid_nr(victim), victim->comm,
990 task_pid_nr(p), p->comm);
991 continue;
992 }
993 /*
994 * No kthread_use_mm() user needs to read from the userspace so
995 * we are ok to reap it.
996 */
997 if (unlikely(p->flags & PF_KTHREAD))
998 continue;
999 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_TGID);
1000 }
1001 rcu_read_unlock();
1002
1003 if (can_oom_reap)
1004 queue_oom_reaper(victim);
1005
1006 mmdrop(mm);
1007 put_task_struct(victim);
1008 }
1009
1010 /*
1011 * Kill provided task unless it's secured by setting
1012 * oom_score_adj to OOM_SCORE_ADJ_MIN.
1013 */
oom_kill_memcg_member(struct task_struct * task,void * message)1014 static int oom_kill_memcg_member(struct task_struct *task, void *message)
1015 {
1016 if (task->signal->oom_score_adj != OOM_SCORE_ADJ_MIN &&
1017 !is_global_init(task)) {
1018 get_task_struct(task);
1019 __oom_kill_process(task, message);
1020 }
1021 return 0;
1022 }
1023
oom_kill_process(struct oom_control * oc,const char * message)1024 static void oom_kill_process(struct oom_control *oc, const char *message)
1025 {
1026 struct task_struct *victim = oc->chosen;
1027 struct mem_cgroup *oom_group;
1028 static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1029 DEFAULT_RATELIMIT_BURST);
1030
1031 /*
1032 * If the task is already exiting, don't alarm the sysadmin or kill
1033 * its children or threads, just give it access to memory reserves
1034 * so it can die quickly
1035 */
1036 task_lock(victim);
1037 if (task_will_free_mem(victim)) {
1038 mark_oom_victim(victim);
1039 queue_oom_reaper(victim);
1040 task_unlock(victim);
1041 put_task_struct(victim);
1042 return;
1043 }
1044 task_unlock(victim);
1045
1046 if (__ratelimit(&oom_rs)) {
1047 dump_header(oc);
1048 dump_oom_victim(oc, victim);
1049 }
1050
1051 /*
1052 * Do we need to kill the entire memory cgroup?
1053 * Or even one of the ancestor memory cgroups?
1054 * Check this out before killing the victim task.
1055 */
1056 oom_group = mem_cgroup_get_oom_group(victim, oc->memcg);
1057
1058 __oom_kill_process(victim, message);
1059
1060 /*
1061 * If necessary, kill all tasks in the selected memory cgroup.
1062 */
1063 if (oom_group) {
1064 memcg_memory_event(oom_group, MEMCG_OOM_GROUP_KILL);
1065 mem_cgroup_print_oom_group(oom_group);
1066 mem_cgroup_scan_tasks(oom_group, oom_kill_memcg_member,
1067 (void *)message);
1068 mem_cgroup_put(oom_group);
1069 }
1070 }
1071
1072 /*
1073 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
1074 */
check_panic_on_oom(struct oom_control * oc)1075 static void check_panic_on_oom(struct oom_control *oc)
1076 {
1077 if (likely(!sysctl_panic_on_oom))
1078 return;
1079 if (sysctl_panic_on_oom != 2) {
1080 /*
1081 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
1082 * does not panic for cpuset, mempolicy, or memcg allocation
1083 * failures.
1084 */
1085 if (oc->constraint != CONSTRAINT_NONE)
1086 return;
1087 }
1088 /* Do not panic for oom kills triggered by sysrq */
1089 if (is_sysrq_oom(oc))
1090 return;
1091 dump_header(oc);
1092 panic("Out of memory: %s panic_on_oom is enabled\n",
1093 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
1094 }
1095
1096 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
1097
register_oom_notifier(struct notifier_block * nb)1098 int register_oom_notifier(struct notifier_block *nb)
1099 {
1100 return blocking_notifier_chain_register(&oom_notify_list, nb);
1101 }
1102 EXPORT_SYMBOL_GPL(register_oom_notifier);
1103
unregister_oom_notifier(struct notifier_block * nb)1104 int unregister_oom_notifier(struct notifier_block *nb)
1105 {
1106 return blocking_notifier_chain_unregister(&oom_notify_list, nb);
1107 }
1108 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
1109
1110 /**
1111 * out_of_memory - kill the "best" process when we run out of memory
1112 * @oc: pointer to struct oom_control
1113 *
1114 * If we run out of memory, we have the choice between either
1115 * killing a random task (bad), letting the system crash (worse)
1116 * OR try to be smart about which process to kill. Note that we
1117 * don't have to be perfect here, we just have to be good.
1118 */
out_of_memory(struct oom_control * oc)1119 bool out_of_memory(struct oom_control *oc)
1120 {
1121 unsigned long freed = 0;
1122
1123 if (oom_killer_disabled)
1124 return false;
1125
1126 if (!is_memcg_oom(oc)) {
1127 blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
1128 if (freed > 0 && !is_sysrq_oom(oc))
1129 /* Got some memory back in the last second. */
1130 return true;
1131 }
1132
1133 /*
1134 * If current has a pending SIGKILL or is exiting, then automatically
1135 * select it. The goal is to allow it to allocate so that it may
1136 * quickly exit and free its memory.
1137 */
1138 if (task_will_free_mem(current)) {
1139 mark_oom_victim(current);
1140 queue_oom_reaper(current);
1141 return true;
1142 }
1143
1144 /*
1145 * The OOM killer does not compensate for IO-less reclaim.
1146 * But mem_cgroup_oom() has to invoke the OOM killer even
1147 * if it is a GFP_NOFS allocation.
1148 */
1149 if (!(oc->gfp_mask & __GFP_FS) && !is_memcg_oom(oc))
1150 return true;
1151
1152 /*
1153 * Check if there were limitations on the allocation (only relevant for
1154 * NUMA and memcg) that may require different handling.
1155 */
1156 oc->constraint = constrained_alloc(oc);
1157 if (oc->constraint != CONSTRAINT_MEMORY_POLICY)
1158 oc->nodemask = NULL;
1159 check_panic_on_oom(oc);
1160
1161 if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
1162 current->mm && !oom_unkillable_task(current) &&
1163 oom_cpuset_eligible(current, oc) &&
1164 current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
1165 get_task_struct(current);
1166 oc->chosen = current;
1167 oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
1168 return true;
1169 }
1170
1171 select_bad_process(oc);
1172 /* Found nothing?!?! */
1173 if (!oc->chosen) {
1174 dump_header(oc);
1175 pr_warn("Out of memory and no killable processes...\n");
1176 /*
1177 * If we got here due to an actual allocation at the
1178 * system level, we cannot survive this and will enter
1179 * an endless loop in the allocator. Bail out now.
1180 */
1181 if (!is_sysrq_oom(oc) && !is_memcg_oom(oc))
1182 panic("System is deadlocked on memory\n");
1183 }
1184 if (oc->chosen && oc->chosen != (void *)-1UL)
1185 oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
1186 "Memory cgroup out of memory");
1187 return !!oc->chosen;
1188 }
1189
1190 /*
1191 * The pagefault handler calls here because some allocation has failed. We have
1192 * to take care of the memcg OOM here because this is the only safe context without
1193 * any locks held but let the oom killer triggered from the allocation context care
1194 * about the global OOM.
1195 */
pagefault_out_of_memory(void)1196 void pagefault_out_of_memory(void)
1197 {
1198 static DEFINE_RATELIMIT_STATE(pfoom_rs, DEFAULT_RATELIMIT_INTERVAL,
1199 DEFAULT_RATELIMIT_BURST);
1200
1201 if (mem_cgroup_oom_synchronize(true))
1202 return;
1203
1204 if (fatal_signal_pending(current))
1205 return;
1206
1207 if (__ratelimit(&pfoom_rs))
1208 pr_warn("Huh VM_FAULT_OOM leaked out to the #PF handler. Retrying PF\n");
1209 }
1210
SYSCALL_DEFINE2(process_mrelease,int,pidfd,unsigned int,flags)1211 SYSCALL_DEFINE2(process_mrelease, int, pidfd, unsigned int, flags)
1212 {
1213 #ifdef CONFIG_MMU
1214 struct mm_struct *mm = NULL;
1215 struct task_struct *task;
1216 struct task_struct *p;
1217 unsigned int f_flags;
1218 bool reap = false;
1219 long ret = 0;
1220
1221 if (flags)
1222 return -EINVAL;
1223
1224 task = pidfd_get_task(pidfd, &f_flags);
1225 if (IS_ERR(task))
1226 return PTR_ERR(task);
1227
1228 /*
1229 * Make sure to choose a thread which still has a reference to mm
1230 * during the group exit
1231 */
1232 p = find_lock_task_mm(task);
1233 if (!p) {
1234 ret = -ESRCH;
1235 goto put_task;
1236 }
1237
1238 mm = p->mm;
1239 mmgrab(mm);
1240
1241 if (task_will_free_mem(p))
1242 reap = true;
1243 else {
1244 /* Error only if the work has not been done already */
1245 if (!mm_flags_test(MMF_OOM_SKIP, mm))
1246 ret = -EINVAL;
1247 }
1248 task_unlock(p);
1249
1250 if (!reap)
1251 goto drop_mm;
1252
1253 if (mmap_read_lock_killable(mm)) {
1254 ret = -EINTR;
1255 goto drop_mm;
1256 }
1257 /*
1258 * Check MMF_OOM_SKIP again under mmap_read_lock protection to ensure
1259 * possible change in exit_mmap is seen
1260 */
1261 if (!mm_flags_test(MMF_OOM_SKIP, mm) && !__oom_reap_task_mm(mm))
1262 ret = -EAGAIN;
1263 mmap_read_unlock(mm);
1264
1265 drop_mm:
1266 mmdrop(mm);
1267 put_task:
1268 put_task_struct(task);
1269 return ret;
1270 #else
1271 return -ENOSYS;
1272 #endif /* CONFIG_MMU */
1273 }
1274