xref: /linux/drivers/ptp/ptp_ocp.c (revision 3f1c07fc21c68bd3bd2df9d2c9441f6485e934d9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2020 Facebook */
3 
4 #include <linux/bits.h>
5 #include <linux/err.h>
6 #include <linux/kernel.h>
7 #include <linux/module.h>
8 #include <linux/debugfs.h>
9 #include <linux/init.h>
10 #include <linux/pci.h>
11 #include <linux/serial_8250.h>
12 #include <linux/clkdev.h>
13 #include <linux/clk-provider.h>
14 #include <linux/platform_device.h>
15 #include <linux/platform_data/i2c-xiic.h>
16 #include <linux/platform_data/i2c-ocores.h>
17 #include <linux/ptp_clock_kernel.h>
18 #include <linux/spi/spi.h>
19 #include <linux/spi/xilinx_spi.h>
20 #include <linux/spi/altera.h>
21 #include <net/devlink.h>
22 #include <linux/i2c.h>
23 #include <linux/mtd/mtd.h>
24 #include <linux/nvmem-consumer.h>
25 #include <linux/crc16.h>
26 #include <linux/dpll.h>
27 
28 #define PCI_DEVICE_ID_META_TIMECARD		0x0400
29 
30 #define PCI_VENDOR_ID_CELESTICA			0x18d4
31 #define PCI_DEVICE_ID_CELESTICA_TIMECARD	0x1008
32 
33 #define PCI_VENDOR_ID_OROLIA			0x1ad7
34 #define PCI_DEVICE_ID_OROLIA_ARTCARD		0xa000
35 
36 #define PCI_VENDOR_ID_ADVA			0xad5a
37 #define PCI_DEVICE_ID_ADVA_TIMECARD		0x0400
38 
39 static struct class timecard_class = {
40 	.name		= "timecard",
41 };
42 
43 struct ocp_reg {
44 	u32	ctrl;
45 	u32	status;
46 	u32	select;
47 	u32	version;
48 	u32	time_ns;
49 	u32	time_sec;
50 	u32	__pad0[2];
51 	u32	adjust_ns;
52 	u32	adjust_sec;
53 	u32	__pad1[2];
54 	u32	offset_ns;
55 	u32	offset_window_ns;
56 	u32	__pad2[2];
57 	u32	drift_ns;
58 	u32	drift_window_ns;
59 	u32	__pad3[6];
60 	u32	servo_offset_p;
61 	u32	servo_offset_i;
62 	u32	servo_drift_p;
63 	u32	servo_drift_i;
64 	u32	status_offset;
65 	u32	status_drift;
66 };
67 
68 struct ptp_ocp_servo_conf {
69 	u32	servo_offset_p;
70 	u32	servo_offset_i;
71 	u32	servo_drift_p;
72 	u32	servo_drift_i;
73 };
74 
75 #define OCP_CTRL_ENABLE		BIT(0)
76 #define OCP_CTRL_ADJUST_TIME	BIT(1)
77 #define OCP_CTRL_ADJUST_OFFSET	BIT(2)
78 #define OCP_CTRL_ADJUST_DRIFT	BIT(3)
79 #define OCP_CTRL_ADJUST_SERVO	BIT(8)
80 #define OCP_CTRL_READ_TIME_REQ	BIT(30)
81 #define OCP_CTRL_READ_TIME_DONE	BIT(31)
82 
83 #define OCP_STATUS_IN_SYNC	BIT(0)
84 #define OCP_STATUS_IN_HOLDOVER	BIT(1)
85 
86 #define OCP_SELECT_CLK_NONE	0
87 #define OCP_SELECT_CLK_REG	0xfe
88 
89 struct tod_reg {
90 	u32	ctrl;
91 	u32	status;
92 	u32	uart_polarity;
93 	u32	version;
94 	u32	adj_sec;
95 	u32	__pad0[3];
96 	u32	uart_baud;
97 	u32	__pad1[3];
98 	u32	utc_status;
99 	u32	leap;
100 };
101 
102 #define TOD_CTRL_PROTOCOL	BIT(28)
103 #define TOD_CTRL_DISABLE_FMT_A	BIT(17)
104 #define TOD_CTRL_DISABLE_FMT_B	BIT(16)
105 #define TOD_CTRL_ENABLE		BIT(0)
106 #define TOD_CTRL_GNSS_MASK	GENMASK(3, 0)
107 #define TOD_CTRL_GNSS_SHIFT	24
108 
109 #define TOD_STATUS_UTC_MASK		GENMASK(7, 0)
110 #define TOD_STATUS_UTC_VALID		BIT(8)
111 #define TOD_STATUS_LEAP_ANNOUNCE	BIT(12)
112 #define TOD_STATUS_LEAP_VALID		BIT(16)
113 
114 struct ts_reg {
115 	u32	enable;
116 	u32	error;
117 	u32	polarity;
118 	u32	version;
119 	u32	__pad0[4];
120 	u32	cable_delay;
121 	u32	__pad1[3];
122 	u32	intr;
123 	u32	intr_mask;
124 	u32	event_count;
125 	u32	__pad2[1];
126 	u32	ts_count;
127 	u32	time_ns;
128 	u32	time_sec;
129 	u32	data_width;
130 	u32	data;
131 };
132 
133 struct pps_reg {
134 	u32	ctrl;
135 	u32	status;
136 	u32	__pad0[6];
137 	u32	cable_delay;
138 };
139 
140 #define PPS_STATUS_FILTER_ERR	BIT(0)
141 #define PPS_STATUS_SUPERV_ERR	BIT(1)
142 
143 struct img_reg {
144 	u32	version;
145 };
146 
147 struct gpio_reg {
148 	u32	gpio1;
149 	u32	__pad0;
150 	u32	gpio2;
151 	u32	__pad1;
152 };
153 
154 struct irig_master_reg {
155 	u32	ctrl;
156 	u32	status;
157 	u32	__pad0;
158 	u32	version;
159 	u32	adj_sec;
160 	u32	mode_ctrl;
161 };
162 
163 #define IRIG_M_CTRL_ENABLE	BIT(0)
164 
165 struct irig_slave_reg {
166 	u32	ctrl;
167 	u32	status;
168 	u32	__pad0;
169 	u32	version;
170 	u32	adj_sec;
171 	u32	mode_ctrl;
172 };
173 
174 #define IRIG_S_CTRL_ENABLE	BIT(0)
175 
176 struct dcf_master_reg {
177 	u32	ctrl;
178 	u32	status;
179 	u32	__pad0;
180 	u32	version;
181 	u32	adj_sec;
182 };
183 
184 #define DCF_M_CTRL_ENABLE	BIT(0)
185 
186 struct dcf_slave_reg {
187 	u32	ctrl;
188 	u32	status;
189 	u32	__pad0;
190 	u32	version;
191 	u32	adj_sec;
192 };
193 
194 #define DCF_S_CTRL_ENABLE	BIT(0)
195 
196 struct signal_reg {
197 	u32	enable;
198 	u32	status;
199 	u32	polarity;
200 	u32	version;
201 	u32	__pad0[4];
202 	u32	cable_delay;
203 	u32	__pad1[3];
204 	u32	intr;
205 	u32	intr_mask;
206 	u32	__pad2[2];
207 	u32	start_ns;
208 	u32	start_sec;
209 	u32	pulse_ns;
210 	u32	pulse_sec;
211 	u32	period_ns;
212 	u32	period_sec;
213 	u32	repeat_count;
214 };
215 
216 struct frequency_reg {
217 	u32	ctrl;
218 	u32	status;
219 };
220 
221 struct board_config_reg {
222 	u32 mro50_serial_activate;
223 };
224 
225 #define FREQ_STATUS_VALID	BIT(31)
226 #define FREQ_STATUS_ERROR	BIT(30)
227 #define FREQ_STATUS_OVERRUN	BIT(29)
228 #define FREQ_STATUS_MASK	GENMASK(23, 0)
229 
230 struct ptp_ocp_flash_info {
231 	const char *name;
232 	int pci_offset;
233 	int data_size;
234 	void *data;
235 };
236 
237 struct ptp_ocp_firmware_header {
238 	char magic[4];
239 	__be16 pci_vendor_id;
240 	__be16 pci_device_id;
241 	__be32 image_size;
242 	__be16 hw_revision;
243 	__be16 crc;
244 };
245 
246 #define OCP_FIRMWARE_MAGIC_HEADER "OCPC"
247 
248 struct ptp_ocp_i2c_info {
249 	const char *name;
250 	unsigned long fixed_rate;
251 	size_t data_size;
252 	void *data;
253 };
254 
255 struct ptp_ocp_ext_info {
256 	int index;
257 	irqreturn_t (*irq_fcn)(int irq, void *priv);
258 	int (*enable)(void *priv, u32 req, bool enable);
259 };
260 
261 struct ptp_ocp_ext_src {
262 	void __iomem		*mem;
263 	struct ptp_ocp		*bp;
264 	struct ptp_ocp_ext_info	*info;
265 	int			irq_vec;
266 };
267 
268 enum ptp_ocp_sma_mode {
269 	SMA_MODE_IN,
270 	SMA_MODE_OUT,
271 };
272 
273 static struct dpll_pin_frequency ptp_ocp_sma_freq[] = {
274 	DPLL_PIN_FREQUENCY_1PPS,
275 	DPLL_PIN_FREQUENCY_10MHZ,
276 	DPLL_PIN_FREQUENCY_IRIG_B,
277 	DPLL_PIN_FREQUENCY_DCF77,
278 };
279 
280 struct ptp_ocp_sma_connector {
281 	enum	ptp_ocp_sma_mode mode;
282 	bool	fixed_fcn;
283 	bool	fixed_dir;
284 	bool	disabled;
285 	u8	default_fcn;
286 	struct dpll_pin		   *dpll_pin;
287 	struct dpll_pin_properties dpll_prop;
288 };
289 
290 struct ocp_attr_group {
291 	u64 cap;
292 	const struct attribute_group *group;
293 };
294 
295 #define OCP_CAP_BASIC	BIT(0)
296 #define OCP_CAP_SIGNAL	BIT(1)
297 #define OCP_CAP_FREQ	BIT(2)
298 
299 struct ptp_ocp_signal {
300 	ktime_t		period;
301 	ktime_t		pulse;
302 	ktime_t		phase;
303 	ktime_t		start;
304 	int		duty;
305 	bool		polarity;
306 	bool		running;
307 };
308 
309 struct ptp_ocp_serial_port {
310 	int line;
311 	int baud;
312 };
313 
314 #define OCP_BOARD_ID_LEN		13
315 #define OCP_SERIAL_LEN			6
316 #define OCP_SMA_NUM			4
317 #define OCP_SIGNAL_NUM			4
318 #define OCP_FREQ_NUM			4
319 
320 enum {
321 	PORT_GNSS,
322 	PORT_GNSS2,
323 	PORT_MAC, /* miniature atomic clock */
324 	PORT_NMEA,
325 
326 	__PORT_COUNT,
327 };
328 
329 struct ptp_ocp {
330 	struct pci_dev		*pdev;
331 	struct device		dev;
332 	spinlock_t		lock;
333 	struct ocp_reg __iomem	*reg;
334 	struct tod_reg __iomem	*tod;
335 	struct pps_reg __iomem	*pps_to_ext;
336 	struct pps_reg __iomem	*pps_to_clk;
337 	struct board_config_reg __iomem	*board_config;
338 	struct gpio_reg __iomem	*pps_select;
339 	struct gpio_reg __iomem	*sma_map1;
340 	struct gpio_reg __iomem	*sma_map2;
341 	struct irig_master_reg	__iomem *irig_out;
342 	struct irig_slave_reg	__iomem *irig_in;
343 	struct dcf_master_reg	__iomem *dcf_out;
344 	struct dcf_slave_reg	__iomem *dcf_in;
345 	struct tod_reg		__iomem *nmea_out;
346 	struct frequency_reg	__iomem *freq_in[OCP_FREQ_NUM];
347 	struct ptp_ocp_ext_src	*signal_out[OCP_SIGNAL_NUM];
348 	struct ptp_ocp_ext_src	*pps;
349 	struct ptp_ocp_ext_src	*ts0;
350 	struct ptp_ocp_ext_src	*ts1;
351 	struct ptp_ocp_ext_src	*ts2;
352 	struct ptp_ocp_ext_src	*ts3;
353 	struct ptp_ocp_ext_src	*ts4;
354 	struct ocp_art_gpio_reg __iomem *art_sma;
355 	struct img_reg __iomem	*image;
356 	struct ptp_clock	*ptp;
357 	struct ptp_clock_info	ptp_info;
358 	struct platform_device	*i2c_ctrl;
359 	struct platform_device	*spi_flash;
360 	struct clk_hw		*i2c_clk;
361 	struct timer_list	watchdog;
362 	const struct attribute_group **attr_group;
363 	const struct ptp_ocp_eeprom_map *eeprom_map;
364 	struct dentry		*debug_root;
365 	bool			sync;
366 	time64_t		gnss_lost;
367 	struct delayed_work	sync_work;
368 	int			id;
369 	int			n_irqs;
370 	struct ptp_ocp_serial_port	port[__PORT_COUNT];
371 	bool			fw_loader;
372 	u8			fw_tag;
373 	u16			fw_version;
374 	u8			board_id[OCP_BOARD_ID_LEN];
375 	u8			serial[OCP_SERIAL_LEN];
376 	bool			has_eeprom_data;
377 	u32			pps_req_map;
378 	int			flash_start;
379 	u32			utc_tai_offset;
380 	u32			ts_window_adjust;
381 	u64			fw_cap;
382 	struct ptp_ocp_signal	signal[OCP_SIGNAL_NUM];
383 	struct ptp_ocp_sma_connector sma[OCP_SMA_NUM];
384 	const struct ocp_sma_op *sma_op;
385 	struct dpll_device *dpll;
386 	int signals_nr;
387 	int freq_in_nr;
388 };
389 
390 #define OCP_REQ_TIMESTAMP	BIT(0)
391 #define OCP_REQ_PPS		BIT(1)
392 
393 struct ocp_resource {
394 	unsigned long offset;
395 	int size;
396 	int irq_vec;
397 	int (*setup)(struct ptp_ocp *bp, struct ocp_resource *r);
398 	void *extra;
399 	unsigned long bp_offset;
400 	const char * const name;
401 };
402 
403 static int ptp_ocp_register_mem(struct ptp_ocp *bp, struct ocp_resource *r);
404 static int ptp_ocp_register_i2c(struct ptp_ocp *bp, struct ocp_resource *r);
405 static int ptp_ocp_register_spi(struct ptp_ocp *bp, struct ocp_resource *r);
406 static int ptp_ocp_register_serial(struct ptp_ocp *bp, struct ocp_resource *r);
407 static int ptp_ocp_register_ext(struct ptp_ocp *bp, struct ocp_resource *r);
408 static int ptp_ocp_fb_board_init(struct ptp_ocp *bp, struct ocp_resource *r);
409 static irqreturn_t ptp_ocp_ts_irq(int irq, void *priv);
410 static irqreturn_t ptp_ocp_signal_irq(int irq, void *priv);
411 static int ptp_ocp_ts_enable(void *priv, u32 req, bool enable);
412 static int ptp_ocp_signal_from_perout(struct ptp_ocp *bp, int gen,
413 				      struct ptp_perout_request *req);
414 static int ptp_ocp_signal_enable(void *priv, u32 req, bool enable);
415 static int ptp_ocp_sma_store(struct ptp_ocp *bp, const char *buf, int sma_nr);
416 
417 static int ptp_ocp_art_board_init(struct ptp_ocp *bp, struct ocp_resource *r);
418 
419 static int ptp_ocp_adva_board_init(struct ptp_ocp *bp, struct ocp_resource *r);
420 
421 static const struct ocp_attr_group fb_timecard_groups[];
422 
423 static const struct ocp_attr_group art_timecard_groups[];
424 
425 static const struct ocp_attr_group adva_timecard_groups[];
426 
427 struct ptp_ocp_eeprom_map {
428 	u16	off;
429 	u16	len;
430 	u32	bp_offset;
431 	const void * const tag;
432 };
433 
434 #define EEPROM_ENTRY(addr, member)				\
435 	.off = addr,						\
436 	.len = sizeof_field(struct ptp_ocp, member),		\
437 	.bp_offset = offsetof(struct ptp_ocp, member)
438 
439 #define BP_MAP_ENTRY_ADDR(bp, map) ({				\
440 	(void *)((uintptr_t)(bp) + (map)->bp_offset);		\
441 })
442 
443 static struct ptp_ocp_eeprom_map fb_eeprom_map[] = {
444 	{ EEPROM_ENTRY(0x43, board_id) },
445 	{ EEPROM_ENTRY(0x00, serial), .tag = "mac" },
446 	{ }
447 };
448 
449 static struct ptp_ocp_eeprom_map art_eeprom_map[] = {
450 	{ EEPROM_ENTRY(0x200 + 0x43, board_id) },
451 	{ EEPROM_ENTRY(0x200 + 0x63, serial) },
452 	{ }
453 };
454 
455 #define bp_assign_entry(bp, res, val) ({				\
456 	uintptr_t addr = (uintptr_t)(bp) + (res)->bp_offset;		\
457 	*(typeof(val) *)addr = val;					\
458 })
459 
460 #define OCP_RES_LOCATION(member) \
461 	.name = #member, .bp_offset = offsetof(struct ptp_ocp, member)
462 
463 #define OCP_MEM_RESOURCE(member) \
464 	OCP_RES_LOCATION(member), .setup = ptp_ocp_register_mem
465 
466 #define OCP_SERIAL_RESOURCE(member) \
467 	OCP_RES_LOCATION(member), .setup = ptp_ocp_register_serial
468 
469 #define OCP_I2C_RESOURCE(member) \
470 	OCP_RES_LOCATION(member), .setup = ptp_ocp_register_i2c
471 
472 #define OCP_SPI_RESOURCE(member) \
473 	OCP_RES_LOCATION(member), .setup = ptp_ocp_register_spi
474 
475 #define OCP_EXT_RESOURCE(member) \
476 	OCP_RES_LOCATION(member), .setup = ptp_ocp_register_ext
477 
478 /* This is the MSI vector mapping used.
479  * 0: PPS (TS5)
480  * 1: TS0
481  * 2: TS1
482  * 3: GNSS1
483  * 4: GNSS2
484  * 5: MAC
485  * 6: TS2
486  * 7: I2C controller
487  * 8: HWICAP (notused)
488  * 9: SPI Flash
489  * 10: NMEA
490  * 11: Signal Generator 1
491  * 12: Signal Generator 2
492  * 13: Signal Generator 3
493  * 14: Signal Generator 4
494  * 15: TS3
495  * 16: TS4
496  --
497  * 8: Orolia TS1
498  * 10: Orolia TS2
499  * 11: Orolia TS0 (GNSS)
500  * 12: Orolia PPS
501  * 14: Orolia TS3
502  * 15: Orolia TS4
503  */
504 
505 static struct ocp_resource ocp_fb_resource[] = {
506 	{
507 		OCP_MEM_RESOURCE(reg),
508 		.offset = 0x01000000, .size = 0x10000,
509 	},
510 	{
511 		OCP_EXT_RESOURCE(ts0),
512 		.offset = 0x01010000, .size = 0x10000, .irq_vec = 1,
513 		.extra = &(struct ptp_ocp_ext_info) {
514 			.index = 0,
515 			.irq_fcn = ptp_ocp_ts_irq,
516 			.enable = ptp_ocp_ts_enable,
517 		},
518 	},
519 	{
520 		OCP_EXT_RESOURCE(ts1),
521 		.offset = 0x01020000, .size = 0x10000, .irq_vec = 2,
522 		.extra = &(struct ptp_ocp_ext_info) {
523 			.index = 1,
524 			.irq_fcn = ptp_ocp_ts_irq,
525 			.enable = ptp_ocp_ts_enable,
526 		},
527 	},
528 	{
529 		OCP_EXT_RESOURCE(ts2),
530 		.offset = 0x01060000, .size = 0x10000, .irq_vec = 6,
531 		.extra = &(struct ptp_ocp_ext_info) {
532 			.index = 2,
533 			.irq_fcn = ptp_ocp_ts_irq,
534 			.enable = ptp_ocp_ts_enable,
535 		},
536 	},
537 	{
538 		OCP_EXT_RESOURCE(ts3),
539 		.offset = 0x01110000, .size = 0x10000, .irq_vec = 15,
540 		.extra = &(struct ptp_ocp_ext_info) {
541 			.index = 3,
542 			.irq_fcn = ptp_ocp_ts_irq,
543 			.enable = ptp_ocp_ts_enable,
544 		},
545 	},
546 	{
547 		OCP_EXT_RESOURCE(ts4),
548 		.offset = 0x01120000, .size = 0x10000, .irq_vec = 16,
549 		.extra = &(struct ptp_ocp_ext_info) {
550 			.index = 4,
551 			.irq_fcn = ptp_ocp_ts_irq,
552 			.enable = ptp_ocp_ts_enable,
553 		},
554 	},
555 	/* Timestamp for PHC and/or PPS generator */
556 	{
557 		OCP_EXT_RESOURCE(pps),
558 		.offset = 0x010C0000, .size = 0x10000, .irq_vec = 0,
559 		.extra = &(struct ptp_ocp_ext_info) {
560 			.index = 5,
561 			.irq_fcn = ptp_ocp_ts_irq,
562 			.enable = ptp_ocp_ts_enable,
563 		},
564 	},
565 	{
566 		OCP_EXT_RESOURCE(signal_out[0]),
567 		.offset = 0x010D0000, .size = 0x10000, .irq_vec = 11,
568 		.extra = &(struct ptp_ocp_ext_info) {
569 			.index = 1,
570 			.irq_fcn = ptp_ocp_signal_irq,
571 			.enable = ptp_ocp_signal_enable,
572 		},
573 	},
574 	{
575 		OCP_EXT_RESOURCE(signal_out[1]),
576 		.offset = 0x010E0000, .size = 0x10000, .irq_vec = 12,
577 		.extra = &(struct ptp_ocp_ext_info) {
578 			.index = 2,
579 			.irq_fcn = ptp_ocp_signal_irq,
580 			.enable = ptp_ocp_signal_enable,
581 		},
582 	},
583 	{
584 		OCP_EXT_RESOURCE(signal_out[2]),
585 		.offset = 0x010F0000, .size = 0x10000, .irq_vec = 13,
586 		.extra = &(struct ptp_ocp_ext_info) {
587 			.index = 3,
588 			.irq_fcn = ptp_ocp_signal_irq,
589 			.enable = ptp_ocp_signal_enable,
590 		},
591 	},
592 	{
593 		OCP_EXT_RESOURCE(signal_out[3]),
594 		.offset = 0x01100000, .size = 0x10000, .irq_vec = 14,
595 		.extra = &(struct ptp_ocp_ext_info) {
596 			.index = 4,
597 			.irq_fcn = ptp_ocp_signal_irq,
598 			.enable = ptp_ocp_signal_enable,
599 		},
600 	},
601 	{
602 		OCP_MEM_RESOURCE(pps_to_ext),
603 		.offset = 0x01030000, .size = 0x10000,
604 	},
605 	{
606 		OCP_MEM_RESOURCE(pps_to_clk),
607 		.offset = 0x01040000, .size = 0x10000,
608 	},
609 	{
610 		OCP_MEM_RESOURCE(tod),
611 		.offset = 0x01050000, .size = 0x10000,
612 	},
613 	{
614 		OCP_MEM_RESOURCE(irig_in),
615 		.offset = 0x01070000, .size = 0x10000,
616 	},
617 	{
618 		OCP_MEM_RESOURCE(irig_out),
619 		.offset = 0x01080000, .size = 0x10000,
620 	},
621 	{
622 		OCP_MEM_RESOURCE(dcf_in),
623 		.offset = 0x01090000, .size = 0x10000,
624 	},
625 	{
626 		OCP_MEM_RESOURCE(dcf_out),
627 		.offset = 0x010A0000, .size = 0x10000,
628 	},
629 	{
630 		OCP_MEM_RESOURCE(nmea_out),
631 		.offset = 0x010B0000, .size = 0x10000,
632 	},
633 	{
634 		OCP_MEM_RESOURCE(image),
635 		.offset = 0x00020000, .size = 0x1000,
636 	},
637 	{
638 		OCP_MEM_RESOURCE(pps_select),
639 		.offset = 0x00130000, .size = 0x1000,
640 	},
641 	{
642 		OCP_MEM_RESOURCE(sma_map1),
643 		.offset = 0x00140000, .size = 0x1000,
644 	},
645 	{
646 		OCP_MEM_RESOURCE(sma_map2),
647 		.offset = 0x00220000, .size = 0x1000,
648 	},
649 	{
650 		OCP_I2C_RESOURCE(i2c_ctrl),
651 		.offset = 0x00150000, .size = 0x10000, .irq_vec = 7,
652 		.extra = &(struct ptp_ocp_i2c_info) {
653 			.name = "xiic-i2c",
654 			.fixed_rate = 50000000,
655 			.data_size = sizeof(struct xiic_i2c_platform_data),
656 			.data = &(struct xiic_i2c_platform_data) {
657 				.num_devices = 2,
658 				.devices = (struct i2c_board_info[]) {
659 					{ I2C_BOARD_INFO("24c02", 0x50) },
660 					{ I2C_BOARD_INFO("24mac402", 0x58),
661 					  .platform_data = "mac" },
662 				},
663 			},
664 		},
665 	},
666 	{
667 		OCP_SERIAL_RESOURCE(port[PORT_GNSS]),
668 		.offset = 0x00160000 + 0x1000, .irq_vec = 3,
669 		.extra = &(struct ptp_ocp_serial_port) {
670 			.baud = 115200,
671 		},
672 	},
673 	{
674 		OCP_SERIAL_RESOURCE(port[PORT_GNSS2]),
675 		.offset = 0x00170000 + 0x1000, .irq_vec = 4,
676 		.extra = &(struct ptp_ocp_serial_port) {
677 			.baud = 115200,
678 		},
679 	},
680 	{
681 		OCP_SERIAL_RESOURCE(port[PORT_MAC]),
682 		.offset = 0x00180000 + 0x1000, .irq_vec = 5,
683 		.extra = &(struct ptp_ocp_serial_port) {
684 			.baud = 57600,
685 		},
686 	},
687 	{
688 		OCP_SERIAL_RESOURCE(port[PORT_NMEA]),
689 		.offset = 0x00190000 + 0x1000, .irq_vec = 10,
690 	},
691 	{
692 		OCP_SPI_RESOURCE(spi_flash),
693 		.offset = 0x00310000, .size = 0x10000, .irq_vec = 9,
694 		.extra = &(struct ptp_ocp_flash_info) {
695 			.name = "xilinx_spi", .pci_offset = 0,
696 			.data_size = sizeof(struct xspi_platform_data),
697 			.data = &(struct xspi_platform_data) {
698 				.num_chipselect = 1,
699 				.bits_per_word = 8,
700 				.num_devices = 1,
701 				.force_irq = true,
702 				.devices = &(struct spi_board_info) {
703 					.modalias = "spi-nor",
704 				},
705 			},
706 		},
707 	},
708 	{
709 		OCP_MEM_RESOURCE(freq_in[0]),
710 		.offset = 0x01200000, .size = 0x10000,
711 	},
712 	{
713 		OCP_MEM_RESOURCE(freq_in[1]),
714 		.offset = 0x01210000, .size = 0x10000,
715 	},
716 	{
717 		OCP_MEM_RESOURCE(freq_in[2]),
718 		.offset = 0x01220000, .size = 0x10000,
719 	},
720 	{
721 		OCP_MEM_RESOURCE(freq_in[3]),
722 		.offset = 0x01230000, .size = 0x10000,
723 	},
724 	{
725 		.setup = ptp_ocp_fb_board_init,
726 		.extra = &(struct ptp_ocp_servo_conf) {
727 			.servo_offset_p = 0x2000,
728 			.servo_offset_i = 0x1000,
729 			.servo_drift_p = 0,
730 			.servo_drift_i = 0,
731 		},
732 	},
733 	{ }
734 };
735 
736 #define OCP_ART_CONFIG_SIZE		144
737 #define OCP_ART_TEMP_TABLE_SIZE		368
738 
739 struct ocp_art_gpio_reg {
740 	struct {
741 		u32	gpio;
742 		u32	__pad[3];
743 	} map[4];
744 };
745 
746 static struct ocp_resource ocp_art_resource[] = {
747 	{
748 		OCP_MEM_RESOURCE(reg),
749 		.offset = 0x01000000, .size = 0x10000,
750 	},
751 	{
752 		OCP_SERIAL_RESOURCE(port[PORT_GNSS]),
753 		.offset = 0x00160000 + 0x1000, .irq_vec = 3,
754 		.extra = &(struct ptp_ocp_serial_port) {
755 			.baud = 115200,
756 		},
757 	},
758 	{
759 		OCP_MEM_RESOURCE(art_sma),
760 		.offset = 0x003C0000, .size = 0x1000,
761 	},
762 	/* Timestamp associated with GNSS1 receiver PPS */
763 	{
764 		OCP_EXT_RESOURCE(ts0),
765 		.offset = 0x360000, .size = 0x20, .irq_vec = 12,
766 		.extra = &(struct ptp_ocp_ext_info) {
767 			.index = 0,
768 			.irq_fcn = ptp_ocp_ts_irq,
769 			.enable = ptp_ocp_ts_enable,
770 		},
771 	},
772 	{
773 		OCP_EXT_RESOURCE(ts1),
774 		.offset = 0x380000, .size = 0x20, .irq_vec = 8,
775 		.extra = &(struct ptp_ocp_ext_info) {
776 			.index = 1,
777 			.irq_fcn = ptp_ocp_ts_irq,
778 			.enable = ptp_ocp_ts_enable,
779 		},
780 	},
781 	{
782 		OCP_EXT_RESOURCE(ts2),
783 		.offset = 0x390000, .size = 0x20, .irq_vec = 10,
784 		.extra = &(struct ptp_ocp_ext_info) {
785 			.index = 2,
786 			.irq_fcn = ptp_ocp_ts_irq,
787 			.enable = ptp_ocp_ts_enable,
788 		},
789 	},
790 	{
791 		OCP_EXT_RESOURCE(ts3),
792 		.offset = 0x3A0000, .size = 0x20, .irq_vec = 14,
793 		.extra = &(struct ptp_ocp_ext_info) {
794 			.index = 3,
795 			.irq_fcn = ptp_ocp_ts_irq,
796 			.enable = ptp_ocp_ts_enable,
797 		},
798 	},
799 	{
800 		OCP_EXT_RESOURCE(ts4),
801 		.offset = 0x3B0000, .size = 0x20, .irq_vec = 15,
802 		.extra = &(struct ptp_ocp_ext_info) {
803 			.index = 4,
804 			.irq_fcn = ptp_ocp_ts_irq,
805 			.enable = ptp_ocp_ts_enable,
806 		},
807 	},
808 	/* Timestamp associated with Internal PPS of the card */
809 	{
810 		OCP_EXT_RESOURCE(pps),
811 		.offset = 0x00330000, .size = 0x20, .irq_vec = 11,
812 		.extra = &(struct ptp_ocp_ext_info) {
813 			.index = 5,
814 			.irq_fcn = ptp_ocp_ts_irq,
815 			.enable = ptp_ocp_ts_enable,
816 		},
817 	},
818 	{
819 		OCP_SPI_RESOURCE(spi_flash),
820 		.offset = 0x00310000, .size = 0x10000, .irq_vec = 9,
821 		.extra = &(struct ptp_ocp_flash_info) {
822 			.name = "spi_altera", .pci_offset = 0,
823 			.data_size = sizeof(struct altera_spi_platform_data),
824 			.data = &(struct altera_spi_platform_data) {
825 				.num_chipselect = 1,
826 				.num_devices = 1,
827 				.devices = &(struct spi_board_info) {
828 					.modalias = "spi-nor",
829 				},
830 			},
831 		},
832 	},
833 	{
834 		OCP_I2C_RESOURCE(i2c_ctrl),
835 		.offset = 0x350000, .size = 0x100, .irq_vec = 4,
836 		.extra = &(struct ptp_ocp_i2c_info) {
837 			.name = "ocores-i2c",
838 			.fixed_rate = 400000,
839 			.data_size = sizeof(struct ocores_i2c_platform_data),
840 			.data = &(struct ocores_i2c_platform_data) {
841 				.clock_khz = 125000,
842 				.bus_khz = 400,
843 				.num_devices = 1,
844 				.devices = &(struct i2c_board_info) {
845 					I2C_BOARD_INFO("24c08", 0x50),
846 				},
847 			},
848 		},
849 	},
850 	{
851 		OCP_SERIAL_RESOURCE(port[PORT_MAC]),
852 		.offset = 0x00190000, .irq_vec = 7,
853 		.extra = &(struct ptp_ocp_serial_port) {
854 			.baud = 9600,
855 		},
856 	},
857 	{
858 		OCP_MEM_RESOURCE(board_config),
859 		.offset = 0x210000, .size = 0x1000,
860 	},
861 	{
862 		.setup = ptp_ocp_art_board_init,
863 		.extra = &(struct ptp_ocp_servo_conf) {
864 			.servo_offset_p = 0x2000,
865 			.servo_offset_i = 0x1000,
866 			.servo_drift_p = 0,
867 			.servo_drift_i = 0,
868 		},
869 	},
870 	{ }
871 };
872 
873 static struct ocp_resource ocp_adva_resource[] = {
874 	{
875 		OCP_MEM_RESOURCE(reg),
876 		.offset = 0x01000000, .size = 0x10000,
877 	},
878 	{
879 		OCP_EXT_RESOURCE(ts0),
880 		.offset = 0x01010000, .size = 0x10000, .irq_vec = 1,
881 		.extra = &(struct ptp_ocp_ext_info) {
882 			.index = 0,
883 			.irq_fcn = ptp_ocp_ts_irq,
884 			.enable = ptp_ocp_ts_enable,
885 		},
886 	},
887 	{
888 		OCP_EXT_RESOURCE(ts1),
889 		.offset = 0x01020000, .size = 0x10000, .irq_vec = 2,
890 		.extra = &(struct ptp_ocp_ext_info) {
891 			.index = 1,
892 			.irq_fcn = ptp_ocp_ts_irq,
893 			.enable = ptp_ocp_ts_enable,
894 		},
895 	},
896 	{
897 		OCP_EXT_RESOURCE(ts2),
898 		.offset = 0x01060000, .size = 0x10000, .irq_vec = 6,
899 		.extra = &(struct ptp_ocp_ext_info) {
900 			.index = 2,
901 			.irq_fcn = ptp_ocp_ts_irq,
902 			.enable = ptp_ocp_ts_enable,
903 		},
904 	},
905 	/* Timestamp for PHC and/or PPS generator */
906 	{
907 		OCP_EXT_RESOURCE(pps),
908 		.offset = 0x010C0000, .size = 0x10000, .irq_vec = 0,
909 		.extra = &(struct ptp_ocp_ext_info) {
910 			.index = 5,
911 			.irq_fcn = ptp_ocp_ts_irq,
912 			.enable = ptp_ocp_ts_enable,
913 		},
914 	},
915 	{
916 		OCP_EXT_RESOURCE(signal_out[0]),
917 		.offset = 0x010D0000, .size = 0x10000, .irq_vec = 11,
918 		.extra = &(struct ptp_ocp_ext_info) {
919 			.index = 1,
920 			.irq_fcn = ptp_ocp_signal_irq,
921 			.enable = ptp_ocp_signal_enable,
922 		},
923 	},
924 	{
925 		OCP_EXT_RESOURCE(signal_out[1]),
926 		.offset = 0x010E0000, .size = 0x10000, .irq_vec = 12,
927 		.extra = &(struct ptp_ocp_ext_info) {
928 			.index = 2,
929 			.irq_fcn = ptp_ocp_signal_irq,
930 			.enable = ptp_ocp_signal_enable,
931 		},
932 	},
933 	{
934 		OCP_MEM_RESOURCE(pps_to_ext),
935 		.offset = 0x01030000, .size = 0x10000,
936 	},
937 	{
938 		OCP_MEM_RESOURCE(pps_to_clk),
939 		.offset = 0x01040000, .size = 0x10000,
940 	},
941 	{
942 		OCP_MEM_RESOURCE(tod),
943 		.offset = 0x01050000, .size = 0x10000,
944 	},
945 	{
946 		OCP_MEM_RESOURCE(image),
947 		.offset = 0x00020000, .size = 0x1000,
948 	},
949 	{
950 		OCP_MEM_RESOURCE(pps_select),
951 		.offset = 0x00130000, .size = 0x1000,
952 	},
953 	{
954 		OCP_MEM_RESOURCE(sma_map1),
955 		.offset = 0x00140000, .size = 0x1000,
956 	},
957 	{
958 		OCP_MEM_RESOURCE(sma_map2),
959 		.offset = 0x00220000, .size = 0x1000,
960 	},
961 	{
962 		OCP_SERIAL_RESOURCE(port[PORT_GNSS]),
963 		.offset = 0x00160000 + 0x1000, .irq_vec = 3,
964 		.extra = &(struct ptp_ocp_serial_port) {
965 			.baud = 9600,
966 		},
967 	},
968 	{
969 		OCP_SERIAL_RESOURCE(port[PORT_MAC]),
970 		.offset = 0x00180000 + 0x1000, .irq_vec = 5,
971 		.extra = &(struct ptp_ocp_serial_port) {
972 			.baud = 115200,
973 		},
974 	},
975 	{
976 		OCP_MEM_RESOURCE(freq_in[0]),
977 		.offset = 0x01200000, .size = 0x10000,
978 	},
979 	{
980 		OCP_MEM_RESOURCE(freq_in[1]),
981 		.offset = 0x01210000, .size = 0x10000,
982 	},
983 	{
984 		OCP_SPI_RESOURCE(spi_flash),
985 		.offset = 0x00310400, .size = 0x10000, .irq_vec = 9,
986 		.extra = &(struct ptp_ocp_flash_info) {
987 			.name = "spi_altera", .pci_offset = 0,
988 			.data_size = sizeof(struct altera_spi_platform_data),
989 			.data = &(struct altera_spi_platform_data) {
990 				.num_chipselect = 1,
991 				.num_devices = 1,
992 				.devices = &(struct spi_board_info) {
993 					.modalias = "spi-nor",
994 				},
995 			},
996 		},
997 	},
998 	{
999 		OCP_I2C_RESOURCE(i2c_ctrl),
1000 		.offset = 0x150000, .size = 0x100, .irq_vec = 7,
1001 		.extra = &(struct ptp_ocp_i2c_info) {
1002 			.name = "ocores-i2c",
1003 			.fixed_rate = 50000000,
1004 			.data_size = sizeof(struct ocores_i2c_platform_data),
1005 			.data = &(struct ocores_i2c_platform_data) {
1006 				.clock_khz = 50000,
1007 				.bus_khz = 100,
1008 				.reg_io_width = 4, // 32-bit/4-byte
1009 				.reg_shift = 2, // 32-bit addressing
1010 				.num_devices = 2,
1011 				.devices = (struct i2c_board_info[]) {
1012 					{ I2C_BOARD_INFO("24c02", 0x50) },
1013 					{ I2C_BOARD_INFO("24mac402", 0x58),
1014 					 .platform_data = "mac" },
1015 				},
1016 			},
1017 		},
1018 	},
1019 	{
1020 		.setup = ptp_ocp_adva_board_init,
1021 		.extra = &(struct ptp_ocp_servo_conf) {
1022 			.servo_offset_p = 0xc000,
1023 			.servo_offset_i = 0x1000,
1024 			.servo_drift_p = 0,
1025 			.servo_drift_i = 0,
1026 		},
1027 	},
1028 	{ }
1029 };
1030 
1031 static const struct pci_device_id ptp_ocp_pcidev_id[] = {
1032 	{ PCI_DEVICE_DATA(META, TIMECARD, &ocp_fb_resource) },
1033 	{ PCI_DEVICE_DATA(CELESTICA, TIMECARD, &ocp_fb_resource) },
1034 	{ PCI_DEVICE_DATA(OROLIA, ARTCARD, &ocp_art_resource) },
1035 	{ PCI_DEVICE_DATA(ADVA, TIMECARD, &ocp_adva_resource) },
1036 	{ }
1037 };
1038 MODULE_DEVICE_TABLE(pci, ptp_ocp_pcidev_id);
1039 
1040 static DEFINE_MUTEX(ptp_ocp_lock);
1041 static DEFINE_IDR(ptp_ocp_idr);
1042 
1043 struct ocp_selector {
1044 	const char *name;
1045 	int value;
1046 	u64 frequency;
1047 };
1048 
1049 static const struct ocp_selector ptp_ocp_clock[] = {
1050 	{ .name = "NONE",	.value = 0 },
1051 	{ .name = "TOD",	.value = 1 },
1052 	{ .name = "IRIG",	.value = 2 },
1053 	{ .name = "PPS",	.value = 3 },
1054 	{ .name = "PTP",	.value = 4 },
1055 	{ .name = "RTC",	.value = 5 },
1056 	{ .name = "DCF",	.value = 6 },
1057 	{ .name = "REGS",	.value = 0xfe },
1058 	{ .name = "EXT",	.value = 0xff },
1059 	{ }
1060 };
1061 
1062 #define SMA_DISABLE		BIT(16)
1063 #define SMA_ENABLE		BIT(15)
1064 #define SMA_SELECT_MASK		GENMASK(14, 0)
1065 
1066 static const struct ocp_selector ptp_ocp_sma_in[] = {
1067 	{ .name = "10Mhz",  .value = 0x0000,      .frequency = 10000000 },
1068 	{ .name = "PPS1",   .value = 0x0001,      .frequency = 1 },
1069 	{ .name = "PPS2",   .value = 0x0002,      .frequency = 1 },
1070 	{ .name = "TS1",    .value = 0x0004,      .frequency = 0 },
1071 	{ .name = "TS2",    .value = 0x0008,      .frequency = 0 },
1072 	{ .name = "IRIG",   .value = 0x0010,      .frequency = 10000 },
1073 	{ .name = "DCF",    .value = 0x0020,      .frequency = 77500 },
1074 	{ .name = "TS3",    .value = 0x0040,      .frequency = 0 },
1075 	{ .name = "TS4",    .value = 0x0080,      .frequency = 0 },
1076 	{ .name = "FREQ1",  .value = 0x0100,      .frequency = 0 },
1077 	{ .name = "FREQ2",  .value = 0x0200,      .frequency = 0 },
1078 	{ .name = "FREQ3",  .value = 0x0400,      .frequency = 0 },
1079 	{ .name = "FREQ4",  .value = 0x0800,      .frequency = 0 },
1080 	{ .name = "None",   .value = SMA_DISABLE, .frequency = 0 },
1081 	{ }
1082 };
1083 
1084 static const struct ocp_selector ptp_ocp_sma_out[] = {
1085 	{ .name = "10Mhz",	.value = 0x0000,  .frequency = 10000000 },
1086 	{ .name = "PHC",	.value = 0x0001,  .frequency = 1 },
1087 	{ .name = "MAC",	.value = 0x0002,  .frequency = 1 },
1088 	{ .name = "GNSS1",	.value = 0x0004,  .frequency = 1 },
1089 	{ .name = "GNSS2",	.value = 0x0008,  .frequency = 1 },
1090 	{ .name = "IRIG",	.value = 0x0010,  .frequency = 10000 },
1091 	{ .name = "DCF",	.value = 0x0020,  .frequency = 77000 },
1092 	{ .name = "GEN1",	.value = 0x0040 },
1093 	{ .name = "GEN2",	.value = 0x0080 },
1094 	{ .name = "GEN3",	.value = 0x0100 },
1095 	{ .name = "GEN4",	.value = 0x0200 },
1096 	{ .name = "GND",	.value = 0x2000 },
1097 	{ .name = "VCC",	.value = 0x4000 },
1098 	{ }
1099 };
1100 
1101 static const struct ocp_selector ptp_ocp_art_sma_in[] = {
1102 	{ .name = "PPS1",	.value = 0x0001,  .frequency = 1 },
1103 	{ .name = "10Mhz",	.value = 0x0008,  .frequency = 1000000 },
1104 	{ }
1105 };
1106 
1107 static const struct ocp_selector ptp_ocp_art_sma_out[] = {
1108 	{ .name = "PHC",	.value = 0x0002,  .frequency = 1 },
1109 	{ .name = "GNSS",	.value = 0x0004,  .frequency = 1 },
1110 	{ .name = "10Mhz",	.value = 0x0010,  .frequency = 10000000 },
1111 	{ }
1112 };
1113 
1114 static const struct ocp_selector ptp_ocp_adva_sma_in[] = {
1115 	{ .name = "10Mhz",	.value = 0x0000,      .frequency = 10000000},
1116 	{ .name = "PPS1",	.value = 0x0001,      .frequency = 1 },
1117 	{ .name = "PPS2",	.value = 0x0002,      .frequency = 1 },
1118 	{ .name = "TS1",	.value = 0x0004,      .frequency = 0 },
1119 	{ .name = "TS2",	.value = 0x0008,      .frequency = 0 },
1120 	{ .name = "FREQ1",	.value = 0x0100,      .frequency = 0 },
1121 	{ .name = "FREQ2",	.value = 0x0200,      .frequency = 0 },
1122 	{ .name = "None",	.value = SMA_DISABLE, .frequency = 0 },
1123 	{ }
1124 };
1125 
1126 static const struct ocp_selector ptp_ocp_adva_sma_out[] = {
1127 	{ .name = "10Mhz",	.value = 0x0000,  .frequency = 10000000},
1128 	{ .name = "PHC",	.value = 0x0001,  .frequency = 1 },
1129 	{ .name = "MAC",	.value = 0x0002,  .frequency = 1 },
1130 	{ .name = "GNSS1",	.value = 0x0004,  .frequency = 1 },
1131 	{ .name = "GEN1",	.value = 0x0040 },
1132 	{ .name = "GEN2",	.value = 0x0080 },
1133 	{ .name = "GND",	.value = 0x2000 },
1134 	{ .name = "VCC",	.value = 0x4000 },
1135 	{ }
1136 };
1137 
1138 struct ocp_sma_op {
1139 	const struct ocp_selector *tbl[2];
1140 	void (*init)(struct ptp_ocp *bp);
1141 	u32 (*get)(struct ptp_ocp *bp, int sma_nr);
1142 	int (*set_inputs)(struct ptp_ocp *bp, int sma_nr, u32 val);
1143 	int (*set_output)(struct ptp_ocp *bp, int sma_nr, u32 val);
1144 };
1145 
1146 static void
ptp_ocp_sma_init(struct ptp_ocp * bp)1147 ptp_ocp_sma_init(struct ptp_ocp *bp)
1148 {
1149 	return bp->sma_op->init(bp);
1150 }
1151 
1152 static u32
ptp_ocp_sma_get(struct ptp_ocp * bp,int sma_nr)1153 ptp_ocp_sma_get(struct ptp_ocp *bp, int sma_nr)
1154 {
1155 	return bp->sma_op->get(bp, sma_nr);
1156 }
1157 
1158 static int
ptp_ocp_sma_set_inputs(struct ptp_ocp * bp,int sma_nr,u32 val)1159 ptp_ocp_sma_set_inputs(struct ptp_ocp *bp, int sma_nr, u32 val)
1160 {
1161 	return bp->sma_op->set_inputs(bp, sma_nr, val);
1162 }
1163 
1164 static int
ptp_ocp_sma_set_output(struct ptp_ocp * bp,int sma_nr,u32 val)1165 ptp_ocp_sma_set_output(struct ptp_ocp *bp, int sma_nr, u32 val)
1166 {
1167 	return bp->sma_op->set_output(bp, sma_nr, val);
1168 }
1169 
1170 static const char *
ptp_ocp_select_name_from_val(const struct ocp_selector * tbl,int val)1171 ptp_ocp_select_name_from_val(const struct ocp_selector *tbl, int val)
1172 {
1173 	int i;
1174 
1175 	for (i = 0; tbl[i].name; i++)
1176 		if (tbl[i].value == val)
1177 			return tbl[i].name;
1178 	return NULL;
1179 }
1180 
1181 static int
ptp_ocp_select_val_from_name(const struct ocp_selector * tbl,const char * name)1182 ptp_ocp_select_val_from_name(const struct ocp_selector *tbl, const char *name)
1183 {
1184 	const char *select;
1185 	int i;
1186 
1187 	for (i = 0; tbl[i].name; i++) {
1188 		select = tbl[i].name;
1189 		if (!strncasecmp(name, select, strlen(select)))
1190 			return tbl[i].value;
1191 	}
1192 	return -EINVAL;
1193 }
1194 
1195 static ssize_t
ptp_ocp_select_table_show(const struct ocp_selector * tbl,char * buf)1196 ptp_ocp_select_table_show(const struct ocp_selector *tbl, char *buf)
1197 {
1198 	ssize_t count;
1199 	int i;
1200 
1201 	count = 0;
1202 	for (i = 0; tbl[i].name; i++)
1203 		count += sysfs_emit_at(buf, count, "%s ", tbl[i].name);
1204 	if (count)
1205 		count--;
1206 	count += sysfs_emit_at(buf, count, "\n");
1207 	return count;
1208 }
1209 
1210 static int
__ptp_ocp_gettime_locked(struct ptp_ocp * bp,struct timespec64 * ts,struct ptp_system_timestamp * sts)1211 __ptp_ocp_gettime_locked(struct ptp_ocp *bp, struct timespec64 *ts,
1212 			 struct ptp_system_timestamp *sts)
1213 {
1214 	u32 ctrl, time_sec, time_ns;
1215 	int i;
1216 
1217 	ptp_read_system_prets(sts);
1218 
1219 	ctrl = OCP_CTRL_READ_TIME_REQ | OCP_CTRL_ENABLE;
1220 	iowrite32(ctrl, &bp->reg->ctrl);
1221 
1222 	for (i = 0; i < 100; i++) {
1223 		ctrl = ioread32(&bp->reg->ctrl);
1224 		if (ctrl & OCP_CTRL_READ_TIME_DONE)
1225 			break;
1226 	}
1227 	ptp_read_system_postts(sts);
1228 
1229 	if (sts && bp->ts_window_adjust) {
1230 		s64 ns = timespec64_to_ns(&sts->post_ts);
1231 
1232 		sts->post_ts = ns_to_timespec64(ns - bp->ts_window_adjust);
1233 	}
1234 
1235 	time_ns = ioread32(&bp->reg->time_ns);
1236 	time_sec = ioread32(&bp->reg->time_sec);
1237 
1238 	ts->tv_sec = time_sec;
1239 	ts->tv_nsec = time_ns;
1240 
1241 	return ctrl & OCP_CTRL_READ_TIME_DONE ? 0 : -ETIMEDOUT;
1242 }
1243 
1244 static int
ptp_ocp_gettimex(struct ptp_clock_info * ptp_info,struct timespec64 * ts,struct ptp_system_timestamp * sts)1245 ptp_ocp_gettimex(struct ptp_clock_info *ptp_info, struct timespec64 *ts,
1246 		 struct ptp_system_timestamp *sts)
1247 {
1248 	struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
1249 	unsigned long flags;
1250 	int err;
1251 
1252 	spin_lock_irqsave(&bp->lock, flags);
1253 	err = __ptp_ocp_gettime_locked(bp, ts, sts);
1254 	spin_unlock_irqrestore(&bp->lock, flags);
1255 
1256 	return err;
1257 }
1258 
1259 static void
__ptp_ocp_settime_locked(struct ptp_ocp * bp,const struct timespec64 * ts)1260 __ptp_ocp_settime_locked(struct ptp_ocp *bp, const struct timespec64 *ts)
1261 {
1262 	u32 ctrl, time_sec, time_ns;
1263 	u32 select;
1264 
1265 	time_ns = ts->tv_nsec;
1266 	time_sec = ts->tv_sec;
1267 
1268 	select = ioread32(&bp->reg->select);
1269 	iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select);
1270 
1271 	iowrite32(time_ns, &bp->reg->adjust_ns);
1272 	iowrite32(time_sec, &bp->reg->adjust_sec);
1273 
1274 	ctrl = OCP_CTRL_ADJUST_TIME | OCP_CTRL_ENABLE;
1275 	iowrite32(ctrl, &bp->reg->ctrl);
1276 
1277 	/* restore clock selection */
1278 	iowrite32(select >> 16, &bp->reg->select);
1279 }
1280 
1281 static int
ptp_ocp_settime(struct ptp_clock_info * ptp_info,const struct timespec64 * ts)1282 ptp_ocp_settime(struct ptp_clock_info *ptp_info, const struct timespec64 *ts)
1283 {
1284 	struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
1285 	unsigned long flags;
1286 
1287 	spin_lock_irqsave(&bp->lock, flags);
1288 	__ptp_ocp_settime_locked(bp, ts);
1289 	spin_unlock_irqrestore(&bp->lock, flags);
1290 
1291 	return 0;
1292 }
1293 
1294 static void
__ptp_ocp_adjtime_locked(struct ptp_ocp * bp,u32 adj_val)1295 __ptp_ocp_adjtime_locked(struct ptp_ocp *bp, u32 adj_val)
1296 {
1297 	u32 select, ctrl;
1298 
1299 	select = ioread32(&bp->reg->select);
1300 	iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select);
1301 
1302 	iowrite32(adj_val, &bp->reg->offset_ns);
1303 	iowrite32(NSEC_PER_SEC, &bp->reg->offset_window_ns);
1304 
1305 	ctrl = OCP_CTRL_ADJUST_OFFSET | OCP_CTRL_ENABLE;
1306 	iowrite32(ctrl, &bp->reg->ctrl);
1307 
1308 	/* restore clock selection */
1309 	iowrite32(select >> 16, &bp->reg->select);
1310 }
1311 
1312 static void
ptp_ocp_adjtime_coarse(struct ptp_ocp * bp,s64 delta_ns)1313 ptp_ocp_adjtime_coarse(struct ptp_ocp *bp, s64 delta_ns)
1314 {
1315 	struct timespec64 ts;
1316 	unsigned long flags;
1317 	int err;
1318 
1319 	spin_lock_irqsave(&bp->lock, flags);
1320 	err = __ptp_ocp_gettime_locked(bp, &ts, NULL);
1321 	if (likely(!err)) {
1322 		set_normalized_timespec64(&ts, ts.tv_sec,
1323 					  ts.tv_nsec + delta_ns);
1324 		__ptp_ocp_settime_locked(bp, &ts);
1325 	}
1326 	spin_unlock_irqrestore(&bp->lock, flags);
1327 }
1328 
1329 static int
ptp_ocp_adjtime(struct ptp_clock_info * ptp_info,s64 delta_ns)1330 ptp_ocp_adjtime(struct ptp_clock_info *ptp_info, s64 delta_ns)
1331 {
1332 	struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
1333 	unsigned long flags;
1334 	u32 adj_ns, sign;
1335 
1336 	if (delta_ns > NSEC_PER_SEC || -delta_ns > NSEC_PER_SEC) {
1337 		ptp_ocp_adjtime_coarse(bp, delta_ns);
1338 		return 0;
1339 	}
1340 
1341 	sign = delta_ns < 0 ? BIT(31) : 0;
1342 	adj_ns = sign ? -delta_ns : delta_ns;
1343 
1344 	spin_lock_irqsave(&bp->lock, flags);
1345 	__ptp_ocp_adjtime_locked(bp, sign | adj_ns);
1346 	spin_unlock_irqrestore(&bp->lock, flags);
1347 
1348 	return 0;
1349 }
1350 
1351 static int
ptp_ocp_null_adjfine(struct ptp_clock_info * ptp_info,long scaled_ppm)1352 ptp_ocp_null_adjfine(struct ptp_clock_info *ptp_info, long scaled_ppm)
1353 {
1354 	if (scaled_ppm == 0)
1355 		return 0;
1356 
1357 	return -EOPNOTSUPP;
1358 }
1359 
1360 static s32
ptp_ocp_null_getmaxphase(struct ptp_clock_info * ptp_info)1361 ptp_ocp_null_getmaxphase(struct ptp_clock_info *ptp_info)
1362 {
1363 	return 0;
1364 }
1365 
1366 static int
ptp_ocp_null_adjphase(struct ptp_clock_info * ptp_info,s32 phase_ns)1367 ptp_ocp_null_adjphase(struct ptp_clock_info *ptp_info, s32 phase_ns)
1368 {
1369 	return -EOPNOTSUPP;
1370 }
1371 
1372 static int
ptp_ocp_enable(struct ptp_clock_info * ptp_info,struct ptp_clock_request * rq,int on)1373 ptp_ocp_enable(struct ptp_clock_info *ptp_info, struct ptp_clock_request *rq,
1374 	       int on)
1375 {
1376 	struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
1377 	struct ptp_ocp_ext_src *ext = NULL;
1378 	u32 req;
1379 	int err;
1380 
1381 	switch (rq->type) {
1382 	case PTP_CLK_REQ_EXTTS:
1383 		req = OCP_REQ_TIMESTAMP;
1384 		switch (rq->extts.index) {
1385 		case 0:
1386 			ext = bp->ts0;
1387 			break;
1388 		case 1:
1389 			ext = bp->ts1;
1390 			break;
1391 		case 2:
1392 			ext = bp->ts2;
1393 			break;
1394 		case 3:
1395 			ext = bp->ts3;
1396 			break;
1397 		case 4:
1398 			ext = bp->ts4;
1399 			break;
1400 		case 5:
1401 			ext = bp->pps;
1402 			break;
1403 		}
1404 		break;
1405 	case PTP_CLK_REQ_PPS:
1406 		req = OCP_REQ_PPS;
1407 		ext = bp->pps;
1408 		break;
1409 	case PTP_CLK_REQ_PEROUT:
1410 		switch (rq->perout.index) {
1411 		case 0:
1412 			/* This is a request for 1PPS on an output SMA.
1413 			 * Allow, but assume manual configuration.
1414 			 */
1415 			if (on && (rq->perout.period.sec != 1 ||
1416 				   rq->perout.period.nsec != 0))
1417 				return -EINVAL;
1418 			return 0;
1419 		case 1:
1420 		case 2:
1421 		case 3:
1422 		case 4:
1423 			req = rq->perout.index - 1;
1424 			ext = bp->signal_out[req];
1425 			err = ptp_ocp_signal_from_perout(bp, req, &rq->perout);
1426 			if (err)
1427 				return err;
1428 			break;
1429 		}
1430 		break;
1431 	default:
1432 		return -EOPNOTSUPP;
1433 	}
1434 
1435 	err = -ENXIO;
1436 	if (ext)
1437 		err = ext->info->enable(ext, req, on);
1438 
1439 	return err;
1440 }
1441 
1442 static int
ptp_ocp_verify(struct ptp_clock_info * ptp_info,unsigned pin,enum ptp_pin_function func,unsigned chan)1443 ptp_ocp_verify(struct ptp_clock_info *ptp_info, unsigned pin,
1444 	       enum ptp_pin_function func, unsigned chan)
1445 {
1446 	struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
1447 	char buf[16];
1448 
1449 	switch (func) {
1450 	case PTP_PF_NONE:
1451 		snprintf(buf, sizeof(buf), "IN: None");
1452 		break;
1453 	case PTP_PF_EXTTS:
1454 		/* Allow timestamps, but require sysfs configuration. */
1455 		return 0;
1456 	case PTP_PF_PEROUT:
1457 		/* channel 0 is 1PPS from PHC.
1458 		 * channels 1..4 are the frequency generators.
1459 		 */
1460 		if (chan)
1461 			snprintf(buf, sizeof(buf), "OUT: GEN%d", chan);
1462 		else
1463 			snprintf(buf, sizeof(buf), "OUT: PHC");
1464 		break;
1465 	default:
1466 		return -EOPNOTSUPP;
1467 	}
1468 
1469 	return ptp_ocp_sma_store(bp, buf, pin + 1);
1470 }
1471 
1472 static const struct ptp_clock_info ptp_ocp_clock_info = {
1473 	.owner		= THIS_MODULE,
1474 	.name		= KBUILD_MODNAME,
1475 	.max_adj	= 100000000,
1476 	.gettimex64	= ptp_ocp_gettimex,
1477 	.settime64	= ptp_ocp_settime,
1478 	.adjtime	= ptp_ocp_adjtime,
1479 	.adjfine	= ptp_ocp_null_adjfine,
1480 	.adjphase	= ptp_ocp_null_adjphase,
1481 	.getmaxphase	= ptp_ocp_null_getmaxphase,
1482 	.enable		= ptp_ocp_enable,
1483 	.verify		= ptp_ocp_verify,
1484 	.pps		= true,
1485 	.n_ext_ts	= 6,
1486 	.n_per_out	= 5,
1487 	.supported_extts_flags = PTP_STRICT_FLAGS | PTP_RISING_EDGE,
1488 	.supported_perout_flags = PTP_PEROUT_DUTY_CYCLE | PTP_PEROUT_PHASE,
1489 };
1490 
1491 static void
__ptp_ocp_clear_drift_locked(struct ptp_ocp * bp)1492 __ptp_ocp_clear_drift_locked(struct ptp_ocp *bp)
1493 {
1494 	u32 ctrl, select;
1495 
1496 	select = ioread32(&bp->reg->select);
1497 	iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select);
1498 
1499 	iowrite32(0, &bp->reg->drift_ns);
1500 
1501 	ctrl = OCP_CTRL_ADJUST_DRIFT | OCP_CTRL_ENABLE;
1502 	iowrite32(ctrl, &bp->reg->ctrl);
1503 
1504 	/* restore clock selection */
1505 	iowrite32(select >> 16, &bp->reg->select);
1506 }
1507 
1508 static void
ptp_ocp_utc_distribute(struct ptp_ocp * bp,u32 val)1509 ptp_ocp_utc_distribute(struct ptp_ocp *bp, u32 val)
1510 {
1511 	unsigned long flags;
1512 
1513 	spin_lock_irqsave(&bp->lock, flags);
1514 
1515 	bp->utc_tai_offset = val;
1516 
1517 	if (bp->irig_out)
1518 		iowrite32(val, &bp->irig_out->adj_sec);
1519 	if (bp->dcf_out)
1520 		iowrite32(val, &bp->dcf_out->adj_sec);
1521 	if (bp->nmea_out)
1522 		iowrite32(val, &bp->nmea_out->adj_sec);
1523 
1524 	spin_unlock_irqrestore(&bp->lock, flags);
1525 }
1526 
1527 static void
ptp_ocp_watchdog(struct timer_list * t)1528 ptp_ocp_watchdog(struct timer_list *t)
1529 {
1530 	struct ptp_ocp *bp = timer_container_of(bp, t, watchdog);
1531 	unsigned long flags;
1532 	u32 status, utc_offset;
1533 
1534 	status = ioread32(&bp->pps_to_clk->status);
1535 
1536 	if (status & PPS_STATUS_SUPERV_ERR) {
1537 		iowrite32(status, &bp->pps_to_clk->status);
1538 		if (!bp->gnss_lost) {
1539 			spin_lock_irqsave(&bp->lock, flags);
1540 			__ptp_ocp_clear_drift_locked(bp);
1541 			spin_unlock_irqrestore(&bp->lock, flags);
1542 			bp->gnss_lost = ktime_get_real_seconds();
1543 		}
1544 
1545 	} else if (bp->gnss_lost) {
1546 		bp->gnss_lost = 0;
1547 	}
1548 
1549 	/* if GNSS provides correct data we can rely on
1550 	 * it to get leap second information
1551 	 */
1552 	if (bp->tod) {
1553 		status = ioread32(&bp->tod->utc_status);
1554 		utc_offset = status & TOD_STATUS_UTC_MASK;
1555 		if (status & TOD_STATUS_UTC_VALID &&
1556 		    utc_offset != bp->utc_tai_offset)
1557 			ptp_ocp_utc_distribute(bp, utc_offset);
1558 	}
1559 
1560 	mod_timer(&bp->watchdog, jiffies + HZ);
1561 }
1562 
1563 static void
ptp_ocp_estimate_pci_timing(struct ptp_ocp * bp)1564 ptp_ocp_estimate_pci_timing(struct ptp_ocp *bp)
1565 {
1566 	ktime_t start, end, delay = U64_MAX;
1567 	u32 ctrl;
1568 	int i;
1569 
1570 	for (i = 0; i < 3; i++) {
1571 		ctrl = ioread32(&bp->reg->ctrl);
1572 		ctrl = OCP_CTRL_READ_TIME_REQ | OCP_CTRL_ENABLE;
1573 
1574 		iowrite32(ctrl, &bp->reg->ctrl);
1575 
1576 		start = ktime_get_raw_ns();
1577 
1578 		ctrl = ioread32(&bp->reg->ctrl);
1579 
1580 		end = ktime_get_raw_ns();
1581 
1582 		delay = min(delay, end - start);
1583 	}
1584 	bp->ts_window_adjust = (delay >> 5) * 3;
1585 }
1586 
1587 static int
ptp_ocp_init_clock(struct ptp_ocp * bp,struct ptp_ocp_servo_conf * servo_conf)1588 ptp_ocp_init_clock(struct ptp_ocp *bp, struct ptp_ocp_servo_conf *servo_conf)
1589 {
1590 	struct timespec64 ts;
1591 	u32 ctrl;
1592 
1593 	ctrl = OCP_CTRL_ENABLE;
1594 	iowrite32(ctrl, &bp->reg->ctrl);
1595 
1596 	/* servo configuration */
1597 	iowrite32(servo_conf->servo_offset_p, &bp->reg->servo_offset_p);
1598 	iowrite32(servo_conf->servo_offset_i, &bp->reg->servo_offset_i);
1599 	iowrite32(servo_conf->servo_drift_p, &bp->reg->servo_drift_p);
1600 	iowrite32(servo_conf->servo_drift_p, &bp->reg->servo_drift_i);
1601 
1602 	/* latch servo values */
1603 	ctrl |= OCP_CTRL_ADJUST_SERVO;
1604 	iowrite32(ctrl, &bp->reg->ctrl);
1605 
1606 	if ((ioread32(&bp->reg->ctrl) & OCP_CTRL_ENABLE) == 0) {
1607 		dev_err(&bp->pdev->dev, "clock not enabled\n");
1608 		return -ENODEV;
1609 	}
1610 
1611 	ptp_ocp_estimate_pci_timing(bp);
1612 
1613 	bp->sync = ioread32(&bp->reg->status) & OCP_STATUS_IN_SYNC;
1614 	if (!bp->sync) {
1615 		ktime_get_clocktai_ts64(&ts);
1616 		ptp_ocp_settime(&bp->ptp_info, &ts);
1617 	}
1618 
1619 	/* If there is a clock supervisor, then enable the watchdog */
1620 	if (bp->pps_to_clk) {
1621 		timer_setup(&bp->watchdog, ptp_ocp_watchdog, 0);
1622 		mod_timer(&bp->watchdog, jiffies + HZ);
1623 	}
1624 
1625 	return 0;
1626 }
1627 
1628 static void
ptp_ocp_tod_init(struct ptp_ocp * bp)1629 ptp_ocp_tod_init(struct ptp_ocp *bp)
1630 {
1631 	u32 ctrl, reg;
1632 
1633 	ctrl = ioread32(&bp->tod->ctrl);
1634 	ctrl |= TOD_CTRL_PROTOCOL | TOD_CTRL_ENABLE;
1635 	ctrl &= ~(TOD_CTRL_DISABLE_FMT_A | TOD_CTRL_DISABLE_FMT_B);
1636 	iowrite32(ctrl, &bp->tod->ctrl);
1637 
1638 	reg = ioread32(&bp->tod->utc_status);
1639 	if (reg & TOD_STATUS_UTC_VALID)
1640 		ptp_ocp_utc_distribute(bp, reg & TOD_STATUS_UTC_MASK);
1641 }
1642 
1643 static const char *
ptp_ocp_tod_proto_name(const int idx)1644 ptp_ocp_tod_proto_name(const int idx)
1645 {
1646 	static const char * const proto_name[] = {
1647 		"NMEA", "NMEA_ZDA", "NMEA_RMC", "NMEA_none",
1648 		"UBX", "UBX_UTC", "UBX_LS", "UBX_none"
1649 	};
1650 	return proto_name[idx];
1651 }
1652 
1653 static const char *
ptp_ocp_tod_gnss_name(int idx)1654 ptp_ocp_tod_gnss_name(int idx)
1655 {
1656 	static const char * const gnss_name[] = {
1657 		"ALL", "COMBINED", "GPS", "GLONASS", "GALILEO", "BEIDOU",
1658 		"Unknown"
1659 	};
1660 	if (idx >= ARRAY_SIZE(gnss_name))
1661 		idx = ARRAY_SIZE(gnss_name) - 1;
1662 	return gnss_name[idx];
1663 }
1664 
1665 static const char *
ptp_ocp_tty_port_name(int idx)1666 ptp_ocp_tty_port_name(int idx)
1667 {
1668 	static const char * const tty_name[] = {
1669 		"GNSS", "GNSS2", "MAC", "NMEA"
1670 	};
1671 	return tty_name[idx];
1672 }
1673 
1674 struct ptp_ocp_nvmem_match_info {
1675 	struct ptp_ocp *bp;
1676 	const void * const tag;
1677 };
1678 
1679 static int
ptp_ocp_nvmem_match(struct device * dev,const void * data)1680 ptp_ocp_nvmem_match(struct device *dev, const void *data)
1681 {
1682 	const struct ptp_ocp_nvmem_match_info *info = data;
1683 
1684 	dev = dev->parent;
1685 	if (!i2c_verify_client(dev) || info->tag != dev->platform_data)
1686 		return 0;
1687 
1688 	while ((dev = dev->parent))
1689 		if (dev->driver && !strcmp(dev->driver->name, KBUILD_MODNAME))
1690 			return info->bp == dev_get_drvdata(dev);
1691 	return 0;
1692 }
1693 
1694 static inline struct nvmem_device *
ptp_ocp_nvmem_device_get(struct ptp_ocp * bp,const void * const tag)1695 ptp_ocp_nvmem_device_get(struct ptp_ocp *bp, const void * const tag)
1696 {
1697 	struct ptp_ocp_nvmem_match_info info = { .bp = bp, .tag = tag };
1698 
1699 	return nvmem_device_find(&info, ptp_ocp_nvmem_match);
1700 }
1701 
1702 static inline void
ptp_ocp_nvmem_device_put(struct nvmem_device ** nvmemp)1703 ptp_ocp_nvmem_device_put(struct nvmem_device **nvmemp)
1704 {
1705 	if (!IS_ERR_OR_NULL(*nvmemp))
1706 		nvmem_device_put(*nvmemp);
1707 	*nvmemp = NULL;
1708 }
1709 
1710 static void
ptp_ocp_read_eeprom(struct ptp_ocp * bp)1711 ptp_ocp_read_eeprom(struct ptp_ocp *bp)
1712 {
1713 	const struct ptp_ocp_eeprom_map *map;
1714 	struct nvmem_device *nvmem;
1715 	const void *tag;
1716 	int ret;
1717 
1718 	if (!bp->i2c_ctrl)
1719 		return;
1720 
1721 	tag = NULL;
1722 	nvmem = NULL;
1723 
1724 	for (map = bp->eeprom_map; map->len; map++) {
1725 		if (map->tag != tag) {
1726 			tag = map->tag;
1727 			ptp_ocp_nvmem_device_put(&nvmem);
1728 		}
1729 		if (!nvmem) {
1730 			nvmem = ptp_ocp_nvmem_device_get(bp, tag);
1731 			if (IS_ERR(nvmem)) {
1732 				ret = PTR_ERR(nvmem);
1733 				goto fail;
1734 			}
1735 		}
1736 		ret = nvmem_device_read(nvmem, map->off, map->len,
1737 					BP_MAP_ENTRY_ADDR(bp, map));
1738 		if (ret != map->len)
1739 			goto fail;
1740 	}
1741 
1742 	bp->has_eeprom_data = true;
1743 
1744 out:
1745 	ptp_ocp_nvmem_device_put(&nvmem);
1746 	return;
1747 
1748 fail:
1749 	dev_err(&bp->pdev->dev, "could not read eeprom: %d\n", ret);
1750 	goto out;
1751 }
1752 
1753 static struct device *
ptp_ocp_find_flash(struct ptp_ocp * bp)1754 ptp_ocp_find_flash(struct ptp_ocp *bp)
1755 {
1756 	struct device *dev, *last;
1757 
1758 	last = NULL;
1759 	dev = &bp->spi_flash->dev;
1760 
1761 	while ((dev = device_find_any_child(dev))) {
1762 		if (!strcmp("mtd", dev_bus_name(dev)))
1763 			break;
1764 		put_device(last);
1765 		last = dev;
1766 	}
1767 	put_device(last);
1768 
1769 	return dev;
1770 }
1771 
1772 static int
ptp_ocp_devlink_fw_image(struct devlink * devlink,const struct firmware * fw,const u8 ** data,size_t * size)1773 ptp_ocp_devlink_fw_image(struct devlink *devlink, const struct firmware *fw,
1774 			 const u8 **data, size_t *size)
1775 {
1776 	struct ptp_ocp *bp = devlink_priv(devlink);
1777 	const struct ptp_ocp_firmware_header *hdr;
1778 	size_t offset, length;
1779 	u16 crc;
1780 
1781 	hdr = (const struct ptp_ocp_firmware_header *)fw->data;
1782 	if (memcmp(hdr->magic, OCP_FIRMWARE_MAGIC_HEADER, 4)) {
1783 		devlink_flash_update_status_notify(devlink,
1784 			"No firmware header found, cancel firmware upgrade",
1785 			NULL, 0, 0);
1786 		return -EINVAL;
1787 	}
1788 
1789 	if (be16_to_cpu(hdr->pci_vendor_id) != bp->pdev->vendor ||
1790 	    be16_to_cpu(hdr->pci_device_id) != bp->pdev->device) {
1791 		devlink_flash_update_status_notify(devlink,
1792 			"Firmware image compatibility check failed",
1793 			NULL, 0, 0);
1794 		return -EINVAL;
1795 	}
1796 
1797 	offset = sizeof(*hdr);
1798 	length = be32_to_cpu(hdr->image_size);
1799 	if (length != (fw->size - offset)) {
1800 		devlink_flash_update_status_notify(devlink,
1801 			"Firmware image size check failed",
1802 			NULL, 0, 0);
1803 		return -EINVAL;
1804 	}
1805 
1806 	crc = crc16(0xffff, &fw->data[offset], length);
1807 	if (be16_to_cpu(hdr->crc) != crc) {
1808 		devlink_flash_update_status_notify(devlink,
1809 			"Firmware image CRC check failed",
1810 			NULL, 0, 0);
1811 		return -EINVAL;
1812 	}
1813 
1814 	*data = &fw->data[offset];
1815 	*size = length;
1816 
1817 	return 0;
1818 }
1819 
1820 static int
ptp_ocp_devlink_flash(struct devlink * devlink,struct device * dev,const struct firmware * fw)1821 ptp_ocp_devlink_flash(struct devlink *devlink, struct device *dev,
1822 		      const struct firmware *fw)
1823 {
1824 	struct mtd_info *mtd = dev_get_drvdata(dev);
1825 	struct ptp_ocp *bp = devlink_priv(devlink);
1826 	size_t off, len, size, resid, wrote;
1827 	struct erase_info erase;
1828 	size_t base, blksz;
1829 	const u8 *data;
1830 	int err;
1831 
1832 	err = ptp_ocp_devlink_fw_image(devlink, fw, &data, &size);
1833 	if (err)
1834 		goto out;
1835 
1836 	off = 0;
1837 	base = bp->flash_start;
1838 	blksz = 4096;
1839 	resid = size;
1840 
1841 	while (resid) {
1842 		devlink_flash_update_status_notify(devlink, "Flashing",
1843 						   NULL, off, size);
1844 
1845 		len = min_t(size_t, resid, blksz);
1846 		erase.addr = base + off;
1847 		erase.len = blksz;
1848 
1849 		err = mtd_erase(mtd, &erase);
1850 		if (err)
1851 			goto out;
1852 
1853 		err = mtd_write(mtd, base + off, len, &wrote, data + off);
1854 		if (err)
1855 			goto out;
1856 
1857 		off += blksz;
1858 		resid -= len;
1859 	}
1860 out:
1861 	return err;
1862 }
1863 
1864 static int
ptp_ocp_devlink_flash_update(struct devlink * devlink,struct devlink_flash_update_params * params,struct netlink_ext_ack * extack)1865 ptp_ocp_devlink_flash_update(struct devlink *devlink,
1866 			     struct devlink_flash_update_params *params,
1867 			     struct netlink_ext_ack *extack)
1868 {
1869 	struct ptp_ocp *bp = devlink_priv(devlink);
1870 	struct device *dev;
1871 	const char *msg;
1872 	int err;
1873 
1874 	dev = ptp_ocp_find_flash(bp);
1875 	if (!dev) {
1876 		dev_err(&bp->pdev->dev, "Can't find Flash SPI adapter\n");
1877 		return -ENODEV;
1878 	}
1879 
1880 	devlink_flash_update_status_notify(devlink, "Preparing to flash",
1881 					   NULL, 0, 0);
1882 
1883 	err = ptp_ocp_devlink_flash(devlink, dev, params->fw);
1884 
1885 	msg = err ? "Flash error" : "Flash complete";
1886 	devlink_flash_update_status_notify(devlink, msg, NULL, 0, 0);
1887 
1888 	put_device(dev);
1889 	return err;
1890 }
1891 
1892 static int
ptp_ocp_devlink_info_get(struct devlink * devlink,struct devlink_info_req * req,struct netlink_ext_ack * extack)1893 ptp_ocp_devlink_info_get(struct devlink *devlink, struct devlink_info_req *req,
1894 			 struct netlink_ext_ack *extack)
1895 {
1896 	struct ptp_ocp *bp = devlink_priv(devlink);
1897 	const char *fw_image;
1898 	char buf[32];
1899 	int err;
1900 
1901 	fw_image = bp->fw_loader ? "loader" : "fw";
1902 	sprintf(buf, "%d.%d", bp->fw_tag, bp->fw_version);
1903 	err = devlink_info_version_running_put(req, fw_image, buf);
1904 	if (err)
1905 		return err;
1906 
1907 	if (!bp->has_eeprom_data) {
1908 		ptp_ocp_read_eeprom(bp);
1909 		if (!bp->has_eeprom_data)
1910 			return 0;
1911 	}
1912 
1913 	sprintf(buf, "%pM", bp->serial);
1914 	err = devlink_info_serial_number_put(req, buf);
1915 	if (err)
1916 		return err;
1917 
1918 	err = devlink_info_version_fixed_put(req,
1919 			DEVLINK_INFO_VERSION_GENERIC_BOARD_ID,
1920 			bp->board_id);
1921 	if (err)
1922 		return err;
1923 
1924 	return 0;
1925 }
1926 
1927 static const struct devlink_ops ptp_ocp_devlink_ops = {
1928 	.flash_update = ptp_ocp_devlink_flash_update,
1929 	.info_get = ptp_ocp_devlink_info_get,
1930 };
1931 
1932 static void __iomem *
__ptp_ocp_get_mem(struct ptp_ocp * bp,resource_size_t start,int size)1933 __ptp_ocp_get_mem(struct ptp_ocp *bp, resource_size_t start, int size)
1934 {
1935 	struct resource res = DEFINE_RES_MEM_NAMED(start, size, "ptp_ocp");
1936 
1937 	return devm_ioremap_resource(&bp->pdev->dev, &res);
1938 }
1939 
1940 static void __iomem *
ptp_ocp_get_mem(struct ptp_ocp * bp,struct ocp_resource * r)1941 ptp_ocp_get_mem(struct ptp_ocp *bp, struct ocp_resource *r)
1942 {
1943 	resource_size_t start;
1944 
1945 	start = pci_resource_start(bp->pdev, 0) + r->offset;
1946 	return __ptp_ocp_get_mem(bp, start, r->size);
1947 }
1948 
1949 static int
ptp_ocp_register_spi(struct ptp_ocp * bp,struct ocp_resource * r)1950 ptp_ocp_register_spi(struct ptp_ocp *bp, struct ocp_resource *r)
1951 {
1952 	struct ptp_ocp_flash_info *info;
1953 	struct pci_dev *pdev = bp->pdev;
1954 	struct platform_device *p;
1955 	struct resource res[2];
1956 	resource_size_t start;
1957 	int id;
1958 
1959 	start = pci_resource_start(pdev, 0) + r->offset;
1960 	res[0] = DEFINE_RES_MEM(start, r->size);
1961 	res[1] = DEFINE_RES_IRQ(pci_irq_vector(pdev, r->irq_vec));
1962 
1963 	info = r->extra;
1964 	id = pci_dev_id(pdev) << 1;
1965 	id += info->pci_offset;
1966 
1967 	p = platform_device_register_resndata(&pdev->dev, info->name, id,
1968 					      res, ARRAY_SIZE(res), info->data,
1969 					      info->data_size);
1970 	if (IS_ERR(p))
1971 		return PTR_ERR(p);
1972 
1973 	bp_assign_entry(bp, r, p);
1974 
1975 	return 0;
1976 }
1977 
1978 static struct platform_device *
ptp_ocp_i2c_bus(struct pci_dev * pdev,struct ocp_resource * r,int id)1979 ptp_ocp_i2c_bus(struct pci_dev *pdev, struct ocp_resource *r, int id)
1980 {
1981 	struct ptp_ocp_i2c_info *info;
1982 	struct resource res[2];
1983 	resource_size_t start;
1984 
1985 	info = r->extra;
1986 	start = pci_resource_start(pdev, 0) + r->offset;
1987 	res[0] = DEFINE_RES_MEM(start, r->size);
1988 	res[1] = DEFINE_RES_IRQ(pci_irq_vector(pdev, r->irq_vec));
1989 
1990 	return platform_device_register_resndata(&pdev->dev, info->name,
1991 						 id, res, ARRAY_SIZE(res),
1992 						 info->data, info->data_size);
1993 }
1994 
1995 static int
ptp_ocp_register_i2c(struct ptp_ocp * bp,struct ocp_resource * r)1996 ptp_ocp_register_i2c(struct ptp_ocp *bp, struct ocp_resource *r)
1997 {
1998 	struct pci_dev *pdev = bp->pdev;
1999 	struct ptp_ocp_i2c_info *info;
2000 	struct platform_device *p;
2001 	struct clk_hw *clk;
2002 	char buf[32];
2003 	int id;
2004 
2005 	info = r->extra;
2006 	id = pci_dev_id(bp->pdev);
2007 
2008 	sprintf(buf, "AXI.%d", id);
2009 	clk = clk_hw_register_fixed_rate(&pdev->dev, buf, NULL, 0,
2010 					 info->fixed_rate);
2011 	if (IS_ERR(clk))
2012 		return PTR_ERR(clk);
2013 	bp->i2c_clk = clk;
2014 
2015 	sprintf(buf, "%s.%d", info->name, id);
2016 	devm_clk_hw_register_clkdev(&pdev->dev, clk, NULL, buf);
2017 	p = ptp_ocp_i2c_bus(bp->pdev, r, id);
2018 	if (IS_ERR(p))
2019 		return PTR_ERR(p);
2020 
2021 	bp_assign_entry(bp, r, p);
2022 
2023 	return 0;
2024 }
2025 
2026 /* The expectation is that this is triggered only on error. */
2027 static irqreturn_t
ptp_ocp_signal_irq(int irq,void * priv)2028 ptp_ocp_signal_irq(int irq, void *priv)
2029 {
2030 	struct ptp_ocp_ext_src *ext = priv;
2031 	struct signal_reg __iomem *reg = ext->mem;
2032 	struct ptp_ocp *bp = ext->bp;
2033 	u32 enable, status;
2034 	int gen;
2035 
2036 	gen = ext->info->index - 1;
2037 
2038 	enable = ioread32(&reg->enable);
2039 	status = ioread32(&reg->status);
2040 
2041 	/* disable generator on error */
2042 	if (status || !enable) {
2043 		iowrite32(0, &reg->intr_mask);
2044 		iowrite32(0, &reg->enable);
2045 		bp->signal[gen].running = false;
2046 	}
2047 
2048 	iowrite32(0, &reg->intr);	/* ack interrupt */
2049 
2050 	return IRQ_HANDLED;
2051 }
2052 
2053 static int
ptp_ocp_signal_set(struct ptp_ocp * bp,int gen,struct ptp_ocp_signal * s)2054 ptp_ocp_signal_set(struct ptp_ocp *bp, int gen, struct ptp_ocp_signal *s)
2055 {
2056 	struct ptp_system_timestamp sts;
2057 	struct timespec64 ts;
2058 	ktime_t start_ns;
2059 	int err;
2060 
2061 	if (!s->period)
2062 		return 0;
2063 
2064 	if (!s->pulse)
2065 		s->pulse = ktime_divns(s->period * s->duty, 100);
2066 
2067 	err = ptp_ocp_gettimex(&bp->ptp_info, &ts, &sts);
2068 	if (err)
2069 		return err;
2070 
2071 	start_ns = ktime_set(ts.tv_sec, ts.tv_nsec) + NSEC_PER_MSEC;
2072 	if (!s->start) {
2073 		/* roundup() does not work on 32-bit systems */
2074 		s->start = DIV64_U64_ROUND_UP(start_ns, s->period);
2075 		s->start *= s->period;
2076 		s->start = ktime_add(s->start, s->phase);
2077 	}
2078 
2079 	if (s->duty < 1 || s->duty > 99)
2080 		return -EINVAL;
2081 
2082 	if (s->pulse < 1 || s->pulse > s->period)
2083 		return -EINVAL;
2084 
2085 	if (s->start < start_ns)
2086 		return -EINVAL;
2087 
2088 	bp->signal[gen] = *s;
2089 
2090 	return 0;
2091 }
2092 
2093 static int
ptp_ocp_signal_from_perout(struct ptp_ocp * bp,int gen,struct ptp_perout_request * req)2094 ptp_ocp_signal_from_perout(struct ptp_ocp *bp, int gen,
2095 			   struct ptp_perout_request *req)
2096 {
2097 	struct ptp_ocp_signal s = { };
2098 
2099 	s.polarity = bp->signal[gen].polarity;
2100 	s.period = ktime_set(req->period.sec, req->period.nsec);
2101 	if (!s.period)
2102 		return 0;
2103 
2104 	if (req->flags & PTP_PEROUT_DUTY_CYCLE) {
2105 		s.pulse = ktime_set(req->on.sec, req->on.nsec);
2106 		s.duty = ktime_divns(s.pulse * 100, s.period);
2107 	}
2108 
2109 	if (req->flags & PTP_PEROUT_PHASE)
2110 		s.phase = ktime_set(req->phase.sec, req->phase.nsec);
2111 	else
2112 		s.start = ktime_set(req->start.sec, req->start.nsec);
2113 
2114 	return ptp_ocp_signal_set(bp, gen, &s);
2115 }
2116 
2117 static int
ptp_ocp_signal_enable(void * priv,u32 req,bool enable)2118 ptp_ocp_signal_enable(void *priv, u32 req, bool enable)
2119 {
2120 	struct ptp_ocp_ext_src *ext = priv;
2121 	struct signal_reg __iomem *reg = ext->mem;
2122 	struct ptp_ocp *bp = ext->bp;
2123 	struct timespec64 ts;
2124 	int gen;
2125 
2126 	gen = ext->info->index - 1;
2127 
2128 	iowrite32(0, &reg->intr_mask);
2129 	iowrite32(0, &reg->enable);
2130 	bp->signal[gen].running = false;
2131 	if (!enable)
2132 		return 0;
2133 
2134 	ts = ktime_to_timespec64(bp->signal[gen].start);
2135 	iowrite32(ts.tv_sec, &reg->start_sec);
2136 	iowrite32(ts.tv_nsec, &reg->start_ns);
2137 
2138 	ts = ktime_to_timespec64(bp->signal[gen].period);
2139 	iowrite32(ts.tv_sec, &reg->period_sec);
2140 	iowrite32(ts.tv_nsec, &reg->period_ns);
2141 
2142 	ts = ktime_to_timespec64(bp->signal[gen].pulse);
2143 	iowrite32(ts.tv_sec, &reg->pulse_sec);
2144 	iowrite32(ts.tv_nsec, &reg->pulse_ns);
2145 
2146 	iowrite32(bp->signal[gen].polarity, &reg->polarity);
2147 	iowrite32(0, &reg->repeat_count);
2148 
2149 	iowrite32(0, &reg->intr);		/* clear interrupt state */
2150 	iowrite32(1, &reg->intr_mask);		/* enable interrupt */
2151 	iowrite32(3, &reg->enable);		/* valid & enable */
2152 
2153 	bp->signal[gen].running = true;
2154 
2155 	return 0;
2156 }
2157 
2158 static irqreturn_t
ptp_ocp_ts_irq(int irq,void * priv)2159 ptp_ocp_ts_irq(int irq, void *priv)
2160 {
2161 	struct ptp_ocp_ext_src *ext = priv;
2162 	struct ts_reg __iomem *reg = ext->mem;
2163 	struct ptp_clock_event ev;
2164 	u32 sec, nsec;
2165 
2166 	if (ext == ext->bp->pps) {
2167 		if (ext->bp->pps_req_map & OCP_REQ_PPS) {
2168 			ev.type = PTP_CLOCK_PPS;
2169 			ptp_clock_event(ext->bp->ptp, &ev);
2170 		}
2171 
2172 		if ((ext->bp->pps_req_map & ~OCP_REQ_PPS) == 0)
2173 			goto out;
2174 	}
2175 
2176 	/* XXX should fix API - this converts s/ns -> ts -> s/ns */
2177 	sec = ioread32(&reg->time_sec);
2178 	nsec = ioread32(&reg->time_ns);
2179 
2180 	ev.type = PTP_CLOCK_EXTTS;
2181 	ev.index = ext->info->index;
2182 	ev.timestamp = sec * NSEC_PER_SEC + nsec;
2183 
2184 	ptp_clock_event(ext->bp->ptp, &ev);
2185 
2186 out:
2187 	iowrite32(1, &reg->intr);	/* write 1 to ack */
2188 
2189 	return IRQ_HANDLED;
2190 }
2191 
2192 static int
ptp_ocp_ts_enable(void * priv,u32 req,bool enable)2193 ptp_ocp_ts_enable(void *priv, u32 req, bool enable)
2194 {
2195 	struct ptp_ocp_ext_src *ext = priv;
2196 	struct ts_reg __iomem *reg = ext->mem;
2197 	struct ptp_ocp *bp = ext->bp;
2198 
2199 	if (ext == bp->pps) {
2200 		u32 old_map = bp->pps_req_map;
2201 
2202 		if (enable)
2203 			bp->pps_req_map |= req;
2204 		else
2205 			bp->pps_req_map &= ~req;
2206 
2207 		/* if no state change, just return */
2208 		if ((!!old_map ^ !!bp->pps_req_map) == 0)
2209 			return 0;
2210 	}
2211 
2212 	if (enable) {
2213 		iowrite32(1, &reg->enable);
2214 		iowrite32(1, &reg->intr_mask);
2215 		iowrite32(1, &reg->intr);
2216 	} else {
2217 		iowrite32(0, &reg->intr_mask);
2218 		iowrite32(0, &reg->enable);
2219 	}
2220 
2221 	return 0;
2222 }
2223 
2224 static void
ptp_ocp_unregister_ext(struct ptp_ocp_ext_src * ext)2225 ptp_ocp_unregister_ext(struct ptp_ocp_ext_src *ext)
2226 {
2227 	if (!ext)
2228 		return;
2229 
2230 	ext->info->enable(ext, ~0, false);
2231 	pci_free_irq(ext->bp->pdev, ext->irq_vec, ext);
2232 	kfree(ext);
2233 }
2234 
2235 static int
ptp_ocp_register_ext(struct ptp_ocp * bp,struct ocp_resource * r)2236 ptp_ocp_register_ext(struct ptp_ocp *bp, struct ocp_resource *r)
2237 {
2238 	struct pci_dev *pdev = bp->pdev;
2239 	struct ptp_ocp_ext_src *ext;
2240 	int err;
2241 
2242 	ext = kzalloc(sizeof(*ext), GFP_KERNEL);
2243 	if (!ext)
2244 		return -ENOMEM;
2245 
2246 	ext->mem = ptp_ocp_get_mem(bp, r);
2247 	if (IS_ERR(ext->mem)) {
2248 		err = PTR_ERR(ext->mem);
2249 		goto out;
2250 	}
2251 
2252 	ext->bp = bp;
2253 	ext->info = r->extra;
2254 	ext->irq_vec = r->irq_vec;
2255 
2256 	err = pci_request_irq(pdev, r->irq_vec, ext->info->irq_fcn, NULL,
2257 			      ext, "ocp%d.%s", bp->id, r->name);
2258 	if (err) {
2259 		dev_err(&pdev->dev, "Could not get irq %d\n", r->irq_vec);
2260 		goto out;
2261 	}
2262 
2263 	bp_assign_entry(bp, r, ext);
2264 
2265 	return 0;
2266 
2267 out:
2268 	kfree(ext);
2269 	return err;
2270 }
2271 
2272 static int
ptp_ocp_serial_line(struct ptp_ocp * bp,struct ocp_resource * r)2273 ptp_ocp_serial_line(struct ptp_ocp *bp, struct ocp_resource *r)
2274 {
2275 	struct pci_dev *pdev = bp->pdev;
2276 	struct uart_8250_port uart;
2277 
2278 	/* Setting UPF_IOREMAP and leaving port.membase unspecified lets
2279 	 * the serial port device claim and release the pci resource.
2280 	 */
2281 	memset(&uart, 0, sizeof(uart));
2282 	uart.port.dev = &pdev->dev;
2283 	uart.port.iotype = UPIO_MEM;
2284 	uart.port.regshift = 2;
2285 	uart.port.mapbase = pci_resource_start(pdev, 0) + r->offset;
2286 	uart.port.irq = pci_irq_vector(pdev, r->irq_vec);
2287 	uart.port.uartclk = 50000000;
2288 	uart.port.flags = UPF_FIXED_TYPE | UPF_IOREMAP | UPF_NO_THRE_TEST;
2289 	uart.port.type = PORT_16550A;
2290 
2291 	return serial8250_register_8250_port(&uart);
2292 }
2293 
2294 static int
ptp_ocp_register_serial(struct ptp_ocp * bp,struct ocp_resource * r)2295 ptp_ocp_register_serial(struct ptp_ocp *bp, struct ocp_resource *r)
2296 {
2297 	struct ptp_ocp_serial_port *p = (struct ptp_ocp_serial_port *)r->extra;
2298 	struct ptp_ocp_serial_port port = {};
2299 
2300 	port.line = ptp_ocp_serial_line(bp, r);
2301 	if (port.line < 0)
2302 		return port.line;
2303 
2304 	if (p)
2305 		port.baud = p->baud;
2306 
2307 	bp_assign_entry(bp, r, port);
2308 
2309 	return 0;
2310 }
2311 
2312 static int
ptp_ocp_register_mem(struct ptp_ocp * bp,struct ocp_resource * r)2313 ptp_ocp_register_mem(struct ptp_ocp *bp, struct ocp_resource *r)
2314 {
2315 	void __iomem *mem;
2316 
2317 	mem = ptp_ocp_get_mem(bp, r);
2318 	if (IS_ERR(mem))
2319 		return PTR_ERR(mem);
2320 
2321 	bp_assign_entry(bp, r, mem);
2322 
2323 	return 0;
2324 }
2325 
2326 static void
ptp_ocp_nmea_out_init(struct ptp_ocp * bp)2327 ptp_ocp_nmea_out_init(struct ptp_ocp *bp)
2328 {
2329 	if (!bp->nmea_out)
2330 		return;
2331 
2332 	iowrite32(0, &bp->nmea_out->ctrl);		/* disable */
2333 	iowrite32(7, &bp->nmea_out->uart_baud);		/* 115200 */
2334 	iowrite32(1, &bp->nmea_out->ctrl);		/* enable */
2335 }
2336 
2337 static void
_ptp_ocp_signal_init(struct ptp_ocp_signal * s,struct signal_reg __iomem * reg)2338 _ptp_ocp_signal_init(struct ptp_ocp_signal *s, struct signal_reg __iomem *reg)
2339 {
2340 	u32 val;
2341 
2342 	iowrite32(0, &reg->enable);		/* disable */
2343 
2344 	val = ioread32(&reg->polarity);
2345 	s->polarity = val ? true : false;
2346 	s->duty = 50;
2347 }
2348 
2349 static void
ptp_ocp_signal_init(struct ptp_ocp * bp)2350 ptp_ocp_signal_init(struct ptp_ocp *bp)
2351 {
2352 	int i;
2353 
2354 	for (i = 0; i < 4; i++)
2355 		if (bp->signal_out[i])
2356 			_ptp_ocp_signal_init(&bp->signal[i],
2357 					     bp->signal_out[i]->mem);
2358 }
2359 
2360 static void
ptp_ocp_attr_group_del(struct ptp_ocp * bp)2361 ptp_ocp_attr_group_del(struct ptp_ocp *bp)
2362 {
2363 	sysfs_remove_groups(&bp->dev.kobj, bp->attr_group);
2364 	kfree(bp->attr_group);
2365 }
2366 
2367 static int
ptp_ocp_attr_group_add(struct ptp_ocp * bp,const struct ocp_attr_group * attr_tbl)2368 ptp_ocp_attr_group_add(struct ptp_ocp *bp,
2369 		       const struct ocp_attr_group *attr_tbl)
2370 {
2371 	int count, i;
2372 	int err;
2373 
2374 	count = 0;
2375 	for (i = 0; attr_tbl[i].cap; i++)
2376 		if (attr_tbl[i].cap & bp->fw_cap)
2377 			count++;
2378 
2379 	bp->attr_group = kcalloc(count + 1, sizeof(*bp->attr_group),
2380 				 GFP_KERNEL);
2381 	if (!bp->attr_group)
2382 		return -ENOMEM;
2383 
2384 	count = 0;
2385 	for (i = 0; attr_tbl[i].cap; i++)
2386 		if (attr_tbl[i].cap & bp->fw_cap)
2387 			bp->attr_group[count++] = attr_tbl[i].group;
2388 
2389 	err = sysfs_create_groups(&bp->dev.kobj, bp->attr_group);
2390 	if (err)
2391 		bp->attr_group[0] = NULL;
2392 
2393 	return err;
2394 }
2395 
2396 static void
ptp_ocp_enable_fpga(u32 __iomem * reg,u32 bit,bool enable)2397 ptp_ocp_enable_fpga(u32 __iomem *reg, u32 bit, bool enable)
2398 {
2399 	u32 ctrl;
2400 	bool on;
2401 
2402 	ctrl = ioread32(reg);
2403 	on = ctrl & bit;
2404 	if (on ^ enable) {
2405 		ctrl &= ~bit;
2406 		ctrl |= enable ? bit : 0;
2407 		iowrite32(ctrl, reg);
2408 	}
2409 }
2410 
2411 static void
ptp_ocp_irig_out(struct ptp_ocp * bp,bool enable)2412 ptp_ocp_irig_out(struct ptp_ocp *bp, bool enable)
2413 {
2414 	return ptp_ocp_enable_fpga(&bp->irig_out->ctrl,
2415 				   IRIG_M_CTRL_ENABLE, enable);
2416 }
2417 
2418 static void
ptp_ocp_irig_in(struct ptp_ocp * bp,bool enable)2419 ptp_ocp_irig_in(struct ptp_ocp *bp, bool enable)
2420 {
2421 	return ptp_ocp_enable_fpga(&bp->irig_in->ctrl,
2422 				   IRIG_S_CTRL_ENABLE, enable);
2423 }
2424 
2425 static void
ptp_ocp_dcf_out(struct ptp_ocp * bp,bool enable)2426 ptp_ocp_dcf_out(struct ptp_ocp *bp, bool enable)
2427 {
2428 	return ptp_ocp_enable_fpga(&bp->dcf_out->ctrl,
2429 				   DCF_M_CTRL_ENABLE, enable);
2430 }
2431 
2432 static void
ptp_ocp_dcf_in(struct ptp_ocp * bp,bool enable)2433 ptp_ocp_dcf_in(struct ptp_ocp *bp, bool enable)
2434 {
2435 	return ptp_ocp_enable_fpga(&bp->dcf_in->ctrl,
2436 				   DCF_S_CTRL_ENABLE, enable);
2437 }
2438 
2439 static void
__handle_signal_outputs(struct ptp_ocp * bp,u32 val)2440 __handle_signal_outputs(struct ptp_ocp *bp, u32 val)
2441 {
2442 	ptp_ocp_irig_out(bp, val & 0x00100010);
2443 	ptp_ocp_dcf_out(bp, val & 0x00200020);
2444 }
2445 
2446 static void
__handle_signal_inputs(struct ptp_ocp * bp,u32 val)2447 __handle_signal_inputs(struct ptp_ocp *bp, u32 val)
2448 {
2449 	ptp_ocp_irig_in(bp, val & 0x00100010);
2450 	ptp_ocp_dcf_in(bp, val & 0x00200020);
2451 }
2452 
2453 static u32
ptp_ocp_sma_fb_get(struct ptp_ocp * bp,int sma_nr)2454 ptp_ocp_sma_fb_get(struct ptp_ocp *bp, int sma_nr)
2455 {
2456 	u32 __iomem *gpio;
2457 	u32 shift;
2458 
2459 	if (bp->sma[sma_nr - 1].fixed_fcn)
2460 		return (sma_nr - 1) & 1;
2461 
2462 	if (bp->sma[sma_nr - 1].mode == SMA_MODE_IN)
2463 		gpio = sma_nr > 2 ? &bp->sma_map2->gpio1 : &bp->sma_map1->gpio1;
2464 	else
2465 		gpio = sma_nr > 2 ? &bp->sma_map1->gpio2 : &bp->sma_map2->gpio2;
2466 	shift = sma_nr & 1 ? 0 : 16;
2467 
2468 	return (ioread32(gpio) >> shift) & 0xffff;
2469 }
2470 
2471 static int
ptp_ocp_sma_fb_set_output(struct ptp_ocp * bp,int sma_nr,u32 val)2472 ptp_ocp_sma_fb_set_output(struct ptp_ocp *bp, int sma_nr, u32 val)
2473 {
2474 	u32 reg, mask, shift;
2475 	unsigned long flags;
2476 	u32 __iomem *gpio;
2477 
2478 	gpio = sma_nr > 2 ? &bp->sma_map1->gpio2 : &bp->sma_map2->gpio2;
2479 	shift = sma_nr & 1 ? 0 : 16;
2480 
2481 	mask = 0xffff << (16 - shift);
2482 
2483 	spin_lock_irqsave(&bp->lock, flags);
2484 
2485 	reg = ioread32(gpio);
2486 	reg = (reg & mask) | (val << shift);
2487 
2488 	__handle_signal_outputs(bp, reg);
2489 
2490 	iowrite32(reg, gpio);
2491 
2492 	spin_unlock_irqrestore(&bp->lock, flags);
2493 
2494 	return 0;
2495 }
2496 
2497 static int
ptp_ocp_sma_fb_set_inputs(struct ptp_ocp * bp,int sma_nr,u32 val)2498 ptp_ocp_sma_fb_set_inputs(struct ptp_ocp *bp, int sma_nr, u32 val)
2499 {
2500 	u32 reg, mask, shift;
2501 	unsigned long flags;
2502 	u32 __iomem *gpio;
2503 
2504 	gpio = sma_nr > 2 ? &bp->sma_map2->gpio1 : &bp->sma_map1->gpio1;
2505 	shift = sma_nr & 1 ? 0 : 16;
2506 
2507 	mask = 0xffff << (16 - shift);
2508 
2509 	spin_lock_irqsave(&bp->lock, flags);
2510 
2511 	reg = ioread32(gpio);
2512 	reg = (reg & mask) | (val << shift);
2513 
2514 	__handle_signal_inputs(bp, reg);
2515 
2516 	iowrite32(reg, gpio);
2517 
2518 	spin_unlock_irqrestore(&bp->lock, flags);
2519 
2520 	return 0;
2521 }
2522 
2523 static void
ptp_ocp_sma_fb_init(struct ptp_ocp * bp)2524 ptp_ocp_sma_fb_init(struct ptp_ocp *bp)
2525 {
2526 	struct dpll_pin_properties prop = {
2527 		.board_label = NULL,
2528 		.type = DPLL_PIN_TYPE_EXT,
2529 		.capabilities = DPLL_PIN_CAPABILITIES_DIRECTION_CAN_CHANGE,
2530 		.freq_supported_num = ARRAY_SIZE(ptp_ocp_sma_freq),
2531 		.freq_supported = ptp_ocp_sma_freq,
2532 
2533 	};
2534 	u32 reg;
2535 	int i;
2536 
2537 	/* defaults */
2538 	for (i = 0; i < OCP_SMA_NUM; i++) {
2539 		bp->sma[i].default_fcn = i & 1;
2540 		bp->sma[i].dpll_prop = prop;
2541 		bp->sma[i].dpll_prop.board_label =
2542 			bp->ptp_info.pin_config[i].name;
2543 	}
2544 	bp->sma[0].mode = SMA_MODE_IN;
2545 	bp->sma[1].mode = SMA_MODE_IN;
2546 	bp->sma[2].mode = SMA_MODE_OUT;
2547 	bp->sma[3].mode = SMA_MODE_OUT;
2548 	/* If no SMA1 map, the pin functions and directions are fixed. */
2549 	if (!bp->sma_map1) {
2550 		for (i = 0; i < OCP_SMA_NUM; i++) {
2551 			bp->sma[i].fixed_fcn = true;
2552 			bp->sma[i].fixed_dir = true;
2553 			bp->sma[i].dpll_prop.capabilities &=
2554 				~DPLL_PIN_CAPABILITIES_DIRECTION_CAN_CHANGE;
2555 		}
2556 		return;
2557 	}
2558 
2559 	/* If SMA2 GPIO output map is all 1, it is not present.
2560 	 * This indicates the firmware has fixed direction SMA pins.
2561 	 */
2562 	reg = ioread32(&bp->sma_map2->gpio2);
2563 	if (reg == 0xffffffff) {
2564 		for (i = 0; i < OCP_SMA_NUM; i++)
2565 			bp->sma[i].fixed_dir = true;
2566 	} else {
2567 		reg = ioread32(&bp->sma_map1->gpio1);
2568 		bp->sma[0].mode = reg & BIT(15) ? SMA_MODE_IN : SMA_MODE_OUT;
2569 		bp->sma[1].mode = reg & BIT(31) ? SMA_MODE_IN : SMA_MODE_OUT;
2570 
2571 		reg = ioread32(&bp->sma_map1->gpio2);
2572 		bp->sma[2].mode = reg & BIT(15) ? SMA_MODE_OUT : SMA_MODE_IN;
2573 		bp->sma[3].mode = reg & BIT(31) ? SMA_MODE_OUT : SMA_MODE_IN;
2574 	}
2575 }
2576 
2577 static const struct ocp_sma_op ocp_fb_sma_op = {
2578 	.tbl		= { ptp_ocp_sma_in, ptp_ocp_sma_out },
2579 	.init		= ptp_ocp_sma_fb_init,
2580 	.get		= ptp_ocp_sma_fb_get,
2581 	.set_inputs	= ptp_ocp_sma_fb_set_inputs,
2582 	.set_output	= ptp_ocp_sma_fb_set_output,
2583 };
2584 
2585 static int
ptp_ocp_sma_adva_set_output(struct ptp_ocp * bp,int sma_nr,u32 val)2586 ptp_ocp_sma_adva_set_output(struct ptp_ocp *bp, int sma_nr, u32 val)
2587 {
2588 	u32 reg, mask, shift;
2589 	unsigned long flags;
2590 	u32 __iomem *gpio;
2591 
2592 	gpio = sma_nr > 2 ? &bp->sma_map1->gpio2 : &bp->sma_map2->gpio2;
2593 	shift = sma_nr & 1 ? 0 : 16;
2594 
2595 	mask = 0xffff << (16 - shift);
2596 
2597 	spin_lock_irqsave(&bp->lock, flags);
2598 
2599 	reg = ioread32(gpio);
2600 	reg = (reg & mask) | (val << shift);
2601 
2602 	iowrite32(reg, gpio);
2603 
2604 	spin_unlock_irqrestore(&bp->lock, flags);
2605 
2606 	return 0;
2607 }
2608 
2609 static int
ptp_ocp_sma_adva_set_inputs(struct ptp_ocp * bp,int sma_nr,u32 val)2610 ptp_ocp_sma_adva_set_inputs(struct ptp_ocp *bp, int sma_nr, u32 val)
2611 {
2612 	u32 reg, mask, shift;
2613 	unsigned long flags;
2614 	u32 __iomem *gpio;
2615 
2616 	gpio = sma_nr > 2 ? &bp->sma_map2->gpio1 : &bp->sma_map1->gpio1;
2617 	shift = sma_nr & 1 ? 0 : 16;
2618 
2619 	mask = 0xffff << (16 - shift);
2620 
2621 	spin_lock_irqsave(&bp->lock, flags);
2622 
2623 	reg = ioread32(gpio);
2624 	reg = (reg & mask) | (val << shift);
2625 
2626 	iowrite32(reg, gpio);
2627 
2628 	spin_unlock_irqrestore(&bp->lock, flags);
2629 
2630 	return 0;
2631 }
2632 
2633 static const struct ocp_sma_op ocp_adva_sma_op = {
2634 	.tbl		= { ptp_ocp_adva_sma_in, ptp_ocp_adva_sma_out },
2635 	.init		= ptp_ocp_sma_fb_init,
2636 	.get		= ptp_ocp_sma_fb_get,
2637 	.set_inputs	= ptp_ocp_sma_adva_set_inputs,
2638 	.set_output	= ptp_ocp_sma_adva_set_output,
2639 };
2640 
2641 static int
ptp_ocp_set_pins(struct ptp_ocp * bp)2642 ptp_ocp_set_pins(struct ptp_ocp *bp)
2643 {
2644 	struct ptp_pin_desc *config;
2645 	int i;
2646 
2647 	config = kcalloc(4, sizeof(*config), GFP_KERNEL);
2648 	if (!config)
2649 		return -ENOMEM;
2650 
2651 	for (i = 0; i < 4; i++) {
2652 		sprintf(config[i].name, "sma%d", i + 1);
2653 		config[i].index = i;
2654 	}
2655 
2656 	bp->ptp_info.n_pins = 4;
2657 	bp->ptp_info.pin_config = config;
2658 
2659 	return 0;
2660 }
2661 
2662 static void
ptp_ocp_fb_set_version(struct ptp_ocp * bp)2663 ptp_ocp_fb_set_version(struct ptp_ocp *bp)
2664 {
2665 	u64 cap = OCP_CAP_BASIC;
2666 	u32 version;
2667 
2668 	version = ioread32(&bp->image->version);
2669 
2670 	/* if lower 16 bits are empty, this is the fw loader. */
2671 	if ((version & 0xffff) == 0) {
2672 		version = version >> 16;
2673 		bp->fw_loader = true;
2674 	}
2675 
2676 	bp->fw_tag = version >> 15;
2677 	bp->fw_version = version & 0x7fff;
2678 
2679 	if (bp->fw_tag) {
2680 		/* FPGA firmware */
2681 		if (version >= 5)
2682 			cap |= OCP_CAP_SIGNAL | OCP_CAP_FREQ;
2683 	} else {
2684 		/* SOM firmware */
2685 		if (version >= 19)
2686 			cap |= OCP_CAP_SIGNAL;
2687 		if (version >= 20)
2688 			cap |= OCP_CAP_FREQ;
2689 	}
2690 
2691 	bp->fw_cap = cap;
2692 }
2693 
2694 /* FB specific board initializers; last "resource" registered. */
2695 static int
ptp_ocp_fb_board_init(struct ptp_ocp * bp,struct ocp_resource * r)2696 ptp_ocp_fb_board_init(struct ptp_ocp *bp, struct ocp_resource *r)
2697 {
2698 	int err;
2699 
2700 	bp->flash_start = 1024 * 4096;
2701 	bp->eeprom_map = fb_eeprom_map;
2702 	bp->fw_version = ioread32(&bp->image->version);
2703 	bp->sma_op = &ocp_fb_sma_op;
2704 	bp->signals_nr = 4;
2705 	bp->freq_in_nr = 4;
2706 
2707 	ptp_ocp_fb_set_version(bp);
2708 
2709 	ptp_ocp_tod_init(bp);
2710 	ptp_ocp_nmea_out_init(bp);
2711 	ptp_ocp_signal_init(bp);
2712 
2713 	err = ptp_ocp_attr_group_add(bp, fb_timecard_groups);
2714 	if (err)
2715 		return err;
2716 
2717 	err = ptp_ocp_set_pins(bp);
2718 	if (err)
2719 		return err;
2720 	ptp_ocp_sma_init(bp);
2721 
2722 	return ptp_ocp_init_clock(bp, r->extra);
2723 }
2724 
2725 static bool
ptp_ocp_allow_irq(struct ptp_ocp * bp,struct ocp_resource * r)2726 ptp_ocp_allow_irq(struct ptp_ocp *bp, struct ocp_resource *r)
2727 {
2728 	bool allow = !r->irq_vec || r->irq_vec < bp->n_irqs;
2729 
2730 	if (!allow)
2731 		dev_err(&bp->pdev->dev, "irq %d out of range, skipping %s\n",
2732 			r->irq_vec, r->name);
2733 	return allow;
2734 }
2735 
2736 static int
ptp_ocp_register_resources(struct ptp_ocp * bp,kernel_ulong_t driver_data)2737 ptp_ocp_register_resources(struct ptp_ocp *bp, kernel_ulong_t driver_data)
2738 {
2739 	struct ocp_resource *r, *table;
2740 	int err = 0;
2741 
2742 	table = (struct ocp_resource *)driver_data;
2743 	for (r = table; r->setup; r++) {
2744 		if (!ptp_ocp_allow_irq(bp, r))
2745 			continue;
2746 		err = r->setup(bp, r);
2747 		if (err) {
2748 			dev_err(&bp->pdev->dev,
2749 				"Could not register %s: err %d\n",
2750 				r->name, err);
2751 			break;
2752 		}
2753 	}
2754 	return err;
2755 }
2756 
2757 static void
ptp_ocp_art_sma_init(struct ptp_ocp * bp)2758 ptp_ocp_art_sma_init(struct ptp_ocp *bp)
2759 {
2760 	struct dpll_pin_properties prop = {
2761 		.board_label = NULL,
2762 		.type = DPLL_PIN_TYPE_EXT,
2763 		.capabilities = 0,
2764 		.freq_supported_num = ARRAY_SIZE(ptp_ocp_sma_freq),
2765 		.freq_supported = ptp_ocp_sma_freq,
2766 
2767 	};
2768 	u32 reg;
2769 	int i;
2770 
2771 	/* defaults */
2772 	bp->sma[0].mode = SMA_MODE_IN;
2773 	bp->sma[1].mode = SMA_MODE_IN;
2774 	bp->sma[2].mode = SMA_MODE_OUT;
2775 	bp->sma[3].mode = SMA_MODE_OUT;
2776 
2777 	bp->sma[0].default_fcn = 0x08;	/* IN: 10Mhz */
2778 	bp->sma[1].default_fcn = 0x01;	/* IN: PPS1 */
2779 	bp->sma[2].default_fcn = 0x10;	/* OUT: 10Mhz */
2780 	bp->sma[3].default_fcn = 0x02;	/* OUT: PHC */
2781 
2782 	for (i = 0; i < OCP_SMA_NUM; i++) {
2783 		/* If no SMA map, the pin functions and directions are fixed. */
2784 		bp->sma[i].dpll_prop = prop;
2785 		bp->sma[i].dpll_prop.board_label =
2786 			bp->ptp_info.pin_config[i].name;
2787 		if (!bp->art_sma) {
2788 			bp->sma[i].fixed_fcn = true;
2789 			bp->sma[i].fixed_dir = true;
2790 			continue;
2791 		}
2792 		reg = ioread32(&bp->art_sma->map[i].gpio);
2793 
2794 		switch (reg & 0xff) {
2795 		case 0:
2796 			bp->sma[i].fixed_fcn = true;
2797 			bp->sma[i].fixed_dir = true;
2798 			break;
2799 		case 1:
2800 		case 8:
2801 			bp->sma[i].mode = SMA_MODE_IN;
2802 			bp->sma[i].dpll_prop.capabilities =
2803 				DPLL_PIN_CAPABILITIES_DIRECTION_CAN_CHANGE;
2804 			break;
2805 		default:
2806 			bp->sma[i].mode = SMA_MODE_OUT;
2807 			bp->sma[i].dpll_prop.capabilities =
2808 				DPLL_PIN_CAPABILITIES_DIRECTION_CAN_CHANGE;
2809 			break;
2810 		}
2811 	}
2812 }
2813 
2814 static u32
ptp_ocp_art_sma_get(struct ptp_ocp * bp,int sma_nr)2815 ptp_ocp_art_sma_get(struct ptp_ocp *bp, int sma_nr)
2816 {
2817 	if (bp->sma[sma_nr - 1].fixed_fcn)
2818 		return bp->sma[sma_nr - 1].default_fcn;
2819 
2820 	return ioread32(&bp->art_sma->map[sma_nr - 1].gpio) & 0xff;
2821 }
2822 
2823 /* note: store 0 is considered invalid. */
2824 static int
ptp_ocp_art_sma_set(struct ptp_ocp * bp,int sma_nr,u32 val)2825 ptp_ocp_art_sma_set(struct ptp_ocp *bp, int sma_nr, u32 val)
2826 {
2827 	unsigned long flags;
2828 	u32 __iomem *gpio;
2829 	int err = 0;
2830 	u32 reg;
2831 
2832 	val &= SMA_SELECT_MASK;
2833 	if (hweight32(val) > 1)
2834 		return -EINVAL;
2835 
2836 	gpio = &bp->art_sma->map[sma_nr - 1].gpio;
2837 
2838 	spin_lock_irqsave(&bp->lock, flags);
2839 	reg = ioread32(gpio);
2840 	if (((reg >> 16) & val) == 0) {
2841 		err = -EOPNOTSUPP;
2842 	} else {
2843 		reg = (reg & 0xff00) | (val & 0xff);
2844 		iowrite32(reg, gpio);
2845 	}
2846 	spin_unlock_irqrestore(&bp->lock, flags);
2847 
2848 	return err;
2849 }
2850 
2851 static const struct ocp_sma_op ocp_art_sma_op = {
2852 	.tbl		= { ptp_ocp_art_sma_in, ptp_ocp_art_sma_out },
2853 	.init		= ptp_ocp_art_sma_init,
2854 	.get		= ptp_ocp_art_sma_get,
2855 	.set_inputs	= ptp_ocp_art_sma_set,
2856 	.set_output	= ptp_ocp_art_sma_set,
2857 };
2858 
2859 /* ART specific board initializers; last "resource" registered. */
2860 static int
ptp_ocp_art_board_init(struct ptp_ocp * bp,struct ocp_resource * r)2861 ptp_ocp_art_board_init(struct ptp_ocp *bp, struct ocp_resource *r)
2862 {
2863 	int err;
2864 
2865 	bp->flash_start = 0x1000000;
2866 	bp->eeprom_map = art_eeprom_map;
2867 	bp->fw_cap = OCP_CAP_BASIC;
2868 	bp->fw_version = ioread32(&bp->reg->version);
2869 	bp->fw_tag = 2;
2870 	bp->sma_op = &ocp_art_sma_op;
2871 	bp->signals_nr = 4;
2872 	bp->freq_in_nr = 4;
2873 
2874 	/* Enable MAC serial port during initialisation */
2875 	iowrite32(1, &bp->board_config->mro50_serial_activate);
2876 
2877 	err = ptp_ocp_set_pins(bp);
2878 	if (err)
2879 		return err;
2880 	ptp_ocp_sma_init(bp);
2881 
2882 	err = ptp_ocp_attr_group_add(bp, art_timecard_groups);
2883 	if (err)
2884 		return err;
2885 
2886 	return ptp_ocp_init_clock(bp, r->extra);
2887 }
2888 
2889 /* ADVA specific board initializers; last "resource" registered. */
2890 static int
ptp_ocp_adva_board_init(struct ptp_ocp * bp,struct ocp_resource * r)2891 ptp_ocp_adva_board_init(struct ptp_ocp *bp, struct ocp_resource *r)
2892 {
2893 	int err;
2894 	u32 version;
2895 
2896 	bp->flash_start = 0xA00000;
2897 	bp->eeprom_map = fb_eeprom_map;
2898 	bp->sma_op = &ocp_adva_sma_op;
2899 	bp->signals_nr = 2;
2900 	bp->freq_in_nr = 2;
2901 
2902 	version = ioread32(&bp->image->version);
2903 	/* if lower 16 bits are empty, this is the fw loader. */
2904 	if ((version & 0xffff) == 0) {
2905 		version = version >> 16;
2906 		bp->fw_loader = true;
2907 	}
2908 	bp->fw_tag = 3;
2909 	bp->fw_version = version & 0xffff;
2910 	bp->fw_cap = OCP_CAP_BASIC | OCP_CAP_SIGNAL | OCP_CAP_FREQ;
2911 
2912 	ptp_ocp_tod_init(bp);
2913 	ptp_ocp_nmea_out_init(bp);
2914 	ptp_ocp_signal_init(bp);
2915 
2916 	err = ptp_ocp_attr_group_add(bp, adva_timecard_groups);
2917 	if (err)
2918 		return err;
2919 
2920 	err = ptp_ocp_set_pins(bp);
2921 	if (err)
2922 		return err;
2923 	ptp_ocp_sma_init(bp);
2924 
2925 	return ptp_ocp_init_clock(bp, r->extra);
2926 }
2927 
2928 static ssize_t
ptp_ocp_show_output(const struct ocp_selector * tbl,u32 val,char * buf,int def_val)2929 ptp_ocp_show_output(const struct ocp_selector *tbl, u32 val, char *buf,
2930 		    int def_val)
2931 {
2932 	const char *name;
2933 	ssize_t count;
2934 
2935 	count = sysfs_emit(buf, "OUT: ");
2936 	name = ptp_ocp_select_name_from_val(tbl, val);
2937 	if (!name)
2938 		name = ptp_ocp_select_name_from_val(tbl, def_val);
2939 	count += sysfs_emit_at(buf, count, "%s\n", name);
2940 	return count;
2941 }
2942 
2943 static ssize_t
ptp_ocp_show_inputs(const struct ocp_selector * tbl,u32 val,char * buf,int def_val)2944 ptp_ocp_show_inputs(const struct ocp_selector *tbl, u32 val, char *buf,
2945 		    int def_val)
2946 {
2947 	const char *name;
2948 	ssize_t count;
2949 	int i;
2950 
2951 	count = sysfs_emit(buf, "IN: ");
2952 	for (i = 0; tbl[i].name; i++) {
2953 		if (val & tbl[i].value) {
2954 			name = tbl[i].name;
2955 			count += sysfs_emit_at(buf, count, "%s ", name);
2956 		}
2957 	}
2958 	if (!val && def_val >= 0) {
2959 		name = ptp_ocp_select_name_from_val(tbl, def_val);
2960 		count += sysfs_emit_at(buf, count, "%s ", name);
2961 	}
2962 	if (count)
2963 		count--;
2964 	count += sysfs_emit_at(buf, count, "\n");
2965 	return count;
2966 }
2967 
2968 static int
sma_parse_inputs(const struct ocp_selector * const tbl[],const char * buf,enum ptp_ocp_sma_mode * mode)2969 sma_parse_inputs(const struct ocp_selector * const tbl[], const char *buf,
2970 		 enum ptp_ocp_sma_mode *mode)
2971 {
2972 	int idx, count, dir;
2973 	char **argv;
2974 	int ret;
2975 
2976 	argv = argv_split(GFP_KERNEL, buf, &count);
2977 	if (!argv)
2978 		return -ENOMEM;
2979 
2980 	ret = -EINVAL;
2981 	if (!count)
2982 		goto out;
2983 
2984 	idx = 0;
2985 	dir = *mode == SMA_MODE_IN ? 0 : 1;
2986 	if (!strcasecmp("IN:", argv[0])) {
2987 		dir = 0;
2988 		idx++;
2989 	}
2990 	if (!strcasecmp("OUT:", argv[0])) {
2991 		dir = 1;
2992 		idx++;
2993 	}
2994 	*mode = dir == 0 ? SMA_MODE_IN : SMA_MODE_OUT;
2995 
2996 	ret = 0;
2997 	for (; idx < count; idx++)
2998 		ret |= ptp_ocp_select_val_from_name(tbl[dir], argv[idx]);
2999 	if (ret < 0)
3000 		ret = -EINVAL;
3001 
3002 out:
3003 	argv_free(argv);
3004 	return ret;
3005 }
3006 
3007 static ssize_t
ptp_ocp_sma_show(struct ptp_ocp * bp,int sma_nr,char * buf,int default_in_val,int default_out_val)3008 ptp_ocp_sma_show(struct ptp_ocp *bp, int sma_nr, char *buf,
3009 		 int default_in_val, int default_out_val)
3010 {
3011 	struct ptp_ocp_sma_connector *sma = &bp->sma[sma_nr - 1];
3012 	const struct ocp_selector * const *tbl;
3013 	u32 val;
3014 
3015 	tbl = bp->sma_op->tbl;
3016 	val = ptp_ocp_sma_get(bp, sma_nr) & SMA_SELECT_MASK;
3017 
3018 	if (sma->mode == SMA_MODE_IN) {
3019 		if (sma->disabled)
3020 			val = SMA_DISABLE;
3021 		return ptp_ocp_show_inputs(tbl[0], val, buf, default_in_val);
3022 	}
3023 
3024 	return ptp_ocp_show_output(tbl[1], val, buf, default_out_val);
3025 }
3026 
3027 static ssize_t
sma1_show(struct device * dev,struct device_attribute * attr,char * buf)3028 sma1_show(struct device *dev, struct device_attribute *attr, char *buf)
3029 {
3030 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3031 
3032 	return ptp_ocp_sma_show(bp, 1, buf, 0, 1);
3033 }
3034 
3035 static ssize_t
sma2_show(struct device * dev,struct device_attribute * attr,char * buf)3036 sma2_show(struct device *dev, struct device_attribute *attr, char *buf)
3037 {
3038 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3039 
3040 	return ptp_ocp_sma_show(bp, 2, buf, -1, 1);
3041 }
3042 
3043 static ssize_t
sma3_show(struct device * dev,struct device_attribute * attr,char * buf)3044 sma3_show(struct device *dev, struct device_attribute *attr, char *buf)
3045 {
3046 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3047 
3048 	return ptp_ocp_sma_show(bp, 3, buf, -1, 0);
3049 }
3050 
3051 static ssize_t
sma4_show(struct device * dev,struct device_attribute * attr,char * buf)3052 sma4_show(struct device *dev, struct device_attribute *attr, char *buf)
3053 {
3054 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3055 
3056 	return ptp_ocp_sma_show(bp, 4, buf, -1, 1);
3057 }
3058 
3059 static int
ptp_ocp_sma_store_val(struct ptp_ocp * bp,int val,enum ptp_ocp_sma_mode mode,int sma_nr)3060 ptp_ocp_sma_store_val(struct ptp_ocp *bp, int val, enum ptp_ocp_sma_mode mode, int sma_nr)
3061 {
3062 	struct ptp_ocp_sma_connector *sma = &bp->sma[sma_nr - 1];
3063 
3064 	if (sma->fixed_dir && (mode != sma->mode || val & SMA_DISABLE))
3065 		return -EOPNOTSUPP;
3066 
3067 	if (sma->fixed_fcn) {
3068 		if (val != sma->default_fcn)
3069 			return -EOPNOTSUPP;
3070 		return 0;
3071 	}
3072 
3073 	sma->disabled = !!(val & SMA_DISABLE);
3074 
3075 	if (mode != sma->mode) {
3076 		if (mode == SMA_MODE_IN)
3077 			ptp_ocp_sma_set_output(bp, sma_nr, 0);
3078 		else
3079 			ptp_ocp_sma_set_inputs(bp, sma_nr, 0);
3080 		sma->mode = mode;
3081 	}
3082 
3083 	if (!sma->fixed_dir)
3084 		val |= SMA_ENABLE;		/* add enable bit */
3085 
3086 	if (sma->disabled)
3087 		val = 0;
3088 
3089 	if (mode == SMA_MODE_IN)
3090 		val = ptp_ocp_sma_set_inputs(bp, sma_nr, val);
3091 	else
3092 		val = ptp_ocp_sma_set_output(bp, sma_nr, val);
3093 
3094 	return val;
3095 }
3096 
3097 static int
ptp_ocp_sma_store(struct ptp_ocp * bp,const char * buf,int sma_nr)3098 ptp_ocp_sma_store(struct ptp_ocp *bp, const char *buf, int sma_nr)
3099 {
3100 	struct ptp_ocp_sma_connector *sma = &bp->sma[sma_nr - 1];
3101 	enum ptp_ocp_sma_mode mode;
3102 	int val;
3103 
3104 	mode = sma->mode;
3105 	val = sma_parse_inputs(bp->sma_op->tbl, buf, &mode);
3106 	if (val < 0)
3107 		return val;
3108 	return ptp_ocp_sma_store_val(bp, val, mode, sma_nr);
3109 }
3110 
3111 static ssize_t
sma1_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3112 sma1_store(struct device *dev, struct device_attribute *attr,
3113 	   const char *buf, size_t count)
3114 {
3115 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3116 	int err;
3117 
3118 	err = ptp_ocp_sma_store(bp, buf, 1);
3119 	return err ? err : count;
3120 }
3121 
3122 static ssize_t
sma2_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3123 sma2_store(struct device *dev, struct device_attribute *attr,
3124 	   const char *buf, size_t count)
3125 {
3126 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3127 	int err;
3128 
3129 	err = ptp_ocp_sma_store(bp, buf, 2);
3130 	return err ? err : count;
3131 }
3132 
3133 static ssize_t
sma3_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3134 sma3_store(struct device *dev, struct device_attribute *attr,
3135 	   const char *buf, size_t count)
3136 {
3137 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3138 	int err;
3139 
3140 	err = ptp_ocp_sma_store(bp, buf, 3);
3141 	return err ? err : count;
3142 }
3143 
3144 static ssize_t
sma4_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3145 sma4_store(struct device *dev, struct device_attribute *attr,
3146 	   const char *buf, size_t count)
3147 {
3148 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3149 	int err;
3150 
3151 	err = ptp_ocp_sma_store(bp, buf, 4);
3152 	return err ? err : count;
3153 }
3154 static DEVICE_ATTR_RW(sma1);
3155 static DEVICE_ATTR_RW(sma2);
3156 static DEVICE_ATTR_RW(sma3);
3157 static DEVICE_ATTR_RW(sma4);
3158 
3159 static ssize_t
available_sma_inputs_show(struct device * dev,struct device_attribute * attr,char * buf)3160 available_sma_inputs_show(struct device *dev,
3161 			  struct device_attribute *attr, char *buf)
3162 {
3163 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3164 
3165 	return ptp_ocp_select_table_show(bp->sma_op->tbl[0], buf);
3166 }
3167 static DEVICE_ATTR_RO(available_sma_inputs);
3168 
3169 static ssize_t
available_sma_outputs_show(struct device * dev,struct device_attribute * attr,char * buf)3170 available_sma_outputs_show(struct device *dev,
3171 			   struct device_attribute *attr, char *buf)
3172 {
3173 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3174 
3175 	return ptp_ocp_select_table_show(bp->sma_op->tbl[1], buf);
3176 }
3177 static DEVICE_ATTR_RO(available_sma_outputs);
3178 
3179 #define EXT_ATTR_RO(_group, _name, _val)				\
3180 	struct dev_ext_attribute dev_attr_##_group##_val##_##_name =	\
3181 		{ __ATTR_RO(_name), (void *)_val }
3182 #define EXT_ATTR_RW(_group, _name, _val)				\
3183 	struct dev_ext_attribute dev_attr_##_group##_val##_##_name =	\
3184 		{ __ATTR_RW(_name), (void *)_val }
3185 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
3186 
3187 /* period [duty [phase [polarity]]] */
3188 static ssize_t
signal_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3189 signal_store(struct device *dev, struct device_attribute *attr,
3190 	     const char *buf, size_t count)
3191 {
3192 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3193 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3194 	struct ptp_ocp_signal s = { };
3195 	int gen = (uintptr_t)ea->var;
3196 	int argc, err;
3197 	char **argv;
3198 
3199 	argv = argv_split(GFP_KERNEL, buf, &argc);
3200 	if (!argv)
3201 		return -ENOMEM;
3202 
3203 	err = -EINVAL;
3204 	s.duty = bp->signal[gen].duty;
3205 	s.phase = bp->signal[gen].phase;
3206 	s.period = bp->signal[gen].period;
3207 	s.polarity = bp->signal[gen].polarity;
3208 
3209 	switch (argc) {
3210 	case 4:
3211 		argc--;
3212 		err = kstrtobool(argv[argc], &s.polarity);
3213 		if (err)
3214 			goto out;
3215 		fallthrough;
3216 	case 3:
3217 		argc--;
3218 		err = kstrtou64(argv[argc], 0, &s.phase);
3219 		if (err)
3220 			goto out;
3221 		fallthrough;
3222 	case 2:
3223 		argc--;
3224 		err = kstrtoint(argv[argc], 0, &s.duty);
3225 		if (err)
3226 			goto out;
3227 		fallthrough;
3228 	case 1:
3229 		argc--;
3230 		err = kstrtou64(argv[argc], 0, &s.period);
3231 		if (err)
3232 			goto out;
3233 		break;
3234 	default:
3235 		goto out;
3236 	}
3237 
3238 	err = ptp_ocp_signal_set(bp, gen, &s);
3239 	if (err)
3240 		goto out;
3241 
3242 	err = ptp_ocp_signal_enable(bp->signal_out[gen], gen, s.period != 0);
3243 
3244 out:
3245 	argv_free(argv);
3246 	return err ? err : count;
3247 }
3248 
3249 static ssize_t
signal_show(struct device * dev,struct device_attribute * attr,char * buf)3250 signal_show(struct device *dev, struct device_attribute *attr, char *buf)
3251 {
3252 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3253 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3254 	struct ptp_ocp_signal *signal;
3255 	int gen = (uintptr_t)ea->var;
3256 	struct timespec64 ts;
3257 
3258 	signal = &bp->signal[gen];
3259 
3260 	ts = ktime_to_timespec64(signal->start);
3261 
3262 	return sysfs_emit(buf, "%llu %d %llu %d %ptT TAI\n",
3263 			  signal->period, signal->duty, signal->phase, signal->polarity,
3264 			  &ts.tv_sec);
3265 }
3266 static EXT_ATTR_RW(signal, signal, 0);
3267 static EXT_ATTR_RW(signal, signal, 1);
3268 static EXT_ATTR_RW(signal, signal, 2);
3269 static EXT_ATTR_RW(signal, signal, 3);
3270 
3271 static ssize_t
duty_show(struct device * dev,struct device_attribute * attr,char * buf)3272 duty_show(struct device *dev, struct device_attribute *attr, char *buf)
3273 {
3274 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3275 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3276 	int i = (uintptr_t)ea->var;
3277 
3278 	return sysfs_emit(buf, "%d\n", bp->signal[i].duty);
3279 }
3280 static EXT_ATTR_RO(signal, duty, 0);
3281 static EXT_ATTR_RO(signal, duty, 1);
3282 static EXT_ATTR_RO(signal, duty, 2);
3283 static EXT_ATTR_RO(signal, duty, 3);
3284 
3285 static ssize_t
period_show(struct device * dev,struct device_attribute * attr,char * buf)3286 period_show(struct device *dev, struct device_attribute *attr, char *buf)
3287 {
3288 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3289 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3290 	int i = (uintptr_t)ea->var;
3291 
3292 	return sysfs_emit(buf, "%llu\n", bp->signal[i].period);
3293 }
3294 static EXT_ATTR_RO(signal, period, 0);
3295 static EXT_ATTR_RO(signal, period, 1);
3296 static EXT_ATTR_RO(signal, period, 2);
3297 static EXT_ATTR_RO(signal, period, 3);
3298 
3299 static ssize_t
phase_show(struct device * dev,struct device_attribute * attr,char * buf)3300 phase_show(struct device *dev, struct device_attribute *attr, char *buf)
3301 {
3302 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3303 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3304 	int i = (uintptr_t)ea->var;
3305 
3306 	return sysfs_emit(buf, "%llu\n", bp->signal[i].phase);
3307 }
3308 static EXT_ATTR_RO(signal, phase, 0);
3309 static EXT_ATTR_RO(signal, phase, 1);
3310 static EXT_ATTR_RO(signal, phase, 2);
3311 static EXT_ATTR_RO(signal, phase, 3);
3312 
3313 static ssize_t
polarity_show(struct device * dev,struct device_attribute * attr,char * buf)3314 polarity_show(struct device *dev, struct device_attribute *attr,
3315 	      char *buf)
3316 {
3317 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3318 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3319 	int i = (uintptr_t)ea->var;
3320 
3321 	return sysfs_emit(buf, "%d\n", bp->signal[i].polarity);
3322 }
3323 static EXT_ATTR_RO(signal, polarity, 0);
3324 static EXT_ATTR_RO(signal, polarity, 1);
3325 static EXT_ATTR_RO(signal, polarity, 2);
3326 static EXT_ATTR_RO(signal, polarity, 3);
3327 
3328 static ssize_t
running_show(struct device * dev,struct device_attribute * attr,char * buf)3329 running_show(struct device *dev, struct device_attribute *attr, char *buf)
3330 {
3331 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3332 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3333 	int i = (uintptr_t)ea->var;
3334 
3335 	return sysfs_emit(buf, "%d\n", bp->signal[i].running);
3336 }
3337 static EXT_ATTR_RO(signal, running, 0);
3338 static EXT_ATTR_RO(signal, running, 1);
3339 static EXT_ATTR_RO(signal, running, 2);
3340 static EXT_ATTR_RO(signal, running, 3);
3341 
3342 static ssize_t
start_show(struct device * dev,struct device_attribute * attr,char * buf)3343 start_show(struct device *dev, struct device_attribute *attr, char *buf)
3344 {
3345 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3346 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3347 	int i = (uintptr_t)ea->var;
3348 	struct timespec64 ts;
3349 
3350 	ts = ktime_to_timespec64(bp->signal[i].start);
3351 	return sysfs_emit(buf, "%llu.%lu\n", ts.tv_sec, ts.tv_nsec);
3352 }
3353 static EXT_ATTR_RO(signal, start, 0);
3354 static EXT_ATTR_RO(signal, start, 1);
3355 static EXT_ATTR_RO(signal, start, 2);
3356 static EXT_ATTR_RO(signal, start, 3);
3357 
3358 static ssize_t
seconds_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3359 seconds_store(struct device *dev, struct device_attribute *attr,
3360 	      const char *buf, size_t count)
3361 {
3362 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3363 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3364 	int idx = (uintptr_t)ea->var;
3365 	u32 val;
3366 	int err;
3367 
3368 	err = kstrtou32(buf, 0, &val);
3369 	if (err)
3370 		return err;
3371 	if (val > 0xff)
3372 		return -EINVAL;
3373 
3374 	if (val)
3375 		val = (val << 8) | 0x1;
3376 
3377 	iowrite32(val, &bp->freq_in[idx]->ctrl);
3378 
3379 	return count;
3380 }
3381 
3382 static ssize_t
seconds_show(struct device * dev,struct device_attribute * attr,char * buf)3383 seconds_show(struct device *dev, struct device_attribute *attr, char *buf)
3384 {
3385 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3386 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3387 	int idx = (uintptr_t)ea->var;
3388 	u32 val;
3389 
3390 	val = ioread32(&bp->freq_in[idx]->ctrl);
3391 	if (val & 1)
3392 		val = (val >> 8) & 0xff;
3393 	else
3394 		val = 0;
3395 
3396 	return sysfs_emit(buf, "%u\n", val);
3397 }
3398 static EXT_ATTR_RW(freq, seconds, 0);
3399 static EXT_ATTR_RW(freq, seconds, 1);
3400 static EXT_ATTR_RW(freq, seconds, 2);
3401 static EXT_ATTR_RW(freq, seconds, 3);
3402 
3403 static ssize_t
frequency_show(struct device * dev,struct device_attribute * attr,char * buf)3404 frequency_show(struct device *dev, struct device_attribute *attr, char *buf)
3405 {
3406 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3407 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3408 	int idx = (uintptr_t)ea->var;
3409 	u32 val;
3410 
3411 	val = ioread32(&bp->freq_in[idx]->status);
3412 	if (val & FREQ_STATUS_ERROR)
3413 		return sysfs_emit(buf, "error\n");
3414 	if (val & FREQ_STATUS_OVERRUN)
3415 		return sysfs_emit(buf, "overrun\n");
3416 	if (val & FREQ_STATUS_VALID)
3417 		return sysfs_emit(buf, "%lu\n", val & FREQ_STATUS_MASK);
3418 	return 0;
3419 }
3420 static EXT_ATTR_RO(freq, frequency, 0);
3421 static EXT_ATTR_RO(freq, frequency, 1);
3422 static EXT_ATTR_RO(freq, frequency, 2);
3423 static EXT_ATTR_RO(freq, frequency, 3);
3424 
3425 static ssize_t
ptp_ocp_tty_show(struct device * dev,struct device_attribute * attr,char * buf)3426 ptp_ocp_tty_show(struct device *dev, struct device_attribute *attr, char *buf)
3427 {
3428 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3429 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3430 
3431 	/*
3432 	 * NOTE: This output does not include a trailing newline for backward
3433 	 * compatibility. Existing userspace software uses this value directly
3434 	 * as a device path (e.g., "/dev/ttyS4"), and adding a newline would
3435 	 * break those applications. Do not add a newline to this output.
3436 	 */
3437 	return sysfs_emit(buf, "ttyS%d", bp->port[(uintptr_t)ea->var].line);
3438 }
3439 
3440 static umode_t
ptp_ocp_timecard_tty_is_visible(struct kobject * kobj,struct attribute * attr,int n)3441 ptp_ocp_timecard_tty_is_visible(struct kobject *kobj, struct attribute *attr, int n)
3442 {
3443 	struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj));
3444 	struct ptp_ocp_serial_port *port;
3445 	struct device_attribute *dattr;
3446 	struct dev_ext_attribute *ea;
3447 
3448 	if (strncmp(attr->name, "tty", 3))
3449 		return attr->mode;
3450 
3451 	dattr = container_of(attr, struct device_attribute, attr);
3452 	ea = container_of(dattr, struct dev_ext_attribute, attr);
3453 	port = &bp->port[(uintptr_t)ea->var];
3454 	return port->line == -1 ? 0 : 0444;
3455 }
3456 
3457 #define EXT_TTY_ATTR_RO(_name, _val)			\
3458 	struct dev_ext_attribute dev_attr_tty##_name =	\
3459 		{ __ATTR(tty##_name, 0444, ptp_ocp_tty_show, NULL), (void *)_val }
3460 
3461 static EXT_TTY_ATTR_RO(GNSS, PORT_GNSS);
3462 static EXT_TTY_ATTR_RO(GNSS2, PORT_GNSS2);
3463 static EXT_TTY_ATTR_RO(MAC, PORT_MAC);
3464 static EXT_TTY_ATTR_RO(NMEA, PORT_NMEA);
3465 static struct attribute *ptp_ocp_timecard_tty_attrs[] = {
3466 	&dev_attr_ttyGNSS.attr.attr,
3467 	&dev_attr_ttyGNSS2.attr.attr,
3468 	&dev_attr_ttyMAC.attr.attr,
3469 	&dev_attr_ttyNMEA.attr.attr,
3470 	NULL,
3471 };
3472 
3473 static const struct attribute_group ptp_ocp_timecard_tty_group = {
3474 	.name = "tty",
3475 	.attrs = ptp_ocp_timecard_tty_attrs,
3476 	.is_visible = ptp_ocp_timecard_tty_is_visible,
3477 };
3478 
3479 static ssize_t
serialnum_show(struct device * dev,struct device_attribute * attr,char * buf)3480 serialnum_show(struct device *dev, struct device_attribute *attr, char *buf)
3481 {
3482 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3483 
3484 	if (!bp->has_eeprom_data)
3485 		ptp_ocp_read_eeprom(bp);
3486 
3487 	return sysfs_emit(buf, "%pM\n", bp->serial);
3488 }
3489 static DEVICE_ATTR_RO(serialnum);
3490 
3491 static ssize_t
gnss_sync_show(struct device * dev,struct device_attribute * attr,char * buf)3492 gnss_sync_show(struct device *dev, struct device_attribute *attr, char *buf)
3493 {
3494 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3495 	ssize_t ret;
3496 
3497 	if (bp->gnss_lost)
3498 		ret = sysfs_emit(buf, "LOST @ %ptT\n", &bp->gnss_lost);
3499 	else
3500 		ret = sysfs_emit(buf, "SYNC\n");
3501 
3502 	return ret;
3503 }
3504 static DEVICE_ATTR_RO(gnss_sync);
3505 
3506 static ssize_t
utc_tai_offset_show(struct device * dev,struct device_attribute * attr,char * buf)3507 utc_tai_offset_show(struct device *dev,
3508 		    struct device_attribute *attr, char *buf)
3509 {
3510 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3511 
3512 	return sysfs_emit(buf, "%d\n", bp->utc_tai_offset);
3513 }
3514 
3515 static ssize_t
utc_tai_offset_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3516 utc_tai_offset_store(struct device *dev,
3517 		     struct device_attribute *attr,
3518 		     const char *buf, size_t count)
3519 {
3520 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3521 	int err;
3522 	u32 val;
3523 
3524 	err = kstrtou32(buf, 0, &val);
3525 	if (err)
3526 		return err;
3527 
3528 	ptp_ocp_utc_distribute(bp, val);
3529 
3530 	return count;
3531 }
3532 static DEVICE_ATTR_RW(utc_tai_offset);
3533 
3534 static ssize_t
ts_window_adjust_show(struct device * dev,struct device_attribute * attr,char * buf)3535 ts_window_adjust_show(struct device *dev,
3536 		      struct device_attribute *attr, char *buf)
3537 {
3538 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3539 
3540 	return sysfs_emit(buf, "%d\n", bp->ts_window_adjust);
3541 }
3542 
3543 static ssize_t
ts_window_adjust_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3544 ts_window_adjust_store(struct device *dev,
3545 		       struct device_attribute *attr,
3546 		       const char *buf, size_t count)
3547 {
3548 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3549 	int err;
3550 	u32 val;
3551 
3552 	err = kstrtou32(buf, 0, &val);
3553 	if (err)
3554 		return err;
3555 
3556 	bp->ts_window_adjust = val;
3557 
3558 	return count;
3559 }
3560 static DEVICE_ATTR_RW(ts_window_adjust);
3561 
3562 static ssize_t
irig_b_mode_show(struct device * dev,struct device_attribute * attr,char * buf)3563 irig_b_mode_show(struct device *dev, struct device_attribute *attr, char *buf)
3564 {
3565 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3566 	u32 val;
3567 
3568 	val = ioread32(&bp->irig_out->ctrl);
3569 	val = (val >> 16) & 0x07;
3570 	return sysfs_emit(buf, "%d\n", val);
3571 }
3572 
3573 static ssize_t
irig_b_mode_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3574 irig_b_mode_store(struct device *dev,
3575 		  struct device_attribute *attr,
3576 		  const char *buf, size_t count)
3577 {
3578 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3579 	unsigned long flags;
3580 	int err;
3581 	u32 reg;
3582 	u8 val;
3583 
3584 	err = kstrtou8(buf, 0, &val);
3585 	if (err)
3586 		return err;
3587 	if (val > 7)
3588 		return -EINVAL;
3589 
3590 	reg = ((val & 0x7) << 16);
3591 
3592 	spin_lock_irqsave(&bp->lock, flags);
3593 	iowrite32(0, &bp->irig_out->ctrl);		/* disable */
3594 	iowrite32(reg, &bp->irig_out->ctrl);		/* change mode */
3595 	iowrite32(reg | IRIG_M_CTRL_ENABLE, &bp->irig_out->ctrl);
3596 	spin_unlock_irqrestore(&bp->lock, flags);
3597 
3598 	return count;
3599 }
3600 static DEVICE_ATTR_RW(irig_b_mode);
3601 
3602 static ssize_t
clock_source_show(struct device * dev,struct device_attribute * attr,char * buf)3603 clock_source_show(struct device *dev, struct device_attribute *attr, char *buf)
3604 {
3605 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3606 	const char *p;
3607 	u32 select;
3608 
3609 	select = ioread32(&bp->reg->select);
3610 	p = ptp_ocp_select_name_from_val(ptp_ocp_clock, select >> 16);
3611 
3612 	return sysfs_emit(buf, "%s\n", p);
3613 }
3614 
3615 static ssize_t
clock_source_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3616 clock_source_store(struct device *dev, struct device_attribute *attr,
3617 		   const char *buf, size_t count)
3618 {
3619 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3620 	unsigned long flags;
3621 	int val;
3622 
3623 	val = ptp_ocp_select_val_from_name(ptp_ocp_clock, buf);
3624 	if (val < 0)
3625 		return val;
3626 
3627 	spin_lock_irqsave(&bp->lock, flags);
3628 	iowrite32(val, &bp->reg->select);
3629 	spin_unlock_irqrestore(&bp->lock, flags);
3630 
3631 	return count;
3632 }
3633 static DEVICE_ATTR_RW(clock_source);
3634 
3635 static ssize_t
available_clock_sources_show(struct device * dev,struct device_attribute * attr,char * buf)3636 available_clock_sources_show(struct device *dev,
3637 			     struct device_attribute *attr, char *buf)
3638 {
3639 	return ptp_ocp_select_table_show(ptp_ocp_clock, buf);
3640 }
3641 static DEVICE_ATTR_RO(available_clock_sources);
3642 
3643 static ssize_t
clock_status_drift_show(struct device * dev,struct device_attribute * attr,char * buf)3644 clock_status_drift_show(struct device *dev,
3645 			struct device_attribute *attr, char *buf)
3646 {
3647 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3648 	u32 val;
3649 	int res;
3650 
3651 	val = ioread32(&bp->reg->status_drift);
3652 	res = (val & ~INT_MAX) ? -1 : 1;
3653 	res *= (val & INT_MAX);
3654 	return sysfs_emit(buf, "%d\n", res);
3655 }
3656 static DEVICE_ATTR_RO(clock_status_drift);
3657 
3658 static ssize_t
clock_status_offset_show(struct device * dev,struct device_attribute * attr,char * buf)3659 clock_status_offset_show(struct device *dev,
3660 			 struct device_attribute *attr, char *buf)
3661 {
3662 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3663 	u32 val;
3664 	int res;
3665 
3666 	val = ioread32(&bp->reg->status_offset);
3667 	res = (val & ~INT_MAX) ? -1 : 1;
3668 	res *= (val & INT_MAX);
3669 	return sysfs_emit(buf, "%d\n", res);
3670 }
3671 static DEVICE_ATTR_RO(clock_status_offset);
3672 
3673 static ssize_t
tod_correction_show(struct device * dev,struct device_attribute * attr,char * buf)3674 tod_correction_show(struct device *dev,
3675 		    struct device_attribute *attr, char *buf)
3676 {
3677 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3678 	u32 val;
3679 	int res;
3680 
3681 	val = ioread32(&bp->tod->adj_sec);
3682 	res = (val & ~INT_MAX) ? -1 : 1;
3683 	res *= (val & INT_MAX);
3684 	return sysfs_emit(buf, "%d\n", res);
3685 }
3686 
3687 static ssize_t
tod_correction_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3688 tod_correction_store(struct device *dev, struct device_attribute *attr,
3689 		     const char *buf, size_t count)
3690 {
3691 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3692 	unsigned long flags;
3693 	int err, res;
3694 	u32 val = 0;
3695 
3696 	err = kstrtos32(buf, 0, &res);
3697 	if (err)
3698 		return err;
3699 	if (res < 0) {
3700 		res *= -1;
3701 		val |= BIT(31);
3702 	}
3703 	val |= res;
3704 
3705 	spin_lock_irqsave(&bp->lock, flags);
3706 	iowrite32(val, &bp->tod->adj_sec);
3707 	spin_unlock_irqrestore(&bp->lock, flags);
3708 
3709 	return count;
3710 }
3711 static DEVICE_ATTR_RW(tod_correction);
3712 
3713 #define _DEVICE_SIGNAL_GROUP_ATTRS(_nr)					\
3714 	static struct attribute *fb_timecard_signal##_nr##_attrs[] = {	\
3715 		&dev_attr_signal##_nr##_signal.attr.attr,		\
3716 		&dev_attr_signal##_nr##_duty.attr.attr,			\
3717 		&dev_attr_signal##_nr##_phase.attr.attr,		\
3718 		&dev_attr_signal##_nr##_period.attr.attr,		\
3719 		&dev_attr_signal##_nr##_polarity.attr.attr,		\
3720 		&dev_attr_signal##_nr##_running.attr.attr,		\
3721 		&dev_attr_signal##_nr##_start.attr.attr,		\
3722 		NULL,							\
3723 	}
3724 
3725 #define DEVICE_SIGNAL_GROUP(_name, _nr)					\
3726 	_DEVICE_SIGNAL_GROUP_ATTRS(_nr);				\
3727 	static const struct attribute_group				\
3728 			fb_timecard_signal##_nr##_group = {		\
3729 		.name = #_name,						\
3730 		.attrs = fb_timecard_signal##_nr##_attrs,		\
3731 }
3732 
3733 DEVICE_SIGNAL_GROUP(gen1, 0);
3734 DEVICE_SIGNAL_GROUP(gen2, 1);
3735 DEVICE_SIGNAL_GROUP(gen3, 2);
3736 DEVICE_SIGNAL_GROUP(gen4, 3);
3737 
3738 #define _DEVICE_FREQ_GROUP_ATTRS(_nr)					\
3739 	static struct attribute *fb_timecard_freq##_nr##_attrs[] = {	\
3740 		&dev_attr_freq##_nr##_seconds.attr.attr,		\
3741 		&dev_attr_freq##_nr##_frequency.attr.attr,		\
3742 		NULL,							\
3743 	}
3744 
3745 #define DEVICE_FREQ_GROUP(_name, _nr)					\
3746 	_DEVICE_FREQ_GROUP_ATTRS(_nr);					\
3747 	static const struct attribute_group				\
3748 			fb_timecard_freq##_nr##_group = {		\
3749 		.name = #_name,						\
3750 		.attrs = fb_timecard_freq##_nr##_attrs,			\
3751 }
3752 
3753 DEVICE_FREQ_GROUP(freq1, 0);
3754 DEVICE_FREQ_GROUP(freq2, 1);
3755 DEVICE_FREQ_GROUP(freq3, 2);
3756 DEVICE_FREQ_GROUP(freq4, 3);
3757 
3758 static ssize_t
disciplining_config_read(struct file * filp,struct kobject * kobj,const struct bin_attribute * bin_attr,char * buf,loff_t off,size_t count)3759 disciplining_config_read(struct file *filp, struct kobject *kobj,
3760 			 const struct bin_attribute *bin_attr, char *buf,
3761 			 loff_t off, size_t count)
3762 {
3763 	struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj));
3764 	size_t size = OCP_ART_CONFIG_SIZE;
3765 	struct nvmem_device *nvmem;
3766 	ssize_t err;
3767 
3768 	nvmem = ptp_ocp_nvmem_device_get(bp, NULL);
3769 	if (IS_ERR(nvmem))
3770 		return PTR_ERR(nvmem);
3771 
3772 	if (off > size) {
3773 		err = 0;
3774 		goto out;
3775 	}
3776 
3777 	if (off + count > size)
3778 		count = size - off;
3779 
3780 	// the configuration is in the very beginning of the EEPROM
3781 	err = nvmem_device_read(nvmem, off, count, buf);
3782 	if (err != count) {
3783 		err = -EFAULT;
3784 		goto out;
3785 	}
3786 
3787 out:
3788 	ptp_ocp_nvmem_device_put(&nvmem);
3789 
3790 	return err;
3791 }
3792 
3793 static ssize_t
disciplining_config_write(struct file * filp,struct kobject * kobj,const struct bin_attribute * bin_attr,char * buf,loff_t off,size_t count)3794 disciplining_config_write(struct file *filp, struct kobject *kobj,
3795 			  const struct bin_attribute *bin_attr, char *buf,
3796 			  loff_t off, size_t count)
3797 {
3798 	struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj));
3799 	struct nvmem_device *nvmem;
3800 	ssize_t err;
3801 
3802 	/* Allow write of the whole area only */
3803 	if (off || count != OCP_ART_CONFIG_SIZE)
3804 		return -EFAULT;
3805 
3806 	nvmem = ptp_ocp_nvmem_device_get(bp, NULL);
3807 	if (IS_ERR(nvmem))
3808 		return PTR_ERR(nvmem);
3809 
3810 	err = nvmem_device_write(nvmem, 0x00, count, buf);
3811 	if (err != count)
3812 		err = -EFAULT;
3813 
3814 	ptp_ocp_nvmem_device_put(&nvmem);
3815 
3816 	return err;
3817 }
3818 static const BIN_ATTR_RW(disciplining_config, OCP_ART_CONFIG_SIZE);
3819 
3820 static ssize_t
temperature_table_read(struct file * filp,struct kobject * kobj,const struct bin_attribute * bin_attr,char * buf,loff_t off,size_t count)3821 temperature_table_read(struct file *filp, struct kobject *kobj,
3822 		       const struct bin_attribute *bin_attr, char *buf,
3823 		       loff_t off, size_t count)
3824 {
3825 	struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj));
3826 	size_t size = OCP_ART_TEMP_TABLE_SIZE;
3827 	struct nvmem_device *nvmem;
3828 	ssize_t err;
3829 
3830 	nvmem = ptp_ocp_nvmem_device_get(bp, NULL);
3831 	if (IS_ERR(nvmem))
3832 		return PTR_ERR(nvmem);
3833 
3834 	if (off > size) {
3835 		err = 0;
3836 		goto out;
3837 	}
3838 
3839 	if (off + count > size)
3840 		count = size - off;
3841 
3842 	// the configuration is in the very beginning of the EEPROM
3843 	err = nvmem_device_read(nvmem, 0x90 + off, count, buf);
3844 	if (err != count) {
3845 		err = -EFAULT;
3846 		goto out;
3847 	}
3848 
3849 out:
3850 	ptp_ocp_nvmem_device_put(&nvmem);
3851 
3852 	return err;
3853 }
3854 
3855 static ssize_t
temperature_table_write(struct file * filp,struct kobject * kobj,const struct bin_attribute * bin_attr,char * buf,loff_t off,size_t count)3856 temperature_table_write(struct file *filp, struct kobject *kobj,
3857 			const struct bin_attribute *bin_attr, char *buf,
3858 			loff_t off, size_t count)
3859 {
3860 	struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj));
3861 	struct nvmem_device *nvmem;
3862 	ssize_t err;
3863 
3864 	/* Allow write of the whole area only */
3865 	if (off || count != OCP_ART_TEMP_TABLE_SIZE)
3866 		return -EFAULT;
3867 
3868 	nvmem = ptp_ocp_nvmem_device_get(bp, NULL);
3869 	if (IS_ERR(nvmem))
3870 		return PTR_ERR(nvmem);
3871 
3872 	err = nvmem_device_write(nvmem, 0x90, count, buf);
3873 	if (err != count)
3874 		err = -EFAULT;
3875 
3876 	ptp_ocp_nvmem_device_put(&nvmem);
3877 
3878 	return err;
3879 }
3880 static const BIN_ATTR_RW(temperature_table, OCP_ART_TEMP_TABLE_SIZE);
3881 
3882 static struct attribute *fb_timecard_attrs[] = {
3883 	&dev_attr_serialnum.attr,
3884 	&dev_attr_gnss_sync.attr,
3885 	&dev_attr_clock_source.attr,
3886 	&dev_attr_available_clock_sources.attr,
3887 	&dev_attr_sma1.attr,
3888 	&dev_attr_sma2.attr,
3889 	&dev_attr_sma3.attr,
3890 	&dev_attr_sma4.attr,
3891 	&dev_attr_available_sma_inputs.attr,
3892 	&dev_attr_available_sma_outputs.attr,
3893 	&dev_attr_clock_status_drift.attr,
3894 	&dev_attr_clock_status_offset.attr,
3895 	&dev_attr_irig_b_mode.attr,
3896 	&dev_attr_utc_tai_offset.attr,
3897 	&dev_attr_ts_window_adjust.attr,
3898 	&dev_attr_tod_correction.attr,
3899 	NULL,
3900 };
3901 
3902 static const struct attribute_group fb_timecard_group = {
3903 	.attrs = fb_timecard_attrs,
3904 };
3905 
3906 static const struct ocp_attr_group fb_timecard_groups[] = {
3907 	{ .cap = OCP_CAP_BASIC,	    .group = &fb_timecard_group },
3908 	{ .cap = OCP_CAP_BASIC,	    .group = &ptp_ocp_timecard_tty_group },
3909 	{ .cap = OCP_CAP_SIGNAL,    .group = &fb_timecard_signal0_group },
3910 	{ .cap = OCP_CAP_SIGNAL,    .group = &fb_timecard_signal1_group },
3911 	{ .cap = OCP_CAP_SIGNAL,    .group = &fb_timecard_signal2_group },
3912 	{ .cap = OCP_CAP_SIGNAL,    .group = &fb_timecard_signal3_group },
3913 	{ .cap = OCP_CAP_FREQ,	    .group = &fb_timecard_freq0_group },
3914 	{ .cap = OCP_CAP_FREQ,	    .group = &fb_timecard_freq1_group },
3915 	{ .cap = OCP_CAP_FREQ,	    .group = &fb_timecard_freq2_group },
3916 	{ .cap = OCP_CAP_FREQ,	    .group = &fb_timecard_freq3_group },
3917 	{ },
3918 };
3919 
3920 static struct attribute *art_timecard_attrs[] = {
3921 	&dev_attr_serialnum.attr,
3922 	&dev_attr_clock_source.attr,
3923 	&dev_attr_available_clock_sources.attr,
3924 	&dev_attr_utc_tai_offset.attr,
3925 	&dev_attr_ts_window_adjust.attr,
3926 	&dev_attr_sma1.attr,
3927 	&dev_attr_sma2.attr,
3928 	&dev_attr_sma3.attr,
3929 	&dev_attr_sma4.attr,
3930 	&dev_attr_available_sma_inputs.attr,
3931 	&dev_attr_available_sma_outputs.attr,
3932 	NULL,
3933 };
3934 
3935 static const struct bin_attribute *const bin_art_timecard_attrs[] = {
3936 	&bin_attr_disciplining_config,
3937 	&bin_attr_temperature_table,
3938 	NULL,
3939 };
3940 
3941 static const struct attribute_group art_timecard_group = {
3942 	.attrs = art_timecard_attrs,
3943 	.bin_attrs = bin_art_timecard_attrs,
3944 };
3945 
3946 static const struct ocp_attr_group art_timecard_groups[] = {
3947 	{ .cap = OCP_CAP_BASIC,	    .group = &art_timecard_group },
3948 	{ .cap = OCP_CAP_BASIC,	    .group = &ptp_ocp_timecard_tty_group },
3949 	{ },
3950 };
3951 
3952 static struct attribute *adva_timecard_attrs[] = {
3953 	&dev_attr_serialnum.attr,
3954 	&dev_attr_gnss_sync.attr,
3955 	&dev_attr_clock_source.attr,
3956 	&dev_attr_available_clock_sources.attr,
3957 	&dev_attr_sma1.attr,
3958 	&dev_attr_sma2.attr,
3959 	&dev_attr_sma3.attr,
3960 	&dev_attr_sma4.attr,
3961 	&dev_attr_available_sma_inputs.attr,
3962 	&dev_attr_available_sma_outputs.attr,
3963 	&dev_attr_clock_status_drift.attr,
3964 	&dev_attr_clock_status_offset.attr,
3965 	&dev_attr_ts_window_adjust.attr,
3966 	&dev_attr_tod_correction.attr,
3967 	NULL,
3968 };
3969 
3970 static const struct attribute_group adva_timecard_group = {
3971 	.attrs = adva_timecard_attrs,
3972 };
3973 
3974 static const struct ocp_attr_group adva_timecard_groups[] = {
3975 	{ .cap = OCP_CAP_BASIC,	    .group = &adva_timecard_group },
3976 	{ .cap = OCP_CAP_BASIC,	    .group = &ptp_ocp_timecard_tty_group },
3977 	{ .cap = OCP_CAP_SIGNAL,    .group = &fb_timecard_signal0_group },
3978 	{ .cap = OCP_CAP_SIGNAL,    .group = &fb_timecard_signal1_group },
3979 	{ .cap = OCP_CAP_FREQ,	    .group = &fb_timecard_freq0_group },
3980 	{ .cap = OCP_CAP_FREQ,	    .group = &fb_timecard_freq1_group },
3981 	{ },
3982 };
3983 
3984 static void
gpio_input_map(char * buf,struct ptp_ocp * bp,u16 map[][2],u16 bit,const char * def)3985 gpio_input_map(char *buf, struct ptp_ocp *bp, u16 map[][2], u16 bit,
3986 	       const char *def)
3987 {
3988 	int i;
3989 
3990 	for (i = 0; i < 4; i++) {
3991 		if (bp->sma[i].mode != SMA_MODE_IN)
3992 			continue;
3993 		if (map[i][0] & (1 << bit)) {
3994 			sprintf(buf, "sma%d", i + 1);
3995 			return;
3996 		}
3997 	}
3998 	if (!def)
3999 		def = "----";
4000 	strcpy(buf, def);
4001 }
4002 
4003 static void
gpio_output_map(char * buf,struct ptp_ocp * bp,u16 map[][2],u16 bit)4004 gpio_output_map(char *buf, struct ptp_ocp *bp, u16 map[][2], u16 bit)
4005 {
4006 	char *ans = buf;
4007 	int i;
4008 
4009 	strcpy(ans, "----");
4010 	for (i = 0; i < 4; i++) {
4011 		if (bp->sma[i].mode != SMA_MODE_OUT)
4012 			continue;
4013 		if (map[i][1] & (1 << bit))
4014 			ans += sprintf(ans, "sma%d ", i + 1);
4015 	}
4016 }
4017 
4018 static void
_signal_summary_show(struct seq_file * s,struct ptp_ocp * bp,int nr)4019 _signal_summary_show(struct seq_file *s, struct ptp_ocp *bp, int nr)
4020 {
4021 	struct signal_reg __iomem *reg = bp->signal_out[nr]->mem;
4022 	struct ptp_ocp_signal *signal = &bp->signal[nr];
4023 	char label[16];
4024 	bool on;
4025 	u32 val;
4026 
4027 	on = signal->running;
4028 	sprintf(label, "GEN%d", nr + 1);
4029 	seq_printf(s, "%7s: %s, period:%llu duty:%d%% phase:%llu pol:%d",
4030 		   label, on ? " ON" : "OFF",
4031 		   signal->period, signal->duty, signal->phase,
4032 		   signal->polarity);
4033 
4034 	val = ioread32(&reg->enable);
4035 	seq_printf(s, " [%x", val);
4036 	val = ioread32(&reg->status);
4037 	seq_printf(s, " %x]", val);
4038 
4039 	seq_printf(s, " start:%llu\n", signal->start);
4040 }
4041 
4042 static void
_frequency_summary_show(struct seq_file * s,int nr,struct frequency_reg __iomem * reg)4043 _frequency_summary_show(struct seq_file *s, int nr,
4044 			struct frequency_reg __iomem *reg)
4045 {
4046 	char label[16];
4047 	bool on;
4048 	u32 val;
4049 
4050 	if (!reg)
4051 		return;
4052 
4053 	sprintf(label, "FREQ%d", nr + 1);
4054 	val = ioread32(&reg->ctrl);
4055 	on = val & 1;
4056 	val = (val >> 8) & 0xff;
4057 	seq_printf(s, "%7s: %s, sec:%u",
4058 		   label,
4059 		   on ? " ON" : "OFF",
4060 		   val);
4061 
4062 	val = ioread32(&reg->status);
4063 	if (val & FREQ_STATUS_ERROR)
4064 		seq_printf(s, ", error");
4065 	if (val & FREQ_STATUS_OVERRUN)
4066 		seq_printf(s, ", overrun");
4067 	if (val & FREQ_STATUS_VALID)
4068 		seq_printf(s, ", freq %lu Hz", val & FREQ_STATUS_MASK);
4069 	seq_printf(s, "  reg:%x\n", val);
4070 }
4071 
4072 static int
ptp_ocp_summary_show(struct seq_file * s,void * data)4073 ptp_ocp_summary_show(struct seq_file *s, void *data)
4074 {
4075 	struct device *dev = s->private;
4076 	struct ptp_system_timestamp sts;
4077 	struct ts_reg __iomem *ts_reg;
4078 	char *buf, *src, *mac_src;
4079 	struct timespec64 ts;
4080 	struct ptp_ocp *bp;
4081 	u16 sma_val[4][2];
4082 	u32 ctrl, val;
4083 	bool on, map;
4084 	int i;
4085 
4086 	buf = (char *)__get_free_page(GFP_KERNEL);
4087 	if (!buf)
4088 		return -ENOMEM;
4089 
4090 	bp = dev_get_drvdata(dev);
4091 
4092 	seq_printf(s, "%7s: /dev/ptp%d\n", "PTP", ptp_clock_index(bp->ptp));
4093 	for (i = 0; i < __PORT_COUNT; i++) {
4094 		if (bp->port[i].line != -1)
4095 			seq_printf(s, "%7s: /dev/ttyS%d\n", ptp_ocp_tty_port_name(i),
4096 				   bp->port[i].line);
4097 	}
4098 
4099 	memset(sma_val, 0xff, sizeof(sma_val));
4100 	if (bp->sma_map1) {
4101 		u32 reg;
4102 
4103 		reg = ioread32(&bp->sma_map1->gpio1);
4104 		sma_val[0][0] = reg & 0xffff;
4105 		sma_val[1][0] = reg >> 16;
4106 
4107 		reg = ioread32(&bp->sma_map1->gpio2);
4108 		sma_val[2][1] = reg & 0xffff;
4109 		sma_val[3][1] = reg >> 16;
4110 
4111 		reg = ioread32(&bp->sma_map2->gpio1);
4112 		sma_val[2][0] = reg & 0xffff;
4113 		sma_val[3][0] = reg >> 16;
4114 
4115 		reg = ioread32(&bp->sma_map2->gpio2);
4116 		sma_val[0][1] = reg & 0xffff;
4117 		sma_val[1][1] = reg >> 16;
4118 	}
4119 
4120 	sma1_show(dev, NULL, buf);
4121 	seq_printf(s, "   sma1: %04x,%04x %s",
4122 		   sma_val[0][0], sma_val[0][1], buf);
4123 
4124 	sma2_show(dev, NULL, buf);
4125 	seq_printf(s, "   sma2: %04x,%04x %s",
4126 		   sma_val[1][0], sma_val[1][1], buf);
4127 
4128 	sma3_show(dev, NULL, buf);
4129 	seq_printf(s, "   sma3: %04x,%04x %s",
4130 		   sma_val[2][0], sma_val[2][1], buf);
4131 
4132 	sma4_show(dev, NULL, buf);
4133 	seq_printf(s, "   sma4: %04x,%04x %s",
4134 		   sma_val[3][0], sma_val[3][1], buf);
4135 
4136 	if (bp->ts0) {
4137 		ts_reg = bp->ts0->mem;
4138 		on = ioread32(&ts_reg->enable);
4139 		src = "GNSS1";
4140 		seq_printf(s, "%7s: %s, src: %s\n", "TS0",
4141 			   on ? " ON" : "OFF", src);
4142 	}
4143 
4144 	if (bp->ts1) {
4145 		ts_reg = bp->ts1->mem;
4146 		on = ioread32(&ts_reg->enable);
4147 		gpio_input_map(buf, bp, sma_val, 2, NULL);
4148 		seq_printf(s, "%7s: %s, src: %s\n", "TS1",
4149 			   on ? " ON" : "OFF", buf);
4150 	}
4151 
4152 	if (bp->ts2) {
4153 		ts_reg = bp->ts2->mem;
4154 		on = ioread32(&ts_reg->enable);
4155 		gpio_input_map(buf, bp, sma_val, 3, NULL);
4156 		seq_printf(s, "%7s: %s, src: %s\n", "TS2",
4157 			   on ? " ON" : "OFF", buf);
4158 	}
4159 
4160 	if (bp->ts3) {
4161 		ts_reg = bp->ts3->mem;
4162 		on = ioread32(&ts_reg->enable);
4163 		gpio_input_map(buf, bp, sma_val, 6, NULL);
4164 		seq_printf(s, "%7s: %s, src: %s\n", "TS3",
4165 			   on ? " ON" : "OFF", buf);
4166 	}
4167 
4168 	if (bp->ts4) {
4169 		ts_reg = bp->ts4->mem;
4170 		on = ioread32(&ts_reg->enable);
4171 		gpio_input_map(buf, bp, sma_val, 7, NULL);
4172 		seq_printf(s, "%7s: %s, src: %s\n", "TS4",
4173 			   on ? " ON" : "OFF", buf);
4174 	}
4175 
4176 	if (bp->pps) {
4177 		ts_reg = bp->pps->mem;
4178 		src = "PHC";
4179 		on = ioread32(&ts_reg->enable);
4180 		map = !!(bp->pps_req_map & OCP_REQ_TIMESTAMP);
4181 		seq_printf(s, "%7s: %s, src: %s\n", "TS5",
4182 			   on && map ? " ON" : "OFF", src);
4183 
4184 		map = !!(bp->pps_req_map & OCP_REQ_PPS);
4185 		seq_printf(s, "%7s: %s, src: %s\n", "PPS",
4186 			   on && map ? " ON" : "OFF", src);
4187 	}
4188 
4189 	if (bp->fw_cap & OCP_CAP_SIGNAL)
4190 		for (i = 0; i < bp->signals_nr; i++)
4191 			_signal_summary_show(s, bp, i);
4192 
4193 	if (bp->fw_cap & OCP_CAP_FREQ)
4194 		for (i = 0; i < bp->freq_in_nr; i++)
4195 			_frequency_summary_show(s, i, bp->freq_in[i]);
4196 
4197 	if (bp->irig_out) {
4198 		ctrl = ioread32(&bp->irig_out->ctrl);
4199 		on = ctrl & IRIG_M_CTRL_ENABLE;
4200 		val = ioread32(&bp->irig_out->status);
4201 		gpio_output_map(buf, bp, sma_val, 4);
4202 		seq_printf(s, "%7s: %s, error: %d, mode %d, out: %s\n", "IRIG",
4203 			   on ? " ON" : "OFF", val, (ctrl >> 16), buf);
4204 	}
4205 
4206 	if (bp->irig_in) {
4207 		on = ioread32(&bp->irig_in->ctrl) & IRIG_S_CTRL_ENABLE;
4208 		val = ioread32(&bp->irig_in->status);
4209 		gpio_input_map(buf, bp, sma_val, 4, NULL);
4210 		seq_printf(s, "%7s: %s, error: %d, src: %s\n", "IRIG in",
4211 			   on ? " ON" : "OFF", val, buf);
4212 	}
4213 
4214 	if (bp->dcf_out) {
4215 		on = ioread32(&bp->dcf_out->ctrl) & DCF_M_CTRL_ENABLE;
4216 		val = ioread32(&bp->dcf_out->status);
4217 		gpio_output_map(buf, bp, sma_val, 5);
4218 		seq_printf(s, "%7s: %s, error: %d, out: %s\n", "DCF",
4219 			   on ? " ON" : "OFF", val, buf);
4220 	}
4221 
4222 	if (bp->dcf_in) {
4223 		on = ioread32(&bp->dcf_in->ctrl) & DCF_S_CTRL_ENABLE;
4224 		val = ioread32(&bp->dcf_in->status);
4225 		gpio_input_map(buf, bp, sma_val, 5, NULL);
4226 		seq_printf(s, "%7s: %s, error: %d, src: %s\n", "DCF in",
4227 			   on ? " ON" : "OFF", val, buf);
4228 	}
4229 
4230 	if (bp->nmea_out) {
4231 		on = ioread32(&bp->nmea_out->ctrl) & 1;
4232 		val = ioread32(&bp->nmea_out->status);
4233 		seq_printf(s, "%7s: %s, error: %d\n", "NMEA",
4234 			   on ? " ON" : "OFF", val);
4235 	}
4236 
4237 	/* compute src for PPS1, used below. */
4238 	if (bp->pps_select) {
4239 		val = ioread32(&bp->pps_select->gpio1);
4240 		src = &buf[80];
4241 		mac_src = "GNSS1";
4242 		if (val & 0x01) {
4243 			gpio_input_map(src, bp, sma_val, 0, NULL);
4244 			mac_src = src;
4245 		} else if (val & 0x02) {
4246 			src = "MAC";
4247 		} else if (val & 0x04) {
4248 			src = "GNSS1";
4249 		} else {
4250 			src = "----";
4251 			mac_src = src;
4252 		}
4253 	} else {
4254 		src = "?";
4255 		mac_src = src;
4256 	}
4257 	seq_printf(s, "MAC PPS1 src: %s\n", mac_src);
4258 
4259 	gpio_input_map(buf, bp, sma_val, 1, "GNSS2");
4260 	seq_printf(s, "MAC PPS2 src: %s\n", buf);
4261 
4262 	/* assumes automatic switchover/selection */
4263 	val = ioread32(&bp->reg->select);
4264 	switch (val >> 16) {
4265 	case 0:
4266 		sprintf(buf, "----");
4267 		break;
4268 	case 2:
4269 		sprintf(buf, "IRIG");
4270 		break;
4271 	case 3:
4272 		sprintf(buf, "%s via PPS1", src);
4273 		break;
4274 	case 6:
4275 		sprintf(buf, "DCF");
4276 		break;
4277 	default:
4278 		strcpy(buf, "unknown");
4279 		break;
4280 	}
4281 	seq_printf(s, "%7s: %s, state: %s\n", "PHC src", buf,
4282 		   bp->sync ? "sync" : "unsynced");
4283 
4284 	if (!ptp_ocp_gettimex(&bp->ptp_info, &ts, &sts)) {
4285 		struct timespec64 sys_ts;
4286 		s64 pre_ns, post_ns, ns;
4287 
4288 		pre_ns = timespec64_to_ns(&sts.pre_ts);
4289 		post_ns = timespec64_to_ns(&sts.post_ts);
4290 		ns = (pre_ns + post_ns) / 2;
4291 		ns += (s64)bp->utc_tai_offset * NSEC_PER_SEC;
4292 		sys_ts = ns_to_timespec64(ns);
4293 
4294 		seq_printf(s, "%7s: %ptSp == %ptS TAI\n", "PHC", &ts, &ts);
4295 		seq_printf(s, "%7s: %ptSp == %ptS UTC offset %d\n", "SYS",
4296 			   &sys_ts, &sys_ts, bp->utc_tai_offset);
4297 		seq_printf(s, "%7s: PHC:SYS offset: %lld  window: %lld\n", "",
4298 			   timespec64_to_ns(&ts) - ns,
4299 			   post_ns - pre_ns);
4300 	}
4301 
4302 	free_page((unsigned long)buf);
4303 	return 0;
4304 }
4305 DEFINE_SHOW_ATTRIBUTE(ptp_ocp_summary);
4306 
4307 static int
ptp_ocp_tod_status_show(struct seq_file * s,void * data)4308 ptp_ocp_tod_status_show(struct seq_file *s, void *data)
4309 {
4310 	struct device *dev = s->private;
4311 	struct ptp_ocp *bp;
4312 	u32 val;
4313 	int idx;
4314 
4315 	bp = dev_get_drvdata(dev);
4316 
4317 	val = ioread32(&bp->tod->ctrl);
4318 	if (!(val & TOD_CTRL_ENABLE)) {
4319 		seq_printf(s, "TOD Slave disabled\n");
4320 		return 0;
4321 	}
4322 	seq_printf(s, "TOD Slave enabled, Control Register 0x%08X\n", val);
4323 
4324 	idx = val & TOD_CTRL_PROTOCOL ? 4 : 0;
4325 	idx += (val >> 16) & 3;
4326 	seq_printf(s, "Protocol %s\n", ptp_ocp_tod_proto_name(idx));
4327 
4328 	idx = (val >> TOD_CTRL_GNSS_SHIFT) & TOD_CTRL_GNSS_MASK;
4329 	seq_printf(s, "GNSS %s\n", ptp_ocp_tod_gnss_name(idx));
4330 
4331 	val = ioread32(&bp->tod->version);
4332 	seq_printf(s, "TOD Version %d.%d.%d\n",
4333 		val >> 24, (val >> 16) & 0xff, val & 0xffff);
4334 
4335 	val = ioread32(&bp->tod->status);
4336 	seq_printf(s, "Status register: 0x%08X\n", val);
4337 
4338 	val = ioread32(&bp->tod->adj_sec);
4339 	idx = (val & ~INT_MAX) ? -1 : 1;
4340 	idx *= (val & INT_MAX);
4341 	seq_printf(s, "Correction seconds: %d\n", idx);
4342 
4343 	val = ioread32(&bp->tod->utc_status);
4344 	seq_printf(s, "UTC status register: 0x%08X\n", val);
4345 	seq_printf(s, "UTC offset: %ld  valid:%d\n",
4346 		val & TOD_STATUS_UTC_MASK, val & TOD_STATUS_UTC_VALID ? 1 : 0);
4347 	seq_printf(s, "Leap second info valid:%d, Leap second announce %d\n",
4348 		val & TOD_STATUS_LEAP_VALID ? 1 : 0,
4349 		val & TOD_STATUS_LEAP_ANNOUNCE ? 1 : 0);
4350 
4351 	val = ioread32(&bp->tod->leap);
4352 	seq_printf(s, "Time to next leap second (in sec): %d\n", (s32) val);
4353 
4354 	return 0;
4355 }
4356 DEFINE_SHOW_ATTRIBUTE(ptp_ocp_tod_status);
4357 
4358 static struct dentry *ptp_ocp_debugfs_root;
4359 
4360 static void
ptp_ocp_debugfs_add_device(struct ptp_ocp * bp)4361 ptp_ocp_debugfs_add_device(struct ptp_ocp *bp)
4362 {
4363 	struct dentry *d;
4364 
4365 	d = debugfs_create_dir(dev_name(&bp->dev), ptp_ocp_debugfs_root);
4366 	bp->debug_root = d;
4367 	debugfs_create_file("summary", 0444, bp->debug_root,
4368 			    &bp->dev, &ptp_ocp_summary_fops);
4369 	if (bp->tod)
4370 		debugfs_create_file("tod_status", 0444, bp->debug_root,
4371 				    &bp->dev, &ptp_ocp_tod_status_fops);
4372 }
4373 
4374 static void
ptp_ocp_debugfs_remove_device(struct ptp_ocp * bp)4375 ptp_ocp_debugfs_remove_device(struct ptp_ocp *bp)
4376 {
4377 	debugfs_remove_recursive(bp->debug_root);
4378 }
4379 
4380 static void
ptp_ocp_debugfs_init(void)4381 ptp_ocp_debugfs_init(void)
4382 {
4383 	ptp_ocp_debugfs_root = debugfs_create_dir("timecard", NULL);
4384 }
4385 
4386 static void
ptp_ocp_debugfs_fini(void)4387 ptp_ocp_debugfs_fini(void)
4388 {
4389 	debugfs_remove_recursive(ptp_ocp_debugfs_root);
4390 }
4391 
4392 static void
ptp_ocp_dev_release(struct device * dev)4393 ptp_ocp_dev_release(struct device *dev)
4394 {
4395 	struct ptp_ocp *bp = dev_get_drvdata(dev);
4396 
4397 	mutex_lock(&ptp_ocp_lock);
4398 	idr_remove(&ptp_ocp_idr, bp->id);
4399 	mutex_unlock(&ptp_ocp_lock);
4400 }
4401 
4402 static int
ptp_ocp_device_init(struct ptp_ocp * bp,struct pci_dev * pdev)4403 ptp_ocp_device_init(struct ptp_ocp *bp, struct pci_dev *pdev)
4404 {
4405 	int i, err;
4406 
4407 	mutex_lock(&ptp_ocp_lock);
4408 	err = idr_alloc(&ptp_ocp_idr, bp, 0, 0, GFP_KERNEL);
4409 	mutex_unlock(&ptp_ocp_lock);
4410 	if (err < 0) {
4411 		dev_err(&pdev->dev, "idr_alloc failed: %d\n", err);
4412 		return err;
4413 	}
4414 	bp->id = err;
4415 
4416 	bp->ptp_info = ptp_ocp_clock_info;
4417 	spin_lock_init(&bp->lock);
4418 
4419 	for (i = 0; i < __PORT_COUNT; i++)
4420 		bp->port[i].line = -1;
4421 
4422 	bp->pdev = pdev;
4423 
4424 	device_initialize(&bp->dev);
4425 	dev_set_name(&bp->dev, "ocp%d", bp->id);
4426 	bp->dev.class = &timecard_class;
4427 	bp->dev.parent = &pdev->dev;
4428 	bp->dev.release = ptp_ocp_dev_release;
4429 	dev_set_drvdata(&bp->dev, bp);
4430 
4431 	err = device_add(&bp->dev);
4432 	if (err) {
4433 		dev_err(&bp->dev, "device add failed: %d\n", err);
4434 		goto out;
4435 	}
4436 
4437 	pci_set_drvdata(pdev, bp);
4438 
4439 	return 0;
4440 
4441 out:
4442 	put_device(&bp->dev);
4443 	return err;
4444 }
4445 
4446 static void
ptp_ocp_symlink(struct ptp_ocp * bp,struct device * child,const char * link)4447 ptp_ocp_symlink(struct ptp_ocp *bp, struct device *child, const char *link)
4448 {
4449 	struct device *dev = &bp->dev;
4450 
4451 	if (sysfs_create_link(&dev->kobj, &child->kobj, link))
4452 		dev_err(dev, "%s symlink failed\n", link);
4453 }
4454 
4455 static void
ptp_ocp_link_child(struct ptp_ocp * bp,const char * name,const char * link)4456 ptp_ocp_link_child(struct ptp_ocp *bp, const char *name, const char *link)
4457 {
4458 	struct device *dev, *child;
4459 
4460 	dev = &bp->pdev->dev;
4461 
4462 	child = device_find_child_by_name(dev, name);
4463 	if (!child) {
4464 		dev_err(dev, "Could not find device %s\n", name);
4465 		return;
4466 	}
4467 
4468 	ptp_ocp_symlink(bp, child, link);
4469 	put_device(child);
4470 }
4471 
4472 static int
ptp_ocp_complete(struct ptp_ocp * bp)4473 ptp_ocp_complete(struct ptp_ocp *bp)
4474 {
4475 	struct pps_device *pps;
4476 	char buf[32];
4477 
4478 	sprintf(buf, "ptp%d", ptp_clock_index(bp->ptp));
4479 	ptp_ocp_link_child(bp, buf, "ptp");
4480 
4481 	pps = pps_lookup_dev(bp->ptp);
4482 	if (pps)
4483 		ptp_ocp_symlink(bp, &pps->dev, "pps");
4484 
4485 	ptp_ocp_debugfs_add_device(bp);
4486 
4487 	return 0;
4488 }
4489 
4490 static void
ptp_ocp_phc_info(struct ptp_ocp * bp)4491 ptp_ocp_phc_info(struct ptp_ocp *bp)
4492 {
4493 	struct timespec64 ts;
4494 	u32 version, select;
4495 
4496 	version = ioread32(&bp->reg->version);
4497 	select = ioread32(&bp->reg->select);
4498 	dev_info(&bp->pdev->dev, "Version %d.%d.%d, clock %s, device ptp%d\n",
4499 		 version >> 24, (version >> 16) & 0xff, version & 0xffff,
4500 		 ptp_ocp_select_name_from_val(ptp_ocp_clock, select >> 16),
4501 		 ptp_clock_index(bp->ptp));
4502 
4503 	if (!ptp_ocp_gettimex(&bp->ptp_info, &ts, NULL))
4504 		dev_info(&bp->pdev->dev, "Time: %ptSp, %s\n",
4505 			 &ts, bp->sync ? "in-sync" : "UNSYNCED");
4506 }
4507 
4508 static void
ptp_ocp_serial_info(struct device * dev,const char * name,int port,int baud)4509 ptp_ocp_serial_info(struct device *dev, const char *name, int port, int baud)
4510 {
4511 	if (port != -1)
4512 		dev_info(dev, "%5s: /dev/ttyS%-2d @ %6d\n", name, port, baud);
4513 }
4514 
4515 static void
ptp_ocp_info(struct ptp_ocp * bp)4516 ptp_ocp_info(struct ptp_ocp *bp)
4517 {
4518 	static int nmea_baud[] = {
4519 		1200, 2400, 4800, 9600, 19200, 38400,
4520 		57600, 115200, 230400, 460800, 921600,
4521 		1000000, 2000000
4522 	};
4523 	struct device *dev = &bp->pdev->dev;
4524 	u32 reg;
4525 	int i;
4526 
4527 	ptp_ocp_phc_info(bp);
4528 
4529 	for (i = 0; i < __PORT_COUNT; i++) {
4530 		if (i == PORT_NMEA && bp->nmea_out && bp->port[PORT_NMEA].line != -1) {
4531 			bp->port[PORT_NMEA].baud = -1;
4532 
4533 			reg = ioread32(&bp->nmea_out->uart_baud);
4534 			if (reg < ARRAY_SIZE(nmea_baud))
4535 				bp->port[PORT_NMEA].baud = nmea_baud[reg];
4536 		}
4537 		ptp_ocp_serial_info(dev, ptp_ocp_tty_port_name(i), bp->port[i].line,
4538 				    bp->port[i].baud);
4539 	}
4540 }
4541 
4542 static void
ptp_ocp_detach_sysfs(struct ptp_ocp * bp)4543 ptp_ocp_detach_sysfs(struct ptp_ocp *bp)
4544 {
4545 	struct device *dev = &bp->dev;
4546 
4547 	sysfs_remove_link(&dev->kobj, "ptp");
4548 	sysfs_remove_link(&dev->kobj, "pps");
4549 }
4550 
4551 static void
ptp_ocp_detach(struct ptp_ocp * bp)4552 ptp_ocp_detach(struct ptp_ocp *bp)
4553 {
4554 	int i;
4555 
4556 	ptp_ocp_debugfs_remove_device(bp);
4557 	ptp_ocp_detach_sysfs(bp);
4558 	ptp_ocp_attr_group_del(bp);
4559 	timer_delete_sync(&bp->watchdog);
4560 	ptp_ocp_unregister_ext(bp->ts0);
4561 	ptp_ocp_unregister_ext(bp->ts1);
4562 	ptp_ocp_unregister_ext(bp->ts2);
4563 	ptp_ocp_unregister_ext(bp->ts3);
4564 	ptp_ocp_unregister_ext(bp->ts4);
4565 	ptp_ocp_unregister_ext(bp->pps);
4566 	for (i = 0; i < 4; i++)
4567 		ptp_ocp_unregister_ext(bp->signal_out[i]);
4568 	for (i = 0; i < __PORT_COUNT; i++)
4569 		if (bp->port[i].line != -1)
4570 			serial8250_unregister_port(bp->port[i].line);
4571 	platform_device_unregister(bp->spi_flash);
4572 	platform_device_unregister(bp->i2c_ctrl);
4573 	if (bp->i2c_clk)
4574 		clk_hw_unregister_fixed_rate(bp->i2c_clk);
4575 	if (bp->n_irqs)
4576 		pci_free_irq_vectors(bp->pdev);
4577 	if (bp->ptp)
4578 		ptp_clock_unregister(bp->ptp);
4579 	kfree(bp->ptp_info.pin_config);
4580 	device_unregister(&bp->dev);
4581 }
4582 
4583 static int
ptp_ocp_dpll_lock_status_get(const struct dpll_device * dpll,void * priv,enum dpll_lock_status * status,enum dpll_lock_status_error * status_error,struct netlink_ext_ack * extack)4584 ptp_ocp_dpll_lock_status_get(const struct dpll_device *dpll, void *priv,
4585 			     enum dpll_lock_status *status,
4586 			     enum dpll_lock_status_error *status_error,
4587 			     struct netlink_ext_ack *extack)
4588 {
4589 	struct ptp_ocp *bp = priv;
4590 
4591 	*status = bp->sync ? DPLL_LOCK_STATUS_LOCKED : DPLL_LOCK_STATUS_UNLOCKED;
4592 
4593 	return 0;
4594 }
4595 
ptp_ocp_dpll_state_get(const struct dpll_pin * pin,void * pin_priv,const struct dpll_device * dpll,void * priv,enum dpll_pin_state * state,struct netlink_ext_ack * extack)4596 static int ptp_ocp_dpll_state_get(const struct dpll_pin *pin, void *pin_priv,
4597 				  const struct dpll_device *dpll, void *priv,
4598 				  enum dpll_pin_state *state,
4599 				  struct netlink_ext_ack *extack)
4600 {
4601 	struct ptp_ocp *bp = priv;
4602 	int idx;
4603 
4604 	if (bp->pps_select) {
4605 		idx = ioread32(&bp->pps_select->gpio1);
4606 		*state = (&bp->sma[idx] == pin_priv) ? DPLL_PIN_STATE_CONNECTED :
4607 						      DPLL_PIN_STATE_SELECTABLE;
4608 		return 0;
4609 	}
4610 	NL_SET_ERR_MSG(extack, "pin selection is not supported on current HW");
4611 	return -EINVAL;
4612 }
4613 
ptp_ocp_dpll_mode_get(const struct dpll_device * dpll,void * priv,enum dpll_mode * mode,struct netlink_ext_ack * extack)4614 static int ptp_ocp_dpll_mode_get(const struct dpll_device *dpll, void *priv,
4615 				 enum dpll_mode *mode, struct netlink_ext_ack *extack)
4616 {
4617 	*mode = DPLL_MODE_AUTOMATIC;
4618 	return 0;
4619 }
4620 
ptp_ocp_dpll_direction_get(const struct dpll_pin * pin,void * pin_priv,const struct dpll_device * dpll,void * priv,enum dpll_pin_direction * direction,struct netlink_ext_ack * extack)4621 static int ptp_ocp_dpll_direction_get(const struct dpll_pin *pin,
4622 				      void *pin_priv,
4623 				      const struct dpll_device *dpll,
4624 				      void *priv,
4625 				      enum dpll_pin_direction *direction,
4626 				      struct netlink_ext_ack *extack)
4627 {
4628 	struct ptp_ocp_sma_connector *sma = pin_priv;
4629 
4630 	*direction = sma->mode == SMA_MODE_IN ?
4631 				  DPLL_PIN_DIRECTION_INPUT :
4632 				  DPLL_PIN_DIRECTION_OUTPUT;
4633 	return 0;
4634 }
4635 
ptp_ocp_dpll_direction_set(const struct dpll_pin * pin,void * pin_priv,const struct dpll_device * dpll,void * dpll_priv,enum dpll_pin_direction direction,struct netlink_ext_ack * extack)4636 static int ptp_ocp_dpll_direction_set(const struct dpll_pin *pin,
4637 				      void *pin_priv,
4638 				      const struct dpll_device *dpll,
4639 				      void *dpll_priv,
4640 				      enum dpll_pin_direction direction,
4641 				      struct netlink_ext_ack *extack)
4642 {
4643 	struct ptp_ocp_sma_connector *sma = pin_priv;
4644 	struct ptp_ocp *bp = dpll_priv;
4645 	enum ptp_ocp_sma_mode mode;
4646 	int sma_nr = (sma - bp->sma);
4647 
4648 	if (sma->fixed_dir)
4649 		return -EOPNOTSUPP;
4650 	mode = direction == DPLL_PIN_DIRECTION_INPUT ?
4651 			    SMA_MODE_IN : SMA_MODE_OUT;
4652 	return ptp_ocp_sma_store_val(bp, 0, mode, sma_nr + 1);
4653 }
4654 
ptp_ocp_dpll_frequency_set(const struct dpll_pin * pin,void * pin_priv,const struct dpll_device * dpll,void * dpll_priv,u64 frequency,struct netlink_ext_ack * extack)4655 static int ptp_ocp_dpll_frequency_set(const struct dpll_pin *pin,
4656 				      void *pin_priv,
4657 				      const struct dpll_device *dpll,
4658 				      void *dpll_priv, u64 frequency,
4659 				      struct netlink_ext_ack *extack)
4660 {
4661 	struct ptp_ocp_sma_connector *sma = pin_priv;
4662 	struct ptp_ocp *bp = dpll_priv;
4663 	const struct ocp_selector *tbl;
4664 	int sma_nr = (sma - bp->sma);
4665 	int i;
4666 
4667 	if (sma->fixed_fcn)
4668 		return -EOPNOTSUPP;
4669 
4670 	tbl = bp->sma_op->tbl[sma->mode];
4671 	for (i = 0; tbl[i].name; i++)
4672 		if (tbl[i].frequency == frequency)
4673 			return ptp_ocp_sma_store_val(bp, i, sma->mode, sma_nr + 1);
4674 	return -EINVAL;
4675 }
4676 
ptp_ocp_dpll_frequency_get(const struct dpll_pin * pin,void * pin_priv,const struct dpll_device * dpll,void * dpll_priv,u64 * frequency,struct netlink_ext_ack * extack)4677 static int ptp_ocp_dpll_frequency_get(const struct dpll_pin *pin,
4678 				      void *pin_priv,
4679 				      const struct dpll_device *dpll,
4680 				      void *dpll_priv, u64 *frequency,
4681 				      struct netlink_ext_ack *extack)
4682 {
4683 	struct ptp_ocp_sma_connector *sma = pin_priv;
4684 	struct ptp_ocp *bp = dpll_priv;
4685 	const struct ocp_selector *tbl;
4686 	int sma_nr = (sma - bp->sma);
4687 	u32 val;
4688 	int i;
4689 
4690 	val = bp->sma_op->get(bp, sma_nr + 1);
4691 	tbl = bp->sma_op->tbl[sma->mode];
4692 	for (i = 0; tbl[i].name; i++)
4693 		if (val == tbl[i].value) {
4694 			*frequency = tbl[i].frequency;
4695 			return 0;
4696 		}
4697 
4698 	return -EINVAL;
4699 }
4700 
4701 static const struct dpll_device_ops dpll_ops = {
4702 	.lock_status_get = ptp_ocp_dpll_lock_status_get,
4703 	.mode_get = ptp_ocp_dpll_mode_get,
4704 };
4705 
4706 static const struct dpll_pin_ops dpll_pins_ops = {
4707 	.frequency_get = ptp_ocp_dpll_frequency_get,
4708 	.frequency_set = ptp_ocp_dpll_frequency_set,
4709 	.direction_get = ptp_ocp_dpll_direction_get,
4710 	.direction_set = ptp_ocp_dpll_direction_set,
4711 	.state_on_dpll_get = ptp_ocp_dpll_state_get,
4712 };
4713 
4714 static void
ptp_ocp_sync_work(struct work_struct * work)4715 ptp_ocp_sync_work(struct work_struct *work)
4716 {
4717 	struct ptp_ocp *bp;
4718 	bool sync;
4719 
4720 	bp = container_of(work, struct ptp_ocp, sync_work.work);
4721 	sync = !!(ioread32(&bp->reg->status) & OCP_STATUS_IN_SYNC);
4722 
4723 	if (bp->sync != sync)
4724 		dpll_device_change_ntf(bp->dpll);
4725 
4726 	bp->sync = sync;
4727 
4728 	queue_delayed_work(system_power_efficient_wq, &bp->sync_work, HZ);
4729 }
4730 
4731 static int
ptp_ocp_probe(struct pci_dev * pdev,const struct pci_device_id * id)4732 ptp_ocp_probe(struct pci_dev *pdev, const struct pci_device_id *id)
4733 {
4734 	struct devlink *devlink;
4735 	struct ptp_ocp *bp;
4736 	int err, i;
4737 	u64 clkid;
4738 
4739 	devlink = devlink_alloc(&ptp_ocp_devlink_ops, sizeof(*bp), &pdev->dev);
4740 	if (!devlink) {
4741 		dev_err(&pdev->dev, "devlink_alloc failed\n");
4742 		return -ENOMEM;
4743 	}
4744 
4745 	err = pci_enable_device(pdev);
4746 	if (err) {
4747 		dev_err(&pdev->dev, "pci_enable_device\n");
4748 		goto out_free;
4749 	}
4750 
4751 	bp = devlink_priv(devlink);
4752 	err = ptp_ocp_device_init(bp, pdev);
4753 	if (err)
4754 		goto out_disable;
4755 
4756 	INIT_DELAYED_WORK(&bp->sync_work, ptp_ocp_sync_work);
4757 
4758 	/* compat mode.
4759 	 * Older FPGA firmware only returns 2 irq's.
4760 	 * allow this - if not all of the IRQ's are returned, skip the
4761 	 * extra devices and just register the clock.
4762 	 */
4763 	err = pci_alloc_irq_vectors(pdev, 1, 17, PCI_IRQ_MSI | PCI_IRQ_MSIX);
4764 	if (err < 0) {
4765 		dev_err(&pdev->dev, "alloc_irq_vectors err: %d\n", err);
4766 		goto out;
4767 	}
4768 	bp->n_irqs = err;
4769 	pci_set_master(pdev);
4770 
4771 	err = ptp_ocp_register_resources(bp, id->driver_data);
4772 	if (err)
4773 		goto out;
4774 
4775 	bp->ptp = ptp_clock_register(&bp->ptp_info, &pdev->dev);
4776 	if (IS_ERR(bp->ptp)) {
4777 		err = PTR_ERR(bp->ptp);
4778 		dev_err(&pdev->dev, "ptp_clock_register: %d\n", err);
4779 		bp->ptp = NULL;
4780 		goto out;
4781 	}
4782 
4783 	err = ptp_ocp_complete(bp);
4784 	if (err)
4785 		goto out;
4786 
4787 	ptp_ocp_info(bp);
4788 	devlink_register(devlink);
4789 
4790 	clkid = pci_get_dsn(pdev);
4791 	bp->dpll = dpll_device_get(clkid, 0, THIS_MODULE);
4792 	if (IS_ERR(bp->dpll)) {
4793 		err = PTR_ERR(bp->dpll);
4794 		dev_err(&pdev->dev, "dpll_device_alloc failed\n");
4795 		goto out;
4796 	}
4797 
4798 	err = dpll_device_register(bp->dpll, DPLL_TYPE_PPS, &dpll_ops, bp);
4799 	if (err)
4800 		goto out;
4801 
4802 	for (i = 0; i < OCP_SMA_NUM; i++) {
4803 		bp->sma[i].dpll_pin = dpll_pin_get(clkid, i, THIS_MODULE, &bp->sma[i].dpll_prop);
4804 		if (IS_ERR(bp->sma[i].dpll_pin)) {
4805 			err = PTR_ERR(bp->sma[i].dpll_pin);
4806 			goto out_dpll;
4807 		}
4808 
4809 		err = dpll_pin_register(bp->dpll, bp->sma[i].dpll_pin, &dpll_pins_ops,
4810 					&bp->sma[i]);
4811 		if (err) {
4812 			dpll_pin_put(bp->sma[i].dpll_pin);
4813 			goto out_dpll;
4814 		}
4815 	}
4816 	queue_delayed_work(system_power_efficient_wq, &bp->sync_work, HZ);
4817 
4818 	return 0;
4819 out_dpll:
4820 	while (i--) {
4821 		dpll_pin_unregister(bp->dpll, bp->sma[i].dpll_pin, &dpll_pins_ops, &bp->sma[i]);
4822 		dpll_pin_put(bp->sma[i].dpll_pin);
4823 	}
4824 	dpll_device_put(bp->dpll);
4825 out:
4826 	ptp_ocp_detach(bp);
4827 out_disable:
4828 	pci_disable_device(pdev);
4829 out_free:
4830 	devlink_free(devlink);
4831 	return err;
4832 }
4833 
4834 static void
ptp_ocp_remove(struct pci_dev * pdev)4835 ptp_ocp_remove(struct pci_dev *pdev)
4836 {
4837 	struct ptp_ocp *bp = pci_get_drvdata(pdev);
4838 	struct devlink *devlink = priv_to_devlink(bp);
4839 	int i;
4840 
4841 	cancel_delayed_work_sync(&bp->sync_work);
4842 	for (i = 0; i < OCP_SMA_NUM; i++) {
4843 		if (bp->sma[i].dpll_pin) {
4844 			dpll_pin_unregister(bp->dpll, bp->sma[i].dpll_pin, &dpll_pins_ops, &bp->sma[i]);
4845 			dpll_pin_put(bp->sma[i].dpll_pin);
4846 		}
4847 	}
4848 	dpll_device_unregister(bp->dpll, &dpll_ops, bp);
4849 	dpll_device_put(bp->dpll);
4850 	devlink_unregister(devlink);
4851 	ptp_ocp_detach(bp);
4852 	pci_disable_device(pdev);
4853 
4854 	devlink_free(devlink);
4855 }
4856 
4857 static struct pci_driver ptp_ocp_driver = {
4858 	.name		= KBUILD_MODNAME,
4859 	.id_table	= ptp_ocp_pcidev_id,
4860 	.probe		= ptp_ocp_probe,
4861 	.remove		= ptp_ocp_remove,
4862 };
4863 
4864 static int
ptp_ocp_i2c_notifier_call(struct notifier_block * nb,unsigned long action,void * data)4865 ptp_ocp_i2c_notifier_call(struct notifier_block *nb,
4866 			  unsigned long action, void *data)
4867 {
4868 	struct device *dev, *child = data;
4869 	struct ptp_ocp *bp;
4870 	bool add;
4871 
4872 	switch (action) {
4873 	case BUS_NOTIFY_ADD_DEVICE:
4874 	case BUS_NOTIFY_DEL_DEVICE:
4875 		add = action == BUS_NOTIFY_ADD_DEVICE;
4876 		break;
4877 	default:
4878 		return 0;
4879 	}
4880 
4881 	if (!i2c_verify_adapter(child))
4882 		return 0;
4883 
4884 	dev = child;
4885 	while ((dev = dev->parent))
4886 		if (dev->driver && !strcmp(dev->driver->name, KBUILD_MODNAME))
4887 			goto found;
4888 	return 0;
4889 
4890 found:
4891 	bp = dev_get_drvdata(dev);
4892 	if (add)
4893 		ptp_ocp_symlink(bp, child, "i2c");
4894 	else
4895 		sysfs_remove_link(&bp->dev.kobj, "i2c");
4896 
4897 	return 0;
4898 }
4899 
4900 static struct notifier_block ptp_ocp_i2c_notifier = {
4901 	.notifier_call = ptp_ocp_i2c_notifier_call,
4902 };
4903 
4904 static int __init
ptp_ocp_init(void)4905 ptp_ocp_init(void)
4906 {
4907 	const char *what;
4908 	int err;
4909 
4910 	ptp_ocp_debugfs_init();
4911 
4912 	what = "timecard class";
4913 	err = class_register(&timecard_class);
4914 	if (err)
4915 		goto out;
4916 
4917 	what = "i2c notifier";
4918 	err = bus_register_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier);
4919 	if (err)
4920 		goto out_notifier;
4921 
4922 	what = "ptp_ocp driver";
4923 	err = pci_register_driver(&ptp_ocp_driver);
4924 	if (err)
4925 		goto out_register;
4926 
4927 	return 0;
4928 
4929 out_register:
4930 	bus_unregister_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier);
4931 out_notifier:
4932 	class_unregister(&timecard_class);
4933 out:
4934 	ptp_ocp_debugfs_fini();
4935 	pr_err(KBUILD_MODNAME ": failed to register %s: %d\n", what, err);
4936 	return err;
4937 }
4938 
4939 static void __exit
ptp_ocp_fini(void)4940 ptp_ocp_fini(void)
4941 {
4942 	bus_unregister_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier);
4943 	pci_unregister_driver(&ptp_ocp_driver);
4944 	class_unregister(&timecard_class);
4945 	ptp_ocp_debugfs_fini();
4946 }
4947 
4948 module_init(ptp_ocp_init);
4949 module_exit(ptp_ocp_fini);
4950 
4951 MODULE_DESCRIPTION("OpenCompute TimeCard driver");
4952 MODULE_LICENSE("GPL v2");
4953