xref: /linux/fs/ntfs3/ntfs.h (revision a11b4fa602ed3b744aa075f34bee82c12aa3553a)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  *
4  * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
5  *
6  * on-disk ntfs structs
7  */
8 
9 // clang-format off
10 #ifndef _LINUX_NTFS3_NTFS_H
11 #define _LINUX_NTFS3_NTFS_H
12 
13 #include <linux/blkdev.h>
14 #include <linux/build_bug.h>
15 #include <linux/kernel.h>
16 #include <linux/stddef.h>
17 #include <linux/string.h>
18 #include <linux/types.h>
19 
20 #include "debug.h"
21 
22 /* TODO: Check 4K MFT record and 512 bytes cluster. */
23 
24 /* Check each run for marked clusters. */
25 #define NTFS3_CHECK_FREE_CLST
26 
27 #define NTFS_NAME_LEN 255
28 
29 /*
30  * ntfs.sys used 500 maximum links on-disk struct allows up to 0xffff.
31  * xfstest generic/041 creates 3003 hardlinks.
32  */
33 #define NTFS_LINK_MAX 4000
34 
35 /*
36  * Activate to use 64 bit clusters instead of 32 bits in ntfs.sys.
37  * Logical and virtual cluster number if needed, may be
38  * redefined to use 64 bit value.
39  */
40 //#define CONFIG_NTFS3_64BIT_CLUSTER
41 
42 #define NTFS_LZNT_MAX_CLUSTER	4096
43 #define NTFS_LZNT_CUNIT		4
44 #define NTFS_LZNT_CLUSTERS	(1u<<NTFS_LZNT_CUNIT)
45 
46 struct GUID {
47 	__le32 Data1;
48 	__le16 Data2;
49 	__le16 Data3;
50 	u8 Data4[8];
51 };
52 
53 /*
54  * This struct repeats layout of ATTR_FILE_NAME
55  * at offset 0x40.
56  * It used to store global constants NAME_MFT/NAME_MIRROR...
57  * most constant names are shorter than 10.
58  */
59 struct cpu_str {
60 	u8 len;
61 	u8 unused;
62 	u16 name[];
63 };
64 
65 struct le_str {
66 	u8 len;
67 	u8 unused;
68 	__le16 name[];
69 };
70 
71 static_assert(SECTOR_SHIFT == 9);
72 
73 #ifdef CONFIG_NTFS3_64BIT_CLUSTER
74 typedef u64 CLST;
75 static_assert(sizeof(size_t) == 8);
76 #else
77 typedef u32 CLST;
78 #endif
79 
80 #define SPARSE_LCN64   ((u64)-1)
81 #define SPARSE_LCN     ((CLST)-1)
82 #define RESIDENT_LCN   ((CLST)-2)
83 #define COMPRESSED_LCN ((CLST)-3)
84 
85 enum RECORD_NUM {
86 	MFT_REC_MFT		= 0,
87 	MFT_REC_MIRR		= 1,
88 	MFT_REC_LOG		= 2,
89 	MFT_REC_VOL		= 3,
90 	MFT_REC_ATTR		= 4,
91 	MFT_REC_ROOT		= 5,
92 	MFT_REC_BITMAP		= 6,
93 	MFT_REC_BOOT		= 7,
94 	MFT_REC_BADCLUST	= 8,
95 	MFT_REC_SECURE		= 9,
96 	MFT_REC_UPCASE		= 10,
97 	MFT_REC_EXTEND		= 11,
98 	MFT_REC_RESERVED	= 12,
99 	MFT_REC_FREE		= 16,
100 	MFT_REC_USER		= 24,
101 };
102 
103 enum ATTR_TYPE {
104 	ATTR_ZERO		= cpu_to_le32(0x00),
105 	ATTR_STD		= cpu_to_le32(0x10),
106 	ATTR_LIST		= cpu_to_le32(0x20),
107 	ATTR_NAME		= cpu_to_le32(0x30),
108 	ATTR_ID			= cpu_to_le32(0x40),
109 	ATTR_SECURE		= cpu_to_le32(0x50),
110 	ATTR_LABEL		= cpu_to_le32(0x60),
111 	ATTR_VOL_INFO		= cpu_to_le32(0x70),
112 	ATTR_DATA		= cpu_to_le32(0x80),
113 	ATTR_ROOT		= cpu_to_le32(0x90),
114 	ATTR_ALLOC		= cpu_to_le32(0xA0),
115 	ATTR_BITMAP		= cpu_to_le32(0xB0),
116 	ATTR_REPARSE		= cpu_to_le32(0xC0),
117 	ATTR_EA_INFO		= cpu_to_le32(0xD0),
118 	ATTR_EA			= cpu_to_le32(0xE0),
119 	ATTR_PROPERTYSET	= cpu_to_le32(0xF0),
120 	ATTR_LOGGED_UTILITY_STREAM = cpu_to_le32(0x100),
121 	ATTR_END		= cpu_to_le32(0xFFFFFFFF)
122 };
123 
124 static_assert(sizeof(enum ATTR_TYPE) == 4);
125 
126 enum FILE_ATTRIBUTE {
127 	FILE_ATTRIBUTE_READONLY		= cpu_to_le32(0x00000001),
128 	FILE_ATTRIBUTE_HIDDEN		= cpu_to_le32(0x00000002),
129 	FILE_ATTRIBUTE_SYSTEM		= cpu_to_le32(0x00000004),
130 	FILE_ATTRIBUTE_ARCHIVE		= cpu_to_le32(0x00000020),
131 	FILE_ATTRIBUTE_DEVICE		= cpu_to_le32(0x00000040),
132 	FILE_ATTRIBUTE_TEMPORARY	= cpu_to_le32(0x00000100),
133 	FILE_ATTRIBUTE_SPARSE_FILE	= cpu_to_le32(0x00000200),
134 	FILE_ATTRIBUTE_REPARSE_POINT	= cpu_to_le32(0x00000400),
135 	FILE_ATTRIBUTE_COMPRESSED	= cpu_to_le32(0x00000800),
136 	FILE_ATTRIBUTE_OFFLINE		= cpu_to_le32(0x00001000),
137 	FILE_ATTRIBUTE_NOT_CONTENT_INDEXED = cpu_to_le32(0x00002000),
138 	FILE_ATTRIBUTE_ENCRYPTED	= cpu_to_le32(0x00004000),
139 	FILE_ATTRIBUTE_VALID_FLAGS	= cpu_to_le32(0x00007fb7),
140 	FILE_ATTRIBUTE_DIRECTORY	= cpu_to_le32(0x10000000),
141 	FILE_ATTRIBUTE_INDEX		= cpu_to_le32(0x20000000)
142 };
143 
144 static_assert(sizeof(enum FILE_ATTRIBUTE) == 4);
145 
146 extern const struct cpu_str NAME_MFT;
147 extern const struct cpu_str NAME_MIRROR;
148 extern const struct cpu_str NAME_LOGFILE;
149 extern const struct cpu_str NAME_VOLUME;
150 extern const struct cpu_str NAME_ATTRDEF;
151 extern const struct cpu_str NAME_ROOT;
152 extern const struct cpu_str NAME_BITMAP;
153 extern const struct cpu_str NAME_BOOT;
154 extern const struct cpu_str NAME_BADCLUS;
155 extern const struct cpu_str NAME_QUOTA;
156 extern const struct cpu_str NAME_SECURE;
157 extern const struct cpu_str NAME_UPCASE;
158 extern const struct cpu_str NAME_EXTEND;
159 extern const struct cpu_str NAME_OBJID;
160 extern const struct cpu_str NAME_REPARSE;
161 extern const struct cpu_str NAME_USNJRNL;
162 
163 extern const __le16 I30_NAME[4];
164 extern const __le16 SII_NAME[4];
165 extern const __le16 SDH_NAME[4];
166 extern const __le16 SO_NAME[2];
167 extern const __le16 SQ_NAME[2];
168 extern const __le16 SR_NAME[2];
169 
170 extern const __le16 BAD_NAME[4];
171 extern const __le16 SDS_NAME[4];
172 extern const __le16 WOF_NAME[17];	/* WofCompressedData */
173 
174 /* MFT record number structure. */
175 struct MFT_REF {
176 	__le32 low;	// The low part of the number.
177 	__le16 high;	// The high part of the number.
178 	__le16 seq;	// The sequence number of MFT record.
179 };
180 
181 static_assert(sizeof(__le64) == sizeof(struct MFT_REF));
182 
ino_get(const struct MFT_REF * ref)183 static inline CLST ino_get(const struct MFT_REF *ref)
184 {
185 #ifdef CONFIG_NTFS3_64BIT_CLUSTER
186 	return le32_to_cpu(ref->low) | ((u64)le16_to_cpu(ref->high) << 32);
187 #else
188 	return le32_to_cpu(ref->low);
189 #endif
190 }
191 
192 struct NTFS_BOOT {
193 	u8 jump_code[3];	// 0x00: Jump to boot code.
194 	u8 system_id[8];	// 0x03: System ID, equals "NTFS    "
195 
196 	// NOTE: This member is not aligned(!)
197 	// bytes_per_sector[0] must be 0.
198 	// bytes_per_sector[1] must be multiplied by 256.
199 	u8 bytes_per_sector[2];	// 0x0B: Bytes per sector.
200 
201 	u8 sectors_per_clusters;// 0x0D: Sectors per cluster.
202 	u8 unused1[7];
203 	u8 media_type;		// 0x15: Media type (0xF8 - harddisk)
204 	u8 unused2[2];
205 	__le16 sct_per_track;	// 0x18: number of sectors per track.
206 	__le16 heads;		// 0x1A: number of heads per cylinder.
207 	__le32 hidden_sectors;	// 0x1C: number of 'hidden' sectors.
208 	u8 unused3[4];
209 	u8 bios_drive_num;	// 0x24: BIOS drive number =0x80.
210 	u8 unused4;
211 	u8 signature_ex;	// 0x26: Extended BOOT signature =0x80.
212 	u8 unused5;
213 	__le64 sectors_per_volume;// 0x28: Size of volume in sectors.
214 	__le64 mft_clst;	// 0x30: First cluster of $MFT
215 	__le64 mft2_clst;	// 0x38: First cluster of $MFTMirr
216 	s8 record_size;		// 0x40: Size of MFT record in clusters(sectors).
217 	u8 unused6[3];
218 	s8 index_size;		// 0x44: Size of INDX record in clusters(sectors).
219 	u8 unused7[3];
220 	__le64 serial_num;	// 0x48: Volume serial number
221 	__le32 check_sum;	// 0x50: Simple additive checksum of all
222 				// of the u32's which precede the 'check_sum'.
223 
224 	u8 boot_code[0x200 - 0x50 - 2 - 4]; // 0x54:
225 	u8 boot_magic[2];	// 0x1FE: Boot signature =0x55 + 0xAA
226 };
227 
228 static_assert(sizeof(struct NTFS_BOOT) == 0x200);
229 
230 enum NTFS_SIGNATURE {
231 	NTFS_FILE_SIGNATURE = cpu_to_le32(0x454C4946), // 'FILE'
232 	NTFS_INDX_SIGNATURE = cpu_to_le32(0x58444E49), // 'INDX'
233 	NTFS_CHKD_SIGNATURE = cpu_to_le32(0x444B4843), // 'CHKD'
234 	NTFS_RSTR_SIGNATURE = cpu_to_le32(0x52545352), // 'RSTR'
235 	NTFS_RCRD_SIGNATURE = cpu_to_le32(0x44524352), // 'RCRD'
236 	NTFS_BAAD_SIGNATURE = cpu_to_le32(0x44414142), // 'BAAD'
237 	NTFS_HOLE_SIGNATURE = cpu_to_le32(0x454C4F48), // 'HOLE'
238 	NTFS_FFFF_SIGNATURE = cpu_to_le32(0xffffffff),
239 };
240 
241 static_assert(sizeof(enum NTFS_SIGNATURE) == 4);
242 
243 /* MFT Record header structure. */
244 struct NTFS_RECORD_HEADER {
245 	/* Record magic number, equals 'FILE'/'INDX'/'RSTR'/'RCRD'. */
246 	enum NTFS_SIGNATURE sign; // 0x00:
247 	__le16 fix_off;		// 0x04:
248 	__le16 fix_num;		// 0x06:
249 	__le64 lsn;		// 0x08: Log file sequence number,
250 };
251 
252 static_assert(sizeof(struct NTFS_RECORD_HEADER) == 0x10);
253 
is_baad(const struct NTFS_RECORD_HEADER * hdr)254 static inline int is_baad(const struct NTFS_RECORD_HEADER *hdr)
255 {
256 	return hdr->sign == NTFS_BAAD_SIGNATURE;
257 }
258 
259 /* Possible bits in struct MFT_REC.flags. */
260 enum RECORD_FLAG {
261 	RECORD_FLAG_IN_USE	= cpu_to_le16(0x0001),
262 	RECORD_FLAG_DIR		= cpu_to_le16(0x0002),
263 	RECORD_FLAG_SYSTEM	= cpu_to_le16(0x0004),
264 	RECORD_FLAG_INDEX	= cpu_to_le16(0x0008),
265 };
266 
267 /* MFT Record structure. */
268 struct MFT_REC {
269 	struct NTFS_RECORD_HEADER rhdr; // 'FILE'
270 
271 	__le16 seq;		// 0x10: Sequence number for this record.
272 	__le16 hard_links;	// 0x12: The number of hard links to record.
273 	__le16 attr_off;	// 0x14: Offset to attributes.
274 	__le16 flags;		// 0x16: See RECORD_FLAG.
275 	__le32 used;		// 0x18: The size of used part.
276 	__le32 total;		// 0x1C: Total record size.
277 
278 	struct MFT_REF parent_ref; // 0x20: Parent MFT record.
279 	__le16 next_attr_id;	// 0x28: The next attribute Id.
280 
281 	__le16 res;		// 0x2A: High part of MFT record?
282 	__le32 mft_record;	// 0x2C: Current MFT record number.
283 	__le16 fixups[];	// 0x30:
284 };
285 
286 #define MFTRECORD_FIXUP_OFFSET_1 offsetof(struct MFT_REC, res)
287 #define MFTRECORD_FIXUP_OFFSET_3 offsetof(struct MFT_REC, fixups)
288 /*
289  * define MFTRECORD_FIXUP_OFFSET as MFTRECORD_FIXUP_OFFSET_3 (0x30)
290  * to format new mft records with bigger header (as current ntfs.sys does)
291  *
292  * define MFTRECORD_FIXUP_OFFSET as MFTRECORD_FIXUP_OFFSET_1 (0x2A)
293  * to format new mft records with smaller header (as old ntfs.sys did)
294  * Both variants are valid.
295  */
296 #define MFTRECORD_FIXUP_OFFSET  MFTRECORD_FIXUP_OFFSET_1
297 
298 static_assert(MFTRECORD_FIXUP_OFFSET_1 == 0x2A);
299 static_assert(MFTRECORD_FIXUP_OFFSET_3 == 0x30);
300 
is_rec_base(const struct MFT_REC * rec)301 static inline bool is_rec_base(const struct MFT_REC *rec)
302 {
303 	const struct MFT_REF *r = &rec->parent_ref;
304 
305 	return !r->low && !r->high && !r->seq;
306 }
307 
is_mft_rec5(const struct MFT_REC * rec)308 static inline bool is_mft_rec5(const struct MFT_REC *rec)
309 {
310 	return le16_to_cpu(rec->rhdr.fix_off) >=
311 	       offsetof(struct MFT_REC, fixups);
312 }
313 
is_rec_inuse(const struct MFT_REC * rec)314 static inline bool is_rec_inuse(const struct MFT_REC *rec)
315 {
316 	return rec->flags & RECORD_FLAG_IN_USE;
317 }
318 
clear_rec_inuse(struct MFT_REC * rec)319 static inline bool clear_rec_inuse(struct MFT_REC *rec)
320 {
321 	return rec->flags &= ~RECORD_FLAG_IN_USE;
322 }
323 
324 /* Possible values of ATTR_RESIDENT.flags */
325 #define RESIDENT_FLAG_INDEXED 0x01
326 
327 struct ATTR_RESIDENT {
328 	__le32 data_size;	// 0x10: The size of data.
329 	__le16 data_off;	// 0x14: Offset to data.
330 	u8 flags;		// 0x16: Resident flags ( 1 - indexed ).
331 	u8 res;			// 0x17:
332 }; // sizeof() = 0x18
333 
334 struct ATTR_NONRESIDENT {
335 	__le64 svcn;		// 0x10: Starting VCN of this segment.
336 	__le64 evcn;		// 0x18: End VCN of this segment.
337 	__le16 run_off;		// 0x20: Offset to packed runs.
338 	// Unit of Compression size for this stream, expressed
339 	// as a log of the cluster size.
340 	//
341 	// 0 means file is not compressed
342 	// 1, 2, 3, and 4 are potentially legal values if the
343 	// stream is compressed, however the implementation
344 	// may only choose to use 4, or possibly 3.
345         // Note that 4 means cluster size time 16.
346         // If convenient the implementation may wish to accept a
347 	// reasonable range of legal values here (1-5?),
348 	// even if the implementation only generates
349 	// a smaller set of values itself.
350 	u8 c_unit;		// 0x22:
351 	u8 res1[5];		// 0x23:
352 	__le64 alloc_size;	// 0x28: The allocated size of attribute in bytes.
353 				// (multiple of cluster size)
354 	__le64 data_size;	// 0x30: The size of attribute  in bytes <= alloc_size.
355 	__le64 valid_size;	// 0x38: The size of valid part in bytes <= data_size.
356 	__le64 total_size;	// 0x40: The sum of the allocated clusters for a file.
357 				// (present only for the first segment (0 == vcn)
358 				// of compressed attribute)
359 
360 }; // sizeof()=0x40 or 0x48 (if compressed)
361 
362 /* Possible values of ATTRIB.flags: */
363 #define ATTR_FLAG_COMPRESSED	  cpu_to_le16(0x0001)
364 #define ATTR_FLAG_COMPRESSED_MASK cpu_to_le16(0x00FF)
365 #define ATTR_FLAG_ENCRYPTED	  cpu_to_le16(0x4000)
366 #define ATTR_FLAG_SPARSED	  cpu_to_le16(0x8000)
367 
368 struct ATTRIB {
369 	enum ATTR_TYPE type;	// 0x00: The type of this attribute.
370 	__le32 size;		// 0x04: The size of this attribute.
371 	u8 non_res;		// 0x08: Is this attribute non-resident?
372 	u8 name_len;		// 0x09: This attribute name length.
373 	__le16 name_off;	// 0x0A: Offset to the attribute name.
374 	__le16 flags;		// 0x0C: See ATTR_FLAG_XXX.
375 	__le16 id;		// 0x0E: Unique id (per record).
376 
377 	union {
378 		struct ATTR_RESIDENT res;     // 0x10
379 		struct ATTR_NONRESIDENT nres; // 0x10
380 	};
381 };
382 
383 /* Define attribute sizes. */
384 #define SIZEOF_RESIDENT			0x18
385 #define SIZEOF_NONRESIDENT_EX		0x48
386 #define SIZEOF_NONRESIDENT		0x40
387 
388 #define SIZEOF_RESIDENT_LE		cpu_to_le16(0x18)
389 #define SIZEOF_NONRESIDENT_EX_LE	cpu_to_le16(0x48)
390 #define SIZEOF_NONRESIDENT_LE		cpu_to_le16(0x40)
391 
attr_ondisk_size(const struct ATTRIB * attr)392 static inline u64 attr_ondisk_size(const struct ATTRIB *attr)
393 {
394 	return attr->non_res ? ((attr->flags &
395 				 (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) ?
396 					le64_to_cpu(attr->nres.total_size) :
397 					le64_to_cpu(attr->nres.alloc_size))
398 			     : ALIGN(le32_to_cpu(attr->res.data_size), 8);
399 }
400 
attr_size(const struct ATTRIB * attr)401 static inline u64 attr_size(const struct ATTRIB *attr)
402 {
403 	return attr->non_res ? le64_to_cpu(attr->nres.data_size) :
404 			       le32_to_cpu(attr->res.data_size);
405 }
406 
is_attr_encrypted(const struct ATTRIB * attr)407 static inline bool is_attr_encrypted(const struct ATTRIB *attr)
408 {
409 	return attr->flags & ATTR_FLAG_ENCRYPTED;
410 }
411 
is_attr_sparsed(const struct ATTRIB * attr)412 static inline bool is_attr_sparsed(const struct ATTRIB *attr)
413 {
414 	return attr->flags & ATTR_FLAG_SPARSED;
415 }
416 
is_attr_compressed(const struct ATTRIB * attr)417 static inline bool is_attr_compressed(const struct ATTRIB *attr)
418 {
419 	return attr->flags & ATTR_FLAG_COMPRESSED;
420 }
421 
is_attr_ext(const struct ATTRIB * attr)422 static inline bool is_attr_ext(const struct ATTRIB *attr)
423 {
424 	return attr->flags & (ATTR_FLAG_SPARSED | ATTR_FLAG_COMPRESSED);
425 }
426 
is_attr_indexed(const struct ATTRIB * attr)427 static inline bool is_attr_indexed(const struct ATTRIB *attr)
428 {
429 	return !attr->non_res && (attr->res.flags & RESIDENT_FLAG_INDEXED);
430 }
431 
attr_name(const struct ATTRIB * attr)432 static inline __le16 const *attr_name(const struct ATTRIB *attr)
433 {
434 	return Add2Ptr(attr, le16_to_cpu(attr->name_off));
435 }
436 
attr_svcn(const struct ATTRIB * attr)437 static inline u64 attr_svcn(const struct ATTRIB *attr)
438 {
439 	return attr->non_res ? le64_to_cpu(attr->nres.svcn) : 0;
440 }
441 
442 static_assert(sizeof(struct ATTRIB) == 0x48);
443 static_assert(sizeof(((struct ATTRIB *)NULL)->res) == 0x08);
444 static_assert(sizeof(((struct ATTRIB *)NULL)->nres) == 0x38);
445 
resident_data_ex(const struct ATTRIB * attr,u32 datasize)446 static inline void *resident_data_ex(const struct ATTRIB *attr, u32 datasize)
447 {
448 	u32 asize, rsize;
449 	u16 off;
450 
451 	if (attr->non_res)
452 		return NULL;
453 
454 	asize = le32_to_cpu(attr->size);
455 	off = le16_to_cpu(attr->res.data_off);
456 
457 	if (asize < datasize + off)
458 		return NULL;
459 
460 	rsize = le32_to_cpu(attr->res.data_size);
461 	if (rsize < datasize)
462 		return NULL;
463 
464 	return Add2Ptr(attr, off);
465 }
466 
resident_data(const struct ATTRIB * attr)467 static inline void *resident_data(const struct ATTRIB *attr)
468 {
469 	return Add2Ptr(attr, le16_to_cpu(attr->res.data_off));
470 }
471 
attr_run(const struct ATTRIB * attr)472 static inline void *attr_run(const struct ATTRIB *attr)
473 {
474 	return Add2Ptr(attr, le16_to_cpu(attr->nres.run_off));
475 }
476 
477 /* Standard information attribute (0x10). */
478 struct ATTR_STD_INFO {
479 	__le64 cr_time;		// 0x00: File creation file.
480 	__le64 m_time;		// 0x08: File modification time.
481 	__le64 c_time;		// 0x10: Last time any attribute was modified.
482 	__le64 a_time;		// 0x18: File last access time.
483 	enum FILE_ATTRIBUTE fa;	// 0x20: Standard DOS attributes & more.
484 	__le32 max_ver_num;	// 0x24: Maximum Number of Versions.
485 	__le32 ver_num;		// 0x28: Version Number.
486 	__le32 class_id;	// 0x2C: Class Id from bidirectional Class Id index.
487 };
488 
489 static_assert(sizeof(struct ATTR_STD_INFO) == 0x30);
490 
491 #define SECURITY_ID_INVALID 0x00000000
492 #define SECURITY_ID_FIRST 0x00000100
493 
494 struct ATTR_STD_INFO5 {
495 	__le64 cr_time;		// 0x00: File creation file.
496 	__le64 m_time;		// 0x08: File modification time.
497 	__le64 c_time;		// 0x10: Last time any attribute was modified.
498 	__le64 a_time;		// 0x18: File last access time.
499 	enum FILE_ATTRIBUTE fa;	// 0x20: Standard DOS attributes & more.
500 	__le32 max_ver_num;	// 0x24: Maximum Number of Versions.
501 	__le32 ver_num;		// 0x28: Version Number.
502 	__le32 class_id;	// 0x2C: Class Id from bidirectional Class Id index.
503 
504 	__le32 owner_id;	// 0x30: Owner Id of the user owning the file.
505 	__le32 security_id;	// 0x34: The Security Id is a key in the $SII Index and $SDS.
506 	__le64 quota_charge;	// 0x38:
507 	__le64 usn;		// 0x40: Last Update Sequence Number of the file. This is a direct
508 				// index into the file $UsnJrnl. If zero, the USN Journal is
509 				// disabled.
510 };
511 
512 static_assert(sizeof(struct ATTR_STD_INFO5) == 0x48);
513 
514 /* Attribute list entry structure (0x20) */
515 struct ATTR_LIST_ENTRY {
516 	enum ATTR_TYPE type;	// 0x00: The type of attribute.
517 	__le16 size;		// 0x04: The size of this record.
518 	u8 name_len;		// 0x06: The length of attribute name.
519 	u8 name_off;		// 0x07: The offset to attribute name.
520 	__le64 vcn;		// 0x08: Starting VCN of this attribute.
521 	struct MFT_REF ref;	// 0x10: MFT record number with attribute.
522 	__le16 id;		// 0x18: struct ATTRIB ID.
523 	__le16 name[];		// 0x1A: To get real name use name_off.
524 
525 }; // sizeof(0x20)
526 
le_size(u8 name_len)527 static inline u32 le_size(u8 name_len)
528 {
529 	return ALIGN(offsetof(struct ATTR_LIST_ENTRY, name) +
530 		     name_len * sizeof(short), 8);
531 }
532 
533 /* Returns 0 if 'attr' has the same type and name. */
le_cmp(const struct ATTR_LIST_ENTRY * le,const struct ATTRIB * attr)534 static inline int le_cmp(const struct ATTR_LIST_ENTRY *le,
535 			 const struct ATTRIB *attr)
536 {
537 	return le->type != attr->type || le->name_len != attr->name_len ||
538 	       (!le->name_len &&
539 		memcmp(Add2Ptr(le, le->name_off),
540 		       Add2Ptr(attr, le16_to_cpu(attr->name_off)),
541 		       le->name_len * sizeof(short)));
542 }
543 
le_name(const struct ATTR_LIST_ENTRY * le)544 static inline __le16 const *le_name(const struct ATTR_LIST_ENTRY *le)
545 {
546 	return Add2Ptr(le, le->name_off);
547 }
548 
549 /* File name types (the field type in struct ATTR_FILE_NAME). */
550 #define FILE_NAME_POSIX   0
551 #define FILE_NAME_UNICODE 1
552 #define FILE_NAME_DOS	  2
553 #define FILE_NAME_UNICODE_AND_DOS (FILE_NAME_DOS | FILE_NAME_UNICODE)
554 
555 /* Filename attribute structure (0x30). */
556 struct NTFS_DUP_INFO {
557 	__le64 cr_time;		// 0x00: File creation file.
558 	__le64 m_time;		// 0x08: File modification time.
559 	__le64 c_time;		// 0x10: Last time any attribute was modified.
560 	__le64 a_time;		// 0x18: File last access time.
561 	__le64 alloc_size;	// 0x20: Data attribute allocated size, multiple of cluster size.
562 	__le64 data_size;	// 0x28: Data attribute size <= Dataalloc_size.
563 	enum FILE_ATTRIBUTE fa;	// 0x30: Standard DOS attributes & more.
564 	__le32 extend_data;	// 0x34: Extended data.
565 
566 }; // 0x38
567 
568 struct ATTR_FILE_NAME {
569 	struct MFT_REF home;	// 0x00: MFT record for directory.
570 	struct NTFS_DUP_INFO dup;// 0x08:
571 	u8 name_len;		// 0x40: File name length in words.
572 	u8 type;		// 0x41: File name type.
573 	__le16 name[];		// 0x42: File name.
574 };
575 
576 static_assert(sizeof(((struct ATTR_FILE_NAME *)NULL)->dup) == 0x38);
577 static_assert(offsetof(struct ATTR_FILE_NAME, name) == 0x42);
578 #define SIZEOF_ATTRIBUTE_FILENAME     0x44
579 #define SIZEOF_ATTRIBUTE_FILENAME_MAX (0x42 + 255 * 2)
580 
attr_from_name(struct ATTR_FILE_NAME * fname)581 static inline struct ATTRIB *attr_from_name(struct ATTR_FILE_NAME *fname)
582 {
583 	return (struct ATTRIB *)((char *)fname - SIZEOF_RESIDENT);
584 }
585 
fname_full_size(const struct ATTR_FILE_NAME * fname)586 static inline u16 fname_full_size(const struct ATTR_FILE_NAME *fname)
587 {
588 	/* Don't return struct_size(fname, name, fname->name_len); */
589 	return offsetof(struct ATTR_FILE_NAME, name) +
590 	       fname->name_len * sizeof(short);
591 }
592 
paired_name(u8 type)593 static inline u8 paired_name(u8 type)
594 {
595 	if (type == FILE_NAME_UNICODE)
596 		return FILE_NAME_DOS;
597 	if (type == FILE_NAME_DOS)
598 		return FILE_NAME_UNICODE;
599 	return FILE_NAME_POSIX;
600 }
601 
602 /* Index entry defines ( the field flags in NtfsDirEntry ). */
603 #define NTFS_IE_HAS_SUBNODES	cpu_to_le16(1)
604 #define NTFS_IE_LAST		cpu_to_le16(2)
605 
606 /* Directory entry structure. */
607 struct NTFS_DE {
608 	union {
609 		struct MFT_REF ref; // 0x00: MFT record number with this file.
610 		struct {
611 			__le16 data_off;  // 0x00:
612 			__le16 data_size; // 0x02:
613 			__le32 res;	  // 0x04: Must be 0.
614 		} view;
615 	};
616 	__le16 size;		// 0x08: The size of this entry.
617 	__le16 key_size;	// 0x0A: The size of File name length in bytes + 0x42.
618 	__le16 flags;		// 0x0C: Entry flags: NTFS_IE_XXX.
619 	__le16 res;		// 0x0E:
620 
621 	// Here any indexed attribute can be placed.
622 	// One of them is:
623 	// struct ATTR_FILE_NAME AttrFileName;
624 	//
625 
626 	// The last 8 bytes of this structure contains
627 	// the VBN of subnode.
628 	// !!! Note !!!
629 	// This field is presented only if (flags & NTFS_IE_HAS_SUBNODES)
630 	// __le64 vbn;
631 };
632 
633 static_assert(sizeof(struct NTFS_DE) == 0x10);
634 
de_set_vbn_le(struct NTFS_DE * e,__le64 vcn)635 static inline void de_set_vbn_le(struct NTFS_DE *e, __le64 vcn)
636 {
637 	__le64 *v = Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64));
638 
639 	*v = vcn;
640 }
641 
de_set_vbn(struct NTFS_DE * e,CLST vcn)642 static inline void de_set_vbn(struct NTFS_DE *e, CLST vcn)
643 {
644 	__le64 *v = Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64));
645 
646 	*v = cpu_to_le64(vcn);
647 }
648 
de_get_vbn_le(const struct NTFS_DE * e)649 static inline __le64 de_get_vbn_le(const struct NTFS_DE *e)
650 {
651 	return *(__le64 *)Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64));
652 }
653 
de_get_vbn(const struct NTFS_DE * e)654 static inline CLST de_get_vbn(const struct NTFS_DE *e)
655 {
656 	__le64 *v = Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64));
657 
658 	return le64_to_cpu(*v);
659 }
660 
de_get_next(const struct NTFS_DE * e)661 static inline struct NTFS_DE *de_get_next(const struct NTFS_DE *e)
662 {
663 	return Add2Ptr(e, le16_to_cpu(e->size));
664 }
665 
de_get_fname(const struct NTFS_DE * e)666 static inline struct ATTR_FILE_NAME *de_get_fname(const struct NTFS_DE *e)
667 {
668 	return le16_to_cpu(e->key_size) >= SIZEOF_ATTRIBUTE_FILENAME ?
669 		       Add2Ptr(e, sizeof(struct NTFS_DE)) :
670 		       NULL;
671 }
672 
de_is_last(const struct NTFS_DE * e)673 static inline bool de_is_last(const struct NTFS_DE *e)
674 {
675 	return e->flags & NTFS_IE_LAST;
676 }
677 
de_has_vcn(const struct NTFS_DE * e)678 static inline bool de_has_vcn(const struct NTFS_DE *e)
679 {
680 	return e->flags & NTFS_IE_HAS_SUBNODES;
681 }
682 
de_has_vcn_ex(const struct NTFS_DE * e)683 static inline bool de_has_vcn_ex(const struct NTFS_DE *e)
684 {
685 	return (e->flags & NTFS_IE_HAS_SUBNODES) &&
686 	       (u64)(-1) != *((u64 *)Add2Ptr(e, le16_to_cpu(e->size) -
687 							sizeof(__le64)));
688 }
689 
690 #define MAX_BYTES_PER_NAME_ENTRY \
691 	ALIGN(sizeof(struct NTFS_DE) + \
692 	      offsetof(struct ATTR_FILE_NAME, name) + \
693 	      NTFS_NAME_LEN * sizeof(short), 8)
694 
695 #define NTFS_INDEX_HDR_HAS_SUBNODES cpu_to_le32(1)
696 
697 struct INDEX_HDR {
698 	__le32 de_off;	// 0x00: The offset from the start of this structure
699 			// to the first NTFS_DE.
700 	__le32 used;	// 0x04: The size of this structure plus all
701 			// entries (quad-word aligned).
702 	__le32 total;	// 0x08: The allocated size of for this structure plus all entries.
703 	__le32 flags;	// 0x0C: 0x00 = Small directory, 0x01 = Large directory.
704 
705 	//
706 	// de_off + used <= total
707 	//
708 };
709 
710 static_assert(sizeof(struct INDEX_HDR) == 0x10);
711 
hdr_first_de(const struct INDEX_HDR * hdr)712 static inline struct NTFS_DE *hdr_first_de(const struct INDEX_HDR *hdr)
713 {
714 	u32 de_off = le32_to_cpu(hdr->de_off);
715 	u32 used = le32_to_cpu(hdr->used);
716 	struct NTFS_DE *e;
717 	u16 esize;
718 
719 	if (de_off >= used || size_add(de_off, sizeof(struct NTFS_DE)) > used)
720 		return NULL;
721 
722 	e = Add2Ptr(hdr, de_off);
723 	esize = le16_to_cpu(e->size);
724 	if (esize < sizeof(struct NTFS_DE) || de_off + esize > used)
725 		return NULL;
726 
727 	return e;
728 }
729 
hdr_next_de(const struct INDEX_HDR * hdr,const struct NTFS_DE * e)730 static inline struct NTFS_DE *hdr_next_de(const struct INDEX_HDR *hdr,
731 					  const struct NTFS_DE *e)
732 {
733 	size_t off = PtrOffset(hdr, e);
734 	u32 used = le32_to_cpu(hdr->used);
735 	u16 esize;
736 
737 	if (off >= used)
738 		return NULL;
739 
740 	esize = le16_to_cpu(e->size);
741 
742 	if (esize < sizeof(struct NTFS_DE) ||
743 	    off + esize + sizeof(struct NTFS_DE) > used)
744 		return NULL;
745 
746 	return Add2Ptr(e, esize);
747 }
748 
hdr_has_subnode(const struct INDEX_HDR * hdr)749 static inline bool hdr_has_subnode(const struct INDEX_HDR *hdr)
750 {
751 	return hdr->flags & NTFS_INDEX_HDR_HAS_SUBNODES;
752 }
753 
754 struct INDEX_BUFFER {
755 	struct NTFS_RECORD_HEADER rhdr; // 'INDX'
756 	__le64 vbn; // 0x10: vcn if index >= cluster or vsn id index < cluster
757 	struct INDEX_HDR ihdr; // 0x18:
758 };
759 
760 static_assert(sizeof(struct INDEX_BUFFER) == 0x28);
761 
ib_is_empty(const struct INDEX_BUFFER * ib)762 static inline bool ib_is_empty(const struct INDEX_BUFFER *ib)
763 {
764 	const struct NTFS_DE *first = hdr_first_de(&ib->ihdr);
765 
766 	return !first || de_is_last(first);
767 }
768 
ib_is_leaf(const struct INDEX_BUFFER * ib)769 static inline bool ib_is_leaf(const struct INDEX_BUFFER *ib)
770 {
771 	return !(ib->ihdr.flags & NTFS_INDEX_HDR_HAS_SUBNODES);
772 }
773 
774 /* Index root structure ( 0x90 ). */
775 enum COLLATION_RULE {
776 	NTFS_COLLATION_TYPE_BINARY	= cpu_to_le32(0),
777 	// $I30
778 	NTFS_COLLATION_TYPE_FILENAME	= cpu_to_le32(0x01),
779 	// $SII of $Secure and $Q of Quota
780 	NTFS_COLLATION_TYPE_UINT	= cpu_to_le32(0x10),
781 	// $O of Quota
782 	NTFS_COLLATION_TYPE_SID		= cpu_to_le32(0x11),
783 	// $SDH of $Secure
784 	NTFS_COLLATION_TYPE_SECURITY_HASH = cpu_to_le32(0x12),
785 	// $O of ObjId and "$R" for Reparse
786 	NTFS_COLLATION_TYPE_UINTS	= cpu_to_le32(0x13)
787 };
788 
789 static_assert(sizeof(enum COLLATION_RULE) == 4);
790 
791 //
792 struct INDEX_ROOT {
793 	enum ATTR_TYPE type;	// 0x00: The type of attribute to index on.
794 	enum COLLATION_RULE rule; // 0x04: The rule.
795 	__le32 index_block_size;// 0x08: The size of index record.
796 	u8 index_block_clst;	// 0x0C: The number of clusters or sectors per index.
797 	u8 res[3];
798 	struct INDEX_HDR ihdr;	// 0x10:
799 };
800 
801 static_assert(sizeof(struct INDEX_ROOT) == 0x20);
802 static_assert(offsetof(struct INDEX_ROOT, ihdr) == 0x10);
803 
804 #define VOLUME_FLAG_DIRTY	    cpu_to_le16(0x0001)
805 #define VOLUME_FLAG_RESIZE_LOG_FILE cpu_to_le16(0x0002)
806 
807 struct VOLUME_INFO {
808 	__le64 res1;	// 0x00
809 	u8 major_ver;	// 0x08: NTFS major version number (before .)
810 	u8 minor_ver;	// 0x09: NTFS minor version number (after .)
811 	__le16 flags;	// 0x0A: Volume flags, see VOLUME_FLAG_XXX
812 
813 }; // sizeof=0xC
814 
815 #define SIZEOF_ATTRIBUTE_VOLUME_INFO 0xc
816 
817 #define NTFS_LABEL_MAX_LENGTH		(0x100 / sizeof(short))
818 #define NTFS_ATTR_INDEXABLE		cpu_to_le32(0x00000002)
819 #define NTFS_ATTR_DUPALLOWED		cpu_to_le32(0x00000004)
820 #define NTFS_ATTR_MUST_BE_INDEXED	cpu_to_le32(0x00000010)
821 #define NTFS_ATTR_MUST_BE_NAMED		cpu_to_le32(0x00000020)
822 #define NTFS_ATTR_MUST_BE_RESIDENT	cpu_to_le32(0x00000040)
823 #define NTFS_ATTR_LOG_ALWAYS		cpu_to_le32(0x00000080)
824 
825 /* $AttrDef file entry. */
826 struct ATTR_DEF_ENTRY {
827 	__le16 name[0x40];	// 0x00: Attr name.
828 	enum ATTR_TYPE type;	// 0x80: struct ATTRIB type.
829 	__le32 res;		// 0x84:
830 	enum COLLATION_RULE rule; // 0x88:
831 	__le32 flags;		// 0x8C: NTFS_ATTR_XXX (see above).
832 	__le64 min_sz;		// 0x90: Minimum attribute data size.
833 	__le64 max_sz;		// 0x98: Maximum attribute data size.
834 };
835 
836 static_assert(sizeof(struct ATTR_DEF_ENTRY) == 0xa0);
837 
838 /* Object ID (0x40) */
839 struct OBJECT_ID {
840 	struct GUID ObjId;	// 0x00: Unique Id assigned to file.
841 
842 	// Birth Volume Id is the Object Id of the Volume on.
843 	// which the Object Id was allocated. It never changes.
844 	struct GUID BirthVolumeId; //0x10:
845 
846 	// Birth Object Id is the first Object Id that was
847 	// ever assigned to this MFT Record. I.e. If the Object Id
848 	// is changed for some reason, this field will reflect the
849 	// original value of the Object Id.
850 	struct GUID BirthObjectId; // 0x20:
851 
852 	// Domain Id is currently unused but it is intended to be
853 	// used in a network environment where the local machine is
854 	// part of a Windows 2000 Domain. This may be used in a Windows
855 	// 2000 Advanced Server managed domain.
856 	struct GUID DomainId;	// 0x30:
857 };
858 
859 static_assert(sizeof(struct OBJECT_ID) == 0x40);
860 
861 /* O Directory entry structure ( rule = 0x13 ) */
862 struct NTFS_DE_O {
863 	struct NTFS_DE de;
864 	struct GUID ObjId;	// 0x10: Unique Id assigned to file.
865 	struct MFT_REF ref;	// 0x20: MFT record number with this file.
866 
867 	// Birth Volume Id is the Object Id of the Volume on
868 	// which the Object Id was allocated. It never changes.
869 	struct GUID BirthVolumeId; // 0x28:
870 
871 	// Birth Object Id is the first Object Id that was
872 	// ever assigned to this MFT Record. I.e. If the Object Id
873 	// is changed for some reason, this field will reflect the
874 	// original value of the Object Id.
875 	// This field is valid if data_size == 0x48.
876 	struct GUID BirthObjectId; // 0x38:
877 
878 	// Domain Id is currently unused but it is intended
879 	// to be used in a network environment where the local
880 	// machine is part of a Windows 2000 Domain. This may be
881 	// used in a Windows 2000 Advanced Server managed domain.
882 	struct GUID BirthDomainId; // 0x48:
883 };
884 
885 static_assert(sizeof(struct NTFS_DE_O) == 0x58);
886 
887 /* Q Directory entry structure ( rule = 0x11 ) */
888 struct NTFS_DE_Q {
889 	struct NTFS_DE de;
890 	__le32 owner_id;	// 0x10: Unique Id assigned to file
891 
892 	/* here is 0x30 bytes of user quota. NOTE: 4 byte aligned! */
893 	__le32 Version;		// 0x14: 0x02
894 	__le32 Flags;		// 0x18: Quota flags, see above
895 	__le64 BytesUsed;	// 0x1C:
896 	__le64 ChangeTime;	// 0x24:
897 	__le64 WarningLimit;	// 0x28:
898 	__le64 HardLimit;	// 0x34:
899 	__le64 ExceededTime;	// 0x3C:
900 
901 	// SID is placed here
902 }__packed; // sizeof() = 0x44
903 
904 static_assert(sizeof(struct NTFS_DE_Q) == 0x44);
905 
906 #define SecurityDescriptorsBlockSize 0x40000 // 256K
907 #define SecurityDescriptorMaxSize    0x20000 // 128K
908 #define Log2OfSecurityDescriptorsBlockSize 18
909 
910 struct SECURITY_KEY {
911 	__le32 hash; //  Hash value for descriptor
912 	__le32 sec_id; //  Security Id (guaranteed unique)
913 };
914 
915 /* Security descriptors (the content of $Secure::SDS data stream) */
916 struct SECURITY_HDR {
917 	struct SECURITY_KEY key;	// 0x00: Security Key.
918 	__le64 off;			// 0x08: Offset of this entry in the file.
919 	__le32 size;			// 0x10: Size of this entry, 8 byte aligned.
920 	/*
921 	 * Security descriptor itself is placed here.
922 	 * Total size is 16 byte aligned.
923 	 */
924 } __packed;
925 
926 static_assert(sizeof(struct SECURITY_HDR) == 0x14);
927 
928 /* SII Directory entry structure */
929 struct NTFS_DE_SII {
930 	struct NTFS_DE de;
931 	__le32 sec_id;			// 0x10: Key: sizeof(security_id) = wKeySize
932 	struct SECURITY_HDR sec_hdr;	// 0x14:
933 } __packed;
934 
935 static_assert(offsetof(struct NTFS_DE_SII, sec_hdr) == 0x14);
936 static_assert(sizeof(struct NTFS_DE_SII) == 0x28);
937 
938 /* SDH Directory entry structure */
939 struct NTFS_DE_SDH {
940 	struct NTFS_DE de;
941 	struct SECURITY_KEY key;	// 0x10: Key
942 	struct SECURITY_HDR sec_hdr;	// 0x18: Data
943 	__le16 magic[2];		// 0x2C: 0x00490049 "I I"
944 };
945 
946 #define SIZEOF_SDH_DIRENTRY 0x30
947 
948 struct REPARSE_KEY {
949 	__le32 ReparseTag;		// 0x00: Reparse Tag
950 	struct MFT_REF ref;		// 0x04: MFT record number with this file
951 }; // sizeof() = 0x0C
952 
953 static_assert(offsetof(struct REPARSE_KEY, ref) == 0x04);
954 #define SIZEOF_REPARSE_KEY 0x0C
955 
956 /* Reparse Directory entry structure */
957 struct NTFS_DE_R {
958 	struct NTFS_DE de;
959 	struct REPARSE_KEY key;		// 0x10: Reparse Key.
960 	u32 zero;			// 0x1c:
961 }; // sizeof() = 0x20
962 
963 static_assert(sizeof(struct NTFS_DE_R) == 0x20);
964 
965 /* CompressReparseBuffer.WofVersion */
966 #define WOF_CURRENT_VERSION		cpu_to_le32(1)
967 /* CompressReparseBuffer.WofProvider */
968 #define WOF_PROVIDER_WIM		cpu_to_le32(1)
969 /* CompressReparseBuffer.WofProvider */
970 #define WOF_PROVIDER_SYSTEM		cpu_to_le32(2)
971 /* CompressReparseBuffer.ProviderVer */
972 #define WOF_PROVIDER_CURRENT_VERSION	cpu_to_le32(1)
973 
974 #define WOF_COMPRESSION_XPRESS4K	cpu_to_le32(0) // 4k
975 #define WOF_COMPRESSION_LZX32K		cpu_to_le32(1) // 32k
976 #define WOF_COMPRESSION_XPRESS8K	cpu_to_le32(2) // 8k
977 #define WOF_COMPRESSION_XPRESS16K	cpu_to_le32(3) // 16k
978 
979 /*
980  * ATTR_REPARSE (0xC0)
981  *
982  * The reparse struct GUID structure is used by all 3rd party layered drivers to
983  * store data in a reparse point. For non-Microsoft tags, The struct GUID field
984  * cannot be GUID_NULL.
985  * The constraints on reparse tags are defined below.
986  * Microsoft tags can also be used with this format of the reparse point buffer.
987  */
988 struct REPARSE_POINT {
989 	__le32 ReparseTag;	// 0x00:
990 	__le16 ReparseDataLength;// 0x04:
991 	__le16 Reserved;
992 
993 	struct GUID Guid;	// 0x08:
994 
995 	//
996 	// Here GenericReparseBuffer is placed
997 	//
998 };
999 
1000 static_assert(sizeof(struct REPARSE_POINT) == 0x18);
1001 
1002 /*
1003  * The value of the following constant needs to satisfy the following
1004  * conditions:
1005  *  (1) Be at least as large as the largest of the reserved tags.
1006  *  (2) Be strictly smaller than all the tags in use.
1007  */
1008 #define IO_REPARSE_TAG_RESERVED_RANGE		1
1009 
1010 /*
1011  * The reparse tags are a ULONG. The 32 bits are laid out as follows:
1012  *
1013  *   3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
1014  *   1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
1015  *  +-+-+-+-+-----------------------+-------------------------------+
1016  *  |M|R|N|R|	  Reserved bits     |	    Reparse Tag Value	    |
1017  *  +-+-+-+-+-----------------------+-------------------------------+
1018  *
1019  * M is the Microsoft bit. When set to 1, it denotes a tag owned by Microsoft.
1020  *   All ISVs must use a tag with a 0 in this position.
1021  *   Note: If a Microsoft tag is used by non-Microsoft software, the
1022  *   behavior is not defined.
1023  *
1024  * R is reserved.  Must be zero for non-Microsoft tags.
1025  *
1026  * N is name surrogate. When set to 1, the file represents another named
1027  *   entity in the system.
1028  *
1029  * The M and N bits are OR-able.
1030  * The following macros check for the M and N bit values:
1031  */
1032 
1033 /*
1034  * Macro to determine whether a reparse point tag corresponds to a tag
1035  * owned by Microsoft.
1036  */
1037 #define IsReparseTagMicrosoft(_tag)	(((_tag)&IO_REPARSE_TAG_MICROSOFT))
1038 
1039 /* Macro to determine whether a reparse point tag is a name surrogate. */
1040 #define IsReparseTagNameSurrogate(_tag)	(((_tag)&IO_REPARSE_TAG_NAME_SURROGATE))
1041 
1042 /*
1043  * The following constant represents the bits that are valid to use in
1044  * reparse tags.
1045  */
1046 #define IO_REPARSE_TAG_VALID_VALUES	0xF000FFFF
1047 
1048 /*
1049  * Macro to determine whether a reparse tag is a valid tag.
1050  */
1051 #define IsReparseTagValid(_tag)						       \
1052 	(!((_tag) & ~IO_REPARSE_TAG_VALID_VALUES) &&			       \
1053 	 ((_tag) > IO_REPARSE_TAG_RESERVED_RANGE))
1054 
1055 /* Microsoft tags for reparse points. */
1056 
1057 enum IO_REPARSE_TAG {
1058 	IO_REPARSE_TAG_SYMBOLIC_LINK	= cpu_to_le32(0),
1059 	IO_REPARSE_TAG_NAME_SURROGATE	= cpu_to_le32(0x20000000),
1060 	IO_REPARSE_TAG_MICROSOFT	= cpu_to_le32(0x80000000),
1061 	IO_REPARSE_TAG_MOUNT_POINT	= cpu_to_le32(0xA0000003),
1062 	IO_REPARSE_TAG_SYMLINK		= cpu_to_le32(0xA000000C),
1063 	IO_REPARSE_TAG_HSM		= cpu_to_le32(0xC0000004),
1064 	IO_REPARSE_TAG_SIS		= cpu_to_le32(0x80000007),
1065 	IO_REPARSE_TAG_DEDUP		= cpu_to_le32(0x80000013),
1066 	IO_REPARSE_TAG_COMPRESS		= cpu_to_le32(0x80000017),
1067 
1068 	/*
1069 	 * The reparse tag 0x80000008 is reserved for Microsoft internal use.
1070 	 * May be published in the future.
1071 	 */
1072 
1073 	/* Microsoft reparse tag reserved for DFS */
1074 	IO_REPARSE_TAG_DFS	= cpu_to_le32(0x8000000A),
1075 
1076 	/* Microsoft reparse tag reserved for the file system filter manager. */
1077 	IO_REPARSE_TAG_FILTER_MANAGER	= cpu_to_le32(0x8000000B),
1078 
1079 	/* Non-Microsoft tags for reparse points */
1080 
1081 	/* Tag allocated to CONGRUENT, May 2000. Used by IFSTEST. */
1082 	IO_REPARSE_TAG_IFSTEST_CONGRUENT = cpu_to_le32(0x00000009),
1083 
1084 	/* Tag allocated to ARKIVIO. */
1085 	IO_REPARSE_TAG_ARKIVIO	= cpu_to_le32(0x0000000C),
1086 
1087 	/* Tag allocated to SOLUTIONSOFT. */
1088 	IO_REPARSE_TAG_SOLUTIONSOFT	= cpu_to_le32(0x2000000D),
1089 
1090 	/* Tag allocated to COMMVAULT. */
1091 	IO_REPARSE_TAG_COMMVAULT	= cpu_to_le32(0x0000000E),
1092 
1093 	/* OneDrive?? */
1094 	IO_REPARSE_TAG_CLOUD	= cpu_to_le32(0x9000001A),
1095 	IO_REPARSE_TAG_CLOUD_1	= cpu_to_le32(0x9000101A),
1096 	IO_REPARSE_TAG_CLOUD_2	= cpu_to_le32(0x9000201A),
1097 	IO_REPARSE_TAG_CLOUD_3	= cpu_to_le32(0x9000301A),
1098 	IO_REPARSE_TAG_CLOUD_4	= cpu_to_le32(0x9000401A),
1099 	IO_REPARSE_TAG_CLOUD_5	= cpu_to_le32(0x9000501A),
1100 	IO_REPARSE_TAG_CLOUD_6	= cpu_to_le32(0x9000601A),
1101 	IO_REPARSE_TAG_CLOUD_7	= cpu_to_le32(0x9000701A),
1102 	IO_REPARSE_TAG_CLOUD_8	= cpu_to_le32(0x9000801A),
1103 	IO_REPARSE_TAG_CLOUD_9	= cpu_to_le32(0x9000901A),
1104 	IO_REPARSE_TAG_CLOUD_A	= cpu_to_le32(0x9000A01A),
1105 	IO_REPARSE_TAG_CLOUD_B	= cpu_to_le32(0x9000B01A),
1106 	IO_REPARSE_TAG_CLOUD_C	= cpu_to_le32(0x9000C01A),
1107 	IO_REPARSE_TAG_CLOUD_D	= cpu_to_le32(0x9000D01A),
1108 	IO_REPARSE_TAG_CLOUD_E	= cpu_to_le32(0x9000E01A),
1109 	IO_REPARSE_TAG_CLOUD_F	= cpu_to_le32(0x9000F01A),
1110 
1111 };
1112 
1113 #define SYMLINK_FLAG_RELATIVE		1
1114 
1115 /* Microsoft reparse buffer. (see DDK for details) */
1116 struct REPARSE_DATA_BUFFER {
1117 	__le32 ReparseTag;		// 0x00:
1118 	__le16 ReparseDataLength;	// 0x04:
1119 	__le16 Reserved;
1120 
1121 	union {
1122 		/* If ReparseTag == 0xA0000003 (IO_REPARSE_TAG_MOUNT_POINT) */
1123 		struct {
1124 			__le16 SubstituteNameOffset; // 0x08
1125 			__le16 SubstituteNameLength; // 0x0A
1126 			__le16 PrintNameOffset;      // 0x0C
1127 			__le16 PrintNameLength;      // 0x0E
1128 			__le16 PathBuffer[];	     // 0x10
1129 		} MountPointReparseBuffer;
1130 
1131 		/*
1132 		 * If ReparseTag == 0xA000000C (IO_REPARSE_TAG_SYMLINK)
1133 		 * https://msdn.microsoft.com/en-us/library/cc232006.aspx
1134 		 */
1135 		struct {
1136 			__le16 SubstituteNameOffset; // 0x08
1137 			__le16 SubstituteNameLength; // 0x0A
1138 			__le16 PrintNameOffset;      // 0x0C
1139 			__le16 PrintNameLength;      // 0x0E
1140 			// 0-absolute path 1- relative path, SYMLINK_FLAG_RELATIVE
1141 			__le32 Flags;		     // 0x10
1142 			__le16 PathBuffer[];	     // 0x14
1143 		} SymbolicLinkReparseBuffer;
1144 
1145 		/* If ReparseTag == 0x80000017U */
1146 		struct {
1147 			__le32 WofVersion;  // 0x08 == 1
1148 			/*
1149 			 * 1 - WIM backing provider ("WIMBoot"),
1150 			 * 2 - System compressed file provider
1151 			 */
1152 			__le32 WofProvider; // 0x0C:
1153 			__le32 ProviderVer; // 0x10: == 1 WOF_FILE_PROVIDER_CURRENT_VERSION == 1
1154 			__le32 CompressionFormat; // 0x14: 0, 1, 2, 3. See WOF_COMPRESSION_XXX
1155 		} CompressReparseBuffer;
1156 
1157 		struct {
1158 			u8 DataBuffer[1];   // 0x08:
1159 		} GenericReparseBuffer;
1160 	};
1161 };
1162 
1163 /* ATTR_EA_INFO (0xD0) */
1164 
1165 #define FILE_NEED_EA 0x80 // See ntifs.h
1166 /*
1167  * FILE_NEED_EA, indicates that the file to which the EA belongs cannot be
1168  * interpreted without understanding the associated extended attributes.
1169  */
1170 struct EA_INFO {
1171 	__le16 size_pack;	// 0x00: Size of buffer to hold in packed form.
1172 	__le16 count;		// 0x02: Count of EA's with FILE_NEED_EA bit set.
1173 	__le32 size;		// 0x04: Size of buffer to hold in unpacked form.
1174 };
1175 
1176 static_assert(sizeof(struct EA_INFO) == 8);
1177 
1178 /* ATTR_EA (0xE0) */
1179 struct EA_FULL {
1180 	__le32 size;		// 0x00: (not in packed)
1181 	u8 flags;		// 0x04:
1182 	u8 name_len;		// 0x05:
1183 	__le16 elength;		// 0x06:
1184 	u8 name[];		// 0x08:
1185 };
1186 
1187 static_assert(offsetof(struct EA_FULL, name) == 8);
1188 
1189 #define ACL_REVISION	2
1190 #define ACL_REVISION_DS 4
1191 
1192 #define SE_SELF_RELATIVE cpu_to_le16(0x8000)
1193 
1194 struct SECURITY_DESCRIPTOR_RELATIVE {
1195 	u8 Revision;
1196 	u8 Sbz1;
1197 	__le16 Control;
1198 	__le32 Owner;
1199 	__le32 Group;
1200 	__le32 Sacl;
1201 	__le32 Dacl;
1202 };
1203 static_assert(sizeof(struct SECURITY_DESCRIPTOR_RELATIVE) == 0x14);
1204 
1205 struct ACE_HEADER {
1206 	u8 AceType;
1207 	u8 AceFlags;
1208 	__le16 AceSize;
1209 };
1210 static_assert(sizeof(struct ACE_HEADER) == 4);
1211 
1212 struct ACL {
1213 	u8 AclRevision;
1214 	u8 Sbz1;
1215 	__le16 AclSize;
1216 	__le16 AceCount;
1217 	__le16 Sbz2;
1218 };
1219 static_assert(sizeof(struct ACL) == 8);
1220 
1221 struct SID {
1222 	u8 Revision;
1223 	u8 SubAuthorityCount;
1224 	u8 IdentifierAuthority[6];
1225 	__le32 SubAuthority[];
1226 };
1227 static_assert(offsetof(struct SID, SubAuthority) == 8);
1228 
1229 #endif /* _LINUX_NTFS3_NTFS_H */
1230 // clang-format on
1231