1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMZONE_H
3 #define _LINUX_MMZONE_H
4
5 #ifndef __ASSEMBLY__
6 #ifndef __GENERATING_BOUNDS_H
7
8 #include <linux/spinlock.h>
9 #include <linux/list.h>
10 #include <linux/list_nulls.h>
11 #include <linux/wait.h>
12 #include <linux/bitops.h>
13 #include <linux/cache.h>
14 #include <linux/threads.h>
15 #include <linux/numa.h>
16 #include <linux/init.h>
17 #include <linux/seqlock.h>
18 #include <linux/nodemask.h>
19 #include <linux/pageblock-flags.h>
20 #include <linux/page-flags-layout.h>
21 #include <linux/atomic.h>
22 #include <linux/mm_types.h>
23 #include <linux/page-flags.h>
24 #include <linux/local_lock.h>
25 #include <linux/zswap.h>
26 #include <asm/page.h>
27
28 /* Free memory management - zoned buddy allocator. */
29 #ifndef CONFIG_ARCH_FORCE_MAX_ORDER
30 #define MAX_PAGE_ORDER 10
31 #else
32 #define MAX_PAGE_ORDER CONFIG_ARCH_FORCE_MAX_ORDER
33 #endif
34 #define MAX_ORDER_NR_PAGES (1 << MAX_PAGE_ORDER)
35
36 #define IS_MAX_ORDER_ALIGNED(pfn) IS_ALIGNED(pfn, MAX_ORDER_NR_PAGES)
37
38 #define NR_PAGE_ORDERS (MAX_PAGE_ORDER + 1)
39
40 /* Defines the order for the number of pages that have a migrate type. */
41 #ifndef CONFIG_PAGE_BLOCK_ORDER
42 #define PAGE_BLOCK_ORDER MAX_PAGE_ORDER
43 #else
44 #define PAGE_BLOCK_ORDER CONFIG_PAGE_BLOCK_ORDER
45 #endif /* CONFIG_PAGE_BLOCK_ORDER */
46
47 /*
48 * The MAX_PAGE_ORDER, which defines the max order of pages to be allocated
49 * by the buddy allocator, has to be larger or equal to the PAGE_BLOCK_ORDER,
50 * which defines the order for the number of pages that can have a migrate type
51 */
52 #if (PAGE_BLOCK_ORDER > MAX_PAGE_ORDER)
53 #error MAX_PAGE_ORDER must be >= PAGE_BLOCK_ORDER
54 #endif
55
56 /*
57 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
58 * costly to service. That is between allocation orders which should
59 * coalesce naturally under reasonable reclaim pressure and those which
60 * will not.
61 */
62 #define PAGE_ALLOC_COSTLY_ORDER 3
63
64 enum migratetype {
65 MIGRATE_UNMOVABLE,
66 MIGRATE_MOVABLE,
67 MIGRATE_RECLAIMABLE,
68 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
69 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
70 #ifdef CONFIG_CMA
71 /*
72 * MIGRATE_CMA migration type is designed to mimic the way
73 * ZONE_MOVABLE works. Only movable pages can be allocated
74 * from MIGRATE_CMA pageblocks and page allocator never
75 * implicitly change migration type of MIGRATE_CMA pageblock.
76 *
77 * The way to use it is to change migratetype of a range of
78 * pageblocks to MIGRATE_CMA which can be done by
79 * __free_pageblock_cma() function.
80 */
81 MIGRATE_CMA,
82 #endif
83 #ifdef CONFIG_MEMORY_ISOLATION
84 MIGRATE_ISOLATE, /* can't allocate from here */
85 #endif
86 MIGRATE_TYPES
87 };
88
89 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
90 extern const char * const migratetype_names[MIGRATE_TYPES];
91
92 #ifdef CONFIG_CMA
93 # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
94 # define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
95 # define is_migrate_cma_folio(folio, pfn) (MIGRATE_CMA == \
96 get_pfnblock_flags_mask(&folio->page, pfn, MIGRATETYPE_MASK))
97 #else
98 # define is_migrate_cma(migratetype) false
99 # define is_migrate_cma_page(_page) false
100 # define is_migrate_cma_folio(folio, pfn) false
101 #endif
102
is_migrate_movable(int mt)103 static inline bool is_migrate_movable(int mt)
104 {
105 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
106 }
107
108 /*
109 * Check whether a migratetype can be merged with another migratetype.
110 *
111 * It is only mergeable when it can fall back to other migratetypes for
112 * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c.
113 */
migratetype_is_mergeable(int mt)114 static inline bool migratetype_is_mergeable(int mt)
115 {
116 return mt < MIGRATE_PCPTYPES;
117 }
118
119 #define for_each_migratetype_order(order, type) \
120 for (order = 0; order < NR_PAGE_ORDERS; order++) \
121 for (type = 0; type < MIGRATE_TYPES; type++)
122
123 extern int page_group_by_mobility_disabled;
124
125 #define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1)
126
127 #define get_pageblock_migratetype(page) \
128 get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK)
129
130 #define folio_migratetype(folio) \
131 get_pfnblock_flags_mask(&folio->page, folio_pfn(folio), \
132 MIGRATETYPE_MASK)
133 struct free_area {
134 struct list_head free_list[MIGRATE_TYPES];
135 unsigned long nr_free;
136 };
137
138 struct pglist_data;
139
140 #ifdef CONFIG_NUMA
141 enum numa_stat_item {
142 NUMA_HIT, /* allocated in intended node */
143 NUMA_MISS, /* allocated in non intended node */
144 NUMA_FOREIGN, /* was intended here, hit elsewhere */
145 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
146 NUMA_LOCAL, /* allocation from local node */
147 NUMA_OTHER, /* allocation from other node */
148 NR_VM_NUMA_EVENT_ITEMS
149 };
150 #else
151 #define NR_VM_NUMA_EVENT_ITEMS 0
152 #endif
153
154 enum zone_stat_item {
155 /* First 128 byte cacheline (assuming 64 bit words) */
156 NR_FREE_PAGES,
157 NR_FREE_PAGES_BLOCKS,
158 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
159 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
160 NR_ZONE_ACTIVE_ANON,
161 NR_ZONE_INACTIVE_FILE,
162 NR_ZONE_ACTIVE_FILE,
163 NR_ZONE_UNEVICTABLE,
164 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */
165 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
166 /* Second 128 byte cacheline */
167 #if IS_ENABLED(CONFIG_ZSMALLOC)
168 NR_ZSPAGES, /* allocated in zsmalloc */
169 #endif
170 NR_FREE_CMA_PAGES,
171 #ifdef CONFIG_UNACCEPTED_MEMORY
172 NR_UNACCEPTED,
173 #endif
174 NR_VM_ZONE_STAT_ITEMS };
175
176 enum node_stat_item {
177 NR_LRU_BASE,
178 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
179 NR_ACTIVE_ANON, /* " " " " " */
180 NR_INACTIVE_FILE, /* " " " " " */
181 NR_ACTIVE_FILE, /* " " " " " */
182 NR_UNEVICTABLE, /* " " " " " */
183 NR_SLAB_RECLAIMABLE_B,
184 NR_SLAB_UNRECLAIMABLE_B,
185 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
186 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
187 WORKINGSET_NODES,
188 WORKINGSET_REFAULT_BASE,
189 WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
190 WORKINGSET_REFAULT_FILE,
191 WORKINGSET_ACTIVATE_BASE,
192 WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
193 WORKINGSET_ACTIVATE_FILE,
194 WORKINGSET_RESTORE_BASE,
195 WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
196 WORKINGSET_RESTORE_FILE,
197 WORKINGSET_NODERECLAIM,
198 NR_ANON_MAPPED, /* Mapped anonymous pages */
199 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
200 only modified from process context */
201 NR_FILE_PAGES,
202 NR_FILE_DIRTY,
203 NR_WRITEBACK,
204 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
205 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
206 NR_SHMEM_THPS,
207 NR_SHMEM_PMDMAPPED,
208 NR_FILE_THPS,
209 NR_FILE_PMDMAPPED,
210 NR_ANON_THPS,
211 NR_VMSCAN_WRITE,
212 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
213 NR_DIRTIED, /* page dirtyings since bootup */
214 NR_WRITTEN, /* page writings since bootup */
215 NR_THROTTLED_WRITTEN, /* NR_WRITTEN while reclaim throttled */
216 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */
217 NR_FOLL_PIN_ACQUIRED, /* via: pin_user_page(), gup flag: FOLL_PIN */
218 NR_FOLL_PIN_RELEASED, /* pages returned via unpin_user_page() */
219 NR_KERNEL_STACK_KB, /* measured in KiB */
220 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
221 NR_KERNEL_SCS_KB, /* measured in KiB */
222 #endif
223 NR_PAGETABLE, /* used for pagetables */
224 NR_SECONDARY_PAGETABLE, /* secondary pagetables, KVM & IOMMU */
225 #ifdef CONFIG_IOMMU_SUPPORT
226 NR_IOMMU_PAGES, /* # of pages allocated by IOMMU */
227 #endif
228 #ifdef CONFIG_SWAP
229 NR_SWAPCACHE,
230 #endif
231 #ifdef CONFIG_NUMA_BALANCING
232 PGPROMOTE_SUCCESS, /* promote successfully */
233 PGPROMOTE_CANDIDATE, /* candidate pages to promote */
234 #endif
235 /* PGDEMOTE_*: pages demoted */
236 PGDEMOTE_KSWAPD,
237 PGDEMOTE_DIRECT,
238 PGDEMOTE_KHUGEPAGED,
239 PGDEMOTE_PROACTIVE,
240 #ifdef CONFIG_HUGETLB_PAGE
241 NR_HUGETLB,
242 #endif
243 NR_BALLOON_PAGES,
244 NR_VM_NODE_STAT_ITEMS
245 };
246
247 /*
248 * Returns true if the item should be printed in THPs (/proc/vmstat
249 * currently prints number of anon, file and shmem THPs. But the item
250 * is charged in pages).
251 */
vmstat_item_print_in_thp(enum node_stat_item item)252 static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item)
253 {
254 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
255 return false;
256
257 return item == NR_ANON_THPS ||
258 item == NR_FILE_THPS ||
259 item == NR_SHMEM_THPS ||
260 item == NR_SHMEM_PMDMAPPED ||
261 item == NR_FILE_PMDMAPPED;
262 }
263
264 /*
265 * Returns true if the value is measured in bytes (most vmstat values are
266 * measured in pages). This defines the API part, the internal representation
267 * might be different.
268 */
vmstat_item_in_bytes(int idx)269 static __always_inline bool vmstat_item_in_bytes(int idx)
270 {
271 /*
272 * Global and per-node slab counters track slab pages.
273 * It's expected that changes are multiples of PAGE_SIZE.
274 * Internally values are stored in pages.
275 *
276 * Per-memcg and per-lruvec counters track memory, consumed
277 * by individual slab objects. These counters are actually
278 * byte-precise.
279 */
280 return (idx == NR_SLAB_RECLAIMABLE_B ||
281 idx == NR_SLAB_UNRECLAIMABLE_B);
282 }
283
284 /*
285 * We do arithmetic on the LRU lists in various places in the code,
286 * so it is important to keep the active lists LRU_ACTIVE higher in
287 * the array than the corresponding inactive lists, and to keep
288 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
289 *
290 * This has to be kept in sync with the statistics in zone_stat_item
291 * above and the descriptions in vmstat_text in mm/vmstat.c
292 */
293 #define LRU_BASE 0
294 #define LRU_ACTIVE 1
295 #define LRU_FILE 2
296
297 enum lru_list {
298 LRU_INACTIVE_ANON = LRU_BASE,
299 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
300 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
301 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
302 LRU_UNEVICTABLE,
303 NR_LRU_LISTS
304 };
305
306 enum vmscan_throttle_state {
307 VMSCAN_THROTTLE_WRITEBACK,
308 VMSCAN_THROTTLE_ISOLATED,
309 VMSCAN_THROTTLE_NOPROGRESS,
310 VMSCAN_THROTTLE_CONGESTED,
311 NR_VMSCAN_THROTTLE,
312 };
313
314 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
315
316 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
317
is_file_lru(enum lru_list lru)318 static inline bool is_file_lru(enum lru_list lru)
319 {
320 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
321 }
322
is_active_lru(enum lru_list lru)323 static inline bool is_active_lru(enum lru_list lru)
324 {
325 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
326 }
327
328 #define WORKINGSET_ANON 0
329 #define WORKINGSET_FILE 1
330 #define ANON_AND_FILE 2
331
332 enum lruvec_flags {
333 /*
334 * An lruvec has many dirty pages backed by a congested BDI:
335 * 1. LRUVEC_CGROUP_CONGESTED is set by cgroup-level reclaim.
336 * It can be cleared by cgroup reclaim or kswapd.
337 * 2. LRUVEC_NODE_CONGESTED is set by kswapd node-level reclaim.
338 * It can only be cleared by kswapd.
339 *
340 * Essentially, kswapd can unthrottle an lruvec throttled by cgroup
341 * reclaim, but not vice versa. This only applies to the root cgroup.
342 * The goal is to prevent cgroup reclaim on the root cgroup (e.g.
343 * memory.reclaim) to unthrottle an unbalanced node (that was throttled
344 * by kswapd).
345 */
346 LRUVEC_CGROUP_CONGESTED,
347 LRUVEC_NODE_CONGESTED,
348 };
349
350 #endif /* !__GENERATING_BOUNDS_H */
351
352 /*
353 * Evictable folios are divided into multiple generations. The youngest and the
354 * oldest generation numbers, max_seq and min_seq, are monotonically increasing.
355 * They form a sliding window of a variable size [MIN_NR_GENS, MAX_NR_GENS]. An
356 * offset within MAX_NR_GENS, i.e., gen, indexes the LRU list of the
357 * corresponding generation. The gen counter in folio->flags stores gen+1 while
358 * a folio is on one of lrugen->folios[]. Otherwise it stores 0.
359 *
360 * After a folio is faulted in, the aging needs to check the accessed bit at
361 * least twice before handing this folio over to the eviction. The first check
362 * clears the accessed bit from the initial fault; the second check makes sure
363 * this folio hasn't been used since then. This process, AKA second chance,
364 * requires a minimum of two generations, hence MIN_NR_GENS. And to maintain ABI
365 * compatibility with the active/inactive LRU, e.g., /proc/vmstat, these two
366 * generations are considered active; the rest of generations, if they exist,
367 * are considered inactive. See lru_gen_is_active().
368 *
369 * PG_active is always cleared while a folio is on one of lrugen->folios[] so
370 * that the sliding window needs not to worry about it. And it's set again when
371 * a folio considered active is isolated for non-reclaiming purposes, e.g.,
372 * migration. See lru_gen_add_folio() and lru_gen_del_folio().
373 *
374 * MAX_NR_GENS is set to 4 so that the multi-gen LRU can support twice the
375 * number of categories of the active/inactive LRU when keeping track of
376 * accesses through page tables. This requires order_base_2(MAX_NR_GENS+1) bits
377 * in folio->flags, masked by LRU_GEN_MASK.
378 */
379 #define MIN_NR_GENS 2U
380 #define MAX_NR_GENS 4U
381
382 /*
383 * Each generation is divided into multiple tiers. A folio accessed N times
384 * through file descriptors is in tier order_base_2(N). A folio in the first
385 * tier (N=0,1) is marked by PG_referenced unless it was faulted in through page
386 * tables or read ahead. A folio in the last tier (MAX_NR_TIERS-1) is marked by
387 * PG_workingset. A folio in any other tier (1<N<5) between the first and last
388 * is marked by additional bits of LRU_REFS_WIDTH in folio->flags.
389 *
390 * In contrast to moving across generations which requires the LRU lock, moving
391 * across tiers only involves atomic operations on folio->flags and therefore
392 * has a negligible cost in the buffered access path. In the eviction path,
393 * comparisons of refaulted/(evicted+protected) from the first tier and the rest
394 * infer whether folios accessed multiple times through file descriptors are
395 * statistically hot and thus worth protecting.
396 *
397 * MAX_NR_TIERS is set to 4 so that the multi-gen LRU can support twice the
398 * number of categories of the active/inactive LRU when keeping track of
399 * accesses through file descriptors. This uses MAX_NR_TIERS-2 spare bits in
400 * folio->flags, masked by LRU_REFS_MASK.
401 */
402 #define MAX_NR_TIERS 4U
403
404 #ifndef __GENERATING_BOUNDS_H
405
406 #define LRU_GEN_MASK ((BIT(LRU_GEN_WIDTH) - 1) << LRU_GEN_PGOFF)
407 #define LRU_REFS_MASK ((BIT(LRU_REFS_WIDTH) - 1) << LRU_REFS_PGOFF)
408
409 /*
410 * For folios accessed multiple times through file descriptors,
411 * lru_gen_inc_refs() sets additional bits of LRU_REFS_WIDTH in folio->flags
412 * after PG_referenced, then PG_workingset after LRU_REFS_WIDTH. After all its
413 * bits are set, i.e., LRU_REFS_FLAGS|BIT(PG_workingset), a folio is lazily
414 * promoted into the second oldest generation in the eviction path. And when
415 * folio_inc_gen() does that, it clears LRU_REFS_FLAGS so that
416 * lru_gen_inc_refs() can start over. Note that for this case, LRU_REFS_MASK is
417 * only valid when PG_referenced is set.
418 *
419 * For folios accessed multiple times through page tables, folio_update_gen()
420 * from a page table walk or lru_gen_set_refs() from a rmap walk sets
421 * PG_referenced after the accessed bit is cleared for the first time.
422 * Thereafter, those two paths set PG_workingset and promote folios to the
423 * youngest generation. Like folio_inc_gen(), folio_update_gen() also clears
424 * PG_referenced. Note that for this case, LRU_REFS_MASK is not used.
425 *
426 * For both cases above, after PG_workingset is set on a folio, it remains until
427 * this folio is either reclaimed, or "deactivated" by lru_gen_clear_refs(). It
428 * can be set again if lru_gen_test_recent() returns true upon a refault.
429 */
430 #define LRU_REFS_FLAGS (LRU_REFS_MASK | BIT(PG_referenced))
431
432 struct lruvec;
433 struct page_vma_mapped_walk;
434
435 #ifdef CONFIG_LRU_GEN
436
437 enum {
438 LRU_GEN_ANON,
439 LRU_GEN_FILE,
440 };
441
442 enum {
443 LRU_GEN_CORE,
444 LRU_GEN_MM_WALK,
445 LRU_GEN_NONLEAF_YOUNG,
446 NR_LRU_GEN_CAPS
447 };
448
449 #define MIN_LRU_BATCH BITS_PER_LONG
450 #define MAX_LRU_BATCH (MIN_LRU_BATCH * 64)
451
452 /* whether to keep historical stats from evicted generations */
453 #ifdef CONFIG_LRU_GEN_STATS
454 #define NR_HIST_GENS MAX_NR_GENS
455 #else
456 #define NR_HIST_GENS 1U
457 #endif
458
459 /*
460 * The youngest generation number is stored in max_seq for both anon and file
461 * types as they are aged on an equal footing. The oldest generation numbers are
462 * stored in min_seq[] separately for anon and file types so that they can be
463 * incremented independently. Ideally min_seq[] are kept in sync when both anon
464 * and file types are evictable. However, to adapt to situations like extreme
465 * swappiness, they are allowed to be out of sync by at most
466 * MAX_NR_GENS-MIN_NR_GENS-1.
467 *
468 * The number of pages in each generation is eventually consistent and therefore
469 * can be transiently negative when reset_batch_size() is pending.
470 */
471 struct lru_gen_folio {
472 /* the aging increments the youngest generation number */
473 unsigned long max_seq;
474 /* the eviction increments the oldest generation numbers */
475 unsigned long min_seq[ANON_AND_FILE];
476 /* the birth time of each generation in jiffies */
477 unsigned long timestamps[MAX_NR_GENS];
478 /* the multi-gen LRU lists, lazily sorted on eviction */
479 struct list_head folios[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
480 /* the multi-gen LRU sizes, eventually consistent */
481 long nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
482 /* the exponential moving average of refaulted */
483 unsigned long avg_refaulted[ANON_AND_FILE][MAX_NR_TIERS];
484 /* the exponential moving average of evicted+protected */
485 unsigned long avg_total[ANON_AND_FILE][MAX_NR_TIERS];
486 /* can only be modified under the LRU lock */
487 unsigned long protected[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
488 /* can be modified without holding the LRU lock */
489 atomic_long_t evicted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
490 atomic_long_t refaulted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
491 /* whether the multi-gen LRU is enabled */
492 bool enabled;
493 /* the memcg generation this lru_gen_folio belongs to */
494 u8 gen;
495 /* the list segment this lru_gen_folio belongs to */
496 u8 seg;
497 /* per-node lru_gen_folio list for global reclaim */
498 struct hlist_nulls_node list;
499 };
500
501 enum {
502 MM_LEAF_TOTAL, /* total leaf entries */
503 MM_LEAF_YOUNG, /* young leaf entries */
504 MM_NONLEAF_FOUND, /* non-leaf entries found in Bloom filters */
505 MM_NONLEAF_ADDED, /* non-leaf entries added to Bloom filters */
506 NR_MM_STATS
507 };
508
509 /* double-buffering Bloom filters */
510 #define NR_BLOOM_FILTERS 2
511
512 struct lru_gen_mm_state {
513 /* synced with max_seq after each iteration */
514 unsigned long seq;
515 /* where the current iteration continues after */
516 struct list_head *head;
517 /* where the last iteration ended before */
518 struct list_head *tail;
519 /* Bloom filters flip after each iteration */
520 unsigned long *filters[NR_BLOOM_FILTERS];
521 /* the mm stats for debugging */
522 unsigned long stats[NR_HIST_GENS][NR_MM_STATS];
523 };
524
525 struct lru_gen_mm_walk {
526 /* the lruvec under reclaim */
527 struct lruvec *lruvec;
528 /* max_seq from lru_gen_folio: can be out of date */
529 unsigned long seq;
530 /* the next address within an mm to scan */
531 unsigned long next_addr;
532 /* to batch promoted pages */
533 int nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
534 /* to batch the mm stats */
535 int mm_stats[NR_MM_STATS];
536 /* total batched items */
537 int batched;
538 int swappiness;
539 bool force_scan;
540 };
541
542 /*
543 * For each node, memcgs are divided into two generations: the old and the
544 * young. For each generation, memcgs are randomly sharded into multiple bins
545 * to improve scalability. For each bin, the hlist_nulls is virtually divided
546 * into three segments: the head, the tail and the default.
547 *
548 * An onlining memcg is added to the tail of a random bin in the old generation.
549 * The eviction starts at the head of a random bin in the old generation. The
550 * per-node memcg generation counter, whose reminder (mod MEMCG_NR_GENS) indexes
551 * the old generation, is incremented when all its bins become empty.
552 *
553 * There are four operations:
554 * 1. MEMCG_LRU_HEAD, which moves a memcg to the head of a random bin in its
555 * current generation (old or young) and updates its "seg" to "head";
556 * 2. MEMCG_LRU_TAIL, which moves a memcg to the tail of a random bin in its
557 * current generation (old or young) and updates its "seg" to "tail";
558 * 3. MEMCG_LRU_OLD, which moves a memcg to the head of a random bin in the old
559 * generation, updates its "gen" to "old" and resets its "seg" to "default";
560 * 4. MEMCG_LRU_YOUNG, which moves a memcg to the tail of a random bin in the
561 * young generation, updates its "gen" to "young" and resets its "seg" to
562 * "default".
563 *
564 * The events that trigger the above operations are:
565 * 1. Exceeding the soft limit, which triggers MEMCG_LRU_HEAD;
566 * 2. The first attempt to reclaim a memcg below low, which triggers
567 * MEMCG_LRU_TAIL;
568 * 3. The first attempt to reclaim a memcg offlined or below reclaimable size
569 * threshold, which triggers MEMCG_LRU_TAIL;
570 * 4. The second attempt to reclaim a memcg offlined or below reclaimable size
571 * threshold, which triggers MEMCG_LRU_YOUNG;
572 * 5. Attempting to reclaim a memcg below min, which triggers MEMCG_LRU_YOUNG;
573 * 6. Finishing the aging on the eviction path, which triggers MEMCG_LRU_YOUNG;
574 * 7. Offlining a memcg, which triggers MEMCG_LRU_OLD.
575 *
576 * Notes:
577 * 1. Memcg LRU only applies to global reclaim, and the round-robin incrementing
578 * of their max_seq counters ensures the eventual fairness to all eligible
579 * memcgs. For memcg reclaim, it still relies on mem_cgroup_iter().
580 * 2. There are only two valid generations: old (seq) and young (seq+1).
581 * MEMCG_NR_GENS is set to three so that when reading the generation counter
582 * locklessly, a stale value (seq-1) does not wraparound to young.
583 */
584 #define MEMCG_NR_GENS 3
585 #define MEMCG_NR_BINS 8
586
587 struct lru_gen_memcg {
588 /* the per-node memcg generation counter */
589 unsigned long seq;
590 /* each memcg has one lru_gen_folio per node */
591 unsigned long nr_memcgs[MEMCG_NR_GENS];
592 /* per-node lru_gen_folio list for global reclaim */
593 struct hlist_nulls_head fifo[MEMCG_NR_GENS][MEMCG_NR_BINS];
594 /* protects the above */
595 spinlock_t lock;
596 };
597
598 void lru_gen_init_pgdat(struct pglist_data *pgdat);
599 void lru_gen_init_lruvec(struct lruvec *lruvec);
600 bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw);
601
602 void lru_gen_init_memcg(struct mem_cgroup *memcg);
603 void lru_gen_exit_memcg(struct mem_cgroup *memcg);
604 void lru_gen_online_memcg(struct mem_cgroup *memcg);
605 void lru_gen_offline_memcg(struct mem_cgroup *memcg);
606 void lru_gen_release_memcg(struct mem_cgroup *memcg);
607 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid);
608
609 #else /* !CONFIG_LRU_GEN */
610
lru_gen_init_pgdat(struct pglist_data * pgdat)611 static inline void lru_gen_init_pgdat(struct pglist_data *pgdat)
612 {
613 }
614
lru_gen_init_lruvec(struct lruvec * lruvec)615 static inline void lru_gen_init_lruvec(struct lruvec *lruvec)
616 {
617 }
618
lru_gen_look_around(struct page_vma_mapped_walk * pvmw)619 static inline bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
620 {
621 return false;
622 }
623
lru_gen_init_memcg(struct mem_cgroup * memcg)624 static inline void lru_gen_init_memcg(struct mem_cgroup *memcg)
625 {
626 }
627
lru_gen_exit_memcg(struct mem_cgroup * memcg)628 static inline void lru_gen_exit_memcg(struct mem_cgroup *memcg)
629 {
630 }
631
lru_gen_online_memcg(struct mem_cgroup * memcg)632 static inline void lru_gen_online_memcg(struct mem_cgroup *memcg)
633 {
634 }
635
lru_gen_offline_memcg(struct mem_cgroup * memcg)636 static inline void lru_gen_offline_memcg(struct mem_cgroup *memcg)
637 {
638 }
639
lru_gen_release_memcg(struct mem_cgroup * memcg)640 static inline void lru_gen_release_memcg(struct mem_cgroup *memcg)
641 {
642 }
643
lru_gen_soft_reclaim(struct mem_cgroup * memcg,int nid)644 static inline void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
645 {
646 }
647
648 #endif /* CONFIG_LRU_GEN */
649
650 struct lruvec {
651 struct list_head lists[NR_LRU_LISTS];
652 /* per lruvec lru_lock for memcg */
653 spinlock_t lru_lock;
654 /*
655 * These track the cost of reclaiming one LRU - file or anon -
656 * over the other. As the observed cost of reclaiming one LRU
657 * increases, the reclaim scan balance tips toward the other.
658 */
659 unsigned long anon_cost;
660 unsigned long file_cost;
661 /* Non-resident age, driven by LRU movement */
662 atomic_long_t nonresident_age;
663 /* Refaults at the time of last reclaim cycle */
664 unsigned long refaults[ANON_AND_FILE];
665 /* Various lruvec state flags (enum lruvec_flags) */
666 unsigned long flags;
667 #ifdef CONFIG_LRU_GEN
668 /* evictable pages divided into generations */
669 struct lru_gen_folio lrugen;
670 #ifdef CONFIG_LRU_GEN_WALKS_MMU
671 /* to concurrently iterate lru_gen_mm_list */
672 struct lru_gen_mm_state mm_state;
673 #endif
674 #endif /* CONFIG_LRU_GEN */
675 #ifdef CONFIG_MEMCG
676 struct pglist_data *pgdat;
677 #endif
678 struct zswap_lruvec_state zswap_lruvec_state;
679 };
680
681 /* Isolate for asynchronous migration */
682 #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
683 /* Isolate unevictable pages */
684 #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
685
686 /* LRU Isolation modes. */
687 typedef unsigned __bitwise isolate_mode_t;
688
689 enum zone_watermarks {
690 WMARK_MIN,
691 WMARK_LOW,
692 WMARK_HIGH,
693 WMARK_PROMO,
694 NR_WMARK
695 };
696
697 /*
698 * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER. Two additional lists
699 * are added for THP. One PCP list is used by GPF_MOVABLE, and the other PCP list
700 * is used by GFP_UNMOVABLE and GFP_RECLAIMABLE.
701 */
702 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
703 #define NR_PCP_THP 2
704 #else
705 #define NR_PCP_THP 0
706 #endif
707 #define NR_LOWORDER_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1))
708 #define NR_PCP_LISTS (NR_LOWORDER_PCP_LISTS + NR_PCP_THP)
709
710 /*
711 * Flags used in pcp->flags field.
712 *
713 * PCPF_PREV_FREE_HIGH_ORDER: a high-order page is freed in the
714 * previous page freeing. To avoid to drain PCP for an accident
715 * high-order page freeing.
716 *
717 * PCPF_FREE_HIGH_BATCH: preserve "pcp->batch" pages in PCP before
718 * draining PCP for consecutive high-order pages freeing without
719 * allocation if data cache slice of CPU is large enough. To reduce
720 * zone lock contention and keep cache-hot pages reusing.
721 */
722 #define PCPF_PREV_FREE_HIGH_ORDER BIT(0)
723 #define PCPF_FREE_HIGH_BATCH BIT(1)
724
725 struct per_cpu_pages {
726 spinlock_t lock; /* Protects lists field */
727 int count; /* number of pages in the list */
728 int high; /* high watermark, emptying needed */
729 int high_min; /* min high watermark */
730 int high_max; /* max high watermark */
731 int batch; /* chunk size for buddy add/remove */
732 u8 flags; /* protected by pcp->lock */
733 u8 alloc_factor; /* batch scaling factor during allocate */
734 #ifdef CONFIG_NUMA
735 u8 expire; /* When 0, remote pagesets are drained */
736 #endif
737 short free_count; /* consecutive free count */
738
739 /* Lists of pages, one per migrate type stored on the pcp-lists */
740 struct list_head lists[NR_PCP_LISTS];
741 } ____cacheline_aligned_in_smp;
742
743 struct per_cpu_zonestat {
744 #ifdef CONFIG_SMP
745 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
746 s8 stat_threshold;
747 #endif
748 #ifdef CONFIG_NUMA
749 /*
750 * Low priority inaccurate counters that are only folded
751 * on demand. Use a large type to avoid the overhead of
752 * folding during refresh_cpu_vm_stats.
753 */
754 unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
755 #endif
756 };
757
758 struct per_cpu_nodestat {
759 s8 stat_threshold;
760 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
761 };
762
763 #endif /* !__GENERATING_BOUNDS.H */
764
765 enum zone_type {
766 /*
767 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
768 * to DMA to all of the addressable memory (ZONE_NORMAL).
769 * On architectures where this area covers the whole 32 bit address
770 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
771 * DMA addressing constraints. This distinction is important as a 32bit
772 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
773 * platforms may need both zones as they support peripherals with
774 * different DMA addressing limitations.
775 */
776 #ifdef CONFIG_ZONE_DMA
777 ZONE_DMA,
778 #endif
779 #ifdef CONFIG_ZONE_DMA32
780 ZONE_DMA32,
781 #endif
782 /*
783 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
784 * performed on pages in ZONE_NORMAL if the DMA devices support
785 * transfers to all addressable memory.
786 */
787 ZONE_NORMAL,
788 #ifdef CONFIG_HIGHMEM
789 /*
790 * A memory area that is only addressable by the kernel through
791 * mapping portions into its own address space. This is for example
792 * used by i386 to allow the kernel to address the memory beyond
793 * 900MB. The kernel will set up special mappings (page
794 * table entries on i386) for each page that the kernel needs to
795 * access.
796 */
797 ZONE_HIGHMEM,
798 #endif
799 /*
800 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains
801 * movable pages with few exceptional cases described below. Main use
802 * cases for ZONE_MOVABLE are to make memory offlining/unplug more
803 * likely to succeed, and to locally limit unmovable allocations - e.g.,
804 * to increase the number of THP/huge pages. Notable special cases are:
805 *
806 * 1. Pinned pages: (long-term) pinning of movable pages might
807 * essentially turn such pages unmovable. Therefore, we do not allow
808 * pinning long-term pages in ZONE_MOVABLE. When pages are pinned and
809 * faulted, they come from the right zone right away. However, it is
810 * still possible that address space already has pages in
811 * ZONE_MOVABLE at the time when pages are pinned (i.e. user has
812 * touches that memory before pinning). In such case we migrate them
813 * to a different zone. When migration fails - pinning fails.
814 * 2. memblock allocations: kernelcore/movablecore setups might create
815 * situations where ZONE_MOVABLE contains unmovable allocations
816 * after boot. Memory offlining and allocations fail early.
817 * 3. Memory holes: kernelcore/movablecore setups might create very rare
818 * situations where ZONE_MOVABLE contains memory holes after boot,
819 * for example, if we have sections that are only partially
820 * populated. Memory offlining and allocations fail early.
821 * 4. PG_hwpoison pages: while poisoned pages can be skipped during
822 * memory offlining, such pages cannot be allocated.
823 * 5. Unmovable PG_offline pages: in paravirtualized environments,
824 * hotplugged memory blocks might only partially be managed by the
825 * buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The
826 * parts not manged by the buddy are unmovable PG_offline pages. In
827 * some cases (virtio-mem), such pages can be skipped during
828 * memory offlining, however, cannot be moved/allocated. These
829 * techniques might use alloc_contig_range() to hide previously
830 * exposed pages from the buddy again (e.g., to implement some sort
831 * of memory unplug in virtio-mem).
832 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create
833 * situations where ZERO_PAGE(0) which is allocated differently
834 * on different platforms may end up in a movable zone. ZERO_PAGE(0)
835 * cannot be migrated.
836 * 7. Memory-hotplug: when using memmap_on_memory and onlining the
837 * memory to the MOVABLE zone, the vmemmap pages are also placed in
838 * such zone. Such pages cannot be really moved around as they are
839 * self-stored in the range, but they are treated as movable when
840 * the range they describe is about to be offlined.
841 *
842 * In general, no unmovable allocations that degrade memory offlining
843 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range())
844 * have to expect that migrating pages in ZONE_MOVABLE can fail (even
845 * if has_unmovable_pages() states that there are no unmovable pages,
846 * there can be false negatives).
847 */
848 ZONE_MOVABLE,
849 #ifdef CONFIG_ZONE_DEVICE
850 ZONE_DEVICE,
851 #endif
852 __MAX_NR_ZONES
853
854 };
855
856 #ifndef __GENERATING_BOUNDS_H
857
858 #define ASYNC_AND_SYNC 2
859
860 struct zone {
861 /* Read-mostly fields */
862
863 /* zone watermarks, access with *_wmark_pages(zone) macros */
864 unsigned long _watermark[NR_WMARK];
865 unsigned long watermark_boost;
866
867 unsigned long nr_reserved_highatomic;
868 unsigned long nr_free_highatomic;
869
870 /*
871 * We don't know if the memory that we're going to allocate will be
872 * freeable or/and it will be released eventually, so to avoid totally
873 * wasting several GB of ram we must reserve some of the lower zone
874 * memory (otherwise we risk to run OOM on the lower zones despite
875 * there being tons of freeable ram on the higher zones). This array is
876 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
877 * changes.
878 */
879 long lowmem_reserve[MAX_NR_ZONES];
880
881 #ifdef CONFIG_NUMA
882 int node;
883 #endif
884 struct pglist_data *zone_pgdat;
885 struct per_cpu_pages __percpu *per_cpu_pageset;
886 struct per_cpu_zonestat __percpu *per_cpu_zonestats;
887 /*
888 * the high and batch values are copied to individual pagesets for
889 * faster access
890 */
891 int pageset_high_min;
892 int pageset_high_max;
893 int pageset_batch;
894
895 #ifndef CONFIG_SPARSEMEM
896 /*
897 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
898 * In SPARSEMEM, this map is stored in struct mem_section
899 */
900 unsigned long *pageblock_flags;
901 #endif /* CONFIG_SPARSEMEM */
902
903 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
904 unsigned long zone_start_pfn;
905
906 /*
907 * spanned_pages is the total pages spanned by the zone, including
908 * holes, which is calculated as:
909 * spanned_pages = zone_end_pfn - zone_start_pfn;
910 *
911 * present_pages is physical pages existing within the zone, which
912 * is calculated as:
913 * present_pages = spanned_pages - absent_pages(pages in holes);
914 *
915 * present_early_pages is present pages existing within the zone
916 * located on memory available since early boot, excluding hotplugged
917 * memory.
918 *
919 * managed_pages is present pages managed by the buddy system, which
920 * is calculated as (reserved_pages includes pages allocated by the
921 * bootmem allocator):
922 * managed_pages = present_pages - reserved_pages;
923 *
924 * cma pages is present pages that are assigned for CMA use
925 * (MIGRATE_CMA).
926 *
927 * So present_pages may be used by memory hotplug or memory power
928 * management logic to figure out unmanaged pages by checking
929 * (present_pages - managed_pages). And managed_pages should be used
930 * by page allocator and vm scanner to calculate all kinds of watermarks
931 * and thresholds.
932 *
933 * Locking rules:
934 *
935 * zone_start_pfn and spanned_pages are protected by span_seqlock.
936 * It is a seqlock because it has to be read outside of zone->lock,
937 * and it is done in the main allocator path. But, it is written
938 * quite infrequently.
939 *
940 * The span_seq lock is declared along with zone->lock because it is
941 * frequently read in proximity to zone->lock. It's good to
942 * give them a chance of being in the same cacheline.
943 *
944 * Write access to present_pages at runtime should be protected by
945 * mem_hotplug_begin/done(). Any reader who can't tolerant drift of
946 * present_pages should use get_online_mems() to get a stable value.
947 */
948 atomic_long_t managed_pages;
949 unsigned long spanned_pages;
950 unsigned long present_pages;
951 #if defined(CONFIG_MEMORY_HOTPLUG)
952 unsigned long present_early_pages;
953 #endif
954 #ifdef CONFIG_CMA
955 unsigned long cma_pages;
956 #endif
957
958 const char *name;
959
960 #ifdef CONFIG_MEMORY_ISOLATION
961 /*
962 * Number of isolated pageblock. It is used to solve incorrect
963 * freepage counting problem due to racy retrieving migratetype
964 * of pageblock. Protected by zone->lock.
965 */
966 unsigned long nr_isolate_pageblock;
967 #endif
968
969 #ifdef CONFIG_MEMORY_HOTPLUG
970 /* see spanned/present_pages for more description */
971 seqlock_t span_seqlock;
972 #endif
973
974 int initialized;
975
976 /* Write-intensive fields used from the page allocator */
977 CACHELINE_PADDING(_pad1_);
978
979 /* free areas of different sizes */
980 struct free_area free_area[NR_PAGE_ORDERS];
981
982 #ifdef CONFIG_UNACCEPTED_MEMORY
983 /* Pages to be accepted. All pages on the list are MAX_PAGE_ORDER */
984 struct list_head unaccepted_pages;
985
986 /* To be called once the last page in the zone is accepted */
987 struct work_struct unaccepted_cleanup;
988 #endif
989
990 /* zone flags, see below */
991 unsigned long flags;
992
993 /* Primarily protects free_area */
994 spinlock_t lock;
995
996 /* Pages to be freed when next trylock succeeds */
997 struct llist_head trylock_free_pages;
998
999 /* Write-intensive fields used by compaction and vmstats. */
1000 CACHELINE_PADDING(_pad2_);
1001
1002 /*
1003 * When free pages are below this point, additional steps are taken
1004 * when reading the number of free pages to avoid per-cpu counter
1005 * drift allowing watermarks to be breached
1006 */
1007 unsigned long percpu_drift_mark;
1008
1009 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
1010 /* pfn where compaction free scanner should start */
1011 unsigned long compact_cached_free_pfn;
1012 /* pfn where compaction migration scanner should start */
1013 unsigned long compact_cached_migrate_pfn[ASYNC_AND_SYNC];
1014 unsigned long compact_init_migrate_pfn;
1015 unsigned long compact_init_free_pfn;
1016 #endif
1017
1018 #ifdef CONFIG_COMPACTION
1019 /*
1020 * On compaction failure, 1<<compact_defer_shift compactions
1021 * are skipped before trying again. The number attempted since
1022 * last failure is tracked with compact_considered.
1023 * compact_order_failed is the minimum compaction failed order.
1024 */
1025 unsigned int compact_considered;
1026 unsigned int compact_defer_shift;
1027 int compact_order_failed;
1028 #endif
1029
1030 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
1031 /* Set to true when the PG_migrate_skip bits should be cleared */
1032 bool compact_blockskip_flush;
1033 #endif
1034
1035 bool contiguous;
1036
1037 CACHELINE_PADDING(_pad3_);
1038 /* Zone statistics */
1039 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
1040 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
1041 } ____cacheline_internodealigned_in_smp;
1042
1043 enum pgdat_flags {
1044 PGDAT_DIRTY, /* reclaim scanning has recently found
1045 * many dirty file pages at the tail
1046 * of the LRU.
1047 */
1048 PGDAT_WRITEBACK, /* reclaim scanning has recently found
1049 * many pages under writeback
1050 */
1051 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */
1052 };
1053
1054 enum zone_flags {
1055 ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks.
1056 * Cleared when kswapd is woken.
1057 */
1058 ZONE_RECLAIM_ACTIVE, /* kswapd may be scanning the zone. */
1059 ZONE_BELOW_HIGH, /* zone is below high watermark. */
1060 };
1061
wmark_pages(const struct zone * z,enum zone_watermarks w)1062 static inline unsigned long wmark_pages(const struct zone *z,
1063 enum zone_watermarks w)
1064 {
1065 return z->_watermark[w] + z->watermark_boost;
1066 }
1067
min_wmark_pages(const struct zone * z)1068 static inline unsigned long min_wmark_pages(const struct zone *z)
1069 {
1070 return wmark_pages(z, WMARK_MIN);
1071 }
1072
low_wmark_pages(const struct zone * z)1073 static inline unsigned long low_wmark_pages(const struct zone *z)
1074 {
1075 return wmark_pages(z, WMARK_LOW);
1076 }
1077
high_wmark_pages(const struct zone * z)1078 static inline unsigned long high_wmark_pages(const struct zone *z)
1079 {
1080 return wmark_pages(z, WMARK_HIGH);
1081 }
1082
promo_wmark_pages(const struct zone * z)1083 static inline unsigned long promo_wmark_pages(const struct zone *z)
1084 {
1085 return wmark_pages(z, WMARK_PROMO);
1086 }
1087
zone_managed_pages(struct zone * zone)1088 static inline unsigned long zone_managed_pages(struct zone *zone)
1089 {
1090 return (unsigned long)atomic_long_read(&zone->managed_pages);
1091 }
1092
zone_cma_pages(struct zone * zone)1093 static inline unsigned long zone_cma_pages(struct zone *zone)
1094 {
1095 #ifdef CONFIG_CMA
1096 return zone->cma_pages;
1097 #else
1098 return 0;
1099 #endif
1100 }
1101
zone_end_pfn(const struct zone * zone)1102 static inline unsigned long zone_end_pfn(const struct zone *zone)
1103 {
1104 return zone->zone_start_pfn + zone->spanned_pages;
1105 }
1106
zone_spans_pfn(const struct zone * zone,unsigned long pfn)1107 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
1108 {
1109 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
1110 }
1111
zone_is_initialized(struct zone * zone)1112 static inline bool zone_is_initialized(struct zone *zone)
1113 {
1114 return zone->initialized;
1115 }
1116
zone_is_empty(struct zone * zone)1117 static inline bool zone_is_empty(struct zone *zone)
1118 {
1119 return zone->spanned_pages == 0;
1120 }
1121
1122 #ifndef BUILD_VDSO32_64
1123 /*
1124 * The zone field is never updated after free_area_init_core()
1125 * sets it, so none of the operations on it need to be atomic.
1126 */
1127
1128 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1129 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1130 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
1131 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
1132 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
1133 #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1134 #define LRU_GEN_PGOFF (KASAN_TAG_PGOFF - LRU_GEN_WIDTH)
1135 #define LRU_REFS_PGOFF (LRU_GEN_PGOFF - LRU_REFS_WIDTH)
1136
1137 /*
1138 * Define the bit shifts to access each section. For non-existent
1139 * sections we define the shift as 0; that plus a 0 mask ensures
1140 * the compiler will optimise away reference to them.
1141 */
1142 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1143 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
1144 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
1145 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1146 #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1147
1148 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1149 #ifdef NODE_NOT_IN_PAGE_FLAGS
1150 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
1151 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF) ? \
1152 SECTIONS_PGOFF : ZONES_PGOFF)
1153 #else
1154 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
1155 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF) ? \
1156 NODES_PGOFF : ZONES_PGOFF)
1157 #endif
1158
1159 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1160
1161 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
1162 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
1163 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
1164 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
1165 #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
1166 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
1167
page_zonenum(const struct page * page)1168 static inline enum zone_type page_zonenum(const struct page *page)
1169 {
1170 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1171 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1172 }
1173
folio_zonenum(const struct folio * folio)1174 static inline enum zone_type folio_zonenum(const struct folio *folio)
1175 {
1176 return page_zonenum(&folio->page);
1177 }
1178
1179 #ifdef CONFIG_ZONE_DEVICE
is_zone_device_page(const struct page * page)1180 static inline bool is_zone_device_page(const struct page *page)
1181 {
1182 return page_zonenum(page) == ZONE_DEVICE;
1183 }
1184
page_pgmap(const struct page * page)1185 static inline struct dev_pagemap *page_pgmap(const struct page *page)
1186 {
1187 VM_WARN_ON_ONCE_PAGE(!is_zone_device_page(page), page);
1188 return page_folio(page)->pgmap;
1189 }
1190
1191 /*
1192 * Consecutive zone device pages should not be merged into the same sgl
1193 * or bvec segment with other types of pages or if they belong to different
1194 * pgmaps. Otherwise getting the pgmap of a given segment is not possible
1195 * without scanning the entire segment. This helper returns true either if
1196 * both pages are not zone device pages or both pages are zone device pages
1197 * with the same pgmap.
1198 */
zone_device_pages_have_same_pgmap(const struct page * a,const struct page * b)1199 static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
1200 const struct page *b)
1201 {
1202 if (is_zone_device_page(a) != is_zone_device_page(b))
1203 return false;
1204 if (!is_zone_device_page(a))
1205 return true;
1206 return page_pgmap(a) == page_pgmap(b);
1207 }
1208
1209 extern void memmap_init_zone_device(struct zone *, unsigned long,
1210 unsigned long, struct dev_pagemap *);
1211 #else
is_zone_device_page(const struct page * page)1212 static inline bool is_zone_device_page(const struct page *page)
1213 {
1214 return false;
1215 }
zone_device_pages_have_same_pgmap(const struct page * a,const struct page * b)1216 static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
1217 const struct page *b)
1218 {
1219 return true;
1220 }
page_pgmap(const struct page * page)1221 static inline struct dev_pagemap *page_pgmap(const struct page *page)
1222 {
1223 return NULL;
1224 }
1225 #endif
1226
folio_is_zone_device(const struct folio * folio)1227 static inline bool folio_is_zone_device(const struct folio *folio)
1228 {
1229 return is_zone_device_page(&folio->page);
1230 }
1231
is_zone_movable_page(const struct page * page)1232 static inline bool is_zone_movable_page(const struct page *page)
1233 {
1234 return page_zonenum(page) == ZONE_MOVABLE;
1235 }
1236
folio_is_zone_movable(const struct folio * folio)1237 static inline bool folio_is_zone_movable(const struct folio *folio)
1238 {
1239 return folio_zonenum(folio) == ZONE_MOVABLE;
1240 }
1241 #endif
1242
1243 /*
1244 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
1245 * intersection with the given zone
1246 */
zone_intersects(struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)1247 static inline bool zone_intersects(struct zone *zone,
1248 unsigned long start_pfn, unsigned long nr_pages)
1249 {
1250 if (zone_is_empty(zone))
1251 return false;
1252 if (start_pfn >= zone_end_pfn(zone) ||
1253 start_pfn + nr_pages <= zone->zone_start_pfn)
1254 return false;
1255
1256 return true;
1257 }
1258
1259 /*
1260 * The "priority" of VM scanning is how much of the queues we will scan in one
1261 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
1262 * queues ("queue_length >> 12") during an aging round.
1263 */
1264 #define DEF_PRIORITY 12
1265
1266 /* Maximum number of zones on a zonelist */
1267 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
1268
1269 enum {
1270 ZONELIST_FALLBACK, /* zonelist with fallback */
1271 #ifdef CONFIG_NUMA
1272 /*
1273 * The NUMA zonelists are doubled because we need zonelists that
1274 * restrict the allocations to a single node for __GFP_THISNODE.
1275 */
1276 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */
1277 #endif
1278 MAX_ZONELISTS
1279 };
1280
1281 /*
1282 * This struct contains information about a zone in a zonelist. It is stored
1283 * here to avoid dereferences into large structures and lookups of tables
1284 */
1285 struct zoneref {
1286 struct zone *zone; /* Pointer to actual zone */
1287 int zone_idx; /* zone_idx(zoneref->zone) */
1288 };
1289
1290 /*
1291 * One allocation request operates on a zonelist. A zonelist
1292 * is a list of zones, the first one is the 'goal' of the
1293 * allocation, the other zones are fallback zones, in decreasing
1294 * priority.
1295 *
1296 * To speed the reading of the zonelist, the zonerefs contain the zone index
1297 * of the entry being read. Helper functions to access information given
1298 * a struct zoneref are
1299 *
1300 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
1301 * zonelist_zone_idx() - Return the index of the zone for an entry
1302 * zonelist_node_idx() - Return the index of the node for an entry
1303 */
1304 struct zonelist {
1305 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
1306 };
1307
1308 /*
1309 * The array of struct pages for flatmem.
1310 * It must be declared for SPARSEMEM as well because there are configurations
1311 * that rely on that.
1312 */
1313 extern struct page *mem_map;
1314
1315 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1316 struct deferred_split {
1317 spinlock_t split_queue_lock;
1318 struct list_head split_queue;
1319 unsigned long split_queue_len;
1320 };
1321 #endif
1322
1323 #ifdef CONFIG_MEMORY_FAILURE
1324 /*
1325 * Per NUMA node memory failure handling statistics.
1326 */
1327 struct memory_failure_stats {
1328 /*
1329 * Number of raw pages poisoned.
1330 * Cases not accounted: memory outside kernel control, offline page,
1331 * arch-specific memory_failure (SGX), hwpoison_filter() filtered
1332 * error events, and unpoison actions from hwpoison_unpoison.
1333 */
1334 unsigned long total;
1335 /*
1336 * Recovery results of poisoned raw pages handled by memory_failure,
1337 * in sync with mf_result.
1338 * total = ignored + failed + delayed + recovered.
1339 * total * PAGE_SIZE * #nodes = /proc/meminfo/HardwareCorrupted.
1340 */
1341 unsigned long ignored;
1342 unsigned long failed;
1343 unsigned long delayed;
1344 unsigned long recovered;
1345 };
1346 #endif
1347
1348 /*
1349 * On NUMA machines, each NUMA node would have a pg_data_t to describe
1350 * it's memory layout. On UMA machines there is a single pglist_data which
1351 * describes the whole memory.
1352 *
1353 * Memory statistics and page replacement data structures are maintained on a
1354 * per-zone basis.
1355 */
1356 typedef struct pglist_data {
1357 /*
1358 * node_zones contains just the zones for THIS node. Not all of the
1359 * zones may be populated, but it is the full list. It is referenced by
1360 * this node's node_zonelists as well as other node's node_zonelists.
1361 */
1362 struct zone node_zones[MAX_NR_ZONES];
1363
1364 /*
1365 * node_zonelists contains references to all zones in all nodes.
1366 * Generally the first zones will be references to this node's
1367 * node_zones.
1368 */
1369 struct zonelist node_zonelists[MAX_ZONELISTS];
1370
1371 int nr_zones; /* number of populated zones in this node */
1372 #ifdef CONFIG_FLATMEM /* means !SPARSEMEM */
1373 struct page *node_mem_map;
1374 #ifdef CONFIG_PAGE_EXTENSION
1375 struct page_ext *node_page_ext;
1376 #endif
1377 #endif
1378 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
1379 /*
1380 * Must be held any time you expect node_start_pfn,
1381 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
1382 * Also synchronizes pgdat->first_deferred_pfn during deferred page
1383 * init.
1384 *
1385 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
1386 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
1387 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
1388 *
1389 * Nests above zone->lock and zone->span_seqlock
1390 */
1391 spinlock_t node_size_lock;
1392 #endif
1393 unsigned long node_start_pfn;
1394 unsigned long node_present_pages; /* total number of physical pages */
1395 unsigned long node_spanned_pages; /* total size of physical page
1396 range, including holes */
1397 int node_id;
1398 wait_queue_head_t kswapd_wait;
1399 wait_queue_head_t pfmemalloc_wait;
1400
1401 /* workqueues for throttling reclaim for different reasons. */
1402 wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE];
1403
1404 atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */
1405 unsigned long nr_reclaim_start; /* nr pages written while throttled
1406 * when throttling started. */
1407 #ifdef CONFIG_MEMORY_HOTPLUG
1408 struct mutex kswapd_lock;
1409 #endif
1410 struct task_struct *kswapd; /* Protected by kswapd_lock */
1411 int kswapd_order;
1412 enum zone_type kswapd_highest_zoneidx;
1413
1414 int kswapd_failures; /* Number of 'reclaimed == 0' runs */
1415
1416 #ifdef CONFIG_COMPACTION
1417 int kcompactd_max_order;
1418 enum zone_type kcompactd_highest_zoneidx;
1419 wait_queue_head_t kcompactd_wait;
1420 struct task_struct *kcompactd;
1421 bool proactive_compact_trigger;
1422 #endif
1423 /*
1424 * This is a per-node reserve of pages that are not available
1425 * to userspace allocations.
1426 */
1427 unsigned long totalreserve_pages;
1428
1429 #ifdef CONFIG_NUMA
1430 /*
1431 * node reclaim becomes active if more unmapped pages exist.
1432 */
1433 unsigned long min_unmapped_pages;
1434 unsigned long min_slab_pages;
1435 #endif /* CONFIG_NUMA */
1436
1437 /* Write-intensive fields used by page reclaim */
1438 CACHELINE_PADDING(_pad1_);
1439
1440 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1441 /*
1442 * If memory initialisation on large machines is deferred then this
1443 * is the first PFN that needs to be initialised.
1444 */
1445 unsigned long first_deferred_pfn;
1446 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1447
1448 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1449 struct deferred_split deferred_split_queue;
1450 #endif
1451
1452 #ifdef CONFIG_NUMA_BALANCING
1453 /* start time in ms of current promote rate limit period */
1454 unsigned int nbp_rl_start;
1455 /* number of promote candidate pages at start time of current rate limit period */
1456 unsigned long nbp_rl_nr_cand;
1457 /* promote threshold in ms */
1458 unsigned int nbp_threshold;
1459 /* start time in ms of current promote threshold adjustment period */
1460 unsigned int nbp_th_start;
1461 /*
1462 * number of promote candidate pages at start time of current promote
1463 * threshold adjustment period
1464 */
1465 unsigned long nbp_th_nr_cand;
1466 #endif
1467 /* Fields commonly accessed by the page reclaim scanner */
1468
1469 /*
1470 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
1471 *
1472 * Use mem_cgroup_lruvec() to look up lruvecs.
1473 */
1474 struct lruvec __lruvec;
1475
1476 unsigned long flags;
1477
1478 #ifdef CONFIG_LRU_GEN
1479 /* kswap mm walk data */
1480 struct lru_gen_mm_walk mm_walk;
1481 /* lru_gen_folio list */
1482 struct lru_gen_memcg memcg_lru;
1483 #endif
1484
1485 CACHELINE_PADDING(_pad2_);
1486
1487 /* Per-node vmstats */
1488 struct per_cpu_nodestat __percpu *per_cpu_nodestats;
1489 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS];
1490 #ifdef CONFIG_NUMA
1491 struct memory_tier __rcu *memtier;
1492 #endif
1493 #ifdef CONFIG_MEMORY_FAILURE
1494 struct memory_failure_stats mf_stats;
1495 #endif
1496 } pg_data_t;
1497
1498 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
1499 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
1500
1501 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
1502 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
1503
pgdat_end_pfn(pg_data_t * pgdat)1504 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
1505 {
1506 return pgdat->node_start_pfn + pgdat->node_spanned_pages;
1507 }
1508
1509 #include <linux/memory_hotplug.h>
1510
1511 void build_all_zonelists(pg_data_t *pgdat);
1512 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
1513 enum zone_type highest_zoneidx);
1514 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1515 int highest_zoneidx, unsigned int alloc_flags,
1516 long free_pages);
1517 bool zone_watermark_ok(struct zone *z, unsigned int order,
1518 unsigned long mark, int highest_zoneidx,
1519 unsigned int alloc_flags);
1520 /*
1521 * Memory initialization context, use to differentiate memory added by
1522 * the platform statically or via memory hotplug interface.
1523 */
1524 enum meminit_context {
1525 MEMINIT_EARLY,
1526 MEMINIT_HOTPLUG,
1527 };
1528
1529 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
1530 unsigned long size);
1531
1532 extern void lruvec_init(struct lruvec *lruvec);
1533
lruvec_pgdat(struct lruvec * lruvec)1534 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
1535 {
1536 #ifdef CONFIG_MEMCG
1537 return lruvec->pgdat;
1538 #else
1539 return container_of(lruvec, struct pglist_data, __lruvec);
1540 #endif
1541 }
1542
1543 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
1544 int local_memory_node(int node_id);
1545 #else
local_memory_node(int node_id)1546 static inline int local_memory_node(int node_id) { return node_id; };
1547 #endif
1548
1549 /*
1550 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
1551 */
1552 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
1553
1554 #ifdef CONFIG_ZONE_DEVICE
zone_is_zone_device(struct zone * zone)1555 static inline bool zone_is_zone_device(struct zone *zone)
1556 {
1557 return zone_idx(zone) == ZONE_DEVICE;
1558 }
1559 #else
zone_is_zone_device(struct zone * zone)1560 static inline bool zone_is_zone_device(struct zone *zone)
1561 {
1562 return false;
1563 }
1564 #endif
1565
1566 /*
1567 * Returns true if a zone has pages managed by the buddy allocator.
1568 * All the reclaim decisions have to use this function rather than
1569 * populated_zone(). If the whole zone is reserved then we can easily
1570 * end up with populated_zone() && !managed_zone().
1571 */
managed_zone(struct zone * zone)1572 static inline bool managed_zone(struct zone *zone)
1573 {
1574 return zone_managed_pages(zone);
1575 }
1576
1577 /* Returns true if a zone has memory */
populated_zone(struct zone * zone)1578 static inline bool populated_zone(struct zone *zone)
1579 {
1580 return zone->present_pages;
1581 }
1582
1583 #ifdef CONFIG_NUMA
zone_to_nid(struct zone * zone)1584 static inline int zone_to_nid(struct zone *zone)
1585 {
1586 return zone->node;
1587 }
1588
zone_set_nid(struct zone * zone,int nid)1589 static inline void zone_set_nid(struct zone *zone, int nid)
1590 {
1591 zone->node = nid;
1592 }
1593 #else
zone_to_nid(struct zone * zone)1594 static inline int zone_to_nid(struct zone *zone)
1595 {
1596 return 0;
1597 }
1598
zone_set_nid(struct zone * zone,int nid)1599 static inline void zone_set_nid(struct zone *zone, int nid) {}
1600 #endif
1601
1602 extern int movable_zone;
1603
is_highmem_idx(enum zone_type idx)1604 static inline int is_highmem_idx(enum zone_type idx)
1605 {
1606 #ifdef CONFIG_HIGHMEM
1607 return (idx == ZONE_HIGHMEM ||
1608 (idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM));
1609 #else
1610 return 0;
1611 #endif
1612 }
1613
1614 /**
1615 * is_highmem - helper function to quickly check if a struct zone is a
1616 * highmem zone or not. This is an attempt to keep references
1617 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
1618 * @zone: pointer to struct zone variable
1619 * Return: 1 for a highmem zone, 0 otherwise
1620 */
is_highmem(struct zone * zone)1621 static inline int is_highmem(struct zone *zone)
1622 {
1623 return is_highmem_idx(zone_idx(zone));
1624 }
1625
1626 #ifdef CONFIG_ZONE_DMA
1627 bool has_managed_dma(void);
1628 #else
has_managed_dma(void)1629 static inline bool has_managed_dma(void)
1630 {
1631 return false;
1632 }
1633 #endif
1634
1635
1636 #ifndef CONFIG_NUMA
1637
1638 extern struct pglist_data contig_page_data;
NODE_DATA(int nid)1639 static inline struct pglist_data *NODE_DATA(int nid)
1640 {
1641 return &contig_page_data;
1642 }
1643
1644 #else /* CONFIG_NUMA */
1645
1646 #include <asm/mmzone.h>
1647
1648 #endif /* !CONFIG_NUMA */
1649
1650 extern struct pglist_data *first_online_pgdat(void);
1651 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
1652 extern struct zone *next_zone(struct zone *zone);
1653
1654 /**
1655 * for_each_online_pgdat - helper macro to iterate over all online nodes
1656 * @pgdat: pointer to a pg_data_t variable
1657 */
1658 #define for_each_online_pgdat(pgdat) \
1659 for (pgdat = first_online_pgdat(); \
1660 pgdat; \
1661 pgdat = next_online_pgdat(pgdat))
1662 /**
1663 * for_each_zone - helper macro to iterate over all memory zones
1664 * @zone: pointer to struct zone variable
1665 *
1666 * The user only needs to declare the zone variable, for_each_zone
1667 * fills it in.
1668 */
1669 #define for_each_zone(zone) \
1670 for (zone = (first_online_pgdat())->node_zones; \
1671 zone; \
1672 zone = next_zone(zone))
1673
1674 #define for_each_populated_zone(zone) \
1675 for (zone = (first_online_pgdat())->node_zones; \
1676 zone; \
1677 zone = next_zone(zone)) \
1678 if (!populated_zone(zone)) \
1679 ; /* do nothing */ \
1680 else
1681
zonelist_zone(struct zoneref * zoneref)1682 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1683 {
1684 return zoneref->zone;
1685 }
1686
zonelist_zone_idx(struct zoneref * zoneref)1687 static inline int zonelist_zone_idx(struct zoneref *zoneref)
1688 {
1689 return zoneref->zone_idx;
1690 }
1691
zonelist_node_idx(struct zoneref * zoneref)1692 static inline int zonelist_node_idx(struct zoneref *zoneref)
1693 {
1694 return zone_to_nid(zoneref->zone);
1695 }
1696
1697 struct zoneref *__next_zones_zonelist(struct zoneref *z,
1698 enum zone_type highest_zoneidx,
1699 nodemask_t *nodes);
1700
1701 /**
1702 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1703 * @z: The cursor used as a starting point for the search
1704 * @highest_zoneidx: The zone index of the highest zone to return
1705 * @nodes: An optional nodemask to filter the zonelist with
1706 *
1707 * This function returns the next zone at or below a given zone index that is
1708 * within the allowed nodemask using a cursor as the starting point for the
1709 * search. The zoneref returned is a cursor that represents the current zone
1710 * being examined. It should be advanced by one before calling
1711 * next_zones_zonelist again.
1712 *
1713 * Return: the next zone at or below highest_zoneidx within the allowed
1714 * nodemask using a cursor within a zonelist as a starting point
1715 */
next_zones_zonelist(struct zoneref * z,enum zone_type highest_zoneidx,nodemask_t * nodes)1716 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1717 enum zone_type highest_zoneidx,
1718 nodemask_t *nodes)
1719 {
1720 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1721 return z;
1722 return __next_zones_zonelist(z, highest_zoneidx, nodes);
1723 }
1724
1725 /**
1726 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1727 * @zonelist: The zonelist to search for a suitable zone
1728 * @highest_zoneidx: The zone index of the highest zone to return
1729 * @nodes: An optional nodemask to filter the zonelist with
1730 *
1731 * This function returns the first zone at or below a given zone index that is
1732 * within the allowed nodemask. The zoneref returned is a cursor that can be
1733 * used to iterate the zonelist with next_zones_zonelist by advancing it by
1734 * one before calling.
1735 *
1736 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1737 * never NULL). This may happen either genuinely, or due to concurrent nodemask
1738 * update due to cpuset modification.
1739 *
1740 * Return: Zoneref pointer for the first suitable zone found
1741 */
first_zones_zonelist(struct zonelist * zonelist,enum zone_type highest_zoneidx,nodemask_t * nodes)1742 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1743 enum zone_type highest_zoneidx,
1744 nodemask_t *nodes)
1745 {
1746 return next_zones_zonelist(zonelist->_zonerefs,
1747 highest_zoneidx, nodes);
1748 }
1749
1750 /**
1751 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1752 * @zone: The current zone in the iterator
1753 * @z: The current pointer within zonelist->_zonerefs being iterated
1754 * @zlist: The zonelist being iterated
1755 * @highidx: The zone index of the highest zone to return
1756 * @nodemask: Nodemask allowed by the allocator
1757 *
1758 * This iterator iterates though all zones at or below a given zone index and
1759 * within a given nodemask
1760 */
1761 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1762 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \
1763 zone; \
1764 z = next_zones_zonelist(++z, highidx, nodemask), \
1765 zone = zonelist_zone(z))
1766
1767 #define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \
1768 for (zone = zonelist_zone(z); \
1769 zone; \
1770 z = next_zones_zonelist(++z, highidx, nodemask), \
1771 zone = zonelist_zone(z))
1772
1773
1774 /**
1775 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1776 * @zone: The current zone in the iterator
1777 * @z: The current pointer within zonelist->zones being iterated
1778 * @zlist: The zonelist being iterated
1779 * @highidx: The zone index of the highest zone to return
1780 *
1781 * This iterator iterates though all zones at or below a given zone index.
1782 */
1783 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1784 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1785
1786 /* Whether the 'nodes' are all movable nodes */
movable_only_nodes(nodemask_t * nodes)1787 static inline bool movable_only_nodes(nodemask_t *nodes)
1788 {
1789 struct zonelist *zonelist;
1790 struct zoneref *z;
1791 int nid;
1792
1793 if (nodes_empty(*nodes))
1794 return false;
1795
1796 /*
1797 * We can chose arbitrary node from the nodemask to get a
1798 * zonelist as they are interlinked. We just need to find
1799 * at least one zone that can satisfy kernel allocations.
1800 */
1801 nid = first_node(*nodes);
1802 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
1803 z = first_zones_zonelist(zonelist, ZONE_NORMAL, nodes);
1804 return (!zonelist_zone(z)) ? true : false;
1805 }
1806
1807
1808 #ifdef CONFIG_SPARSEMEM
1809 #include <asm/sparsemem.h>
1810 #endif
1811
1812 #ifdef CONFIG_FLATMEM
1813 #define pfn_to_nid(pfn) (0)
1814 #endif
1815
1816 #ifdef CONFIG_SPARSEMEM
1817
1818 /*
1819 * PA_SECTION_SHIFT physical address to/from section number
1820 * PFN_SECTION_SHIFT pfn to/from section number
1821 */
1822 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1823 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1824
1825 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1826
1827 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1828 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1829
1830 #define SECTION_BLOCKFLAGS_BITS \
1831 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1832
1833 #if (MAX_PAGE_ORDER + PAGE_SHIFT) > SECTION_SIZE_BITS
1834 #error Allocator MAX_PAGE_ORDER exceeds SECTION_SIZE
1835 #endif
1836
pfn_to_section_nr(unsigned long pfn)1837 static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1838 {
1839 return pfn >> PFN_SECTION_SHIFT;
1840 }
section_nr_to_pfn(unsigned long sec)1841 static inline unsigned long section_nr_to_pfn(unsigned long sec)
1842 {
1843 return sec << PFN_SECTION_SHIFT;
1844 }
1845
1846 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1847 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1848
1849 #define SUBSECTION_SHIFT 21
1850 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
1851
1852 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1853 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1854 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1855
1856 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1857 #error Subsection size exceeds section size
1858 #else
1859 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1860 #endif
1861
1862 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1863 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1864
1865 struct mem_section_usage {
1866 struct rcu_head rcu;
1867 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1868 DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1869 #endif
1870 /* See declaration of similar field in struct zone */
1871 unsigned long pageblock_flags[0];
1872 };
1873
1874 void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1875
1876 struct page;
1877 struct page_ext;
1878 struct mem_section {
1879 /*
1880 * This is, logically, a pointer to an array of struct
1881 * pages. However, it is stored with some other magic.
1882 * (see sparse.c::sparse_init_one_section())
1883 *
1884 * Additionally during early boot we encode node id of
1885 * the location of the section here to guide allocation.
1886 * (see sparse.c::memory_present())
1887 *
1888 * Making it a UL at least makes someone do a cast
1889 * before using it wrong.
1890 */
1891 unsigned long section_mem_map;
1892
1893 struct mem_section_usage *usage;
1894 #ifdef CONFIG_PAGE_EXTENSION
1895 /*
1896 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1897 * section. (see page_ext.h about this.)
1898 */
1899 struct page_ext *page_ext;
1900 unsigned long pad;
1901 #endif
1902 /*
1903 * WARNING: mem_section must be a power-of-2 in size for the
1904 * calculation and use of SECTION_ROOT_MASK to make sense.
1905 */
1906 };
1907
1908 #ifdef CONFIG_SPARSEMEM_EXTREME
1909 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1910 #else
1911 #define SECTIONS_PER_ROOT 1
1912 #endif
1913
1914 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1915 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1916 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
1917
1918 #ifdef CONFIG_SPARSEMEM_EXTREME
1919 extern struct mem_section **mem_section;
1920 #else
1921 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1922 #endif
1923
section_to_usemap(struct mem_section * ms)1924 static inline unsigned long *section_to_usemap(struct mem_section *ms)
1925 {
1926 return ms->usage->pageblock_flags;
1927 }
1928
__nr_to_section(unsigned long nr)1929 static inline struct mem_section *__nr_to_section(unsigned long nr)
1930 {
1931 unsigned long root = SECTION_NR_TO_ROOT(nr);
1932
1933 if (unlikely(root >= NR_SECTION_ROOTS))
1934 return NULL;
1935
1936 #ifdef CONFIG_SPARSEMEM_EXTREME
1937 if (!mem_section || !mem_section[root])
1938 return NULL;
1939 #endif
1940 return &mem_section[root][nr & SECTION_ROOT_MASK];
1941 }
1942 extern size_t mem_section_usage_size(void);
1943
1944 /*
1945 * We use the lower bits of the mem_map pointer to store
1946 * a little bit of information. The pointer is calculated
1947 * as mem_map - section_nr_to_pfn(pnum). The result is
1948 * aligned to the minimum alignment of the two values:
1949 * 1. All mem_map arrays are page-aligned.
1950 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1951 * lowest bits. PFN_SECTION_SHIFT is arch-specific
1952 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1953 * worst combination is powerpc with 256k pages,
1954 * which results in PFN_SECTION_SHIFT equal 6.
1955 * To sum it up, at least 6 bits are available on all architectures.
1956 * However, we can exceed 6 bits on some other architectures except
1957 * powerpc (e.g. 15 bits are available on x86_64, 13 bits are available
1958 * with the worst case of 64K pages on arm64) if we make sure the
1959 * exceeded bit is not applicable to powerpc.
1960 */
1961 enum {
1962 SECTION_MARKED_PRESENT_BIT,
1963 SECTION_HAS_MEM_MAP_BIT,
1964 SECTION_IS_ONLINE_BIT,
1965 SECTION_IS_EARLY_BIT,
1966 #ifdef CONFIG_ZONE_DEVICE
1967 SECTION_TAINT_ZONE_DEVICE_BIT,
1968 #endif
1969 #ifdef CONFIG_SPARSEMEM_VMEMMAP_PREINIT
1970 SECTION_IS_VMEMMAP_PREINIT_BIT,
1971 #endif
1972 SECTION_MAP_LAST_BIT,
1973 };
1974
1975 #define SECTION_MARKED_PRESENT BIT(SECTION_MARKED_PRESENT_BIT)
1976 #define SECTION_HAS_MEM_MAP BIT(SECTION_HAS_MEM_MAP_BIT)
1977 #define SECTION_IS_ONLINE BIT(SECTION_IS_ONLINE_BIT)
1978 #define SECTION_IS_EARLY BIT(SECTION_IS_EARLY_BIT)
1979 #ifdef CONFIG_ZONE_DEVICE
1980 #define SECTION_TAINT_ZONE_DEVICE BIT(SECTION_TAINT_ZONE_DEVICE_BIT)
1981 #endif
1982 #ifdef CONFIG_SPARSEMEM_VMEMMAP_PREINIT
1983 #define SECTION_IS_VMEMMAP_PREINIT BIT(SECTION_IS_VMEMMAP_PREINIT_BIT)
1984 #endif
1985 #define SECTION_MAP_MASK (~(BIT(SECTION_MAP_LAST_BIT) - 1))
1986 #define SECTION_NID_SHIFT SECTION_MAP_LAST_BIT
1987
__section_mem_map_addr(struct mem_section * section)1988 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1989 {
1990 unsigned long map = section->section_mem_map;
1991 map &= SECTION_MAP_MASK;
1992 return (struct page *)map;
1993 }
1994
present_section(struct mem_section * section)1995 static inline int present_section(struct mem_section *section)
1996 {
1997 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1998 }
1999
present_section_nr(unsigned long nr)2000 static inline int present_section_nr(unsigned long nr)
2001 {
2002 return present_section(__nr_to_section(nr));
2003 }
2004
valid_section(struct mem_section * section)2005 static inline int valid_section(struct mem_section *section)
2006 {
2007 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
2008 }
2009
early_section(struct mem_section * section)2010 static inline int early_section(struct mem_section *section)
2011 {
2012 return (section && (section->section_mem_map & SECTION_IS_EARLY));
2013 }
2014
valid_section_nr(unsigned long nr)2015 static inline int valid_section_nr(unsigned long nr)
2016 {
2017 return valid_section(__nr_to_section(nr));
2018 }
2019
online_section(struct mem_section * section)2020 static inline int online_section(struct mem_section *section)
2021 {
2022 return (section && (section->section_mem_map & SECTION_IS_ONLINE));
2023 }
2024
2025 #ifdef CONFIG_ZONE_DEVICE
online_device_section(struct mem_section * section)2026 static inline int online_device_section(struct mem_section *section)
2027 {
2028 unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE;
2029
2030 return section && ((section->section_mem_map & flags) == flags);
2031 }
2032 #else
online_device_section(struct mem_section * section)2033 static inline int online_device_section(struct mem_section *section)
2034 {
2035 return 0;
2036 }
2037 #endif
2038
2039 #ifdef CONFIG_SPARSEMEM_VMEMMAP_PREINIT
preinited_vmemmap_section(struct mem_section * section)2040 static inline int preinited_vmemmap_section(struct mem_section *section)
2041 {
2042 return (section &&
2043 (section->section_mem_map & SECTION_IS_VMEMMAP_PREINIT));
2044 }
2045
2046 void sparse_vmemmap_init_nid_early(int nid);
2047 void sparse_vmemmap_init_nid_late(int nid);
2048
2049 #else
preinited_vmemmap_section(struct mem_section * section)2050 static inline int preinited_vmemmap_section(struct mem_section *section)
2051 {
2052 return 0;
2053 }
sparse_vmemmap_init_nid_early(int nid)2054 static inline void sparse_vmemmap_init_nid_early(int nid)
2055 {
2056 }
2057
sparse_vmemmap_init_nid_late(int nid)2058 static inline void sparse_vmemmap_init_nid_late(int nid)
2059 {
2060 }
2061 #endif
2062
online_section_nr(unsigned long nr)2063 static inline int online_section_nr(unsigned long nr)
2064 {
2065 return online_section(__nr_to_section(nr));
2066 }
2067
2068 #ifdef CONFIG_MEMORY_HOTPLUG
2069 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
2070 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
2071 #endif
2072
__pfn_to_section(unsigned long pfn)2073 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
2074 {
2075 return __nr_to_section(pfn_to_section_nr(pfn));
2076 }
2077
2078 extern unsigned long __highest_present_section_nr;
2079
subsection_map_index(unsigned long pfn)2080 static inline int subsection_map_index(unsigned long pfn)
2081 {
2082 return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
2083 }
2084
2085 #ifdef CONFIG_SPARSEMEM_VMEMMAP
pfn_section_valid(struct mem_section * ms,unsigned long pfn)2086 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
2087 {
2088 int idx = subsection_map_index(pfn);
2089 struct mem_section_usage *usage = READ_ONCE(ms->usage);
2090
2091 return usage ? test_bit(idx, usage->subsection_map) : 0;
2092 }
2093
pfn_section_first_valid(struct mem_section * ms,unsigned long * pfn)2094 static inline bool pfn_section_first_valid(struct mem_section *ms, unsigned long *pfn)
2095 {
2096 struct mem_section_usage *usage = READ_ONCE(ms->usage);
2097 int idx = subsection_map_index(*pfn);
2098 unsigned long bit;
2099
2100 if (!usage)
2101 return false;
2102
2103 if (test_bit(idx, usage->subsection_map))
2104 return true;
2105
2106 /* Find the next subsection that exists */
2107 bit = find_next_bit(usage->subsection_map, SUBSECTIONS_PER_SECTION, idx);
2108 if (bit == SUBSECTIONS_PER_SECTION)
2109 return false;
2110
2111 *pfn = (*pfn & PAGE_SECTION_MASK) + (bit * PAGES_PER_SUBSECTION);
2112 return true;
2113 }
2114 #else
pfn_section_valid(struct mem_section * ms,unsigned long pfn)2115 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
2116 {
2117 return 1;
2118 }
2119
pfn_section_first_valid(struct mem_section * ms,unsigned long * pfn)2120 static inline bool pfn_section_first_valid(struct mem_section *ms, unsigned long *pfn)
2121 {
2122 return true;
2123 }
2124 #endif
2125
2126 void sparse_init_early_section(int nid, struct page *map, unsigned long pnum,
2127 unsigned long flags);
2128
2129 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
2130 /**
2131 * pfn_valid - check if there is a valid memory map entry for a PFN
2132 * @pfn: the page frame number to check
2133 *
2134 * Check if there is a valid memory map entry aka struct page for the @pfn.
2135 * Note, that availability of the memory map entry does not imply that
2136 * there is actual usable memory at that @pfn. The struct page may
2137 * represent a hole or an unusable page frame.
2138 *
2139 * Return: 1 for PFNs that have memory map entries and 0 otherwise
2140 */
pfn_valid(unsigned long pfn)2141 static inline int pfn_valid(unsigned long pfn)
2142 {
2143 struct mem_section *ms;
2144 int ret;
2145
2146 /*
2147 * Ensure the upper PAGE_SHIFT bits are clear in the
2148 * pfn. Else it might lead to false positives when
2149 * some of the upper bits are set, but the lower bits
2150 * match a valid pfn.
2151 */
2152 if (PHYS_PFN(PFN_PHYS(pfn)) != pfn)
2153 return 0;
2154
2155 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
2156 return 0;
2157 ms = __pfn_to_section(pfn);
2158 rcu_read_lock_sched();
2159 if (!valid_section(ms)) {
2160 rcu_read_unlock_sched();
2161 return 0;
2162 }
2163 /*
2164 * Traditionally early sections always returned pfn_valid() for
2165 * the entire section-sized span.
2166 */
2167 ret = early_section(ms) || pfn_section_valid(ms, pfn);
2168 rcu_read_unlock_sched();
2169
2170 return ret;
2171 }
2172
2173 /* Returns end_pfn or higher if no valid PFN remaining in range */
first_valid_pfn(unsigned long pfn,unsigned long end_pfn)2174 static inline unsigned long first_valid_pfn(unsigned long pfn, unsigned long end_pfn)
2175 {
2176 unsigned long nr = pfn_to_section_nr(pfn);
2177
2178 rcu_read_lock_sched();
2179
2180 while (nr <= __highest_present_section_nr && pfn < end_pfn) {
2181 struct mem_section *ms = __pfn_to_section(pfn);
2182
2183 if (valid_section(ms) &&
2184 (early_section(ms) || pfn_section_first_valid(ms, &pfn))) {
2185 rcu_read_unlock_sched();
2186 return pfn;
2187 }
2188
2189 /* Nothing left in this section? Skip to next section */
2190 nr++;
2191 pfn = section_nr_to_pfn(nr);
2192 }
2193
2194 rcu_read_unlock_sched();
2195 return end_pfn;
2196 }
2197
next_valid_pfn(unsigned long pfn,unsigned long end_pfn)2198 static inline unsigned long next_valid_pfn(unsigned long pfn, unsigned long end_pfn)
2199 {
2200 pfn++;
2201
2202 if (pfn >= end_pfn)
2203 return end_pfn;
2204
2205 /*
2206 * Either every PFN within the section (or subsection for VMEMMAP) is
2207 * valid, or none of them are. So there's no point repeating the check
2208 * for every PFN; only call first_valid_pfn() again when crossing a
2209 * (sub)section boundary (i.e. !(pfn & ~PAGE_{SUB,}SECTION_MASK)).
2210 */
2211 if (pfn & ~(IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP) ?
2212 PAGE_SUBSECTION_MASK : PAGE_SECTION_MASK))
2213 return pfn;
2214
2215 return first_valid_pfn(pfn, end_pfn);
2216 }
2217
2218
2219 #define for_each_valid_pfn(_pfn, _start_pfn, _end_pfn) \
2220 for ((_pfn) = first_valid_pfn((_start_pfn), (_end_pfn)); \
2221 (_pfn) < (_end_pfn); \
2222 (_pfn) = next_valid_pfn((_pfn), (_end_pfn)))
2223
2224 #endif
2225
pfn_in_present_section(unsigned long pfn)2226 static inline int pfn_in_present_section(unsigned long pfn)
2227 {
2228 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
2229 return 0;
2230 return present_section(__pfn_to_section(pfn));
2231 }
2232
next_present_section_nr(unsigned long section_nr)2233 static inline unsigned long next_present_section_nr(unsigned long section_nr)
2234 {
2235 while (++section_nr <= __highest_present_section_nr) {
2236 if (present_section_nr(section_nr))
2237 return section_nr;
2238 }
2239
2240 return -1;
2241 }
2242
2243 #define for_each_present_section_nr(start, section_nr) \
2244 for (section_nr = next_present_section_nr(start - 1); \
2245 section_nr != -1; \
2246 section_nr = next_present_section_nr(section_nr))
2247
2248 /*
2249 * These are _only_ used during initialisation, therefore they
2250 * can use __initdata ... They could have names to indicate
2251 * this restriction.
2252 */
2253 #ifdef CONFIG_NUMA
2254 #define pfn_to_nid(pfn) \
2255 ({ \
2256 unsigned long __pfn_to_nid_pfn = (pfn); \
2257 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
2258 })
2259 #else
2260 #define pfn_to_nid(pfn) (0)
2261 #endif
2262
2263 void sparse_init(void);
2264 #else
2265 #define sparse_init() do {} while (0)
2266 #define sparse_index_init(_sec, _nid) do {} while (0)
2267 #define sparse_vmemmap_init_nid_early(_nid, _use) do {} while (0)
2268 #define sparse_vmemmap_init_nid_late(_nid) do {} while (0)
2269 #define pfn_in_present_section pfn_valid
2270 #define subsection_map_init(_pfn, _nr_pages) do {} while (0)
2271 #endif /* CONFIG_SPARSEMEM */
2272
2273 /*
2274 * Fallback case for when the architecture provides its own pfn_valid() but
2275 * not a corresponding for_each_valid_pfn().
2276 */
2277 #ifndef for_each_valid_pfn
2278 #define for_each_valid_pfn(_pfn, _start_pfn, _end_pfn) \
2279 for ((_pfn) = (_start_pfn); (_pfn) < (_end_pfn); (_pfn)++) \
2280 if (pfn_valid(_pfn))
2281 #endif
2282
2283 #endif /* !__GENERATING_BOUNDS.H */
2284 #endif /* !__ASSEMBLY__ */
2285 #endif /* _LINUX_MMZONE_H */
2286