1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * (C) 2003 Red Hat, Inc.
4 * (C) 2004 Dan Brown <dan_brown@ieee.org>
5 * (C) 2004 Kalev Lember <kalev@smartlink.ee>
6 *
7 * Author: David Woodhouse <dwmw2@infradead.org>
8 * Additional Diskonchip 2000 and Millennium support by Dan Brown <dan_brown@ieee.org>
9 * Diskonchip Millennium Plus support by Kalev Lember <kalev@smartlink.ee>
10 *
11 * Error correction code lifted from the old docecc code
12 * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
13 * Copyright (C) 2000 Netgem S.A.
14 * converted to the generic Reed-Solomon library by Thomas Gleixner <tglx@linutronix.de>
15 *
16 * Interface to generic NAND code for M-Systems DiskOnChip devices
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/init.h>
21 #include <linux/sched.h>
22 #include <linux/delay.h>
23 #include <linux/rslib.h>
24 #include <linux/moduleparam.h>
25 #include <linux/slab.h>
26 #include <linux/io.h>
27
28 #include <linux/mtd/mtd.h>
29 #include <linux/mtd/rawnand.h>
30 #include <linux/mtd/doc2000.h>
31 #include <linux/mtd/partitions.h>
32 #include <linux/mtd/inftl.h>
33 #include <linux/module.h>
34
35 /* Where to look for the devices? */
36 #ifndef CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS
37 #define CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS 0
38 #endif
39
40 static unsigned long doc_locations[] __initdata = {
41 #if defined (__alpha__) || defined(__i386__) || defined(__x86_64__)
42 #ifdef CONFIG_MTD_NAND_DISKONCHIP_PROBE_HIGH
43 0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000,
44 0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000,
45 0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000,
46 0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000,
47 0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000,
48 #else
49 0xc8000, 0xca000, 0xcc000, 0xce000,
50 0xd0000, 0xd2000, 0xd4000, 0xd6000,
51 0xd8000, 0xda000, 0xdc000, 0xde000,
52 0xe0000, 0xe2000, 0xe4000, 0xe6000,
53 0xe8000, 0xea000, 0xec000, 0xee000,
54 #endif
55 #endif
56 };
57
58 static struct mtd_info *doclist = NULL;
59
60 struct doc_priv {
61 struct nand_controller base;
62 void __iomem *virtadr;
63 unsigned long physadr;
64 u_char ChipID;
65 u_char CDSNControl;
66 int chips_per_floor; /* The number of chips detected on each floor */
67 int curfloor;
68 int curchip;
69 int mh0_page;
70 int mh1_page;
71 struct rs_control *rs_decoder;
72 struct mtd_info *nextdoc;
73 bool supports_32b_reads;
74
75 /* Handle the last stage of initialization (BBT scan, partitioning) */
76 int (*late_init)(struct mtd_info *mtd);
77 };
78
79 /* This is the ecc value computed by the HW ecc generator upon writing an empty
80 page, one with all 0xff for data. */
81 static u_char empty_write_ecc[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 };
82
83 #define INFTL_BBT_RESERVED_BLOCKS 4
84
85 #define DoC_is_MillenniumPlus(doc) ((doc)->ChipID == DOC_ChipID_DocMilPlus16 || (doc)->ChipID == DOC_ChipID_DocMilPlus32)
86 #define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil)
87 #define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k)
88
89 static int debug = 0;
90 module_param(debug, int, 0);
91
92 static int try_dword = 1;
93 module_param(try_dword, int, 0);
94
95 static int no_ecc_failures = 0;
96 module_param(no_ecc_failures, int, 0);
97
98 static int no_autopart = 0;
99 module_param(no_autopart, int, 0);
100
101 static int show_firmware_partition = 0;
102 module_param(show_firmware_partition, int, 0);
103
104 #ifdef CONFIG_MTD_NAND_DISKONCHIP_BBTWRITE
105 static int inftl_bbt_write = 1;
106 #else
107 static int inftl_bbt_write = 0;
108 #endif
109 module_param(inftl_bbt_write, int, 0);
110
111 static unsigned long doc_config_location = CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS;
112 module_param(doc_config_location, ulong, 0);
113 MODULE_PARM_DESC(doc_config_location, "Physical memory address at which to probe for DiskOnChip");
114
115 /* Sector size for HW ECC */
116 #define SECTOR_SIZE 512
117 /* The sector bytes are packed into NB_DATA 10 bit words */
118 #define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / 10)
119 /* Number of roots */
120 #define NROOTS 4
121 /* First consective root */
122 #define FCR 510
123 /* Number of symbols */
124 #define NN 1023
125
126 /*
127 * The HW decoder in the DoC ASIC's provides us a error syndrome,
128 * which we must convert to a standard syndrome usable by the generic
129 * Reed-Solomon library code.
130 *
131 * Fabrice Bellard figured this out in the old docecc code. I added
132 * some comments, improved a minor bit and converted it to make use
133 * of the generic Reed-Solomon library. tglx
134 */
doc_ecc_decode(struct rs_control * rs,uint8_t * data,uint8_t * ecc)135 static int doc_ecc_decode(struct rs_control *rs, uint8_t *data, uint8_t *ecc)
136 {
137 int i, j, nerr, errpos[8];
138 uint8_t parity;
139 uint16_t ds[4], s[5], tmp, errval[8], syn[4];
140 struct rs_codec *cd = rs->codec;
141
142 memset(syn, 0, sizeof(syn));
143 /* Convert the ecc bytes into words */
144 ds[0] = ((ecc[4] & 0xff) >> 0) | ((ecc[5] & 0x03) << 8);
145 ds[1] = ((ecc[5] & 0xfc) >> 2) | ((ecc[2] & 0x0f) << 6);
146 ds[2] = ((ecc[2] & 0xf0) >> 4) | ((ecc[3] & 0x3f) << 4);
147 ds[3] = ((ecc[3] & 0xc0) >> 6) | ((ecc[0] & 0xff) << 2);
148 parity = ecc[1];
149
150 /* Initialize the syndrome buffer */
151 for (i = 0; i < NROOTS; i++)
152 s[i] = ds[0];
153 /*
154 * Evaluate
155 * s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0]
156 * where x = alpha^(FCR + i)
157 */
158 for (j = 1; j < NROOTS; j++) {
159 if (ds[j] == 0)
160 continue;
161 tmp = cd->index_of[ds[j]];
162 for (i = 0; i < NROOTS; i++)
163 s[i] ^= cd->alpha_to[rs_modnn(cd, tmp + (FCR + i) * j)];
164 }
165
166 /* Calc syn[i] = s[i] / alpha^(v + i) */
167 for (i = 0; i < NROOTS; i++) {
168 if (s[i])
169 syn[i] = rs_modnn(cd, cd->index_of[s[i]] + (NN - FCR - i));
170 }
171 /* Call the decoder library */
172 nerr = decode_rs16(rs, NULL, NULL, 1019, syn, 0, errpos, 0, errval);
173
174 /* Incorrectable errors ? */
175 if (nerr < 0)
176 return nerr;
177
178 /*
179 * Correct the errors. The bitpositions are a bit of magic,
180 * but they are given by the design of the de/encoder circuit
181 * in the DoC ASIC's.
182 */
183 for (i = 0; i < nerr; i++) {
184 int index, bitpos, pos = 1015 - errpos[i];
185 uint8_t val;
186 if (pos >= NB_DATA && pos < 1019)
187 continue;
188 if (pos < NB_DATA) {
189 /* extract bit position (MSB first) */
190 pos = 10 * (NB_DATA - 1 - pos) - 6;
191 /* now correct the following 10 bits. At most two bytes
192 can be modified since pos is even */
193 index = (pos >> 3) ^ 1;
194 bitpos = pos & 7;
195 if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
196 val = (uint8_t) (errval[i] >> (2 + bitpos));
197 parity ^= val;
198 if (index < SECTOR_SIZE)
199 data[index] ^= val;
200 }
201 index = ((pos >> 3) + 1) ^ 1;
202 bitpos = (bitpos + 10) & 7;
203 if (bitpos == 0)
204 bitpos = 8;
205 if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
206 val = (uint8_t) (errval[i] << (8 - bitpos));
207 parity ^= val;
208 if (index < SECTOR_SIZE)
209 data[index] ^= val;
210 }
211 }
212 }
213 /* If the parity is wrong, no rescue possible */
214 return parity ? -EBADMSG : nerr;
215 }
216
DoC_Delay(struct doc_priv * doc,unsigned short cycles)217 static void DoC_Delay(struct doc_priv *doc, unsigned short cycles)
218 {
219 volatile char __always_unused dummy;
220 int i;
221
222 for (i = 0; i < cycles; i++) {
223 if (DoC_is_Millennium(doc))
224 dummy = ReadDOC(doc->virtadr, NOP);
225 else if (DoC_is_MillenniumPlus(doc))
226 dummy = ReadDOC(doc->virtadr, Mplus_NOP);
227 else
228 dummy = ReadDOC(doc->virtadr, DOCStatus);
229 }
230
231 }
232
233 #define CDSN_CTRL_FR_B_MASK (CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1)
234
235 /* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
_DoC_WaitReady(struct doc_priv * doc)236 static int _DoC_WaitReady(struct doc_priv *doc)
237 {
238 void __iomem *docptr = doc->virtadr;
239 unsigned long timeo = jiffies + (HZ * 10);
240
241 if (debug)
242 printk("_DoC_WaitReady...\n");
243 /* Out-of-line routine to wait for chip response */
244 if (DoC_is_MillenniumPlus(doc)) {
245 while ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
246 if (time_after(jiffies, timeo)) {
247 printk("_DoC_WaitReady timed out.\n");
248 return -EIO;
249 }
250 udelay(1);
251 cond_resched();
252 }
253 } else {
254 while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
255 if (time_after(jiffies, timeo)) {
256 printk("_DoC_WaitReady timed out.\n");
257 return -EIO;
258 }
259 udelay(1);
260 cond_resched();
261 }
262 }
263
264 return 0;
265 }
266
DoC_WaitReady(struct doc_priv * doc)267 static inline int DoC_WaitReady(struct doc_priv *doc)
268 {
269 void __iomem *docptr = doc->virtadr;
270 int ret = 0;
271
272 if (DoC_is_MillenniumPlus(doc)) {
273 DoC_Delay(doc, 4);
274
275 if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK)
276 /* Call the out-of-line routine to wait */
277 ret = _DoC_WaitReady(doc);
278 } else {
279 DoC_Delay(doc, 4);
280
281 if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B))
282 /* Call the out-of-line routine to wait */
283 ret = _DoC_WaitReady(doc);
284 DoC_Delay(doc, 2);
285 }
286
287 if (debug)
288 printk("DoC_WaitReady OK\n");
289 return ret;
290 }
291
doc2000_write_byte(struct nand_chip * this,u_char datum)292 static void doc2000_write_byte(struct nand_chip *this, u_char datum)
293 {
294 struct doc_priv *doc = nand_get_controller_data(this);
295 void __iomem *docptr = doc->virtadr;
296
297 if (debug)
298 printk("write_byte %02x\n", datum);
299 WriteDOC(datum, docptr, CDSNSlowIO);
300 WriteDOC(datum, docptr, 2k_CDSN_IO);
301 }
302
doc2000_writebuf(struct nand_chip * this,const u_char * buf,int len)303 static void doc2000_writebuf(struct nand_chip *this, const u_char *buf,
304 int len)
305 {
306 struct doc_priv *doc = nand_get_controller_data(this);
307 void __iomem *docptr = doc->virtadr;
308 int i;
309 if (debug)
310 printk("writebuf of %d bytes: ", len);
311 for (i = 0; i < len; i++) {
312 WriteDOC_(buf[i], docptr, DoC_2k_CDSN_IO + i);
313 if (debug && i < 16)
314 printk("%02x ", buf[i]);
315 }
316 if (debug)
317 printk("\n");
318 }
319
doc2000_readbuf(struct nand_chip * this,u_char * buf,int len)320 static void doc2000_readbuf(struct nand_chip *this, u_char *buf, int len)
321 {
322 struct doc_priv *doc = nand_get_controller_data(this);
323 void __iomem *docptr = doc->virtadr;
324 u32 *buf32 = (u32 *)buf;
325 int i;
326
327 if (debug)
328 printk("readbuf of %d bytes: ", len);
329
330 if (!doc->supports_32b_reads ||
331 ((((unsigned long)buf) | len) & 3)) {
332 for (i = 0; i < len; i++)
333 buf[i] = ReadDOC(docptr, 2k_CDSN_IO + i);
334 } else {
335 for (i = 0; i < len / 4; i++)
336 buf32[i] = readl(docptr + DoC_2k_CDSN_IO + i);
337 }
338 }
339
340 /*
341 * We need our own readid() here because it's called before the NAND chip
342 * has been initialized, and calling nand_op_readid() would lead to a NULL
343 * pointer exception when dereferencing the NAND timings.
344 */
doc200x_readid(struct nand_chip * this,unsigned int cs,u8 * id)345 static void doc200x_readid(struct nand_chip *this, unsigned int cs, u8 *id)
346 {
347 u8 addr = 0;
348 struct nand_op_instr instrs[] = {
349 NAND_OP_CMD(NAND_CMD_READID, 0),
350 NAND_OP_ADDR(1, &addr, 50),
351 NAND_OP_8BIT_DATA_IN(2, id, 0),
352 };
353
354 struct nand_operation op = NAND_OPERATION(cs, instrs);
355
356 if (!id)
357 op.ninstrs--;
358
359 this->controller->ops->exec_op(this, &op, false);
360 }
361
doc200x_ident_chip(struct mtd_info * mtd,int nr)362 static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr)
363 {
364 struct nand_chip *this = mtd_to_nand(mtd);
365 struct doc_priv *doc = nand_get_controller_data(this);
366 uint16_t ret;
367 u8 id[2];
368
369 doc200x_readid(this, nr, id);
370
371 ret = ((u16)id[0] << 8) | id[1];
372
373 if (doc->ChipID == DOC_ChipID_Doc2k && try_dword && !nr) {
374 /* First chip probe. See if we get same results by 32-bit access */
375 union {
376 uint32_t dword;
377 uint8_t byte[4];
378 } ident;
379 void __iomem *docptr = doc->virtadr;
380
381 doc200x_readid(this, nr, NULL);
382
383 ident.dword = readl(docptr + DoC_2k_CDSN_IO);
384 if (((ident.byte[0] << 8) | ident.byte[1]) == ret) {
385 pr_info("DiskOnChip 2000 responds to DWORD access\n");
386 doc->supports_32b_reads = true;
387 }
388 }
389
390 return ret;
391 }
392
doc2000_count_chips(struct mtd_info * mtd)393 static void __init doc2000_count_chips(struct mtd_info *mtd)
394 {
395 struct nand_chip *this = mtd_to_nand(mtd);
396 struct doc_priv *doc = nand_get_controller_data(this);
397 uint16_t mfrid;
398 int i;
399
400 /* Max 4 chips per floor on DiskOnChip 2000 */
401 doc->chips_per_floor = 4;
402
403 /* Find out what the first chip is */
404 mfrid = doc200x_ident_chip(mtd, 0);
405
406 /* Find how many chips in each floor. */
407 for (i = 1; i < 4; i++) {
408 if (doc200x_ident_chip(mtd, i) != mfrid)
409 break;
410 }
411 doc->chips_per_floor = i;
412 pr_debug("Detected %d chips per floor.\n", i);
413 }
414
doc2001_write_byte(struct nand_chip * this,u_char datum)415 static void doc2001_write_byte(struct nand_chip *this, u_char datum)
416 {
417 struct doc_priv *doc = nand_get_controller_data(this);
418 void __iomem *docptr = doc->virtadr;
419
420 WriteDOC(datum, docptr, CDSNSlowIO);
421 WriteDOC(datum, docptr, Mil_CDSN_IO);
422 WriteDOC(datum, docptr, WritePipeTerm);
423 }
424
doc2001_writebuf(struct nand_chip * this,const u_char * buf,int len)425 static void doc2001_writebuf(struct nand_chip *this, const u_char *buf, int len)
426 {
427 struct doc_priv *doc = nand_get_controller_data(this);
428 void __iomem *docptr = doc->virtadr;
429 int i;
430
431 for (i = 0; i < len; i++)
432 WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
433 /* Terminate write pipeline */
434 WriteDOC(0x00, docptr, WritePipeTerm);
435 }
436
doc2001_readbuf(struct nand_chip * this,u_char * buf,int len)437 static void doc2001_readbuf(struct nand_chip *this, u_char *buf, int len)
438 {
439 struct doc_priv *doc = nand_get_controller_data(this);
440 void __iomem *docptr = doc->virtadr;
441 int i;
442
443 /* Start read pipeline */
444 ReadDOC(docptr, ReadPipeInit);
445
446 for (i = 0; i < len - 1; i++)
447 buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff));
448
449 /* Terminate read pipeline */
450 buf[i] = ReadDOC(docptr, LastDataRead);
451 }
452
doc2001plus_writebuf(struct nand_chip * this,const u_char * buf,int len)453 static void doc2001plus_writebuf(struct nand_chip *this, const u_char *buf, int len)
454 {
455 struct doc_priv *doc = nand_get_controller_data(this);
456 void __iomem *docptr = doc->virtadr;
457 int i;
458
459 if (debug)
460 printk("writebuf of %d bytes: ", len);
461 for (i = 0; i < len; i++) {
462 WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
463 if (debug && i < 16)
464 printk("%02x ", buf[i]);
465 }
466 if (debug)
467 printk("\n");
468 }
469
doc2001plus_readbuf(struct nand_chip * this,u_char * buf,int len)470 static void doc2001plus_readbuf(struct nand_chip *this, u_char *buf, int len)
471 {
472 struct doc_priv *doc = nand_get_controller_data(this);
473 void __iomem *docptr = doc->virtadr;
474 int i;
475
476 if (debug)
477 printk("readbuf of %d bytes: ", len);
478
479 /* Start read pipeline */
480 ReadDOC(docptr, Mplus_ReadPipeInit);
481 ReadDOC(docptr, Mplus_ReadPipeInit);
482
483 for (i = 0; i < len - 2; i++) {
484 buf[i] = ReadDOC(docptr, Mil_CDSN_IO);
485 if (debug && i < 16)
486 printk("%02x ", buf[i]);
487 }
488
489 /* Terminate read pipeline */
490 if (len >= 2) {
491 buf[len - 2] = ReadDOC(docptr, Mplus_LastDataRead);
492 if (debug && i < 16)
493 printk("%02x ", buf[len - 2]);
494 }
495
496 buf[len - 1] = ReadDOC(docptr, Mplus_LastDataRead);
497 if (debug && i < 16)
498 printk("%02x ", buf[len - 1]);
499 if (debug)
500 printk("\n");
501 }
502
doc200x_write_control(struct doc_priv * doc,u8 value)503 static void doc200x_write_control(struct doc_priv *doc, u8 value)
504 {
505 WriteDOC(value, doc->virtadr, CDSNControl);
506 /* 11.4.3 -- 4 NOPs after CSDNControl write */
507 DoC_Delay(doc, 4);
508 }
509
doc200x_exec_instr(struct nand_chip * this,const struct nand_op_instr * instr)510 static void doc200x_exec_instr(struct nand_chip *this,
511 const struct nand_op_instr *instr)
512 {
513 struct doc_priv *doc = nand_get_controller_data(this);
514 unsigned int i;
515
516 switch (instr->type) {
517 case NAND_OP_CMD_INSTR:
518 doc200x_write_control(doc, CDSN_CTRL_CE | CDSN_CTRL_CLE);
519 doc2000_write_byte(this, instr->ctx.cmd.opcode);
520 break;
521
522 case NAND_OP_ADDR_INSTR:
523 doc200x_write_control(doc, CDSN_CTRL_CE | CDSN_CTRL_ALE);
524 for (i = 0; i < instr->ctx.addr.naddrs; i++) {
525 u8 addr = instr->ctx.addr.addrs[i];
526
527 if (DoC_is_2000(doc))
528 doc2000_write_byte(this, addr);
529 else
530 doc2001_write_byte(this, addr);
531 }
532 break;
533
534 case NAND_OP_DATA_IN_INSTR:
535 doc200x_write_control(doc, CDSN_CTRL_CE);
536 if (DoC_is_2000(doc))
537 doc2000_readbuf(this, instr->ctx.data.buf.in,
538 instr->ctx.data.len);
539 else
540 doc2001_readbuf(this, instr->ctx.data.buf.in,
541 instr->ctx.data.len);
542 break;
543
544 case NAND_OP_DATA_OUT_INSTR:
545 doc200x_write_control(doc, CDSN_CTRL_CE);
546 if (DoC_is_2000(doc))
547 doc2000_writebuf(this, instr->ctx.data.buf.out,
548 instr->ctx.data.len);
549 else
550 doc2001_writebuf(this, instr->ctx.data.buf.out,
551 instr->ctx.data.len);
552 break;
553
554 case NAND_OP_WAITRDY_INSTR:
555 DoC_WaitReady(doc);
556 break;
557 }
558
559 if (instr->delay_ns)
560 ndelay(instr->delay_ns);
561 }
562
doc200x_exec_op(struct nand_chip * this,const struct nand_operation * op,bool check_only)563 static int doc200x_exec_op(struct nand_chip *this,
564 const struct nand_operation *op,
565 bool check_only)
566 {
567 struct doc_priv *doc = nand_get_controller_data(this);
568 unsigned int i;
569
570 if (check_only)
571 return true;
572
573 doc->curchip = op->cs % doc->chips_per_floor;
574 doc->curfloor = op->cs / doc->chips_per_floor;
575
576 WriteDOC(doc->curfloor, doc->virtadr, FloorSelect);
577 WriteDOC(doc->curchip, doc->virtadr, CDSNDeviceSelect);
578
579 /* Assert CE pin */
580 doc200x_write_control(doc, CDSN_CTRL_CE);
581
582 for (i = 0; i < op->ninstrs; i++)
583 doc200x_exec_instr(this, &op->instrs[i]);
584
585 /* De-assert CE pin */
586 doc200x_write_control(doc, 0);
587
588 return 0;
589 }
590
doc2001plus_write_pipe_term(struct doc_priv * doc)591 static void doc2001plus_write_pipe_term(struct doc_priv *doc)
592 {
593 WriteDOC(0x00, doc->virtadr, Mplus_WritePipeTerm);
594 WriteDOC(0x00, doc->virtadr, Mplus_WritePipeTerm);
595 }
596
doc2001plus_exec_instr(struct nand_chip * this,const struct nand_op_instr * instr)597 static void doc2001plus_exec_instr(struct nand_chip *this,
598 const struct nand_op_instr *instr)
599 {
600 struct doc_priv *doc = nand_get_controller_data(this);
601 unsigned int i;
602
603 switch (instr->type) {
604 case NAND_OP_CMD_INSTR:
605 WriteDOC(instr->ctx.cmd.opcode, doc->virtadr, Mplus_FlashCmd);
606 doc2001plus_write_pipe_term(doc);
607 break;
608
609 case NAND_OP_ADDR_INSTR:
610 for (i = 0; i < instr->ctx.addr.naddrs; i++) {
611 u8 addr = instr->ctx.addr.addrs[i];
612
613 WriteDOC(addr, doc->virtadr, Mplus_FlashAddress);
614 }
615 doc2001plus_write_pipe_term(doc);
616 /* deassert ALE */
617 WriteDOC(0, doc->virtadr, Mplus_FlashControl);
618 break;
619
620 case NAND_OP_DATA_IN_INSTR:
621 doc2001plus_readbuf(this, instr->ctx.data.buf.in,
622 instr->ctx.data.len);
623 break;
624 case NAND_OP_DATA_OUT_INSTR:
625 doc2001plus_writebuf(this, instr->ctx.data.buf.out,
626 instr->ctx.data.len);
627 doc2001plus_write_pipe_term(doc);
628 break;
629 case NAND_OP_WAITRDY_INSTR:
630 DoC_WaitReady(doc);
631 break;
632 }
633
634 if (instr->delay_ns)
635 ndelay(instr->delay_ns);
636 }
637
doc2001plus_exec_op(struct nand_chip * this,const struct nand_operation * op,bool check_only)638 static int doc2001plus_exec_op(struct nand_chip *this,
639 const struct nand_operation *op,
640 bool check_only)
641 {
642 struct doc_priv *doc = nand_get_controller_data(this);
643 unsigned int i;
644
645 if (check_only)
646 return true;
647
648 doc->curchip = op->cs % doc->chips_per_floor;
649 doc->curfloor = op->cs / doc->chips_per_floor;
650
651 /* Assert ChipEnable and deassert WriteProtect */
652 WriteDOC(DOC_FLASH_CE, doc->virtadr, Mplus_FlashSelect);
653
654 for (i = 0; i < op->ninstrs; i++)
655 doc2001plus_exec_instr(this, &op->instrs[i]);
656
657 /* De-assert ChipEnable */
658 WriteDOC(0, doc->virtadr, Mplus_FlashSelect);
659
660 return 0;
661 }
662
doc200x_enable_hwecc(struct nand_chip * this,int mode)663 static void doc200x_enable_hwecc(struct nand_chip *this, int mode)
664 {
665 struct doc_priv *doc = nand_get_controller_data(this);
666 void __iomem *docptr = doc->virtadr;
667
668 /* Prime the ECC engine */
669 switch (mode) {
670 case NAND_ECC_READ:
671 WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
672 WriteDOC(DOC_ECC_EN, docptr, ECCConf);
673 break;
674 case NAND_ECC_WRITE:
675 WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
676 WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf);
677 break;
678 }
679 }
680
doc2001plus_enable_hwecc(struct nand_chip * this,int mode)681 static void doc2001plus_enable_hwecc(struct nand_chip *this, int mode)
682 {
683 struct doc_priv *doc = nand_get_controller_data(this);
684 void __iomem *docptr = doc->virtadr;
685
686 /* Prime the ECC engine */
687 switch (mode) {
688 case NAND_ECC_READ:
689 WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
690 WriteDOC(DOC_ECC_EN, docptr, Mplus_ECCConf);
691 break;
692 case NAND_ECC_WRITE:
693 WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
694 WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, Mplus_ECCConf);
695 break;
696 }
697 }
698
699 /* This code is only called on write */
doc200x_calculate_ecc(struct nand_chip * this,const u_char * dat,unsigned char * ecc_code)700 static int doc200x_calculate_ecc(struct nand_chip *this, const u_char *dat,
701 unsigned char *ecc_code)
702 {
703 struct doc_priv *doc = nand_get_controller_data(this);
704 void __iomem *docptr = doc->virtadr;
705 int i;
706 int __always_unused emptymatch = 1;
707
708 /* flush the pipeline */
709 if (DoC_is_2000(doc)) {
710 WriteDOC(doc->CDSNControl & ~CDSN_CTRL_FLASH_IO, docptr, CDSNControl);
711 WriteDOC(0, docptr, 2k_CDSN_IO);
712 WriteDOC(0, docptr, 2k_CDSN_IO);
713 WriteDOC(0, docptr, 2k_CDSN_IO);
714 WriteDOC(doc->CDSNControl, docptr, CDSNControl);
715 } else if (DoC_is_MillenniumPlus(doc)) {
716 WriteDOC(0, docptr, Mplus_NOP);
717 WriteDOC(0, docptr, Mplus_NOP);
718 WriteDOC(0, docptr, Mplus_NOP);
719 } else {
720 WriteDOC(0, docptr, NOP);
721 WriteDOC(0, docptr, NOP);
722 WriteDOC(0, docptr, NOP);
723 }
724
725 for (i = 0; i < 6; i++) {
726 if (DoC_is_MillenniumPlus(doc))
727 ecc_code[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
728 else
729 ecc_code[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
730 if (ecc_code[i] != empty_write_ecc[i])
731 emptymatch = 0;
732 }
733 if (DoC_is_MillenniumPlus(doc))
734 WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
735 else
736 WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
737 #if 0
738 /* If emptymatch=1, we might have an all-0xff data buffer. Check. */
739 if (emptymatch) {
740 /* Note: this somewhat expensive test should not be triggered
741 often. It could be optimized away by examining the data in
742 the writebuf routine, and remembering the result. */
743 for (i = 0; i < 512; i++) {
744 if (dat[i] == 0xff)
745 continue;
746 emptymatch = 0;
747 break;
748 }
749 }
750 /* If emptymatch still =1, we do have an all-0xff data buffer.
751 Return all-0xff ecc value instead of the computed one, so
752 it'll look just like a freshly-erased page. */
753 if (emptymatch)
754 memset(ecc_code, 0xff, 6);
755 #endif
756 return 0;
757 }
758
doc200x_correct_data(struct nand_chip * this,u_char * dat,u_char * read_ecc,u_char * isnull)759 static int doc200x_correct_data(struct nand_chip *this, u_char *dat,
760 u_char *read_ecc, u_char *isnull)
761 {
762 int i, ret = 0;
763 struct doc_priv *doc = nand_get_controller_data(this);
764 void __iomem *docptr = doc->virtadr;
765 uint8_t calc_ecc[6];
766 volatile u_char dummy;
767
768 /* flush the pipeline */
769 if (DoC_is_2000(doc)) {
770 dummy = ReadDOC(docptr, 2k_ECCStatus);
771 dummy = ReadDOC(docptr, 2k_ECCStatus);
772 dummy = ReadDOC(docptr, 2k_ECCStatus);
773 } else if (DoC_is_MillenniumPlus(doc)) {
774 dummy = ReadDOC(docptr, Mplus_ECCConf);
775 dummy = ReadDOC(docptr, Mplus_ECCConf);
776 dummy = ReadDOC(docptr, Mplus_ECCConf);
777 } else {
778 dummy = ReadDOC(docptr, ECCConf);
779 dummy = ReadDOC(docptr, ECCConf);
780 dummy = ReadDOC(docptr, ECCConf);
781 }
782
783 /* Error occurred ? */
784 if (dummy & 0x80) {
785 for (i = 0; i < 6; i++) {
786 if (DoC_is_MillenniumPlus(doc))
787 calc_ecc[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
788 else
789 calc_ecc[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
790 }
791
792 ret = doc_ecc_decode(doc->rs_decoder, dat, calc_ecc);
793 if (ret > 0)
794 pr_err("doc200x_correct_data corrected %d errors\n",
795 ret);
796 }
797 if (DoC_is_MillenniumPlus(doc))
798 WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
799 else
800 WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
801 if (no_ecc_failures && mtd_is_eccerr(ret)) {
802 pr_err("suppressing ECC failure\n");
803 ret = 0;
804 }
805 return ret;
806 }
807
808 //u_char mydatabuf[528];
809
doc200x_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)810 static int doc200x_ooblayout_ecc(struct mtd_info *mtd, int section,
811 struct mtd_oob_region *oobregion)
812 {
813 if (section)
814 return -ERANGE;
815
816 oobregion->offset = 0;
817 oobregion->length = 6;
818
819 return 0;
820 }
821
doc200x_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)822 static int doc200x_ooblayout_free(struct mtd_info *mtd, int section,
823 struct mtd_oob_region *oobregion)
824 {
825 if (section > 1)
826 return -ERANGE;
827
828 /*
829 * The strange out-of-order free bytes definition is a (possibly
830 * unneeded) attempt to retain compatibility. It used to read:
831 * .oobfree = { {8, 8} }
832 * Since that leaves two bytes unusable, it was changed. But the
833 * following scheme might affect existing jffs2 installs by moving the
834 * cleanmarker:
835 * .oobfree = { {6, 10} }
836 * jffs2 seems to handle the above gracefully, but the current scheme
837 * seems safer. The only problem with it is that any code retrieving
838 * free bytes position must be able to handle out-of-order segments.
839 */
840 if (!section) {
841 oobregion->offset = 8;
842 oobregion->length = 8;
843 } else {
844 oobregion->offset = 6;
845 oobregion->length = 2;
846 }
847
848 return 0;
849 }
850
851 static const struct mtd_ooblayout_ops doc200x_ooblayout_ops = {
852 .ecc = doc200x_ooblayout_ecc,
853 .free = doc200x_ooblayout_free,
854 };
855
856 /* Find the (I)NFTL Media Header, and optionally also the mirror media header.
857 On successful return, buf will contain a copy of the media header for
858 further processing. id is the string to scan for, and will presumably be
859 either "ANAND" or "BNAND". If findmirror=1, also look for the mirror media
860 header. The page #s of the found media headers are placed in mh0_page and
861 mh1_page in the DOC private structure. */
find_media_headers(struct mtd_info * mtd,u_char * buf,const char * id,int findmirror)862 static int __init find_media_headers(struct mtd_info *mtd, u_char *buf, const char *id, int findmirror)
863 {
864 struct nand_chip *this = mtd_to_nand(mtd);
865 struct doc_priv *doc = nand_get_controller_data(this);
866 unsigned offs;
867 int ret;
868 size_t retlen;
869
870 for (offs = 0; offs < mtd->size; offs += mtd->erasesize) {
871 ret = mtd_read(mtd, offs, mtd->writesize, &retlen, buf);
872 if (retlen != mtd->writesize)
873 continue;
874 if (ret) {
875 pr_warn("ECC error scanning DOC at 0x%x\n", offs);
876 }
877 if (memcmp(buf, id, 6))
878 continue;
879 pr_info("Found DiskOnChip %s Media Header at 0x%x\n", id, offs);
880 if (doc->mh0_page == -1) {
881 doc->mh0_page = offs >> this->page_shift;
882 if (!findmirror)
883 return 1;
884 continue;
885 }
886 doc->mh1_page = offs >> this->page_shift;
887 return 2;
888 }
889 if (doc->mh0_page == -1) {
890 pr_warn("DiskOnChip %s Media Header not found.\n", id);
891 return 0;
892 }
893 /* Only one mediaheader was found. We want buf to contain a
894 mediaheader on return, so we'll have to re-read the one we found. */
895 offs = doc->mh0_page << this->page_shift;
896 ret = mtd_read(mtd, offs, mtd->writesize, &retlen, buf);
897 if (retlen != mtd->writesize) {
898 /* Insanity. Give up. */
899 pr_err("Read DiskOnChip Media Header once, but can't reread it???\n");
900 return 0;
901 }
902 return 1;
903 }
904
nftl_partscan(struct mtd_info * mtd,struct mtd_partition * parts)905 static inline int __init nftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
906 {
907 struct nand_chip *this = mtd_to_nand(mtd);
908 struct doc_priv *doc = nand_get_controller_data(this);
909 struct nand_memory_organization *memorg;
910 int ret = 0;
911 u_char *buf;
912 struct NFTLMediaHeader *mh;
913 const unsigned psize = 1 << this->page_shift;
914 int numparts = 0;
915 unsigned blocks, maxblocks;
916 int offs, numheaders;
917
918 memorg = nanddev_get_memorg(&this->base);
919
920 buf = kmalloc(mtd->writesize, GFP_KERNEL);
921 if (!buf) {
922 return 0;
923 }
924 if (!(numheaders = find_media_headers(mtd, buf, "ANAND", 1)))
925 goto out;
926 mh = (struct NFTLMediaHeader *)buf;
927
928 le16_to_cpus(&mh->NumEraseUnits);
929 le16_to_cpus(&mh->FirstPhysicalEUN);
930 le32_to_cpus(&mh->FormattedSize);
931
932 pr_info(" DataOrgID = %s\n"
933 " NumEraseUnits = %d\n"
934 " FirstPhysicalEUN = %d\n"
935 " FormattedSize = %d\n"
936 " UnitSizeFactor = %d\n",
937 mh->DataOrgID, mh->NumEraseUnits,
938 mh->FirstPhysicalEUN, mh->FormattedSize,
939 mh->UnitSizeFactor);
940
941 blocks = mtd->size >> this->phys_erase_shift;
942 maxblocks = min(32768U, mtd->erasesize - psize);
943
944 if (mh->UnitSizeFactor == 0x00) {
945 /* Auto-determine UnitSizeFactor. The constraints are:
946 - There can be at most 32768 virtual blocks.
947 - There can be at most (virtual block size - page size)
948 virtual blocks (because MediaHeader+BBT must fit in 1).
949 */
950 mh->UnitSizeFactor = 0xff;
951 while (blocks > maxblocks) {
952 blocks >>= 1;
953 maxblocks = min(32768U, (maxblocks << 1) + psize);
954 mh->UnitSizeFactor--;
955 }
956 pr_warn("UnitSizeFactor=0x00 detected. Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor);
957 }
958
959 /* NOTE: The lines below modify internal variables of the NAND and MTD
960 layers; variables with have already been configured by nand_scan.
961 Unfortunately, we didn't know before this point what these values
962 should be. Thus, this code is somewhat dependent on the exact
963 implementation of the NAND layer. */
964 if (mh->UnitSizeFactor != 0xff) {
965 this->bbt_erase_shift += (0xff - mh->UnitSizeFactor);
966 memorg->pages_per_eraseblock <<= (0xff - mh->UnitSizeFactor);
967 mtd->erasesize <<= (0xff - mh->UnitSizeFactor);
968 pr_info("Setting virtual erase size to %d\n", mtd->erasesize);
969 blocks = mtd->size >> this->bbt_erase_shift;
970 maxblocks = min(32768U, mtd->erasesize - psize);
971 }
972
973 if (blocks > maxblocks) {
974 pr_err("UnitSizeFactor of 0x%02x is inconsistent with device size. Aborting.\n", mh->UnitSizeFactor);
975 goto out;
976 }
977
978 /* Skip past the media headers. */
979 offs = max(doc->mh0_page, doc->mh1_page);
980 offs <<= this->page_shift;
981 offs += mtd->erasesize;
982
983 if (show_firmware_partition == 1) {
984 parts[0].name = " DiskOnChip Firmware / Media Header partition";
985 parts[0].offset = 0;
986 parts[0].size = offs;
987 numparts = 1;
988 }
989
990 parts[numparts].name = " DiskOnChip BDTL partition";
991 parts[numparts].offset = offs;
992 parts[numparts].size = (mh->NumEraseUnits - numheaders) << this->bbt_erase_shift;
993
994 offs += parts[numparts].size;
995 numparts++;
996
997 if (offs < mtd->size) {
998 parts[numparts].name = " DiskOnChip Remainder partition";
999 parts[numparts].offset = offs;
1000 parts[numparts].size = mtd->size - offs;
1001 numparts++;
1002 }
1003
1004 ret = numparts;
1005 out:
1006 kfree(buf);
1007 return ret;
1008 }
1009
1010 /* This is a stripped-down copy of the code in inftlmount.c */
inftl_partscan(struct mtd_info * mtd,struct mtd_partition * parts)1011 static inline int __init inftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
1012 {
1013 struct nand_chip *this = mtd_to_nand(mtd);
1014 struct doc_priv *doc = nand_get_controller_data(this);
1015 int ret = 0;
1016 u_char *buf;
1017 struct INFTLMediaHeader *mh;
1018 struct INFTLPartition *ip;
1019 int numparts = 0;
1020 int blocks;
1021 int vshift, lastvunit = 0;
1022 int i;
1023 int end = mtd->size;
1024
1025 if (inftl_bbt_write)
1026 end -= (INFTL_BBT_RESERVED_BLOCKS << this->phys_erase_shift);
1027
1028 buf = kmalloc(mtd->writesize, GFP_KERNEL);
1029 if (!buf) {
1030 return 0;
1031 }
1032
1033 if (!find_media_headers(mtd, buf, "BNAND", 0))
1034 goto out;
1035 doc->mh1_page = doc->mh0_page + (4096 >> this->page_shift);
1036 mh = (struct INFTLMediaHeader *)buf;
1037
1038 le32_to_cpus(&mh->NoOfBootImageBlocks);
1039 le32_to_cpus(&mh->NoOfBinaryPartitions);
1040 le32_to_cpus(&mh->NoOfBDTLPartitions);
1041 le32_to_cpus(&mh->BlockMultiplierBits);
1042 le32_to_cpus(&mh->FormatFlags);
1043 le32_to_cpus(&mh->PercentUsed);
1044
1045 pr_info(" bootRecordID = %s\n"
1046 " NoOfBootImageBlocks = %d\n"
1047 " NoOfBinaryPartitions = %d\n"
1048 " NoOfBDTLPartitions = %d\n"
1049 " BlockMultiplierBits = %d\n"
1050 " FormatFlgs = %d\n"
1051 " OsakVersion = %d.%d.%d.%d\n"
1052 " PercentUsed = %d\n",
1053 mh->bootRecordID, mh->NoOfBootImageBlocks,
1054 mh->NoOfBinaryPartitions,
1055 mh->NoOfBDTLPartitions,
1056 mh->BlockMultiplierBits, mh->FormatFlags,
1057 ((unsigned char *) &mh->OsakVersion)[0] & 0xf,
1058 ((unsigned char *) &mh->OsakVersion)[1] & 0xf,
1059 ((unsigned char *) &mh->OsakVersion)[2] & 0xf,
1060 ((unsigned char *) &mh->OsakVersion)[3] & 0xf,
1061 mh->PercentUsed);
1062
1063 vshift = this->phys_erase_shift + mh->BlockMultiplierBits;
1064
1065 blocks = mtd->size >> vshift;
1066 if (blocks > 32768) {
1067 pr_err("BlockMultiplierBits=%d is inconsistent with device size. Aborting.\n", mh->BlockMultiplierBits);
1068 goto out;
1069 }
1070
1071 blocks = doc->chips_per_floor << (this->chip_shift - this->phys_erase_shift);
1072 if (inftl_bbt_write && (blocks > mtd->erasesize)) {
1073 pr_err("Writeable BBTs spanning more than one erase block are not yet supported. FIX ME!\n");
1074 goto out;
1075 }
1076
1077 /* Scan the partitions */
1078 for (i = 0; (i < 4); i++) {
1079 ip = &(mh->Partitions[i]);
1080 le32_to_cpus(&ip->virtualUnits);
1081 le32_to_cpus(&ip->firstUnit);
1082 le32_to_cpus(&ip->lastUnit);
1083 le32_to_cpus(&ip->flags);
1084 le32_to_cpus(&ip->spareUnits);
1085 le32_to_cpus(&ip->Reserved0);
1086
1087 pr_info(" PARTITION[%d] ->\n"
1088 " virtualUnits = %d\n"
1089 " firstUnit = %d\n"
1090 " lastUnit = %d\n"
1091 " flags = 0x%x\n"
1092 " spareUnits = %d\n",
1093 i, ip->virtualUnits, ip->firstUnit,
1094 ip->lastUnit, ip->flags,
1095 ip->spareUnits);
1096
1097 if ((show_firmware_partition == 1) &&
1098 (i == 0) && (ip->firstUnit > 0)) {
1099 parts[0].name = " DiskOnChip IPL / Media Header partition";
1100 parts[0].offset = 0;
1101 parts[0].size = mtd->erasesize * ip->firstUnit;
1102 numparts = 1;
1103 }
1104
1105 if (ip->flags & INFTL_BINARY)
1106 parts[numparts].name = " DiskOnChip BDK partition";
1107 else
1108 parts[numparts].name = " DiskOnChip BDTL partition";
1109 parts[numparts].offset = ip->firstUnit << vshift;
1110 parts[numparts].size = (1 + ip->lastUnit - ip->firstUnit) << vshift;
1111 numparts++;
1112 if (ip->lastUnit > lastvunit)
1113 lastvunit = ip->lastUnit;
1114 if (ip->flags & INFTL_LAST)
1115 break;
1116 }
1117 lastvunit++;
1118 if ((lastvunit << vshift) < end) {
1119 parts[numparts].name = " DiskOnChip Remainder partition";
1120 parts[numparts].offset = lastvunit << vshift;
1121 parts[numparts].size = end - parts[numparts].offset;
1122 numparts++;
1123 }
1124 ret = numparts;
1125 out:
1126 kfree(buf);
1127 return ret;
1128 }
1129
nftl_scan_bbt(struct mtd_info * mtd)1130 static int __init nftl_scan_bbt(struct mtd_info *mtd)
1131 {
1132 int ret, numparts;
1133 struct nand_chip *this = mtd_to_nand(mtd);
1134 struct doc_priv *doc = nand_get_controller_data(this);
1135 struct mtd_partition parts[2];
1136
1137 memset((char *)parts, 0, sizeof(parts));
1138 /* On NFTL, we have to find the media headers before we can read the
1139 BBTs, since they're stored in the media header eraseblocks. */
1140 numparts = nftl_partscan(mtd, parts);
1141 if (!numparts)
1142 return -EIO;
1143 this->bbt_td->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
1144 NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
1145 NAND_BBT_VERSION;
1146 this->bbt_td->veroffs = 7;
1147 this->bbt_td->pages[0] = doc->mh0_page + 1;
1148 if (doc->mh1_page != -1) {
1149 this->bbt_md->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
1150 NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
1151 NAND_BBT_VERSION;
1152 this->bbt_md->veroffs = 7;
1153 this->bbt_md->pages[0] = doc->mh1_page + 1;
1154 } else {
1155 this->bbt_md = NULL;
1156 }
1157
1158 ret = nand_create_bbt(this);
1159 if (ret)
1160 return ret;
1161
1162 return mtd_device_register(mtd, parts, no_autopart ? 0 : numparts);
1163 }
1164
inftl_scan_bbt(struct mtd_info * mtd)1165 static int __init inftl_scan_bbt(struct mtd_info *mtd)
1166 {
1167 int ret, numparts;
1168 struct nand_chip *this = mtd_to_nand(mtd);
1169 struct doc_priv *doc = nand_get_controller_data(this);
1170 struct mtd_partition parts[5];
1171
1172 if (nanddev_ntargets(&this->base) > doc->chips_per_floor) {
1173 pr_err("Multi-floor INFTL devices not yet supported.\n");
1174 return -EIO;
1175 }
1176
1177 if (DoC_is_MillenniumPlus(doc)) {
1178 this->bbt_td->options = NAND_BBT_2BIT | NAND_BBT_ABSPAGE;
1179 if (inftl_bbt_write)
1180 this->bbt_td->options |= NAND_BBT_WRITE;
1181 this->bbt_td->pages[0] = 2;
1182 this->bbt_md = NULL;
1183 } else {
1184 this->bbt_td->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
1185 if (inftl_bbt_write)
1186 this->bbt_td->options |= NAND_BBT_WRITE;
1187 this->bbt_td->offs = 8;
1188 this->bbt_td->len = 8;
1189 this->bbt_td->veroffs = 7;
1190 this->bbt_td->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
1191 this->bbt_td->reserved_block_code = 0x01;
1192 this->bbt_td->pattern = "MSYS_BBT";
1193
1194 this->bbt_md->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
1195 if (inftl_bbt_write)
1196 this->bbt_md->options |= NAND_BBT_WRITE;
1197 this->bbt_md->offs = 8;
1198 this->bbt_md->len = 8;
1199 this->bbt_md->veroffs = 7;
1200 this->bbt_md->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
1201 this->bbt_md->reserved_block_code = 0x01;
1202 this->bbt_md->pattern = "TBB_SYSM";
1203 }
1204
1205 ret = nand_create_bbt(this);
1206 if (ret)
1207 return ret;
1208
1209 memset((char *)parts, 0, sizeof(parts));
1210 numparts = inftl_partscan(mtd, parts);
1211 /* At least for now, require the INFTL Media Header. We could probably
1212 do without it for non-INFTL use, since all it gives us is
1213 autopartitioning, but I want to give it more thought. */
1214 if (!numparts)
1215 return -EIO;
1216 return mtd_device_register(mtd, parts, no_autopart ? 0 : numparts);
1217 }
1218
doc2000_init(struct mtd_info * mtd)1219 static inline int __init doc2000_init(struct mtd_info *mtd)
1220 {
1221 struct nand_chip *this = mtd_to_nand(mtd);
1222 struct doc_priv *doc = nand_get_controller_data(this);
1223
1224 doc->late_init = nftl_scan_bbt;
1225
1226 doc->CDSNControl = CDSN_CTRL_FLASH_IO | CDSN_CTRL_ECC_IO;
1227 doc2000_count_chips(mtd);
1228 mtd->name = "DiskOnChip 2000 (NFTL Model)";
1229 return (4 * doc->chips_per_floor);
1230 }
1231
doc2001_init(struct mtd_info * mtd)1232 static inline int __init doc2001_init(struct mtd_info *mtd)
1233 {
1234 struct nand_chip *this = mtd_to_nand(mtd);
1235 struct doc_priv *doc = nand_get_controller_data(this);
1236
1237 ReadDOC(doc->virtadr, ChipID);
1238 ReadDOC(doc->virtadr, ChipID);
1239 ReadDOC(doc->virtadr, ChipID);
1240 if (ReadDOC(doc->virtadr, ChipID) != DOC_ChipID_DocMil) {
1241 /* It's not a Millennium; it's one of the newer
1242 DiskOnChip 2000 units with a similar ASIC.
1243 Treat it like a Millennium, except that it
1244 can have multiple chips. */
1245 doc2000_count_chips(mtd);
1246 mtd->name = "DiskOnChip 2000 (INFTL Model)";
1247 doc->late_init = inftl_scan_bbt;
1248 return (4 * doc->chips_per_floor);
1249 } else {
1250 /* Bog-standard Millennium */
1251 doc->chips_per_floor = 1;
1252 mtd->name = "DiskOnChip Millennium";
1253 doc->late_init = nftl_scan_bbt;
1254 return 1;
1255 }
1256 }
1257
doc2001plus_init(struct mtd_info * mtd)1258 static inline int __init doc2001plus_init(struct mtd_info *mtd)
1259 {
1260 struct nand_chip *this = mtd_to_nand(mtd);
1261 struct doc_priv *doc = nand_get_controller_data(this);
1262
1263 doc->late_init = inftl_scan_bbt;
1264 this->ecc.hwctl = doc2001plus_enable_hwecc;
1265
1266 doc->chips_per_floor = 1;
1267 mtd->name = "DiskOnChip Millennium Plus";
1268
1269 return 1;
1270 }
1271
doc200x_attach_chip(struct nand_chip * chip)1272 static int doc200x_attach_chip(struct nand_chip *chip)
1273 {
1274 if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
1275 return 0;
1276
1277 chip->ecc.placement = NAND_ECC_PLACEMENT_INTERLEAVED;
1278 chip->ecc.size = 512;
1279 chip->ecc.bytes = 6;
1280 chip->ecc.strength = 2;
1281 chip->ecc.options = NAND_ECC_GENERIC_ERASED_CHECK;
1282 chip->ecc.hwctl = doc200x_enable_hwecc;
1283 chip->ecc.calculate = doc200x_calculate_ecc;
1284 chip->ecc.correct = doc200x_correct_data;
1285
1286 return 0;
1287 }
1288
1289 static const struct nand_controller_ops doc200x_ops = {
1290 .exec_op = doc200x_exec_op,
1291 .attach_chip = doc200x_attach_chip,
1292 };
1293
1294 static const struct nand_controller_ops doc2001plus_ops = {
1295 .exec_op = doc2001plus_exec_op,
1296 .attach_chip = doc200x_attach_chip,
1297 };
1298
doc_probe(unsigned long physadr)1299 static int __init doc_probe(unsigned long physadr)
1300 {
1301 struct nand_chip *nand = NULL;
1302 struct doc_priv *doc = NULL;
1303 unsigned char ChipID;
1304 struct mtd_info *mtd;
1305 void __iomem *virtadr;
1306 unsigned char save_control;
1307 unsigned char tmp, tmpb, tmpc;
1308 int reg, len, numchips;
1309 int ret = 0;
1310
1311 if (!request_mem_region(physadr, DOC_IOREMAP_LEN, "DiskOnChip"))
1312 return -EBUSY;
1313 virtadr = ioremap(physadr, DOC_IOREMAP_LEN);
1314 if (!virtadr) {
1315 pr_err("Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n",
1316 DOC_IOREMAP_LEN, physadr);
1317 ret = -EIO;
1318 goto error_ioremap;
1319 }
1320
1321 /* It's not possible to cleanly detect the DiskOnChip - the
1322 * bootup procedure will put the device into reset mode, and
1323 * it's not possible to talk to it without actually writing
1324 * to the DOCControl register. So we store the current contents
1325 * of the DOCControl register's location, in case we later decide
1326 * that it's not a DiskOnChip, and want to put it back how we
1327 * found it.
1328 */
1329 save_control = ReadDOC(virtadr, DOCControl);
1330
1331 /* Reset the DiskOnChip ASIC */
1332 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
1333 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
1334
1335 /* Enable the DiskOnChip ASIC */
1336 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
1337 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
1338
1339 ChipID = ReadDOC(virtadr, ChipID);
1340
1341 switch (ChipID) {
1342 case DOC_ChipID_Doc2k:
1343 reg = DoC_2k_ECCStatus;
1344 break;
1345 case DOC_ChipID_DocMil:
1346 reg = DoC_ECCConf;
1347 break;
1348 case DOC_ChipID_DocMilPlus16:
1349 case DOC_ChipID_DocMilPlus32:
1350 case 0:
1351 /* Possible Millennium Plus, need to do more checks */
1352 /* Possibly release from power down mode */
1353 for (tmp = 0; (tmp < 4); tmp++)
1354 ReadDOC(virtadr, Mplus_Power);
1355
1356 /* Reset the Millennium Plus ASIC */
1357 tmp = DOC_MODE_RESET | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT;
1358 WriteDOC(tmp, virtadr, Mplus_DOCControl);
1359 WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
1360
1361 usleep_range(1000, 2000);
1362 /* Enable the Millennium Plus ASIC */
1363 tmp = DOC_MODE_NORMAL | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT;
1364 WriteDOC(tmp, virtadr, Mplus_DOCControl);
1365 WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
1366 usleep_range(1000, 2000);
1367
1368 ChipID = ReadDOC(virtadr, ChipID);
1369
1370 switch (ChipID) {
1371 case DOC_ChipID_DocMilPlus16:
1372 reg = DoC_Mplus_Toggle;
1373 break;
1374 case DOC_ChipID_DocMilPlus32:
1375 pr_err("DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n");
1376 fallthrough;
1377 default:
1378 ret = -ENODEV;
1379 goto notfound;
1380 }
1381 break;
1382
1383 default:
1384 ret = -ENODEV;
1385 goto notfound;
1386 }
1387 /* Check the TOGGLE bit in the ECC register */
1388 tmp = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1389 tmpb = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1390 tmpc = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1391 if ((tmp == tmpb) || (tmp != tmpc)) {
1392 pr_warn("Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr);
1393 ret = -ENODEV;
1394 goto notfound;
1395 }
1396
1397 for (mtd = doclist; mtd; mtd = doc->nextdoc) {
1398 unsigned char oldval;
1399 unsigned char newval;
1400 nand = mtd_to_nand(mtd);
1401 doc = nand_get_controller_data(nand);
1402 /* Use the alias resolution register to determine if this is
1403 in fact the same DOC aliased to a new address. If writes
1404 to one chip's alias resolution register change the value on
1405 the other chip, they're the same chip. */
1406 if (ChipID == DOC_ChipID_DocMilPlus16) {
1407 oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
1408 newval = ReadDOC(virtadr, Mplus_AliasResolution);
1409 } else {
1410 oldval = ReadDOC(doc->virtadr, AliasResolution);
1411 newval = ReadDOC(virtadr, AliasResolution);
1412 }
1413 if (oldval != newval)
1414 continue;
1415 if (ChipID == DOC_ChipID_DocMilPlus16) {
1416 WriteDOC(~newval, virtadr, Mplus_AliasResolution);
1417 oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
1418 WriteDOC(newval, virtadr, Mplus_AliasResolution); // restore it
1419 } else {
1420 WriteDOC(~newval, virtadr, AliasResolution);
1421 oldval = ReadDOC(doc->virtadr, AliasResolution);
1422 WriteDOC(newval, virtadr, AliasResolution); // restore it
1423 }
1424 newval = ~newval;
1425 if (oldval == newval) {
1426 pr_debug("Found alias of DOC at 0x%lx to 0x%lx\n",
1427 doc->physadr, physadr);
1428 goto notfound;
1429 }
1430 }
1431
1432 pr_notice("DiskOnChip found at 0x%lx\n", physadr);
1433
1434 len = sizeof(struct nand_chip) + sizeof(struct doc_priv) +
1435 (2 * sizeof(struct nand_bbt_descr));
1436 nand = kzalloc(len, GFP_KERNEL);
1437 if (!nand) {
1438 ret = -ENOMEM;
1439 goto fail;
1440 }
1441
1442 /*
1443 * Allocate a RS codec instance
1444 *
1445 * Symbolsize is 10 (bits)
1446 * Primitve polynomial is x^10+x^3+1
1447 * First consecutive root is 510
1448 * Primitve element to generate roots = 1
1449 * Generator polinomial degree = 4
1450 */
1451 doc = (struct doc_priv *) (nand + 1);
1452 doc->rs_decoder = init_rs(10, 0x409, FCR, 1, NROOTS);
1453 if (!doc->rs_decoder) {
1454 pr_err("DiskOnChip: Could not create a RS codec\n");
1455 ret = -ENOMEM;
1456 goto fail;
1457 }
1458
1459 nand_controller_init(&doc->base);
1460 if (ChipID == DOC_ChipID_DocMilPlus16)
1461 doc->base.ops = &doc2001plus_ops;
1462 else
1463 doc->base.ops = &doc200x_ops;
1464
1465 mtd = nand_to_mtd(nand);
1466 nand->bbt_td = (struct nand_bbt_descr *) (doc + 1);
1467 nand->bbt_md = nand->bbt_td + 1;
1468
1469 mtd->owner = THIS_MODULE;
1470 mtd_set_ooblayout(mtd, &doc200x_ooblayout_ops);
1471
1472 nand->controller = &doc->base;
1473 nand_set_controller_data(nand, doc);
1474 nand->bbt_options = NAND_BBT_USE_FLASH;
1475 /* Skip the automatic BBT scan so we can run it manually */
1476 nand->options |= NAND_SKIP_BBTSCAN | NAND_NO_BBM_QUIRK;
1477
1478 doc->physadr = physadr;
1479 doc->virtadr = virtadr;
1480 doc->ChipID = ChipID;
1481 doc->curfloor = -1;
1482 doc->curchip = -1;
1483 doc->mh0_page = -1;
1484 doc->mh1_page = -1;
1485 doc->nextdoc = doclist;
1486
1487 if (ChipID == DOC_ChipID_Doc2k)
1488 numchips = doc2000_init(mtd);
1489 else if (ChipID == DOC_ChipID_DocMilPlus16)
1490 numchips = doc2001plus_init(mtd);
1491 else
1492 numchips = doc2001_init(mtd);
1493
1494 ret = nand_scan(nand, numchips);
1495 if (ret)
1496 goto fail;
1497
1498 ret = doc->late_init(mtd);
1499 if (ret) {
1500 nand_cleanup(nand);
1501 goto fail;
1502 }
1503
1504 /* Success! */
1505 doclist = mtd;
1506 return 0;
1507
1508 notfound:
1509 /* Put back the contents of the DOCControl register, in case it's not
1510 actually a DiskOnChip. */
1511 WriteDOC(save_control, virtadr, DOCControl);
1512 fail:
1513 if (doc)
1514 free_rs(doc->rs_decoder);
1515 kfree(nand);
1516 iounmap(virtadr);
1517
1518 error_ioremap:
1519 release_mem_region(physadr, DOC_IOREMAP_LEN);
1520
1521 return ret;
1522 }
1523
release_nanddoc(void)1524 static void release_nanddoc(void)
1525 {
1526 struct mtd_info *mtd, *nextmtd;
1527 struct nand_chip *nand;
1528 struct doc_priv *doc;
1529 int ret;
1530
1531 for (mtd = doclist; mtd; mtd = nextmtd) {
1532 nand = mtd_to_nand(mtd);
1533 doc = nand_get_controller_data(nand);
1534
1535 nextmtd = doc->nextdoc;
1536 ret = mtd_device_unregister(mtd);
1537 WARN_ON(ret);
1538 nand_cleanup(nand);
1539 iounmap(doc->virtadr);
1540 release_mem_region(doc->physadr, DOC_IOREMAP_LEN);
1541 free_rs(doc->rs_decoder);
1542 kfree(nand);
1543 }
1544 }
1545
init_nanddoc(void)1546 static int __init init_nanddoc(void)
1547 {
1548 int i, ret = 0;
1549
1550 if (doc_config_location) {
1551 pr_info("Using configured DiskOnChip probe address 0x%lx\n",
1552 doc_config_location);
1553 ret = doc_probe(doc_config_location);
1554 if (ret < 0)
1555 return ret;
1556 } else {
1557 for (i = 0; i < ARRAY_SIZE(doc_locations); i++) {
1558 doc_probe(doc_locations[i]);
1559 }
1560 }
1561 /* No banner message any more. Print a message if no DiskOnChip
1562 found, so the user knows we at least tried. */
1563 if (!doclist) {
1564 pr_info("No valid DiskOnChip devices found\n");
1565 ret = -ENODEV;
1566 }
1567 return ret;
1568 }
1569
cleanup_nanddoc(void)1570 static void __exit cleanup_nanddoc(void)
1571 {
1572 /* Cleanup the nand/DoC resources */
1573 release_nanddoc();
1574 }
1575
1576 module_init(init_nanddoc);
1577 module_exit(cleanup_nanddoc);
1578
1579 MODULE_LICENSE("GPL");
1580 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1581 MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver");
1582