1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Routines having to do with the 'struct sk_buff' memory handlers.
4 *
5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
6 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 *
8 * Fixes:
9 * Alan Cox : Fixed the worst of the load
10 * balancer bugs.
11 * Dave Platt : Interrupt stacking fix.
12 * Richard Kooijman : Timestamp fixes.
13 * Alan Cox : Changed buffer format.
14 * Alan Cox : destructor hook for AF_UNIX etc.
15 * Linus Torvalds : Better skb_clone.
16 * Alan Cox : Added skb_copy.
17 * Alan Cox : Added all the changed routines Linus
18 * only put in the headers
19 * Ray VanTassle : Fixed --skb->lock in free
20 * Alan Cox : skb_copy copy arp field
21 * Andi Kleen : slabified it.
22 * Robert Olsson : Removed skb_head_pool
23 *
24 * NOTE:
25 * The __skb_ routines should be called with interrupts
26 * disabled, or you better be *real* sure that the operation is atomic
27 * with respect to whatever list is being frobbed (e.g. via lock_sock()
28 * or via disabling bottom half handlers, etc).
29 */
30
31 /*
32 * The functions in this file will not compile correctly with gcc 2.4.x
33 */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/skbuff_ref.h>
55 #include <linux/splice.h>
56 #include <linux/cache.h>
57 #include <linux/rtnetlink.h>
58 #include <linux/init.h>
59 #include <linux/scatterlist.h>
60 #include <linux/errqueue.h>
61 #include <linux/prefetch.h>
62 #include <linux/bitfield.h>
63 #include <linux/if_vlan.h>
64 #include <linux/mpls.h>
65 #include <linux/kcov.h>
66 #include <linux/iov_iter.h>
67 #include <linux/crc32.h>
68
69 #include <net/protocol.h>
70 #include <net/dst.h>
71 #include <net/sock.h>
72 #include <net/checksum.h>
73 #include <net/gro.h>
74 #include <net/gso.h>
75 #include <net/hotdata.h>
76 #include <net/ip6_checksum.h>
77 #include <net/xfrm.h>
78 #include <net/mpls.h>
79 #include <net/mptcp.h>
80 #include <net/mctp.h>
81 #include <net/page_pool/helpers.h>
82 #include <net/psp/types.h>
83 #include <net/dropreason.h>
84 #include <net/xdp_sock.h>
85
86 #include <linux/uaccess.h>
87 #include <trace/events/skb.h>
88 #include <linux/highmem.h>
89 #include <linux/capability.h>
90 #include <linux/user_namespace.h>
91 #include <linux/indirect_call_wrapper.h>
92 #include <linux/textsearch.h>
93
94 #include "dev.h"
95 #include "devmem.h"
96 #include "netmem_priv.h"
97 #include "sock_destructor.h"
98
99 #ifdef CONFIG_SKB_EXTENSIONS
100 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
101 #endif
102
103 #define GRO_MAX_HEAD_PAD (GRO_MAX_HEAD + NET_SKB_PAD + NET_IP_ALIGN)
104 #define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(max(MAX_TCP_HEADER, \
105 GRO_MAX_HEAD_PAD))
106
107 /* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two.
108 * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique
109 * size, and we can differentiate heads from skb_small_head_cache
110 * vs system slabs by looking at their size (skb_end_offset()).
111 */
112 #define SKB_SMALL_HEAD_CACHE_SIZE \
113 (is_power_of_2(SKB_SMALL_HEAD_SIZE) ? \
114 (SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) : \
115 SKB_SMALL_HEAD_SIZE)
116
117 #define SKB_SMALL_HEAD_HEADROOM \
118 SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE)
119
120 /* kcm_write_msgs() relies on casting paged frags to bio_vec to use
121 * iov_iter_bvec(). These static asserts ensure the cast is valid is long as the
122 * netmem is a page.
123 */
124 static_assert(offsetof(struct bio_vec, bv_page) ==
125 offsetof(skb_frag_t, netmem));
126 static_assert(sizeof_field(struct bio_vec, bv_page) ==
127 sizeof_field(skb_frag_t, netmem));
128
129 static_assert(offsetof(struct bio_vec, bv_len) == offsetof(skb_frag_t, len));
130 static_assert(sizeof_field(struct bio_vec, bv_len) ==
131 sizeof_field(skb_frag_t, len));
132
133 static_assert(offsetof(struct bio_vec, bv_offset) ==
134 offsetof(skb_frag_t, offset));
135 static_assert(sizeof_field(struct bio_vec, bv_offset) ==
136 sizeof_field(skb_frag_t, offset));
137
138 #undef FN
139 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason,
140 static const char * const drop_reasons[] = {
141 [SKB_CONSUMED] = "CONSUMED",
142 DEFINE_DROP_REASON(FN, FN)
143 };
144
145 static const struct drop_reason_list drop_reasons_core = {
146 .reasons = drop_reasons,
147 .n_reasons = ARRAY_SIZE(drop_reasons),
148 };
149
150 const struct drop_reason_list __rcu *
151 drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = {
152 [SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core),
153 };
154 EXPORT_SYMBOL(drop_reasons_by_subsys);
155
156 /**
157 * drop_reasons_register_subsys - register another drop reason subsystem
158 * @subsys: the subsystem to register, must not be the core
159 * @list: the list of drop reasons within the subsystem, must point to
160 * a statically initialized list
161 */
drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys,const struct drop_reason_list * list)162 void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys,
163 const struct drop_reason_list *list)
164 {
165 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
166 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
167 "invalid subsystem %d\n", subsys))
168 return;
169
170 /* must point to statically allocated memory, so INIT is OK */
171 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list);
172 }
173 EXPORT_SYMBOL_GPL(drop_reasons_register_subsys);
174
175 /**
176 * drop_reasons_unregister_subsys - unregister a drop reason subsystem
177 * @subsys: the subsystem to remove, must not be the core
178 *
179 * Note: This will synchronize_rcu() to ensure no users when it returns.
180 */
drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys)181 void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys)
182 {
183 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
184 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
185 "invalid subsystem %d\n", subsys))
186 return;
187
188 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL);
189
190 synchronize_rcu();
191 }
192 EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys);
193
194 /**
195 * skb_panic - private function for out-of-line support
196 * @skb: buffer
197 * @sz: size
198 * @addr: address
199 * @msg: skb_over_panic or skb_under_panic
200 *
201 * Out-of-line support for skb_put() and skb_push().
202 * Called via the wrapper skb_over_panic() or skb_under_panic().
203 * Keep out of line to prevent kernel bloat.
204 * __builtin_return_address is not used because it is not always reliable.
205 */
skb_panic(struct sk_buff * skb,unsigned int sz,void * addr,const char msg[])206 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
207 const char msg[])
208 {
209 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
210 msg, addr, skb->len, sz, skb->head, skb->data,
211 (unsigned long)skb->tail, (unsigned long)skb->end,
212 skb->dev ? skb->dev->name : "<NULL>");
213 BUG();
214 }
215
skb_over_panic(struct sk_buff * skb,unsigned int sz,void * addr)216 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
217 {
218 skb_panic(skb, sz, addr, __func__);
219 }
220
skb_under_panic(struct sk_buff * skb,unsigned int sz,void * addr)221 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
222 {
223 skb_panic(skb, sz, addr, __func__);
224 }
225
226 #define NAPI_SKB_CACHE_SIZE 128
227 #define NAPI_SKB_CACHE_BULK 32
228 #define NAPI_SKB_CACHE_FREE 32
229
230 struct napi_alloc_cache {
231 local_lock_t bh_lock;
232 struct page_frag_cache page;
233 unsigned int skb_count;
234 void *skb_cache[NAPI_SKB_CACHE_SIZE];
235 };
236
237 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
238 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache) = {
239 .bh_lock = INIT_LOCAL_LOCK(bh_lock),
240 };
241
__napi_alloc_frag_align(unsigned int fragsz,unsigned int align_mask)242 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
243 {
244 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
245 void *data;
246
247 fragsz = SKB_DATA_ALIGN(fragsz);
248
249 local_lock_nested_bh(&napi_alloc_cache.bh_lock);
250 data = __page_frag_alloc_align(&nc->page, fragsz,
251 GFP_ATOMIC | __GFP_NOWARN, align_mask);
252 local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
253 return data;
254
255 }
256 EXPORT_SYMBOL(__napi_alloc_frag_align);
257
__netdev_alloc_frag_align(unsigned int fragsz,unsigned int align_mask)258 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
259 {
260 void *data;
261
262 if (in_hardirq() || irqs_disabled()) {
263 struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
264
265 fragsz = SKB_DATA_ALIGN(fragsz);
266 data = __page_frag_alloc_align(nc, fragsz,
267 GFP_ATOMIC | __GFP_NOWARN,
268 align_mask);
269 } else {
270 local_bh_disable();
271 data = __napi_alloc_frag_align(fragsz, align_mask);
272 local_bh_enable();
273 }
274 return data;
275 }
276 EXPORT_SYMBOL(__netdev_alloc_frag_align);
277
278 /* Cache kmem_cache_size(net_hotdata.skbuff_cache) to help the compiler
279 * remove dead code (and skbuff_cache_size) when CONFIG_KASAN is unset.
280 */
281 static u32 skbuff_cache_size __read_mostly;
282
napi_skb_cache_get(bool alloc)283 static struct sk_buff *napi_skb_cache_get(bool alloc)
284 {
285 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
286 struct sk_buff *skb;
287
288 local_lock_nested_bh(&napi_alloc_cache.bh_lock);
289 if (unlikely(!nc->skb_count)) {
290 if (alloc)
291 nc->skb_count = kmem_cache_alloc_bulk(net_hotdata.skbuff_cache,
292 GFP_ATOMIC | __GFP_NOWARN,
293 NAPI_SKB_CACHE_BULK,
294 nc->skb_cache);
295 if (unlikely(!nc->skb_count)) {
296 local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
297 return NULL;
298 }
299 }
300
301 skb = nc->skb_cache[--nc->skb_count];
302 if (nc->skb_count)
303 prefetch(nc->skb_cache[nc->skb_count - 1]);
304 local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
305 kasan_mempool_unpoison_object(skb, skbuff_cache_size);
306
307 return skb;
308 }
309
310 /**
311 * napi_skb_cache_get_bulk - obtain a number of zeroed skb heads from the cache
312 * @skbs: pointer to an at least @n-sized array to fill with skb pointers
313 * @n: number of entries to provide
314 *
315 * Tries to obtain @n &sk_buff entries from the NAPI percpu cache and writes
316 * the pointers into the provided array @skbs. If there are less entries
317 * available, tries to replenish the cache and bulk-allocates the diff from
318 * the MM layer if needed.
319 * The heads are being zeroed with either memset() or %__GFP_ZERO, so they are
320 * ready for {,__}build_skb_around() and don't have any data buffers attached.
321 * Must be called *only* from the BH context.
322 *
323 * Return: number of successfully allocated skbs (@n if no actual allocation
324 * needed or kmem_cache_alloc_bulk() didn't fail).
325 */
napi_skb_cache_get_bulk(void ** skbs,u32 n)326 u32 napi_skb_cache_get_bulk(void **skbs, u32 n)
327 {
328 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
329 u32 bulk, total = n;
330
331 local_lock_nested_bh(&napi_alloc_cache.bh_lock);
332
333 if (nc->skb_count >= n)
334 goto get;
335
336 /* No enough cached skbs. Try refilling the cache first */
337 bulk = min(NAPI_SKB_CACHE_SIZE - nc->skb_count, NAPI_SKB_CACHE_BULK);
338 nc->skb_count += kmem_cache_alloc_bulk(net_hotdata.skbuff_cache,
339 GFP_ATOMIC | __GFP_NOWARN, bulk,
340 &nc->skb_cache[nc->skb_count]);
341 if (likely(nc->skb_count >= n))
342 goto get;
343
344 /* Still not enough. Bulk-allocate the missing part directly, zeroed */
345 n -= kmem_cache_alloc_bulk(net_hotdata.skbuff_cache,
346 GFP_ATOMIC | __GFP_ZERO | __GFP_NOWARN,
347 n - nc->skb_count, &skbs[nc->skb_count]);
348 if (likely(nc->skb_count >= n))
349 goto get;
350
351 /* kmem_cache didn't allocate the number we need, limit the output */
352 total -= n - nc->skb_count;
353 n = nc->skb_count;
354
355 get:
356 for (u32 base = nc->skb_count - n, i = 0; i < n; i++) {
357 skbs[i] = nc->skb_cache[base + i];
358
359 kasan_mempool_unpoison_object(skbs[i], skbuff_cache_size);
360 memset(skbs[i], 0, offsetof(struct sk_buff, tail));
361 }
362
363 nc->skb_count -= n;
364 local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
365
366 return total;
367 }
368 EXPORT_SYMBOL_GPL(napi_skb_cache_get_bulk);
369
__finalize_skb_around(struct sk_buff * skb,void * data,unsigned int size)370 static inline void __finalize_skb_around(struct sk_buff *skb, void *data,
371 unsigned int size)
372 {
373 struct skb_shared_info *shinfo;
374
375 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
376
377 /* Assumes caller memset cleared SKB */
378 skb->truesize = SKB_TRUESIZE(size);
379 refcount_set(&skb->users, 1);
380 skb->head = data;
381 skb->data = data;
382 skb_reset_tail_pointer(skb);
383 skb_set_end_offset(skb, size);
384 skb->mac_header = (typeof(skb->mac_header))~0U;
385 skb->transport_header = (typeof(skb->transport_header))~0U;
386 skb->alloc_cpu = raw_smp_processor_id();
387 /* make sure we initialize shinfo sequentially */
388 shinfo = skb_shinfo(skb);
389 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
390 atomic_set(&shinfo->dataref, 1);
391
392 skb_set_kcov_handle(skb, kcov_common_handle());
393 }
394
__slab_build_skb(void * data,unsigned int * size)395 static inline void *__slab_build_skb(void *data, unsigned int *size)
396 {
397 void *resized;
398
399 /* Must find the allocation size (and grow it to match). */
400 *size = ksize(data);
401 /* krealloc() will immediately return "data" when
402 * "ksize(data)" is requested: it is the existing upper
403 * bounds. As a result, GFP_ATOMIC will be ignored. Note
404 * that this "new" pointer needs to be passed back to the
405 * caller for use so the __alloc_size hinting will be
406 * tracked correctly.
407 */
408 resized = krealloc(data, *size, GFP_ATOMIC);
409 WARN_ON_ONCE(resized != data);
410 return resized;
411 }
412
413 /* build_skb() variant which can operate on slab buffers.
414 * Note that this should be used sparingly as slab buffers
415 * cannot be combined efficiently by GRO!
416 */
slab_build_skb(void * data)417 struct sk_buff *slab_build_skb(void *data)
418 {
419 struct sk_buff *skb;
420 unsigned int size;
421
422 skb = kmem_cache_alloc(net_hotdata.skbuff_cache,
423 GFP_ATOMIC | __GFP_NOWARN);
424 if (unlikely(!skb))
425 return NULL;
426
427 memset(skb, 0, offsetof(struct sk_buff, tail));
428 data = __slab_build_skb(data, &size);
429 __finalize_skb_around(skb, data, size);
430
431 return skb;
432 }
433 EXPORT_SYMBOL(slab_build_skb);
434
435 /* Caller must provide SKB that is memset cleared */
__build_skb_around(struct sk_buff * skb,void * data,unsigned int frag_size)436 static void __build_skb_around(struct sk_buff *skb, void *data,
437 unsigned int frag_size)
438 {
439 unsigned int size = frag_size;
440
441 /* frag_size == 0 is considered deprecated now. Callers
442 * using slab buffer should use slab_build_skb() instead.
443 */
444 if (WARN_ONCE(size == 0, "Use slab_build_skb() instead"))
445 data = __slab_build_skb(data, &size);
446
447 __finalize_skb_around(skb, data, size);
448 }
449
450 /**
451 * __build_skb - build a network buffer
452 * @data: data buffer provided by caller
453 * @frag_size: size of data (must not be 0)
454 *
455 * Allocate a new &sk_buff. Caller provides space holding head and
456 * skb_shared_info. @data must have been allocated from the page
457 * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc()
458 * allocation is deprecated, and callers should use slab_build_skb()
459 * instead.)
460 * The return is the new skb buffer.
461 * On a failure the return is %NULL, and @data is not freed.
462 * Notes :
463 * Before IO, driver allocates only data buffer where NIC put incoming frame
464 * Driver should add room at head (NET_SKB_PAD) and
465 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
466 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
467 * before giving packet to stack.
468 * RX rings only contains data buffers, not full skbs.
469 */
__build_skb(void * data,unsigned int frag_size)470 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
471 {
472 struct sk_buff *skb;
473
474 skb = kmem_cache_alloc(net_hotdata.skbuff_cache,
475 GFP_ATOMIC | __GFP_NOWARN);
476 if (unlikely(!skb))
477 return NULL;
478
479 memset(skb, 0, offsetof(struct sk_buff, tail));
480 __build_skb_around(skb, data, frag_size);
481
482 return skb;
483 }
484
485 /* build_skb() is wrapper over __build_skb(), that specifically
486 * takes care of skb->head and skb->pfmemalloc
487 */
build_skb(void * data,unsigned int frag_size)488 struct sk_buff *build_skb(void *data, unsigned int frag_size)
489 {
490 struct sk_buff *skb = __build_skb(data, frag_size);
491
492 if (likely(skb && frag_size)) {
493 skb->head_frag = 1;
494 skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
495 }
496 return skb;
497 }
498 EXPORT_SYMBOL(build_skb);
499
500 /**
501 * build_skb_around - build a network buffer around provided skb
502 * @skb: sk_buff provide by caller, must be memset cleared
503 * @data: data buffer provided by caller
504 * @frag_size: size of data
505 */
build_skb_around(struct sk_buff * skb,void * data,unsigned int frag_size)506 struct sk_buff *build_skb_around(struct sk_buff *skb,
507 void *data, unsigned int frag_size)
508 {
509 if (unlikely(!skb))
510 return NULL;
511
512 __build_skb_around(skb, data, frag_size);
513
514 if (frag_size) {
515 skb->head_frag = 1;
516 skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
517 }
518 return skb;
519 }
520 EXPORT_SYMBOL(build_skb_around);
521
522 /**
523 * __napi_build_skb - build a network buffer
524 * @data: data buffer provided by caller
525 * @frag_size: size of data
526 *
527 * Version of __build_skb() that uses NAPI percpu caches to obtain
528 * skbuff_head instead of inplace allocation.
529 *
530 * Returns a new &sk_buff on success, %NULL on allocation failure.
531 */
__napi_build_skb(void * data,unsigned int frag_size)532 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
533 {
534 struct sk_buff *skb;
535
536 skb = napi_skb_cache_get(true);
537 if (unlikely(!skb))
538 return NULL;
539
540 memset(skb, 0, offsetof(struct sk_buff, tail));
541 __build_skb_around(skb, data, frag_size);
542
543 return skb;
544 }
545
546 /**
547 * napi_build_skb - build a network buffer
548 * @data: data buffer provided by caller
549 * @frag_size: size of data
550 *
551 * Version of __napi_build_skb() that takes care of skb->head_frag
552 * and skb->pfmemalloc when the data is a page or page fragment.
553 *
554 * Returns a new &sk_buff on success, %NULL on allocation failure.
555 */
napi_build_skb(void * data,unsigned int frag_size)556 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
557 {
558 struct sk_buff *skb = __napi_build_skb(data, frag_size);
559
560 if (likely(skb) && frag_size) {
561 skb->head_frag = 1;
562 skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
563 }
564
565 return skb;
566 }
567 EXPORT_SYMBOL(napi_build_skb);
568
569 /*
570 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
571 * the caller if emergency pfmemalloc reserves are being used. If it is and
572 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
573 * may be used. Otherwise, the packet data may be discarded until enough
574 * memory is free
575 */
kmalloc_reserve(unsigned int * size,gfp_t flags,int node,bool * pfmemalloc)576 static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node,
577 bool *pfmemalloc)
578 {
579 bool ret_pfmemalloc = false;
580 size_t obj_size;
581 void *obj;
582
583 obj_size = SKB_HEAD_ALIGN(*size);
584 if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE &&
585 !(flags & KMALLOC_NOT_NORMAL_BITS)) {
586 obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache,
587 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
588 node);
589 *size = SKB_SMALL_HEAD_CACHE_SIZE;
590 if (obj || !(gfp_pfmemalloc_allowed(flags)))
591 goto out;
592 /* Try again but now we are using pfmemalloc reserves */
593 ret_pfmemalloc = true;
594 obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache, flags, node);
595 goto out;
596 }
597
598 obj_size = kmalloc_size_roundup(obj_size);
599 /* The following cast might truncate high-order bits of obj_size, this
600 * is harmless because kmalloc(obj_size >= 2^32) will fail anyway.
601 */
602 *size = (unsigned int)obj_size;
603
604 /*
605 * Try a regular allocation, when that fails and we're not entitled
606 * to the reserves, fail.
607 */
608 obj = kmalloc_node_track_caller(obj_size,
609 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
610 node);
611 if (obj || !(gfp_pfmemalloc_allowed(flags)))
612 goto out;
613
614 /* Try again but now we are using pfmemalloc reserves */
615 ret_pfmemalloc = true;
616 obj = kmalloc_node_track_caller(obj_size, flags, node);
617
618 out:
619 if (pfmemalloc)
620 *pfmemalloc = ret_pfmemalloc;
621
622 return obj;
623 }
624
625 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
626 * 'private' fields and also do memory statistics to find all the
627 * [BEEP] leaks.
628 *
629 */
630
631 /**
632 * __alloc_skb - allocate a network buffer
633 * @size: size to allocate
634 * @gfp_mask: allocation mask
635 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
636 * instead of head cache and allocate a cloned (child) skb.
637 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
638 * allocations in case the data is required for writeback
639 * @node: numa node to allocate memory on
640 *
641 * Allocate a new &sk_buff. The returned buffer has no headroom and a
642 * tail room of at least size bytes. The object has a reference count
643 * of one. The return is the buffer. On a failure the return is %NULL.
644 *
645 * Buffers may only be allocated from interrupts using a @gfp_mask of
646 * %GFP_ATOMIC.
647 */
__alloc_skb(unsigned int size,gfp_t gfp_mask,int flags,int node)648 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
649 int flags, int node)
650 {
651 struct sk_buff *skb = NULL;
652 struct kmem_cache *cache;
653 bool pfmemalloc;
654 u8 *data;
655
656 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
657 gfp_mask |= __GFP_MEMALLOC;
658
659 if (flags & SKB_ALLOC_FCLONE) {
660 cache = net_hotdata.skbuff_fclone_cache;
661 goto fallback;
662 }
663 cache = net_hotdata.skbuff_cache;
664 if (unlikely(node != NUMA_NO_NODE && node != numa_mem_id()))
665 goto fallback;
666
667 if (flags & SKB_ALLOC_NAPI) {
668 skb = napi_skb_cache_get(true);
669 if (unlikely(!skb))
670 return NULL;
671 } else if (!in_hardirq() && !irqs_disabled()) {
672 local_bh_disable();
673 skb = napi_skb_cache_get(false);
674 local_bh_enable();
675 }
676
677 if (!skb) {
678 fallback:
679 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
680 if (unlikely(!skb))
681 return NULL;
682 }
683 prefetchw(skb);
684
685 /* We do our best to align skb_shared_info on a separate cache
686 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
687 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
688 * Both skb->head and skb_shared_info are cache line aligned.
689 */
690 data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc);
691 if (unlikely(!data))
692 goto nodata;
693 /* kmalloc_size_roundup() might give us more room than requested.
694 * Put skb_shared_info exactly at the end of allocated zone,
695 * to allow max possible filling before reallocation.
696 */
697 prefetchw(data + SKB_WITH_OVERHEAD(size));
698
699 /*
700 * Only clear those fields we need to clear, not those that we will
701 * actually initialise below. Hence, don't put any more fields after
702 * the tail pointer in struct sk_buff!
703 */
704 memset(skb, 0, offsetof(struct sk_buff, tail));
705 __build_skb_around(skb, data, size);
706 skb->pfmemalloc = pfmemalloc;
707
708 if (flags & SKB_ALLOC_FCLONE) {
709 struct sk_buff_fclones *fclones;
710
711 fclones = container_of(skb, struct sk_buff_fclones, skb1);
712
713 skb->fclone = SKB_FCLONE_ORIG;
714 refcount_set(&fclones->fclone_ref, 1);
715 }
716
717 return skb;
718
719 nodata:
720 kmem_cache_free(cache, skb);
721 return NULL;
722 }
723 EXPORT_SYMBOL(__alloc_skb);
724
725 /**
726 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
727 * @dev: network device to receive on
728 * @len: length to allocate
729 * @gfp_mask: get_free_pages mask, passed to alloc_skb
730 *
731 * Allocate a new &sk_buff and assign it a usage count of one. The
732 * buffer has NET_SKB_PAD headroom built in. Users should allocate
733 * the headroom they think they need without accounting for the
734 * built in space. The built in space is used for optimisations.
735 *
736 * %NULL is returned if there is no free memory.
737 */
__netdev_alloc_skb(struct net_device * dev,unsigned int len,gfp_t gfp_mask)738 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
739 gfp_t gfp_mask)
740 {
741 struct page_frag_cache *nc;
742 struct sk_buff *skb;
743 bool pfmemalloc;
744 void *data;
745
746 len += NET_SKB_PAD;
747
748 /* If requested length is either too small or too big,
749 * we use kmalloc() for skb->head allocation.
750 */
751 if (len <= SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) ||
752 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
753 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
754 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
755 if (!skb)
756 goto skb_fail;
757 goto skb_success;
758 }
759
760 len = SKB_HEAD_ALIGN(len);
761
762 if (sk_memalloc_socks())
763 gfp_mask |= __GFP_MEMALLOC;
764
765 if (in_hardirq() || irqs_disabled()) {
766 nc = this_cpu_ptr(&netdev_alloc_cache);
767 data = page_frag_alloc(nc, len, gfp_mask);
768 pfmemalloc = page_frag_cache_is_pfmemalloc(nc);
769 } else {
770 local_bh_disable();
771 local_lock_nested_bh(&napi_alloc_cache.bh_lock);
772
773 nc = this_cpu_ptr(&napi_alloc_cache.page);
774 data = page_frag_alloc(nc, len, gfp_mask);
775 pfmemalloc = page_frag_cache_is_pfmemalloc(nc);
776
777 local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
778 local_bh_enable();
779 }
780
781 if (unlikely(!data))
782 return NULL;
783
784 skb = __build_skb(data, len);
785 if (unlikely(!skb)) {
786 skb_free_frag(data);
787 return NULL;
788 }
789
790 if (pfmemalloc)
791 skb->pfmemalloc = 1;
792 skb->head_frag = 1;
793
794 skb_success:
795 skb_reserve(skb, NET_SKB_PAD);
796 skb->dev = dev;
797
798 skb_fail:
799 return skb;
800 }
801 EXPORT_SYMBOL(__netdev_alloc_skb);
802
803 /**
804 * napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
805 * @napi: napi instance this buffer was allocated for
806 * @len: length to allocate
807 *
808 * Allocate a new sk_buff for use in NAPI receive. This buffer will
809 * attempt to allocate the head from a special reserved region used
810 * only for NAPI Rx allocation. By doing this we can save several
811 * CPU cycles by avoiding having to disable and re-enable IRQs.
812 *
813 * %NULL is returned if there is no free memory.
814 */
napi_alloc_skb(struct napi_struct * napi,unsigned int len)815 struct sk_buff *napi_alloc_skb(struct napi_struct *napi, unsigned int len)
816 {
817 gfp_t gfp_mask = GFP_ATOMIC | __GFP_NOWARN;
818 struct napi_alloc_cache *nc;
819 struct sk_buff *skb;
820 bool pfmemalloc;
821 void *data;
822
823 DEBUG_NET_WARN_ON_ONCE(!in_softirq());
824 len += NET_SKB_PAD + NET_IP_ALIGN;
825
826 /* If requested length is either too small or too big,
827 * we use kmalloc() for skb->head allocation.
828 */
829 if (len <= SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) ||
830 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
831 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
832 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
833 NUMA_NO_NODE);
834 if (!skb)
835 goto skb_fail;
836 goto skb_success;
837 }
838
839 len = SKB_HEAD_ALIGN(len);
840
841 if (sk_memalloc_socks())
842 gfp_mask |= __GFP_MEMALLOC;
843
844 local_lock_nested_bh(&napi_alloc_cache.bh_lock);
845 nc = this_cpu_ptr(&napi_alloc_cache);
846
847 data = page_frag_alloc(&nc->page, len, gfp_mask);
848 pfmemalloc = page_frag_cache_is_pfmemalloc(&nc->page);
849 local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
850
851 if (unlikely(!data))
852 return NULL;
853
854 skb = __napi_build_skb(data, len);
855 if (unlikely(!skb)) {
856 skb_free_frag(data);
857 return NULL;
858 }
859
860 if (pfmemalloc)
861 skb->pfmemalloc = 1;
862 skb->head_frag = 1;
863
864 skb_success:
865 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
866 skb->dev = napi->dev;
867
868 skb_fail:
869 return skb;
870 }
871 EXPORT_SYMBOL(napi_alloc_skb);
872
skb_add_rx_frag_netmem(struct sk_buff * skb,int i,netmem_ref netmem,int off,int size,unsigned int truesize)873 void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem,
874 int off, int size, unsigned int truesize)
875 {
876 DEBUG_NET_WARN_ON_ONCE(size > truesize);
877
878 skb_fill_netmem_desc(skb, i, netmem, off, size);
879 skb->len += size;
880 skb->data_len += size;
881 skb->truesize += truesize;
882 }
883 EXPORT_SYMBOL(skb_add_rx_frag_netmem);
884
skb_coalesce_rx_frag(struct sk_buff * skb,int i,int size,unsigned int truesize)885 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
886 unsigned int truesize)
887 {
888 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
889
890 DEBUG_NET_WARN_ON_ONCE(size > truesize);
891
892 skb_frag_size_add(frag, size);
893 skb->len += size;
894 skb->data_len += size;
895 skb->truesize += truesize;
896 }
897 EXPORT_SYMBOL(skb_coalesce_rx_frag);
898
skb_drop_list(struct sk_buff ** listp)899 static void skb_drop_list(struct sk_buff **listp)
900 {
901 kfree_skb_list(*listp);
902 *listp = NULL;
903 }
904
skb_drop_fraglist(struct sk_buff * skb)905 static inline void skb_drop_fraglist(struct sk_buff *skb)
906 {
907 skb_drop_list(&skb_shinfo(skb)->frag_list);
908 }
909
skb_clone_fraglist(struct sk_buff * skb)910 static void skb_clone_fraglist(struct sk_buff *skb)
911 {
912 struct sk_buff *list;
913
914 skb_walk_frags(skb, list)
915 skb_get(list);
916 }
917
skb_pp_cow_data(struct page_pool * pool,struct sk_buff ** pskb,unsigned int headroom)918 int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb,
919 unsigned int headroom)
920 {
921 #if IS_ENABLED(CONFIG_PAGE_POOL)
922 u32 size, truesize, len, max_head_size, off;
923 struct sk_buff *skb = *pskb, *nskb;
924 int err, i, head_off;
925 void *data;
926
927 /* XDP does not support fraglist so we need to linearize
928 * the skb.
929 */
930 if (skb_has_frag_list(skb))
931 return -EOPNOTSUPP;
932
933 max_head_size = SKB_WITH_OVERHEAD(PAGE_SIZE - headroom);
934 if (skb->len > max_head_size + MAX_SKB_FRAGS * PAGE_SIZE)
935 return -ENOMEM;
936
937 size = min_t(u32, skb->len, max_head_size);
938 truesize = SKB_HEAD_ALIGN(size) + headroom;
939 data = page_pool_dev_alloc_va(pool, &truesize);
940 if (!data)
941 return -ENOMEM;
942
943 nskb = napi_build_skb(data, truesize);
944 if (!nskb) {
945 page_pool_free_va(pool, data, true);
946 return -ENOMEM;
947 }
948
949 skb_reserve(nskb, headroom);
950 skb_copy_header(nskb, skb);
951 skb_mark_for_recycle(nskb);
952
953 err = skb_copy_bits(skb, 0, nskb->data, size);
954 if (err) {
955 consume_skb(nskb);
956 return err;
957 }
958 skb_put(nskb, size);
959
960 head_off = skb_headroom(nskb) - skb_headroom(skb);
961 skb_headers_offset_update(nskb, head_off);
962
963 off = size;
964 len = skb->len - off;
965 for (i = 0; i < MAX_SKB_FRAGS && off < skb->len; i++) {
966 struct page *page;
967 u32 page_off;
968
969 size = min_t(u32, len, PAGE_SIZE);
970 truesize = size;
971
972 page = page_pool_dev_alloc(pool, &page_off, &truesize);
973 if (!page) {
974 consume_skb(nskb);
975 return -ENOMEM;
976 }
977
978 skb_add_rx_frag(nskb, i, page, page_off, size, truesize);
979 err = skb_copy_bits(skb, off, page_address(page) + page_off,
980 size);
981 if (err) {
982 consume_skb(nskb);
983 return err;
984 }
985
986 len -= size;
987 off += size;
988 }
989
990 consume_skb(skb);
991 *pskb = nskb;
992
993 return 0;
994 #else
995 return -EOPNOTSUPP;
996 #endif
997 }
998 EXPORT_SYMBOL(skb_pp_cow_data);
999
skb_cow_data_for_xdp(struct page_pool * pool,struct sk_buff ** pskb,const struct bpf_prog * prog)1000 int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb,
1001 const struct bpf_prog *prog)
1002 {
1003 if (!prog->aux->xdp_has_frags)
1004 return -EINVAL;
1005
1006 return skb_pp_cow_data(pool, pskb, XDP_PACKET_HEADROOM);
1007 }
1008 EXPORT_SYMBOL(skb_cow_data_for_xdp);
1009
1010 #if IS_ENABLED(CONFIG_PAGE_POOL)
napi_pp_put_page(netmem_ref netmem)1011 bool napi_pp_put_page(netmem_ref netmem)
1012 {
1013 netmem = netmem_compound_head(netmem);
1014
1015 if (unlikely(!netmem_is_pp(netmem)))
1016 return false;
1017
1018 page_pool_put_full_netmem(netmem_get_pp(netmem), netmem, false);
1019
1020 return true;
1021 }
1022 EXPORT_SYMBOL(napi_pp_put_page);
1023 #endif
1024
skb_pp_recycle(struct sk_buff * skb,void * data)1025 static bool skb_pp_recycle(struct sk_buff *skb, void *data)
1026 {
1027 if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
1028 return false;
1029 return napi_pp_put_page(page_to_netmem(virt_to_page(data)));
1030 }
1031
1032 /**
1033 * skb_pp_frag_ref() - Increase fragment references of a page pool aware skb
1034 * @skb: page pool aware skb
1035 *
1036 * Increase the fragment reference count (pp_ref_count) of a skb. This is
1037 * intended to gain fragment references only for page pool aware skbs,
1038 * i.e. when skb->pp_recycle is true, and not for fragments in a
1039 * non-pp-recycling skb. It has a fallback to increase references on normal
1040 * pages, as page pool aware skbs may also have normal page fragments.
1041 */
skb_pp_frag_ref(struct sk_buff * skb)1042 static int skb_pp_frag_ref(struct sk_buff *skb)
1043 {
1044 struct skb_shared_info *shinfo;
1045 netmem_ref head_netmem;
1046 int i;
1047
1048 if (!skb->pp_recycle)
1049 return -EINVAL;
1050
1051 shinfo = skb_shinfo(skb);
1052
1053 for (i = 0; i < shinfo->nr_frags; i++) {
1054 head_netmem = netmem_compound_head(shinfo->frags[i].netmem);
1055 if (likely(netmem_is_pp(head_netmem)))
1056 page_pool_ref_netmem(head_netmem);
1057 else
1058 page_ref_inc(netmem_to_page(head_netmem));
1059 }
1060 return 0;
1061 }
1062
skb_kfree_head(void * head,unsigned int end_offset)1063 static void skb_kfree_head(void *head, unsigned int end_offset)
1064 {
1065 if (end_offset == SKB_SMALL_HEAD_HEADROOM)
1066 kmem_cache_free(net_hotdata.skb_small_head_cache, head);
1067 else
1068 kfree(head);
1069 }
1070
skb_free_head(struct sk_buff * skb)1071 static void skb_free_head(struct sk_buff *skb)
1072 {
1073 unsigned char *head = skb->head;
1074
1075 if (skb->head_frag) {
1076 if (skb_pp_recycle(skb, head))
1077 return;
1078 skb_free_frag(head);
1079 } else {
1080 skb_kfree_head(head, skb_end_offset(skb));
1081 }
1082 }
1083
skb_release_data(struct sk_buff * skb,enum skb_drop_reason reason)1084 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason)
1085 {
1086 struct skb_shared_info *shinfo = skb_shinfo(skb);
1087 int i;
1088
1089 if (!skb_data_unref(skb, shinfo))
1090 goto exit;
1091
1092 if (skb_zcopy(skb)) {
1093 bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS;
1094
1095 skb_zcopy_clear(skb, true);
1096 if (skip_unref)
1097 goto free_head;
1098 }
1099
1100 for (i = 0; i < shinfo->nr_frags; i++)
1101 __skb_frag_unref(&shinfo->frags[i], skb->pp_recycle);
1102
1103 free_head:
1104 if (shinfo->frag_list)
1105 kfree_skb_list_reason(shinfo->frag_list, reason);
1106
1107 skb_free_head(skb);
1108 exit:
1109 /* When we clone an SKB we copy the reycling bit. The pp_recycle
1110 * bit is only set on the head though, so in order to avoid races
1111 * while trying to recycle fragments on __skb_frag_unref() we need
1112 * to make one SKB responsible for triggering the recycle path.
1113 * So disable the recycling bit if an SKB is cloned and we have
1114 * additional references to the fragmented part of the SKB.
1115 * Eventually the last SKB will have the recycling bit set and it's
1116 * dataref set to 0, which will trigger the recycling
1117 */
1118 skb->pp_recycle = 0;
1119 }
1120
1121 /*
1122 * Free an skbuff by memory without cleaning the state.
1123 */
kfree_skbmem(struct sk_buff * skb)1124 static void kfree_skbmem(struct sk_buff *skb)
1125 {
1126 struct sk_buff_fclones *fclones;
1127
1128 switch (skb->fclone) {
1129 case SKB_FCLONE_UNAVAILABLE:
1130 kmem_cache_free(net_hotdata.skbuff_cache, skb);
1131 return;
1132
1133 case SKB_FCLONE_ORIG:
1134 fclones = container_of(skb, struct sk_buff_fclones, skb1);
1135
1136 /* We usually free the clone (TX completion) before original skb
1137 * This test would have no chance to be true for the clone,
1138 * while here, branch prediction will be good.
1139 */
1140 if (refcount_read(&fclones->fclone_ref) == 1)
1141 goto fastpath;
1142 break;
1143
1144 default: /* SKB_FCLONE_CLONE */
1145 fclones = container_of(skb, struct sk_buff_fclones, skb2);
1146 break;
1147 }
1148 if (!refcount_dec_and_test(&fclones->fclone_ref))
1149 return;
1150 fastpath:
1151 kmem_cache_free(net_hotdata.skbuff_fclone_cache, fclones);
1152 }
1153
skb_release_head_state(struct sk_buff * skb)1154 void skb_release_head_state(struct sk_buff *skb)
1155 {
1156 skb_dst_drop(skb);
1157 if (skb->destructor) {
1158 DEBUG_NET_WARN_ON_ONCE(in_hardirq());
1159 #ifdef CONFIG_INET
1160 INDIRECT_CALL_4(skb->destructor,
1161 tcp_wfree, __sock_wfree, sock_wfree,
1162 xsk_destruct_skb,
1163 skb);
1164 #else
1165 INDIRECT_CALL_2(skb->destructor,
1166 sock_wfree, xsk_destruct_skb,
1167 skb);
1168
1169 #endif
1170 skb->destructor = NULL;
1171 skb->sk = NULL;
1172 }
1173 nf_reset_ct(skb);
1174 skb_ext_reset(skb);
1175 }
1176
1177 /* Free everything but the sk_buff shell. */
skb_release_all(struct sk_buff * skb,enum skb_drop_reason reason)1178 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason)
1179 {
1180 skb_release_head_state(skb);
1181 if (likely(skb->head))
1182 skb_release_data(skb, reason);
1183 }
1184
1185 /**
1186 * __kfree_skb - private function
1187 * @skb: buffer
1188 *
1189 * Free an sk_buff. Release anything attached to the buffer.
1190 * Clean the state. This is an internal helper function. Users should
1191 * always call kfree_skb
1192 */
1193
__kfree_skb(struct sk_buff * skb)1194 void __kfree_skb(struct sk_buff *skb)
1195 {
1196 skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1197 kfree_skbmem(skb);
1198 }
1199 EXPORT_SYMBOL(__kfree_skb);
1200
1201 static __always_inline
__sk_skb_reason_drop(struct sock * sk,struct sk_buff * skb,enum skb_drop_reason reason)1202 bool __sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb,
1203 enum skb_drop_reason reason)
1204 {
1205 if (unlikely(!skb_unref(skb)))
1206 return false;
1207
1208 DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET ||
1209 u32_get_bits(reason,
1210 SKB_DROP_REASON_SUBSYS_MASK) >=
1211 SKB_DROP_REASON_SUBSYS_NUM);
1212
1213 if (reason == SKB_CONSUMED)
1214 trace_consume_skb(skb, __builtin_return_address(0));
1215 else
1216 trace_kfree_skb(skb, __builtin_return_address(0), reason, sk);
1217 return true;
1218 }
1219
1220 /**
1221 * sk_skb_reason_drop - free an sk_buff with special reason
1222 * @sk: the socket to receive @skb, or NULL if not applicable
1223 * @skb: buffer to free
1224 * @reason: reason why this skb is dropped
1225 *
1226 * Drop a reference to the buffer and free it if the usage count has hit
1227 * zero. Meanwhile, pass the receiving socket and drop reason to
1228 * 'kfree_skb' tracepoint.
1229 */
1230 void __fix_address
sk_skb_reason_drop(struct sock * sk,struct sk_buff * skb,enum skb_drop_reason reason)1231 sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason reason)
1232 {
1233 if (__sk_skb_reason_drop(sk, skb, reason))
1234 __kfree_skb(skb);
1235 }
1236 EXPORT_SYMBOL(sk_skb_reason_drop);
1237
1238 #define KFREE_SKB_BULK_SIZE 16
1239
1240 struct skb_free_array {
1241 unsigned int skb_count;
1242 void *skb_array[KFREE_SKB_BULK_SIZE];
1243 };
1244
kfree_skb_add_bulk(struct sk_buff * skb,struct skb_free_array * sa,enum skb_drop_reason reason)1245 static void kfree_skb_add_bulk(struct sk_buff *skb,
1246 struct skb_free_array *sa,
1247 enum skb_drop_reason reason)
1248 {
1249 /* if SKB is a clone, don't handle this case */
1250 if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) {
1251 __kfree_skb(skb);
1252 return;
1253 }
1254
1255 skb_release_all(skb, reason);
1256 sa->skb_array[sa->skb_count++] = skb;
1257
1258 if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) {
1259 kmem_cache_free_bulk(net_hotdata.skbuff_cache, KFREE_SKB_BULK_SIZE,
1260 sa->skb_array);
1261 sa->skb_count = 0;
1262 }
1263 }
1264
1265 void __fix_address
kfree_skb_list_reason(struct sk_buff * segs,enum skb_drop_reason reason)1266 kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason)
1267 {
1268 struct skb_free_array sa;
1269
1270 sa.skb_count = 0;
1271
1272 while (segs) {
1273 struct sk_buff *next = segs->next;
1274
1275 if (__sk_skb_reason_drop(NULL, segs, reason)) {
1276 skb_poison_list(segs);
1277 kfree_skb_add_bulk(segs, &sa, reason);
1278 }
1279
1280 segs = next;
1281 }
1282
1283 if (sa.skb_count)
1284 kmem_cache_free_bulk(net_hotdata.skbuff_cache, sa.skb_count, sa.skb_array);
1285 }
1286 EXPORT_SYMBOL(kfree_skb_list_reason);
1287
1288 /* Dump skb information and contents.
1289 *
1290 * Must only be called from net_ratelimit()-ed paths.
1291 *
1292 * Dumps whole packets if full_pkt, only headers otherwise.
1293 */
skb_dump(const char * level,const struct sk_buff * skb,bool full_pkt)1294 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
1295 {
1296 struct skb_shared_info *sh = skb_shinfo(skb);
1297 struct net_device *dev = skb->dev;
1298 struct sock *sk = skb->sk;
1299 struct sk_buff *list_skb;
1300 bool has_mac, has_trans;
1301 int headroom, tailroom;
1302 int i, len, seg_len;
1303
1304 if (full_pkt)
1305 len = skb->len;
1306 else
1307 len = min_t(int, skb->len, MAX_HEADER + 128);
1308
1309 headroom = skb_headroom(skb);
1310 tailroom = skb_tailroom(skb);
1311
1312 has_mac = skb_mac_header_was_set(skb);
1313 has_trans = skb_transport_header_was_set(skb);
1314
1315 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
1316 "mac=(%d,%d) mac_len=%u net=(%d,%d) trans=%d\n"
1317 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
1318 "csum(0x%x start=%u offset=%u ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
1319 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n"
1320 "priority=0x%x mark=0x%x alloc_cpu=%u vlan_all=0x%x\n"
1321 "encapsulation=%d inner(proto=0x%04x, mac=%u, net=%u, trans=%u)\n",
1322 level, skb->len, headroom, skb_headlen(skb), tailroom,
1323 has_mac ? skb->mac_header : -1,
1324 has_mac ? skb_mac_header_len(skb) : -1,
1325 skb->mac_len,
1326 skb->network_header,
1327 has_trans ? skb_network_header_len(skb) : -1,
1328 has_trans ? skb->transport_header : -1,
1329 sh->tx_flags, sh->nr_frags,
1330 sh->gso_size, sh->gso_type, sh->gso_segs,
1331 skb->csum, skb->csum_start, skb->csum_offset, skb->ip_summed,
1332 skb->csum_complete_sw, skb->csum_valid, skb->csum_level,
1333 skb->hash, skb->sw_hash, skb->l4_hash,
1334 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif,
1335 skb->priority, skb->mark, skb->alloc_cpu, skb->vlan_all,
1336 skb->encapsulation, skb->inner_protocol, skb->inner_mac_header,
1337 skb->inner_network_header, skb->inner_transport_header);
1338
1339 if (dev)
1340 printk("%sdev name=%s feat=%pNF\n",
1341 level, dev->name, &dev->features);
1342 if (sk)
1343 printk("%ssk family=%hu type=%u proto=%u\n",
1344 level, sk->sk_family, sk->sk_type, sk->sk_protocol);
1345
1346 if (full_pkt && headroom)
1347 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
1348 16, 1, skb->head, headroom, false);
1349
1350 seg_len = min_t(int, skb_headlen(skb), len);
1351 if (seg_len)
1352 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET,
1353 16, 1, skb->data, seg_len, false);
1354 len -= seg_len;
1355
1356 if (full_pkt && tailroom)
1357 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
1358 16, 1, skb_tail_pointer(skb), tailroom, false);
1359
1360 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
1361 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1362 u32 p_off, p_len, copied;
1363 struct page *p;
1364 u8 *vaddr;
1365
1366 if (skb_frag_is_net_iov(frag)) {
1367 printk("%sskb frag %d: not readable\n", level, i);
1368 len -= skb_frag_size(frag);
1369 if (!len)
1370 break;
1371 continue;
1372 }
1373
1374 skb_frag_foreach_page(frag, skb_frag_off(frag),
1375 skb_frag_size(frag), p, p_off, p_len,
1376 copied) {
1377 seg_len = min_t(int, p_len, len);
1378 vaddr = kmap_atomic(p);
1379 print_hex_dump(level, "skb frag: ",
1380 DUMP_PREFIX_OFFSET,
1381 16, 1, vaddr + p_off, seg_len, false);
1382 kunmap_atomic(vaddr);
1383 len -= seg_len;
1384 if (!len)
1385 break;
1386 }
1387 }
1388
1389 if (full_pkt && skb_has_frag_list(skb)) {
1390 printk("skb fraglist:\n");
1391 skb_walk_frags(skb, list_skb)
1392 skb_dump(level, list_skb, true);
1393 }
1394 }
1395 EXPORT_SYMBOL(skb_dump);
1396
1397 /**
1398 * skb_tx_error - report an sk_buff xmit error
1399 * @skb: buffer that triggered an error
1400 *
1401 * Report xmit error if a device callback is tracking this skb.
1402 * skb must be freed afterwards.
1403 */
skb_tx_error(struct sk_buff * skb)1404 void skb_tx_error(struct sk_buff *skb)
1405 {
1406 if (skb) {
1407 skb_zcopy_downgrade_managed(skb);
1408 skb_zcopy_clear(skb, true);
1409 }
1410 }
1411 EXPORT_SYMBOL(skb_tx_error);
1412
1413 #ifdef CONFIG_TRACEPOINTS
1414 /**
1415 * consume_skb - free an skbuff
1416 * @skb: buffer to free
1417 *
1418 * Drop a ref to the buffer and free it if the usage count has hit zero
1419 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
1420 * is being dropped after a failure and notes that
1421 */
consume_skb(struct sk_buff * skb)1422 void consume_skb(struct sk_buff *skb)
1423 {
1424 if (!skb_unref(skb))
1425 return;
1426
1427 trace_consume_skb(skb, __builtin_return_address(0));
1428 __kfree_skb(skb);
1429 }
1430 EXPORT_SYMBOL(consume_skb);
1431 #endif
1432
1433 /**
1434 * __consume_stateless_skb - free an skbuff, assuming it is stateless
1435 * @skb: buffer to free
1436 *
1437 * Alike consume_skb(), but this variant assumes that this is the last
1438 * skb reference and all the head states have been already dropped
1439 */
__consume_stateless_skb(struct sk_buff * skb)1440 void __consume_stateless_skb(struct sk_buff *skb)
1441 {
1442 trace_consume_skb(skb, __builtin_return_address(0));
1443 skb_release_data(skb, SKB_CONSUMED);
1444 kfree_skbmem(skb);
1445 }
1446
napi_skb_cache_put(struct sk_buff * skb)1447 static void napi_skb_cache_put(struct sk_buff *skb)
1448 {
1449 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
1450
1451 if (!kasan_mempool_poison_object(skb))
1452 return;
1453
1454 local_lock_nested_bh(&napi_alloc_cache.bh_lock);
1455 nc->skb_cache[nc->skb_count++] = skb;
1456
1457 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
1458 u32 i, remaining = NAPI_SKB_CACHE_SIZE - NAPI_SKB_CACHE_FREE;
1459
1460 for (i = remaining; i < NAPI_SKB_CACHE_SIZE; i++)
1461 kasan_mempool_unpoison_object(nc->skb_cache[i],
1462 skbuff_cache_size);
1463
1464 kmem_cache_free_bulk(net_hotdata.skbuff_cache,
1465 NAPI_SKB_CACHE_FREE,
1466 nc->skb_cache + remaining);
1467 nc->skb_count = remaining;
1468 }
1469 local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
1470 }
1471
__napi_kfree_skb(struct sk_buff * skb,enum skb_drop_reason reason)1472 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason)
1473 {
1474 skb_release_all(skb, reason);
1475 napi_skb_cache_put(skb);
1476 }
1477
napi_skb_free_stolen_head(struct sk_buff * skb)1478 void napi_skb_free_stolen_head(struct sk_buff *skb)
1479 {
1480 if (unlikely(skb->slow_gro)) {
1481 nf_reset_ct(skb);
1482 skb_dst_drop(skb);
1483 skb_ext_put(skb);
1484 skb_orphan(skb);
1485 skb->slow_gro = 0;
1486 }
1487 napi_skb_cache_put(skb);
1488 }
1489
napi_consume_skb(struct sk_buff * skb,int budget)1490 void napi_consume_skb(struct sk_buff *skb, int budget)
1491 {
1492 /* Zero budget indicate non-NAPI context called us, like netpoll */
1493 if (unlikely(!budget || !skb)) {
1494 dev_consume_skb_any(skb);
1495 return;
1496 }
1497
1498 DEBUG_NET_WARN_ON_ONCE(!in_softirq());
1499
1500 if (skb->alloc_cpu != smp_processor_id() && !skb_shared(skb)) {
1501 skb_release_head_state(skb);
1502 return skb_attempt_defer_free(skb);
1503 }
1504
1505 if (!skb_unref(skb))
1506 return;
1507
1508 /* if reaching here SKB is ready to free */
1509 trace_consume_skb(skb, __builtin_return_address(0));
1510
1511 /* if SKB is a clone, don't handle this case */
1512 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
1513 __kfree_skb(skb);
1514 return;
1515 }
1516
1517 skb_release_all(skb, SKB_CONSUMED);
1518 napi_skb_cache_put(skb);
1519 }
1520 EXPORT_SYMBOL(napi_consume_skb);
1521
1522 /* Make sure a field is contained by headers group */
1523 #define CHECK_SKB_FIELD(field) \
1524 BUILD_BUG_ON(offsetof(struct sk_buff, field) != \
1525 offsetof(struct sk_buff, headers.field)); \
1526
__copy_skb_header(struct sk_buff * new,const struct sk_buff * old)1527 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1528 {
1529 new->tstamp = old->tstamp;
1530 /* We do not copy old->sk */
1531 new->dev = old->dev;
1532 memcpy(new->cb, old->cb, sizeof(old->cb));
1533 skb_dst_copy(new, old);
1534 __skb_ext_copy(new, old);
1535 __nf_copy(new, old, false);
1536
1537 /* Note : this field could be in the headers group.
1538 * It is not yet because we do not want to have a 16 bit hole
1539 */
1540 new->queue_mapping = old->queue_mapping;
1541
1542 memcpy(&new->headers, &old->headers, sizeof(new->headers));
1543 CHECK_SKB_FIELD(protocol);
1544 CHECK_SKB_FIELD(csum);
1545 CHECK_SKB_FIELD(hash);
1546 CHECK_SKB_FIELD(priority);
1547 CHECK_SKB_FIELD(skb_iif);
1548 CHECK_SKB_FIELD(vlan_proto);
1549 CHECK_SKB_FIELD(vlan_tci);
1550 CHECK_SKB_FIELD(transport_header);
1551 CHECK_SKB_FIELD(network_header);
1552 CHECK_SKB_FIELD(mac_header);
1553 CHECK_SKB_FIELD(inner_protocol);
1554 CHECK_SKB_FIELD(inner_transport_header);
1555 CHECK_SKB_FIELD(inner_network_header);
1556 CHECK_SKB_FIELD(inner_mac_header);
1557 CHECK_SKB_FIELD(mark);
1558 #ifdef CONFIG_NETWORK_SECMARK
1559 CHECK_SKB_FIELD(secmark);
1560 #endif
1561 #ifdef CONFIG_NET_RX_BUSY_POLL
1562 CHECK_SKB_FIELD(napi_id);
1563 #endif
1564 CHECK_SKB_FIELD(alloc_cpu);
1565 #ifdef CONFIG_XPS
1566 CHECK_SKB_FIELD(sender_cpu);
1567 #endif
1568 #ifdef CONFIG_NET_SCHED
1569 CHECK_SKB_FIELD(tc_index);
1570 #endif
1571
1572 }
1573
1574 /*
1575 * You should not add any new code to this function. Add it to
1576 * __copy_skb_header above instead.
1577 */
__skb_clone(struct sk_buff * n,struct sk_buff * skb)1578 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1579 {
1580 #define C(x) n->x = skb->x
1581
1582 n->next = n->prev = NULL;
1583 n->sk = NULL;
1584 __copy_skb_header(n, skb);
1585
1586 C(len);
1587 C(data_len);
1588 C(mac_len);
1589 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1590 n->cloned = 1;
1591 n->nohdr = 0;
1592 n->peeked = 0;
1593 C(pfmemalloc);
1594 C(pp_recycle);
1595 n->destructor = NULL;
1596 C(tail);
1597 C(end);
1598 C(head);
1599 C(head_frag);
1600 C(data);
1601 C(truesize);
1602 refcount_set(&n->users, 1);
1603
1604 atomic_inc(&(skb_shinfo(skb)->dataref));
1605 skb->cloned = 1;
1606
1607 return n;
1608 #undef C
1609 }
1610
1611 /**
1612 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1613 * @first: first sk_buff of the msg
1614 */
alloc_skb_for_msg(struct sk_buff * first)1615 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1616 {
1617 struct sk_buff *n;
1618
1619 n = alloc_skb(0, GFP_ATOMIC);
1620 if (!n)
1621 return NULL;
1622
1623 n->len = first->len;
1624 n->data_len = first->len;
1625 n->truesize = first->truesize;
1626
1627 skb_shinfo(n)->frag_list = first;
1628
1629 __copy_skb_header(n, first);
1630 n->destructor = NULL;
1631
1632 return n;
1633 }
1634 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1635
1636 /**
1637 * skb_morph - morph one skb into another
1638 * @dst: the skb to receive the contents
1639 * @src: the skb to supply the contents
1640 *
1641 * This is identical to skb_clone except that the target skb is
1642 * supplied by the user.
1643 *
1644 * The target skb is returned upon exit.
1645 */
skb_morph(struct sk_buff * dst,struct sk_buff * src)1646 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1647 {
1648 skb_release_all(dst, SKB_CONSUMED);
1649 return __skb_clone(dst, src);
1650 }
1651 EXPORT_SYMBOL_GPL(skb_morph);
1652
mm_account_pinned_pages(struct mmpin * mmp,size_t size)1653 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1654 {
1655 unsigned long max_pg, num_pg, new_pg, old_pg, rlim;
1656 struct user_struct *user;
1657
1658 if (capable(CAP_IPC_LOCK) || !size)
1659 return 0;
1660
1661 rlim = rlimit(RLIMIT_MEMLOCK);
1662 if (rlim == RLIM_INFINITY)
1663 return 0;
1664
1665 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */
1666 max_pg = rlim >> PAGE_SHIFT;
1667 user = mmp->user ? : current_user();
1668
1669 old_pg = atomic_long_read(&user->locked_vm);
1670 do {
1671 new_pg = old_pg + num_pg;
1672 if (new_pg > max_pg)
1673 return -ENOBUFS;
1674 } while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg));
1675
1676 if (!mmp->user) {
1677 mmp->user = get_uid(user);
1678 mmp->num_pg = num_pg;
1679 } else {
1680 mmp->num_pg += num_pg;
1681 }
1682
1683 return 0;
1684 }
1685 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1686
mm_unaccount_pinned_pages(struct mmpin * mmp)1687 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1688 {
1689 if (mmp->user) {
1690 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1691 free_uid(mmp->user);
1692 }
1693 }
1694 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1695
msg_zerocopy_alloc(struct sock * sk,size_t size,bool devmem)1696 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size,
1697 bool devmem)
1698 {
1699 struct ubuf_info_msgzc *uarg;
1700 struct sk_buff *skb;
1701
1702 WARN_ON_ONCE(!in_task());
1703
1704 skb = sock_omalloc(sk, 0, GFP_KERNEL);
1705 if (!skb)
1706 return NULL;
1707
1708 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1709 uarg = (void *)skb->cb;
1710 uarg->mmp.user = NULL;
1711
1712 if (likely(!devmem) && mm_account_pinned_pages(&uarg->mmp, size)) {
1713 kfree_skb(skb);
1714 return NULL;
1715 }
1716
1717 uarg->ubuf.ops = &msg_zerocopy_ubuf_ops;
1718 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1719 uarg->len = 1;
1720 uarg->bytelen = size;
1721 uarg->zerocopy = 1;
1722 uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN;
1723 refcount_set(&uarg->ubuf.refcnt, 1);
1724 sock_hold(sk);
1725
1726 return &uarg->ubuf;
1727 }
1728
skb_from_uarg(struct ubuf_info_msgzc * uarg)1729 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg)
1730 {
1731 return container_of((void *)uarg, struct sk_buff, cb);
1732 }
1733
msg_zerocopy_realloc(struct sock * sk,size_t size,struct ubuf_info * uarg,bool devmem)1734 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1735 struct ubuf_info *uarg, bool devmem)
1736 {
1737 if (uarg) {
1738 struct ubuf_info_msgzc *uarg_zc;
1739 const u32 byte_limit = 1 << 19; /* limit to a few TSO */
1740 u32 bytelen, next;
1741
1742 /* there might be non MSG_ZEROCOPY users */
1743 if (uarg->ops != &msg_zerocopy_ubuf_ops)
1744 return NULL;
1745
1746 /* realloc only when socket is locked (TCP, UDP cork),
1747 * so uarg->len and sk_zckey access is serialized
1748 */
1749 if (!sock_owned_by_user(sk)) {
1750 WARN_ON_ONCE(1);
1751 return NULL;
1752 }
1753
1754 uarg_zc = uarg_to_msgzc(uarg);
1755 bytelen = uarg_zc->bytelen + size;
1756 if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1757 /* TCP can create new skb to attach new uarg */
1758 if (sk->sk_type == SOCK_STREAM)
1759 goto new_alloc;
1760 return NULL;
1761 }
1762
1763 next = (u32)atomic_read(&sk->sk_zckey);
1764 if ((u32)(uarg_zc->id + uarg_zc->len) == next) {
1765 if (likely(!devmem) &&
1766 mm_account_pinned_pages(&uarg_zc->mmp, size))
1767 return NULL;
1768 uarg_zc->len++;
1769 uarg_zc->bytelen = bytelen;
1770 atomic_set(&sk->sk_zckey, ++next);
1771
1772 /* no extra ref when appending to datagram (MSG_MORE) */
1773 if (sk->sk_type == SOCK_STREAM)
1774 net_zcopy_get(uarg);
1775
1776 return uarg;
1777 }
1778 }
1779
1780 new_alloc:
1781 return msg_zerocopy_alloc(sk, size, devmem);
1782 }
1783 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1784
skb_zerocopy_notify_extend(struct sk_buff * skb,u32 lo,u16 len)1785 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1786 {
1787 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1788 u32 old_lo, old_hi;
1789 u64 sum_len;
1790
1791 old_lo = serr->ee.ee_info;
1792 old_hi = serr->ee.ee_data;
1793 sum_len = old_hi - old_lo + 1ULL + len;
1794
1795 if (sum_len >= (1ULL << 32))
1796 return false;
1797
1798 if (lo != old_hi + 1)
1799 return false;
1800
1801 serr->ee.ee_data += len;
1802 return true;
1803 }
1804
__msg_zerocopy_callback(struct ubuf_info_msgzc * uarg)1805 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg)
1806 {
1807 struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1808 struct sock_exterr_skb *serr;
1809 struct sock *sk = skb->sk;
1810 struct sk_buff_head *q;
1811 unsigned long flags;
1812 bool is_zerocopy;
1813 u32 lo, hi;
1814 u16 len;
1815
1816 mm_unaccount_pinned_pages(&uarg->mmp);
1817
1818 /* if !len, there was only 1 call, and it was aborted
1819 * so do not queue a completion notification
1820 */
1821 if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1822 goto release;
1823
1824 len = uarg->len;
1825 lo = uarg->id;
1826 hi = uarg->id + len - 1;
1827 is_zerocopy = uarg->zerocopy;
1828
1829 serr = SKB_EXT_ERR(skb);
1830 memset(serr, 0, sizeof(*serr));
1831 serr->ee.ee_errno = 0;
1832 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1833 serr->ee.ee_data = hi;
1834 serr->ee.ee_info = lo;
1835 if (!is_zerocopy)
1836 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1837
1838 q = &sk->sk_error_queue;
1839 spin_lock_irqsave(&q->lock, flags);
1840 tail = skb_peek_tail(q);
1841 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1842 !skb_zerocopy_notify_extend(tail, lo, len)) {
1843 __skb_queue_tail(q, skb);
1844 skb = NULL;
1845 }
1846 spin_unlock_irqrestore(&q->lock, flags);
1847
1848 sk_error_report(sk);
1849
1850 release:
1851 consume_skb(skb);
1852 sock_put(sk);
1853 }
1854
msg_zerocopy_complete(struct sk_buff * skb,struct ubuf_info * uarg,bool success)1855 static void msg_zerocopy_complete(struct sk_buff *skb, struct ubuf_info *uarg,
1856 bool success)
1857 {
1858 struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg);
1859
1860 uarg_zc->zerocopy = uarg_zc->zerocopy & success;
1861
1862 if (refcount_dec_and_test(&uarg->refcnt))
1863 __msg_zerocopy_callback(uarg_zc);
1864 }
1865
msg_zerocopy_put_abort(struct ubuf_info * uarg,bool have_uref)1866 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1867 {
1868 struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk;
1869
1870 atomic_dec(&sk->sk_zckey);
1871 uarg_to_msgzc(uarg)->len--;
1872
1873 if (have_uref)
1874 msg_zerocopy_complete(NULL, uarg, true);
1875 }
1876 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1877
1878 const struct ubuf_info_ops msg_zerocopy_ubuf_ops = {
1879 .complete = msg_zerocopy_complete,
1880 };
1881 EXPORT_SYMBOL_GPL(msg_zerocopy_ubuf_ops);
1882
skb_zerocopy_iter_stream(struct sock * sk,struct sk_buff * skb,struct msghdr * msg,int len,struct ubuf_info * uarg,struct net_devmem_dmabuf_binding * binding)1883 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1884 struct msghdr *msg, int len,
1885 struct ubuf_info *uarg,
1886 struct net_devmem_dmabuf_binding *binding)
1887 {
1888 int err, orig_len = skb->len;
1889
1890 if (uarg->ops->link_skb) {
1891 err = uarg->ops->link_skb(skb, uarg);
1892 if (err)
1893 return err;
1894 } else {
1895 struct ubuf_info *orig_uarg = skb_zcopy(skb);
1896
1897 /* An skb can only point to one uarg. This edge case happens
1898 * when TCP appends to an skb, but zerocopy_realloc triggered
1899 * a new alloc.
1900 */
1901 if (orig_uarg && uarg != orig_uarg)
1902 return -EEXIST;
1903 }
1904
1905 err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len,
1906 binding);
1907 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1908 struct sock *save_sk = skb->sk;
1909
1910 /* Streams do not free skb on error. Reset to prev state. */
1911 iov_iter_revert(&msg->msg_iter, skb->len - orig_len);
1912 skb->sk = sk;
1913 ___pskb_trim(skb, orig_len);
1914 skb->sk = save_sk;
1915 return err;
1916 }
1917
1918 skb_zcopy_set(skb, uarg, NULL);
1919 return skb->len - orig_len;
1920 }
1921 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1922
__skb_zcopy_downgrade_managed(struct sk_buff * skb)1923 void __skb_zcopy_downgrade_managed(struct sk_buff *skb)
1924 {
1925 int i;
1926
1927 skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS;
1928 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1929 skb_frag_ref(skb, i);
1930 }
1931 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed);
1932
skb_zerocopy_clone(struct sk_buff * nskb,struct sk_buff * orig,gfp_t gfp_mask)1933 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1934 gfp_t gfp_mask)
1935 {
1936 if (skb_zcopy(orig)) {
1937 if (skb_zcopy(nskb)) {
1938 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1939 if (!gfp_mask) {
1940 WARN_ON_ONCE(1);
1941 return -ENOMEM;
1942 }
1943 if (skb_uarg(nskb) == skb_uarg(orig))
1944 return 0;
1945 if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1946 return -EIO;
1947 }
1948 skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1949 }
1950 return 0;
1951 }
1952
1953 /**
1954 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
1955 * @skb: the skb to modify
1956 * @gfp_mask: allocation priority
1957 *
1958 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1959 * It will copy all frags into kernel and drop the reference
1960 * to userspace pages.
1961 *
1962 * If this function is called from an interrupt gfp_mask() must be
1963 * %GFP_ATOMIC.
1964 *
1965 * Returns 0 on success or a negative error code on failure
1966 * to allocate kernel memory to copy to.
1967 */
skb_copy_ubufs(struct sk_buff * skb,gfp_t gfp_mask)1968 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1969 {
1970 int num_frags = skb_shinfo(skb)->nr_frags;
1971 struct page *page, *head = NULL;
1972 int i, order, psize, new_frags;
1973 u32 d_off;
1974
1975 if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1976 return -EINVAL;
1977
1978 if (!skb_frags_readable(skb))
1979 return -EFAULT;
1980
1981 if (!num_frags)
1982 goto release;
1983
1984 /* We might have to allocate high order pages, so compute what minimum
1985 * page order is needed.
1986 */
1987 order = 0;
1988 while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb))
1989 order++;
1990 psize = (PAGE_SIZE << order);
1991
1992 new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order);
1993 for (i = 0; i < new_frags; i++) {
1994 page = alloc_pages(gfp_mask | __GFP_COMP, order);
1995 if (!page) {
1996 while (head) {
1997 struct page *next = (struct page *)page_private(head);
1998 put_page(head);
1999 head = next;
2000 }
2001 return -ENOMEM;
2002 }
2003 set_page_private(page, (unsigned long)head);
2004 head = page;
2005 }
2006
2007 page = head;
2008 d_off = 0;
2009 for (i = 0; i < num_frags; i++) {
2010 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2011 u32 p_off, p_len, copied;
2012 struct page *p;
2013 u8 *vaddr;
2014
2015 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
2016 p, p_off, p_len, copied) {
2017 u32 copy, done = 0;
2018 vaddr = kmap_atomic(p);
2019
2020 while (done < p_len) {
2021 if (d_off == psize) {
2022 d_off = 0;
2023 page = (struct page *)page_private(page);
2024 }
2025 copy = min_t(u32, psize - d_off, p_len - done);
2026 memcpy(page_address(page) + d_off,
2027 vaddr + p_off + done, copy);
2028 done += copy;
2029 d_off += copy;
2030 }
2031 kunmap_atomic(vaddr);
2032 }
2033 }
2034
2035 /* skb frags release userspace buffers */
2036 for (i = 0; i < num_frags; i++)
2037 skb_frag_unref(skb, i);
2038
2039 /* skb frags point to kernel buffers */
2040 for (i = 0; i < new_frags - 1; i++) {
2041 __skb_fill_netmem_desc(skb, i, page_to_netmem(head), 0, psize);
2042 head = (struct page *)page_private(head);
2043 }
2044 __skb_fill_netmem_desc(skb, new_frags - 1, page_to_netmem(head), 0,
2045 d_off);
2046 skb_shinfo(skb)->nr_frags = new_frags;
2047
2048 release:
2049 skb_zcopy_clear(skb, false);
2050 return 0;
2051 }
2052 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
2053
2054 /**
2055 * skb_clone - duplicate an sk_buff
2056 * @skb: buffer to clone
2057 * @gfp_mask: allocation priority
2058 *
2059 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
2060 * copies share the same packet data but not structure. The new
2061 * buffer has a reference count of 1. If the allocation fails the
2062 * function returns %NULL otherwise the new buffer is returned.
2063 *
2064 * If this function is called from an interrupt gfp_mask() must be
2065 * %GFP_ATOMIC.
2066 */
2067
skb_clone(struct sk_buff * skb,gfp_t gfp_mask)2068 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
2069 {
2070 struct sk_buff_fclones *fclones = container_of(skb,
2071 struct sk_buff_fclones,
2072 skb1);
2073 struct sk_buff *n;
2074
2075 if (skb_orphan_frags(skb, gfp_mask))
2076 return NULL;
2077
2078 if (skb->fclone == SKB_FCLONE_ORIG &&
2079 refcount_read(&fclones->fclone_ref) == 1) {
2080 n = &fclones->skb2;
2081 refcount_set(&fclones->fclone_ref, 2);
2082 n->fclone = SKB_FCLONE_CLONE;
2083 } else {
2084 if (skb_pfmemalloc(skb))
2085 gfp_mask |= __GFP_MEMALLOC;
2086
2087 n = kmem_cache_alloc(net_hotdata.skbuff_cache, gfp_mask);
2088 if (!n)
2089 return NULL;
2090
2091 n->fclone = SKB_FCLONE_UNAVAILABLE;
2092 }
2093
2094 return __skb_clone(n, skb);
2095 }
2096 EXPORT_SYMBOL(skb_clone);
2097
skb_headers_offset_update(struct sk_buff * skb,int off)2098 void skb_headers_offset_update(struct sk_buff *skb, int off)
2099 {
2100 /* Only adjust this if it actually is csum_start rather than csum */
2101 if (skb->ip_summed == CHECKSUM_PARTIAL)
2102 skb->csum_start += off;
2103 /* {transport,network,mac}_header and tail are relative to skb->head */
2104 skb->transport_header += off;
2105 skb->network_header += off;
2106 if (skb_mac_header_was_set(skb))
2107 skb->mac_header += off;
2108 skb->inner_transport_header += off;
2109 skb->inner_network_header += off;
2110 skb->inner_mac_header += off;
2111 }
2112 EXPORT_SYMBOL(skb_headers_offset_update);
2113
skb_copy_header(struct sk_buff * new,const struct sk_buff * old)2114 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
2115 {
2116 __copy_skb_header(new, old);
2117
2118 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
2119 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
2120 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
2121 }
2122 EXPORT_SYMBOL(skb_copy_header);
2123
skb_alloc_rx_flag(const struct sk_buff * skb)2124 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
2125 {
2126 if (skb_pfmemalloc(skb))
2127 return SKB_ALLOC_RX;
2128 return 0;
2129 }
2130
2131 /**
2132 * skb_copy - create private copy of an sk_buff
2133 * @skb: buffer to copy
2134 * @gfp_mask: allocation priority
2135 *
2136 * Make a copy of both an &sk_buff and its data. This is used when the
2137 * caller wishes to modify the data and needs a private copy of the
2138 * data to alter. Returns %NULL on failure or the pointer to the buffer
2139 * on success. The returned buffer has a reference count of 1.
2140 *
2141 * As by-product this function converts non-linear &sk_buff to linear
2142 * one, so that &sk_buff becomes completely private and caller is allowed
2143 * to modify all the data of returned buffer. This means that this
2144 * function is not recommended for use in circumstances when only
2145 * header is going to be modified. Use pskb_copy() instead.
2146 */
2147
skb_copy(const struct sk_buff * skb,gfp_t gfp_mask)2148 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
2149 {
2150 struct sk_buff *n;
2151 unsigned int size;
2152 int headerlen;
2153
2154 if (!skb_frags_readable(skb))
2155 return NULL;
2156
2157 if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST))
2158 return NULL;
2159
2160 headerlen = skb_headroom(skb);
2161 size = skb_end_offset(skb) + skb->data_len;
2162 n = __alloc_skb(size, gfp_mask,
2163 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
2164 if (!n)
2165 return NULL;
2166
2167 /* Set the data pointer */
2168 skb_reserve(n, headerlen);
2169 /* Set the tail pointer and length */
2170 skb_put(n, skb->len);
2171
2172 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
2173
2174 skb_copy_header(n, skb);
2175 return n;
2176 }
2177 EXPORT_SYMBOL(skb_copy);
2178
2179 /**
2180 * __pskb_copy_fclone - create copy of an sk_buff with private head.
2181 * @skb: buffer to copy
2182 * @headroom: headroom of new skb
2183 * @gfp_mask: allocation priority
2184 * @fclone: if true allocate the copy of the skb from the fclone
2185 * cache instead of the head cache; it is recommended to set this
2186 * to true for the cases where the copy will likely be cloned
2187 *
2188 * Make a copy of both an &sk_buff and part of its data, located
2189 * in header. Fragmented data remain shared. This is used when
2190 * the caller wishes to modify only header of &sk_buff and needs
2191 * private copy of the header to alter. Returns %NULL on failure
2192 * or the pointer to the buffer on success.
2193 * The returned buffer has a reference count of 1.
2194 */
2195
__pskb_copy_fclone(struct sk_buff * skb,int headroom,gfp_t gfp_mask,bool fclone)2196 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
2197 gfp_t gfp_mask, bool fclone)
2198 {
2199 unsigned int size = skb_headlen(skb) + headroom;
2200 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
2201 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
2202
2203 if (!n)
2204 goto out;
2205
2206 /* Set the data pointer */
2207 skb_reserve(n, headroom);
2208 /* Set the tail pointer and length */
2209 skb_put(n, skb_headlen(skb));
2210 /* Copy the bytes */
2211 skb_copy_from_linear_data(skb, n->data, n->len);
2212
2213 n->truesize += skb->data_len;
2214 n->data_len = skb->data_len;
2215 n->len = skb->len;
2216
2217 if (skb_shinfo(skb)->nr_frags) {
2218 int i;
2219
2220 if (skb_orphan_frags(skb, gfp_mask) ||
2221 skb_zerocopy_clone(n, skb, gfp_mask)) {
2222 kfree_skb(n);
2223 n = NULL;
2224 goto out;
2225 }
2226 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2227 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
2228 skb_frag_ref(skb, i);
2229 }
2230 skb_shinfo(n)->nr_frags = i;
2231 }
2232
2233 if (skb_has_frag_list(skb)) {
2234 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
2235 skb_clone_fraglist(n);
2236 }
2237
2238 skb_copy_header(n, skb);
2239 out:
2240 return n;
2241 }
2242 EXPORT_SYMBOL(__pskb_copy_fclone);
2243
2244 /**
2245 * pskb_expand_head - reallocate header of &sk_buff
2246 * @skb: buffer to reallocate
2247 * @nhead: room to add at head
2248 * @ntail: room to add at tail
2249 * @gfp_mask: allocation priority
2250 *
2251 * Expands (or creates identical copy, if @nhead and @ntail are zero)
2252 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
2253 * reference count of 1. Returns zero in the case of success or error,
2254 * if expansion failed. In the last case, &sk_buff is not changed.
2255 *
2256 * All the pointers pointing into skb header may change and must be
2257 * reloaded after call to this function.
2258 *
2259 * Note: If you skb_push() the start of the buffer after reallocating the
2260 * header, call skb_postpush_data_move() first to move the metadata out of
2261 * the way before writing to &sk_buff->data.
2262 */
2263
pskb_expand_head(struct sk_buff * skb,int nhead,int ntail,gfp_t gfp_mask)2264 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
2265 gfp_t gfp_mask)
2266 {
2267 unsigned int osize = skb_end_offset(skb);
2268 unsigned int size = osize + nhead + ntail;
2269 long off;
2270 u8 *data;
2271 int i;
2272
2273 BUG_ON(nhead < 0);
2274
2275 BUG_ON(skb_shared(skb));
2276
2277 skb_zcopy_downgrade_managed(skb);
2278
2279 if (skb_pfmemalloc(skb))
2280 gfp_mask |= __GFP_MEMALLOC;
2281
2282 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
2283 if (!data)
2284 goto nodata;
2285 size = SKB_WITH_OVERHEAD(size);
2286
2287 /* Copy only real data... and, alas, header. This should be
2288 * optimized for the cases when header is void.
2289 */
2290 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
2291
2292 memcpy((struct skb_shared_info *)(data + size),
2293 skb_shinfo(skb),
2294 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
2295
2296 /*
2297 * if shinfo is shared we must drop the old head gracefully, but if it
2298 * is not we can just drop the old head and let the existing refcount
2299 * be since all we did is relocate the values
2300 */
2301 if (skb_cloned(skb)) {
2302 if (skb_orphan_frags(skb, gfp_mask))
2303 goto nofrags;
2304 if (skb_zcopy(skb))
2305 refcount_inc(&skb_uarg(skb)->refcnt);
2306 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2307 skb_frag_ref(skb, i);
2308
2309 if (skb_has_frag_list(skb))
2310 skb_clone_fraglist(skb);
2311
2312 skb_release_data(skb, SKB_CONSUMED);
2313 } else {
2314 skb_free_head(skb);
2315 }
2316 off = (data + nhead) - skb->head;
2317
2318 skb->head = data;
2319 skb->head_frag = 0;
2320 skb->data += off;
2321
2322 skb_set_end_offset(skb, size);
2323 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2324 off = nhead;
2325 #endif
2326 skb->tail += off;
2327 skb_headers_offset_update(skb, nhead);
2328 skb->cloned = 0;
2329 skb->hdr_len = 0;
2330 skb->nohdr = 0;
2331 atomic_set(&skb_shinfo(skb)->dataref, 1);
2332
2333 /* It is not generally safe to change skb->truesize.
2334 * For the moment, we really care of rx path, or
2335 * when skb is orphaned (not attached to a socket).
2336 */
2337 if (!skb->sk || skb->destructor == sock_edemux)
2338 skb->truesize += size - osize;
2339
2340 return 0;
2341
2342 nofrags:
2343 skb_kfree_head(data, size);
2344 nodata:
2345 return -ENOMEM;
2346 }
2347 EXPORT_SYMBOL(pskb_expand_head);
2348
2349 /* Make private copy of skb with writable head and some headroom */
2350
skb_realloc_headroom(struct sk_buff * skb,unsigned int headroom)2351 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
2352 {
2353 struct sk_buff *skb2;
2354 int delta = headroom - skb_headroom(skb);
2355
2356 if (delta <= 0)
2357 skb2 = pskb_copy(skb, GFP_ATOMIC);
2358 else {
2359 skb2 = skb_clone(skb, GFP_ATOMIC);
2360 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
2361 GFP_ATOMIC)) {
2362 kfree_skb(skb2);
2363 skb2 = NULL;
2364 }
2365 }
2366 return skb2;
2367 }
2368 EXPORT_SYMBOL(skb_realloc_headroom);
2369
2370 /* Note: We plan to rework this in linux-6.4 */
__skb_unclone_keeptruesize(struct sk_buff * skb,gfp_t pri)2371 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
2372 {
2373 unsigned int saved_end_offset, saved_truesize;
2374 struct skb_shared_info *shinfo;
2375 int res;
2376
2377 saved_end_offset = skb_end_offset(skb);
2378 saved_truesize = skb->truesize;
2379
2380 res = pskb_expand_head(skb, 0, 0, pri);
2381 if (res)
2382 return res;
2383
2384 skb->truesize = saved_truesize;
2385
2386 if (likely(skb_end_offset(skb) == saved_end_offset))
2387 return 0;
2388
2389 /* We can not change skb->end if the original or new value
2390 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head().
2391 */
2392 if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM ||
2393 skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) {
2394 /* We think this path should not be taken.
2395 * Add a temporary trace to warn us just in case.
2396 */
2397 pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n",
2398 saved_end_offset, skb_end_offset(skb));
2399 WARN_ON_ONCE(1);
2400 return 0;
2401 }
2402
2403 shinfo = skb_shinfo(skb);
2404
2405 /* We are about to change back skb->end,
2406 * we need to move skb_shinfo() to its new location.
2407 */
2408 memmove(skb->head + saved_end_offset,
2409 shinfo,
2410 offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
2411
2412 skb_set_end_offset(skb, saved_end_offset);
2413
2414 return 0;
2415 }
2416
2417 /**
2418 * skb_expand_head - reallocate header of &sk_buff
2419 * @skb: buffer to reallocate
2420 * @headroom: needed headroom
2421 *
2422 * Unlike skb_realloc_headroom, this one does not allocate a new skb
2423 * if possible; copies skb->sk to new skb as needed
2424 * and frees original skb in case of failures.
2425 *
2426 * It expect increased headroom and generates warning otherwise.
2427 */
2428
skb_expand_head(struct sk_buff * skb,unsigned int headroom)2429 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
2430 {
2431 int delta = headroom - skb_headroom(skb);
2432 int osize = skb_end_offset(skb);
2433 struct sock *sk = skb->sk;
2434
2435 if (WARN_ONCE(delta <= 0,
2436 "%s is expecting an increase in the headroom", __func__))
2437 return skb;
2438
2439 delta = SKB_DATA_ALIGN(delta);
2440 /* pskb_expand_head() might crash, if skb is shared. */
2441 if (skb_shared(skb) || !is_skb_wmem(skb)) {
2442 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2443
2444 if (unlikely(!nskb))
2445 goto fail;
2446
2447 if (sk)
2448 skb_set_owner_w(nskb, sk);
2449 consume_skb(skb);
2450 skb = nskb;
2451 }
2452 if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
2453 goto fail;
2454
2455 if (sk && is_skb_wmem(skb)) {
2456 delta = skb_end_offset(skb) - osize;
2457 refcount_add(delta, &sk->sk_wmem_alloc);
2458 skb->truesize += delta;
2459 }
2460 return skb;
2461
2462 fail:
2463 kfree_skb(skb);
2464 return NULL;
2465 }
2466 EXPORT_SYMBOL(skb_expand_head);
2467
2468 /**
2469 * skb_copy_expand - copy and expand sk_buff
2470 * @skb: buffer to copy
2471 * @newheadroom: new free bytes at head
2472 * @newtailroom: new free bytes at tail
2473 * @gfp_mask: allocation priority
2474 *
2475 * Make a copy of both an &sk_buff and its data and while doing so
2476 * allocate additional space.
2477 *
2478 * This is used when the caller wishes to modify the data and needs a
2479 * private copy of the data to alter as well as more space for new fields.
2480 * Returns %NULL on failure or the pointer to the buffer
2481 * on success. The returned buffer has a reference count of 1.
2482 *
2483 * You must pass %GFP_ATOMIC as the allocation priority if this function
2484 * is called from an interrupt.
2485 */
skb_copy_expand(const struct sk_buff * skb,int newheadroom,int newtailroom,gfp_t gfp_mask)2486 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
2487 int newheadroom, int newtailroom,
2488 gfp_t gfp_mask)
2489 {
2490 /*
2491 * Allocate the copy buffer
2492 */
2493 int head_copy_len, head_copy_off;
2494 struct sk_buff *n;
2495 int oldheadroom;
2496
2497 if (!skb_frags_readable(skb))
2498 return NULL;
2499
2500 if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST))
2501 return NULL;
2502
2503 oldheadroom = skb_headroom(skb);
2504 n = __alloc_skb(newheadroom + skb->len + newtailroom,
2505 gfp_mask, skb_alloc_rx_flag(skb),
2506 NUMA_NO_NODE);
2507 if (!n)
2508 return NULL;
2509
2510 skb_reserve(n, newheadroom);
2511
2512 /* Set the tail pointer and length */
2513 skb_put(n, skb->len);
2514
2515 head_copy_len = oldheadroom;
2516 head_copy_off = 0;
2517 if (newheadroom <= head_copy_len)
2518 head_copy_len = newheadroom;
2519 else
2520 head_copy_off = newheadroom - head_copy_len;
2521
2522 /* Copy the linear header and data. */
2523 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
2524 skb->len + head_copy_len));
2525
2526 skb_copy_header(n, skb);
2527
2528 skb_headers_offset_update(n, newheadroom - oldheadroom);
2529
2530 return n;
2531 }
2532 EXPORT_SYMBOL(skb_copy_expand);
2533
2534 /**
2535 * __skb_pad - zero pad the tail of an skb
2536 * @skb: buffer to pad
2537 * @pad: space to pad
2538 * @free_on_error: free buffer on error
2539 *
2540 * Ensure that a buffer is followed by a padding area that is zero
2541 * filled. Used by network drivers which may DMA or transfer data
2542 * beyond the buffer end onto the wire.
2543 *
2544 * May return error in out of memory cases. The skb is freed on error
2545 * if @free_on_error is true.
2546 */
2547
__skb_pad(struct sk_buff * skb,int pad,bool free_on_error)2548 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
2549 {
2550 int err;
2551 int ntail;
2552
2553 /* If the skbuff is non linear tailroom is always zero.. */
2554 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
2555 memset(skb->data+skb->len, 0, pad);
2556 return 0;
2557 }
2558
2559 ntail = skb->data_len + pad - (skb->end - skb->tail);
2560 if (likely(skb_cloned(skb) || ntail > 0)) {
2561 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
2562 if (unlikely(err))
2563 goto free_skb;
2564 }
2565
2566 /* FIXME: The use of this function with non-linear skb's really needs
2567 * to be audited.
2568 */
2569 err = skb_linearize(skb);
2570 if (unlikely(err))
2571 goto free_skb;
2572
2573 memset(skb->data + skb->len, 0, pad);
2574 return 0;
2575
2576 free_skb:
2577 if (free_on_error)
2578 kfree_skb(skb);
2579 return err;
2580 }
2581 EXPORT_SYMBOL(__skb_pad);
2582
2583 /**
2584 * pskb_put - add data to the tail of a potentially fragmented buffer
2585 * @skb: start of the buffer to use
2586 * @tail: tail fragment of the buffer to use
2587 * @len: amount of data to add
2588 *
2589 * This function extends the used data area of the potentially
2590 * fragmented buffer. @tail must be the last fragment of @skb -- or
2591 * @skb itself. If this would exceed the total buffer size the kernel
2592 * will panic. A pointer to the first byte of the extra data is
2593 * returned.
2594 */
2595
pskb_put(struct sk_buff * skb,struct sk_buff * tail,int len)2596 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
2597 {
2598 if (tail != skb) {
2599 skb->data_len += len;
2600 skb->len += len;
2601 }
2602 return skb_put(tail, len);
2603 }
2604 EXPORT_SYMBOL_GPL(pskb_put);
2605
2606 /**
2607 * skb_put - add data to a buffer
2608 * @skb: buffer to use
2609 * @len: amount of data to add
2610 *
2611 * This function extends the used data area of the buffer. If this would
2612 * exceed the total buffer size the kernel will panic. A pointer to the
2613 * first byte of the extra data is returned.
2614 */
skb_put(struct sk_buff * skb,unsigned int len)2615 void *skb_put(struct sk_buff *skb, unsigned int len)
2616 {
2617 void *tmp = skb_tail_pointer(skb);
2618 SKB_LINEAR_ASSERT(skb);
2619 skb->tail += len;
2620 skb->len += len;
2621 if (unlikely(skb->tail > skb->end))
2622 skb_over_panic(skb, len, __builtin_return_address(0));
2623 return tmp;
2624 }
2625 EXPORT_SYMBOL(skb_put);
2626
2627 /**
2628 * skb_push - add data to the start of a buffer
2629 * @skb: buffer to use
2630 * @len: amount of data to add
2631 *
2632 * This function extends the used data area of the buffer at the buffer
2633 * start. If this would exceed the total buffer headroom the kernel will
2634 * panic. A pointer to the first byte of the extra data is returned.
2635 */
skb_push(struct sk_buff * skb,unsigned int len)2636 void *skb_push(struct sk_buff *skb, unsigned int len)
2637 {
2638 skb->data -= len;
2639 skb->len += len;
2640 if (unlikely(skb->data < skb->head))
2641 skb_under_panic(skb, len, __builtin_return_address(0));
2642 return skb->data;
2643 }
2644 EXPORT_SYMBOL(skb_push);
2645
2646 /**
2647 * skb_pull - remove data from the start of a buffer
2648 * @skb: buffer to use
2649 * @len: amount of data to remove
2650 *
2651 * This function removes data from the start of a buffer, returning
2652 * the memory to the headroom. A pointer to the next data in the buffer
2653 * is returned. Once the data has been pulled future pushes will overwrite
2654 * the old data.
2655 */
skb_pull(struct sk_buff * skb,unsigned int len)2656 void *skb_pull(struct sk_buff *skb, unsigned int len)
2657 {
2658 return skb_pull_inline(skb, len);
2659 }
2660 EXPORT_SYMBOL(skb_pull);
2661
2662 /**
2663 * skb_pull_data - remove data from the start of a buffer returning its
2664 * original position.
2665 * @skb: buffer to use
2666 * @len: amount of data to remove
2667 *
2668 * This function removes data from the start of a buffer, returning
2669 * the memory to the headroom. A pointer to the original data in the buffer
2670 * is returned after checking if there is enough data to pull. Once the
2671 * data has been pulled future pushes will overwrite the old data.
2672 */
skb_pull_data(struct sk_buff * skb,size_t len)2673 void *skb_pull_data(struct sk_buff *skb, size_t len)
2674 {
2675 void *data = skb->data;
2676
2677 if (skb->len < len)
2678 return NULL;
2679
2680 skb_pull(skb, len);
2681
2682 return data;
2683 }
2684 EXPORT_SYMBOL(skb_pull_data);
2685
2686 /**
2687 * skb_trim - remove end from a buffer
2688 * @skb: buffer to alter
2689 * @len: new length
2690 *
2691 * Cut the length of a buffer down by removing data from the tail. If
2692 * the buffer is already under the length specified it is not modified.
2693 * The skb must be linear.
2694 */
skb_trim(struct sk_buff * skb,unsigned int len)2695 void skb_trim(struct sk_buff *skb, unsigned int len)
2696 {
2697 if (skb->len > len)
2698 __skb_trim(skb, len);
2699 }
2700 EXPORT_SYMBOL(skb_trim);
2701
2702 /* Trims skb to length len. It can change skb pointers.
2703 */
2704
___pskb_trim(struct sk_buff * skb,unsigned int len)2705 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2706 {
2707 struct sk_buff **fragp;
2708 struct sk_buff *frag;
2709 int offset = skb_headlen(skb);
2710 int nfrags = skb_shinfo(skb)->nr_frags;
2711 int i;
2712 int err;
2713
2714 if (skb_cloned(skb) &&
2715 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2716 return err;
2717
2718 i = 0;
2719 if (offset >= len)
2720 goto drop_pages;
2721
2722 for (; i < nfrags; i++) {
2723 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2724
2725 if (end < len) {
2726 offset = end;
2727 continue;
2728 }
2729
2730 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2731
2732 drop_pages:
2733 skb_shinfo(skb)->nr_frags = i;
2734
2735 for (; i < nfrags; i++)
2736 skb_frag_unref(skb, i);
2737
2738 if (skb_has_frag_list(skb))
2739 skb_drop_fraglist(skb);
2740 goto done;
2741 }
2742
2743 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2744 fragp = &frag->next) {
2745 int end = offset + frag->len;
2746
2747 if (skb_shared(frag)) {
2748 struct sk_buff *nfrag;
2749
2750 nfrag = skb_clone(frag, GFP_ATOMIC);
2751 if (unlikely(!nfrag))
2752 return -ENOMEM;
2753
2754 nfrag->next = frag->next;
2755 consume_skb(frag);
2756 frag = nfrag;
2757 *fragp = frag;
2758 }
2759
2760 if (end < len) {
2761 offset = end;
2762 continue;
2763 }
2764
2765 if (end > len &&
2766 unlikely((err = pskb_trim(frag, len - offset))))
2767 return err;
2768
2769 if (frag->next)
2770 skb_drop_list(&frag->next);
2771 break;
2772 }
2773
2774 done:
2775 if (len > skb_headlen(skb)) {
2776 skb->data_len -= skb->len - len;
2777 skb->len = len;
2778 } else {
2779 skb->len = len;
2780 skb->data_len = 0;
2781 skb_set_tail_pointer(skb, len);
2782 }
2783
2784 if (!skb->sk || skb->destructor == sock_edemux)
2785 skb_condense(skb);
2786 return 0;
2787 }
2788 EXPORT_SYMBOL(___pskb_trim);
2789
2790 /* Note : use pskb_trim_rcsum() instead of calling this directly
2791 */
pskb_trim_rcsum_slow(struct sk_buff * skb,unsigned int len)2792 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2793 {
2794 if (skb->ip_summed == CHECKSUM_COMPLETE) {
2795 int delta = skb->len - len;
2796
2797 skb->csum = csum_block_sub(skb->csum,
2798 skb_checksum(skb, len, delta, 0),
2799 len);
2800 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2801 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2802 int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2803
2804 if (offset + sizeof(__sum16) > hdlen)
2805 return -EINVAL;
2806 }
2807 return __pskb_trim(skb, len);
2808 }
2809 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2810
2811 /**
2812 * __pskb_pull_tail - advance tail of skb header
2813 * @skb: buffer to reallocate
2814 * @delta: number of bytes to advance tail
2815 *
2816 * The function makes a sense only on a fragmented &sk_buff,
2817 * it expands header moving its tail forward and copying necessary
2818 * data from fragmented part.
2819 *
2820 * &sk_buff MUST have reference count of 1.
2821 *
2822 * Returns %NULL (and &sk_buff does not change) if pull failed
2823 * or value of new tail of skb in the case of success.
2824 *
2825 * All the pointers pointing into skb header may change and must be
2826 * reloaded after call to this function.
2827 */
2828
2829 /* Moves tail of skb head forward, copying data from fragmented part,
2830 * when it is necessary.
2831 * 1. It may fail due to malloc failure.
2832 * 2. It may change skb pointers.
2833 *
2834 * It is pretty complicated. Luckily, it is called only in exceptional cases.
2835 */
__pskb_pull_tail(struct sk_buff * skb,int delta)2836 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2837 {
2838 /* If skb has not enough free space at tail, get new one
2839 * plus 128 bytes for future expansions. If we have enough
2840 * room at tail, reallocate without expansion only if skb is cloned.
2841 */
2842 int i, k, eat = (skb->tail + delta) - skb->end;
2843
2844 if (!skb_frags_readable(skb))
2845 return NULL;
2846
2847 if (eat > 0 || skb_cloned(skb)) {
2848 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2849 GFP_ATOMIC))
2850 return NULL;
2851 }
2852
2853 BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2854 skb_tail_pointer(skb), delta));
2855
2856 /* Optimization: no fragments, no reasons to preestimate
2857 * size of pulled pages. Superb.
2858 */
2859 if (!skb_has_frag_list(skb))
2860 goto pull_pages;
2861
2862 /* Estimate size of pulled pages. */
2863 eat = delta;
2864 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2865 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2866
2867 if (size >= eat)
2868 goto pull_pages;
2869 eat -= size;
2870 }
2871
2872 /* If we need update frag list, we are in troubles.
2873 * Certainly, it is possible to add an offset to skb data,
2874 * but taking into account that pulling is expected to
2875 * be very rare operation, it is worth to fight against
2876 * further bloating skb head and crucify ourselves here instead.
2877 * Pure masohism, indeed. 8)8)
2878 */
2879 if (eat) {
2880 struct sk_buff *list = skb_shinfo(skb)->frag_list;
2881 struct sk_buff *clone = NULL;
2882 struct sk_buff *insp = NULL;
2883
2884 do {
2885 if (list->len <= eat) {
2886 /* Eaten as whole. */
2887 eat -= list->len;
2888 list = list->next;
2889 insp = list;
2890 } else {
2891 /* Eaten partially. */
2892 if (skb_is_gso(skb) && !list->head_frag &&
2893 skb_headlen(list))
2894 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2895
2896 if (skb_shared(list)) {
2897 /* Sucks! We need to fork list. :-( */
2898 clone = skb_clone(list, GFP_ATOMIC);
2899 if (!clone)
2900 return NULL;
2901 insp = list->next;
2902 list = clone;
2903 } else {
2904 /* This may be pulled without
2905 * problems. */
2906 insp = list;
2907 }
2908 if (!pskb_pull(list, eat)) {
2909 kfree_skb(clone);
2910 return NULL;
2911 }
2912 break;
2913 }
2914 } while (eat);
2915
2916 /* Free pulled out fragments. */
2917 while ((list = skb_shinfo(skb)->frag_list) != insp) {
2918 skb_shinfo(skb)->frag_list = list->next;
2919 consume_skb(list);
2920 }
2921 /* And insert new clone at head. */
2922 if (clone) {
2923 clone->next = list;
2924 skb_shinfo(skb)->frag_list = clone;
2925 }
2926 }
2927 /* Success! Now we may commit changes to skb data. */
2928
2929 pull_pages:
2930 eat = delta;
2931 k = 0;
2932 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2933 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2934
2935 if (size <= eat) {
2936 skb_frag_unref(skb, i);
2937 eat -= size;
2938 } else {
2939 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2940
2941 *frag = skb_shinfo(skb)->frags[i];
2942 if (eat) {
2943 skb_frag_off_add(frag, eat);
2944 skb_frag_size_sub(frag, eat);
2945 if (!i)
2946 goto end;
2947 eat = 0;
2948 }
2949 k++;
2950 }
2951 }
2952 skb_shinfo(skb)->nr_frags = k;
2953
2954 end:
2955 skb->tail += delta;
2956 skb->data_len -= delta;
2957
2958 if (!skb->data_len)
2959 skb_zcopy_clear(skb, false);
2960
2961 return skb_tail_pointer(skb);
2962 }
2963 EXPORT_SYMBOL(__pskb_pull_tail);
2964
2965 /**
2966 * skb_copy_bits - copy bits from skb to kernel buffer
2967 * @skb: source skb
2968 * @offset: offset in source
2969 * @to: destination buffer
2970 * @len: number of bytes to copy
2971 *
2972 * Copy the specified number of bytes from the source skb to the
2973 * destination buffer.
2974 *
2975 * CAUTION ! :
2976 * If its prototype is ever changed,
2977 * check arch/{*}/net/{*}.S files,
2978 * since it is called from BPF assembly code.
2979 */
skb_copy_bits(const struct sk_buff * skb,int offset,void * to,int len)2980 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2981 {
2982 int start = skb_headlen(skb);
2983 struct sk_buff *frag_iter;
2984 int i, copy;
2985
2986 if (offset > (int)skb->len - len)
2987 goto fault;
2988
2989 /* Copy header. */
2990 if ((copy = start - offset) > 0) {
2991 if (copy > len)
2992 copy = len;
2993 skb_copy_from_linear_data_offset(skb, offset, to, copy);
2994 if ((len -= copy) == 0)
2995 return 0;
2996 offset += copy;
2997 to += copy;
2998 }
2999
3000 if (!skb_frags_readable(skb))
3001 goto fault;
3002
3003 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3004 int end;
3005 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
3006
3007 WARN_ON(start > offset + len);
3008
3009 end = start + skb_frag_size(f);
3010 if ((copy = end - offset) > 0) {
3011 u32 p_off, p_len, copied;
3012 struct page *p;
3013 u8 *vaddr;
3014
3015 if (copy > len)
3016 copy = len;
3017
3018 skb_frag_foreach_page(f,
3019 skb_frag_off(f) + offset - start,
3020 copy, p, p_off, p_len, copied) {
3021 vaddr = kmap_atomic(p);
3022 memcpy(to + copied, vaddr + p_off, p_len);
3023 kunmap_atomic(vaddr);
3024 }
3025
3026 if ((len -= copy) == 0)
3027 return 0;
3028 offset += copy;
3029 to += copy;
3030 }
3031 start = end;
3032 }
3033
3034 skb_walk_frags(skb, frag_iter) {
3035 int end;
3036
3037 WARN_ON(start > offset + len);
3038
3039 end = start + frag_iter->len;
3040 if ((copy = end - offset) > 0) {
3041 if (copy > len)
3042 copy = len;
3043 if (skb_copy_bits(frag_iter, offset - start, to, copy))
3044 goto fault;
3045 if ((len -= copy) == 0)
3046 return 0;
3047 offset += copy;
3048 to += copy;
3049 }
3050 start = end;
3051 }
3052
3053 if (!len)
3054 return 0;
3055
3056 fault:
3057 return -EFAULT;
3058 }
3059 EXPORT_SYMBOL(skb_copy_bits);
3060
3061 /*
3062 * Callback from splice_to_pipe(), if we need to release some pages
3063 * at the end of the spd in case we error'ed out in filling the pipe.
3064 */
sock_spd_release(struct splice_pipe_desc * spd,unsigned int i)3065 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
3066 {
3067 put_page(spd->pages[i]);
3068 }
3069
linear_to_page(struct page * page,unsigned int * len,unsigned int * offset,struct sock * sk)3070 static struct page *linear_to_page(struct page *page, unsigned int *len,
3071 unsigned int *offset,
3072 struct sock *sk)
3073 {
3074 struct page_frag *pfrag = sk_page_frag(sk);
3075
3076 if (!sk_page_frag_refill(sk, pfrag))
3077 return NULL;
3078
3079 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
3080
3081 memcpy(page_address(pfrag->page) + pfrag->offset,
3082 page_address(page) + *offset, *len);
3083 *offset = pfrag->offset;
3084 pfrag->offset += *len;
3085
3086 return pfrag->page;
3087 }
3088
spd_can_coalesce(const struct splice_pipe_desc * spd,struct page * page,unsigned int offset)3089 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
3090 struct page *page,
3091 unsigned int offset)
3092 {
3093 return spd->nr_pages &&
3094 spd->pages[spd->nr_pages - 1] == page &&
3095 (spd->partial[spd->nr_pages - 1].offset +
3096 spd->partial[spd->nr_pages - 1].len == offset);
3097 }
3098
3099 /*
3100 * Fill page/offset/length into spd, if it can hold more pages.
3101 */
spd_fill_page(struct splice_pipe_desc * spd,struct page * page,unsigned int * len,unsigned int offset,bool linear,struct sock * sk)3102 static bool spd_fill_page(struct splice_pipe_desc *spd, struct page *page,
3103 unsigned int *len, unsigned int offset, bool linear,
3104 struct sock *sk)
3105 {
3106 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
3107 return true;
3108
3109 if (linear) {
3110 page = linear_to_page(page, len, &offset, sk);
3111 if (!page)
3112 return true;
3113 }
3114 if (spd_can_coalesce(spd, page, offset)) {
3115 spd->partial[spd->nr_pages - 1].len += *len;
3116 return false;
3117 }
3118 get_page(page);
3119 spd->pages[spd->nr_pages] = page;
3120 spd->partial[spd->nr_pages].len = *len;
3121 spd->partial[spd->nr_pages].offset = offset;
3122 spd->nr_pages++;
3123
3124 return false;
3125 }
3126
__splice_segment(struct page * page,unsigned int poff,unsigned int plen,unsigned int * off,unsigned int * len,struct splice_pipe_desc * spd,bool linear,struct sock * sk)3127 static bool __splice_segment(struct page *page, unsigned int poff,
3128 unsigned int plen, unsigned int *off,
3129 unsigned int *len,
3130 struct splice_pipe_desc *spd, bool linear,
3131 struct sock *sk)
3132 {
3133 if (!*len)
3134 return true;
3135
3136 /* skip this segment if already processed */
3137 if (*off >= plen) {
3138 *off -= plen;
3139 return false;
3140 }
3141
3142 /* ignore any bits we already processed */
3143 poff += *off;
3144 plen -= *off;
3145 *off = 0;
3146
3147 do {
3148 unsigned int flen = min(*len, plen);
3149
3150 if (spd_fill_page(spd, page, &flen, poff, linear, sk))
3151 return true;
3152 poff += flen;
3153 plen -= flen;
3154 *len -= flen;
3155 if (!*len)
3156 return true;
3157 } while (plen);
3158
3159 return false;
3160 }
3161
3162 /*
3163 * Map linear and fragment data from the skb to spd. It reports true if the
3164 * pipe is full or if we already spliced the requested length.
3165 */
__skb_splice_bits(struct sk_buff * skb,struct pipe_inode_info * pipe,unsigned int * offset,unsigned int * len,struct splice_pipe_desc * spd,struct sock * sk)3166 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
3167 unsigned int *offset, unsigned int *len,
3168 struct splice_pipe_desc *spd, struct sock *sk)
3169 {
3170 struct sk_buff *iter;
3171 int seg;
3172
3173 /* map the linear part :
3174 * If skb->head_frag is set, this 'linear' part is backed by a
3175 * fragment, and if the head is not shared with any clones then
3176 * we can avoid a copy since we own the head portion of this page.
3177 */
3178 if (__splice_segment(virt_to_page(skb->data),
3179 (unsigned long) skb->data & (PAGE_SIZE - 1),
3180 skb_headlen(skb),
3181 offset, len, spd,
3182 skb_head_is_locked(skb),
3183 sk))
3184 return true;
3185
3186 /*
3187 * then map the fragments
3188 */
3189 if (!skb_frags_readable(skb))
3190 return false;
3191
3192 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
3193 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
3194
3195 if (WARN_ON_ONCE(!skb_frag_page(f)))
3196 return false;
3197
3198 if (__splice_segment(skb_frag_page(f),
3199 skb_frag_off(f), skb_frag_size(f),
3200 offset, len, spd, false, sk))
3201 return true;
3202 }
3203
3204 skb_walk_frags(skb, iter) {
3205 if (*offset >= iter->len) {
3206 *offset -= iter->len;
3207 continue;
3208 }
3209 /* __skb_splice_bits() only fails if the output has no room
3210 * left, so no point in going over the frag_list for the error
3211 * case.
3212 */
3213 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
3214 return true;
3215 }
3216
3217 return false;
3218 }
3219
3220 /*
3221 * Map data from the skb to a pipe. Should handle both the linear part,
3222 * the fragments, and the frag list.
3223 */
skb_splice_bits(struct sk_buff * skb,struct sock * sk,unsigned int offset,struct pipe_inode_info * pipe,unsigned int tlen,unsigned int flags)3224 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3225 struct pipe_inode_info *pipe, unsigned int tlen,
3226 unsigned int flags)
3227 {
3228 struct partial_page partial[MAX_SKB_FRAGS];
3229 struct page *pages[MAX_SKB_FRAGS];
3230 struct splice_pipe_desc spd = {
3231 .pages = pages,
3232 .partial = partial,
3233 .nr_pages_max = MAX_SKB_FRAGS,
3234 .ops = &nosteal_pipe_buf_ops,
3235 .spd_release = sock_spd_release,
3236 };
3237 int ret = 0;
3238
3239 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
3240
3241 if (spd.nr_pages)
3242 ret = splice_to_pipe(pipe, &spd);
3243
3244 return ret;
3245 }
3246 EXPORT_SYMBOL_GPL(skb_splice_bits);
3247
sendmsg_locked(struct sock * sk,struct msghdr * msg)3248 static int sendmsg_locked(struct sock *sk, struct msghdr *msg)
3249 {
3250 struct socket *sock = sk->sk_socket;
3251 size_t size = msg_data_left(msg);
3252
3253 if (!sock)
3254 return -EINVAL;
3255
3256 if (!sock->ops->sendmsg_locked)
3257 return sock_no_sendmsg_locked(sk, msg, size);
3258
3259 return sock->ops->sendmsg_locked(sk, msg, size);
3260 }
3261
sendmsg_unlocked(struct sock * sk,struct msghdr * msg)3262 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg)
3263 {
3264 struct socket *sock = sk->sk_socket;
3265
3266 if (!sock)
3267 return -EINVAL;
3268 return sock_sendmsg(sock, msg);
3269 }
3270
3271 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg);
__skb_send_sock(struct sock * sk,struct sk_buff * skb,int offset,int len,sendmsg_func sendmsg,int flags)3272 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
3273 int len, sendmsg_func sendmsg, int flags)
3274 {
3275 int more_hint = sk_is_tcp(sk) ? MSG_MORE : 0;
3276 unsigned int orig_len = len;
3277 struct sk_buff *head = skb;
3278 unsigned short fragidx;
3279 int slen, ret;
3280
3281 do_frag_list:
3282
3283 /* Deal with head data */
3284 while (offset < skb_headlen(skb) && len) {
3285 struct kvec kv;
3286 struct msghdr msg;
3287
3288 slen = min_t(int, len, skb_headlen(skb) - offset);
3289 kv.iov_base = skb->data + offset;
3290 kv.iov_len = slen;
3291 memset(&msg, 0, sizeof(msg));
3292 msg.msg_flags = MSG_DONTWAIT | flags;
3293 if (slen < len)
3294 msg.msg_flags |= more_hint;
3295
3296 iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen);
3297 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3298 sendmsg_unlocked, sk, &msg);
3299 if (ret <= 0)
3300 goto error;
3301
3302 offset += ret;
3303 len -= ret;
3304 }
3305
3306 /* All the data was skb head? */
3307 if (!len)
3308 goto out;
3309
3310 /* Make offset relative to start of frags */
3311 offset -= skb_headlen(skb);
3312
3313 /* Find where we are in frag list */
3314 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3315 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
3316
3317 if (offset < skb_frag_size(frag))
3318 break;
3319
3320 offset -= skb_frag_size(frag);
3321 }
3322
3323 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3324 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
3325
3326 slen = min_t(size_t, len, skb_frag_size(frag) - offset);
3327
3328 while (slen) {
3329 struct bio_vec bvec;
3330 struct msghdr msg = {
3331 .msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT |
3332 flags,
3333 };
3334
3335 if (slen < len)
3336 msg.msg_flags |= more_hint;
3337 bvec_set_page(&bvec, skb_frag_page(frag), slen,
3338 skb_frag_off(frag) + offset);
3339 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1,
3340 slen);
3341
3342 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3343 sendmsg_unlocked, sk, &msg);
3344 if (ret <= 0)
3345 goto error;
3346
3347 len -= ret;
3348 offset += ret;
3349 slen -= ret;
3350 }
3351
3352 offset = 0;
3353 }
3354
3355 if (len) {
3356 /* Process any frag lists */
3357
3358 if (skb == head) {
3359 if (skb_has_frag_list(skb)) {
3360 skb = skb_shinfo(skb)->frag_list;
3361 goto do_frag_list;
3362 }
3363 } else if (skb->next) {
3364 skb = skb->next;
3365 goto do_frag_list;
3366 }
3367 }
3368
3369 out:
3370 return orig_len - len;
3371
3372 error:
3373 return orig_len == len ? ret : orig_len - len;
3374 }
3375
3376 /* Send skb data on a socket. Socket must be locked. */
skb_send_sock_locked(struct sock * sk,struct sk_buff * skb,int offset,int len)3377 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3378 int len)
3379 {
3380 return __skb_send_sock(sk, skb, offset, len, sendmsg_locked, 0);
3381 }
3382 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
3383
skb_send_sock_locked_with_flags(struct sock * sk,struct sk_buff * skb,int offset,int len,int flags)3384 int skb_send_sock_locked_with_flags(struct sock *sk, struct sk_buff *skb,
3385 int offset, int len, int flags)
3386 {
3387 return __skb_send_sock(sk, skb, offset, len, sendmsg_locked, flags);
3388 }
3389 EXPORT_SYMBOL_GPL(skb_send_sock_locked_with_flags);
3390
3391 /* Send skb data on a socket. Socket must be unlocked. */
skb_send_sock(struct sock * sk,struct sk_buff * skb,int offset,int len)3392 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
3393 {
3394 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked, 0);
3395 }
3396
3397 /**
3398 * skb_store_bits - store bits from kernel buffer to skb
3399 * @skb: destination buffer
3400 * @offset: offset in destination
3401 * @from: source buffer
3402 * @len: number of bytes to copy
3403 *
3404 * Copy the specified number of bytes from the source buffer to the
3405 * destination skb. This function handles all the messy bits of
3406 * traversing fragment lists and such.
3407 */
3408
skb_store_bits(struct sk_buff * skb,int offset,const void * from,int len)3409 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
3410 {
3411 int start = skb_headlen(skb);
3412 struct sk_buff *frag_iter;
3413 int i, copy;
3414
3415 if (offset > (int)skb->len - len)
3416 goto fault;
3417
3418 if ((copy = start - offset) > 0) {
3419 if (copy > len)
3420 copy = len;
3421 skb_copy_to_linear_data_offset(skb, offset, from, copy);
3422 if ((len -= copy) == 0)
3423 return 0;
3424 offset += copy;
3425 from += copy;
3426 }
3427
3428 if (!skb_frags_readable(skb))
3429 goto fault;
3430
3431 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3432 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3433 int end;
3434
3435 WARN_ON(start > offset + len);
3436
3437 end = start + skb_frag_size(frag);
3438 if ((copy = end - offset) > 0) {
3439 u32 p_off, p_len, copied;
3440 struct page *p;
3441 u8 *vaddr;
3442
3443 if (copy > len)
3444 copy = len;
3445
3446 skb_frag_foreach_page(frag,
3447 skb_frag_off(frag) + offset - start,
3448 copy, p, p_off, p_len, copied) {
3449 vaddr = kmap_atomic(p);
3450 memcpy(vaddr + p_off, from + copied, p_len);
3451 kunmap_atomic(vaddr);
3452 }
3453
3454 if ((len -= copy) == 0)
3455 return 0;
3456 offset += copy;
3457 from += copy;
3458 }
3459 start = end;
3460 }
3461
3462 skb_walk_frags(skb, frag_iter) {
3463 int end;
3464
3465 WARN_ON(start > offset + len);
3466
3467 end = start + frag_iter->len;
3468 if ((copy = end - offset) > 0) {
3469 if (copy > len)
3470 copy = len;
3471 if (skb_store_bits(frag_iter, offset - start,
3472 from, copy))
3473 goto fault;
3474 if ((len -= copy) == 0)
3475 return 0;
3476 offset += copy;
3477 from += copy;
3478 }
3479 start = end;
3480 }
3481 if (!len)
3482 return 0;
3483
3484 fault:
3485 return -EFAULT;
3486 }
3487 EXPORT_SYMBOL(skb_store_bits);
3488
3489 /* Checksum skb data. */
skb_checksum(const struct sk_buff * skb,int offset,int len,__wsum csum)3490 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, __wsum csum)
3491 {
3492 int start = skb_headlen(skb);
3493 int i, copy = start - offset;
3494 struct sk_buff *frag_iter;
3495 int pos = 0;
3496
3497 /* Checksum header. */
3498 if (copy > 0) {
3499 if (copy > len)
3500 copy = len;
3501 csum = csum_partial(skb->data + offset, copy, csum);
3502 if ((len -= copy) == 0)
3503 return csum;
3504 offset += copy;
3505 pos = copy;
3506 }
3507
3508 if (WARN_ON_ONCE(!skb_frags_readable(skb)))
3509 return 0;
3510
3511 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3512 int end;
3513 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3514
3515 WARN_ON(start > offset + len);
3516
3517 end = start + skb_frag_size(frag);
3518 if ((copy = end - offset) > 0) {
3519 u32 p_off, p_len, copied;
3520 struct page *p;
3521 __wsum csum2;
3522 u8 *vaddr;
3523
3524 if (copy > len)
3525 copy = len;
3526
3527 skb_frag_foreach_page(frag,
3528 skb_frag_off(frag) + offset - start,
3529 copy, p, p_off, p_len, copied) {
3530 vaddr = kmap_atomic(p);
3531 csum2 = csum_partial(vaddr + p_off, p_len, 0);
3532 kunmap_atomic(vaddr);
3533 csum = csum_block_add(csum, csum2, pos);
3534 pos += p_len;
3535 }
3536
3537 if (!(len -= copy))
3538 return csum;
3539 offset += copy;
3540 }
3541 start = end;
3542 }
3543
3544 skb_walk_frags(skb, frag_iter) {
3545 int end;
3546
3547 WARN_ON(start > offset + len);
3548
3549 end = start + frag_iter->len;
3550 if ((copy = end - offset) > 0) {
3551 __wsum csum2;
3552 if (copy > len)
3553 copy = len;
3554 csum2 = skb_checksum(frag_iter, offset - start, copy,
3555 0);
3556 csum = csum_block_add(csum, csum2, pos);
3557 if ((len -= copy) == 0)
3558 return csum;
3559 offset += copy;
3560 pos += copy;
3561 }
3562 start = end;
3563 }
3564 BUG_ON(len);
3565
3566 return csum;
3567 }
3568 EXPORT_SYMBOL(skb_checksum);
3569
3570 /* Both of above in one bottle. */
3571
skb_copy_and_csum_bits(const struct sk_buff * skb,int offset,u8 * to,int len)3572 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
3573 u8 *to, int len)
3574 {
3575 int start = skb_headlen(skb);
3576 int i, copy = start - offset;
3577 struct sk_buff *frag_iter;
3578 int pos = 0;
3579 __wsum csum = 0;
3580
3581 /* Copy header. */
3582 if (copy > 0) {
3583 if (copy > len)
3584 copy = len;
3585 csum = csum_partial_copy_nocheck(skb->data + offset, to,
3586 copy);
3587 if ((len -= copy) == 0)
3588 return csum;
3589 offset += copy;
3590 to += copy;
3591 pos = copy;
3592 }
3593
3594 if (!skb_frags_readable(skb))
3595 return 0;
3596
3597 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3598 int end;
3599
3600 WARN_ON(start > offset + len);
3601
3602 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3603 if ((copy = end - offset) > 0) {
3604 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3605 u32 p_off, p_len, copied;
3606 struct page *p;
3607 __wsum csum2;
3608 u8 *vaddr;
3609
3610 if (copy > len)
3611 copy = len;
3612
3613 skb_frag_foreach_page(frag,
3614 skb_frag_off(frag) + offset - start,
3615 copy, p, p_off, p_len, copied) {
3616 vaddr = kmap_atomic(p);
3617 csum2 = csum_partial_copy_nocheck(vaddr + p_off,
3618 to + copied,
3619 p_len);
3620 kunmap_atomic(vaddr);
3621 csum = csum_block_add(csum, csum2, pos);
3622 pos += p_len;
3623 }
3624
3625 if (!(len -= copy))
3626 return csum;
3627 offset += copy;
3628 to += copy;
3629 }
3630 start = end;
3631 }
3632
3633 skb_walk_frags(skb, frag_iter) {
3634 __wsum csum2;
3635 int end;
3636
3637 WARN_ON(start > offset + len);
3638
3639 end = start + frag_iter->len;
3640 if ((copy = end - offset) > 0) {
3641 if (copy > len)
3642 copy = len;
3643 csum2 = skb_copy_and_csum_bits(frag_iter,
3644 offset - start,
3645 to, copy);
3646 csum = csum_block_add(csum, csum2, pos);
3647 if ((len -= copy) == 0)
3648 return csum;
3649 offset += copy;
3650 to += copy;
3651 pos += copy;
3652 }
3653 start = end;
3654 }
3655 BUG_ON(len);
3656 return csum;
3657 }
3658 EXPORT_SYMBOL(skb_copy_and_csum_bits);
3659
3660 #ifdef CONFIG_NET_CRC32C
skb_crc32c(const struct sk_buff * skb,int offset,int len,u32 crc)3661 u32 skb_crc32c(const struct sk_buff *skb, int offset, int len, u32 crc)
3662 {
3663 int start = skb_headlen(skb);
3664 int i, copy = start - offset;
3665 struct sk_buff *frag_iter;
3666
3667 if (copy > 0) {
3668 copy = min(copy, len);
3669 crc = crc32c(crc, skb->data + offset, copy);
3670 len -= copy;
3671 if (len == 0)
3672 return crc;
3673 offset += copy;
3674 }
3675
3676 if (WARN_ON_ONCE(!skb_frags_readable(skb)))
3677 return 0;
3678
3679 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3680 int end;
3681 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3682
3683 WARN_ON(start > offset + len);
3684
3685 end = start + skb_frag_size(frag);
3686 copy = end - offset;
3687 if (copy > 0) {
3688 u32 p_off, p_len, copied;
3689 struct page *p;
3690 u8 *vaddr;
3691
3692 copy = min(copy, len);
3693 skb_frag_foreach_page(frag,
3694 skb_frag_off(frag) + offset - start,
3695 copy, p, p_off, p_len, copied) {
3696 vaddr = kmap_atomic(p);
3697 crc = crc32c(crc, vaddr + p_off, p_len);
3698 kunmap_atomic(vaddr);
3699 }
3700 len -= copy;
3701 if (len == 0)
3702 return crc;
3703 offset += copy;
3704 }
3705 start = end;
3706 }
3707
3708 skb_walk_frags(skb, frag_iter) {
3709 int end;
3710
3711 WARN_ON(start > offset + len);
3712
3713 end = start + frag_iter->len;
3714 copy = end - offset;
3715 if (copy > 0) {
3716 copy = min(copy, len);
3717 crc = skb_crc32c(frag_iter, offset - start, copy, crc);
3718 len -= copy;
3719 if (len == 0)
3720 return crc;
3721 offset += copy;
3722 }
3723 start = end;
3724 }
3725 BUG_ON(len);
3726
3727 return crc;
3728 }
3729 EXPORT_SYMBOL(skb_crc32c);
3730 #endif /* CONFIG_NET_CRC32C */
3731
__skb_checksum_complete_head(struct sk_buff * skb,int len)3732 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3733 {
3734 __sum16 sum;
3735
3736 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3737 /* See comments in __skb_checksum_complete(). */
3738 if (likely(!sum)) {
3739 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3740 !skb->csum_complete_sw)
3741 netdev_rx_csum_fault(skb->dev, skb);
3742 }
3743 if (!skb_shared(skb))
3744 skb->csum_valid = !sum;
3745 return sum;
3746 }
3747 EXPORT_SYMBOL(__skb_checksum_complete_head);
3748
3749 /* This function assumes skb->csum already holds pseudo header's checksum,
3750 * which has been changed from the hardware checksum, for example, by
3751 * __skb_checksum_validate_complete(). And, the original skb->csum must
3752 * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3753 *
3754 * It returns non-zero if the recomputed checksum is still invalid, otherwise
3755 * zero. The new checksum is stored back into skb->csum unless the skb is
3756 * shared.
3757 */
__skb_checksum_complete(struct sk_buff * skb)3758 __sum16 __skb_checksum_complete(struct sk_buff *skb)
3759 {
3760 __wsum csum;
3761 __sum16 sum;
3762
3763 csum = skb_checksum(skb, 0, skb->len, 0);
3764
3765 sum = csum_fold(csum_add(skb->csum, csum));
3766 /* This check is inverted, because we already knew the hardware
3767 * checksum is invalid before calling this function. So, if the
3768 * re-computed checksum is valid instead, then we have a mismatch
3769 * between the original skb->csum and skb_checksum(). This means either
3770 * the original hardware checksum is incorrect or we screw up skb->csum
3771 * when moving skb->data around.
3772 */
3773 if (likely(!sum)) {
3774 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3775 !skb->csum_complete_sw)
3776 netdev_rx_csum_fault(skb->dev, skb);
3777 }
3778
3779 if (!skb_shared(skb)) {
3780 /* Save full packet checksum */
3781 skb->csum = csum;
3782 skb->ip_summed = CHECKSUM_COMPLETE;
3783 skb->csum_complete_sw = 1;
3784 skb->csum_valid = !sum;
3785 }
3786
3787 return sum;
3788 }
3789 EXPORT_SYMBOL(__skb_checksum_complete);
3790
3791 /**
3792 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3793 * @from: source buffer
3794 *
3795 * Calculates the amount of linear headroom needed in the 'to' skb passed
3796 * into skb_zerocopy().
3797 */
3798 unsigned int
skb_zerocopy_headlen(const struct sk_buff * from)3799 skb_zerocopy_headlen(const struct sk_buff *from)
3800 {
3801 unsigned int hlen = 0;
3802
3803 if (!from->head_frag ||
3804 skb_headlen(from) < L1_CACHE_BYTES ||
3805 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3806 hlen = skb_headlen(from);
3807 if (!hlen)
3808 hlen = from->len;
3809 }
3810
3811 if (skb_has_frag_list(from))
3812 hlen = from->len;
3813
3814 return hlen;
3815 }
3816 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3817
3818 /**
3819 * skb_zerocopy - Zero copy skb to skb
3820 * @to: destination buffer
3821 * @from: source buffer
3822 * @len: number of bytes to copy from source buffer
3823 * @hlen: size of linear headroom in destination buffer
3824 *
3825 * Copies up to `len` bytes from `from` to `to` by creating references
3826 * to the frags in the source buffer.
3827 *
3828 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3829 * headroom in the `to` buffer.
3830 *
3831 * Return value:
3832 * 0: everything is OK
3833 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
3834 * -EFAULT: skb_copy_bits() found some problem with skb geometry
3835 */
3836 int
skb_zerocopy(struct sk_buff * to,struct sk_buff * from,int len,int hlen)3837 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3838 {
3839 int i, j = 0;
3840 int plen = 0; /* length of skb->head fragment */
3841 int ret;
3842 struct page *page;
3843 unsigned int offset;
3844
3845 BUG_ON(!from->head_frag && !hlen);
3846
3847 /* dont bother with small payloads */
3848 if (len <= skb_tailroom(to))
3849 return skb_copy_bits(from, 0, skb_put(to, len), len);
3850
3851 if (hlen) {
3852 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3853 if (unlikely(ret))
3854 return ret;
3855 len -= hlen;
3856 } else {
3857 plen = min_t(int, skb_headlen(from), len);
3858 if (plen) {
3859 page = virt_to_head_page(from->head);
3860 offset = from->data - (unsigned char *)page_address(page);
3861 __skb_fill_netmem_desc(to, 0, page_to_netmem(page),
3862 offset, plen);
3863 get_page(page);
3864 j = 1;
3865 len -= plen;
3866 }
3867 }
3868
3869 skb_len_add(to, len + plen);
3870
3871 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3872 skb_tx_error(from);
3873 return -ENOMEM;
3874 }
3875 skb_zerocopy_clone(to, from, GFP_ATOMIC);
3876
3877 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3878 int size;
3879
3880 if (!len)
3881 break;
3882 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3883 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3884 len);
3885 skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3886 len -= size;
3887 skb_frag_ref(to, j);
3888 j++;
3889 }
3890 skb_shinfo(to)->nr_frags = j;
3891
3892 return 0;
3893 }
3894 EXPORT_SYMBOL_GPL(skb_zerocopy);
3895
skb_copy_and_csum_dev(const struct sk_buff * skb,u8 * to)3896 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3897 {
3898 __wsum csum;
3899 long csstart;
3900
3901 if (skb->ip_summed == CHECKSUM_PARTIAL)
3902 csstart = skb_checksum_start_offset(skb);
3903 else
3904 csstart = skb_headlen(skb);
3905
3906 BUG_ON(csstart > skb_headlen(skb));
3907
3908 skb_copy_from_linear_data(skb, to, csstart);
3909
3910 csum = 0;
3911 if (csstart != skb->len)
3912 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3913 skb->len - csstart);
3914
3915 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3916 long csstuff = csstart + skb->csum_offset;
3917
3918 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
3919 }
3920 }
3921 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3922
3923 /**
3924 * skb_dequeue - remove from the head of the queue
3925 * @list: list to dequeue from
3926 *
3927 * Remove the head of the list. The list lock is taken so the function
3928 * may be used safely with other locking list functions. The head item is
3929 * returned or %NULL if the list is empty.
3930 */
3931
skb_dequeue(struct sk_buff_head * list)3932 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3933 {
3934 unsigned long flags;
3935 struct sk_buff *result;
3936
3937 spin_lock_irqsave(&list->lock, flags);
3938 result = __skb_dequeue(list);
3939 spin_unlock_irqrestore(&list->lock, flags);
3940 return result;
3941 }
3942 EXPORT_SYMBOL(skb_dequeue);
3943
3944 /**
3945 * skb_dequeue_tail - remove from the tail of the queue
3946 * @list: list to dequeue from
3947 *
3948 * Remove the tail of the list. The list lock is taken so the function
3949 * may be used safely with other locking list functions. The tail item is
3950 * returned or %NULL if the list is empty.
3951 */
skb_dequeue_tail(struct sk_buff_head * list)3952 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3953 {
3954 unsigned long flags;
3955 struct sk_buff *result;
3956
3957 spin_lock_irqsave(&list->lock, flags);
3958 result = __skb_dequeue_tail(list);
3959 spin_unlock_irqrestore(&list->lock, flags);
3960 return result;
3961 }
3962 EXPORT_SYMBOL(skb_dequeue_tail);
3963
3964 /**
3965 * skb_queue_purge_reason - empty a list
3966 * @list: list to empty
3967 * @reason: drop reason
3968 *
3969 * Delete all buffers on an &sk_buff list. Each buffer is removed from
3970 * the list and one reference dropped. This function takes the list
3971 * lock and is atomic with respect to other list locking functions.
3972 */
skb_queue_purge_reason(struct sk_buff_head * list,enum skb_drop_reason reason)3973 void skb_queue_purge_reason(struct sk_buff_head *list,
3974 enum skb_drop_reason reason)
3975 {
3976 struct sk_buff_head tmp;
3977 unsigned long flags;
3978
3979 if (skb_queue_empty_lockless(list))
3980 return;
3981
3982 __skb_queue_head_init(&tmp);
3983
3984 spin_lock_irqsave(&list->lock, flags);
3985 skb_queue_splice_init(list, &tmp);
3986 spin_unlock_irqrestore(&list->lock, flags);
3987
3988 __skb_queue_purge_reason(&tmp, reason);
3989 }
3990 EXPORT_SYMBOL(skb_queue_purge_reason);
3991
3992 /**
3993 * skb_rbtree_purge - empty a skb rbtree
3994 * @root: root of the rbtree to empty
3995 * Return value: the sum of truesizes of all purged skbs.
3996 *
3997 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3998 * the list and one reference dropped. This function does not take
3999 * any lock. Synchronization should be handled by the caller (e.g., TCP
4000 * out-of-order queue is protected by the socket lock).
4001 */
skb_rbtree_purge(struct rb_root * root)4002 unsigned int skb_rbtree_purge(struct rb_root *root)
4003 {
4004 struct rb_node *p = rb_first(root);
4005 unsigned int sum = 0;
4006
4007 while (p) {
4008 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
4009
4010 p = rb_next(p);
4011 rb_erase(&skb->rbnode, root);
4012 sum += skb->truesize;
4013 kfree_skb(skb);
4014 }
4015 return sum;
4016 }
4017
skb_errqueue_purge(struct sk_buff_head * list)4018 void skb_errqueue_purge(struct sk_buff_head *list)
4019 {
4020 struct sk_buff *skb, *next;
4021 struct sk_buff_head kill;
4022 unsigned long flags;
4023
4024 __skb_queue_head_init(&kill);
4025
4026 spin_lock_irqsave(&list->lock, flags);
4027 skb_queue_walk_safe(list, skb, next) {
4028 if (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ZEROCOPY ||
4029 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING)
4030 continue;
4031 __skb_unlink(skb, list);
4032 __skb_queue_tail(&kill, skb);
4033 }
4034 spin_unlock_irqrestore(&list->lock, flags);
4035 __skb_queue_purge(&kill);
4036 }
4037 EXPORT_SYMBOL(skb_errqueue_purge);
4038
4039 /**
4040 * skb_queue_head - queue a buffer at the list head
4041 * @list: list to use
4042 * @newsk: buffer to queue
4043 *
4044 * Queue a buffer at the start of the list. This function takes the
4045 * list lock and can be used safely with other locking &sk_buff functions
4046 * safely.
4047 *
4048 * A buffer cannot be placed on two lists at the same time.
4049 */
skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)4050 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
4051 {
4052 unsigned long flags;
4053
4054 spin_lock_irqsave(&list->lock, flags);
4055 __skb_queue_head(list, newsk);
4056 spin_unlock_irqrestore(&list->lock, flags);
4057 }
4058 EXPORT_SYMBOL(skb_queue_head);
4059
4060 /**
4061 * skb_queue_tail - queue a buffer at the list tail
4062 * @list: list to use
4063 * @newsk: buffer to queue
4064 *
4065 * Queue a buffer at the tail of the list. This function takes the
4066 * list lock and can be used safely with other locking &sk_buff functions
4067 * safely.
4068 *
4069 * A buffer cannot be placed on two lists at the same time.
4070 */
skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)4071 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
4072 {
4073 unsigned long flags;
4074
4075 spin_lock_irqsave(&list->lock, flags);
4076 __skb_queue_tail(list, newsk);
4077 spin_unlock_irqrestore(&list->lock, flags);
4078 }
4079 EXPORT_SYMBOL(skb_queue_tail);
4080
4081 /**
4082 * skb_unlink - remove a buffer from a list
4083 * @skb: buffer to remove
4084 * @list: list to use
4085 *
4086 * Remove a packet from a list. The list locks are taken and this
4087 * function is atomic with respect to other list locked calls
4088 *
4089 * You must know what list the SKB is on.
4090 */
skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)4091 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
4092 {
4093 unsigned long flags;
4094
4095 spin_lock_irqsave(&list->lock, flags);
4096 __skb_unlink(skb, list);
4097 spin_unlock_irqrestore(&list->lock, flags);
4098 }
4099 EXPORT_SYMBOL(skb_unlink);
4100
4101 /**
4102 * skb_append - append a buffer
4103 * @old: buffer to insert after
4104 * @newsk: buffer to insert
4105 * @list: list to use
4106 *
4107 * Place a packet after a given packet in a list. The list locks are taken
4108 * and this function is atomic with respect to other list locked calls.
4109 * A buffer cannot be placed on two lists at the same time.
4110 */
skb_append(struct sk_buff * old,struct sk_buff * newsk,struct sk_buff_head * list)4111 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
4112 {
4113 unsigned long flags;
4114
4115 spin_lock_irqsave(&list->lock, flags);
4116 __skb_queue_after(list, old, newsk);
4117 spin_unlock_irqrestore(&list->lock, flags);
4118 }
4119 EXPORT_SYMBOL(skb_append);
4120
skb_split_inside_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,const int pos)4121 static inline void skb_split_inside_header(struct sk_buff *skb,
4122 struct sk_buff* skb1,
4123 const u32 len, const int pos)
4124 {
4125 int i;
4126
4127 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
4128 pos - len);
4129 /* And move data appendix as is. */
4130 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
4131 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
4132
4133 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
4134 skb1->unreadable = skb->unreadable;
4135 skb_shinfo(skb)->nr_frags = 0;
4136 skb1->data_len = skb->data_len;
4137 skb1->len += skb1->data_len;
4138 skb->data_len = 0;
4139 skb->len = len;
4140 skb_set_tail_pointer(skb, len);
4141 }
4142
skb_split_no_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,int pos)4143 static inline void skb_split_no_header(struct sk_buff *skb,
4144 struct sk_buff* skb1,
4145 const u32 len, int pos)
4146 {
4147 int i, k = 0;
4148 const int nfrags = skb_shinfo(skb)->nr_frags;
4149
4150 skb_shinfo(skb)->nr_frags = 0;
4151 skb1->len = skb1->data_len = skb->len - len;
4152 skb->len = len;
4153 skb->data_len = len - pos;
4154
4155 for (i = 0; i < nfrags; i++) {
4156 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
4157
4158 if (pos + size > len) {
4159 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
4160
4161 if (pos < len) {
4162 /* Split frag.
4163 * We have two variants in this case:
4164 * 1. Move all the frag to the second
4165 * part, if it is possible. F.e.
4166 * this approach is mandatory for TUX,
4167 * where splitting is expensive.
4168 * 2. Split is accurately. We make this.
4169 */
4170 skb_frag_ref(skb, i);
4171 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
4172 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
4173 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
4174 skb_shinfo(skb)->nr_frags++;
4175 }
4176 k++;
4177 } else
4178 skb_shinfo(skb)->nr_frags++;
4179 pos += size;
4180 }
4181 skb_shinfo(skb1)->nr_frags = k;
4182
4183 skb1->unreadable = skb->unreadable;
4184 }
4185
4186 /**
4187 * skb_split - Split fragmented skb to two parts at length len.
4188 * @skb: the buffer to split
4189 * @skb1: the buffer to receive the second part
4190 * @len: new length for skb
4191 */
skb_split(struct sk_buff * skb,struct sk_buff * skb1,const u32 len)4192 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
4193 {
4194 int pos = skb_headlen(skb);
4195 const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
4196
4197 skb_zcopy_downgrade_managed(skb);
4198
4199 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
4200 skb_zerocopy_clone(skb1, skb, 0);
4201 if (len < pos) /* Split line is inside header. */
4202 skb_split_inside_header(skb, skb1, len, pos);
4203 else /* Second chunk has no header, nothing to copy. */
4204 skb_split_no_header(skb, skb1, len, pos);
4205 }
4206 EXPORT_SYMBOL(skb_split);
4207
4208 /* Shifting from/to a cloned skb is a no-go.
4209 *
4210 * Caller cannot keep skb_shinfo related pointers past calling here!
4211 */
skb_prepare_for_shift(struct sk_buff * skb)4212 static int skb_prepare_for_shift(struct sk_buff *skb)
4213 {
4214 return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
4215 }
4216
4217 /**
4218 * skb_shift - Shifts paged data partially from skb to another
4219 * @tgt: buffer into which tail data gets added
4220 * @skb: buffer from which the paged data comes from
4221 * @shiftlen: shift up to this many bytes
4222 *
4223 * Attempts to shift up to shiftlen worth of bytes, which may be less than
4224 * the length of the skb, from skb to tgt. Returns number bytes shifted.
4225 * It's up to caller to free skb if everything was shifted.
4226 *
4227 * If @tgt runs out of frags, the whole operation is aborted.
4228 *
4229 * Skb cannot include anything else but paged data while tgt is allowed
4230 * to have non-paged data as well.
4231 *
4232 * TODO: full sized shift could be optimized but that would need
4233 * specialized skb free'er to handle frags without up-to-date nr_frags.
4234 */
skb_shift(struct sk_buff * tgt,struct sk_buff * skb,int shiftlen)4235 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
4236 {
4237 int from, to, merge, todo;
4238 skb_frag_t *fragfrom, *fragto;
4239
4240 BUG_ON(shiftlen > skb->len);
4241
4242 if (skb_headlen(skb))
4243 return 0;
4244 if (skb_zcopy(tgt) || skb_zcopy(skb))
4245 return 0;
4246
4247 DEBUG_NET_WARN_ON_ONCE(tgt->pp_recycle != skb->pp_recycle);
4248 DEBUG_NET_WARN_ON_ONCE(skb_cmp_decrypted(tgt, skb));
4249
4250 todo = shiftlen;
4251 from = 0;
4252 to = skb_shinfo(tgt)->nr_frags;
4253 fragfrom = &skb_shinfo(skb)->frags[from];
4254
4255 /* Actual merge is delayed until the point when we know we can
4256 * commit all, so that we don't have to undo partial changes
4257 */
4258 if (!skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
4259 skb_frag_off(fragfrom))) {
4260 merge = -1;
4261 } else {
4262 merge = to - 1;
4263
4264 todo -= skb_frag_size(fragfrom);
4265 if (todo < 0) {
4266 if (skb_prepare_for_shift(skb) ||
4267 skb_prepare_for_shift(tgt))
4268 return 0;
4269
4270 /* All previous frag pointers might be stale! */
4271 fragfrom = &skb_shinfo(skb)->frags[from];
4272 fragto = &skb_shinfo(tgt)->frags[merge];
4273
4274 skb_frag_size_add(fragto, shiftlen);
4275 skb_frag_size_sub(fragfrom, shiftlen);
4276 skb_frag_off_add(fragfrom, shiftlen);
4277
4278 goto onlymerged;
4279 }
4280
4281 from++;
4282 }
4283
4284 /* Skip full, not-fitting skb to avoid expensive operations */
4285 if ((shiftlen == skb->len) &&
4286 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
4287 return 0;
4288
4289 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
4290 return 0;
4291
4292 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
4293 if (to == MAX_SKB_FRAGS)
4294 return 0;
4295
4296 fragfrom = &skb_shinfo(skb)->frags[from];
4297 fragto = &skb_shinfo(tgt)->frags[to];
4298
4299 if (todo >= skb_frag_size(fragfrom)) {
4300 *fragto = *fragfrom;
4301 todo -= skb_frag_size(fragfrom);
4302 from++;
4303 to++;
4304
4305 } else {
4306 __skb_frag_ref(fragfrom);
4307 skb_frag_page_copy(fragto, fragfrom);
4308 skb_frag_off_copy(fragto, fragfrom);
4309 skb_frag_size_set(fragto, todo);
4310
4311 skb_frag_off_add(fragfrom, todo);
4312 skb_frag_size_sub(fragfrom, todo);
4313 todo = 0;
4314
4315 to++;
4316 break;
4317 }
4318 }
4319
4320 /* Ready to "commit" this state change to tgt */
4321 skb_shinfo(tgt)->nr_frags = to;
4322
4323 if (merge >= 0) {
4324 fragfrom = &skb_shinfo(skb)->frags[0];
4325 fragto = &skb_shinfo(tgt)->frags[merge];
4326
4327 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
4328 __skb_frag_unref(fragfrom, skb->pp_recycle);
4329 }
4330
4331 /* Reposition in the original skb */
4332 to = 0;
4333 while (from < skb_shinfo(skb)->nr_frags)
4334 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
4335 skb_shinfo(skb)->nr_frags = to;
4336
4337 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
4338
4339 onlymerged:
4340 /* Most likely the tgt won't ever need its checksum anymore, skb on
4341 * the other hand might need it if it needs to be resent
4342 */
4343 tgt->ip_summed = CHECKSUM_PARTIAL;
4344 skb->ip_summed = CHECKSUM_PARTIAL;
4345
4346 skb_len_add(skb, -shiftlen);
4347 skb_len_add(tgt, shiftlen);
4348
4349 return shiftlen;
4350 }
4351
4352 /**
4353 * skb_prepare_seq_read - Prepare a sequential read of skb data
4354 * @skb: the buffer to read
4355 * @from: lower offset of data to be read
4356 * @to: upper offset of data to be read
4357 * @st: state variable
4358 *
4359 * Initializes the specified state variable. Must be called before
4360 * invoking skb_seq_read() for the first time.
4361 */
skb_prepare_seq_read(struct sk_buff * skb,unsigned int from,unsigned int to,struct skb_seq_state * st)4362 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
4363 unsigned int to, struct skb_seq_state *st)
4364 {
4365 st->lower_offset = from;
4366 st->upper_offset = to;
4367 st->root_skb = st->cur_skb = skb;
4368 st->frag_idx = st->stepped_offset = 0;
4369 st->frag_data = NULL;
4370 st->frag_off = 0;
4371 }
4372 EXPORT_SYMBOL(skb_prepare_seq_read);
4373
4374 /**
4375 * skb_seq_read - Sequentially read skb data
4376 * @consumed: number of bytes consumed by the caller so far
4377 * @data: destination pointer for data to be returned
4378 * @st: state variable
4379 *
4380 * Reads a block of skb data at @consumed relative to the
4381 * lower offset specified to skb_prepare_seq_read(). Assigns
4382 * the head of the data block to @data and returns the length
4383 * of the block or 0 if the end of the skb data or the upper
4384 * offset has been reached.
4385 *
4386 * The caller is not required to consume all of the data
4387 * returned, i.e. @consumed is typically set to the number
4388 * of bytes already consumed and the next call to
4389 * skb_seq_read() will return the remaining part of the block.
4390 *
4391 * Note 1: The size of each block of data returned can be arbitrary,
4392 * this limitation is the cost for zerocopy sequential
4393 * reads of potentially non linear data.
4394 *
4395 * Note 2: Fragment lists within fragments are not implemented
4396 * at the moment, state->root_skb could be replaced with
4397 * a stack for this purpose.
4398 */
skb_seq_read(unsigned int consumed,const u8 ** data,struct skb_seq_state * st)4399 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
4400 struct skb_seq_state *st)
4401 {
4402 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
4403 skb_frag_t *frag;
4404
4405 if (unlikely(abs_offset >= st->upper_offset)) {
4406 if (st->frag_data) {
4407 kunmap_atomic(st->frag_data);
4408 st->frag_data = NULL;
4409 }
4410 return 0;
4411 }
4412
4413 next_skb:
4414 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
4415
4416 if (abs_offset < block_limit && !st->frag_data) {
4417 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
4418 return block_limit - abs_offset;
4419 }
4420
4421 if (!skb_frags_readable(st->cur_skb))
4422 return 0;
4423
4424 if (st->frag_idx == 0 && !st->frag_data)
4425 st->stepped_offset += skb_headlen(st->cur_skb);
4426
4427 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
4428 unsigned int pg_idx, pg_off, pg_sz;
4429
4430 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
4431
4432 pg_idx = 0;
4433 pg_off = skb_frag_off(frag);
4434 pg_sz = skb_frag_size(frag);
4435
4436 if (skb_frag_must_loop(skb_frag_page(frag))) {
4437 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
4438 pg_off = offset_in_page(pg_off + st->frag_off);
4439 pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
4440 PAGE_SIZE - pg_off);
4441 }
4442
4443 block_limit = pg_sz + st->stepped_offset;
4444 if (abs_offset < block_limit) {
4445 if (!st->frag_data)
4446 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
4447
4448 *data = (u8 *)st->frag_data + pg_off +
4449 (abs_offset - st->stepped_offset);
4450
4451 return block_limit - abs_offset;
4452 }
4453
4454 if (st->frag_data) {
4455 kunmap_atomic(st->frag_data);
4456 st->frag_data = NULL;
4457 }
4458
4459 st->stepped_offset += pg_sz;
4460 st->frag_off += pg_sz;
4461 if (st->frag_off == skb_frag_size(frag)) {
4462 st->frag_off = 0;
4463 st->frag_idx++;
4464 }
4465 }
4466
4467 if (st->frag_data) {
4468 kunmap_atomic(st->frag_data);
4469 st->frag_data = NULL;
4470 }
4471
4472 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
4473 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
4474 st->frag_idx = 0;
4475 goto next_skb;
4476 } else if (st->cur_skb->next) {
4477 st->cur_skb = st->cur_skb->next;
4478 st->frag_idx = 0;
4479 goto next_skb;
4480 }
4481
4482 return 0;
4483 }
4484 EXPORT_SYMBOL(skb_seq_read);
4485
4486 /**
4487 * skb_abort_seq_read - Abort a sequential read of skb data
4488 * @st: state variable
4489 *
4490 * Must be called if skb_seq_read() was not called until it
4491 * returned 0.
4492 */
skb_abort_seq_read(struct skb_seq_state * st)4493 void skb_abort_seq_read(struct skb_seq_state *st)
4494 {
4495 if (st->frag_data)
4496 kunmap_atomic(st->frag_data);
4497 }
4498 EXPORT_SYMBOL(skb_abort_seq_read);
4499
4500 /**
4501 * skb_copy_seq_read() - copy from a skb_seq_state to a buffer
4502 * @st: source skb_seq_state
4503 * @offset: offset in source
4504 * @to: destination buffer
4505 * @len: number of bytes to copy
4506 *
4507 * Copy @len bytes from @offset bytes into the source @st to the destination
4508 * buffer @to. `offset` should increase (or be unchanged) with each subsequent
4509 * call to this function. If offset needs to decrease from the previous use `st`
4510 * should be reset first.
4511 *
4512 * Return: 0 on success or -EINVAL if the copy ended early
4513 */
skb_copy_seq_read(struct skb_seq_state * st,int offset,void * to,int len)4514 int skb_copy_seq_read(struct skb_seq_state *st, int offset, void *to, int len)
4515 {
4516 const u8 *data;
4517 u32 sqlen;
4518
4519 for (;;) {
4520 sqlen = skb_seq_read(offset, &data, st);
4521 if (sqlen == 0)
4522 return -EINVAL;
4523 if (sqlen >= len) {
4524 memcpy(to, data, len);
4525 return 0;
4526 }
4527 memcpy(to, data, sqlen);
4528 to += sqlen;
4529 offset += sqlen;
4530 len -= sqlen;
4531 }
4532 }
4533 EXPORT_SYMBOL(skb_copy_seq_read);
4534
4535 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
4536
skb_ts_get_next_block(unsigned int offset,const u8 ** text,struct ts_config * conf,struct ts_state * state)4537 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
4538 struct ts_config *conf,
4539 struct ts_state *state)
4540 {
4541 return skb_seq_read(offset, text, TS_SKB_CB(state));
4542 }
4543
skb_ts_finish(struct ts_config * conf,struct ts_state * state)4544 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
4545 {
4546 skb_abort_seq_read(TS_SKB_CB(state));
4547 }
4548
4549 /**
4550 * skb_find_text - Find a text pattern in skb data
4551 * @skb: the buffer to look in
4552 * @from: search offset
4553 * @to: search limit
4554 * @config: textsearch configuration
4555 *
4556 * Finds a pattern in the skb data according to the specified
4557 * textsearch configuration. Use textsearch_next() to retrieve
4558 * subsequent occurrences of the pattern. Returns the offset
4559 * to the first occurrence or UINT_MAX if no match was found.
4560 */
skb_find_text(struct sk_buff * skb,unsigned int from,unsigned int to,struct ts_config * config)4561 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
4562 unsigned int to, struct ts_config *config)
4563 {
4564 unsigned int patlen = config->ops->get_pattern_len(config);
4565 struct ts_state state;
4566 unsigned int ret;
4567
4568 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
4569
4570 config->get_next_block = skb_ts_get_next_block;
4571 config->finish = skb_ts_finish;
4572
4573 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
4574
4575 ret = textsearch_find(config, &state);
4576 return (ret + patlen <= to - from ? ret : UINT_MAX);
4577 }
4578 EXPORT_SYMBOL(skb_find_text);
4579
skb_append_pagefrags(struct sk_buff * skb,struct page * page,int offset,size_t size,size_t max_frags)4580 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
4581 int offset, size_t size, size_t max_frags)
4582 {
4583 int i = skb_shinfo(skb)->nr_frags;
4584
4585 if (skb_can_coalesce(skb, i, page, offset)) {
4586 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
4587 } else if (i < max_frags) {
4588 skb_zcopy_downgrade_managed(skb);
4589 get_page(page);
4590 skb_fill_page_desc_noacc(skb, i, page, offset, size);
4591 } else {
4592 return -EMSGSIZE;
4593 }
4594
4595 return 0;
4596 }
4597 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
4598
4599 /**
4600 * skb_pull_rcsum - pull skb and update receive checksum
4601 * @skb: buffer to update
4602 * @len: length of data pulled
4603 *
4604 * This function performs an skb_pull on the packet and updates
4605 * the CHECKSUM_COMPLETE checksum. It should be used on
4606 * receive path processing instead of skb_pull unless you know
4607 * that the checksum difference is zero (e.g., a valid IP header)
4608 * or you are setting ip_summed to CHECKSUM_NONE.
4609 */
skb_pull_rcsum(struct sk_buff * skb,unsigned int len)4610 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
4611 {
4612 unsigned char *data = skb->data;
4613
4614 BUG_ON(len > skb->len);
4615 __skb_pull(skb, len);
4616 skb_postpull_rcsum(skb, data, len);
4617 return skb->data;
4618 }
4619 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
4620
skb_head_frag_to_page_desc(struct sk_buff * frag_skb)4621 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
4622 {
4623 skb_frag_t head_frag;
4624 struct page *page;
4625
4626 page = virt_to_head_page(frag_skb->head);
4627 skb_frag_fill_page_desc(&head_frag, page, frag_skb->data -
4628 (unsigned char *)page_address(page),
4629 skb_headlen(frag_skb));
4630 return head_frag;
4631 }
4632
skb_segment_list(struct sk_buff * skb,netdev_features_t features,unsigned int offset)4633 struct sk_buff *skb_segment_list(struct sk_buff *skb,
4634 netdev_features_t features,
4635 unsigned int offset)
4636 {
4637 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
4638 unsigned int tnl_hlen = skb_tnl_header_len(skb);
4639 unsigned int delta_truesize = 0;
4640 unsigned int delta_len = 0;
4641 struct sk_buff *tail = NULL;
4642 struct sk_buff *nskb, *tmp;
4643 int len_diff, err;
4644
4645 skb_push(skb, -skb_network_offset(skb) + offset);
4646
4647 /* Ensure the head is writeable before touching the shared info */
4648 err = skb_unclone(skb, GFP_ATOMIC);
4649 if (err)
4650 goto err_linearize;
4651
4652 skb_shinfo(skb)->frag_list = NULL;
4653
4654 while (list_skb) {
4655 nskb = list_skb;
4656 list_skb = list_skb->next;
4657
4658 err = 0;
4659 delta_truesize += nskb->truesize;
4660 if (skb_shared(nskb)) {
4661 tmp = skb_clone(nskb, GFP_ATOMIC);
4662 if (tmp) {
4663 consume_skb(nskb);
4664 nskb = tmp;
4665 err = skb_unclone(nskb, GFP_ATOMIC);
4666 } else {
4667 err = -ENOMEM;
4668 }
4669 }
4670
4671 if (!tail)
4672 skb->next = nskb;
4673 else
4674 tail->next = nskb;
4675
4676 if (unlikely(err)) {
4677 nskb->next = list_skb;
4678 goto err_linearize;
4679 }
4680
4681 tail = nskb;
4682
4683 delta_len += nskb->len;
4684
4685 skb_push(nskb, -skb_network_offset(nskb) + offset);
4686
4687 skb_release_head_state(nskb);
4688 len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
4689 __copy_skb_header(nskb, skb);
4690
4691 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
4692 nskb->transport_header += len_diff;
4693 skb_copy_from_linear_data_offset(skb, -tnl_hlen,
4694 nskb->data - tnl_hlen,
4695 offset + tnl_hlen);
4696
4697 if (skb_needs_linearize(nskb, features) &&
4698 __skb_linearize(nskb))
4699 goto err_linearize;
4700 }
4701
4702 skb->truesize = skb->truesize - delta_truesize;
4703 skb->data_len = skb->data_len - delta_len;
4704 skb->len = skb->len - delta_len;
4705
4706 skb_gso_reset(skb);
4707
4708 skb->prev = tail;
4709
4710 if (skb_needs_linearize(skb, features) &&
4711 __skb_linearize(skb))
4712 goto err_linearize;
4713
4714 skb_get(skb);
4715
4716 return skb;
4717
4718 err_linearize:
4719 kfree_skb_list(skb->next);
4720 skb->next = NULL;
4721 return ERR_PTR(-ENOMEM);
4722 }
4723 EXPORT_SYMBOL_GPL(skb_segment_list);
4724
4725 /**
4726 * skb_segment - Perform protocol segmentation on skb.
4727 * @head_skb: buffer to segment
4728 * @features: features for the output path (see dev->features)
4729 *
4730 * This function performs segmentation on the given skb. It returns
4731 * a pointer to the first in a list of new skbs for the segments.
4732 * In case of error it returns ERR_PTR(err).
4733 */
skb_segment(struct sk_buff * head_skb,netdev_features_t features)4734 struct sk_buff *skb_segment(struct sk_buff *head_skb,
4735 netdev_features_t features)
4736 {
4737 struct sk_buff *segs = NULL;
4738 struct sk_buff *tail = NULL;
4739 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
4740 unsigned int mss = skb_shinfo(head_skb)->gso_size;
4741 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
4742 unsigned int offset = doffset;
4743 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
4744 unsigned int partial_segs = 0;
4745 unsigned int headroom;
4746 unsigned int len = head_skb->len;
4747 struct sk_buff *frag_skb;
4748 skb_frag_t *frag;
4749 __be16 proto;
4750 bool csum, sg;
4751 int err = -ENOMEM;
4752 int i = 0;
4753 int nfrags, pos;
4754
4755 if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) &&
4756 mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) {
4757 struct sk_buff *check_skb;
4758
4759 for (check_skb = list_skb; check_skb; check_skb = check_skb->next) {
4760 if (skb_headlen(check_skb) && !check_skb->head_frag) {
4761 /* gso_size is untrusted, and we have a frag_list with
4762 * a linear non head_frag item.
4763 *
4764 * If head_skb's headlen does not fit requested gso_size,
4765 * it means that the frag_list members do NOT terminate
4766 * on exact gso_size boundaries. Hence we cannot perform
4767 * skb_frag_t page sharing. Therefore we must fallback to
4768 * copying the frag_list skbs; we do so by disabling SG.
4769 */
4770 features &= ~NETIF_F_SG;
4771 break;
4772 }
4773 }
4774 }
4775
4776 __skb_push(head_skb, doffset);
4777 proto = skb_network_protocol(head_skb, NULL);
4778 if (unlikely(!proto))
4779 return ERR_PTR(-EINVAL);
4780
4781 sg = !!(features & NETIF_F_SG);
4782 csum = !!can_checksum_protocol(features, proto);
4783
4784 if (sg && csum && (mss != GSO_BY_FRAGS)) {
4785 if (!(features & NETIF_F_GSO_PARTIAL)) {
4786 struct sk_buff *iter;
4787 unsigned int frag_len;
4788
4789 if (!list_skb ||
4790 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4791 goto normal;
4792
4793 /* If we get here then all the required
4794 * GSO features except frag_list are supported.
4795 * Try to split the SKB to multiple GSO SKBs
4796 * with no frag_list.
4797 * Currently we can do that only when the buffers don't
4798 * have a linear part and all the buffers except
4799 * the last are of the same length.
4800 */
4801 frag_len = list_skb->len;
4802 skb_walk_frags(head_skb, iter) {
4803 if (frag_len != iter->len && iter->next)
4804 goto normal;
4805 if (skb_headlen(iter) && !iter->head_frag)
4806 goto normal;
4807
4808 len -= iter->len;
4809 }
4810
4811 if (len != frag_len)
4812 goto normal;
4813 }
4814
4815 /* GSO partial only requires that we trim off any excess that
4816 * doesn't fit into an MSS sized block, so take care of that
4817 * now.
4818 * Cap len to not accidentally hit GSO_BY_FRAGS.
4819 */
4820 partial_segs = min(len, GSO_BY_FRAGS - 1) / mss;
4821 if (partial_segs > 1)
4822 mss *= partial_segs;
4823 else
4824 partial_segs = 0;
4825 }
4826
4827 normal:
4828 headroom = skb_headroom(head_skb);
4829 pos = skb_headlen(head_skb);
4830
4831 if (skb_orphan_frags(head_skb, GFP_ATOMIC))
4832 return ERR_PTR(-ENOMEM);
4833
4834 nfrags = skb_shinfo(head_skb)->nr_frags;
4835 frag = skb_shinfo(head_skb)->frags;
4836 frag_skb = head_skb;
4837
4838 do {
4839 struct sk_buff *nskb;
4840 skb_frag_t *nskb_frag;
4841 int hsize;
4842 int size;
4843
4844 if (unlikely(mss == GSO_BY_FRAGS)) {
4845 len = list_skb->len;
4846 } else {
4847 len = head_skb->len - offset;
4848 if (len > mss)
4849 len = mss;
4850 }
4851
4852 hsize = skb_headlen(head_skb) - offset;
4853
4854 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4855 (skb_headlen(list_skb) == len || sg)) {
4856 BUG_ON(skb_headlen(list_skb) > len);
4857
4858 nskb = skb_clone(list_skb, GFP_ATOMIC);
4859 if (unlikely(!nskb))
4860 goto err;
4861
4862 i = 0;
4863 nfrags = skb_shinfo(list_skb)->nr_frags;
4864 frag = skb_shinfo(list_skb)->frags;
4865 frag_skb = list_skb;
4866 pos += skb_headlen(list_skb);
4867
4868 while (pos < offset + len) {
4869 BUG_ON(i >= nfrags);
4870
4871 size = skb_frag_size(frag);
4872 if (pos + size > offset + len)
4873 break;
4874
4875 i++;
4876 pos += size;
4877 frag++;
4878 }
4879
4880 list_skb = list_skb->next;
4881
4882 if (unlikely(pskb_trim(nskb, len))) {
4883 kfree_skb(nskb);
4884 goto err;
4885 }
4886
4887 hsize = skb_end_offset(nskb);
4888 if (skb_cow_head(nskb, doffset + headroom)) {
4889 kfree_skb(nskb);
4890 goto err;
4891 }
4892
4893 nskb->truesize += skb_end_offset(nskb) - hsize;
4894 skb_release_head_state(nskb);
4895 __skb_push(nskb, doffset);
4896 } else {
4897 if (hsize < 0)
4898 hsize = 0;
4899 if (hsize > len || !sg)
4900 hsize = len;
4901
4902 nskb = __alloc_skb(hsize + doffset + headroom,
4903 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4904 NUMA_NO_NODE);
4905
4906 if (unlikely(!nskb))
4907 goto err;
4908
4909 skb_reserve(nskb, headroom);
4910 __skb_put(nskb, doffset);
4911 }
4912
4913 if (segs)
4914 tail->next = nskb;
4915 else
4916 segs = nskb;
4917 tail = nskb;
4918
4919 __copy_skb_header(nskb, head_skb);
4920
4921 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4922 skb_reset_mac_len(nskb);
4923
4924 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4925 nskb->data - tnl_hlen,
4926 doffset + tnl_hlen);
4927
4928 if (nskb->len == len + doffset)
4929 goto perform_csum_check;
4930
4931 if (!sg) {
4932 if (!csum) {
4933 if (!nskb->remcsum_offload)
4934 nskb->ip_summed = CHECKSUM_NONE;
4935 SKB_GSO_CB(nskb)->csum =
4936 skb_copy_and_csum_bits(head_skb, offset,
4937 skb_put(nskb,
4938 len),
4939 len);
4940 SKB_GSO_CB(nskb)->csum_start =
4941 skb_headroom(nskb) + doffset;
4942 } else {
4943 if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4944 goto err;
4945 }
4946 continue;
4947 }
4948
4949 nskb_frag = skb_shinfo(nskb)->frags;
4950
4951 skb_copy_from_linear_data_offset(head_skb, offset,
4952 skb_put(nskb, hsize), hsize);
4953
4954 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4955 SKBFL_SHARED_FRAG;
4956
4957 if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4958 goto err;
4959
4960 while (pos < offset + len) {
4961 if (i >= nfrags) {
4962 if (skb_orphan_frags(list_skb, GFP_ATOMIC) ||
4963 skb_zerocopy_clone(nskb, list_skb,
4964 GFP_ATOMIC))
4965 goto err;
4966
4967 i = 0;
4968 nfrags = skb_shinfo(list_skb)->nr_frags;
4969 frag = skb_shinfo(list_skb)->frags;
4970 frag_skb = list_skb;
4971 if (!skb_headlen(list_skb)) {
4972 BUG_ON(!nfrags);
4973 } else {
4974 BUG_ON(!list_skb->head_frag);
4975
4976 /* to make room for head_frag. */
4977 i--;
4978 frag--;
4979 }
4980
4981 list_skb = list_skb->next;
4982 }
4983
4984 if (unlikely(skb_shinfo(nskb)->nr_frags >=
4985 MAX_SKB_FRAGS)) {
4986 net_warn_ratelimited(
4987 "skb_segment: too many frags: %u %u\n",
4988 pos, mss);
4989 err = -EINVAL;
4990 goto err;
4991 }
4992
4993 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4994 __skb_frag_ref(nskb_frag);
4995 size = skb_frag_size(nskb_frag);
4996
4997 if (pos < offset) {
4998 skb_frag_off_add(nskb_frag, offset - pos);
4999 skb_frag_size_sub(nskb_frag, offset - pos);
5000 }
5001
5002 skb_shinfo(nskb)->nr_frags++;
5003
5004 if (pos + size <= offset + len) {
5005 i++;
5006 frag++;
5007 pos += size;
5008 } else {
5009 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
5010 goto skip_fraglist;
5011 }
5012
5013 nskb_frag++;
5014 }
5015
5016 skip_fraglist:
5017 nskb->data_len = len - hsize;
5018 nskb->len += nskb->data_len;
5019 nskb->truesize += nskb->data_len;
5020
5021 perform_csum_check:
5022 if (!csum) {
5023 if (skb_has_shared_frag(nskb) &&
5024 __skb_linearize(nskb))
5025 goto err;
5026
5027 if (!nskb->remcsum_offload)
5028 nskb->ip_summed = CHECKSUM_NONE;
5029 SKB_GSO_CB(nskb)->csum =
5030 skb_checksum(nskb, doffset,
5031 nskb->len - doffset, 0);
5032 SKB_GSO_CB(nskb)->csum_start =
5033 skb_headroom(nskb) + doffset;
5034 }
5035 } while ((offset += len) < head_skb->len);
5036
5037 /* Some callers want to get the end of the list.
5038 * Put it in segs->prev to avoid walking the list.
5039 * (see validate_xmit_skb_list() for example)
5040 */
5041 segs->prev = tail;
5042
5043 if (partial_segs) {
5044 struct sk_buff *iter;
5045 int type = skb_shinfo(head_skb)->gso_type;
5046 unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
5047
5048 /* Update type to add partial and then remove dodgy if set */
5049 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
5050 type &= ~SKB_GSO_DODGY;
5051
5052 /* Update GSO info and prepare to start updating headers on
5053 * our way back down the stack of protocols.
5054 */
5055 for (iter = segs; iter; iter = iter->next) {
5056 skb_shinfo(iter)->gso_size = gso_size;
5057 skb_shinfo(iter)->gso_segs = partial_segs;
5058 skb_shinfo(iter)->gso_type = type;
5059 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
5060 }
5061
5062 if (tail->len - doffset <= gso_size)
5063 skb_shinfo(tail)->gso_size = 0;
5064 else if (tail != segs)
5065 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
5066 }
5067
5068 /* Following permits correct backpressure, for protocols
5069 * using skb_set_owner_w().
5070 * Idea is to tranfert ownership from head_skb to last segment.
5071 */
5072 if (head_skb->destructor == sock_wfree) {
5073 swap(tail->truesize, head_skb->truesize);
5074 swap(tail->destructor, head_skb->destructor);
5075 swap(tail->sk, head_skb->sk);
5076 }
5077 return segs;
5078
5079 err:
5080 kfree_skb_list(segs);
5081 return ERR_PTR(err);
5082 }
5083 EXPORT_SYMBOL_GPL(skb_segment);
5084
5085 #ifdef CONFIG_SKB_EXTENSIONS
5086 #define SKB_EXT_ALIGN_VALUE 8
5087 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
5088
5089 static const u8 skb_ext_type_len[] = {
5090 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
5091 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
5092 #endif
5093 #ifdef CONFIG_XFRM
5094 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
5095 #endif
5096 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
5097 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
5098 #endif
5099 #if IS_ENABLED(CONFIG_MPTCP)
5100 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
5101 #endif
5102 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
5103 [SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
5104 #endif
5105 #if IS_ENABLED(CONFIG_INET_PSP)
5106 [SKB_EXT_PSP] = SKB_EXT_CHUNKSIZEOF(struct psp_skb_ext),
5107 #endif
5108 };
5109
skb_ext_total_length(void)5110 static __always_inline unsigned int skb_ext_total_length(void)
5111 {
5112 unsigned int l = SKB_EXT_CHUNKSIZEOF(struct skb_ext);
5113 int i;
5114
5115 for (i = 0; i < ARRAY_SIZE(skb_ext_type_len); i++)
5116 l += skb_ext_type_len[i];
5117
5118 return l;
5119 }
5120
skb_extensions_init(void)5121 static void skb_extensions_init(void)
5122 {
5123 BUILD_BUG_ON(SKB_EXT_NUM >= 8);
5124 #if !IS_ENABLED(CONFIG_KCOV_INSTRUMENT_ALL)
5125 BUILD_BUG_ON(skb_ext_total_length() > 255);
5126 #endif
5127
5128 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
5129 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
5130 0,
5131 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
5132 NULL);
5133 }
5134 #else
skb_extensions_init(void)5135 static void skb_extensions_init(void) {}
5136 #endif
5137
5138 /* The SKB kmem_cache slab is critical for network performance. Never
5139 * merge/alias the slab with similar sized objects. This avoids fragmentation
5140 * that hurts performance of kmem_cache_{alloc,free}_bulk APIs.
5141 */
5142 #ifndef CONFIG_SLUB_TINY
5143 #define FLAG_SKB_NO_MERGE SLAB_NO_MERGE
5144 #else /* CONFIG_SLUB_TINY - simple loop in kmem_cache_alloc_bulk */
5145 #define FLAG_SKB_NO_MERGE 0
5146 #endif
5147
skb_init(void)5148 void __init skb_init(void)
5149 {
5150 net_hotdata.skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache",
5151 sizeof(struct sk_buff),
5152 0,
5153 SLAB_HWCACHE_ALIGN|SLAB_PANIC|
5154 FLAG_SKB_NO_MERGE,
5155 offsetof(struct sk_buff, cb),
5156 sizeof_field(struct sk_buff, cb),
5157 NULL);
5158 skbuff_cache_size = kmem_cache_size(net_hotdata.skbuff_cache);
5159
5160 net_hotdata.skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
5161 sizeof(struct sk_buff_fclones),
5162 0,
5163 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
5164 NULL);
5165 /* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes.
5166 * struct skb_shared_info is located at the end of skb->head,
5167 * and should not be copied to/from user.
5168 */
5169 net_hotdata.skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head",
5170 SKB_SMALL_HEAD_CACHE_SIZE,
5171 0,
5172 SLAB_HWCACHE_ALIGN | SLAB_PANIC,
5173 0,
5174 SKB_SMALL_HEAD_HEADROOM,
5175 NULL);
5176 skb_extensions_init();
5177 }
5178
5179 static int
__skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len,unsigned int recursion_level)5180 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
5181 unsigned int recursion_level)
5182 {
5183 int start = skb_headlen(skb);
5184 int i, copy = start - offset;
5185 struct sk_buff *frag_iter;
5186 int elt = 0;
5187
5188 if (unlikely(recursion_level >= 24))
5189 return -EMSGSIZE;
5190
5191 if (copy > 0) {
5192 if (copy > len)
5193 copy = len;
5194 sg_set_buf(sg, skb->data + offset, copy);
5195 elt++;
5196 if ((len -= copy) == 0)
5197 return elt;
5198 offset += copy;
5199 }
5200
5201 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
5202 int end;
5203
5204 WARN_ON(start > offset + len);
5205
5206 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
5207 if ((copy = end - offset) > 0) {
5208 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
5209 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
5210 return -EMSGSIZE;
5211
5212 if (copy > len)
5213 copy = len;
5214 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
5215 skb_frag_off(frag) + offset - start);
5216 elt++;
5217 if (!(len -= copy))
5218 return elt;
5219 offset += copy;
5220 }
5221 start = end;
5222 }
5223
5224 skb_walk_frags(skb, frag_iter) {
5225 int end, ret;
5226
5227 WARN_ON(start > offset + len);
5228
5229 end = start + frag_iter->len;
5230 if ((copy = end - offset) > 0) {
5231 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
5232 return -EMSGSIZE;
5233
5234 if (copy > len)
5235 copy = len;
5236 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
5237 copy, recursion_level + 1);
5238 if (unlikely(ret < 0))
5239 return ret;
5240 elt += ret;
5241 if ((len -= copy) == 0)
5242 return elt;
5243 offset += copy;
5244 }
5245 start = end;
5246 }
5247 BUG_ON(len);
5248 return elt;
5249 }
5250
5251 /**
5252 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
5253 * @skb: Socket buffer containing the buffers to be mapped
5254 * @sg: The scatter-gather list to map into
5255 * @offset: The offset into the buffer's contents to start mapping
5256 * @len: Length of buffer space to be mapped
5257 *
5258 * Fill the specified scatter-gather list with mappings/pointers into a
5259 * region of the buffer space attached to a socket buffer. Returns either
5260 * the number of scatterlist items used, or -EMSGSIZE if the contents
5261 * could not fit.
5262 */
skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)5263 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
5264 {
5265 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
5266
5267 if (nsg <= 0)
5268 return nsg;
5269
5270 sg_mark_end(&sg[nsg - 1]);
5271
5272 return nsg;
5273 }
5274 EXPORT_SYMBOL_GPL(skb_to_sgvec);
5275
5276 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
5277 * sglist without mark the sg which contain last skb data as the end.
5278 * So the caller can mannipulate sg list as will when padding new data after
5279 * the first call without calling sg_unmark_end to expend sg list.
5280 *
5281 * Scenario to use skb_to_sgvec_nomark:
5282 * 1. sg_init_table
5283 * 2. skb_to_sgvec_nomark(payload1)
5284 * 3. skb_to_sgvec_nomark(payload2)
5285 *
5286 * This is equivalent to:
5287 * 1. sg_init_table
5288 * 2. skb_to_sgvec(payload1)
5289 * 3. sg_unmark_end
5290 * 4. skb_to_sgvec(payload2)
5291 *
5292 * When mapping multiple payload conditionally, skb_to_sgvec_nomark
5293 * is more preferable.
5294 */
skb_to_sgvec_nomark(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)5295 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
5296 int offset, int len)
5297 {
5298 return __skb_to_sgvec(skb, sg, offset, len, 0);
5299 }
5300 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
5301
5302
5303
5304 /**
5305 * skb_cow_data - Check that a socket buffer's data buffers are writable
5306 * @skb: The socket buffer to check.
5307 * @tailbits: Amount of trailing space to be added
5308 * @trailer: Returned pointer to the skb where the @tailbits space begins
5309 *
5310 * Make sure that the data buffers attached to a socket buffer are
5311 * writable. If they are not, private copies are made of the data buffers
5312 * and the socket buffer is set to use these instead.
5313 *
5314 * If @tailbits is given, make sure that there is space to write @tailbits
5315 * bytes of data beyond current end of socket buffer. @trailer will be
5316 * set to point to the skb in which this space begins.
5317 *
5318 * The number of scatterlist elements required to completely map the
5319 * COW'd and extended socket buffer will be returned.
5320 */
skb_cow_data(struct sk_buff * skb,int tailbits,struct sk_buff ** trailer)5321 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
5322 {
5323 int copyflag;
5324 int elt;
5325 struct sk_buff *skb1, **skb_p;
5326
5327 /* If skb is cloned or its head is paged, reallocate
5328 * head pulling out all the pages (pages are considered not writable
5329 * at the moment even if they are anonymous).
5330 */
5331 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
5332 !__pskb_pull_tail(skb, __skb_pagelen(skb)))
5333 return -ENOMEM;
5334
5335 /* Easy case. Most of packets will go this way. */
5336 if (!skb_has_frag_list(skb)) {
5337 /* A little of trouble, not enough of space for trailer.
5338 * This should not happen, when stack is tuned to generate
5339 * good frames. OK, on miss we reallocate and reserve even more
5340 * space, 128 bytes is fair. */
5341
5342 if (skb_tailroom(skb) < tailbits &&
5343 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
5344 return -ENOMEM;
5345
5346 /* Voila! */
5347 *trailer = skb;
5348 return 1;
5349 }
5350
5351 /* Misery. We are in troubles, going to mincer fragments... */
5352
5353 elt = 1;
5354 skb_p = &skb_shinfo(skb)->frag_list;
5355 copyflag = 0;
5356
5357 while ((skb1 = *skb_p) != NULL) {
5358 int ntail = 0;
5359
5360 /* The fragment is partially pulled by someone,
5361 * this can happen on input. Copy it and everything
5362 * after it. */
5363
5364 if (skb_shared(skb1))
5365 copyflag = 1;
5366
5367 /* If the skb is the last, worry about trailer. */
5368
5369 if (skb1->next == NULL && tailbits) {
5370 if (skb_shinfo(skb1)->nr_frags ||
5371 skb_has_frag_list(skb1) ||
5372 skb_tailroom(skb1) < tailbits)
5373 ntail = tailbits + 128;
5374 }
5375
5376 if (copyflag ||
5377 skb_cloned(skb1) ||
5378 ntail ||
5379 skb_shinfo(skb1)->nr_frags ||
5380 skb_has_frag_list(skb1)) {
5381 struct sk_buff *skb2;
5382
5383 /* Fuck, we are miserable poor guys... */
5384 if (ntail == 0)
5385 skb2 = skb_copy(skb1, GFP_ATOMIC);
5386 else
5387 skb2 = skb_copy_expand(skb1,
5388 skb_headroom(skb1),
5389 ntail,
5390 GFP_ATOMIC);
5391 if (unlikely(skb2 == NULL))
5392 return -ENOMEM;
5393
5394 if (skb1->sk)
5395 skb_set_owner_w(skb2, skb1->sk);
5396
5397 /* Looking around. Are we still alive?
5398 * OK, link new skb, drop old one */
5399
5400 skb2->next = skb1->next;
5401 *skb_p = skb2;
5402 kfree_skb(skb1);
5403 skb1 = skb2;
5404 }
5405 elt++;
5406 *trailer = skb1;
5407 skb_p = &skb1->next;
5408 }
5409
5410 return elt;
5411 }
5412 EXPORT_SYMBOL_GPL(skb_cow_data);
5413
sock_rmem_free(struct sk_buff * skb)5414 static void sock_rmem_free(struct sk_buff *skb)
5415 {
5416 struct sock *sk = skb->sk;
5417
5418 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
5419 }
5420
skb_set_err_queue(struct sk_buff * skb)5421 static void skb_set_err_queue(struct sk_buff *skb)
5422 {
5423 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
5424 * So, it is safe to (mis)use it to mark skbs on the error queue.
5425 */
5426 skb->pkt_type = PACKET_OUTGOING;
5427 BUILD_BUG_ON(PACKET_OUTGOING == 0);
5428 }
5429
5430 /*
5431 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
5432 */
sock_queue_err_skb(struct sock * sk,struct sk_buff * skb)5433 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
5434 {
5435 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
5436 (unsigned int)READ_ONCE(sk->sk_rcvbuf))
5437 return -ENOMEM;
5438
5439 skb_orphan(skb);
5440 skb->sk = sk;
5441 skb->destructor = sock_rmem_free;
5442 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
5443 skb_set_err_queue(skb);
5444
5445 /* before exiting rcu section, make sure dst is refcounted */
5446 skb_dst_force(skb);
5447
5448 skb_queue_tail(&sk->sk_error_queue, skb);
5449 if (!sock_flag(sk, SOCK_DEAD))
5450 sk_error_report(sk);
5451 return 0;
5452 }
5453 EXPORT_SYMBOL(sock_queue_err_skb);
5454
is_icmp_err_skb(const struct sk_buff * skb)5455 static bool is_icmp_err_skb(const struct sk_buff *skb)
5456 {
5457 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
5458 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
5459 }
5460
sock_dequeue_err_skb(struct sock * sk)5461 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
5462 {
5463 struct sk_buff_head *q = &sk->sk_error_queue;
5464 struct sk_buff *skb, *skb_next = NULL;
5465 bool icmp_next = false;
5466 unsigned long flags;
5467
5468 if (skb_queue_empty_lockless(q))
5469 return NULL;
5470
5471 spin_lock_irqsave(&q->lock, flags);
5472 skb = __skb_dequeue(q);
5473 if (skb && (skb_next = skb_peek(q))) {
5474 icmp_next = is_icmp_err_skb(skb_next);
5475 if (icmp_next)
5476 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
5477 }
5478 spin_unlock_irqrestore(&q->lock, flags);
5479
5480 if (is_icmp_err_skb(skb) && !icmp_next)
5481 sk->sk_err = 0;
5482
5483 if (skb_next)
5484 sk_error_report(sk);
5485
5486 return skb;
5487 }
5488 EXPORT_SYMBOL(sock_dequeue_err_skb);
5489
5490 /**
5491 * skb_clone_sk - create clone of skb, and take reference to socket
5492 * @skb: the skb to clone
5493 *
5494 * This function creates a clone of a buffer that holds a reference on
5495 * sk_refcnt. Buffers created via this function are meant to be
5496 * returned using sock_queue_err_skb, or free via kfree_skb.
5497 *
5498 * When passing buffers allocated with this function to sock_queue_err_skb
5499 * it is necessary to wrap the call with sock_hold/sock_put in order to
5500 * prevent the socket from being released prior to being enqueued on
5501 * the sk_error_queue.
5502 */
skb_clone_sk(struct sk_buff * skb)5503 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
5504 {
5505 struct sock *sk = skb->sk;
5506 struct sk_buff *clone;
5507
5508 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
5509 return NULL;
5510
5511 clone = skb_clone(skb, GFP_ATOMIC);
5512 if (!clone) {
5513 sock_put(sk);
5514 return NULL;
5515 }
5516
5517 clone->sk = sk;
5518 clone->destructor = sock_efree;
5519
5520 return clone;
5521 }
5522 EXPORT_SYMBOL(skb_clone_sk);
5523
__skb_complete_tx_timestamp(struct sk_buff * skb,struct sock * sk,int tstype,bool opt_stats)5524 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
5525 struct sock *sk,
5526 int tstype,
5527 bool opt_stats)
5528 {
5529 struct sock_exterr_skb *serr;
5530 int err;
5531
5532 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
5533
5534 serr = SKB_EXT_ERR(skb);
5535 memset(serr, 0, sizeof(*serr));
5536 serr->ee.ee_errno = ENOMSG;
5537 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
5538 serr->ee.ee_info = tstype;
5539 serr->opt_stats = opt_stats;
5540 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
5541 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) {
5542 serr->ee.ee_data = skb_shinfo(skb)->tskey;
5543 if (sk_is_tcp(sk))
5544 serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
5545 }
5546
5547 err = sock_queue_err_skb(sk, skb);
5548
5549 if (err)
5550 kfree_skb(skb);
5551 }
5552
skb_may_tx_timestamp(struct sock * sk,bool tsonly)5553 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
5554 {
5555 bool ret;
5556
5557 if (likely(tsonly || READ_ONCE(sock_net(sk)->core.sysctl_tstamp_allow_data)))
5558 return true;
5559
5560 read_lock_bh(&sk->sk_callback_lock);
5561 ret = sk->sk_socket && sk->sk_socket->file &&
5562 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
5563 read_unlock_bh(&sk->sk_callback_lock);
5564 return ret;
5565 }
5566
skb_complete_tx_timestamp(struct sk_buff * skb,struct skb_shared_hwtstamps * hwtstamps)5567 void skb_complete_tx_timestamp(struct sk_buff *skb,
5568 struct skb_shared_hwtstamps *hwtstamps)
5569 {
5570 struct sock *sk = skb->sk;
5571
5572 if (!skb_may_tx_timestamp(sk, false))
5573 goto err;
5574
5575 /* Take a reference to prevent skb_orphan() from freeing the socket,
5576 * but only if the socket refcount is not zero.
5577 */
5578 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5579 *skb_hwtstamps(skb) = *hwtstamps;
5580 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
5581 sock_put(sk);
5582 return;
5583 }
5584
5585 err:
5586 kfree_skb(skb);
5587 }
5588 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
5589
skb_tstamp_tx_report_so_timestamping(struct sk_buff * skb,struct skb_shared_hwtstamps * hwtstamps,int tstype)5590 static bool skb_tstamp_tx_report_so_timestamping(struct sk_buff *skb,
5591 struct skb_shared_hwtstamps *hwtstamps,
5592 int tstype)
5593 {
5594 switch (tstype) {
5595 case SCM_TSTAMP_SCHED:
5596 return skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP;
5597 case SCM_TSTAMP_SND:
5598 return skb_shinfo(skb)->tx_flags & (hwtstamps ? SKBTX_HW_TSTAMP_NOBPF :
5599 SKBTX_SW_TSTAMP);
5600 case SCM_TSTAMP_ACK:
5601 return TCP_SKB_CB(skb)->txstamp_ack & TSTAMP_ACK_SK;
5602 case SCM_TSTAMP_COMPLETION:
5603 return skb_shinfo(skb)->tx_flags & SKBTX_COMPLETION_TSTAMP;
5604 }
5605
5606 return false;
5607 }
5608
skb_tstamp_tx_report_bpf_timestamping(struct sk_buff * skb,struct skb_shared_hwtstamps * hwtstamps,struct sock * sk,int tstype)5609 static void skb_tstamp_tx_report_bpf_timestamping(struct sk_buff *skb,
5610 struct skb_shared_hwtstamps *hwtstamps,
5611 struct sock *sk,
5612 int tstype)
5613 {
5614 int op;
5615
5616 switch (tstype) {
5617 case SCM_TSTAMP_SCHED:
5618 op = BPF_SOCK_OPS_TSTAMP_SCHED_CB;
5619 break;
5620 case SCM_TSTAMP_SND:
5621 if (hwtstamps) {
5622 op = BPF_SOCK_OPS_TSTAMP_SND_HW_CB;
5623 *skb_hwtstamps(skb) = *hwtstamps;
5624 } else {
5625 op = BPF_SOCK_OPS_TSTAMP_SND_SW_CB;
5626 }
5627 break;
5628 case SCM_TSTAMP_ACK:
5629 op = BPF_SOCK_OPS_TSTAMP_ACK_CB;
5630 break;
5631 default:
5632 return;
5633 }
5634
5635 bpf_skops_tx_timestamping(sk, skb, op);
5636 }
5637
__skb_tstamp_tx(struct sk_buff * orig_skb,const struct sk_buff * ack_skb,struct skb_shared_hwtstamps * hwtstamps,struct sock * sk,int tstype)5638 void __skb_tstamp_tx(struct sk_buff *orig_skb,
5639 const struct sk_buff *ack_skb,
5640 struct skb_shared_hwtstamps *hwtstamps,
5641 struct sock *sk, int tstype)
5642 {
5643 struct sk_buff *skb;
5644 bool tsonly, opt_stats = false;
5645 u32 tsflags;
5646
5647 if (!sk)
5648 return;
5649
5650 if (skb_shinfo(orig_skb)->tx_flags & SKBTX_BPF)
5651 skb_tstamp_tx_report_bpf_timestamping(orig_skb, hwtstamps,
5652 sk, tstype);
5653
5654 if (!skb_tstamp_tx_report_so_timestamping(orig_skb, hwtstamps, tstype))
5655 return;
5656
5657 tsflags = READ_ONCE(sk->sk_tsflags);
5658 if (!hwtstamps && !(tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
5659 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
5660 return;
5661
5662 tsonly = tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
5663 if (!skb_may_tx_timestamp(sk, tsonly))
5664 return;
5665
5666 if (tsonly) {
5667 #ifdef CONFIG_INET
5668 if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
5669 sk_is_tcp(sk)) {
5670 skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
5671 ack_skb);
5672 opt_stats = true;
5673 } else
5674 #endif
5675 skb = alloc_skb(0, GFP_ATOMIC);
5676 } else {
5677 skb = skb_clone(orig_skb, GFP_ATOMIC);
5678
5679 if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) {
5680 kfree_skb(skb);
5681 return;
5682 }
5683 }
5684 if (!skb)
5685 return;
5686
5687 if (tsonly) {
5688 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
5689 SKBTX_ANY_TSTAMP;
5690 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
5691 }
5692
5693 if (hwtstamps)
5694 *skb_hwtstamps(skb) = *hwtstamps;
5695 else
5696 __net_timestamp(skb);
5697
5698 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
5699 }
5700 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
5701
skb_tstamp_tx(struct sk_buff * orig_skb,struct skb_shared_hwtstamps * hwtstamps)5702 void skb_tstamp_tx(struct sk_buff *orig_skb,
5703 struct skb_shared_hwtstamps *hwtstamps)
5704 {
5705 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
5706 SCM_TSTAMP_SND);
5707 }
5708 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
5709
5710 #ifdef CONFIG_WIRELESS
skb_complete_wifi_ack(struct sk_buff * skb,bool acked)5711 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
5712 {
5713 struct sock *sk = skb->sk;
5714 struct sock_exterr_skb *serr;
5715 int err = 1;
5716
5717 skb->wifi_acked_valid = 1;
5718 skb->wifi_acked = acked;
5719
5720 serr = SKB_EXT_ERR(skb);
5721 memset(serr, 0, sizeof(*serr));
5722 serr->ee.ee_errno = ENOMSG;
5723 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
5724
5725 /* Take a reference to prevent skb_orphan() from freeing the socket,
5726 * but only if the socket refcount is not zero.
5727 */
5728 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5729 err = sock_queue_err_skb(sk, skb);
5730 sock_put(sk);
5731 }
5732 if (err)
5733 kfree_skb(skb);
5734 }
5735 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
5736 #endif /* CONFIG_WIRELESS */
5737
5738 /**
5739 * skb_partial_csum_set - set up and verify partial csum values for packet
5740 * @skb: the skb to set
5741 * @start: the number of bytes after skb->data to start checksumming.
5742 * @off: the offset from start to place the checksum.
5743 *
5744 * For untrusted partially-checksummed packets, we need to make sure the values
5745 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
5746 *
5747 * This function checks and sets those values and skb->ip_summed: if this
5748 * returns false you should drop the packet.
5749 */
skb_partial_csum_set(struct sk_buff * skb,u16 start,u16 off)5750 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
5751 {
5752 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
5753 u32 csum_start = skb_headroom(skb) + (u32)start;
5754
5755 if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) {
5756 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
5757 start, off, skb_headroom(skb), skb_headlen(skb));
5758 return false;
5759 }
5760 skb->ip_summed = CHECKSUM_PARTIAL;
5761 skb->csum_start = csum_start;
5762 skb->csum_offset = off;
5763 skb->transport_header = csum_start;
5764 return true;
5765 }
5766 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
5767
skb_maybe_pull_tail(struct sk_buff * skb,unsigned int len,unsigned int max)5768 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
5769 unsigned int max)
5770 {
5771 if (skb_headlen(skb) >= len)
5772 return 0;
5773
5774 /* If we need to pullup then pullup to the max, so we
5775 * won't need to do it again.
5776 */
5777 if (max > skb->len)
5778 max = skb->len;
5779
5780 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
5781 return -ENOMEM;
5782
5783 if (skb_headlen(skb) < len)
5784 return -EPROTO;
5785
5786 return 0;
5787 }
5788
5789 #define MAX_TCP_HDR_LEN (15 * 4)
5790
skb_checksum_setup_ip(struct sk_buff * skb,typeof(IPPROTO_IP) proto,unsigned int off)5791 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
5792 typeof(IPPROTO_IP) proto,
5793 unsigned int off)
5794 {
5795 int err;
5796
5797 switch (proto) {
5798 case IPPROTO_TCP:
5799 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
5800 off + MAX_TCP_HDR_LEN);
5801 if (!err && !skb_partial_csum_set(skb, off,
5802 offsetof(struct tcphdr,
5803 check)))
5804 err = -EPROTO;
5805 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
5806
5807 case IPPROTO_UDP:
5808 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
5809 off + sizeof(struct udphdr));
5810 if (!err && !skb_partial_csum_set(skb, off,
5811 offsetof(struct udphdr,
5812 check)))
5813 err = -EPROTO;
5814 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5815 }
5816
5817 return ERR_PTR(-EPROTO);
5818 }
5819
5820 /* This value should be large enough to cover a tagged ethernet header plus
5821 * maximally sized IP and TCP or UDP headers.
5822 */
5823 #define MAX_IP_HDR_LEN 128
5824
skb_checksum_setup_ipv4(struct sk_buff * skb,bool recalculate)5825 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5826 {
5827 unsigned int off;
5828 bool fragment;
5829 __sum16 *csum;
5830 int err;
5831
5832 fragment = false;
5833
5834 err = skb_maybe_pull_tail(skb,
5835 sizeof(struct iphdr),
5836 MAX_IP_HDR_LEN);
5837 if (err < 0)
5838 goto out;
5839
5840 if (ip_is_fragment(ip_hdr(skb)))
5841 fragment = true;
5842
5843 off = ip_hdrlen(skb);
5844
5845 err = -EPROTO;
5846
5847 if (fragment)
5848 goto out;
5849
5850 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5851 if (IS_ERR(csum))
5852 return PTR_ERR(csum);
5853
5854 if (recalculate)
5855 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5856 ip_hdr(skb)->daddr,
5857 skb->len - off,
5858 ip_hdr(skb)->protocol, 0);
5859 err = 0;
5860
5861 out:
5862 return err;
5863 }
5864
5865 /* This value should be large enough to cover a tagged ethernet header plus
5866 * an IPv6 header, all options, and a maximal TCP or UDP header.
5867 */
5868 #define MAX_IPV6_HDR_LEN 256
5869
5870 #define OPT_HDR(type, skb, off) \
5871 (type *)(skb_network_header(skb) + (off))
5872
skb_checksum_setup_ipv6(struct sk_buff * skb,bool recalculate)5873 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5874 {
5875 int err;
5876 u8 nexthdr;
5877 unsigned int off;
5878 unsigned int len;
5879 bool fragment;
5880 bool done;
5881 __sum16 *csum;
5882
5883 fragment = false;
5884 done = false;
5885
5886 off = sizeof(struct ipv6hdr);
5887
5888 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5889 if (err < 0)
5890 goto out;
5891
5892 nexthdr = ipv6_hdr(skb)->nexthdr;
5893
5894 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5895 while (off <= len && !done) {
5896 switch (nexthdr) {
5897 case IPPROTO_DSTOPTS:
5898 case IPPROTO_HOPOPTS:
5899 case IPPROTO_ROUTING: {
5900 struct ipv6_opt_hdr *hp;
5901
5902 err = skb_maybe_pull_tail(skb,
5903 off +
5904 sizeof(struct ipv6_opt_hdr),
5905 MAX_IPV6_HDR_LEN);
5906 if (err < 0)
5907 goto out;
5908
5909 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5910 nexthdr = hp->nexthdr;
5911 off += ipv6_optlen(hp);
5912 break;
5913 }
5914 case IPPROTO_AH: {
5915 struct ip_auth_hdr *hp;
5916
5917 err = skb_maybe_pull_tail(skb,
5918 off +
5919 sizeof(struct ip_auth_hdr),
5920 MAX_IPV6_HDR_LEN);
5921 if (err < 0)
5922 goto out;
5923
5924 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5925 nexthdr = hp->nexthdr;
5926 off += ipv6_authlen(hp);
5927 break;
5928 }
5929 case IPPROTO_FRAGMENT: {
5930 struct frag_hdr *hp;
5931
5932 err = skb_maybe_pull_tail(skb,
5933 off +
5934 sizeof(struct frag_hdr),
5935 MAX_IPV6_HDR_LEN);
5936 if (err < 0)
5937 goto out;
5938
5939 hp = OPT_HDR(struct frag_hdr, skb, off);
5940
5941 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5942 fragment = true;
5943
5944 nexthdr = hp->nexthdr;
5945 off += sizeof(struct frag_hdr);
5946 break;
5947 }
5948 default:
5949 done = true;
5950 break;
5951 }
5952 }
5953
5954 err = -EPROTO;
5955
5956 if (!done || fragment)
5957 goto out;
5958
5959 csum = skb_checksum_setup_ip(skb, nexthdr, off);
5960 if (IS_ERR(csum))
5961 return PTR_ERR(csum);
5962
5963 if (recalculate)
5964 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5965 &ipv6_hdr(skb)->daddr,
5966 skb->len - off, nexthdr, 0);
5967 err = 0;
5968
5969 out:
5970 return err;
5971 }
5972
5973 /**
5974 * skb_checksum_setup - set up partial checksum offset
5975 * @skb: the skb to set up
5976 * @recalculate: if true the pseudo-header checksum will be recalculated
5977 */
skb_checksum_setup(struct sk_buff * skb,bool recalculate)5978 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5979 {
5980 int err;
5981
5982 switch (skb->protocol) {
5983 case htons(ETH_P_IP):
5984 err = skb_checksum_setup_ipv4(skb, recalculate);
5985 break;
5986
5987 case htons(ETH_P_IPV6):
5988 err = skb_checksum_setup_ipv6(skb, recalculate);
5989 break;
5990
5991 default:
5992 err = -EPROTO;
5993 break;
5994 }
5995
5996 return err;
5997 }
5998 EXPORT_SYMBOL(skb_checksum_setup);
5999
6000 /**
6001 * skb_checksum_maybe_trim - maybe trims the given skb
6002 * @skb: the skb to check
6003 * @transport_len: the data length beyond the network header
6004 *
6005 * Checks whether the given skb has data beyond the given transport length.
6006 * If so, returns a cloned skb trimmed to this transport length.
6007 * Otherwise returns the provided skb. Returns NULL in error cases
6008 * (e.g. transport_len exceeds skb length or out-of-memory).
6009 *
6010 * Caller needs to set the skb transport header and free any returned skb if it
6011 * differs from the provided skb.
6012 */
skb_checksum_maybe_trim(struct sk_buff * skb,unsigned int transport_len)6013 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
6014 unsigned int transport_len)
6015 {
6016 struct sk_buff *skb_chk;
6017 unsigned int len = skb_transport_offset(skb) + transport_len;
6018 int ret;
6019
6020 if (skb->len < len)
6021 return NULL;
6022 else if (skb->len == len)
6023 return skb;
6024
6025 skb_chk = skb_clone(skb, GFP_ATOMIC);
6026 if (!skb_chk)
6027 return NULL;
6028
6029 ret = pskb_trim_rcsum(skb_chk, len);
6030 if (ret) {
6031 kfree_skb(skb_chk);
6032 return NULL;
6033 }
6034
6035 return skb_chk;
6036 }
6037
6038 /**
6039 * skb_checksum_trimmed - validate checksum of an skb
6040 * @skb: the skb to check
6041 * @transport_len: the data length beyond the network header
6042 * @skb_chkf: checksum function to use
6043 *
6044 * Applies the given checksum function skb_chkf to the provided skb.
6045 * Returns a checked and maybe trimmed skb. Returns NULL on error.
6046 *
6047 * If the skb has data beyond the given transport length, then a
6048 * trimmed & cloned skb is checked and returned.
6049 *
6050 * Caller needs to set the skb transport header and free any returned skb if it
6051 * differs from the provided skb.
6052 */
skb_checksum_trimmed(struct sk_buff * skb,unsigned int transport_len,__sum16 (* skb_chkf)(struct sk_buff * skb))6053 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
6054 unsigned int transport_len,
6055 __sum16(*skb_chkf)(struct sk_buff *skb))
6056 {
6057 struct sk_buff *skb_chk;
6058 unsigned int offset = skb_transport_offset(skb);
6059 __sum16 ret;
6060
6061 skb_chk = skb_checksum_maybe_trim(skb, transport_len);
6062 if (!skb_chk)
6063 goto err;
6064
6065 if (!pskb_may_pull(skb_chk, offset))
6066 goto err;
6067
6068 skb_pull_rcsum(skb_chk, offset);
6069 ret = skb_chkf(skb_chk);
6070 skb_push_rcsum(skb_chk, offset);
6071
6072 if (ret)
6073 goto err;
6074
6075 return skb_chk;
6076
6077 err:
6078 if (skb_chk && skb_chk != skb)
6079 kfree_skb(skb_chk);
6080
6081 return NULL;
6082
6083 }
6084 EXPORT_SYMBOL(skb_checksum_trimmed);
6085
__skb_warn_lro_forwarding(const struct sk_buff * skb)6086 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
6087 {
6088 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
6089 skb->dev->name);
6090 }
6091 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
6092
kfree_skb_partial(struct sk_buff * skb,bool head_stolen)6093 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
6094 {
6095 if (head_stolen) {
6096 skb_release_head_state(skb);
6097 kmem_cache_free(net_hotdata.skbuff_cache, skb);
6098 } else {
6099 __kfree_skb(skb);
6100 }
6101 }
6102 EXPORT_SYMBOL(kfree_skb_partial);
6103
6104 /**
6105 * skb_try_coalesce - try to merge skb to prior one
6106 * @to: prior buffer
6107 * @from: buffer to add
6108 * @fragstolen: pointer to boolean
6109 * @delta_truesize: how much more was allocated than was requested
6110 */
skb_try_coalesce(struct sk_buff * to,struct sk_buff * from,bool * fragstolen,int * delta_truesize)6111 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
6112 bool *fragstolen, int *delta_truesize)
6113 {
6114 struct skb_shared_info *to_shinfo, *from_shinfo;
6115 int i, delta, len = from->len;
6116
6117 *fragstolen = false;
6118
6119 if (skb_cloned(to))
6120 return false;
6121
6122 /* In general, avoid mixing page_pool and non-page_pool allocated
6123 * pages within the same SKB. In theory we could take full
6124 * references if @from is cloned and !@to->pp_recycle but its
6125 * tricky (due to potential race with the clone disappearing) and
6126 * rare, so not worth dealing with.
6127 */
6128 if (to->pp_recycle != from->pp_recycle)
6129 return false;
6130
6131 if (skb_frags_readable(from) != skb_frags_readable(to))
6132 return false;
6133
6134 if (len <= skb_tailroom(to) && skb_frags_readable(from)) {
6135 if (len)
6136 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
6137 *delta_truesize = 0;
6138 return true;
6139 }
6140
6141 to_shinfo = skb_shinfo(to);
6142 from_shinfo = skb_shinfo(from);
6143 if (to_shinfo->frag_list || from_shinfo->frag_list)
6144 return false;
6145 if (skb_zcopy(to) || skb_zcopy(from))
6146 return false;
6147
6148 if (skb_headlen(from) != 0) {
6149 struct page *page;
6150 unsigned int offset;
6151
6152 if (to_shinfo->nr_frags +
6153 from_shinfo->nr_frags >= MAX_SKB_FRAGS)
6154 return false;
6155
6156 if (skb_head_is_locked(from))
6157 return false;
6158
6159 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
6160
6161 page = virt_to_head_page(from->head);
6162 offset = from->data - (unsigned char *)page_address(page);
6163
6164 skb_fill_page_desc(to, to_shinfo->nr_frags,
6165 page, offset, skb_headlen(from));
6166 *fragstolen = true;
6167 } else {
6168 if (to_shinfo->nr_frags +
6169 from_shinfo->nr_frags > MAX_SKB_FRAGS)
6170 return false;
6171
6172 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
6173 }
6174
6175 WARN_ON_ONCE(delta < len);
6176
6177 memcpy(to_shinfo->frags + to_shinfo->nr_frags,
6178 from_shinfo->frags,
6179 from_shinfo->nr_frags * sizeof(skb_frag_t));
6180 to_shinfo->nr_frags += from_shinfo->nr_frags;
6181
6182 if (!skb_cloned(from))
6183 from_shinfo->nr_frags = 0;
6184
6185 /* if the skb is not cloned this does nothing
6186 * since we set nr_frags to 0.
6187 */
6188 if (skb_pp_frag_ref(from)) {
6189 for (i = 0; i < from_shinfo->nr_frags; i++)
6190 __skb_frag_ref(&from_shinfo->frags[i]);
6191 }
6192
6193 to->truesize += delta;
6194 to->len += len;
6195 to->data_len += len;
6196
6197 *delta_truesize = delta;
6198 return true;
6199 }
6200 EXPORT_SYMBOL(skb_try_coalesce);
6201
6202 /**
6203 * skb_scrub_packet - scrub an skb
6204 *
6205 * @skb: buffer to clean
6206 * @xnet: packet is crossing netns
6207 *
6208 * skb_scrub_packet can be used after encapsulating or decapsulating a packet
6209 * into/from a tunnel. Some information have to be cleared during these
6210 * operations.
6211 * skb_scrub_packet can also be used to clean a skb before injecting it in
6212 * another namespace (@xnet == true). We have to clear all information in the
6213 * skb that could impact namespace isolation.
6214 */
skb_scrub_packet(struct sk_buff * skb,bool xnet)6215 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
6216 {
6217 skb->pkt_type = PACKET_HOST;
6218 skb->skb_iif = 0;
6219 skb->ignore_df = 0;
6220 skb_dst_drop(skb);
6221 skb_ext_reset(skb);
6222 nf_reset_ct(skb);
6223 nf_reset_trace(skb);
6224
6225 #ifdef CONFIG_NET_SWITCHDEV
6226 skb->offload_fwd_mark = 0;
6227 skb->offload_l3_fwd_mark = 0;
6228 #endif
6229 ipvs_reset(skb);
6230
6231 if (!xnet)
6232 return;
6233
6234 skb->mark = 0;
6235 skb_clear_tstamp(skb);
6236 }
6237 EXPORT_SYMBOL_GPL(skb_scrub_packet);
6238
skb_reorder_vlan_header(struct sk_buff * skb)6239 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
6240 {
6241 int mac_len, meta_len;
6242 void *meta;
6243
6244 if (skb_cow(skb, skb_headroom(skb)) < 0) {
6245 kfree_skb(skb);
6246 return NULL;
6247 }
6248
6249 mac_len = skb->data - skb_mac_header(skb);
6250 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
6251 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
6252 mac_len - VLAN_HLEN - ETH_TLEN);
6253 }
6254
6255 meta_len = skb_metadata_len(skb);
6256 if (meta_len) {
6257 meta = skb_metadata_end(skb) - meta_len;
6258 memmove(meta + VLAN_HLEN, meta, meta_len);
6259 }
6260
6261 skb->mac_header += VLAN_HLEN;
6262 return skb;
6263 }
6264
skb_vlan_untag(struct sk_buff * skb)6265 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
6266 {
6267 struct vlan_hdr *vhdr;
6268 u16 vlan_tci;
6269
6270 if (unlikely(skb_vlan_tag_present(skb))) {
6271 /* vlan_tci is already set-up so leave this for another time */
6272 return skb;
6273 }
6274
6275 skb = skb_share_check(skb, GFP_ATOMIC);
6276 if (unlikely(!skb))
6277 goto err_free;
6278 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
6279 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
6280 goto err_free;
6281
6282 vhdr = (struct vlan_hdr *)skb->data;
6283 vlan_tci = ntohs(vhdr->h_vlan_TCI);
6284 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
6285
6286 skb_pull_rcsum(skb, VLAN_HLEN);
6287 vlan_set_encap_proto(skb, vhdr);
6288
6289 skb = skb_reorder_vlan_header(skb);
6290 if (unlikely(!skb))
6291 goto err_free;
6292
6293 skb_reset_network_header(skb);
6294 if (!skb_transport_header_was_set(skb))
6295 skb_reset_transport_header(skb);
6296 skb_reset_mac_len(skb);
6297
6298 return skb;
6299
6300 err_free:
6301 kfree_skb(skb);
6302 return NULL;
6303 }
6304 EXPORT_SYMBOL(skb_vlan_untag);
6305
skb_ensure_writable(struct sk_buff * skb,unsigned int write_len)6306 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len)
6307 {
6308 if (!pskb_may_pull(skb, write_len))
6309 return -ENOMEM;
6310
6311 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
6312 return 0;
6313
6314 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
6315 }
6316 EXPORT_SYMBOL(skb_ensure_writable);
6317
skb_ensure_writable_head_tail(struct sk_buff * skb,struct net_device * dev)6318 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev)
6319 {
6320 int needed_headroom = dev->needed_headroom;
6321 int needed_tailroom = dev->needed_tailroom;
6322
6323 /* For tail taggers, we need to pad short frames ourselves, to ensure
6324 * that the tail tag does not fail at its role of being at the end of
6325 * the packet, once the conduit interface pads the frame. Account for
6326 * that pad length here, and pad later.
6327 */
6328 if (unlikely(needed_tailroom && skb->len < ETH_ZLEN))
6329 needed_tailroom += ETH_ZLEN - skb->len;
6330 /* skb_headroom() returns unsigned int... */
6331 needed_headroom = max_t(int, needed_headroom - skb_headroom(skb), 0);
6332 needed_tailroom = max_t(int, needed_tailroom - skb_tailroom(skb), 0);
6333
6334 if (likely(!needed_headroom && !needed_tailroom && !skb_cloned(skb)))
6335 /* No reallocation needed, yay! */
6336 return 0;
6337
6338 return pskb_expand_head(skb, needed_headroom, needed_tailroom,
6339 GFP_ATOMIC);
6340 }
6341 EXPORT_SYMBOL(skb_ensure_writable_head_tail);
6342
6343 /* remove VLAN header from packet and update csum accordingly.
6344 * expects a non skb_vlan_tag_present skb with a vlan tag payload
6345 */
__skb_vlan_pop(struct sk_buff * skb,u16 * vlan_tci)6346 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
6347 {
6348 int offset = skb->data - skb_mac_header(skb);
6349 int err;
6350
6351 if (WARN_ONCE(offset,
6352 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
6353 offset)) {
6354 return -EINVAL;
6355 }
6356
6357 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
6358 if (unlikely(err))
6359 return err;
6360
6361 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6362
6363 vlan_remove_tag(skb, vlan_tci);
6364
6365 skb->mac_header += VLAN_HLEN;
6366
6367 if (skb_network_offset(skb) < ETH_HLEN)
6368 skb_set_network_header(skb, ETH_HLEN);
6369
6370 skb_reset_mac_len(skb);
6371
6372 return err;
6373 }
6374 EXPORT_SYMBOL(__skb_vlan_pop);
6375
6376 /* Pop a vlan tag either from hwaccel or from payload.
6377 * Expects skb->data at mac header.
6378 */
skb_vlan_pop(struct sk_buff * skb)6379 int skb_vlan_pop(struct sk_buff *skb)
6380 {
6381 u16 vlan_tci;
6382 __be16 vlan_proto;
6383 int err;
6384
6385 if (likely(skb_vlan_tag_present(skb))) {
6386 __vlan_hwaccel_clear_tag(skb);
6387 } else {
6388 if (unlikely(!eth_type_vlan(skb->protocol)))
6389 return 0;
6390
6391 err = __skb_vlan_pop(skb, &vlan_tci);
6392 if (err)
6393 return err;
6394 }
6395 /* move next vlan tag to hw accel tag */
6396 if (likely(!eth_type_vlan(skb->protocol)))
6397 return 0;
6398
6399 vlan_proto = skb->protocol;
6400 err = __skb_vlan_pop(skb, &vlan_tci);
6401 if (unlikely(err))
6402 return err;
6403
6404 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6405 return 0;
6406 }
6407 EXPORT_SYMBOL(skb_vlan_pop);
6408
6409 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
6410 * Expects skb->data at mac header.
6411 */
skb_vlan_push(struct sk_buff * skb,__be16 vlan_proto,u16 vlan_tci)6412 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
6413 {
6414 if (skb_vlan_tag_present(skb)) {
6415 int offset = skb->data - skb_mac_header(skb);
6416 int err;
6417
6418 if (WARN_ONCE(offset,
6419 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
6420 offset)) {
6421 return -EINVAL;
6422 }
6423
6424 err = __vlan_insert_tag(skb, skb->vlan_proto,
6425 skb_vlan_tag_get(skb));
6426 if (err)
6427 return err;
6428
6429 skb->protocol = skb->vlan_proto;
6430 skb->network_header -= VLAN_HLEN;
6431
6432 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6433 }
6434 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6435 return 0;
6436 }
6437 EXPORT_SYMBOL(skb_vlan_push);
6438
6439 /**
6440 * skb_eth_pop() - Drop the Ethernet header at the head of a packet
6441 *
6442 * @skb: Socket buffer to modify
6443 *
6444 * Drop the Ethernet header of @skb.
6445 *
6446 * Expects that skb->data points to the mac header and that no VLAN tags are
6447 * present.
6448 *
6449 * Returns 0 on success, -errno otherwise.
6450 */
skb_eth_pop(struct sk_buff * skb)6451 int skb_eth_pop(struct sk_buff *skb)
6452 {
6453 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
6454 skb_network_offset(skb) < ETH_HLEN)
6455 return -EPROTO;
6456
6457 skb_pull_rcsum(skb, ETH_HLEN);
6458 skb_reset_mac_header(skb);
6459 skb_reset_mac_len(skb);
6460
6461 return 0;
6462 }
6463 EXPORT_SYMBOL(skb_eth_pop);
6464
6465 /**
6466 * skb_eth_push() - Add a new Ethernet header at the head of a packet
6467 *
6468 * @skb: Socket buffer to modify
6469 * @dst: Destination MAC address of the new header
6470 * @src: Source MAC address of the new header
6471 *
6472 * Prepend @skb with a new Ethernet header.
6473 *
6474 * Expects that skb->data points to the mac header, which must be empty.
6475 *
6476 * Returns 0 on success, -errno otherwise.
6477 */
skb_eth_push(struct sk_buff * skb,const unsigned char * dst,const unsigned char * src)6478 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
6479 const unsigned char *src)
6480 {
6481 struct ethhdr *eth;
6482 int err;
6483
6484 if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
6485 return -EPROTO;
6486
6487 err = skb_cow_head(skb, sizeof(*eth));
6488 if (err < 0)
6489 return err;
6490
6491 skb_push(skb, sizeof(*eth));
6492 skb_reset_mac_header(skb);
6493 skb_reset_mac_len(skb);
6494
6495 eth = eth_hdr(skb);
6496 ether_addr_copy(eth->h_dest, dst);
6497 ether_addr_copy(eth->h_source, src);
6498 eth->h_proto = skb->protocol;
6499
6500 skb_postpush_rcsum(skb, eth, sizeof(*eth));
6501
6502 return 0;
6503 }
6504 EXPORT_SYMBOL(skb_eth_push);
6505
6506 /* Update the ethertype of hdr and the skb csum value if required. */
skb_mod_eth_type(struct sk_buff * skb,struct ethhdr * hdr,__be16 ethertype)6507 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
6508 __be16 ethertype)
6509 {
6510 if (skb->ip_summed == CHECKSUM_COMPLETE) {
6511 __be16 diff[] = { ~hdr->h_proto, ethertype };
6512
6513 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6514 }
6515
6516 hdr->h_proto = ethertype;
6517 }
6518
6519 /**
6520 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
6521 * the packet
6522 *
6523 * @skb: buffer
6524 * @mpls_lse: MPLS label stack entry to push
6525 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
6526 * @mac_len: length of the MAC header
6527 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
6528 * ethernet
6529 *
6530 * Expects skb->data at mac header.
6531 *
6532 * Returns 0 on success, -errno otherwise.
6533 */
skb_mpls_push(struct sk_buff * skb,__be32 mpls_lse,__be16 mpls_proto,int mac_len,bool ethernet)6534 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
6535 int mac_len, bool ethernet)
6536 {
6537 struct mpls_shim_hdr *lse;
6538 int err;
6539
6540 if (unlikely(!eth_p_mpls(mpls_proto)))
6541 return -EINVAL;
6542
6543 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
6544 if (skb->encapsulation)
6545 return -EINVAL;
6546
6547 err = skb_cow_head(skb, MPLS_HLEN);
6548 if (unlikely(err))
6549 return err;
6550
6551 if (!skb->inner_protocol) {
6552 skb_set_inner_network_header(skb, skb_network_offset(skb));
6553 skb_set_inner_protocol(skb, skb->protocol);
6554 }
6555
6556 skb_push(skb, MPLS_HLEN);
6557 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
6558 mac_len);
6559 skb_reset_mac_header(skb);
6560 skb_set_network_header(skb, mac_len);
6561 skb_reset_mac_len(skb);
6562
6563 lse = mpls_hdr(skb);
6564 lse->label_stack_entry = mpls_lse;
6565 skb_postpush_rcsum(skb, lse, MPLS_HLEN);
6566
6567 if (ethernet && mac_len >= ETH_HLEN)
6568 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
6569 skb->protocol = mpls_proto;
6570
6571 return 0;
6572 }
6573 EXPORT_SYMBOL_GPL(skb_mpls_push);
6574
6575 /**
6576 * skb_mpls_pop() - pop the outermost MPLS header
6577 *
6578 * @skb: buffer
6579 * @next_proto: ethertype of header after popped MPLS header
6580 * @mac_len: length of the MAC header
6581 * @ethernet: flag to indicate if the packet is ethernet
6582 *
6583 * Expects skb->data at mac header.
6584 *
6585 * Returns 0 on success, -errno otherwise.
6586 */
skb_mpls_pop(struct sk_buff * skb,__be16 next_proto,int mac_len,bool ethernet)6587 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
6588 bool ethernet)
6589 {
6590 int err;
6591
6592 if (unlikely(!eth_p_mpls(skb->protocol)))
6593 return 0;
6594
6595 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
6596 if (unlikely(err))
6597 return err;
6598
6599 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
6600 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
6601 mac_len);
6602
6603 __skb_pull(skb, MPLS_HLEN);
6604 skb_reset_mac_header(skb);
6605 skb_set_network_header(skb, mac_len);
6606
6607 if (ethernet && mac_len >= ETH_HLEN) {
6608 struct ethhdr *hdr;
6609
6610 /* use mpls_hdr() to get ethertype to account for VLANs. */
6611 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
6612 skb_mod_eth_type(skb, hdr, next_proto);
6613 }
6614 skb->protocol = next_proto;
6615
6616 return 0;
6617 }
6618 EXPORT_SYMBOL_GPL(skb_mpls_pop);
6619
6620 /**
6621 * skb_mpls_update_lse() - modify outermost MPLS header and update csum
6622 *
6623 * @skb: buffer
6624 * @mpls_lse: new MPLS label stack entry to update to
6625 *
6626 * Expects skb->data at mac header.
6627 *
6628 * Returns 0 on success, -errno otherwise.
6629 */
skb_mpls_update_lse(struct sk_buff * skb,__be32 mpls_lse)6630 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
6631 {
6632 int err;
6633
6634 if (unlikely(!eth_p_mpls(skb->protocol)))
6635 return -EINVAL;
6636
6637 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
6638 if (unlikely(err))
6639 return err;
6640
6641 if (skb->ip_summed == CHECKSUM_COMPLETE) {
6642 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
6643
6644 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6645 }
6646
6647 mpls_hdr(skb)->label_stack_entry = mpls_lse;
6648
6649 return 0;
6650 }
6651 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
6652
6653 /**
6654 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
6655 *
6656 * @skb: buffer
6657 *
6658 * Expects skb->data at mac header.
6659 *
6660 * Returns 0 on success, -errno otherwise.
6661 */
skb_mpls_dec_ttl(struct sk_buff * skb)6662 int skb_mpls_dec_ttl(struct sk_buff *skb)
6663 {
6664 u32 lse;
6665 u8 ttl;
6666
6667 if (unlikely(!eth_p_mpls(skb->protocol)))
6668 return -EINVAL;
6669
6670 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
6671 return -ENOMEM;
6672
6673 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
6674 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
6675 if (!--ttl)
6676 return -EINVAL;
6677
6678 lse &= ~MPLS_LS_TTL_MASK;
6679 lse |= ttl << MPLS_LS_TTL_SHIFT;
6680
6681 return skb_mpls_update_lse(skb, cpu_to_be32(lse));
6682 }
6683 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
6684
6685 /**
6686 * alloc_skb_with_frags - allocate skb with page frags
6687 *
6688 * @header_len: size of linear part
6689 * @data_len: needed length in frags
6690 * @order: max page order desired.
6691 * @errcode: pointer to error code if any
6692 * @gfp_mask: allocation mask
6693 *
6694 * This can be used to allocate a paged skb, given a maximal order for frags.
6695 */
alloc_skb_with_frags(unsigned long header_len,unsigned long data_len,int order,int * errcode,gfp_t gfp_mask)6696 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6697 unsigned long data_len,
6698 int order,
6699 int *errcode,
6700 gfp_t gfp_mask)
6701 {
6702 unsigned long chunk;
6703 struct sk_buff *skb;
6704 struct page *page;
6705 int nr_frags = 0;
6706
6707 *errcode = -EMSGSIZE;
6708 if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order)))
6709 return NULL;
6710
6711 *errcode = -ENOBUFS;
6712 skb = alloc_skb(header_len, gfp_mask);
6713 if (!skb)
6714 return NULL;
6715
6716 while (data_len) {
6717 if (nr_frags == MAX_SKB_FRAGS)
6718 goto failure;
6719 while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order))
6720 order--;
6721
6722 if (order) {
6723 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6724 __GFP_COMP |
6725 __GFP_NOWARN,
6726 order);
6727 if (!page) {
6728 order--;
6729 continue;
6730 }
6731 } else {
6732 page = alloc_page(gfp_mask);
6733 if (!page)
6734 goto failure;
6735 }
6736 chunk = min_t(unsigned long, data_len,
6737 PAGE_SIZE << order);
6738 skb_fill_page_desc(skb, nr_frags, page, 0, chunk);
6739 nr_frags++;
6740 skb->truesize += (PAGE_SIZE << order);
6741 data_len -= chunk;
6742 }
6743 return skb;
6744
6745 failure:
6746 kfree_skb(skb);
6747 return NULL;
6748 }
6749 EXPORT_SYMBOL(alloc_skb_with_frags);
6750
6751 /* carve out the first off bytes from skb when off < headlen */
pskb_carve_inside_header(struct sk_buff * skb,const u32 off,const int headlen,gfp_t gfp_mask)6752 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6753 const int headlen, gfp_t gfp_mask)
6754 {
6755 int i;
6756 unsigned int size = skb_end_offset(skb);
6757 int new_hlen = headlen - off;
6758 u8 *data;
6759
6760 if (skb_pfmemalloc(skb))
6761 gfp_mask |= __GFP_MEMALLOC;
6762
6763 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6764 if (!data)
6765 return -ENOMEM;
6766 size = SKB_WITH_OVERHEAD(size);
6767
6768 /* Copy real data, and all frags */
6769 skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6770 skb->len -= off;
6771
6772 memcpy((struct skb_shared_info *)(data + size),
6773 skb_shinfo(skb),
6774 offsetof(struct skb_shared_info,
6775 frags[skb_shinfo(skb)->nr_frags]));
6776 if (skb_cloned(skb)) {
6777 /* drop the old head gracefully */
6778 if (skb_orphan_frags(skb, gfp_mask)) {
6779 skb_kfree_head(data, size);
6780 return -ENOMEM;
6781 }
6782 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6783 skb_frag_ref(skb, i);
6784 if (skb_has_frag_list(skb))
6785 skb_clone_fraglist(skb);
6786 skb_release_data(skb, SKB_CONSUMED);
6787 } else {
6788 /* we can reuse existing recount- all we did was
6789 * relocate values
6790 */
6791 skb_free_head(skb);
6792 }
6793
6794 skb->head = data;
6795 skb->data = data;
6796 skb->head_frag = 0;
6797 skb_set_end_offset(skb, size);
6798 skb_set_tail_pointer(skb, skb_headlen(skb));
6799 skb_headers_offset_update(skb, 0);
6800 skb->cloned = 0;
6801 skb->hdr_len = 0;
6802 skb->nohdr = 0;
6803 atomic_set(&skb_shinfo(skb)->dataref, 1);
6804
6805 return 0;
6806 }
6807
6808 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6809
6810 /* carve out the first eat bytes from skb's frag_list. May recurse into
6811 * pskb_carve()
6812 */
pskb_carve_frag_list(struct skb_shared_info * shinfo,int eat,gfp_t gfp_mask)6813 static int pskb_carve_frag_list(struct skb_shared_info *shinfo, int eat,
6814 gfp_t gfp_mask)
6815 {
6816 struct sk_buff *list = shinfo->frag_list;
6817 struct sk_buff *clone = NULL;
6818 struct sk_buff *insp = NULL;
6819
6820 do {
6821 if (!list) {
6822 pr_err("Not enough bytes to eat. Want %d\n", eat);
6823 return -EFAULT;
6824 }
6825 if (list->len <= eat) {
6826 /* Eaten as whole. */
6827 eat -= list->len;
6828 list = list->next;
6829 insp = list;
6830 } else {
6831 /* Eaten partially. */
6832 if (skb_shared(list)) {
6833 clone = skb_clone(list, gfp_mask);
6834 if (!clone)
6835 return -ENOMEM;
6836 insp = list->next;
6837 list = clone;
6838 } else {
6839 /* This may be pulled without problems. */
6840 insp = list;
6841 }
6842 if (pskb_carve(list, eat, gfp_mask) < 0) {
6843 kfree_skb(clone);
6844 return -ENOMEM;
6845 }
6846 break;
6847 }
6848 } while (eat);
6849
6850 /* Free pulled out fragments. */
6851 while ((list = shinfo->frag_list) != insp) {
6852 shinfo->frag_list = list->next;
6853 consume_skb(list);
6854 }
6855 /* And insert new clone at head. */
6856 if (clone) {
6857 clone->next = list;
6858 shinfo->frag_list = clone;
6859 }
6860 return 0;
6861 }
6862
6863 /* carve off first len bytes from skb. Split line (off) is in the
6864 * non-linear part of skb
6865 */
pskb_carve_inside_nonlinear(struct sk_buff * skb,const u32 off,int pos,gfp_t gfp_mask)6866 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6867 int pos, gfp_t gfp_mask)
6868 {
6869 int i, k = 0;
6870 unsigned int size = skb_end_offset(skb);
6871 u8 *data;
6872 const int nfrags = skb_shinfo(skb)->nr_frags;
6873 struct skb_shared_info *shinfo;
6874
6875 if (skb_pfmemalloc(skb))
6876 gfp_mask |= __GFP_MEMALLOC;
6877
6878 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6879 if (!data)
6880 return -ENOMEM;
6881 size = SKB_WITH_OVERHEAD(size);
6882
6883 memcpy((struct skb_shared_info *)(data + size),
6884 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6885 if (skb_orphan_frags(skb, gfp_mask)) {
6886 skb_kfree_head(data, size);
6887 return -ENOMEM;
6888 }
6889 shinfo = (struct skb_shared_info *)(data + size);
6890 for (i = 0; i < nfrags; i++) {
6891 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6892
6893 if (pos + fsize > off) {
6894 shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6895
6896 if (pos < off) {
6897 /* Split frag.
6898 * We have two variants in this case:
6899 * 1. Move all the frag to the second
6900 * part, if it is possible. F.e.
6901 * this approach is mandatory for TUX,
6902 * where splitting is expensive.
6903 * 2. Split is accurately. We make this.
6904 */
6905 skb_frag_off_add(&shinfo->frags[0], off - pos);
6906 skb_frag_size_sub(&shinfo->frags[0], off - pos);
6907 }
6908 skb_frag_ref(skb, i);
6909 k++;
6910 }
6911 pos += fsize;
6912 }
6913 shinfo->nr_frags = k;
6914 if (skb_has_frag_list(skb))
6915 skb_clone_fraglist(skb);
6916
6917 /* split line is in frag list */
6918 if (k == 0 && pskb_carve_frag_list(shinfo, off - pos, gfp_mask)) {
6919 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6920 if (skb_has_frag_list(skb))
6921 kfree_skb_list(skb_shinfo(skb)->frag_list);
6922 skb_kfree_head(data, size);
6923 return -ENOMEM;
6924 }
6925 skb_release_data(skb, SKB_CONSUMED);
6926
6927 skb->head = data;
6928 skb->head_frag = 0;
6929 skb->data = data;
6930 skb_set_end_offset(skb, size);
6931 skb_reset_tail_pointer(skb);
6932 skb_headers_offset_update(skb, 0);
6933 skb->cloned = 0;
6934 skb->hdr_len = 0;
6935 skb->nohdr = 0;
6936 skb->len -= off;
6937 skb->data_len = skb->len;
6938 atomic_set(&skb_shinfo(skb)->dataref, 1);
6939 return 0;
6940 }
6941
6942 /* remove len bytes from the beginning of the skb */
pskb_carve(struct sk_buff * skb,const u32 len,gfp_t gfp)6943 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6944 {
6945 int headlen = skb_headlen(skb);
6946
6947 if (len < headlen)
6948 return pskb_carve_inside_header(skb, len, headlen, gfp);
6949 else
6950 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6951 }
6952
6953 /* Extract to_copy bytes starting at off from skb, and return this in
6954 * a new skb
6955 */
pskb_extract(struct sk_buff * skb,int off,int to_copy,gfp_t gfp)6956 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6957 int to_copy, gfp_t gfp)
6958 {
6959 struct sk_buff *clone = skb_clone(skb, gfp);
6960
6961 if (!clone)
6962 return NULL;
6963
6964 if (pskb_carve(clone, off, gfp) < 0 ||
6965 pskb_trim(clone, to_copy)) {
6966 kfree_skb(clone);
6967 return NULL;
6968 }
6969 return clone;
6970 }
6971 EXPORT_SYMBOL(pskb_extract);
6972
6973 /**
6974 * skb_condense - try to get rid of fragments/frag_list if possible
6975 * @skb: buffer
6976 *
6977 * Can be used to save memory before skb is added to a busy queue.
6978 * If packet has bytes in frags and enough tail room in skb->head,
6979 * pull all of them, so that we can free the frags right now and adjust
6980 * truesize.
6981 * Notes:
6982 * We do not reallocate skb->head thus can not fail.
6983 * Caller must re-evaluate skb->truesize if needed.
6984 */
skb_condense(struct sk_buff * skb)6985 void skb_condense(struct sk_buff *skb)
6986 {
6987 if (skb->data_len) {
6988 if (skb->data_len > skb->end - skb->tail ||
6989 skb_cloned(skb) || !skb_frags_readable(skb))
6990 return;
6991
6992 /* Nice, we can free page frag(s) right now */
6993 __pskb_pull_tail(skb, skb->data_len);
6994 }
6995 /* At this point, skb->truesize might be over estimated,
6996 * because skb had a fragment, and fragments do not tell
6997 * their truesize.
6998 * When we pulled its content into skb->head, fragment
6999 * was freed, but __pskb_pull_tail() could not possibly
7000 * adjust skb->truesize, not knowing the frag truesize.
7001 */
7002 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
7003 }
7004 EXPORT_SYMBOL(skb_condense);
7005
7006 #ifdef CONFIG_SKB_EXTENSIONS
skb_ext_get_ptr(struct skb_ext * ext,enum skb_ext_id id)7007 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
7008 {
7009 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
7010 }
7011
7012 /**
7013 * __skb_ext_alloc - allocate a new skb extensions storage
7014 *
7015 * @flags: See kmalloc().
7016 *
7017 * Returns the newly allocated pointer. The pointer can later attached to a
7018 * skb via __skb_ext_set().
7019 * Note: caller must handle the skb_ext as an opaque data.
7020 */
__skb_ext_alloc(gfp_t flags)7021 struct skb_ext *__skb_ext_alloc(gfp_t flags)
7022 {
7023 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
7024
7025 if (new) {
7026 memset(new->offset, 0, sizeof(new->offset));
7027 refcount_set(&new->refcnt, 1);
7028 }
7029
7030 return new;
7031 }
7032
skb_ext_maybe_cow(struct skb_ext * old,unsigned int old_active)7033 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
7034 unsigned int old_active)
7035 {
7036 struct skb_ext *new;
7037
7038 if (refcount_read(&old->refcnt) == 1)
7039 return old;
7040
7041 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
7042 if (!new)
7043 return NULL;
7044
7045 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
7046 refcount_set(&new->refcnt, 1);
7047
7048 #ifdef CONFIG_XFRM
7049 if (old_active & (1 << SKB_EXT_SEC_PATH)) {
7050 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
7051 unsigned int i;
7052
7053 for (i = 0; i < sp->len; i++)
7054 xfrm_state_hold(sp->xvec[i]);
7055 }
7056 #endif
7057 #ifdef CONFIG_MCTP_FLOWS
7058 if (old_active & (1 << SKB_EXT_MCTP)) {
7059 struct mctp_flow *flow = skb_ext_get_ptr(old, SKB_EXT_MCTP);
7060
7061 if (flow->key)
7062 refcount_inc(&flow->key->refs);
7063 }
7064 #endif
7065 __skb_ext_put(old);
7066 return new;
7067 }
7068
7069 /**
7070 * __skb_ext_set - attach the specified extension storage to this skb
7071 * @skb: buffer
7072 * @id: extension id
7073 * @ext: extension storage previously allocated via __skb_ext_alloc()
7074 *
7075 * Existing extensions, if any, are cleared.
7076 *
7077 * Returns the pointer to the extension.
7078 */
__skb_ext_set(struct sk_buff * skb,enum skb_ext_id id,struct skb_ext * ext)7079 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
7080 struct skb_ext *ext)
7081 {
7082 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
7083
7084 skb_ext_put(skb);
7085 newlen = newoff + skb_ext_type_len[id];
7086 ext->chunks = newlen;
7087 ext->offset[id] = newoff;
7088 skb->extensions = ext;
7089 skb->active_extensions = 1 << id;
7090 return skb_ext_get_ptr(ext, id);
7091 }
7092 EXPORT_SYMBOL_NS_GPL(__skb_ext_set, "NETDEV_INTERNAL");
7093
7094 /**
7095 * skb_ext_add - allocate space for given extension, COW if needed
7096 * @skb: buffer
7097 * @id: extension to allocate space for
7098 *
7099 * Allocates enough space for the given extension.
7100 * If the extension is already present, a pointer to that extension
7101 * is returned.
7102 *
7103 * If the skb was cloned, COW applies and the returned memory can be
7104 * modified without changing the extension space of clones buffers.
7105 *
7106 * Returns pointer to the extension or NULL on allocation failure.
7107 */
skb_ext_add(struct sk_buff * skb,enum skb_ext_id id)7108 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
7109 {
7110 struct skb_ext *new, *old = NULL;
7111 unsigned int newlen, newoff;
7112
7113 if (skb->active_extensions) {
7114 old = skb->extensions;
7115
7116 new = skb_ext_maybe_cow(old, skb->active_extensions);
7117 if (!new)
7118 return NULL;
7119
7120 if (__skb_ext_exist(new, id))
7121 goto set_active;
7122
7123 newoff = new->chunks;
7124 } else {
7125 newoff = SKB_EXT_CHUNKSIZEOF(*new);
7126
7127 new = __skb_ext_alloc(GFP_ATOMIC);
7128 if (!new)
7129 return NULL;
7130 }
7131
7132 newlen = newoff + skb_ext_type_len[id];
7133 new->chunks = newlen;
7134 new->offset[id] = newoff;
7135 set_active:
7136 skb->slow_gro = 1;
7137 skb->extensions = new;
7138 skb->active_extensions |= 1 << id;
7139 return skb_ext_get_ptr(new, id);
7140 }
7141 EXPORT_SYMBOL(skb_ext_add);
7142
7143 #ifdef CONFIG_XFRM
skb_ext_put_sp(struct sec_path * sp)7144 static void skb_ext_put_sp(struct sec_path *sp)
7145 {
7146 unsigned int i;
7147
7148 for (i = 0; i < sp->len; i++)
7149 xfrm_state_put(sp->xvec[i]);
7150 }
7151 #endif
7152
7153 #ifdef CONFIG_MCTP_FLOWS
skb_ext_put_mctp(struct mctp_flow * flow)7154 static void skb_ext_put_mctp(struct mctp_flow *flow)
7155 {
7156 if (flow->key)
7157 mctp_key_unref(flow->key);
7158 }
7159 #endif
7160
__skb_ext_del(struct sk_buff * skb,enum skb_ext_id id)7161 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
7162 {
7163 struct skb_ext *ext = skb->extensions;
7164
7165 skb->active_extensions &= ~(1 << id);
7166 if (skb->active_extensions == 0) {
7167 skb->extensions = NULL;
7168 __skb_ext_put(ext);
7169 #ifdef CONFIG_XFRM
7170 } else if (id == SKB_EXT_SEC_PATH &&
7171 refcount_read(&ext->refcnt) == 1) {
7172 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
7173
7174 skb_ext_put_sp(sp);
7175 sp->len = 0;
7176 #endif
7177 }
7178 }
7179 EXPORT_SYMBOL(__skb_ext_del);
7180
__skb_ext_put(struct skb_ext * ext)7181 void __skb_ext_put(struct skb_ext *ext)
7182 {
7183 /* If this is last clone, nothing can increment
7184 * it after check passes. Avoids one atomic op.
7185 */
7186 if (refcount_read(&ext->refcnt) == 1)
7187 goto free_now;
7188
7189 if (!refcount_dec_and_test(&ext->refcnt))
7190 return;
7191 free_now:
7192 #ifdef CONFIG_XFRM
7193 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
7194 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
7195 #endif
7196 #ifdef CONFIG_MCTP_FLOWS
7197 if (__skb_ext_exist(ext, SKB_EXT_MCTP))
7198 skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
7199 #endif
7200
7201 kmem_cache_free(skbuff_ext_cache, ext);
7202 }
7203 EXPORT_SYMBOL(__skb_ext_put);
7204 #endif /* CONFIG_SKB_EXTENSIONS */
7205
kfree_skb_napi_cache(struct sk_buff * skb)7206 static void kfree_skb_napi_cache(struct sk_buff *skb)
7207 {
7208 /* if SKB is a clone, don't handle this case */
7209 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
7210 __kfree_skb(skb);
7211 return;
7212 }
7213
7214 local_bh_disable();
7215 __napi_kfree_skb(skb, SKB_CONSUMED);
7216 local_bh_enable();
7217 }
7218
7219 /**
7220 * skb_attempt_defer_free - queue skb for remote freeing
7221 * @skb: buffer
7222 *
7223 * Put @skb in a per-cpu list, using the cpu which
7224 * allocated the skb/pages to reduce false sharing
7225 * and memory zone spinlock contention.
7226 */
skb_attempt_defer_free(struct sk_buff * skb)7227 void skb_attempt_defer_free(struct sk_buff *skb)
7228 {
7229 struct skb_defer_node *sdn;
7230 unsigned long defer_count;
7231 int cpu = skb->alloc_cpu;
7232 unsigned int defer_max;
7233 bool kick;
7234
7235 if (cpu == raw_smp_processor_id() ||
7236 WARN_ON_ONCE(cpu >= nr_cpu_ids) ||
7237 !cpu_online(cpu)) {
7238 nodefer: kfree_skb_napi_cache(skb);
7239 return;
7240 }
7241
7242 DEBUG_NET_WARN_ON_ONCE(skb_dst(skb));
7243 DEBUG_NET_WARN_ON_ONCE(skb->destructor);
7244 DEBUG_NET_WARN_ON_ONCE(skb_nfct(skb));
7245
7246 sdn = per_cpu_ptr(net_hotdata.skb_defer_nodes, cpu) + numa_node_id();
7247
7248 defer_max = READ_ONCE(net_hotdata.sysctl_skb_defer_max);
7249 defer_count = atomic_long_inc_return(&sdn->defer_count);
7250
7251 if (defer_count >= defer_max)
7252 goto nodefer;
7253
7254 llist_add(&skb->ll_node, &sdn->defer_list);
7255
7256 /* Send an IPI every time queue reaches half capacity. */
7257 kick = (defer_count - 1) == (defer_max >> 1);
7258
7259 /* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU
7260 * if we are unlucky enough (this seems very unlikely).
7261 */
7262 if (unlikely(kick))
7263 kick_defer_list_purge(cpu);
7264 }
7265
skb_splice_csum_page(struct sk_buff * skb,struct page * page,size_t offset,size_t len)7266 static void skb_splice_csum_page(struct sk_buff *skb, struct page *page,
7267 size_t offset, size_t len)
7268 {
7269 const char *kaddr;
7270 __wsum csum;
7271
7272 kaddr = kmap_local_page(page);
7273 csum = csum_partial(kaddr + offset, len, 0);
7274 kunmap_local(kaddr);
7275 skb->csum = csum_block_add(skb->csum, csum, skb->len);
7276 }
7277
7278 /**
7279 * skb_splice_from_iter - Splice (or copy) pages to skbuff
7280 * @skb: The buffer to add pages to
7281 * @iter: Iterator representing the pages to be added
7282 * @maxsize: Maximum amount of pages to be added
7283 *
7284 * This is a common helper function for supporting MSG_SPLICE_PAGES. It
7285 * extracts pages from an iterator and adds them to the socket buffer if
7286 * possible, copying them to fragments if not possible (such as if they're slab
7287 * pages).
7288 *
7289 * Returns the amount of data spliced/copied or -EMSGSIZE if there's
7290 * insufficient space in the buffer to transfer anything.
7291 */
skb_splice_from_iter(struct sk_buff * skb,struct iov_iter * iter,ssize_t maxsize)7292 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
7293 ssize_t maxsize)
7294 {
7295 size_t frag_limit = READ_ONCE(net_hotdata.sysctl_max_skb_frags);
7296 struct page *pages[8], **ppages = pages;
7297 ssize_t spliced = 0, ret = 0;
7298 unsigned int i;
7299
7300 while (iter->count > 0) {
7301 ssize_t space, nr, len;
7302 size_t off;
7303
7304 ret = -EMSGSIZE;
7305 space = frag_limit - skb_shinfo(skb)->nr_frags;
7306 if (space < 0)
7307 break;
7308
7309 /* We might be able to coalesce without increasing nr_frags */
7310 nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages));
7311
7312 len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off);
7313 if (len <= 0) {
7314 ret = len ?: -EIO;
7315 break;
7316 }
7317
7318 i = 0;
7319 do {
7320 struct page *page = pages[i++];
7321 size_t part = min_t(size_t, PAGE_SIZE - off, len);
7322
7323 ret = -EIO;
7324 if (WARN_ON_ONCE(!sendpage_ok(page)))
7325 goto out;
7326
7327 ret = skb_append_pagefrags(skb, page, off, part,
7328 frag_limit);
7329 if (ret < 0) {
7330 iov_iter_revert(iter, len);
7331 goto out;
7332 }
7333
7334 if (skb->ip_summed == CHECKSUM_NONE)
7335 skb_splice_csum_page(skb, page, off, part);
7336
7337 off = 0;
7338 spliced += part;
7339 maxsize -= part;
7340 len -= part;
7341 } while (len > 0);
7342
7343 if (maxsize <= 0)
7344 break;
7345 }
7346
7347 out:
7348 skb_len_add(skb, spliced);
7349 return spliced ?: ret;
7350 }
7351 EXPORT_SYMBOL(skb_splice_from_iter);
7352
7353 static __always_inline
memcpy_from_iter_csum(void * iter_from,size_t progress,size_t len,void * to,void * priv2)7354 size_t memcpy_from_iter_csum(void *iter_from, size_t progress,
7355 size_t len, void *to, void *priv2)
7356 {
7357 __wsum *csum = priv2;
7358 __wsum next = csum_partial_copy_nocheck(iter_from, to + progress, len);
7359
7360 *csum = csum_block_add(*csum, next, progress);
7361 return 0;
7362 }
7363
7364 static __always_inline
copy_from_user_iter_csum(void __user * iter_from,size_t progress,size_t len,void * to,void * priv2)7365 size_t copy_from_user_iter_csum(void __user *iter_from, size_t progress,
7366 size_t len, void *to, void *priv2)
7367 {
7368 __wsum next, *csum = priv2;
7369
7370 next = csum_and_copy_from_user(iter_from, to + progress, len);
7371 *csum = csum_block_add(*csum, next, progress);
7372 return next ? 0 : len;
7373 }
7374
csum_and_copy_from_iter_full(void * addr,size_t bytes,__wsum * csum,struct iov_iter * i)7375 bool csum_and_copy_from_iter_full(void *addr, size_t bytes,
7376 __wsum *csum, struct iov_iter *i)
7377 {
7378 size_t copied;
7379
7380 if (WARN_ON_ONCE(!i->data_source))
7381 return false;
7382 copied = iterate_and_advance2(i, bytes, addr, csum,
7383 copy_from_user_iter_csum,
7384 memcpy_from_iter_csum);
7385 if (likely(copied == bytes))
7386 return true;
7387 iov_iter_revert(i, copied);
7388 return false;
7389 }
7390 EXPORT_SYMBOL(csum_and_copy_from_iter_full);
7391
get_netmem(netmem_ref netmem)7392 void get_netmem(netmem_ref netmem)
7393 {
7394 struct net_iov *niov;
7395
7396 if (netmem_is_net_iov(netmem)) {
7397 niov = netmem_to_net_iov(netmem);
7398 if (net_is_devmem_iov(niov))
7399 net_devmem_get_net_iov(netmem_to_net_iov(netmem));
7400 return;
7401 }
7402 get_page(netmem_to_page(netmem));
7403 }
7404 EXPORT_SYMBOL(get_netmem);
7405
put_netmem(netmem_ref netmem)7406 void put_netmem(netmem_ref netmem)
7407 {
7408 struct net_iov *niov;
7409
7410 if (netmem_is_net_iov(netmem)) {
7411 niov = netmem_to_net_iov(netmem);
7412 if (net_is_devmem_iov(niov))
7413 net_devmem_put_net_iov(netmem_to_net_iov(netmem));
7414 return;
7415 }
7416
7417 put_page(netmem_to_page(netmem));
7418 }
7419 EXPORT_SYMBOL(put_netmem);
7420