xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/IPO/FunctionSpecialization.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===- FunctionSpecialization.cpp - Function Specialization ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Transforms/IPO/FunctionSpecialization.h"
10 #include "llvm/ADT/Statistic.h"
11 #include "llvm/Analysis/CodeMetrics.h"
12 #include "llvm/Analysis/ConstantFolding.h"
13 #include "llvm/Analysis/InlineCost.h"
14 #include "llvm/Analysis/InstructionSimplify.h"
15 #include "llvm/Analysis/TargetTransformInfo.h"
16 #include "llvm/Analysis/ValueLattice.h"
17 #include "llvm/Analysis/ValueLatticeUtils.h"
18 #include "llvm/Analysis/ValueTracking.h"
19 #include "llvm/IR/IntrinsicInst.h"
20 #include "llvm/Transforms/Scalar/SCCP.h"
21 #include "llvm/Transforms/Utils/Cloning.h"
22 #include "llvm/Transforms/Utils/SCCPSolver.h"
23 #include "llvm/Transforms/Utils/SizeOpts.h"
24 #include <cmath>
25 
26 using namespace llvm;
27 
28 #define DEBUG_TYPE "function-specialization"
29 
30 STATISTIC(NumSpecsCreated, "Number of specializations created");
31 
32 static cl::opt<bool> ForceSpecialization(
33     "force-specialization", cl::init(false), cl::Hidden, cl::desc(
34     "Force function specialization for every call site with a constant "
35     "argument"));
36 
37 static cl::opt<unsigned> MaxClones(
38     "funcspec-max-clones", cl::init(3), cl::Hidden, cl::desc(
39     "The maximum number of clones allowed for a single function "
40     "specialization"));
41 
42 static cl::opt<unsigned>
43     MaxDiscoveryIterations("funcspec-max-discovery-iterations", cl::init(100),
44                            cl::Hidden,
45                            cl::desc("The maximum number of iterations allowed "
46                                     "when searching for transitive "
47                                     "phis"));
48 
49 static cl::opt<unsigned> MaxIncomingPhiValues(
50     "funcspec-max-incoming-phi-values", cl::init(8), cl::Hidden,
51     cl::desc("The maximum number of incoming values a PHI node can have to be "
52              "considered during the specialization bonus estimation"));
53 
54 static cl::opt<unsigned> MaxBlockPredecessors(
55     "funcspec-max-block-predecessors", cl::init(2), cl::Hidden, cl::desc(
56     "The maximum number of predecessors a basic block can have to be "
57     "considered during the estimation of dead code"));
58 
59 static cl::opt<unsigned> MinFunctionSize(
60     "funcspec-min-function-size", cl::init(300), cl::Hidden, cl::desc(
61     "Don't specialize functions that have less than this number of "
62     "instructions"));
63 
64 static cl::opt<unsigned> MaxCodeSizeGrowth(
65     "funcspec-max-codesize-growth", cl::init(3), cl::Hidden, cl::desc(
66     "Maximum codesize growth allowed per function"));
67 
68 static cl::opt<unsigned> MinCodeSizeSavings(
69     "funcspec-min-codesize-savings", cl::init(20), cl::Hidden, cl::desc(
70     "Reject specializations whose codesize savings are less than this"
71     "much percent of the original function size"));
72 
73 static cl::opt<unsigned> MinLatencySavings(
74     "funcspec-min-latency-savings", cl::init(40), cl::Hidden,
75     cl::desc("Reject specializations whose latency savings are less than this"
76              "much percent of the original function size"));
77 
78 static cl::opt<unsigned> MinInliningBonus(
79     "funcspec-min-inlining-bonus", cl::init(300), cl::Hidden, cl::desc(
80     "Reject specializations whose inlining bonus is less than this"
81     "much percent of the original function size"));
82 
83 static cl::opt<bool> SpecializeOnAddress(
84     "funcspec-on-address", cl::init(false), cl::Hidden, cl::desc(
85     "Enable function specialization on the address of global values"));
86 
87 // Disabled by default as it can significantly increase compilation times.
88 //
89 // https://llvm-compile-time-tracker.com
90 // https://github.com/nikic/llvm-compile-time-tracker
91 static cl::opt<bool> SpecializeLiteralConstant(
92     "funcspec-for-literal-constant", cl::init(false), cl::Hidden, cl::desc(
93     "Enable specialization of functions that take a literal constant as an "
94     "argument"));
95 
canEliminateSuccessor(BasicBlock * BB,BasicBlock * Succ,DenseSet<BasicBlock * > & DeadBlocks)96 bool InstCostVisitor::canEliminateSuccessor(BasicBlock *BB, BasicBlock *Succ,
97                                          DenseSet<BasicBlock *> &DeadBlocks) {
98   unsigned I = 0;
99   return all_of(predecessors(Succ),
100     [&I, BB, Succ, &DeadBlocks] (BasicBlock *Pred) {
101     return I++ < MaxBlockPredecessors &&
102       (Pred == BB || Pred == Succ || DeadBlocks.contains(Pred));
103   });
104 }
105 
106 // Estimates the codesize savings due to dead code after constant propagation.
107 // \p WorkList represents the basic blocks of a specialization which will
108 // eventually become dead once we replace instructions that are known to be
109 // constants. The successors of such blocks are added to the list as long as
110 // the \p Solver found they were executable prior to specialization, and only
111 // if all their predecessors are dead.
estimateBasicBlocks(SmallVectorImpl<BasicBlock * > & WorkList)112 Cost InstCostVisitor::estimateBasicBlocks(
113                           SmallVectorImpl<BasicBlock *> &WorkList) {
114   Cost CodeSize = 0;
115   // Accumulate the instruction cost of each basic block weighted by frequency.
116   while (!WorkList.empty()) {
117     BasicBlock *BB = WorkList.pop_back_val();
118 
119     // These blocks are considered dead as far as the InstCostVisitor
120     // is concerned. They haven't been proven dead yet by the Solver,
121     // but may become if we propagate the specialization arguments.
122     if (!DeadBlocks.insert(BB).second)
123       continue;
124 
125     for (Instruction &I : *BB) {
126       // Disregard SSA copies.
127       if (auto *II = dyn_cast<IntrinsicInst>(&I))
128         if (II->getIntrinsicID() == Intrinsic::ssa_copy)
129           continue;
130       // If it's a known constant we have already accounted for it.
131       if (KnownConstants.contains(&I))
132         continue;
133 
134       Cost C = TTI.getInstructionCost(&I, TargetTransformInfo::TCK_CodeSize);
135 
136       LLVM_DEBUG(dbgs() << "FnSpecialization:     CodeSize " << C
137                         << " for user " << I << "\n");
138       CodeSize += C;
139     }
140 
141     // Keep adding dead successors to the list as long as they are
142     // executable and only reachable from dead blocks.
143     for (BasicBlock *SuccBB : successors(BB))
144       if (isBlockExecutable(SuccBB) &&
145           canEliminateSuccessor(BB, SuccBB, DeadBlocks))
146         WorkList.push_back(SuccBB);
147   }
148   return CodeSize;
149 }
150 
findConstantFor(Value * V,ConstMap & KnownConstants)151 static Constant *findConstantFor(Value *V, ConstMap &KnownConstants) {
152   if (auto *C = dyn_cast<Constant>(V))
153     return C;
154   return KnownConstants.lookup(V);
155 }
156 
getBonusFromPendingPHIs()157 Bonus InstCostVisitor::getBonusFromPendingPHIs() {
158   Bonus B;
159   while (!PendingPHIs.empty()) {
160     Instruction *Phi = PendingPHIs.pop_back_val();
161     // The pending PHIs could have been proven dead by now.
162     if (isBlockExecutable(Phi->getParent()))
163       B += getUserBonus(Phi);
164   }
165   return B;
166 }
167 
168 /// Compute a bonus for replacing argument \p A with constant \p C.
getSpecializationBonus(Argument * A,Constant * C)169 Bonus InstCostVisitor::getSpecializationBonus(Argument *A, Constant *C) {
170   LLVM_DEBUG(dbgs() << "FnSpecialization: Analysing bonus for constant: "
171                     << C->getNameOrAsOperand() << "\n");
172   Bonus B;
173   for (auto *U : A->users())
174     if (auto *UI = dyn_cast<Instruction>(U))
175       if (isBlockExecutable(UI->getParent()))
176         B += getUserBonus(UI, A, C);
177 
178   LLVM_DEBUG(dbgs() << "FnSpecialization:   Accumulated bonus {CodeSize = "
179                     << B.CodeSize << ", Latency = " << B.Latency
180                     << "} for argument " << *A << "\n");
181   return B;
182 }
183 
getUserBonus(Instruction * User,Value * Use,Constant * C)184 Bonus InstCostVisitor::getUserBonus(Instruction *User, Value *Use, Constant *C) {
185   // We have already propagated a constant for this user.
186   if (KnownConstants.contains(User))
187     return {0, 0};
188 
189   // Cache the iterator before visiting.
190   LastVisited = Use ? KnownConstants.insert({Use, C}).first
191                     : KnownConstants.end();
192 
193   Cost CodeSize = 0;
194   if (auto *I = dyn_cast<SwitchInst>(User)) {
195     CodeSize = estimateSwitchInst(*I);
196   } else if (auto *I = dyn_cast<BranchInst>(User)) {
197     CodeSize = estimateBranchInst(*I);
198   } else {
199     C = visit(*User);
200     if (!C)
201       return {0, 0};
202   }
203 
204   // Even though it doesn't make sense to bind switch and branch instructions
205   // with a constant, unlike any other instruction type, it prevents estimating
206   // their bonus multiple times.
207   KnownConstants.insert({User, C});
208 
209   CodeSize += TTI.getInstructionCost(User, TargetTransformInfo::TCK_CodeSize);
210 
211   uint64_t Weight = BFI.getBlockFreq(User->getParent()).getFrequency() /
212                     BFI.getEntryFreq().getFrequency();
213 
214   Cost Latency = Weight *
215       TTI.getInstructionCost(User, TargetTransformInfo::TCK_Latency);
216 
217   LLVM_DEBUG(dbgs() << "FnSpecialization:     {CodeSize = " << CodeSize
218                     << ", Latency = " << Latency << "} for user "
219                     << *User << "\n");
220 
221   Bonus B(CodeSize, Latency);
222   for (auto *U : User->users())
223     if (auto *UI = dyn_cast<Instruction>(U))
224       if (UI != User && isBlockExecutable(UI->getParent()))
225         B += getUserBonus(UI, User, C);
226 
227   return B;
228 }
229 
estimateSwitchInst(SwitchInst & I)230 Cost InstCostVisitor::estimateSwitchInst(SwitchInst &I) {
231   assert(LastVisited != KnownConstants.end() && "Invalid iterator!");
232 
233   if (I.getCondition() != LastVisited->first)
234     return 0;
235 
236   auto *C = dyn_cast<ConstantInt>(LastVisited->second);
237   if (!C)
238     return 0;
239 
240   BasicBlock *Succ = I.findCaseValue(C)->getCaseSuccessor();
241   // Initialize the worklist with the dead basic blocks. These are the
242   // destination labels which are different from the one corresponding
243   // to \p C. They should be executable and have a unique predecessor.
244   SmallVector<BasicBlock *> WorkList;
245   for (const auto &Case : I.cases()) {
246     BasicBlock *BB = Case.getCaseSuccessor();
247     if (BB != Succ && isBlockExecutable(BB) &&
248         canEliminateSuccessor(I.getParent(), BB, DeadBlocks))
249       WorkList.push_back(BB);
250   }
251 
252   return estimateBasicBlocks(WorkList);
253 }
254 
estimateBranchInst(BranchInst & I)255 Cost InstCostVisitor::estimateBranchInst(BranchInst &I) {
256   assert(LastVisited != KnownConstants.end() && "Invalid iterator!");
257 
258   if (I.getCondition() != LastVisited->first)
259     return 0;
260 
261   BasicBlock *Succ = I.getSuccessor(LastVisited->second->isOneValue());
262   // Initialize the worklist with the dead successor as long as
263   // it is executable and has a unique predecessor.
264   SmallVector<BasicBlock *> WorkList;
265   if (isBlockExecutable(Succ) &&
266       canEliminateSuccessor(I.getParent(), Succ, DeadBlocks))
267     WorkList.push_back(Succ);
268 
269   return estimateBasicBlocks(WorkList);
270 }
271 
discoverTransitivelyIncomingValues(Constant * Const,PHINode * Root,DenseSet<PHINode * > & TransitivePHIs)272 bool InstCostVisitor::discoverTransitivelyIncomingValues(
273     Constant *Const, PHINode *Root, DenseSet<PHINode *> &TransitivePHIs) {
274 
275   SmallVector<PHINode *, 64> WorkList;
276   WorkList.push_back(Root);
277   unsigned Iter = 0;
278 
279   while (!WorkList.empty()) {
280     PHINode *PN = WorkList.pop_back_val();
281 
282     if (++Iter > MaxDiscoveryIterations ||
283         PN->getNumIncomingValues() > MaxIncomingPhiValues)
284       return false;
285 
286     if (!TransitivePHIs.insert(PN).second)
287       continue;
288 
289     for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
290       Value *V = PN->getIncomingValue(I);
291 
292       // Disregard self-references and dead incoming values.
293       if (auto *Inst = dyn_cast<Instruction>(V))
294         if (Inst == PN || DeadBlocks.contains(PN->getIncomingBlock(I)))
295           continue;
296 
297       if (Constant *C = findConstantFor(V, KnownConstants)) {
298         // Not all incoming values are the same constant. Bail immediately.
299         if (C != Const)
300           return false;
301         continue;
302       }
303 
304       if (auto *Phi = dyn_cast<PHINode>(V)) {
305         WorkList.push_back(Phi);
306         continue;
307       }
308 
309       // We can't reason about anything else.
310       return false;
311     }
312   }
313   return true;
314 }
315 
visitPHINode(PHINode & I)316 Constant *InstCostVisitor::visitPHINode(PHINode &I) {
317   if (I.getNumIncomingValues() > MaxIncomingPhiValues)
318     return nullptr;
319 
320   bool Inserted = VisitedPHIs.insert(&I).second;
321   Constant *Const = nullptr;
322   bool HaveSeenIncomingPHI = false;
323 
324   for (unsigned Idx = 0, E = I.getNumIncomingValues(); Idx != E; ++Idx) {
325     Value *V = I.getIncomingValue(Idx);
326 
327     // Disregard self-references and dead incoming values.
328     if (auto *Inst = dyn_cast<Instruction>(V))
329       if (Inst == &I || DeadBlocks.contains(I.getIncomingBlock(Idx)))
330         continue;
331 
332     if (Constant *C = findConstantFor(V, KnownConstants)) {
333       if (!Const)
334         Const = C;
335       // Not all incoming values are the same constant. Bail immediately.
336       if (C != Const)
337         return nullptr;
338       continue;
339     }
340 
341     if (Inserted) {
342       // First time we are seeing this phi. We will retry later, after
343       // all the constant arguments have been propagated. Bail for now.
344       PendingPHIs.push_back(&I);
345       return nullptr;
346     }
347 
348     if (isa<PHINode>(V)) {
349       // Perhaps it is a Transitive Phi. We will confirm later.
350       HaveSeenIncomingPHI = true;
351       continue;
352     }
353 
354     // We can't reason about anything else.
355     return nullptr;
356   }
357 
358   if (!Const)
359     return nullptr;
360 
361   if (!HaveSeenIncomingPHI)
362     return Const;
363 
364   DenseSet<PHINode *> TransitivePHIs;
365   if (!discoverTransitivelyIncomingValues(Const, &I, TransitivePHIs))
366     return nullptr;
367 
368   return Const;
369 }
370 
visitFreezeInst(FreezeInst & I)371 Constant *InstCostVisitor::visitFreezeInst(FreezeInst &I) {
372   assert(LastVisited != KnownConstants.end() && "Invalid iterator!");
373 
374   if (isGuaranteedNotToBeUndefOrPoison(LastVisited->second))
375     return LastVisited->second;
376   return nullptr;
377 }
378 
visitCallBase(CallBase & I)379 Constant *InstCostVisitor::visitCallBase(CallBase &I) {
380   Function *F = I.getCalledFunction();
381   if (!F || !canConstantFoldCallTo(&I, F))
382     return nullptr;
383 
384   SmallVector<Constant *, 8> Operands;
385   Operands.reserve(I.getNumOperands());
386 
387   for (unsigned Idx = 0, E = I.getNumOperands() - 1; Idx != E; ++Idx) {
388     Value *V = I.getOperand(Idx);
389     Constant *C = findConstantFor(V, KnownConstants);
390     if (!C)
391       return nullptr;
392     Operands.push_back(C);
393   }
394 
395   auto Ops = ArrayRef(Operands.begin(), Operands.end());
396   return ConstantFoldCall(&I, F, Ops);
397 }
398 
visitLoadInst(LoadInst & I)399 Constant *InstCostVisitor::visitLoadInst(LoadInst &I) {
400   assert(LastVisited != KnownConstants.end() && "Invalid iterator!");
401 
402   if (isa<ConstantPointerNull>(LastVisited->second))
403     return nullptr;
404   return ConstantFoldLoadFromConstPtr(LastVisited->second, I.getType(), DL);
405 }
406 
visitGetElementPtrInst(GetElementPtrInst & I)407 Constant *InstCostVisitor::visitGetElementPtrInst(GetElementPtrInst &I) {
408   SmallVector<Constant *, 8> Operands;
409   Operands.reserve(I.getNumOperands());
410 
411   for (unsigned Idx = 0, E = I.getNumOperands(); Idx != E; ++Idx) {
412     Value *V = I.getOperand(Idx);
413     Constant *C = findConstantFor(V, KnownConstants);
414     if (!C)
415       return nullptr;
416     Operands.push_back(C);
417   }
418 
419   auto Ops = ArrayRef(Operands.begin(), Operands.end());
420   return ConstantFoldInstOperands(&I, Ops, DL);
421 }
422 
visitSelectInst(SelectInst & I)423 Constant *InstCostVisitor::visitSelectInst(SelectInst &I) {
424   assert(LastVisited != KnownConstants.end() && "Invalid iterator!");
425 
426   if (I.getCondition() != LastVisited->first)
427     return nullptr;
428 
429   Value *V = LastVisited->second->isZeroValue() ? I.getFalseValue()
430                                                 : I.getTrueValue();
431   Constant *C = findConstantFor(V, KnownConstants);
432   return C;
433 }
434 
visitCastInst(CastInst & I)435 Constant *InstCostVisitor::visitCastInst(CastInst &I) {
436   return ConstantFoldCastOperand(I.getOpcode(), LastVisited->second,
437                                  I.getType(), DL);
438 }
439 
visitCmpInst(CmpInst & I)440 Constant *InstCostVisitor::visitCmpInst(CmpInst &I) {
441   assert(LastVisited != KnownConstants.end() && "Invalid iterator!");
442 
443   bool Swap = I.getOperand(1) == LastVisited->first;
444   Value *V = Swap ? I.getOperand(0) : I.getOperand(1);
445   Constant *Other = findConstantFor(V, KnownConstants);
446   if (!Other)
447     return nullptr;
448 
449   Constant *Const = LastVisited->second;
450   return Swap ?
451         ConstantFoldCompareInstOperands(I.getPredicate(), Other, Const, DL)
452       : ConstantFoldCompareInstOperands(I.getPredicate(), Const, Other, DL);
453 }
454 
visitUnaryOperator(UnaryOperator & I)455 Constant *InstCostVisitor::visitUnaryOperator(UnaryOperator &I) {
456   assert(LastVisited != KnownConstants.end() && "Invalid iterator!");
457 
458   return ConstantFoldUnaryOpOperand(I.getOpcode(), LastVisited->second, DL);
459 }
460 
visitBinaryOperator(BinaryOperator & I)461 Constant *InstCostVisitor::visitBinaryOperator(BinaryOperator &I) {
462   assert(LastVisited != KnownConstants.end() && "Invalid iterator!");
463 
464   bool Swap = I.getOperand(1) == LastVisited->first;
465   Value *V = Swap ? I.getOperand(0) : I.getOperand(1);
466   Constant *Other = findConstantFor(V, KnownConstants);
467   if (!Other)
468     return nullptr;
469 
470   Constant *Const = LastVisited->second;
471   return dyn_cast_or_null<Constant>(Swap ?
472         simplifyBinOp(I.getOpcode(), Other, Const, SimplifyQuery(DL))
473       : simplifyBinOp(I.getOpcode(), Const, Other, SimplifyQuery(DL)));
474 }
475 
getPromotableAlloca(AllocaInst * Alloca,CallInst * Call)476 Constant *FunctionSpecializer::getPromotableAlloca(AllocaInst *Alloca,
477                                                    CallInst *Call) {
478   Value *StoreValue = nullptr;
479   for (auto *User : Alloca->users()) {
480     // We can't use llvm::isAllocaPromotable() as that would fail because of
481     // the usage in the CallInst, which is what we check here.
482     if (User == Call)
483       continue;
484     if (auto *Bitcast = dyn_cast<BitCastInst>(User)) {
485       if (!Bitcast->hasOneUse() || *Bitcast->user_begin() != Call)
486         return nullptr;
487       continue;
488     }
489 
490     if (auto *Store = dyn_cast<StoreInst>(User)) {
491       // This is a duplicate store, bail out.
492       if (StoreValue || Store->isVolatile())
493         return nullptr;
494       StoreValue = Store->getValueOperand();
495       continue;
496     }
497     // Bail if there is any other unknown usage.
498     return nullptr;
499   }
500 
501   if (!StoreValue)
502     return nullptr;
503 
504   return getCandidateConstant(StoreValue);
505 }
506 
507 // A constant stack value is an AllocaInst that has a single constant
508 // value stored to it. Return this constant if such an alloca stack value
509 // is a function argument.
getConstantStackValue(CallInst * Call,Value * Val)510 Constant *FunctionSpecializer::getConstantStackValue(CallInst *Call,
511                                                      Value *Val) {
512   if (!Val)
513     return nullptr;
514   Val = Val->stripPointerCasts();
515   if (auto *ConstVal = dyn_cast<ConstantInt>(Val))
516     return ConstVal;
517   auto *Alloca = dyn_cast<AllocaInst>(Val);
518   if (!Alloca || !Alloca->getAllocatedType()->isIntegerTy())
519     return nullptr;
520   return getPromotableAlloca(Alloca, Call);
521 }
522 
523 // To support specializing recursive functions, it is important to propagate
524 // constant arguments because after a first iteration of specialisation, a
525 // reduced example may look like this:
526 //
527 //     define internal void @RecursiveFn(i32* arg1) {
528 //       %temp = alloca i32, align 4
529 //       store i32 2 i32* %temp, align 4
530 //       call void @RecursiveFn.1(i32* nonnull %temp)
531 //       ret void
532 //     }
533 //
534 // Before a next iteration, we need to propagate the constant like so
535 // which allows further specialization in next iterations.
536 //
537 //     @funcspec.arg = internal constant i32 2
538 //
539 //     define internal void @someFunc(i32* arg1) {
540 //       call void @otherFunc(i32* nonnull @funcspec.arg)
541 //       ret void
542 //     }
543 //
544 // See if there are any new constant values for the callers of \p F via
545 // stack variables and promote them to global variables.
promoteConstantStackValues(Function * F)546 void FunctionSpecializer::promoteConstantStackValues(Function *F) {
547   for (User *U : F->users()) {
548 
549     auto *Call = dyn_cast<CallInst>(U);
550     if (!Call)
551       continue;
552 
553     if (!Solver.isBlockExecutable(Call->getParent()))
554       continue;
555 
556     for (const Use &U : Call->args()) {
557       unsigned Idx = Call->getArgOperandNo(&U);
558       Value *ArgOp = Call->getArgOperand(Idx);
559       Type *ArgOpType = ArgOp->getType();
560 
561       if (!Call->onlyReadsMemory(Idx) || !ArgOpType->isPointerTy())
562         continue;
563 
564       auto *ConstVal = getConstantStackValue(Call, ArgOp);
565       if (!ConstVal)
566         continue;
567 
568       Value *GV = new GlobalVariable(M, ConstVal->getType(), true,
569                                      GlobalValue::InternalLinkage, ConstVal,
570                                      "specialized.arg." + Twine(++NGlobals));
571       Call->setArgOperand(Idx, GV);
572     }
573   }
574 }
575 
576 // ssa_copy intrinsics are introduced by the SCCP solver. These intrinsics
577 // interfere with the promoteConstantStackValues() optimization.
removeSSACopy(Function & F)578 static void removeSSACopy(Function &F) {
579   for (BasicBlock &BB : F) {
580     for (Instruction &Inst : llvm::make_early_inc_range(BB)) {
581       auto *II = dyn_cast<IntrinsicInst>(&Inst);
582       if (!II)
583         continue;
584       if (II->getIntrinsicID() != Intrinsic::ssa_copy)
585         continue;
586       Inst.replaceAllUsesWith(II->getOperand(0));
587       Inst.eraseFromParent();
588     }
589   }
590 }
591 
592 /// Remove any ssa_copy intrinsics that may have been introduced.
cleanUpSSA()593 void FunctionSpecializer::cleanUpSSA() {
594   for (Function *F : Specializations)
595     removeSSACopy(*F);
596 }
597 
598 
599 template <> struct llvm::DenseMapInfo<SpecSig> {
getEmptyKeyllvm::DenseMapInfo600   static inline SpecSig getEmptyKey() { return {~0U, {}}; }
601 
getTombstoneKeyllvm::DenseMapInfo602   static inline SpecSig getTombstoneKey() { return {~1U, {}}; }
603 
getHashValuellvm::DenseMapInfo604   static unsigned getHashValue(const SpecSig &S) {
605     return static_cast<unsigned>(hash_value(S));
606   }
607 
isEqualllvm::DenseMapInfo608   static bool isEqual(const SpecSig &LHS, const SpecSig &RHS) {
609     return LHS == RHS;
610   }
611 };
612 
~FunctionSpecializer()613 FunctionSpecializer::~FunctionSpecializer() {
614   LLVM_DEBUG(
615     if (NumSpecsCreated > 0)
616       dbgs() << "FnSpecialization: Created " << NumSpecsCreated
617              << " specializations in module " << M.getName() << "\n");
618   // Eliminate dead code.
619   removeDeadFunctions();
620   cleanUpSSA();
621 }
622 
623 /// Attempt to specialize functions in the module to enable constant
624 /// propagation across function boundaries.
625 ///
626 /// \returns true if at least one function is specialized.
run()627 bool FunctionSpecializer::run() {
628   // Find possible specializations for each function.
629   SpecMap SM;
630   SmallVector<Spec, 32> AllSpecs;
631   unsigned NumCandidates = 0;
632   for (Function &F : M) {
633     if (!isCandidateFunction(&F))
634       continue;
635 
636     auto [It, Inserted] = FunctionMetrics.try_emplace(&F);
637     CodeMetrics &Metrics = It->second;
638     //Analyze the function.
639     if (Inserted) {
640       SmallPtrSet<const Value *, 32> EphValues;
641       CodeMetrics::collectEphemeralValues(&F, &GetAC(F), EphValues);
642       for (BasicBlock &BB : F)
643         Metrics.analyzeBasicBlock(&BB, GetTTI(F), EphValues);
644     }
645 
646     // If the code metrics reveal that we shouldn't duplicate the function,
647     // or if the code size implies that this function is easy to get inlined,
648     // then we shouldn't specialize it.
649     if (Metrics.notDuplicatable || !Metrics.NumInsts.isValid() ||
650         (!ForceSpecialization && !F.hasFnAttribute(Attribute::NoInline) &&
651          Metrics.NumInsts < MinFunctionSize))
652       continue;
653 
654     // TODO: For now only consider recursive functions when running multiple
655     // times. This should change if specialization on literal constants gets
656     // enabled.
657     if (!Inserted && !Metrics.isRecursive && !SpecializeLiteralConstant)
658       continue;
659 
660     int64_t Sz = *Metrics.NumInsts.getValue();
661     assert(Sz > 0 && "CodeSize should be positive");
662     // It is safe to down cast from int64_t, NumInsts is always positive.
663     unsigned FuncSize = static_cast<unsigned>(Sz);
664 
665     LLVM_DEBUG(dbgs() << "FnSpecialization: Specialization cost for "
666                       << F.getName() << " is " << FuncSize << "\n");
667 
668     if (Inserted && Metrics.isRecursive)
669       promoteConstantStackValues(&F);
670 
671     if (!findSpecializations(&F, FuncSize, AllSpecs, SM)) {
672       LLVM_DEBUG(
673           dbgs() << "FnSpecialization: No possible specializations found for "
674                  << F.getName() << "\n");
675       continue;
676     }
677 
678     ++NumCandidates;
679   }
680 
681   if (!NumCandidates) {
682     LLVM_DEBUG(
683         dbgs()
684         << "FnSpecialization: No possible specializations found in module\n");
685     return false;
686   }
687 
688   // Choose the most profitable specialisations, which fit in the module
689   // specialization budget, which is derived from maximum number of
690   // specializations per specialization candidate function.
691   auto CompareScore = [&AllSpecs](unsigned I, unsigned J) {
692     if (AllSpecs[I].Score != AllSpecs[J].Score)
693       return AllSpecs[I].Score > AllSpecs[J].Score;
694     return I > J;
695   };
696   const unsigned NSpecs =
697       std::min(NumCandidates * MaxClones, unsigned(AllSpecs.size()));
698   SmallVector<unsigned> BestSpecs(NSpecs + 1);
699   std::iota(BestSpecs.begin(), BestSpecs.begin() + NSpecs, 0);
700   if (AllSpecs.size() > NSpecs) {
701     LLVM_DEBUG(dbgs() << "FnSpecialization: Number of candidates exceed "
702                       << "the maximum number of clones threshold.\n"
703                       << "FnSpecialization: Specializing the "
704                       << NSpecs
705                       << " most profitable candidates.\n");
706     std::make_heap(BestSpecs.begin(), BestSpecs.begin() + NSpecs, CompareScore);
707     for (unsigned I = NSpecs, N = AllSpecs.size(); I < N; ++I) {
708       BestSpecs[NSpecs] = I;
709       std::push_heap(BestSpecs.begin(), BestSpecs.end(), CompareScore);
710       std::pop_heap(BestSpecs.begin(), BestSpecs.end(), CompareScore);
711     }
712   }
713 
714   LLVM_DEBUG(dbgs() << "FnSpecialization: List of specializations \n";
715              for (unsigned I = 0; I < NSpecs; ++I) {
716                const Spec &S = AllSpecs[BestSpecs[I]];
717                dbgs() << "FnSpecialization: Function " << S.F->getName()
718                       << " , score " << S.Score << "\n";
719                for (const ArgInfo &Arg : S.Sig.Args)
720                  dbgs() << "FnSpecialization:   FormalArg = "
721                         << Arg.Formal->getNameOrAsOperand()
722                         << ", ActualArg = " << Arg.Actual->getNameOrAsOperand()
723                         << "\n";
724              });
725 
726   // Create the chosen specializations.
727   SmallPtrSet<Function *, 8> OriginalFuncs;
728   SmallVector<Function *> Clones;
729   for (unsigned I = 0; I < NSpecs; ++I) {
730     Spec &S = AllSpecs[BestSpecs[I]];
731     S.Clone = createSpecialization(S.F, S.Sig);
732 
733     // Update the known call sites to call the clone.
734     for (CallBase *Call : S.CallSites) {
735       LLVM_DEBUG(dbgs() << "FnSpecialization: Redirecting " << *Call
736                         << " to call " << S.Clone->getName() << "\n");
737       Call->setCalledFunction(S.Clone);
738     }
739 
740     Clones.push_back(S.Clone);
741     OriginalFuncs.insert(S.F);
742   }
743 
744   Solver.solveWhileResolvedUndefsIn(Clones);
745 
746   // Update the rest of the call sites - these are the recursive calls, calls
747   // to discarded specialisations and calls that may match a specialisation
748   // after the solver runs.
749   for (Function *F : OriginalFuncs) {
750     auto [Begin, End] = SM[F];
751     updateCallSites(F, AllSpecs.begin() + Begin, AllSpecs.begin() + End);
752   }
753 
754   for (Function *F : Clones) {
755     if (F->getReturnType()->isVoidTy())
756       continue;
757     if (F->getReturnType()->isStructTy()) {
758       auto *STy = cast<StructType>(F->getReturnType());
759       if (!Solver.isStructLatticeConstant(F, STy))
760         continue;
761     } else {
762       auto It = Solver.getTrackedRetVals().find(F);
763       assert(It != Solver.getTrackedRetVals().end() &&
764              "Return value ought to be tracked");
765       if (SCCPSolver::isOverdefined(It->second))
766         continue;
767     }
768     for (User *U : F->users()) {
769       if (auto *CS = dyn_cast<CallBase>(U)) {
770         //The user instruction does not call our function.
771         if (CS->getCalledFunction() != F)
772           continue;
773         Solver.resetLatticeValueFor(CS);
774       }
775     }
776   }
777 
778   // Rerun the solver to notify the users of the modified callsites.
779   Solver.solveWhileResolvedUndefs();
780 
781   for (Function *F : OriginalFuncs)
782     if (FunctionMetrics[F].isRecursive)
783       promoteConstantStackValues(F);
784 
785   return true;
786 }
787 
removeDeadFunctions()788 void FunctionSpecializer::removeDeadFunctions() {
789   for (Function *F : FullySpecialized) {
790     LLVM_DEBUG(dbgs() << "FnSpecialization: Removing dead function "
791                       << F->getName() << "\n");
792     if (FAM)
793       FAM->clear(*F, F->getName());
794     F->eraseFromParent();
795   }
796   FullySpecialized.clear();
797 }
798 
799 /// Clone the function \p F and remove the ssa_copy intrinsics added by
800 /// the SCCPSolver in the cloned version.
cloneCandidateFunction(Function * F,unsigned NSpecs)801 static Function *cloneCandidateFunction(Function *F, unsigned NSpecs) {
802   ValueToValueMapTy Mappings;
803   Function *Clone = CloneFunction(F, Mappings);
804   Clone->setName(F->getName() + ".specialized." + Twine(NSpecs));
805   removeSSACopy(*Clone);
806   return Clone;
807 }
808 
findSpecializations(Function * F,unsigned FuncSize,SmallVectorImpl<Spec> & AllSpecs,SpecMap & SM)809 bool FunctionSpecializer::findSpecializations(Function *F, unsigned FuncSize,
810                                               SmallVectorImpl<Spec> &AllSpecs,
811                                               SpecMap &SM) {
812   // A mapping from a specialisation signature to the index of the respective
813   // entry in the all specialisation array. Used to ensure uniqueness of
814   // specialisations.
815   DenseMap<SpecSig, unsigned> UniqueSpecs;
816 
817   // Get a list of interesting arguments.
818   SmallVector<Argument *> Args;
819   for (Argument &Arg : F->args())
820     if (isArgumentInteresting(&Arg))
821       Args.push_back(&Arg);
822 
823   if (Args.empty())
824     return false;
825 
826   for (User *U : F->users()) {
827     if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
828       continue;
829     auto &CS = *cast<CallBase>(U);
830 
831     // The user instruction does not call our function.
832     if (CS.getCalledFunction() != F)
833       continue;
834 
835     // If the call site has attribute minsize set, that callsite won't be
836     // specialized.
837     if (CS.hasFnAttr(Attribute::MinSize))
838       continue;
839 
840     // If the parent of the call site will never be executed, we don't need
841     // to worry about the passed value.
842     if (!Solver.isBlockExecutable(CS.getParent()))
843       continue;
844 
845     // Examine arguments and create a specialisation candidate from the
846     // constant operands of this call site.
847     SpecSig S;
848     for (Argument *A : Args) {
849       Constant *C = getCandidateConstant(CS.getArgOperand(A->getArgNo()));
850       if (!C)
851         continue;
852       LLVM_DEBUG(dbgs() << "FnSpecialization: Found interesting argument "
853                         << A->getName() << " : " << C->getNameOrAsOperand()
854                         << "\n");
855       S.Args.push_back({A, C});
856     }
857 
858     if (S.Args.empty())
859       continue;
860 
861     // Check if we have encountered the same specialisation already.
862     if (auto It = UniqueSpecs.find(S); It != UniqueSpecs.end()) {
863       // Existing specialisation. Add the call to the list to rewrite, unless
864       // it's a recursive call. A specialisation, generated because of a
865       // recursive call may end up as not the best specialisation for all
866       // the cloned instances of this call, which result from specialising
867       // functions. Hence we don't rewrite the call directly, but match it with
868       // the best specialisation once all specialisations are known.
869       if (CS.getFunction() == F)
870         continue;
871       const unsigned Index = It->second;
872       AllSpecs[Index].CallSites.push_back(&CS);
873     } else {
874       // Calculate the specialisation gain.
875       Bonus B;
876       unsigned Score = 0;
877       InstCostVisitor Visitor = getInstCostVisitorFor(F);
878       for (ArgInfo &A : S.Args) {
879         B += Visitor.getSpecializationBonus(A.Formal, A.Actual);
880         Score += getInliningBonus(A.Formal, A.Actual);
881       }
882       B += Visitor.getBonusFromPendingPHIs();
883 
884 
885       LLVM_DEBUG(dbgs() << "FnSpecialization: Specialization bonus {CodeSize = "
886                         << B.CodeSize << ", Latency = " << B.Latency
887                         << ", Inlining = " << Score << "}\n");
888 
889       FunctionGrowth[F] += FuncSize - B.CodeSize;
890 
891       auto IsProfitable = [](Bonus &B, unsigned Score, unsigned FuncSize,
892                              unsigned FuncGrowth) -> bool {
893         // No check required.
894         if (ForceSpecialization)
895           return true;
896         // Minimum inlining bonus.
897         if (Score > MinInliningBonus * FuncSize / 100)
898           return true;
899         // Minimum codesize savings.
900         if (B.CodeSize < MinCodeSizeSavings * FuncSize / 100)
901           return false;
902         // Minimum latency savings.
903         if (B.Latency < MinLatencySavings * FuncSize / 100)
904           return false;
905         // Maximum codesize growth.
906         if (FuncGrowth / FuncSize > MaxCodeSizeGrowth)
907           return false;
908         return true;
909       };
910 
911       // Discard unprofitable specialisations.
912       if (!IsProfitable(B, Score, FuncSize, FunctionGrowth[F]))
913         continue;
914 
915       // Create a new specialisation entry.
916       Score += std::max(B.CodeSize, B.Latency);
917       auto &Spec = AllSpecs.emplace_back(F, S, Score);
918       if (CS.getFunction() != F)
919         Spec.CallSites.push_back(&CS);
920       const unsigned Index = AllSpecs.size() - 1;
921       UniqueSpecs[S] = Index;
922       if (auto [It, Inserted] = SM.try_emplace(F, Index, Index + 1); !Inserted)
923         It->second.second = Index + 1;
924     }
925   }
926 
927   return !UniqueSpecs.empty();
928 }
929 
isCandidateFunction(Function * F)930 bool FunctionSpecializer::isCandidateFunction(Function *F) {
931   if (F->isDeclaration() || F->arg_empty())
932     return false;
933 
934   if (F->hasFnAttribute(Attribute::NoDuplicate))
935     return false;
936 
937   // Do not specialize the cloned function again.
938   if (Specializations.contains(F))
939     return false;
940 
941   // If we're optimizing the function for size, we shouldn't specialize it.
942   if (F->hasOptSize() ||
943       shouldOptimizeForSize(F, nullptr, nullptr, PGSOQueryType::IRPass))
944     return false;
945 
946   // Exit if the function is not executable. There's no point in specializing
947   // a dead function.
948   if (!Solver.isBlockExecutable(&F->getEntryBlock()))
949     return false;
950 
951   // It wastes time to specialize a function which would get inlined finally.
952   if (F->hasFnAttribute(Attribute::AlwaysInline))
953     return false;
954 
955   LLVM_DEBUG(dbgs() << "FnSpecialization: Try function: " << F->getName()
956                     << "\n");
957   return true;
958 }
959 
createSpecialization(Function * F,const SpecSig & S)960 Function *FunctionSpecializer::createSpecialization(Function *F,
961                                                     const SpecSig &S) {
962   Function *Clone = cloneCandidateFunction(F, Specializations.size() + 1);
963 
964   // The original function does not neccessarily have internal linkage, but the
965   // clone must.
966   Clone->setLinkage(GlobalValue::InternalLinkage);
967 
968   // Initialize the lattice state of the arguments of the function clone,
969   // marking the argument on which we specialized the function constant
970   // with the given value.
971   Solver.setLatticeValueForSpecializationArguments(Clone, S.Args);
972   Solver.markBlockExecutable(&Clone->front());
973   Solver.addArgumentTrackedFunction(Clone);
974   Solver.addTrackedFunction(Clone);
975 
976   // Mark all the specialized functions
977   Specializations.insert(Clone);
978   ++NumSpecsCreated;
979 
980   return Clone;
981 }
982 
983 /// Compute the inlining bonus for replacing argument \p A with constant \p C.
984 /// The below heuristic is only concerned with exposing inlining
985 /// opportunities via indirect call promotion. If the argument is not a
986 /// (potentially casted) function pointer, give up.
getInliningBonus(Argument * A,Constant * C)987 unsigned FunctionSpecializer::getInliningBonus(Argument *A, Constant *C) {
988   Function *CalledFunction = dyn_cast<Function>(C->stripPointerCasts());
989   if (!CalledFunction)
990     return 0;
991 
992   // Get TTI for the called function (used for the inline cost).
993   auto &CalleeTTI = (GetTTI)(*CalledFunction);
994 
995   // Look at all the call sites whose called value is the argument.
996   // Specializing the function on the argument would allow these indirect
997   // calls to be promoted to direct calls. If the indirect call promotion
998   // would likely enable the called function to be inlined, specializing is a
999   // good idea.
1000   int InliningBonus = 0;
1001   for (User *U : A->users()) {
1002     if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
1003       continue;
1004     auto *CS = cast<CallBase>(U);
1005     if (CS->getCalledOperand() != A)
1006       continue;
1007     if (CS->getFunctionType() != CalledFunction->getFunctionType())
1008       continue;
1009 
1010     // Get the cost of inlining the called function at this call site. Note
1011     // that this is only an estimate. The called function may eventually
1012     // change in a way that leads to it not being inlined here, even though
1013     // inlining looks profitable now. For example, one of its called
1014     // functions may be inlined into it, making the called function too large
1015     // to be inlined into this call site.
1016     //
1017     // We apply a boost for performing indirect call promotion by increasing
1018     // the default threshold by the threshold for indirect calls.
1019     auto Params = getInlineParams();
1020     Params.DefaultThreshold += InlineConstants::IndirectCallThreshold;
1021     InlineCost IC =
1022         getInlineCost(*CS, CalledFunction, Params, CalleeTTI, GetAC, GetTLI);
1023 
1024     // We clamp the bonus for this call to be between zero and the default
1025     // threshold.
1026     if (IC.isAlways())
1027       InliningBonus += Params.DefaultThreshold;
1028     else if (IC.isVariable() && IC.getCostDelta() > 0)
1029       InliningBonus += IC.getCostDelta();
1030 
1031     LLVM_DEBUG(dbgs() << "FnSpecialization:   Inlining bonus " << InliningBonus
1032                       << " for user " << *U << "\n");
1033   }
1034 
1035   return InliningBonus > 0 ? static_cast<unsigned>(InliningBonus) : 0;
1036 }
1037 
1038 /// Determine if it is possible to specialise the function for constant values
1039 /// of the formal parameter \p A.
isArgumentInteresting(Argument * A)1040 bool FunctionSpecializer::isArgumentInteresting(Argument *A) {
1041   // No point in specialization if the argument is unused.
1042   if (A->user_empty())
1043     return false;
1044 
1045   Type *Ty = A->getType();
1046   if (!Ty->isPointerTy() && (!SpecializeLiteralConstant ||
1047       (!Ty->isIntegerTy() && !Ty->isFloatingPointTy() && !Ty->isStructTy())))
1048     return false;
1049 
1050   // SCCP solver does not record an argument that will be constructed on
1051   // stack.
1052   if (A->hasByValAttr() && !A->getParent()->onlyReadsMemory())
1053     return false;
1054 
1055   // For non-argument-tracked functions every argument is overdefined.
1056   if (!Solver.isArgumentTrackedFunction(A->getParent()))
1057     return true;
1058 
1059   // Check the lattice value and decide if we should attemt to specialize,
1060   // based on this argument. No point in specialization, if the lattice value
1061   // is already a constant.
1062   bool IsOverdefined = Ty->isStructTy()
1063     ? any_of(Solver.getStructLatticeValueFor(A), SCCPSolver::isOverdefined)
1064     : SCCPSolver::isOverdefined(Solver.getLatticeValueFor(A));
1065 
1066   LLVM_DEBUG(
1067     if (IsOverdefined)
1068       dbgs() << "FnSpecialization: Found interesting parameter "
1069              << A->getNameOrAsOperand() << "\n";
1070     else
1071       dbgs() << "FnSpecialization: Nothing to do, parameter "
1072              << A->getNameOrAsOperand() << " is already constant\n";
1073   );
1074   return IsOverdefined;
1075 }
1076 
1077 /// Check if the value \p V  (an actual argument) is a constant or can only
1078 /// have a constant value. Return that constant.
getCandidateConstant(Value * V)1079 Constant *FunctionSpecializer::getCandidateConstant(Value *V) {
1080   if (isa<PoisonValue>(V))
1081     return nullptr;
1082 
1083   // Select for possible specialisation values that are constants or
1084   // are deduced to be constants or constant ranges with a single element.
1085   Constant *C = dyn_cast<Constant>(V);
1086   if (!C)
1087     C = Solver.getConstantOrNull(V);
1088 
1089   // Don't specialize on (anything derived from) the address of a non-constant
1090   // global variable, unless explicitly enabled.
1091   if (C && C->getType()->isPointerTy() && !C->isNullValue())
1092     if (auto *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(C));
1093         GV && !(GV->isConstant() || SpecializeOnAddress))
1094       return nullptr;
1095 
1096   return C;
1097 }
1098 
updateCallSites(Function * F,const Spec * Begin,const Spec * End)1099 void FunctionSpecializer::updateCallSites(Function *F, const Spec *Begin,
1100                                           const Spec *End) {
1101   // Collect the call sites that need updating.
1102   SmallVector<CallBase *> ToUpdate;
1103   for (User *U : F->users())
1104     if (auto *CS = dyn_cast<CallBase>(U);
1105         CS && CS->getCalledFunction() == F &&
1106         Solver.isBlockExecutable(CS->getParent()))
1107       ToUpdate.push_back(CS);
1108 
1109   unsigned NCallsLeft = ToUpdate.size();
1110   for (CallBase *CS : ToUpdate) {
1111     bool ShouldDecrementCount = CS->getFunction() == F;
1112 
1113     // Find the best matching specialisation.
1114     const Spec *BestSpec = nullptr;
1115     for (const Spec &S : make_range(Begin, End)) {
1116       if (!S.Clone || (BestSpec && S.Score <= BestSpec->Score))
1117         continue;
1118 
1119       if (any_of(S.Sig.Args, [CS, this](const ArgInfo &Arg) {
1120             unsigned ArgNo = Arg.Formal->getArgNo();
1121             return getCandidateConstant(CS->getArgOperand(ArgNo)) != Arg.Actual;
1122           }))
1123         continue;
1124 
1125       BestSpec = &S;
1126     }
1127 
1128     if (BestSpec) {
1129       LLVM_DEBUG(dbgs() << "FnSpecialization: Redirecting " << *CS
1130                         << " to call " << BestSpec->Clone->getName() << "\n");
1131       CS->setCalledFunction(BestSpec->Clone);
1132       ShouldDecrementCount = true;
1133     }
1134 
1135     if (ShouldDecrementCount)
1136       --NCallsLeft;
1137   }
1138 
1139   // If the function has been completely specialized, the original function
1140   // is no longer needed. Mark it unreachable.
1141   if (NCallsLeft == 0 && Solver.isArgumentTrackedFunction(F)) {
1142     Solver.markFunctionUnreachable(F);
1143     FullySpecialized.insert(F);
1144   }
1145 }
1146