//===- FunctionSpecialization.cpp - Function Specialization ---------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "llvm/Transforms/IPO/FunctionSpecialization.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/CodeMetrics.h" #include "llvm/Analysis/ConstantFolding.h" #include "llvm/Analysis/InlineCost.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/Analysis/ValueLattice.h" #include "llvm/Analysis/ValueLatticeUtils.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/Transforms/Scalar/SCCP.h" #include "llvm/Transforms/Utils/Cloning.h" #include "llvm/Transforms/Utils/SCCPSolver.h" #include "llvm/Transforms/Utils/SizeOpts.h" #include using namespace llvm; #define DEBUG_TYPE "function-specialization" STATISTIC(NumSpecsCreated, "Number of specializations created"); static cl::opt ForceSpecialization( "force-specialization", cl::init(false), cl::Hidden, cl::desc( "Force function specialization for every call site with a constant " "argument")); static cl::opt MaxClones( "funcspec-max-clones", cl::init(3), cl::Hidden, cl::desc( "The maximum number of clones allowed for a single function " "specialization")); static cl::opt MaxDiscoveryIterations("funcspec-max-discovery-iterations", cl::init(100), cl::Hidden, cl::desc("The maximum number of iterations allowed " "when searching for transitive " "phis")); static cl::opt MaxIncomingPhiValues( "funcspec-max-incoming-phi-values", cl::init(8), cl::Hidden, cl::desc("The maximum number of incoming values a PHI node can have to be " "considered during the specialization bonus estimation")); static cl::opt MaxBlockPredecessors( "funcspec-max-block-predecessors", cl::init(2), cl::Hidden, cl::desc( "The maximum number of predecessors a basic block can have to be " "considered during the estimation of dead code")); static cl::opt MinFunctionSize( "funcspec-min-function-size", cl::init(300), cl::Hidden, cl::desc( "Don't specialize functions that have less than this number of " "instructions")); static cl::opt MaxCodeSizeGrowth( "funcspec-max-codesize-growth", cl::init(3), cl::Hidden, cl::desc( "Maximum codesize growth allowed per function")); static cl::opt MinCodeSizeSavings( "funcspec-min-codesize-savings", cl::init(20), cl::Hidden, cl::desc( "Reject specializations whose codesize savings are less than this" "much percent of the original function size")); static cl::opt MinLatencySavings( "funcspec-min-latency-savings", cl::init(40), cl::Hidden, cl::desc("Reject specializations whose latency savings are less than this" "much percent of the original function size")); static cl::opt MinInliningBonus( "funcspec-min-inlining-bonus", cl::init(300), cl::Hidden, cl::desc( "Reject specializations whose inlining bonus is less than this" "much percent of the original function size")); static cl::opt SpecializeOnAddress( "funcspec-on-address", cl::init(false), cl::Hidden, cl::desc( "Enable function specialization on the address of global values")); // Disabled by default as it can significantly increase compilation times. // // https://llvm-compile-time-tracker.com // https://github.com/nikic/llvm-compile-time-tracker static cl::opt SpecializeLiteralConstant( "funcspec-for-literal-constant", cl::init(false), cl::Hidden, cl::desc( "Enable specialization of functions that take a literal constant as an " "argument")); bool InstCostVisitor::canEliminateSuccessor(BasicBlock *BB, BasicBlock *Succ, DenseSet &DeadBlocks) { unsigned I = 0; return all_of(predecessors(Succ), [&I, BB, Succ, &DeadBlocks] (BasicBlock *Pred) { return I++ < MaxBlockPredecessors && (Pred == BB || Pred == Succ || DeadBlocks.contains(Pred)); }); } // Estimates the codesize savings due to dead code after constant propagation. // \p WorkList represents the basic blocks of a specialization which will // eventually become dead once we replace instructions that are known to be // constants. The successors of such blocks are added to the list as long as // the \p Solver found they were executable prior to specialization, and only // if all their predecessors are dead. Cost InstCostVisitor::estimateBasicBlocks( SmallVectorImpl &WorkList) { Cost CodeSize = 0; // Accumulate the instruction cost of each basic block weighted by frequency. while (!WorkList.empty()) { BasicBlock *BB = WorkList.pop_back_val(); // These blocks are considered dead as far as the InstCostVisitor // is concerned. They haven't been proven dead yet by the Solver, // but may become if we propagate the specialization arguments. if (!DeadBlocks.insert(BB).second) continue; for (Instruction &I : *BB) { // Disregard SSA copies. if (auto *II = dyn_cast(&I)) if (II->getIntrinsicID() == Intrinsic::ssa_copy) continue; // If it's a known constant we have already accounted for it. if (KnownConstants.contains(&I)) continue; Cost C = TTI.getInstructionCost(&I, TargetTransformInfo::TCK_CodeSize); LLVM_DEBUG(dbgs() << "FnSpecialization: CodeSize " << C << " for user " << I << "\n"); CodeSize += C; } // Keep adding dead successors to the list as long as they are // executable and only reachable from dead blocks. for (BasicBlock *SuccBB : successors(BB)) if (isBlockExecutable(SuccBB) && canEliminateSuccessor(BB, SuccBB, DeadBlocks)) WorkList.push_back(SuccBB); } return CodeSize; } static Constant *findConstantFor(Value *V, ConstMap &KnownConstants) { if (auto *C = dyn_cast(V)) return C; return KnownConstants.lookup(V); } Bonus InstCostVisitor::getBonusFromPendingPHIs() { Bonus B; while (!PendingPHIs.empty()) { Instruction *Phi = PendingPHIs.pop_back_val(); // The pending PHIs could have been proven dead by now. if (isBlockExecutable(Phi->getParent())) B += getUserBonus(Phi); } return B; } /// Compute a bonus for replacing argument \p A with constant \p C. Bonus InstCostVisitor::getSpecializationBonus(Argument *A, Constant *C) { LLVM_DEBUG(dbgs() << "FnSpecialization: Analysing bonus for constant: " << C->getNameOrAsOperand() << "\n"); Bonus B; for (auto *U : A->users()) if (auto *UI = dyn_cast(U)) if (isBlockExecutable(UI->getParent())) B += getUserBonus(UI, A, C); LLVM_DEBUG(dbgs() << "FnSpecialization: Accumulated bonus {CodeSize = " << B.CodeSize << ", Latency = " << B.Latency << "} for argument " << *A << "\n"); return B; } Bonus InstCostVisitor::getUserBonus(Instruction *User, Value *Use, Constant *C) { // We have already propagated a constant for this user. if (KnownConstants.contains(User)) return {0, 0}; // Cache the iterator before visiting. LastVisited = Use ? KnownConstants.insert({Use, C}).first : KnownConstants.end(); Cost CodeSize = 0; if (auto *I = dyn_cast(User)) { CodeSize = estimateSwitchInst(*I); } else if (auto *I = dyn_cast(User)) { CodeSize = estimateBranchInst(*I); } else { C = visit(*User); if (!C) return {0, 0}; } // Even though it doesn't make sense to bind switch and branch instructions // with a constant, unlike any other instruction type, it prevents estimating // their bonus multiple times. KnownConstants.insert({User, C}); CodeSize += TTI.getInstructionCost(User, TargetTransformInfo::TCK_CodeSize); uint64_t Weight = BFI.getBlockFreq(User->getParent()).getFrequency() / BFI.getEntryFreq().getFrequency(); Cost Latency = Weight * TTI.getInstructionCost(User, TargetTransformInfo::TCK_Latency); LLVM_DEBUG(dbgs() << "FnSpecialization: {CodeSize = " << CodeSize << ", Latency = " << Latency << "} for user " << *User << "\n"); Bonus B(CodeSize, Latency); for (auto *U : User->users()) if (auto *UI = dyn_cast(U)) if (UI != User && isBlockExecutable(UI->getParent())) B += getUserBonus(UI, User, C); return B; } Cost InstCostVisitor::estimateSwitchInst(SwitchInst &I) { assert(LastVisited != KnownConstants.end() && "Invalid iterator!"); if (I.getCondition() != LastVisited->first) return 0; auto *C = dyn_cast(LastVisited->second); if (!C) return 0; BasicBlock *Succ = I.findCaseValue(C)->getCaseSuccessor(); // Initialize the worklist with the dead basic blocks. These are the // destination labels which are different from the one corresponding // to \p C. They should be executable and have a unique predecessor. SmallVector WorkList; for (const auto &Case : I.cases()) { BasicBlock *BB = Case.getCaseSuccessor(); if (BB != Succ && isBlockExecutable(BB) && canEliminateSuccessor(I.getParent(), BB, DeadBlocks)) WorkList.push_back(BB); } return estimateBasicBlocks(WorkList); } Cost InstCostVisitor::estimateBranchInst(BranchInst &I) { assert(LastVisited != KnownConstants.end() && "Invalid iterator!"); if (I.getCondition() != LastVisited->first) return 0; BasicBlock *Succ = I.getSuccessor(LastVisited->second->isOneValue()); // Initialize the worklist with the dead successor as long as // it is executable and has a unique predecessor. SmallVector WorkList; if (isBlockExecutable(Succ) && canEliminateSuccessor(I.getParent(), Succ, DeadBlocks)) WorkList.push_back(Succ); return estimateBasicBlocks(WorkList); } bool InstCostVisitor::discoverTransitivelyIncomingValues( Constant *Const, PHINode *Root, DenseSet &TransitivePHIs) { SmallVector WorkList; WorkList.push_back(Root); unsigned Iter = 0; while (!WorkList.empty()) { PHINode *PN = WorkList.pop_back_val(); if (++Iter > MaxDiscoveryIterations || PN->getNumIncomingValues() > MaxIncomingPhiValues) return false; if (!TransitivePHIs.insert(PN).second) continue; for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { Value *V = PN->getIncomingValue(I); // Disregard self-references and dead incoming values. if (auto *Inst = dyn_cast(V)) if (Inst == PN || DeadBlocks.contains(PN->getIncomingBlock(I))) continue; if (Constant *C = findConstantFor(V, KnownConstants)) { // Not all incoming values are the same constant. Bail immediately. if (C != Const) return false; continue; } if (auto *Phi = dyn_cast(V)) { WorkList.push_back(Phi); continue; } // We can't reason about anything else. return false; } } return true; } Constant *InstCostVisitor::visitPHINode(PHINode &I) { if (I.getNumIncomingValues() > MaxIncomingPhiValues) return nullptr; bool Inserted = VisitedPHIs.insert(&I).second; Constant *Const = nullptr; bool HaveSeenIncomingPHI = false; for (unsigned Idx = 0, E = I.getNumIncomingValues(); Idx != E; ++Idx) { Value *V = I.getIncomingValue(Idx); // Disregard self-references and dead incoming values. if (auto *Inst = dyn_cast(V)) if (Inst == &I || DeadBlocks.contains(I.getIncomingBlock(Idx))) continue; if (Constant *C = findConstantFor(V, KnownConstants)) { if (!Const) Const = C; // Not all incoming values are the same constant. Bail immediately. if (C != Const) return nullptr; continue; } if (Inserted) { // First time we are seeing this phi. We will retry later, after // all the constant arguments have been propagated. Bail for now. PendingPHIs.push_back(&I); return nullptr; } if (isa(V)) { // Perhaps it is a Transitive Phi. We will confirm later. HaveSeenIncomingPHI = true; continue; } // We can't reason about anything else. return nullptr; } if (!Const) return nullptr; if (!HaveSeenIncomingPHI) return Const; DenseSet TransitivePHIs; if (!discoverTransitivelyIncomingValues(Const, &I, TransitivePHIs)) return nullptr; return Const; } Constant *InstCostVisitor::visitFreezeInst(FreezeInst &I) { assert(LastVisited != KnownConstants.end() && "Invalid iterator!"); if (isGuaranteedNotToBeUndefOrPoison(LastVisited->second)) return LastVisited->second; return nullptr; } Constant *InstCostVisitor::visitCallBase(CallBase &I) { Function *F = I.getCalledFunction(); if (!F || !canConstantFoldCallTo(&I, F)) return nullptr; SmallVector Operands; Operands.reserve(I.getNumOperands()); for (unsigned Idx = 0, E = I.getNumOperands() - 1; Idx != E; ++Idx) { Value *V = I.getOperand(Idx); Constant *C = findConstantFor(V, KnownConstants); if (!C) return nullptr; Operands.push_back(C); } auto Ops = ArrayRef(Operands.begin(), Operands.end()); return ConstantFoldCall(&I, F, Ops); } Constant *InstCostVisitor::visitLoadInst(LoadInst &I) { assert(LastVisited != KnownConstants.end() && "Invalid iterator!"); if (isa(LastVisited->second)) return nullptr; return ConstantFoldLoadFromConstPtr(LastVisited->second, I.getType(), DL); } Constant *InstCostVisitor::visitGetElementPtrInst(GetElementPtrInst &I) { SmallVector Operands; Operands.reserve(I.getNumOperands()); for (unsigned Idx = 0, E = I.getNumOperands(); Idx != E; ++Idx) { Value *V = I.getOperand(Idx); Constant *C = findConstantFor(V, KnownConstants); if (!C) return nullptr; Operands.push_back(C); } auto Ops = ArrayRef(Operands.begin(), Operands.end()); return ConstantFoldInstOperands(&I, Ops, DL); } Constant *InstCostVisitor::visitSelectInst(SelectInst &I) { assert(LastVisited != KnownConstants.end() && "Invalid iterator!"); if (I.getCondition() != LastVisited->first) return nullptr; Value *V = LastVisited->second->isZeroValue() ? I.getFalseValue() : I.getTrueValue(); Constant *C = findConstantFor(V, KnownConstants); return C; } Constant *InstCostVisitor::visitCastInst(CastInst &I) { return ConstantFoldCastOperand(I.getOpcode(), LastVisited->second, I.getType(), DL); } Constant *InstCostVisitor::visitCmpInst(CmpInst &I) { assert(LastVisited != KnownConstants.end() && "Invalid iterator!"); bool Swap = I.getOperand(1) == LastVisited->first; Value *V = Swap ? I.getOperand(0) : I.getOperand(1); Constant *Other = findConstantFor(V, KnownConstants); if (!Other) return nullptr; Constant *Const = LastVisited->second; return Swap ? ConstantFoldCompareInstOperands(I.getPredicate(), Other, Const, DL) : ConstantFoldCompareInstOperands(I.getPredicate(), Const, Other, DL); } Constant *InstCostVisitor::visitUnaryOperator(UnaryOperator &I) { assert(LastVisited != KnownConstants.end() && "Invalid iterator!"); return ConstantFoldUnaryOpOperand(I.getOpcode(), LastVisited->second, DL); } Constant *InstCostVisitor::visitBinaryOperator(BinaryOperator &I) { assert(LastVisited != KnownConstants.end() && "Invalid iterator!"); bool Swap = I.getOperand(1) == LastVisited->first; Value *V = Swap ? I.getOperand(0) : I.getOperand(1); Constant *Other = findConstantFor(V, KnownConstants); if (!Other) return nullptr; Constant *Const = LastVisited->second; return dyn_cast_or_null(Swap ? simplifyBinOp(I.getOpcode(), Other, Const, SimplifyQuery(DL)) : simplifyBinOp(I.getOpcode(), Const, Other, SimplifyQuery(DL))); } Constant *FunctionSpecializer::getPromotableAlloca(AllocaInst *Alloca, CallInst *Call) { Value *StoreValue = nullptr; for (auto *User : Alloca->users()) { // We can't use llvm::isAllocaPromotable() as that would fail because of // the usage in the CallInst, which is what we check here. if (User == Call) continue; if (auto *Bitcast = dyn_cast(User)) { if (!Bitcast->hasOneUse() || *Bitcast->user_begin() != Call) return nullptr; continue; } if (auto *Store = dyn_cast(User)) { // This is a duplicate store, bail out. if (StoreValue || Store->isVolatile()) return nullptr; StoreValue = Store->getValueOperand(); continue; } // Bail if there is any other unknown usage. return nullptr; } if (!StoreValue) return nullptr; return getCandidateConstant(StoreValue); } // A constant stack value is an AllocaInst that has a single constant // value stored to it. Return this constant if such an alloca stack value // is a function argument. Constant *FunctionSpecializer::getConstantStackValue(CallInst *Call, Value *Val) { if (!Val) return nullptr; Val = Val->stripPointerCasts(); if (auto *ConstVal = dyn_cast(Val)) return ConstVal; auto *Alloca = dyn_cast(Val); if (!Alloca || !Alloca->getAllocatedType()->isIntegerTy()) return nullptr; return getPromotableAlloca(Alloca, Call); } // To support specializing recursive functions, it is important to propagate // constant arguments because after a first iteration of specialisation, a // reduced example may look like this: // // define internal void @RecursiveFn(i32* arg1) { // %temp = alloca i32, align 4 // store i32 2 i32* %temp, align 4 // call void @RecursiveFn.1(i32* nonnull %temp) // ret void // } // // Before a next iteration, we need to propagate the constant like so // which allows further specialization in next iterations. // // @funcspec.arg = internal constant i32 2 // // define internal void @someFunc(i32* arg1) { // call void @otherFunc(i32* nonnull @funcspec.arg) // ret void // } // // See if there are any new constant values for the callers of \p F via // stack variables and promote them to global variables. void FunctionSpecializer::promoteConstantStackValues(Function *F) { for (User *U : F->users()) { auto *Call = dyn_cast(U); if (!Call) continue; if (!Solver.isBlockExecutable(Call->getParent())) continue; for (const Use &U : Call->args()) { unsigned Idx = Call->getArgOperandNo(&U); Value *ArgOp = Call->getArgOperand(Idx); Type *ArgOpType = ArgOp->getType(); if (!Call->onlyReadsMemory(Idx) || !ArgOpType->isPointerTy()) continue; auto *ConstVal = getConstantStackValue(Call, ArgOp); if (!ConstVal) continue; Value *GV = new GlobalVariable(M, ConstVal->getType(), true, GlobalValue::InternalLinkage, ConstVal, "specialized.arg." + Twine(++NGlobals)); Call->setArgOperand(Idx, GV); } } } // ssa_copy intrinsics are introduced by the SCCP solver. These intrinsics // interfere with the promoteConstantStackValues() optimization. static void removeSSACopy(Function &F) { for (BasicBlock &BB : F) { for (Instruction &Inst : llvm::make_early_inc_range(BB)) { auto *II = dyn_cast(&Inst); if (!II) continue; if (II->getIntrinsicID() != Intrinsic::ssa_copy) continue; Inst.replaceAllUsesWith(II->getOperand(0)); Inst.eraseFromParent(); } } } /// Remove any ssa_copy intrinsics that may have been introduced. void FunctionSpecializer::cleanUpSSA() { for (Function *F : Specializations) removeSSACopy(*F); } template <> struct llvm::DenseMapInfo { static inline SpecSig getEmptyKey() { return {~0U, {}}; } static inline SpecSig getTombstoneKey() { return {~1U, {}}; } static unsigned getHashValue(const SpecSig &S) { return static_cast(hash_value(S)); } static bool isEqual(const SpecSig &LHS, const SpecSig &RHS) { return LHS == RHS; } }; FunctionSpecializer::~FunctionSpecializer() { LLVM_DEBUG( if (NumSpecsCreated > 0) dbgs() << "FnSpecialization: Created " << NumSpecsCreated << " specializations in module " << M.getName() << "\n"); // Eliminate dead code. removeDeadFunctions(); cleanUpSSA(); } /// Attempt to specialize functions in the module to enable constant /// propagation across function boundaries. /// /// \returns true if at least one function is specialized. bool FunctionSpecializer::run() { // Find possible specializations for each function. SpecMap SM; SmallVector AllSpecs; unsigned NumCandidates = 0; for (Function &F : M) { if (!isCandidateFunction(&F)) continue; auto [It, Inserted] = FunctionMetrics.try_emplace(&F); CodeMetrics &Metrics = It->second; //Analyze the function. if (Inserted) { SmallPtrSet EphValues; CodeMetrics::collectEphemeralValues(&F, &GetAC(F), EphValues); for (BasicBlock &BB : F) Metrics.analyzeBasicBlock(&BB, GetTTI(F), EphValues); } // If the code metrics reveal that we shouldn't duplicate the function, // or if the code size implies that this function is easy to get inlined, // then we shouldn't specialize it. if (Metrics.notDuplicatable || !Metrics.NumInsts.isValid() || (!ForceSpecialization && !F.hasFnAttribute(Attribute::NoInline) && Metrics.NumInsts < MinFunctionSize)) continue; // TODO: For now only consider recursive functions when running multiple // times. This should change if specialization on literal constants gets // enabled. if (!Inserted && !Metrics.isRecursive && !SpecializeLiteralConstant) continue; int64_t Sz = *Metrics.NumInsts.getValue(); assert(Sz > 0 && "CodeSize should be positive"); // It is safe to down cast from int64_t, NumInsts is always positive. unsigned FuncSize = static_cast(Sz); LLVM_DEBUG(dbgs() << "FnSpecialization: Specialization cost for " << F.getName() << " is " << FuncSize << "\n"); if (Inserted && Metrics.isRecursive) promoteConstantStackValues(&F); if (!findSpecializations(&F, FuncSize, AllSpecs, SM)) { LLVM_DEBUG( dbgs() << "FnSpecialization: No possible specializations found for " << F.getName() << "\n"); continue; } ++NumCandidates; } if (!NumCandidates) { LLVM_DEBUG( dbgs() << "FnSpecialization: No possible specializations found in module\n"); return false; } // Choose the most profitable specialisations, which fit in the module // specialization budget, which is derived from maximum number of // specializations per specialization candidate function. auto CompareScore = [&AllSpecs](unsigned I, unsigned J) { if (AllSpecs[I].Score != AllSpecs[J].Score) return AllSpecs[I].Score > AllSpecs[J].Score; return I > J; }; const unsigned NSpecs = std::min(NumCandidates * MaxClones, unsigned(AllSpecs.size())); SmallVector BestSpecs(NSpecs + 1); std::iota(BestSpecs.begin(), BestSpecs.begin() + NSpecs, 0); if (AllSpecs.size() > NSpecs) { LLVM_DEBUG(dbgs() << "FnSpecialization: Number of candidates exceed " << "the maximum number of clones threshold.\n" << "FnSpecialization: Specializing the " << NSpecs << " most profitable candidates.\n"); std::make_heap(BestSpecs.begin(), BestSpecs.begin() + NSpecs, CompareScore); for (unsigned I = NSpecs, N = AllSpecs.size(); I < N; ++I) { BestSpecs[NSpecs] = I; std::push_heap(BestSpecs.begin(), BestSpecs.end(), CompareScore); std::pop_heap(BestSpecs.begin(), BestSpecs.end(), CompareScore); } } LLVM_DEBUG(dbgs() << "FnSpecialization: List of specializations \n"; for (unsigned I = 0; I < NSpecs; ++I) { const Spec &S = AllSpecs[BestSpecs[I]]; dbgs() << "FnSpecialization: Function " << S.F->getName() << " , score " << S.Score << "\n"; for (const ArgInfo &Arg : S.Sig.Args) dbgs() << "FnSpecialization: FormalArg = " << Arg.Formal->getNameOrAsOperand() << ", ActualArg = " << Arg.Actual->getNameOrAsOperand() << "\n"; }); // Create the chosen specializations. SmallPtrSet OriginalFuncs; SmallVector Clones; for (unsigned I = 0; I < NSpecs; ++I) { Spec &S = AllSpecs[BestSpecs[I]]; S.Clone = createSpecialization(S.F, S.Sig); // Update the known call sites to call the clone. for (CallBase *Call : S.CallSites) { LLVM_DEBUG(dbgs() << "FnSpecialization: Redirecting " << *Call << " to call " << S.Clone->getName() << "\n"); Call->setCalledFunction(S.Clone); } Clones.push_back(S.Clone); OriginalFuncs.insert(S.F); } Solver.solveWhileResolvedUndefsIn(Clones); // Update the rest of the call sites - these are the recursive calls, calls // to discarded specialisations and calls that may match a specialisation // after the solver runs. for (Function *F : OriginalFuncs) { auto [Begin, End] = SM[F]; updateCallSites(F, AllSpecs.begin() + Begin, AllSpecs.begin() + End); } for (Function *F : Clones) { if (F->getReturnType()->isVoidTy()) continue; if (F->getReturnType()->isStructTy()) { auto *STy = cast(F->getReturnType()); if (!Solver.isStructLatticeConstant(F, STy)) continue; } else { auto It = Solver.getTrackedRetVals().find(F); assert(It != Solver.getTrackedRetVals().end() && "Return value ought to be tracked"); if (SCCPSolver::isOverdefined(It->second)) continue; } for (User *U : F->users()) { if (auto *CS = dyn_cast(U)) { //The user instruction does not call our function. if (CS->getCalledFunction() != F) continue; Solver.resetLatticeValueFor(CS); } } } // Rerun the solver to notify the users of the modified callsites. Solver.solveWhileResolvedUndefs(); for (Function *F : OriginalFuncs) if (FunctionMetrics[F].isRecursive) promoteConstantStackValues(F); return true; } void FunctionSpecializer::removeDeadFunctions() { for (Function *F : FullySpecialized) { LLVM_DEBUG(dbgs() << "FnSpecialization: Removing dead function " << F->getName() << "\n"); if (FAM) FAM->clear(*F, F->getName()); F->eraseFromParent(); } FullySpecialized.clear(); } /// Clone the function \p F and remove the ssa_copy intrinsics added by /// the SCCPSolver in the cloned version. static Function *cloneCandidateFunction(Function *F, unsigned NSpecs) { ValueToValueMapTy Mappings; Function *Clone = CloneFunction(F, Mappings); Clone->setName(F->getName() + ".specialized." + Twine(NSpecs)); removeSSACopy(*Clone); return Clone; } bool FunctionSpecializer::findSpecializations(Function *F, unsigned FuncSize, SmallVectorImpl &AllSpecs, SpecMap &SM) { // A mapping from a specialisation signature to the index of the respective // entry in the all specialisation array. Used to ensure uniqueness of // specialisations. DenseMap UniqueSpecs; // Get a list of interesting arguments. SmallVector Args; for (Argument &Arg : F->args()) if (isArgumentInteresting(&Arg)) Args.push_back(&Arg); if (Args.empty()) return false; for (User *U : F->users()) { if (!isa(U) && !isa(U)) continue; auto &CS = *cast(U); // The user instruction does not call our function. if (CS.getCalledFunction() != F) continue; // If the call site has attribute minsize set, that callsite won't be // specialized. if (CS.hasFnAttr(Attribute::MinSize)) continue; // If the parent of the call site will never be executed, we don't need // to worry about the passed value. if (!Solver.isBlockExecutable(CS.getParent())) continue; // Examine arguments and create a specialisation candidate from the // constant operands of this call site. SpecSig S; for (Argument *A : Args) { Constant *C = getCandidateConstant(CS.getArgOperand(A->getArgNo())); if (!C) continue; LLVM_DEBUG(dbgs() << "FnSpecialization: Found interesting argument " << A->getName() << " : " << C->getNameOrAsOperand() << "\n"); S.Args.push_back({A, C}); } if (S.Args.empty()) continue; // Check if we have encountered the same specialisation already. if (auto It = UniqueSpecs.find(S); It != UniqueSpecs.end()) { // Existing specialisation. Add the call to the list to rewrite, unless // it's a recursive call. A specialisation, generated because of a // recursive call may end up as not the best specialisation for all // the cloned instances of this call, which result from specialising // functions. Hence we don't rewrite the call directly, but match it with // the best specialisation once all specialisations are known. if (CS.getFunction() == F) continue; const unsigned Index = It->second; AllSpecs[Index].CallSites.push_back(&CS); } else { // Calculate the specialisation gain. Bonus B; unsigned Score = 0; InstCostVisitor Visitor = getInstCostVisitorFor(F); for (ArgInfo &A : S.Args) { B += Visitor.getSpecializationBonus(A.Formal, A.Actual); Score += getInliningBonus(A.Formal, A.Actual); } B += Visitor.getBonusFromPendingPHIs(); LLVM_DEBUG(dbgs() << "FnSpecialization: Specialization bonus {CodeSize = " << B.CodeSize << ", Latency = " << B.Latency << ", Inlining = " << Score << "}\n"); FunctionGrowth[F] += FuncSize - B.CodeSize; auto IsProfitable = [](Bonus &B, unsigned Score, unsigned FuncSize, unsigned FuncGrowth) -> bool { // No check required. if (ForceSpecialization) return true; // Minimum inlining bonus. if (Score > MinInliningBonus * FuncSize / 100) return true; // Minimum codesize savings. if (B.CodeSize < MinCodeSizeSavings * FuncSize / 100) return false; // Minimum latency savings. if (B.Latency < MinLatencySavings * FuncSize / 100) return false; // Maximum codesize growth. if (FuncGrowth / FuncSize > MaxCodeSizeGrowth) return false; return true; }; // Discard unprofitable specialisations. if (!IsProfitable(B, Score, FuncSize, FunctionGrowth[F])) continue; // Create a new specialisation entry. Score += std::max(B.CodeSize, B.Latency); auto &Spec = AllSpecs.emplace_back(F, S, Score); if (CS.getFunction() != F) Spec.CallSites.push_back(&CS); const unsigned Index = AllSpecs.size() - 1; UniqueSpecs[S] = Index; if (auto [It, Inserted] = SM.try_emplace(F, Index, Index + 1); !Inserted) It->second.second = Index + 1; } } return !UniqueSpecs.empty(); } bool FunctionSpecializer::isCandidateFunction(Function *F) { if (F->isDeclaration() || F->arg_empty()) return false; if (F->hasFnAttribute(Attribute::NoDuplicate)) return false; // Do not specialize the cloned function again. if (Specializations.contains(F)) return false; // If we're optimizing the function for size, we shouldn't specialize it. if (F->hasOptSize() || shouldOptimizeForSize(F, nullptr, nullptr, PGSOQueryType::IRPass)) return false; // Exit if the function is not executable. There's no point in specializing // a dead function. if (!Solver.isBlockExecutable(&F->getEntryBlock())) return false; // It wastes time to specialize a function which would get inlined finally. if (F->hasFnAttribute(Attribute::AlwaysInline)) return false; LLVM_DEBUG(dbgs() << "FnSpecialization: Try function: " << F->getName() << "\n"); return true; } Function *FunctionSpecializer::createSpecialization(Function *F, const SpecSig &S) { Function *Clone = cloneCandidateFunction(F, Specializations.size() + 1); // The original function does not neccessarily have internal linkage, but the // clone must. Clone->setLinkage(GlobalValue::InternalLinkage); // Initialize the lattice state of the arguments of the function clone, // marking the argument on which we specialized the function constant // with the given value. Solver.setLatticeValueForSpecializationArguments(Clone, S.Args); Solver.markBlockExecutable(&Clone->front()); Solver.addArgumentTrackedFunction(Clone); Solver.addTrackedFunction(Clone); // Mark all the specialized functions Specializations.insert(Clone); ++NumSpecsCreated; return Clone; } /// Compute the inlining bonus for replacing argument \p A with constant \p C. /// The below heuristic is only concerned with exposing inlining /// opportunities via indirect call promotion. If the argument is not a /// (potentially casted) function pointer, give up. unsigned FunctionSpecializer::getInliningBonus(Argument *A, Constant *C) { Function *CalledFunction = dyn_cast(C->stripPointerCasts()); if (!CalledFunction) return 0; // Get TTI for the called function (used for the inline cost). auto &CalleeTTI = (GetTTI)(*CalledFunction); // Look at all the call sites whose called value is the argument. // Specializing the function on the argument would allow these indirect // calls to be promoted to direct calls. If the indirect call promotion // would likely enable the called function to be inlined, specializing is a // good idea. int InliningBonus = 0; for (User *U : A->users()) { if (!isa(U) && !isa(U)) continue; auto *CS = cast(U); if (CS->getCalledOperand() != A) continue; if (CS->getFunctionType() != CalledFunction->getFunctionType()) continue; // Get the cost of inlining the called function at this call site. Note // that this is only an estimate. The called function may eventually // change in a way that leads to it not being inlined here, even though // inlining looks profitable now. For example, one of its called // functions may be inlined into it, making the called function too large // to be inlined into this call site. // // We apply a boost for performing indirect call promotion by increasing // the default threshold by the threshold for indirect calls. auto Params = getInlineParams(); Params.DefaultThreshold += InlineConstants::IndirectCallThreshold; InlineCost IC = getInlineCost(*CS, CalledFunction, Params, CalleeTTI, GetAC, GetTLI); // We clamp the bonus for this call to be between zero and the default // threshold. if (IC.isAlways()) InliningBonus += Params.DefaultThreshold; else if (IC.isVariable() && IC.getCostDelta() > 0) InliningBonus += IC.getCostDelta(); LLVM_DEBUG(dbgs() << "FnSpecialization: Inlining bonus " << InliningBonus << " for user " << *U << "\n"); } return InliningBonus > 0 ? static_cast(InliningBonus) : 0; } /// Determine if it is possible to specialise the function for constant values /// of the formal parameter \p A. bool FunctionSpecializer::isArgumentInteresting(Argument *A) { // No point in specialization if the argument is unused. if (A->user_empty()) return false; Type *Ty = A->getType(); if (!Ty->isPointerTy() && (!SpecializeLiteralConstant || (!Ty->isIntegerTy() && !Ty->isFloatingPointTy() && !Ty->isStructTy()))) return false; // SCCP solver does not record an argument that will be constructed on // stack. if (A->hasByValAttr() && !A->getParent()->onlyReadsMemory()) return false; // For non-argument-tracked functions every argument is overdefined. if (!Solver.isArgumentTrackedFunction(A->getParent())) return true; // Check the lattice value and decide if we should attemt to specialize, // based on this argument. No point in specialization, if the lattice value // is already a constant. bool IsOverdefined = Ty->isStructTy() ? any_of(Solver.getStructLatticeValueFor(A), SCCPSolver::isOverdefined) : SCCPSolver::isOverdefined(Solver.getLatticeValueFor(A)); LLVM_DEBUG( if (IsOverdefined) dbgs() << "FnSpecialization: Found interesting parameter " << A->getNameOrAsOperand() << "\n"; else dbgs() << "FnSpecialization: Nothing to do, parameter " << A->getNameOrAsOperand() << " is already constant\n"; ); return IsOverdefined; } /// Check if the value \p V (an actual argument) is a constant or can only /// have a constant value. Return that constant. Constant *FunctionSpecializer::getCandidateConstant(Value *V) { if (isa(V)) return nullptr; // Select for possible specialisation values that are constants or // are deduced to be constants or constant ranges with a single element. Constant *C = dyn_cast(V); if (!C) C = Solver.getConstantOrNull(V); // Don't specialize on (anything derived from) the address of a non-constant // global variable, unless explicitly enabled. if (C && C->getType()->isPointerTy() && !C->isNullValue()) if (auto *GV = dyn_cast(getUnderlyingObject(C)); GV && !(GV->isConstant() || SpecializeOnAddress)) return nullptr; return C; } void FunctionSpecializer::updateCallSites(Function *F, const Spec *Begin, const Spec *End) { // Collect the call sites that need updating. SmallVector ToUpdate; for (User *U : F->users()) if (auto *CS = dyn_cast(U); CS && CS->getCalledFunction() == F && Solver.isBlockExecutable(CS->getParent())) ToUpdate.push_back(CS); unsigned NCallsLeft = ToUpdate.size(); for (CallBase *CS : ToUpdate) { bool ShouldDecrementCount = CS->getFunction() == F; // Find the best matching specialisation. const Spec *BestSpec = nullptr; for (const Spec &S : make_range(Begin, End)) { if (!S.Clone || (BestSpec && S.Score <= BestSpec->Score)) continue; if (any_of(S.Sig.Args, [CS, this](const ArgInfo &Arg) { unsigned ArgNo = Arg.Formal->getArgNo(); return getCandidateConstant(CS->getArgOperand(ArgNo)) != Arg.Actual; })) continue; BestSpec = &S; } if (BestSpec) { LLVM_DEBUG(dbgs() << "FnSpecialization: Redirecting " << *CS << " to call " << BestSpec->Clone->getName() << "\n"); CS->setCalledFunction(BestSpec->Clone); ShouldDecrementCount = true; } if (ShouldDecrementCount) --NCallsLeft; } // If the function has been completely specialized, the original function // is no longer needed. Mark it unreachable. if (NCallsLeft == 0 && Solver.isArgumentTrackedFunction(F)) { Solver.markFunctionUnreachable(F); FullySpecialized.insert(F); } }