xref: /linux/drivers/spi/spi-imx.c (revision 3f1c07fc21c68bd3bd2df9d2c9441f6485e934d9)
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
3 // Copyright (C) 2008 Juergen Beisert
4 
5 #include <linux/bits.h>
6 #include <linux/bitfield.h>
7 #include <linux/clk.h>
8 #include <linux/completion.h>
9 #include <linux/delay.h>
10 #include <linux/dmaengine.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/err.h>
13 #include <linux/interrupt.h>
14 #include <linux/io.h>
15 #include <linux/irq.h>
16 #include <linux/kernel.h>
17 #include <linux/math.h>
18 #include <linux/math64.h>
19 #include <linux/module.h>
20 #include <linux/overflow.h>
21 #include <linux/pinctrl/consumer.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/slab.h>
25 #include <linux/spi/spi.h>
26 #include <linux/types.h>
27 #include <linux/of.h>
28 #include <linux/property.h>
29 
30 #include <linux/dma/imx-dma.h>
31 
32 #define DRIVER_NAME "spi_imx"
33 
34 static bool use_dma = true;
35 module_param(use_dma, bool, 0644);
36 MODULE_PARM_DESC(use_dma, "Enable usage of DMA when available (default)");
37 
38 /* define polling limits */
39 static unsigned int polling_limit_us = 30;
40 module_param(polling_limit_us, uint, 0664);
41 MODULE_PARM_DESC(polling_limit_us,
42 		 "time in us to run a transfer in polling mode\n");
43 
44 #define MXC_RPM_TIMEOUT		2000 /* 2000ms */
45 #define MXC_SPI_DEFAULT_SPEED	500000 /* 500KHz */
46 
47 #define MXC_CSPIRXDATA		0x00
48 #define MXC_CSPITXDATA		0x04
49 #define MXC_CSPICTRL		0x08
50 #define MXC_CSPIINT		0x0c
51 #define MXC_RESET		0x1c
52 
53 /* generic defines to abstract from the different register layouts */
54 #define MXC_INT_RR	(1 << 0) /* Receive data ready interrupt */
55 #define MXC_INT_TE	(1 << 1) /* Transmit FIFO empty interrupt */
56 #define MXC_INT_RDR	BIT(4) /* Receive date threshold interrupt */
57 
58 /* The maximum bytes that a sdma BD can transfer. */
59 #define MAX_SDMA_BD_BYTES (1 << 15)
60 #define MX51_ECSPI_CTRL_MAX_BURST	512
61 /* The maximum bytes that IMX53_ECSPI can transfer in target mode.*/
62 #define MX53_MAX_TRANSFER_BYTES		512
63 
64 enum spi_imx_devtype {
65 	IMX1_CSPI,
66 	IMX21_CSPI,
67 	IMX27_CSPI,
68 	IMX31_CSPI,
69 	IMX35_CSPI,	/* CSPI on all i.mx except above */
70 	IMX51_ECSPI,	/* ECSPI on i.mx51 */
71 	IMX53_ECSPI,	/* ECSPI on i.mx53 and later */
72 };
73 
74 struct spi_imx_data;
75 
76 struct spi_imx_devtype_data {
77 	void (*intctrl)(struct spi_imx_data *spi_imx, int enable);
78 	int (*prepare_message)(struct spi_imx_data *spi_imx, struct spi_message *msg);
79 	int (*prepare_transfer)(struct spi_imx_data *spi_imx, struct spi_device *spi,
80 				struct spi_transfer *t);
81 	void (*trigger)(struct spi_imx_data *spi_imx);
82 	int (*rx_available)(struct spi_imx_data *spi_imx);
83 	void (*reset)(struct spi_imx_data *spi_imx);
84 	void (*setup_wml)(struct spi_imx_data *spi_imx);
85 	void (*disable)(struct spi_imx_data *spi_imx);
86 	bool has_dmamode;
87 	bool has_targetmode;
88 	unsigned int fifo_size;
89 	bool dynamic_burst;
90 	/*
91 	 * ERR009165 fixed or not:
92 	 * https://www.nxp.com/docs/en/errata/IMX6DQCE.pdf
93 	 */
94 	bool tx_glitch_fixed;
95 	enum spi_imx_devtype devtype;
96 };
97 
98 struct spi_imx_data {
99 	struct spi_controller *controller;
100 	struct device *dev;
101 
102 	struct completion xfer_done;
103 	void __iomem *base;
104 	unsigned long base_phys;
105 
106 	struct clk *clk_per;
107 	struct clk *clk_ipg;
108 	unsigned long spi_clk;
109 	unsigned int spi_bus_clk;
110 
111 	unsigned int bits_per_word;
112 	unsigned int spi_drctl;
113 
114 	unsigned int count, remainder;
115 	void (*tx)(struct spi_imx_data *spi_imx);
116 	void (*rx)(struct spi_imx_data *spi_imx);
117 	void *rx_buf;
118 	const void *tx_buf;
119 	unsigned int txfifo; /* number of words pushed in tx FIFO */
120 	unsigned int dynamic_burst;
121 	bool rx_only;
122 
123 	/* Target mode */
124 	bool target_mode;
125 	bool target_aborted;
126 	unsigned int target_burst;
127 
128 	/* DMA */
129 	bool usedma;
130 	u32 wml;
131 	struct completion dma_rx_completion;
132 	struct completion dma_tx_completion;
133 
134 	const struct spi_imx_devtype_data *devtype_data;
135 };
136 
is_imx27_cspi(struct spi_imx_data * d)137 static inline int is_imx27_cspi(struct spi_imx_data *d)
138 {
139 	return d->devtype_data->devtype == IMX27_CSPI;
140 }
141 
is_imx35_cspi(struct spi_imx_data * d)142 static inline int is_imx35_cspi(struct spi_imx_data *d)
143 {
144 	return d->devtype_data->devtype == IMX35_CSPI;
145 }
146 
is_imx51_ecspi(struct spi_imx_data * d)147 static inline int is_imx51_ecspi(struct spi_imx_data *d)
148 {
149 	return d->devtype_data->devtype == IMX51_ECSPI;
150 }
151 
is_imx53_ecspi(struct spi_imx_data * d)152 static inline int is_imx53_ecspi(struct spi_imx_data *d)
153 {
154 	return d->devtype_data->devtype == IMX53_ECSPI;
155 }
156 
157 #define MXC_SPI_BUF_RX(type)						\
158 static void spi_imx_buf_rx_##type(struct spi_imx_data *spi_imx)		\
159 {									\
160 	unsigned int val = readl(spi_imx->base + MXC_CSPIRXDATA);	\
161 									\
162 	if (spi_imx->rx_buf) {						\
163 		*(type *)spi_imx->rx_buf = val;				\
164 		spi_imx->rx_buf += sizeof(type);			\
165 	}								\
166 									\
167 	spi_imx->remainder -= sizeof(type);				\
168 }
169 
170 #define MXC_SPI_BUF_TX(type)						\
171 static void spi_imx_buf_tx_##type(struct spi_imx_data *spi_imx)		\
172 {									\
173 	type val = 0;							\
174 									\
175 	if (spi_imx->tx_buf) {						\
176 		val = *(type *)spi_imx->tx_buf;				\
177 		spi_imx->tx_buf += sizeof(type);			\
178 	}								\
179 									\
180 	spi_imx->count -= sizeof(type);					\
181 									\
182 	writel(val, spi_imx->base + MXC_CSPITXDATA);			\
183 }
184 
185 MXC_SPI_BUF_RX(u8)
186 MXC_SPI_BUF_TX(u8)
187 MXC_SPI_BUF_RX(u16)
188 MXC_SPI_BUF_TX(u16)
189 MXC_SPI_BUF_RX(u32)
190 MXC_SPI_BUF_TX(u32)
191 
192 /* First entry is reserved, second entry is valid only if SDHC_SPIEN is set
193  * (which is currently not the case in this driver)
194  */
195 static int mxc_clkdivs[] = {0, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192,
196 	256, 384, 512, 768, 1024};
197 
198 /* MX21, MX27 */
spi_imx_clkdiv_1(unsigned int fin,unsigned int fspi,unsigned int max,unsigned int * fres)199 static unsigned int spi_imx_clkdiv_1(unsigned int fin,
200 		unsigned int fspi, unsigned int max, unsigned int *fres)
201 {
202 	int i;
203 
204 	for (i = 2; i < max; i++)
205 		if (fspi * mxc_clkdivs[i] >= fin)
206 			break;
207 
208 	*fres = fin / mxc_clkdivs[i];
209 	return i;
210 }
211 
212 /* MX1, MX31, MX35, MX51 CSPI */
spi_imx_clkdiv_2(unsigned int fin,unsigned int fspi,unsigned int * fres)213 static unsigned int spi_imx_clkdiv_2(unsigned int fin,
214 		unsigned int fspi, unsigned int *fres)
215 {
216 	int i, div = 4;
217 
218 	for (i = 0; i < 7; i++) {
219 		if (fspi * div >= fin)
220 			goto out;
221 		div <<= 1;
222 	}
223 
224 out:
225 	*fres = fin / div;
226 	return i;
227 }
228 
spi_imx_bytes_per_word(const int bits_per_word)229 static int spi_imx_bytes_per_word(const int bits_per_word)
230 {
231 	if (bits_per_word <= 8)
232 		return 1;
233 	else if (bits_per_word <= 16)
234 		return 2;
235 	else
236 		return 4;
237 }
238 
spi_imx_can_dma(struct spi_controller * controller,struct spi_device * spi,struct spi_transfer * transfer)239 static bool spi_imx_can_dma(struct spi_controller *controller, struct spi_device *spi,
240 			 struct spi_transfer *transfer)
241 {
242 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
243 
244 	if (!use_dma || controller->fallback)
245 		return false;
246 
247 	if (!controller->dma_rx)
248 		return false;
249 
250 	if (spi_imx->target_mode)
251 		return false;
252 
253 	if (transfer->len < spi_imx->devtype_data->fifo_size)
254 		return false;
255 
256 	spi_imx->dynamic_burst = 0;
257 
258 	return true;
259 }
260 
261 /*
262  * Note the number of natively supported chip selects for MX51 is 4. Some
263  * devices may have less actual SS pins but the register map supports 4. When
264  * using gpio chip selects the cs values passed into the macros below can go
265  * outside the range 0 - 3. We therefore need to limit the cs value to avoid
266  * corrupting bits outside the allocated locations.
267  *
268  * The simplest way to do this is to just mask the cs bits to 2 bits. This
269  * still allows all 4 native chip selects to work as well as gpio chip selects
270  * (which can use any of the 4 chip select configurations).
271  */
272 
273 #define MX51_ECSPI_CTRL		0x08
274 #define MX51_ECSPI_CTRL_ENABLE		(1 <<  0)
275 #define MX51_ECSPI_CTRL_XCH		(1 <<  2)
276 #define MX51_ECSPI_CTRL_SMC		(1 << 3)
277 #define MX51_ECSPI_CTRL_MODE_MASK	(0xf << 4)
278 #define MX51_ECSPI_CTRL_DRCTL(drctl)	((drctl) << 16)
279 #define MX51_ECSPI_CTRL_POSTDIV_OFFSET	8
280 #define MX51_ECSPI_CTRL_PREDIV_OFFSET	12
281 #define MX51_ECSPI_CTRL_CS(cs)		((cs & 3) << 18)
282 #define MX51_ECSPI_CTRL_BL_OFFSET	20
283 #define MX51_ECSPI_CTRL_BL_MASK		(0xfff << 20)
284 
285 #define MX51_ECSPI_CONFIG	0x0c
286 #define MX51_ECSPI_CONFIG_SCLKPHA(cs)	(1 << ((cs & 3) +  0))
287 #define MX51_ECSPI_CONFIG_SCLKPOL(cs)	(1 << ((cs & 3) +  4))
288 #define MX51_ECSPI_CONFIG_SBBCTRL(cs)	(1 << ((cs & 3) +  8))
289 #define MX51_ECSPI_CONFIG_SSBPOL(cs)	(1 << ((cs & 3) + 12))
290 #define MX51_ECSPI_CONFIG_DATACTL(cs)	(1 << ((cs & 3) + 16))
291 #define MX51_ECSPI_CONFIG_SCLKCTL(cs)	(1 << ((cs & 3) + 20))
292 
293 #define MX51_ECSPI_INT		0x10
294 #define MX51_ECSPI_INT_TEEN		(1 <<  0)
295 #define MX51_ECSPI_INT_RREN		(1 <<  3)
296 #define MX51_ECSPI_INT_RDREN		(1 <<  4)
297 
298 #define MX51_ECSPI_DMA		0x14
299 #define MX51_ECSPI_DMA_TX_WML(wml)	((wml) & 0x3f)
300 #define MX51_ECSPI_DMA_RX_WML(wml)	(((wml) & 0x3f) << 16)
301 #define MX51_ECSPI_DMA_RXT_WML(wml)	(((wml) & 0x3f) << 24)
302 
303 #define MX51_ECSPI_DMA_TEDEN		(1 << 7)
304 #define MX51_ECSPI_DMA_RXDEN		(1 << 23)
305 #define MX51_ECSPI_DMA_RXTDEN		(1 << 31)
306 
307 #define MX51_ECSPI_STAT		0x18
308 #define MX51_ECSPI_STAT_RR		(1 <<  3)
309 
310 #define MX51_ECSPI_PERIOD	0x1c
311 #define MX51_ECSPI_PERIOD_MASK		0x7fff
312 /*
313  * As measured on the i.MX6, the SPI host controller inserts a 4 SPI-Clock
314  * (SCLK) delay after each burst if the PERIOD reg is 0x0. This value will be
315  * called MX51_ECSPI_PERIOD_MIN_DELAY_SCK.
316  *
317  * If the PERIOD register is != 0, the controller inserts a delay of
318  * MX51_ECSPI_PERIOD_MIN_DELAY_SCK + register value + 1 SCLK after each burst.
319  */
320 #define MX51_ECSPI_PERIOD_MIN_DELAY_SCK 4
321 
322 #define MX51_ECSPI_TESTREG	0x20
323 #define MX51_ECSPI_TESTREG_LBC	BIT(31)
324 
spi_imx_buf_rx_swap_u32(struct spi_imx_data * spi_imx)325 static void spi_imx_buf_rx_swap_u32(struct spi_imx_data *spi_imx)
326 {
327 	unsigned int val = readl(spi_imx->base + MXC_CSPIRXDATA);
328 
329 	if (spi_imx->rx_buf) {
330 #ifdef __LITTLE_ENDIAN
331 		unsigned int bytes_per_word;
332 
333 		bytes_per_word = spi_imx_bytes_per_word(spi_imx->bits_per_word);
334 		if (bytes_per_word == 1)
335 			swab32s(&val);
336 		else if (bytes_per_word == 2)
337 			swahw32s(&val);
338 #endif
339 		*(u32 *)spi_imx->rx_buf = val;
340 		spi_imx->rx_buf += sizeof(u32);
341 	}
342 
343 	spi_imx->remainder -= sizeof(u32);
344 }
345 
spi_imx_buf_rx_swap(struct spi_imx_data * spi_imx)346 static void spi_imx_buf_rx_swap(struct spi_imx_data *spi_imx)
347 {
348 	int unaligned;
349 	u32 val;
350 
351 	unaligned = spi_imx->remainder % 4;
352 
353 	if (!unaligned) {
354 		spi_imx_buf_rx_swap_u32(spi_imx);
355 		return;
356 	}
357 
358 	if (spi_imx_bytes_per_word(spi_imx->bits_per_word) == 2) {
359 		spi_imx_buf_rx_u16(spi_imx);
360 		return;
361 	}
362 
363 	val = readl(spi_imx->base + MXC_CSPIRXDATA);
364 
365 	while (unaligned--) {
366 		if (spi_imx->rx_buf) {
367 			*(u8 *)spi_imx->rx_buf = (val >> (8 * unaligned)) & 0xff;
368 			spi_imx->rx_buf++;
369 		}
370 		spi_imx->remainder--;
371 	}
372 }
373 
spi_imx_buf_tx_swap_u32(struct spi_imx_data * spi_imx)374 static void spi_imx_buf_tx_swap_u32(struct spi_imx_data *spi_imx)
375 {
376 	u32 val = 0;
377 #ifdef __LITTLE_ENDIAN
378 	unsigned int bytes_per_word;
379 #endif
380 
381 	if (spi_imx->tx_buf) {
382 		val = *(u32 *)spi_imx->tx_buf;
383 		spi_imx->tx_buf += sizeof(u32);
384 	}
385 
386 	spi_imx->count -= sizeof(u32);
387 #ifdef __LITTLE_ENDIAN
388 	bytes_per_word = spi_imx_bytes_per_word(spi_imx->bits_per_word);
389 
390 	if (bytes_per_word == 1)
391 		swab32s(&val);
392 	else if (bytes_per_word == 2)
393 		swahw32s(&val);
394 #endif
395 	writel(val, spi_imx->base + MXC_CSPITXDATA);
396 }
397 
spi_imx_buf_tx_swap(struct spi_imx_data * spi_imx)398 static void spi_imx_buf_tx_swap(struct spi_imx_data *spi_imx)
399 {
400 	int unaligned;
401 	u32 val = 0;
402 
403 	unaligned = spi_imx->count % 4;
404 
405 	if (!unaligned) {
406 		spi_imx_buf_tx_swap_u32(spi_imx);
407 		return;
408 	}
409 
410 	if (spi_imx_bytes_per_word(spi_imx->bits_per_word) == 2) {
411 		spi_imx_buf_tx_u16(spi_imx);
412 		return;
413 	}
414 
415 	while (unaligned--) {
416 		if (spi_imx->tx_buf) {
417 			val |= *(u8 *)spi_imx->tx_buf << (8 * unaligned);
418 			spi_imx->tx_buf++;
419 		}
420 		spi_imx->count--;
421 	}
422 
423 	writel(val, spi_imx->base + MXC_CSPITXDATA);
424 }
425 
mx53_ecspi_rx_target(struct spi_imx_data * spi_imx)426 static void mx53_ecspi_rx_target(struct spi_imx_data *spi_imx)
427 {
428 	u32 val = readl(spi_imx->base + MXC_CSPIRXDATA);
429 #ifdef __LITTLE_ENDIAN
430 	unsigned int bytes_per_word = spi_imx_bytes_per_word(spi_imx->bits_per_word);
431 
432 	if (bytes_per_word == 1)
433 		swab32s(&val);
434 	else if (bytes_per_word == 2)
435 		swahw32s(&val);
436 #endif
437 	if (spi_imx->rx_buf) {
438 		int n_bytes = spi_imx->target_burst % sizeof(val);
439 
440 		if (!n_bytes)
441 			n_bytes = sizeof(val);
442 
443 		memcpy(spi_imx->rx_buf,
444 		       ((u8 *)&val) + sizeof(val) - n_bytes, n_bytes);
445 
446 		spi_imx->rx_buf += n_bytes;
447 		spi_imx->target_burst -= n_bytes;
448 	}
449 
450 	spi_imx->remainder -= sizeof(u32);
451 }
452 
mx53_ecspi_tx_target(struct spi_imx_data * spi_imx)453 static void mx53_ecspi_tx_target(struct spi_imx_data *spi_imx)
454 {
455 	u32 val = 0;
456 	int n_bytes = spi_imx->count % sizeof(val);
457 #ifdef __LITTLE_ENDIAN
458 	unsigned int bytes_per_word;
459 #endif
460 
461 	if (!n_bytes)
462 		n_bytes = sizeof(val);
463 
464 	if (spi_imx->tx_buf) {
465 		memcpy(((u8 *)&val) + sizeof(val) - n_bytes,
466 		       spi_imx->tx_buf, n_bytes);
467 		spi_imx->tx_buf += n_bytes;
468 	}
469 
470 	spi_imx->count -= n_bytes;
471 
472 #ifdef __LITTLE_ENDIAN
473 	bytes_per_word = spi_imx_bytes_per_word(spi_imx->bits_per_word);
474 	if (bytes_per_word == 1)
475 		swab32s(&val);
476 	else if (bytes_per_word == 2)
477 		swahw32s(&val);
478 #endif
479 	writel(val, spi_imx->base + MXC_CSPITXDATA);
480 }
481 
482 /* MX51 eCSPI */
mx51_ecspi_clkdiv(struct spi_imx_data * spi_imx,unsigned int fspi,unsigned int * fres)483 static unsigned int mx51_ecspi_clkdiv(struct spi_imx_data *spi_imx,
484 				      unsigned int fspi, unsigned int *fres)
485 {
486 	/*
487 	 * there are two 4-bit dividers, the pre-divider divides by
488 	 * $pre, the post-divider by 2^$post
489 	 */
490 	unsigned int pre, post;
491 	unsigned int fin = spi_imx->spi_clk;
492 
493 	fspi = min(fspi, fin);
494 
495 	post = fls(fin) - fls(fspi);
496 	if (fin > fspi << post)
497 		post++;
498 
499 	/* now we have: (fin <= fspi << post) with post being minimal */
500 
501 	post = max(4U, post) - 4;
502 	if (unlikely(post > 0xf)) {
503 		dev_err(spi_imx->dev, "cannot set clock freq: %u (base freq: %u)\n",
504 				fspi, fin);
505 		return 0xff;
506 	}
507 
508 	pre = DIV_ROUND_UP(fin, fspi << post) - 1;
509 
510 	dev_dbg(spi_imx->dev, "%s: fin: %u, fspi: %u, post: %u, pre: %u\n",
511 			__func__, fin, fspi, post, pre);
512 
513 	/* Resulting frequency for the SCLK line. */
514 	*fres = (fin / (pre + 1)) >> post;
515 
516 	return (pre << MX51_ECSPI_CTRL_PREDIV_OFFSET) |
517 		(post << MX51_ECSPI_CTRL_POSTDIV_OFFSET);
518 }
519 
mx51_ecspi_intctrl(struct spi_imx_data * spi_imx,int enable)520 static void mx51_ecspi_intctrl(struct spi_imx_data *spi_imx, int enable)
521 {
522 	unsigned int val = 0;
523 
524 	if (enable & MXC_INT_TE)
525 		val |= MX51_ECSPI_INT_TEEN;
526 
527 	if (enable & MXC_INT_RR)
528 		val |= MX51_ECSPI_INT_RREN;
529 
530 	if (enable & MXC_INT_RDR)
531 		val |= MX51_ECSPI_INT_RDREN;
532 
533 	writel(val, spi_imx->base + MX51_ECSPI_INT);
534 }
535 
mx51_ecspi_trigger(struct spi_imx_data * spi_imx)536 static void mx51_ecspi_trigger(struct spi_imx_data *spi_imx)
537 {
538 	u32 reg;
539 
540 	if (spi_imx->usedma) {
541 		reg = readl(spi_imx->base + MX51_ECSPI_DMA);
542 		reg |= MX51_ECSPI_DMA_TEDEN | MX51_ECSPI_DMA_RXDEN;
543 		writel(reg, spi_imx->base + MX51_ECSPI_DMA);
544 	} else {
545 		reg = readl(spi_imx->base + MX51_ECSPI_CTRL);
546 		reg |= MX51_ECSPI_CTRL_XCH;
547 		writel(reg, spi_imx->base + MX51_ECSPI_CTRL);
548 	}
549 }
550 
mx51_ecspi_disable(struct spi_imx_data * spi_imx)551 static void mx51_ecspi_disable(struct spi_imx_data *spi_imx)
552 {
553 	u32 ctrl;
554 
555 	ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL);
556 	ctrl &= ~MX51_ECSPI_CTRL_ENABLE;
557 	writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
558 }
559 
mx51_ecspi_channel(const struct spi_device * spi)560 static int mx51_ecspi_channel(const struct spi_device *spi)
561 {
562 	if (!spi_get_csgpiod(spi, 0))
563 		return spi_get_chipselect(spi, 0);
564 	return spi->controller->unused_native_cs;
565 }
566 
mx51_ecspi_prepare_message(struct spi_imx_data * spi_imx,struct spi_message * msg)567 static int mx51_ecspi_prepare_message(struct spi_imx_data *spi_imx,
568 				      struct spi_message *msg)
569 {
570 	struct spi_device *spi = msg->spi;
571 	struct spi_transfer *xfer;
572 	u32 ctrl = MX51_ECSPI_CTRL_ENABLE;
573 	u32 min_speed_hz = ~0U;
574 	u32 testreg, delay;
575 	u32 cfg = readl(spi_imx->base + MX51_ECSPI_CONFIG);
576 	u32 current_cfg = cfg;
577 	int channel = mx51_ecspi_channel(spi);
578 
579 	/* set Host or Target mode */
580 	if (spi_imx->target_mode)
581 		ctrl &= ~MX51_ECSPI_CTRL_MODE_MASK;
582 	else
583 		ctrl |= MX51_ECSPI_CTRL_MODE_MASK;
584 
585 	/*
586 	 * Enable SPI_RDY handling (falling edge/level triggered).
587 	 */
588 	if (spi->mode & SPI_READY)
589 		ctrl |= MX51_ECSPI_CTRL_DRCTL(spi_imx->spi_drctl);
590 
591 	/* set chip select to use */
592 	ctrl |= MX51_ECSPI_CTRL_CS(channel);
593 
594 	/*
595 	 * The ctrl register must be written first, with the EN bit set other
596 	 * registers must not be written to.
597 	 */
598 	writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
599 
600 	testreg = readl(spi_imx->base + MX51_ECSPI_TESTREG);
601 	if (spi->mode & SPI_LOOP)
602 		testreg |= MX51_ECSPI_TESTREG_LBC;
603 	else
604 		testreg &= ~MX51_ECSPI_TESTREG_LBC;
605 	writel(testreg, spi_imx->base + MX51_ECSPI_TESTREG);
606 
607 	/*
608 	 * eCSPI burst completion by Chip Select signal in Target mode
609 	 * is not functional for imx53 Soc, config SPI burst completed when
610 	 * BURST_LENGTH + 1 bits are received
611 	 */
612 	if (spi_imx->target_mode)
613 		cfg &= ~MX51_ECSPI_CONFIG_SBBCTRL(channel);
614 	else
615 		cfg |= MX51_ECSPI_CONFIG_SBBCTRL(channel);
616 
617 	if (spi->mode & SPI_CPOL) {
618 		cfg |= MX51_ECSPI_CONFIG_SCLKPOL(channel);
619 		cfg |= MX51_ECSPI_CONFIG_SCLKCTL(channel);
620 	} else {
621 		cfg &= ~MX51_ECSPI_CONFIG_SCLKPOL(channel);
622 		cfg &= ~MX51_ECSPI_CONFIG_SCLKCTL(channel);
623 	}
624 
625 	if (spi->mode & SPI_MOSI_IDLE_LOW)
626 		cfg |= MX51_ECSPI_CONFIG_DATACTL(channel);
627 	else
628 		cfg &= ~MX51_ECSPI_CONFIG_DATACTL(channel);
629 
630 	if (spi->mode & SPI_CS_HIGH)
631 		cfg |= MX51_ECSPI_CONFIG_SSBPOL(channel);
632 	else
633 		cfg &= ~MX51_ECSPI_CONFIG_SSBPOL(channel);
634 
635 	if (cfg == current_cfg)
636 		return 0;
637 
638 	writel(cfg, spi_imx->base + MX51_ECSPI_CONFIG);
639 
640 	/*
641 	 * Wait until the changes in the configuration register CONFIGREG
642 	 * propagate into the hardware. It takes exactly one tick of the
643 	 * SCLK clock, but we will wait two SCLK clock just to be sure. The
644 	 * effect of the delay it takes for the hardware to apply changes
645 	 * is noticable if the SCLK clock run very slow. In such a case, if
646 	 * the polarity of SCLK should be inverted, the GPIO ChipSelect might
647 	 * be asserted before the SCLK polarity changes, which would disrupt
648 	 * the SPI communication as the device on the other end would consider
649 	 * the change of SCLK polarity as a clock tick already.
650 	 *
651 	 * Because spi_imx->spi_bus_clk is only set in prepare_message
652 	 * callback, iterate over all the transfers in spi_message, find the
653 	 * one with lowest bus frequency, and use that bus frequency for the
654 	 * delay calculation. In case all transfers have speed_hz == 0, then
655 	 * min_speed_hz is ~0 and the resulting delay is zero.
656 	 */
657 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
658 		if (!xfer->speed_hz)
659 			continue;
660 		min_speed_hz = min(xfer->speed_hz, min_speed_hz);
661 	}
662 
663 	delay = (2 * 1000000) / min_speed_hz;
664 	if (likely(delay < 10))	/* SCLK is faster than 200 kHz */
665 		udelay(delay);
666 	else			/* SCLK is _very_ slow */
667 		usleep_range(delay, delay + 10);
668 
669 	return 0;
670 }
671 
mx51_configure_cpha(struct spi_imx_data * spi_imx,struct spi_device * spi)672 static void mx51_configure_cpha(struct spi_imx_data *spi_imx,
673 				struct spi_device *spi)
674 {
675 	bool cpha = (spi->mode & SPI_CPHA);
676 	bool flip_cpha = (spi->mode & SPI_RX_CPHA_FLIP) && spi_imx->rx_only;
677 	u32 cfg = readl(spi_imx->base + MX51_ECSPI_CONFIG);
678 	int channel = mx51_ecspi_channel(spi);
679 
680 	/* Flip cpha logical value iff flip_cpha */
681 	cpha ^= flip_cpha;
682 
683 	if (cpha)
684 		cfg |= MX51_ECSPI_CONFIG_SCLKPHA(channel);
685 	else
686 		cfg &= ~MX51_ECSPI_CONFIG_SCLKPHA(channel);
687 
688 	writel(cfg, spi_imx->base + MX51_ECSPI_CONFIG);
689 }
690 
mx51_ecspi_prepare_transfer(struct spi_imx_data * spi_imx,struct spi_device * spi,struct spi_transfer * t)691 static int mx51_ecspi_prepare_transfer(struct spi_imx_data *spi_imx,
692 				       struct spi_device *spi, struct spi_transfer *t)
693 {
694 	u32 ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL);
695 	u64 word_delay_sck;
696 	u32 clk;
697 
698 	/* Clear BL field and set the right value */
699 	ctrl &= ~MX51_ECSPI_CTRL_BL_MASK;
700 	if (spi_imx->target_mode)
701 		ctrl |= (spi_imx->target_burst * 8 - 1)
702 			<< MX51_ECSPI_CTRL_BL_OFFSET;
703 	else {
704 		ctrl |= (spi_imx->bits_per_word - 1)
705 			<< MX51_ECSPI_CTRL_BL_OFFSET;
706 	}
707 
708 	/* set clock speed */
709 	ctrl &= ~(0xf << MX51_ECSPI_CTRL_POSTDIV_OFFSET |
710 		  0xf << MX51_ECSPI_CTRL_PREDIV_OFFSET);
711 
712 	if (!spi_imx->target_mode) {
713 		ctrl |= mx51_ecspi_clkdiv(spi_imx, spi_imx->spi_bus_clk, &clk);
714 		spi_imx->spi_bus_clk = clk;
715 	}
716 
717 	mx51_configure_cpha(spi_imx, spi);
718 
719 	/*
720 	 * ERR009165: work in XHC mode instead of SMC as PIO on the chips
721 	 * before i.mx6ul.
722 	 */
723 	if (spi_imx->usedma && spi_imx->devtype_data->tx_glitch_fixed)
724 		ctrl |= MX51_ECSPI_CTRL_SMC;
725 	else
726 		ctrl &= ~MX51_ECSPI_CTRL_SMC;
727 
728 	writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
729 
730 	/* calculate word delay in SPI Clock (SCLK) cycles */
731 	if (t->word_delay.value == 0) {
732 		word_delay_sck = 0;
733 	} else if (t->word_delay.unit == SPI_DELAY_UNIT_SCK) {
734 		word_delay_sck = t->word_delay.value;
735 
736 		if (word_delay_sck <= MX51_ECSPI_PERIOD_MIN_DELAY_SCK)
737 			word_delay_sck = 0;
738 		else if (word_delay_sck <= MX51_ECSPI_PERIOD_MIN_DELAY_SCK + 1)
739 			word_delay_sck = 1;
740 		else
741 			word_delay_sck -= MX51_ECSPI_PERIOD_MIN_DELAY_SCK + 1;
742 	} else {
743 		int word_delay_ns;
744 
745 		word_delay_ns = spi_delay_to_ns(&t->word_delay, t);
746 		if (word_delay_ns < 0)
747 			return word_delay_ns;
748 
749 		if (word_delay_ns <= mul_u64_u32_div(NSEC_PER_SEC,
750 						     MX51_ECSPI_PERIOD_MIN_DELAY_SCK,
751 						     spi_imx->spi_bus_clk)) {
752 			word_delay_sck = 0;
753 		} else if (word_delay_ns <= mul_u64_u32_div(NSEC_PER_SEC,
754 							    MX51_ECSPI_PERIOD_MIN_DELAY_SCK + 1,
755 							    spi_imx->spi_bus_clk)) {
756 			word_delay_sck = 1;
757 		} else {
758 			word_delay_ns -= mul_u64_u32_div(NSEC_PER_SEC,
759 							 MX51_ECSPI_PERIOD_MIN_DELAY_SCK + 1,
760 							 spi_imx->spi_bus_clk);
761 
762 			word_delay_sck = DIV_U64_ROUND_UP((u64)word_delay_ns * spi_imx->spi_bus_clk,
763 							  NSEC_PER_SEC);
764 		}
765 	}
766 
767 	if (!FIELD_FIT(MX51_ECSPI_PERIOD_MASK, word_delay_sck))
768 		return -EINVAL;
769 
770 	writel(FIELD_PREP(MX51_ECSPI_PERIOD_MASK, word_delay_sck),
771 	       spi_imx->base + MX51_ECSPI_PERIOD);
772 
773 	return 0;
774 }
775 
mx51_setup_wml(struct spi_imx_data * spi_imx)776 static void mx51_setup_wml(struct spi_imx_data *spi_imx)
777 {
778 	u32 tx_wml = 0;
779 
780 	if (spi_imx->devtype_data->tx_glitch_fixed)
781 		tx_wml = spi_imx->wml;
782 	/*
783 	 * Configure the DMA register: setup the watermark
784 	 * and enable DMA request.
785 	 */
786 	writel(MX51_ECSPI_DMA_RX_WML(spi_imx->wml - 1) |
787 		MX51_ECSPI_DMA_TX_WML(tx_wml) |
788 		MX51_ECSPI_DMA_RXT_WML(spi_imx->wml) |
789 		MX51_ECSPI_DMA_RXTDEN, spi_imx->base + MX51_ECSPI_DMA);
790 }
791 
mx51_ecspi_rx_available(struct spi_imx_data * spi_imx)792 static int mx51_ecspi_rx_available(struct spi_imx_data *spi_imx)
793 {
794 	return readl(spi_imx->base + MX51_ECSPI_STAT) & MX51_ECSPI_STAT_RR;
795 }
796 
mx51_ecspi_reset(struct spi_imx_data * spi_imx)797 static void mx51_ecspi_reset(struct spi_imx_data *spi_imx)
798 {
799 	/* drain receive buffer */
800 	while (mx51_ecspi_rx_available(spi_imx))
801 		readl(spi_imx->base + MXC_CSPIRXDATA);
802 }
803 
804 #define MX31_INTREG_TEEN	(1 << 0)
805 #define MX31_INTREG_RREN	(1 << 3)
806 
807 #define MX31_CSPICTRL_ENABLE	(1 << 0)
808 #define MX31_CSPICTRL_HOST	(1 << 1)
809 #define MX31_CSPICTRL_XCH	(1 << 2)
810 #define MX31_CSPICTRL_SMC	(1 << 3)
811 #define MX31_CSPICTRL_POL	(1 << 4)
812 #define MX31_CSPICTRL_PHA	(1 << 5)
813 #define MX31_CSPICTRL_SSCTL	(1 << 6)
814 #define MX31_CSPICTRL_SSPOL	(1 << 7)
815 #define MX31_CSPICTRL_BC_SHIFT	8
816 #define MX35_CSPICTRL_BL_SHIFT	20
817 #define MX31_CSPICTRL_CS_SHIFT	24
818 #define MX35_CSPICTRL_CS_SHIFT	12
819 #define MX31_CSPICTRL_DR_SHIFT	16
820 
821 #define MX31_CSPI_DMAREG	0x10
822 #define MX31_DMAREG_RH_DEN	(1<<4)
823 #define MX31_DMAREG_TH_DEN	(1<<1)
824 
825 #define MX31_CSPISTATUS		0x14
826 #define MX31_STATUS_RR		(1 << 3)
827 
828 #define MX31_CSPI_TESTREG	0x1C
829 #define MX31_TEST_LBC		(1 << 14)
830 
831 /* These functions also work for the i.MX35, but be aware that
832  * the i.MX35 has a slightly different register layout for bits
833  * we do not use here.
834  */
mx31_intctrl(struct spi_imx_data * spi_imx,int enable)835 static void mx31_intctrl(struct spi_imx_data *spi_imx, int enable)
836 {
837 	unsigned int val = 0;
838 
839 	if (enable & MXC_INT_TE)
840 		val |= MX31_INTREG_TEEN;
841 	if (enable & MXC_INT_RR)
842 		val |= MX31_INTREG_RREN;
843 
844 	writel(val, spi_imx->base + MXC_CSPIINT);
845 }
846 
mx31_trigger(struct spi_imx_data * spi_imx)847 static void mx31_trigger(struct spi_imx_data *spi_imx)
848 {
849 	unsigned int reg;
850 
851 	reg = readl(spi_imx->base + MXC_CSPICTRL);
852 	reg |= MX31_CSPICTRL_XCH;
853 	writel(reg, spi_imx->base + MXC_CSPICTRL);
854 }
855 
mx31_prepare_message(struct spi_imx_data * spi_imx,struct spi_message * msg)856 static int mx31_prepare_message(struct spi_imx_data *spi_imx,
857 				struct spi_message *msg)
858 {
859 	return 0;
860 }
861 
mx31_prepare_transfer(struct spi_imx_data * spi_imx,struct spi_device * spi,struct spi_transfer * t)862 static int mx31_prepare_transfer(struct spi_imx_data *spi_imx,
863 				 struct spi_device *spi, struct spi_transfer *t)
864 {
865 	unsigned int reg = MX31_CSPICTRL_ENABLE | MX31_CSPICTRL_HOST;
866 	unsigned int clk;
867 
868 	reg |= spi_imx_clkdiv_2(spi_imx->spi_clk, spi_imx->spi_bus_clk, &clk) <<
869 		MX31_CSPICTRL_DR_SHIFT;
870 	spi_imx->spi_bus_clk = clk;
871 
872 	if (is_imx35_cspi(spi_imx)) {
873 		reg |= (spi_imx->bits_per_word - 1) << MX35_CSPICTRL_BL_SHIFT;
874 		reg |= MX31_CSPICTRL_SSCTL;
875 	} else {
876 		reg |= (spi_imx->bits_per_word - 1) << MX31_CSPICTRL_BC_SHIFT;
877 	}
878 
879 	if (spi->mode & SPI_CPHA)
880 		reg |= MX31_CSPICTRL_PHA;
881 	if (spi->mode & SPI_CPOL)
882 		reg |= MX31_CSPICTRL_POL;
883 	if (spi->mode & SPI_CS_HIGH)
884 		reg |= MX31_CSPICTRL_SSPOL;
885 	if (!spi_get_csgpiod(spi, 0))
886 		reg |= (spi_get_chipselect(spi, 0)) <<
887 			(is_imx35_cspi(spi_imx) ? MX35_CSPICTRL_CS_SHIFT :
888 						  MX31_CSPICTRL_CS_SHIFT);
889 
890 	if (spi_imx->usedma)
891 		reg |= MX31_CSPICTRL_SMC;
892 
893 	writel(reg, spi_imx->base + MXC_CSPICTRL);
894 
895 	reg = readl(spi_imx->base + MX31_CSPI_TESTREG);
896 	if (spi->mode & SPI_LOOP)
897 		reg |= MX31_TEST_LBC;
898 	else
899 		reg &= ~MX31_TEST_LBC;
900 	writel(reg, spi_imx->base + MX31_CSPI_TESTREG);
901 
902 	if (spi_imx->usedma) {
903 		/*
904 		 * configure DMA requests when RXFIFO is half full and
905 		 * when TXFIFO is half empty
906 		 */
907 		writel(MX31_DMAREG_RH_DEN | MX31_DMAREG_TH_DEN,
908 			spi_imx->base + MX31_CSPI_DMAREG);
909 	}
910 
911 	return 0;
912 }
913 
mx31_rx_available(struct spi_imx_data * spi_imx)914 static int mx31_rx_available(struct spi_imx_data *spi_imx)
915 {
916 	return readl(spi_imx->base + MX31_CSPISTATUS) & MX31_STATUS_RR;
917 }
918 
mx31_reset(struct spi_imx_data * spi_imx)919 static void mx31_reset(struct spi_imx_data *spi_imx)
920 {
921 	/* drain receive buffer */
922 	while (readl(spi_imx->base + MX31_CSPISTATUS) & MX31_STATUS_RR)
923 		readl(spi_imx->base + MXC_CSPIRXDATA);
924 }
925 
926 #define MX21_INTREG_RR		(1 << 4)
927 #define MX21_INTREG_TEEN	(1 << 9)
928 #define MX21_INTREG_RREN	(1 << 13)
929 
930 #define MX21_CSPICTRL_POL	(1 << 5)
931 #define MX21_CSPICTRL_PHA	(1 << 6)
932 #define MX21_CSPICTRL_SSPOL	(1 << 8)
933 #define MX21_CSPICTRL_XCH	(1 << 9)
934 #define MX21_CSPICTRL_ENABLE	(1 << 10)
935 #define MX21_CSPICTRL_HOST	(1 << 11)
936 #define MX21_CSPICTRL_DR_SHIFT	14
937 #define MX21_CSPICTRL_CS_SHIFT	19
938 
mx21_intctrl(struct spi_imx_data * spi_imx,int enable)939 static void mx21_intctrl(struct spi_imx_data *spi_imx, int enable)
940 {
941 	unsigned int val = 0;
942 
943 	if (enable & MXC_INT_TE)
944 		val |= MX21_INTREG_TEEN;
945 	if (enable & MXC_INT_RR)
946 		val |= MX21_INTREG_RREN;
947 
948 	writel(val, spi_imx->base + MXC_CSPIINT);
949 }
950 
mx21_trigger(struct spi_imx_data * spi_imx)951 static void mx21_trigger(struct spi_imx_data *spi_imx)
952 {
953 	unsigned int reg;
954 
955 	reg = readl(spi_imx->base + MXC_CSPICTRL);
956 	reg |= MX21_CSPICTRL_XCH;
957 	writel(reg, spi_imx->base + MXC_CSPICTRL);
958 }
959 
mx21_prepare_message(struct spi_imx_data * spi_imx,struct spi_message * msg)960 static int mx21_prepare_message(struct spi_imx_data *spi_imx,
961 				struct spi_message *msg)
962 {
963 	return 0;
964 }
965 
mx21_prepare_transfer(struct spi_imx_data * spi_imx,struct spi_device * spi,struct spi_transfer * t)966 static int mx21_prepare_transfer(struct spi_imx_data *spi_imx,
967 				 struct spi_device *spi, struct spi_transfer *t)
968 {
969 	unsigned int reg = MX21_CSPICTRL_ENABLE | MX21_CSPICTRL_HOST;
970 	unsigned int max = is_imx27_cspi(spi_imx) ? 16 : 18;
971 	unsigned int clk;
972 
973 	reg |= spi_imx_clkdiv_1(spi_imx->spi_clk, spi_imx->spi_bus_clk, max, &clk)
974 		<< MX21_CSPICTRL_DR_SHIFT;
975 	spi_imx->spi_bus_clk = clk;
976 
977 	reg |= spi_imx->bits_per_word - 1;
978 
979 	if (spi->mode & SPI_CPHA)
980 		reg |= MX21_CSPICTRL_PHA;
981 	if (spi->mode & SPI_CPOL)
982 		reg |= MX21_CSPICTRL_POL;
983 	if (spi->mode & SPI_CS_HIGH)
984 		reg |= MX21_CSPICTRL_SSPOL;
985 	if (!spi_get_csgpiod(spi, 0))
986 		reg |= spi_get_chipselect(spi, 0) << MX21_CSPICTRL_CS_SHIFT;
987 
988 	writel(reg, spi_imx->base + MXC_CSPICTRL);
989 
990 	return 0;
991 }
992 
mx21_rx_available(struct spi_imx_data * spi_imx)993 static int mx21_rx_available(struct spi_imx_data *spi_imx)
994 {
995 	return readl(spi_imx->base + MXC_CSPIINT) & MX21_INTREG_RR;
996 }
997 
mx21_reset(struct spi_imx_data * spi_imx)998 static void mx21_reset(struct spi_imx_data *spi_imx)
999 {
1000 	writel(1, spi_imx->base + MXC_RESET);
1001 }
1002 
1003 #define MX1_INTREG_RR		(1 << 3)
1004 #define MX1_INTREG_TEEN		(1 << 8)
1005 #define MX1_INTREG_RREN		(1 << 11)
1006 
1007 #define MX1_CSPICTRL_POL	(1 << 4)
1008 #define MX1_CSPICTRL_PHA	(1 << 5)
1009 #define MX1_CSPICTRL_XCH	(1 << 8)
1010 #define MX1_CSPICTRL_ENABLE	(1 << 9)
1011 #define MX1_CSPICTRL_HOST	(1 << 10)
1012 #define MX1_CSPICTRL_DR_SHIFT	13
1013 
mx1_intctrl(struct spi_imx_data * spi_imx,int enable)1014 static void mx1_intctrl(struct spi_imx_data *spi_imx, int enable)
1015 {
1016 	unsigned int val = 0;
1017 
1018 	if (enable & MXC_INT_TE)
1019 		val |= MX1_INTREG_TEEN;
1020 	if (enable & MXC_INT_RR)
1021 		val |= MX1_INTREG_RREN;
1022 
1023 	writel(val, spi_imx->base + MXC_CSPIINT);
1024 }
1025 
mx1_trigger(struct spi_imx_data * spi_imx)1026 static void mx1_trigger(struct spi_imx_data *spi_imx)
1027 {
1028 	unsigned int reg;
1029 
1030 	reg = readl(spi_imx->base + MXC_CSPICTRL);
1031 	reg |= MX1_CSPICTRL_XCH;
1032 	writel(reg, spi_imx->base + MXC_CSPICTRL);
1033 }
1034 
mx1_prepare_message(struct spi_imx_data * spi_imx,struct spi_message * msg)1035 static int mx1_prepare_message(struct spi_imx_data *spi_imx,
1036 			       struct spi_message *msg)
1037 {
1038 	return 0;
1039 }
1040 
mx1_prepare_transfer(struct spi_imx_data * spi_imx,struct spi_device * spi,struct spi_transfer * t)1041 static int mx1_prepare_transfer(struct spi_imx_data *spi_imx,
1042 				struct spi_device *spi, struct spi_transfer *t)
1043 {
1044 	unsigned int reg = MX1_CSPICTRL_ENABLE | MX1_CSPICTRL_HOST;
1045 	unsigned int clk;
1046 
1047 	reg |= spi_imx_clkdiv_2(spi_imx->spi_clk, spi_imx->spi_bus_clk, &clk) <<
1048 		MX1_CSPICTRL_DR_SHIFT;
1049 	spi_imx->spi_bus_clk = clk;
1050 
1051 	reg |= spi_imx->bits_per_word - 1;
1052 
1053 	if (spi->mode & SPI_CPHA)
1054 		reg |= MX1_CSPICTRL_PHA;
1055 	if (spi->mode & SPI_CPOL)
1056 		reg |= MX1_CSPICTRL_POL;
1057 
1058 	writel(reg, spi_imx->base + MXC_CSPICTRL);
1059 
1060 	return 0;
1061 }
1062 
mx1_rx_available(struct spi_imx_data * spi_imx)1063 static int mx1_rx_available(struct spi_imx_data *spi_imx)
1064 {
1065 	return readl(spi_imx->base + MXC_CSPIINT) & MX1_INTREG_RR;
1066 }
1067 
mx1_reset(struct spi_imx_data * spi_imx)1068 static void mx1_reset(struct spi_imx_data *spi_imx)
1069 {
1070 	writel(1, spi_imx->base + MXC_RESET);
1071 }
1072 
1073 static struct spi_imx_devtype_data imx1_cspi_devtype_data = {
1074 	.intctrl = mx1_intctrl,
1075 	.prepare_message = mx1_prepare_message,
1076 	.prepare_transfer = mx1_prepare_transfer,
1077 	.trigger = mx1_trigger,
1078 	.rx_available = mx1_rx_available,
1079 	.reset = mx1_reset,
1080 	.fifo_size = 8,
1081 	.has_dmamode = false,
1082 	.dynamic_burst = false,
1083 	.has_targetmode = false,
1084 	.devtype = IMX1_CSPI,
1085 };
1086 
1087 static struct spi_imx_devtype_data imx21_cspi_devtype_data = {
1088 	.intctrl = mx21_intctrl,
1089 	.prepare_message = mx21_prepare_message,
1090 	.prepare_transfer = mx21_prepare_transfer,
1091 	.trigger = mx21_trigger,
1092 	.rx_available = mx21_rx_available,
1093 	.reset = mx21_reset,
1094 	.fifo_size = 8,
1095 	.has_dmamode = false,
1096 	.dynamic_burst = false,
1097 	.has_targetmode = false,
1098 	.devtype = IMX21_CSPI,
1099 };
1100 
1101 static struct spi_imx_devtype_data imx27_cspi_devtype_data = {
1102 	/* i.mx27 cspi shares the functions with i.mx21 one */
1103 	.intctrl = mx21_intctrl,
1104 	.prepare_message = mx21_prepare_message,
1105 	.prepare_transfer = mx21_prepare_transfer,
1106 	.trigger = mx21_trigger,
1107 	.rx_available = mx21_rx_available,
1108 	.reset = mx21_reset,
1109 	.fifo_size = 8,
1110 	.has_dmamode = false,
1111 	.dynamic_burst = false,
1112 	.has_targetmode = false,
1113 	.devtype = IMX27_CSPI,
1114 };
1115 
1116 static struct spi_imx_devtype_data imx31_cspi_devtype_data = {
1117 	.intctrl = mx31_intctrl,
1118 	.prepare_message = mx31_prepare_message,
1119 	.prepare_transfer = mx31_prepare_transfer,
1120 	.trigger = mx31_trigger,
1121 	.rx_available = mx31_rx_available,
1122 	.reset = mx31_reset,
1123 	.fifo_size = 8,
1124 	.has_dmamode = false,
1125 	.dynamic_burst = false,
1126 	.has_targetmode = false,
1127 	.devtype = IMX31_CSPI,
1128 };
1129 
1130 static struct spi_imx_devtype_data imx35_cspi_devtype_data = {
1131 	/* i.mx35 and later cspi shares the functions with i.mx31 one */
1132 	.intctrl = mx31_intctrl,
1133 	.prepare_message = mx31_prepare_message,
1134 	.prepare_transfer = mx31_prepare_transfer,
1135 	.trigger = mx31_trigger,
1136 	.rx_available = mx31_rx_available,
1137 	.reset = mx31_reset,
1138 	.fifo_size = 8,
1139 	.has_dmamode = false,
1140 	.dynamic_burst = false,
1141 	.has_targetmode = false,
1142 	.devtype = IMX35_CSPI,
1143 };
1144 
1145 static struct spi_imx_devtype_data imx51_ecspi_devtype_data = {
1146 	.intctrl = mx51_ecspi_intctrl,
1147 	.prepare_message = mx51_ecspi_prepare_message,
1148 	.prepare_transfer = mx51_ecspi_prepare_transfer,
1149 	.trigger = mx51_ecspi_trigger,
1150 	.rx_available = mx51_ecspi_rx_available,
1151 	.reset = mx51_ecspi_reset,
1152 	.setup_wml = mx51_setup_wml,
1153 	.fifo_size = 64,
1154 	.has_dmamode = true,
1155 	.dynamic_burst = true,
1156 	.has_targetmode = true,
1157 	.disable = mx51_ecspi_disable,
1158 	.devtype = IMX51_ECSPI,
1159 };
1160 
1161 static struct spi_imx_devtype_data imx53_ecspi_devtype_data = {
1162 	.intctrl = mx51_ecspi_intctrl,
1163 	.prepare_message = mx51_ecspi_prepare_message,
1164 	.prepare_transfer = mx51_ecspi_prepare_transfer,
1165 	.trigger = mx51_ecspi_trigger,
1166 	.rx_available = mx51_ecspi_rx_available,
1167 	.reset = mx51_ecspi_reset,
1168 	.fifo_size = 64,
1169 	.has_dmamode = true,
1170 	.has_targetmode = true,
1171 	.disable = mx51_ecspi_disable,
1172 	.devtype = IMX53_ECSPI,
1173 };
1174 
1175 static struct spi_imx_devtype_data imx6ul_ecspi_devtype_data = {
1176 	.intctrl = mx51_ecspi_intctrl,
1177 	.prepare_message = mx51_ecspi_prepare_message,
1178 	.prepare_transfer = mx51_ecspi_prepare_transfer,
1179 	.trigger = mx51_ecspi_trigger,
1180 	.rx_available = mx51_ecspi_rx_available,
1181 	.reset = mx51_ecspi_reset,
1182 	.setup_wml = mx51_setup_wml,
1183 	.fifo_size = 64,
1184 	.has_dmamode = true,
1185 	.dynamic_burst = true,
1186 	.has_targetmode = true,
1187 	.tx_glitch_fixed = true,
1188 	.disable = mx51_ecspi_disable,
1189 	.devtype = IMX51_ECSPI,
1190 };
1191 
1192 static const struct of_device_id spi_imx_dt_ids[] = {
1193 	{ .compatible = "fsl,imx1-cspi", .data = &imx1_cspi_devtype_data, },
1194 	{ .compatible = "fsl,imx21-cspi", .data = &imx21_cspi_devtype_data, },
1195 	{ .compatible = "fsl,imx27-cspi", .data = &imx27_cspi_devtype_data, },
1196 	{ .compatible = "fsl,imx31-cspi", .data = &imx31_cspi_devtype_data, },
1197 	{ .compatible = "fsl,imx35-cspi", .data = &imx35_cspi_devtype_data, },
1198 	{ .compatible = "fsl,imx51-ecspi", .data = &imx51_ecspi_devtype_data, },
1199 	{ .compatible = "fsl,imx53-ecspi", .data = &imx53_ecspi_devtype_data, },
1200 	{ .compatible = "fsl,imx6ul-ecspi", .data = &imx6ul_ecspi_devtype_data, },
1201 	{ /* sentinel */ }
1202 };
1203 MODULE_DEVICE_TABLE(of, spi_imx_dt_ids);
1204 
spi_imx_set_burst_len(struct spi_imx_data * spi_imx,int n_bits)1205 static void spi_imx_set_burst_len(struct spi_imx_data *spi_imx, int n_bits)
1206 {
1207 	u32 ctrl;
1208 
1209 	ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL);
1210 	ctrl &= ~MX51_ECSPI_CTRL_BL_MASK;
1211 	ctrl |= ((n_bits - 1) << MX51_ECSPI_CTRL_BL_OFFSET);
1212 	writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
1213 }
1214 
spi_imx_push(struct spi_imx_data * spi_imx)1215 static void spi_imx_push(struct spi_imx_data *spi_imx)
1216 {
1217 	unsigned int burst_len;
1218 
1219 	/*
1220 	 * Reload the FIFO when the remaining bytes to be transferred in the
1221 	 * current burst is 0. This only applies when bits_per_word is a
1222 	 * multiple of 8.
1223 	 */
1224 	if (!spi_imx->remainder) {
1225 		if (spi_imx->dynamic_burst) {
1226 
1227 			/* We need to deal unaligned data first */
1228 			burst_len = spi_imx->count % MX51_ECSPI_CTRL_MAX_BURST;
1229 
1230 			if (!burst_len)
1231 				burst_len = MX51_ECSPI_CTRL_MAX_BURST;
1232 
1233 			spi_imx_set_burst_len(spi_imx, burst_len * 8);
1234 
1235 			spi_imx->remainder = burst_len;
1236 		} else {
1237 			spi_imx->remainder = spi_imx_bytes_per_word(spi_imx->bits_per_word);
1238 		}
1239 	}
1240 
1241 	while (spi_imx->txfifo < spi_imx->devtype_data->fifo_size) {
1242 		if (!spi_imx->count)
1243 			break;
1244 		if (spi_imx->dynamic_burst &&
1245 		    spi_imx->txfifo >= DIV_ROUND_UP(spi_imx->remainder, 4))
1246 			break;
1247 		spi_imx->tx(spi_imx);
1248 		spi_imx->txfifo++;
1249 	}
1250 
1251 	if (!spi_imx->target_mode)
1252 		spi_imx->devtype_data->trigger(spi_imx);
1253 }
1254 
spi_imx_isr(int irq,void * dev_id)1255 static irqreturn_t spi_imx_isr(int irq, void *dev_id)
1256 {
1257 	struct spi_imx_data *spi_imx = dev_id;
1258 
1259 	while (spi_imx->txfifo &&
1260 	       spi_imx->devtype_data->rx_available(spi_imx)) {
1261 		spi_imx->rx(spi_imx);
1262 		spi_imx->txfifo--;
1263 	}
1264 
1265 	if (spi_imx->count) {
1266 		spi_imx_push(spi_imx);
1267 		return IRQ_HANDLED;
1268 	}
1269 
1270 	if (spi_imx->txfifo) {
1271 		/* No data left to push, but still waiting for rx data,
1272 		 * enable receive data available interrupt.
1273 		 */
1274 		spi_imx->devtype_data->intctrl(
1275 				spi_imx, MXC_INT_RR);
1276 		return IRQ_HANDLED;
1277 	}
1278 
1279 	spi_imx->devtype_data->intctrl(spi_imx, 0);
1280 	complete(&spi_imx->xfer_done);
1281 
1282 	return IRQ_HANDLED;
1283 }
1284 
spi_imx_dma_configure(struct spi_controller * controller)1285 static int spi_imx_dma_configure(struct spi_controller *controller)
1286 {
1287 	int ret;
1288 	enum dma_slave_buswidth buswidth;
1289 	struct dma_slave_config rx = {}, tx = {};
1290 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
1291 
1292 	switch (spi_imx_bytes_per_word(spi_imx->bits_per_word)) {
1293 	case 4:
1294 		buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
1295 		break;
1296 	case 2:
1297 		buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
1298 		break;
1299 	case 1:
1300 		buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
1301 		break;
1302 	default:
1303 		return -EINVAL;
1304 	}
1305 
1306 	tx.direction = DMA_MEM_TO_DEV;
1307 	tx.dst_addr = spi_imx->base_phys + MXC_CSPITXDATA;
1308 	tx.dst_addr_width = buswidth;
1309 	tx.dst_maxburst = spi_imx->wml;
1310 	ret = dmaengine_slave_config(controller->dma_tx, &tx);
1311 	if (ret) {
1312 		dev_err(spi_imx->dev, "TX dma configuration failed with %d\n", ret);
1313 		return ret;
1314 	}
1315 
1316 	rx.direction = DMA_DEV_TO_MEM;
1317 	rx.src_addr = spi_imx->base_phys + MXC_CSPIRXDATA;
1318 	rx.src_addr_width = buswidth;
1319 	rx.src_maxburst = spi_imx->wml;
1320 	ret = dmaengine_slave_config(controller->dma_rx, &rx);
1321 	if (ret) {
1322 		dev_err(spi_imx->dev, "RX dma configuration failed with %d\n", ret);
1323 		return ret;
1324 	}
1325 
1326 	return 0;
1327 }
1328 
spi_imx_setupxfer(struct spi_device * spi,struct spi_transfer * t)1329 static int spi_imx_setupxfer(struct spi_device *spi,
1330 				 struct spi_transfer *t)
1331 {
1332 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller);
1333 
1334 	if (!t)
1335 		return 0;
1336 
1337 	if (!spi_imx->target_mode) {
1338 		if (!t->speed_hz) {
1339 			if (!spi->max_speed_hz) {
1340 				dev_err(&spi->dev, "no speed_hz provided!\n");
1341 				return -EINVAL;
1342 			}
1343 			dev_dbg(&spi->dev, "using spi->max_speed_hz!\n");
1344 			spi_imx->spi_bus_clk = spi->max_speed_hz;
1345 		} else {
1346 			spi_imx->spi_bus_clk = t->speed_hz;
1347 		}
1348 	}
1349 
1350 	spi_imx->bits_per_word = t->bits_per_word;
1351 	spi_imx->count = t->len;
1352 
1353 	/*
1354 	 * Initialize the functions for transfer. To transfer non byte-aligned
1355 	 * words, we have to use multiple word-size bursts. To insert word
1356 	 * delay, the burst size has to equal the word size. We can't use
1357 	 * dynamic_burst in these cases.
1358 	 */
1359 	if (spi_imx->devtype_data->dynamic_burst && !spi_imx->target_mode &&
1360 	    !(spi->mode & SPI_CS_WORD) &&
1361 	    !(t->word_delay.value) &&
1362 	    (spi_imx->bits_per_word == 8 ||
1363 	    spi_imx->bits_per_word == 16 ||
1364 	    spi_imx->bits_per_word == 32)) {
1365 
1366 		spi_imx->rx = spi_imx_buf_rx_swap;
1367 		spi_imx->tx = spi_imx_buf_tx_swap;
1368 		spi_imx->dynamic_burst = 1;
1369 
1370 	} else {
1371 		if (spi_imx->bits_per_word <= 8) {
1372 			spi_imx->rx = spi_imx_buf_rx_u8;
1373 			spi_imx->tx = spi_imx_buf_tx_u8;
1374 		} else if (spi_imx->bits_per_word <= 16) {
1375 			spi_imx->rx = spi_imx_buf_rx_u16;
1376 			spi_imx->tx = spi_imx_buf_tx_u16;
1377 		} else {
1378 			spi_imx->rx = spi_imx_buf_rx_u32;
1379 			spi_imx->tx = spi_imx_buf_tx_u32;
1380 		}
1381 		spi_imx->dynamic_burst = 0;
1382 	}
1383 
1384 	if (spi_imx_can_dma(spi_imx->controller, spi, t))
1385 		spi_imx->usedma = true;
1386 	else
1387 		spi_imx->usedma = false;
1388 
1389 	spi_imx->rx_only = ((t->tx_buf == NULL)
1390 			|| (t->tx_buf == spi->controller->dummy_tx));
1391 
1392 	if (spi_imx->target_mode) {
1393 		spi_imx->rx = mx53_ecspi_rx_target;
1394 		spi_imx->tx = mx53_ecspi_tx_target;
1395 		spi_imx->target_burst = t->len;
1396 	}
1397 
1398 	spi_imx->devtype_data->prepare_transfer(spi_imx, spi, t);
1399 
1400 	return 0;
1401 }
1402 
spi_imx_sdma_exit(struct spi_imx_data * spi_imx)1403 static void spi_imx_sdma_exit(struct spi_imx_data *spi_imx)
1404 {
1405 	struct spi_controller *controller = spi_imx->controller;
1406 
1407 	if (controller->dma_rx) {
1408 		dma_release_channel(controller->dma_rx);
1409 		controller->dma_rx = NULL;
1410 	}
1411 
1412 	if (controller->dma_tx) {
1413 		dma_release_channel(controller->dma_tx);
1414 		controller->dma_tx = NULL;
1415 	}
1416 }
1417 
spi_imx_sdma_init(struct device * dev,struct spi_imx_data * spi_imx,struct spi_controller * controller)1418 static int spi_imx_sdma_init(struct device *dev, struct spi_imx_data *spi_imx,
1419 			     struct spi_controller *controller)
1420 {
1421 	int ret;
1422 
1423 	spi_imx->wml = spi_imx->devtype_data->fifo_size / 2;
1424 
1425 	/* Prepare for TX DMA: */
1426 	controller->dma_tx = dma_request_chan(dev, "tx");
1427 	if (IS_ERR(controller->dma_tx)) {
1428 		ret = PTR_ERR(controller->dma_tx);
1429 		dev_err_probe(dev, ret, "can't get the TX DMA channel!\n");
1430 		controller->dma_tx = NULL;
1431 		goto err;
1432 	}
1433 
1434 	/* Prepare for RX : */
1435 	controller->dma_rx = dma_request_chan(dev, "rx");
1436 	if (IS_ERR(controller->dma_rx)) {
1437 		ret = PTR_ERR(controller->dma_rx);
1438 		dev_err_probe(dev, ret, "can't get the RX DMA channel!\n");
1439 		controller->dma_rx = NULL;
1440 		goto err;
1441 	}
1442 
1443 	init_completion(&spi_imx->dma_rx_completion);
1444 	init_completion(&spi_imx->dma_tx_completion);
1445 	controller->can_dma = spi_imx_can_dma;
1446 	controller->max_dma_len = MAX_SDMA_BD_BYTES;
1447 	spi_imx->controller->flags = SPI_CONTROLLER_MUST_RX |
1448 					 SPI_CONTROLLER_MUST_TX;
1449 
1450 	return 0;
1451 err:
1452 	spi_imx_sdma_exit(spi_imx);
1453 	return ret;
1454 }
1455 
spi_imx_dma_rx_callback(void * cookie)1456 static void spi_imx_dma_rx_callback(void *cookie)
1457 {
1458 	struct spi_imx_data *spi_imx = (struct spi_imx_data *)cookie;
1459 
1460 	complete(&spi_imx->dma_rx_completion);
1461 }
1462 
spi_imx_dma_tx_callback(void * cookie)1463 static void spi_imx_dma_tx_callback(void *cookie)
1464 {
1465 	struct spi_imx_data *spi_imx = (struct spi_imx_data *)cookie;
1466 
1467 	complete(&spi_imx->dma_tx_completion);
1468 }
1469 
spi_imx_calculate_timeout(struct spi_imx_data * spi_imx,int size)1470 static int spi_imx_calculate_timeout(struct spi_imx_data *spi_imx, int size)
1471 {
1472 	unsigned long timeout = 0;
1473 
1474 	/* Time with actual data transfer and CS change delay related to HW */
1475 	timeout = (8 + 4) * size / spi_imx->spi_bus_clk;
1476 
1477 	/* Add extra second for scheduler related activities */
1478 	timeout += 1;
1479 
1480 	/* Double calculated timeout */
1481 	return secs_to_jiffies(2 * timeout);
1482 }
1483 
spi_imx_dma_transfer(struct spi_imx_data * spi_imx,struct spi_transfer * transfer)1484 static int spi_imx_dma_transfer(struct spi_imx_data *spi_imx,
1485 				struct spi_transfer *transfer)
1486 {
1487 	struct dma_async_tx_descriptor *desc_tx, *desc_rx;
1488 	unsigned long transfer_timeout;
1489 	unsigned long time_left;
1490 	struct spi_controller *controller = spi_imx->controller;
1491 	struct sg_table *tx = &transfer->tx_sg, *rx = &transfer->rx_sg;
1492 	struct scatterlist *last_sg = sg_last(rx->sgl, rx->nents);
1493 	unsigned int bytes_per_word, i;
1494 	int ret;
1495 
1496 	/* Get the right burst length from the last sg to ensure no tail data */
1497 	bytes_per_word = spi_imx_bytes_per_word(transfer->bits_per_word);
1498 	for (i = spi_imx->devtype_data->fifo_size / 2; i > 0; i--) {
1499 		if (!(sg_dma_len(last_sg) % (i * bytes_per_word)))
1500 			break;
1501 	}
1502 	/* Use 1 as wml in case no available burst length got */
1503 	if (i == 0)
1504 		i = 1;
1505 
1506 	spi_imx->wml =  i;
1507 
1508 	ret = spi_imx_dma_configure(controller);
1509 	if (ret)
1510 		goto dma_failure_no_start;
1511 
1512 	if (!spi_imx->devtype_data->setup_wml) {
1513 		dev_err(spi_imx->dev, "No setup_wml()?\n");
1514 		ret = -EINVAL;
1515 		goto dma_failure_no_start;
1516 	}
1517 	spi_imx->devtype_data->setup_wml(spi_imx);
1518 
1519 	/*
1520 	 * The TX DMA setup starts the transfer, so make sure RX is configured
1521 	 * before TX.
1522 	 */
1523 	desc_rx = dmaengine_prep_slave_sg(controller->dma_rx,
1524 				rx->sgl, rx->nents, DMA_DEV_TO_MEM,
1525 				DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1526 	if (!desc_rx) {
1527 		ret = -EINVAL;
1528 		goto dma_failure_no_start;
1529 	}
1530 
1531 	desc_rx->callback = spi_imx_dma_rx_callback;
1532 	desc_rx->callback_param = (void *)spi_imx;
1533 	dmaengine_submit(desc_rx);
1534 	reinit_completion(&spi_imx->dma_rx_completion);
1535 	dma_async_issue_pending(controller->dma_rx);
1536 
1537 	desc_tx = dmaengine_prep_slave_sg(controller->dma_tx,
1538 				tx->sgl, tx->nents, DMA_MEM_TO_DEV,
1539 				DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1540 	if (!desc_tx) {
1541 		dmaengine_terminate_all(controller->dma_tx);
1542 		dmaengine_terminate_all(controller->dma_rx);
1543 		return -EINVAL;
1544 	}
1545 
1546 	desc_tx->callback = spi_imx_dma_tx_callback;
1547 	desc_tx->callback_param = (void *)spi_imx;
1548 	dmaengine_submit(desc_tx);
1549 	reinit_completion(&spi_imx->dma_tx_completion);
1550 	dma_async_issue_pending(controller->dma_tx);
1551 
1552 	spi_imx->devtype_data->trigger(spi_imx);
1553 
1554 	transfer_timeout = spi_imx_calculate_timeout(spi_imx, transfer->len);
1555 
1556 	/* Wait SDMA to finish the data transfer.*/
1557 	time_left = wait_for_completion_timeout(&spi_imx->dma_tx_completion,
1558 						transfer_timeout);
1559 	if (!time_left) {
1560 		dev_err(spi_imx->dev, "I/O Error in DMA TX\n");
1561 		dmaengine_terminate_all(controller->dma_tx);
1562 		dmaengine_terminate_all(controller->dma_rx);
1563 		return -ETIMEDOUT;
1564 	}
1565 
1566 	time_left = wait_for_completion_timeout(&spi_imx->dma_rx_completion,
1567 						transfer_timeout);
1568 	if (!time_left) {
1569 		dev_err(&controller->dev, "I/O Error in DMA RX\n");
1570 		spi_imx->devtype_data->reset(spi_imx);
1571 		dmaengine_terminate_all(controller->dma_rx);
1572 		return -ETIMEDOUT;
1573 	}
1574 
1575 	return 0;
1576 /* fallback to pio */
1577 dma_failure_no_start:
1578 	transfer->error |= SPI_TRANS_FAIL_NO_START;
1579 	return ret;
1580 }
1581 
spi_imx_pio_transfer(struct spi_device * spi,struct spi_transfer * transfer)1582 static int spi_imx_pio_transfer(struct spi_device *spi,
1583 				struct spi_transfer *transfer)
1584 {
1585 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller);
1586 	unsigned long transfer_timeout;
1587 	unsigned long time_left;
1588 
1589 	spi_imx->tx_buf = transfer->tx_buf;
1590 	spi_imx->rx_buf = transfer->rx_buf;
1591 	spi_imx->count = transfer->len;
1592 	spi_imx->txfifo = 0;
1593 	spi_imx->remainder = 0;
1594 
1595 	reinit_completion(&spi_imx->xfer_done);
1596 
1597 	spi_imx_push(spi_imx);
1598 
1599 	spi_imx->devtype_data->intctrl(spi_imx, MXC_INT_TE);
1600 
1601 	transfer_timeout = spi_imx_calculate_timeout(spi_imx, transfer->len);
1602 
1603 	time_left = wait_for_completion_timeout(&spi_imx->xfer_done,
1604 						transfer_timeout);
1605 	if (!time_left) {
1606 		dev_err(&spi->dev, "I/O Error in PIO\n");
1607 		spi_imx->devtype_data->reset(spi_imx);
1608 		return -ETIMEDOUT;
1609 	}
1610 
1611 	return 0;
1612 }
1613 
spi_imx_poll_transfer(struct spi_device * spi,struct spi_transfer * transfer)1614 static int spi_imx_poll_transfer(struct spi_device *spi,
1615 				 struct spi_transfer *transfer)
1616 {
1617 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller);
1618 	unsigned long timeout;
1619 
1620 	spi_imx->tx_buf = transfer->tx_buf;
1621 	spi_imx->rx_buf = transfer->rx_buf;
1622 	spi_imx->count = transfer->len;
1623 	spi_imx->txfifo = 0;
1624 	spi_imx->remainder = 0;
1625 
1626 	/* fill in the fifo before timeout calculations if we are
1627 	 * interrupted here, then the data is getting transferred by
1628 	 * the HW while we are interrupted
1629 	 */
1630 	spi_imx_push(spi_imx);
1631 
1632 	timeout = spi_imx_calculate_timeout(spi_imx, transfer->len) + jiffies;
1633 	while (spi_imx->txfifo) {
1634 		/* RX */
1635 		while (spi_imx->txfifo &&
1636 		       spi_imx->devtype_data->rx_available(spi_imx)) {
1637 			spi_imx->rx(spi_imx);
1638 			spi_imx->txfifo--;
1639 		}
1640 
1641 		/* TX */
1642 		if (spi_imx->count) {
1643 			spi_imx_push(spi_imx);
1644 			continue;
1645 		}
1646 
1647 		if (spi_imx->txfifo &&
1648 		    time_after(jiffies, timeout)) {
1649 
1650 			dev_err_ratelimited(&spi->dev,
1651 					    "timeout period reached: jiffies: %lu- falling back to interrupt mode\n",
1652 					    jiffies - timeout);
1653 
1654 			/* fall back to interrupt mode */
1655 			return spi_imx_pio_transfer(spi, transfer);
1656 		}
1657 	}
1658 
1659 	return 0;
1660 }
1661 
spi_imx_pio_transfer_target(struct spi_device * spi,struct spi_transfer * transfer)1662 static int spi_imx_pio_transfer_target(struct spi_device *spi,
1663 				       struct spi_transfer *transfer)
1664 {
1665 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller);
1666 	int ret = 0;
1667 
1668 	if (transfer->len > MX53_MAX_TRANSFER_BYTES) {
1669 		dev_err(&spi->dev, "Transaction too big, max size is %d bytes\n",
1670 			MX53_MAX_TRANSFER_BYTES);
1671 		return -EMSGSIZE;
1672 	}
1673 
1674 	spi_imx->tx_buf = transfer->tx_buf;
1675 	spi_imx->rx_buf = transfer->rx_buf;
1676 	spi_imx->count = transfer->len;
1677 	spi_imx->txfifo = 0;
1678 	spi_imx->remainder = 0;
1679 
1680 	reinit_completion(&spi_imx->xfer_done);
1681 	spi_imx->target_aborted = false;
1682 
1683 	spi_imx_push(spi_imx);
1684 
1685 	spi_imx->devtype_data->intctrl(spi_imx, MXC_INT_TE | MXC_INT_RDR);
1686 
1687 	if (wait_for_completion_interruptible(&spi_imx->xfer_done) ||
1688 	    spi_imx->target_aborted) {
1689 		dev_dbg(&spi->dev, "interrupted\n");
1690 		ret = -EINTR;
1691 	}
1692 
1693 	/* ecspi has a HW issue when works in Target mode,
1694 	 * after 64 words writtern to TXFIFO, even TXFIFO becomes empty,
1695 	 * ECSPI_TXDATA keeps shift out the last word data,
1696 	 * so we have to disable ECSPI when in target mode after the
1697 	 * transfer completes
1698 	 */
1699 	if (spi_imx->devtype_data->disable)
1700 		spi_imx->devtype_data->disable(spi_imx);
1701 
1702 	return ret;
1703 }
1704 
spi_imx_transfer_estimate_time_us(struct spi_transfer * transfer)1705 static unsigned int spi_imx_transfer_estimate_time_us(struct spi_transfer *transfer)
1706 {
1707 	u64 result;
1708 
1709 	result = DIV_U64_ROUND_CLOSEST((u64)USEC_PER_SEC * transfer->len * BITS_PER_BYTE,
1710 				       transfer->effective_speed_hz);
1711 	if (transfer->word_delay.value) {
1712 		unsigned int word_delay_us;
1713 		unsigned int words;
1714 
1715 		words = DIV_ROUND_UP(transfer->len * BITS_PER_BYTE, transfer->bits_per_word);
1716 		word_delay_us = DIV_ROUND_CLOSEST(spi_delay_to_ns(&transfer->word_delay, transfer),
1717 						  NSEC_PER_USEC);
1718 		result += (u64)words * word_delay_us;
1719 	}
1720 
1721 	return min(result, U32_MAX);
1722 }
1723 
spi_imx_transfer_one(struct spi_controller * controller,struct spi_device * spi,struct spi_transfer * transfer)1724 static int spi_imx_transfer_one(struct spi_controller *controller,
1725 				struct spi_device *spi,
1726 				struct spi_transfer *transfer)
1727 {
1728 	int ret;
1729 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller);
1730 
1731 	ret = spi_imx_setupxfer(spi, transfer);
1732 	if (ret < 0)
1733 		return ret;
1734 	transfer->effective_speed_hz = spi_imx->spi_bus_clk;
1735 
1736 	/* flush rxfifo before transfer */
1737 	while (spi_imx->devtype_data->rx_available(spi_imx))
1738 		readl(spi_imx->base + MXC_CSPIRXDATA);
1739 
1740 	if (spi_imx->target_mode)
1741 		return spi_imx_pio_transfer_target(spi, transfer);
1742 
1743 	/*
1744 	 * If we decided in spi_imx_can_dma() that we want to do a DMA
1745 	 * transfer, the SPI transfer has already been mapped, so we
1746 	 * have to do the DMA transfer here.
1747 	 */
1748 	if (spi_imx->usedma)
1749 		return spi_imx_dma_transfer(spi_imx, transfer);
1750 
1751 	/* run in polling mode for short transfers */
1752 	if (transfer->len == 1 || (polling_limit_us &&
1753 				   spi_imx_transfer_estimate_time_us(transfer) < polling_limit_us))
1754 		return spi_imx_poll_transfer(spi, transfer);
1755 
1756 	return spi_imx_pio_transfer(spi, transfer);
1757 }
1758 
spi_imx_setup(struct spi_device * spi)1759 static int spi_imx_setup(struct spi_device *spi)
1760 {
1761 	dev_dbg(&spi->dev, "%s: mode %d, %u bpw, %d hz\n", __func__,
1762 		 spi->mode, spi->bits_per_word, spi->max_speed_hz);
1763 
1764 	return 0;
1765 }
1766 
1767 static int
spi_imx_prepare_message(struct spi_controller * controller,struct spi_message * msg)1768 spi_imx_prepare_message(struct spi_controller *controller, struct spi_message *msg)
1769 {
1770 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
1771 	int ret;
1772 
1773 	ret = pm_runtime_resume_and_get(spi_imx->dev);
1774 	if (ret < 0) {
1775 		dev_err(spi_imx->dev, "failed to enable clock\n");
1776 		return ret;
1777 	}
1778 
1779 	ret = spi_imx->devtype_data->prepare_message(spi_imx, msg);
1780 	if (ret) {
1781 		pm_runtime_put_autosuspend(spi_imx->dev);
1782 	}
1783 
1784 	return ret;
1785 }
1786 
1787 static int
spi_imx_unprepare_message(struct spi_controller * controller,struct spi_message * msg)1788 spi_imx_unprepare_message(struct spi_controller *controller, struct spi_message *msg)
1789 {
1790 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
1791 
1792 	pm_runtime_put_autosuspend(spi_imx->dev);
1793 	return 0;
1794 }
1795 
spi_imx_target_abort(struct spi_controller * controller)1796 static int spi_imx_target_abort(struct spi_controller *controller)
1797 {
1798 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
1799 
1800 	spi_imx->target_aborted = true;
1801 	complete(&spi_imx->xfer_done);
1802 
1803 	return 0;
1804 }
1805 
spi_imx_probe(struct platform_device * pdev)1806 static int spi_imx_probe(struct platform_device *pdev)
1807 {
1808 	struct device_node *np = pdev->dev.of_node;
1809 	struct spi_controller *controller;
1810 	struct spi_imx_data *spi_imx;
1811 	struct resource *res;
1812 	int ret, irq, spi_drctl;
1813 	const struct spi_imx_devtype_data *devtype_data =
1814 			of_device_get_match_data(&pdev->dev);
1815 	bool target_mode;
1816 	u32 val;
1817 
1818 	target_mode = devtype_data->has_targetmode &&
1819 		      of_property_read_bool(np, "spi-slave");
1820 	if (target_mode)
1821 		controller = spi_alloc_target(&pdev->dev,
1822 					      sizeof(struct spi_imx_data));
1823 	else
1824 		controller = spi_alloc_host(&pdev->dev,
1825 					    sizeof(struct spi_imx_data));
1826 	if (!controller)
1827 		return -ENOMEM;
1828 
1829 	ret = of_property_read_u32(np, "fsl,spi-rdy-drctl", &spi_drctl);
1830 	if ((ret < 0) || (spi_drctl >= 0x3)) {
1831 		/* '11' is reserved */
1832 		spi_drctl = 0;
1833 	}
1834 
1835 	platform_set_drvdata(pdev, controller);
1836 
1837 	controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(1, 32);
1838 	controller->bus_num = np ? -1 : pdev->id;
1839 	controller->use_gpio_descriptors = true;
1840 
1841 	spi_imx = spi_controller_get_devdata(controller);
1842 	spi_imx->controller = controller;
1843 	spi_imx->dev = &pdev->dev;
1844 	spi_imx->target_mode = target_mode;
1845 
1846 	spi_imx->devtype_data = devtype_data;
1847 
1848 	/*
1849 	 * Get number of chip selects from device properties. This can be
1850 	 * coming from device tree or boardfiles, if it is not defined,
1851 	 * a default value of 3 chip selects will be used, as all the legacy
1852 	 * board files have <= 3 chip selects.
1853 	 */
1854 	if (!device_property_read_u32(&pdev->dev, "num-cs", &val))
1855 		controller->num_chipselect = val;
1856 	else
1857 		controller->num_chipselect = 3;
1858 
1859 	controller->transfer_one = spi_imx_transfer_one;
1860 	controller->setup = spi_imx_setup;
1861 	controller->prepare_message = spi_imx_prepare_message;
1862 	controller->unprepare_message = spi_imx_unprepare_message;
1863 	controller->target_abort = spi_imx_target_abort;
1864 	spi_imx->spi_bus_clk = MXC_SPI_DEFAULT_SPEED;
1865 	controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_NO_CS |
1866 				SPI_MOSI_IDLE_LOW;
1867 
1868 	if (is_imx35_cspi(spi_imx) || is_imx51_ecspi(spi_imx) ||
1869 	    is_imx53_ecspi(spi_imx))
1870 		controller->mode_bits |= SPI_LOOP | SPI_READY;
1871 
1872 	if (is_imx51_ecspi(spi_imx) || is_imx53_ecspi(spi_imx))
1873 		controller->mode_bits |= SPI_RX_CPHA_FLIP;
1874 
1875 	if (is_imx51_ecspi(spi_imx) &&
1876 	    device_property_read_u32(&pdev->dev, "cs-gpios", NULL))
1877 		/*
1878 		 * When using HW-CS implementing SPI_CS_WORD can be done by just
1879 		 * setting the burst length to the word size. This is
1880 		 * considerably faster than manually controlling the CS.
1881 		 */
1882 		controller->mode_bits |= SPI_CS_WORD;
1883 
1884 	if (is_imx51_ecspi(spi_imx) || is_imx53_ecspi(spi_imx)) {
1885 		controller->max_native_cs = 4;
1886 		controller->flags |= SPI_CONTROLLER_GPIO_SS;
1887 	}
1888 
1889 	spi_imx->spi_drctl = spi_drctl;
1890 
1891 	init_completion(&spi_imx->xfer_done);
1892 
1893 	spi_imx->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1894 	if (IS_ERR(spi_imx->base)) {
1895 		ret = PTR_ERR(spi_imx->base);
1896 		goto out_controller_put;
1897 	}
1898 	spi_imx->base_phys = res->start;
1899 
1900 	irq = platform_get_irq(pdev, 0);
1901 	if (irq < 0) {
1902 		ret = irq;
1903 		goto out_controller_put;
1904 	}
1905 
1906 	ret = devm_request_irq(&pdev->dev, irq, spi_imx_isr, 0,
1907 			       dev_name(&pdev->dev), spi_imx);
1908 	if (ret) {
1909 		dev_err(&pdev->dev, "can't get irq%d: %d\n", irq, ret);
1910 		goto out_controller_put;
1911 	}
1912 
1913 	spi_imx->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1914 	if (IS_ERR(spi_imx->clk_ipg)) {
1915 		ret = PTR_ERR(spi_imx->clk_ipg);
1916 		goto out_controller_put;
1917 	}
1918 
1919 	spi_imx->clk_per = devm_clk_get(&pdev->dev, "per");
1920 	if (IS_ERR(spi_imx->clk_per)) {
1921 		ret = PTR_ERR(spi_imx->clk_per);
1922 		goto out_controller_put;
1923 	}
1924 
1925 	ret = clk_prepare_enable(spi_imx->clk_per);
1926 	if (ret)
1927 		goto out_controller_put;
1928 
1929 	ret = clk_prepare_enable(spi_imx->clk_ipg);
1930 	if (ret)
1931 		goto out_put_per;
1932 
1933 	pm_runtime_set_autosuspend_delay(spi_imx->dev, MXC_RPM_TIMEOUT);
1934 	pm_runtime_use_autosuspend(spi_imx->dev);
1935 	pm_runtime_get_noresume(spi_imx->dev);
1936 	pm_runtime_set_active(spi_imx->dev);
1937 	pm_runtime_enable(spi_imx->dev);
1938 
1939 	spi_imx->spi_clk = clk_get_rate(spi_imx->clk_per);
1940 	/*
1941 	 * Only validated on i.mx35 and i.mx6 now, can remove the constraint
1942 	 * if validated on other chips.
1943 	 */
1944 	if (spi_imx->devtype_data->has_dmamode) {
1945 		ret = spi_imx_sdma_init(&pdev->dev, spi_imx, controller);
1946 		if (ret == -EPROBE_DEFER)
1947 			goto out_runtime_pm_put;
1948 
1949 		if (ret < 0)
1950 			dev_dbg(&pdev->dev, "dma setup error %d, use pio\n",
1951 				ret);
1952 	}
1953 
1954 	spi_imx->devtype_data->reset(spi_imx);
1955 
1956 	spi_imx->devtype_data->intctrl(spi_imx, 0);
1957 
1958 	controller->dev.of_node = pdev->dev.of_node;
1959 	ret = spi_register_controller(controller);
1960 	if (ret) {
1961 		dev_err_probe(&pdev->dev, ret, "register controller failed\n");
1962 		goto out_register_controller;
1963 	}
1964 
1965 	pm_runtime_put_autosuspend(spi_imx->dev);
1966 
1967 	return ret;
1968 
1969 out_register_controller:
1970 	if (spi_imx->devtype_data->has_dmamode)
1971 		spi_imx_sdma_exit(spi_imx);
1972 out_runtime_pm_put:
1973 	pm_runtime_dont_use_autosuspend(spi_imx->dev);
1974 	pm_runtime_disable(spi_imx->dev);
1975 	pm_runtime_set_suspended(&pdev->dev);
1976 
1977 	clk_disable_unprepare(spi_imx->clk_ipg);
1978 out_put_per:
1979 	clk_disable_unprepare(spi_imx->clk_per);
1980 out_controller_put:
1981 	spi_controller_put(controller);
1982 
1983 	return ret;
1984 }
1985 
spi_imx_remove(struct platform_device * pdev)1986 static void spi_imx_remove(struct platform_device *pdev)
1987 {
1988 	struct spi_controller *controller = platform_get_drvdata(pdev);
1989 	struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
1990 	int ret;
1991 
1992 	spi_unregister_controller(controller);
1993 
1994 	ret = pm_runtime_get_sync(spi_imx->dev);
1995 	if (ret >= 0)
1996 		writel(0, spi_imx->base + MXC_CSPICTRL);
1997 	else
1998 		dev_warn(spi_imx->dev, "failed to enable clock, skip hw disable\n");
1999 
2000 	pm_runtime_dont_use_autosuspend(spi_imx->dev);
2001 	pm_runtime_put_sync(spi_imx->dev);
2002 	pm_runtime_disable(spi_imx->dev);
2003 
2004 	spi_imx_sdma_exit(spi_imx);
2005 }
2006 
spi_imx_runtime_resume(struct device * dev)2007 static int spi_imx_runtime_resume(struct device *dev)
2008 {
2009 	struct spi_controller *controller = dev_get_drvdata(dev);
2010 	struct spi_imx_data *spi_imx;
2011 	int ret;
2012 
2013 	spi_imx = spi_controller_get_devdata(controller);
2014 
2015 	ret = clk_prepare_enable(spi_imx->clk_per);
2016 	if (ret)
2017 		return ret;
2018 
2019 	ret = clk_prepare_enable(spi_imx->clk_ipg);
2020 	if (ret) {
2021 		clk_disable_unprepare(spi_imx->clk_per);
2022 		return ret;
2023 	}
2024 
2025 	return 0;
2026 }
2027 
spi_imx_runtime_suspend(struct device * dev)2028 static int spi_imx_runtime_suspend(struct device *dev)
2029 {
2030 	struct spi_controller *controller = dev_get_drvdata(dev);
2031 	struct spi_imx_data *spi_imx;
2032 
2033 	spi_imx = spi_controller_get_devdata(controller);
2034 
2035 	clk_disable_unprepare(spi_imx->clk_per);
2036 	clk_disable_unprepare(spi_imx->clk_ipg);
2037 
2038 	return 0;
2039 }
2040 
spi_imx_suspend(struct device * dev)2041 static int spi_imx_suspend(struct device *dev)
2042 {
2043 	pinctrl_pm_select_sleep_state(dev);
2044 	return 0;
2045 }
2046 
spi_imx_resume(struct device * dev)2047 static int spi_imx_resume(struct device *dev)
2048 {
2049 	pinctrl_pm_select_default_state(dev);
2050 	return 0;
2051 }
2052 
2053 static const struct dev_pm_ops imx_spi_pm = {
2054 	RUNTIME_PM_OPS(spi_imx_runtime_suspend,	spi_imx_runtime_resume, NULL)
2055 	SYSTEM_SLEEP_PM_OPS(spi_imx_suspend, spi_imx_resume)
2056 };
2057 
2058 static struct platform_driver spi_imx_driver = {
2059 	.driver = {
2060 		   .name = DRIVER_NAME,
2061 		   .of_match_table = spi_imx_dt_ids,
2062 		   .pm = pm_ptr(&imx_spi_pm),
2063 	},
2064 	.probe = spi_imx_probe,
2065 	.remove = spi_imx_remove,
2066 };
2067 module_platform_driver(spi_imx_driver);
2068 
2069 MODULE_DESCRIPTION("i.MX SPI Controller driver");
2070 MODULE_AUTHOR("Sascha Hauer, Pengutronix");
2071 MODULE_LICENSE("GPL");
2072 MODULE_ALIAS("platform:" DRIVER_NAME);
2073