1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
3 // Copyright (C) 2008 Juergen Beisert
4
5 #include <linux/bits.h>
6 #include <linux/bitfield.h>
7 #include <linux/clk.h>
8 #include <linux/completion.h>
9 #include <linux/delay.h>
10 #include <linux/dmaengine.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/err.h>
13 #include <linux/interrupt.h>
14 #include <linux/io.h>
15 #include <linux/irq.h>
16 #include <linux/kernel.h>
17 #include <linux/math.h>
18 #include <linux/math64.h>
19 #include <linux/module.h>
20 #include <linux/overflow.h>
21 #include <linux/pinctrl/consumer.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/slab.h>
25 #include <linux/spi/spi.h>
26 #include <linux/types.h>
27 #include <linux/of.h>
28 #include <linux/property.h>
29
30 #include <linux/dma/imx-dma.h>
31
32 #define DRIVER_NAME "spi_imx"
33
34 static bool use_dma = true;
35 module_param(use_dma, bool, 0644);
36 MODULE_PARM_DESC(use_dma, "Enable usage of DMA when available (default)");
37
38 /* define polling limits */
39 static unsigned int polling_limit_us = 30;
40 module_param(polling_limit_us, uint, 0664);
41 MODULE_PARM_DESC(polling_limit_us,
42 "time in us to run a transfer in polling mode\n");
43
44 #define MXC_RPM_TIMEOUT 2000 /* 2000ms */
45 #define MXC_SPI_DEFAULT_SPEED 500000 /* 500KHz */
46
47 #define MXC_CSPIRXDATA 0x00
48 #define MXC_CSPITXDATA 0x04
49 #define MXC_CSPICTRL 0x08
50 #define MXC_CSPIINT 0x0c
51 #define MXC_RESET 0x1c
52
53 /* generic defines to abstract from the different register layouts */
54 #define MXC_INT_RR (1 << 0) /* Receive data ready interrupt */
55 #define MXC_INT_TE (1 << 1) /* Transmit FIFO empty interrupt */
56 #define MXC_INT_RDR BIT(4) /* Receive date threshold interrupt */
57
58 /* The maximum bytes that a sdma BD can transfer. */
59 #define MAX_SDMA_BD_BYTES (1 << 15)
60 #define MX51_ECSPI_CTRL_MAX_BURST 512
61 /* The maximum bytes that IMX53_ECSPI can transfer in target mode.*/
62 #define MX53_MAX_TRANSFER_BYTES 512
63
64 enum spi_imx_devtype {
65 IMX1_CSPI,
66 IMX21_CSPI,
67 IMX27_CSPI,
68 IMX31_CSPI,
69 IMX35_CSPI, /* CSPI on all i.mx except above */
70 IMX51_ECSPI, /* ECSPI on i.mx51 */
71 IMX53_ECSPI, /* ECSPI on i.mx53 and later */
72 };
73
74 struct spi_imx_data;
75
76 struct spi_imx_devtype_data {
77 void (*intctrl)(struct spi_imx_data *spi_imx, int enable);
78 int (*prepare_message)(struct spi_imx_data *spi_imx, struct spi_message *msg);
79 int (*prepare_transfer)(struct spi_imx_data *spi_imx, struct spi_device *spi,
80 struct spi_transfer *t);
81 void (*trigger)(struct spi_imx_data *spi_imx);
82 int (*rx_available)(struct spi_imx_data *spi_imx);
83 void (*reset)(struct spi_imx_data *spi_imx);
84 void (*setup_wml)(struct spi_imx_data *spi_imx);
85 void (*disable)(struct spi_imx_data *spi_imx);
86 bool has_dmamode;
87 bool has_targetmode;
88 unsigned int fifo_size;
89 bool dynamic_burst;
90 /*
91 * ERR009165 fixed or not:
92 * https://www.nxp.com/docs/en/errata/IMX6DQCE.pdf
93 */
94 bool tx_glitch_fixed;
95 enum spi_imx_devtype devtype;
96 };
97
98 struct spi_imx_data {
99 struct spi_controller *controller;
100 struct device *dev;
101
102 struct completion xfer_done;
103 void __iomem *base;
104 unsigned long base_phys;
105
106 struct clk *clk_per;
107 struct clk *clk_ipg;
108 unsigned long spi_clk;
109 unsigned int spi_bus_clk;
110
111 unsigned int bits_per_word;
112 unsigned int spi_drctl;
113
114 unsigned int count, remainder;
115 void (*tx)(struct spi_imx_data *spi_imx);
116 void (*rx)(struct spi_imx_data *spi_imx);
117 void *rx_buf;
118 const void *tx_buf;
119 unsigned int txfifo; /* number of words pushed in tx FIFO */
120 unsigned int dynamic_burst;
121 bool rx_only;
122
123 /* Target mode */
124 bool target_mode;
125 bool target_aborted;
126 unsigned int target_burst;
127
128 /* DMA */
129 bool usedma;
130 u32 wml;
131 struct completion dma_rx_completion;
132 struct completion dma_tx_completion;
133
134 const struct spi_imx_devtype_data *devtype_data;
135 };
136
is_imx27_cspi(struct spi_imx_data * d)137 static inline int is_imx27_cspi(struct spi_imx_data *d)
138 {
139 return d->devtype_data->devtype == IMX27_CSPI;
140 }
141
is_imx35_cspi(struct spi_imx_data * d)142 static inline int is_imx35_cspi(struct spi_imx_data *d)
143 {
144 return d->devtype_data->devtype == IMX35_CSPI;
145 }
146
is_imx51_ecspi(struct spi_imx_data * d)147 static inline int is_imx51_ecspi(struct spi_imx_data *d)
148 {
149 return d->devtype_data->devtype == IMX51_ECSPI;
150 }
151
is_imx53_ecspi(struct spi_imx_data * d)152 static inline int is_imx53_ecspi(struct spi_imx_data *d)
153 {
154 return d->devtype_data->devtype == IMX53_ECSPI;
155 }
156
157 #define MXC_SPI_BUF_RX(type) \
158 static void spi_imx_buf_rx_##type(struct spi_imx_data *spi_imx) \
159 { \
160 unsigned int val = readl(spi_imx->base + MXC_CSPIRXDATA); \
161 \
162 if (spi_imx->rx_buf) { \
163 *(type *)spi_imx->rx_buf = val; \
164 spi_imx->rx_buf += sizeof(type); \
165 } \
166 \
167 spi_imx->remainder -= sizeof(type); \
168 }
169
170 #define MXC_SPI_BUF_TX(type) \
171 static void spi_imx_buf_tx_##type(struct spi_imx_data *spi_imx) \
172 { \
173 type val = 0; \
174 \
175 if (spi_imx->tx_buf) { \
176 val = *(type *)spi_imx->tx_buf; \
177 spi_imx->tx_buf += sizeof(type); \
178 } \
179 \
180 spi_imx->count -= sizeof(type); \
181 \
182 writel(val, spi_imx->base + MXC_CSPITXDATA); \
183 }
184
185 MXC_SPI_BUF_RX(u8)
186 MXC_SPI_BUF_TX(u8)
187 MXC_SPI_BUF_RX(u16)
188 MXC_SPI_BUF_TX(u16)
189 MXC_SPI_BUF_RX(u32)
190 MXC_SPI_BUF_TX(u32)
191
192 /* First entry is reserved, second entry is valid only if SDHC_SPIEN is set
193 * (which is currently not the case in this driver)
194 */
195 static int mxc_clkdivs[] = {0, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192,
196 256, 384, 512, 768, 1024};
197
198 /* MX21, MX27 */
spi_imx_clkdiv_1(unsigned int fin,unsigned int fspi,unsigned int max,unsigned int * fres)199 static unsigned int spi_imx_clkdiv_1(unsigned int fin,
200 unsigned int fspi, unsigned int max, unsigned int *fres)
201 {
202 int i;
203
204 for (i = 2; i < max; i++)
205 if (fspi * mxc_clkdivs[i] >= fin)
206 break;
207
208 *fres = fin / mxc_clkdivs[i];
209 return i;
210 }
211
212 /* MX1, MX31, MX35, MX51 CSPI */
spi_imx_clkdiv_2(unsigned int fin,unsigned int fspi,unsigned int * fres)213 static unsigned int spi_imx_clkdiv_2(unsigned int fin,
214 unsigned int fspi, unsigned int *fres)
215 {
216 int i, div = 4;
217
218 for (i = 0; i < 7; i++) {
219 if (fspi * div >= fin)
220 goto out;
221 div <<= 1;
222 }
223
224 out:
225 *fres = fin / div;
226 return i;
227 }
228
spi_imx_bytes_per_word(const int bits_per_word)229 static int spi_imx_bytes_per_word(const int bits_per_word)
230 {
231 if (bits_per_word <= 8)
232 return 1;
233 else if (bits_per_word <= 16)
234 return 2;
235 else
236 return 4;
237 }
238
spi_imx_can_dma(struct spi_controller * controller,struct spi_device * spi,struct spi_transfer * transfer)239 static bool spi_imx_can_dma(struct spi_controller *controller, struct spi_device *spi,
240 struct spi_transfer *transfer)
241 {
242 struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
243
244 if (!use_dma || controller->fallback)
245 return false;
246
247 if (!controller->dma_rx)
248 return false;
249
250 if (spi_imx->target_mode)
251 return false;
252
253 if (transfer->len < spi_imx->devtype_data->fifo_size)
254 return false;
255
256 spi_imx->dynamic_burst = 0;
257
258 return true;
259 }
260
261 /*
262 * Note the number of natively supported chip selects for MX51 is 4. Some
263 * devices may have less actual SS pins but the register map supports 4. When
264 * using gpio chip selects the cs values passed into the macros below can go
265 * outside the range 0 - 3. We therefore need to limit the cs value to avoid
266 * corrupting bits outside the allocated locations.
267 *
268 * The simplest way to do this is to just mask the cs bits to 2 bits. This
269 * still allows all 4 native chip selects to work as well as gpio chip selects
270 * (which can use any of the 4 chip select configurations).
271 */
272
273 #define MX51_ECSPI_CTRL 0x08
274 #define MX51_ECSPI_CTRL_ENABLE (1 << 0)
275 #define MX51_ECSPI_CTRL_XCH (1 << 2)
276 #define MX51_ECSPI_CTRL_SMC (1 << 3)
277 #define MX51_ECSPI_CTRL_MODE_MASK (0xf << 4)
278 #define MX51_ECSPI_CTRL_DRCTL(drctl) ((drctl) << 16)
279 #define MX51_ECSPI_CTRL_POSTDIV_OFFSET 8
280 #define MX51_ECSPI_CTRL_PREDIV_OFFSET 12
281 #define MX51_ECSPI_CTRL_CS(cs) ((cs & 3) << 18)
282 #define MX51_ECSPI_CTRL_BL_OFFSET 20
283 #define MX51_ECSPI_CTRL_BL_MASK (0xfff << 20)
284
285 #define MX51_ECSPI_CONFIG 0x0c
286 #define MX51_ECSPI_CONFIG_SCLKPHA(cs) (1 << ((cs & 3) + 0))
287 #define MX51_ECSPI_CONFIG_SCLKPOL(cs) (1 << ((cs & 3) + 4))
288 #define MX51_ECSPI_CONFIG_SBBCTRL(cs) (1 << ((cs & 3) + 8))
289 #define MX51_ECSPI_CONFIG_SSBPOL(cs) (1 << ((cs & 3) + 12))
290 #define MX51_ECSPI_CONFIG_DATACTL(cs) (1 << ((cs & 3) + 16))
291 #define MX51_ECSPI_CONFIG_SCLKCTL(cs) (1 << ((cs & 3) + 20))
292
293 #define MX51_ECSPI_INT 0x10
294 #define MX51_ECSPI_INT_TEEN (1 << 0)
295 #define MX51_ECSPI_INT_RREN (1 << 3)
296 #define MX51_ECSPI_INT_RDREN (1 << 4)
297
298 #define MX51_ECSPI_DMA 0x14
299 #define MX51_ECSPI_DMA_TX_WML(wml) ((wml) & 0x3f)
300 #define MX51_ECSPI_DMA_RX_WML(wml) (((wml) & 0x3f) << 16)
301 #define MX51_ECSPI_DMA_RXT_WML(wml) (((wml) & 0x3f) << 24)
302
303 #define MX51_ECSPI_DMA_TEDEN (1 << 7)
304 #define MX51_ECSPI_DMA_RXDEN (1 << 23)
305 #define MX51_ECSPI_DMA_RXTDEN (1 << 31)
306
307 #define MX51_ECSPI_STAT 0x18
308 #define MX51_ECSPI_STAT_RR (1 << 3)
309
310 #define MX51_ECSPI_PERIOD 0x1c
311 #define MX51_ECSPI_PERIOD_MASK 0x7fff
312 /*
313 * As measured on the i.MX6, the SPI host controller inserts a 4 SPI-Clock
314 * (SCLK) delay after each burst if the PERIOD reg is 0x0. This value will be
315 * called MX51_ECSPI_PERIOD_MIN_DELAY_SCK.
316 *
317 * If the PERIOD register is != 0, the controller inserts a delay of
318 * MX51_ECSPI_PERIOD_MIN_DELAY_SCK + register value + 1 SCLK after each burst.
319 */
320 #define MX51_ECSPI_PERIOD_MIN_DELAY_SCK 4
321
322 #define MX51_ECSPI_TESTREG 0x20
323 #define MX51_ECSPI_TESTREG_LBC BIT(31)
324
spi_imx_buf_rx_swap_u32(struct spi_imx_data * spi_imx)325 static void spi_imx_buf_rx_swap_u32(struct spi_imx_data *spi_imx)
326 {
327 unsigned int val = readl(spi_imx->base + MXC_CSPIRXDATA);
328
329 if (spi_imx->rx_buf) {
330 #ifdef __LITTLE_ENDIAN
331 unsigned int bytes_per_word;
332
333 bytes_per_word = spi_imx_bytes_per_word(spi_imx->bits_per_word);
334 if (bytes_per_word == 1)
335 swab32s(&val);
336 else if (bytes_per_word == 2)
337 swahw32s(&val);
338 #endif
339 *(u32 *)spi_imx->rx_buf = val;
340 spi_imx->rx_buf += sizeof(u32);
341 }
342
343 spi_imx->remainder -= sizeof(u32);
344 }
345
spi_imx_buf_rx_swap(struct spi_imx_data * spi_imx)346 static void spi_imx_buf_rx_swap(struct spi_imx_data *spi_imx)
347 {
348 int unaligned;
349 u32 val;
350
351 unaligned = spi_imx->remainder % 4;
352
353 if (!unaligned) {
354 spi_imx_buf_rx_swap_u32(spi_imx);
355 return;
356 }
357
358 if (spi_imx_bytes_per_word(spi_imx->bits_per_word) == 2) {
359 spi_imx_buf_rx_u16(spi_imx);
360 return;
361 }
362
363 val = readl(spi_imx->base + MXC_CSPIRXDATA);
364
365 while (unaligned--) {
366 if (spi_imx->rx_buf) {
367 *(u8 *)spi_imx->rx_buf = (val >> (8 * unaligned)) & 0xff;
368 spi_imx->rx_buf++;
369 }
370 spi_imx->remainder--;
371 }
372 }
373
spi_imx_buf_tx_swap_u32(struct spi_imx_data * spi_imx)374 static void spi_imx_buf_tx_swap_u32(struct spi_imx_data *spi_imx)
375 {
376 u32 val = 0;
377 #ifdef __LITTLE_ENDIAN
378 unsigned int bytes_per_word;
379 #endif
380
381 if (spi_imx->tx_buf) {
382 val = *(u32 *)spi_imx->tx_buf;
383 spi_imx->tx_buf += sizeof(u32);
384 }
385
386 spi_imx->count -= sizeof(u32);
387 #ifdef __LITTLE_ENDIAN
388 bytes_per_word = spi_imx_bytes_per_word(spi_imx->bits_per_word);
389
390 if (bytes_per_word == 1)
391 swab32s(&val);
392 else if (bytes_per_word == 2)
393 swahw32s(&val);
394 #endif
395 writel(val, spi_imx->base + MXC_CSPITXDATA);
396 }
397
spi_imx_buf_tx_swap(struct spi_imx_data * spi_imx)398 static void spi_imx_buf_tx_swap(struct spi_imx_data *spi_imx)
399 {
400 int unaligned;
401 u32 val = 0;
402
403 unaligned = spi_imx->count % 4;
404
405 if (!unaligned) {
406 spi_imx_buf_tx_swap_u32(spi_imx);
407 return;
408 }
409
410 if (spi_imx_bytes_per_word(spi_imx->bits_per_word) == 2) {
411 spi_imx_buf_tx_u16(spi_imx);
412 return;
413 }
414
415 while (unaligned--) {
416 if (spi_imx->tx_buf) {
417 val |= *(u8 *)spi_imx->tx_buf << (8 * unaligned);
418 spi_imx->tx_buf++;
419 }
420 spi_imx->count--;
421 }
422
423 writel(val, spi_imx->base + MXC_CSPITXDATA);
424 }
425
mx53_ecspi_rx_target(struct spi_imx_data * spi_imx)426 static void mx53_ecspi_rx_target(struct spi_imx_data *spi_imx)
427 {
428 u32 val = readl(spi_imx->base + MXC_CSPIRXDATA);
429 #ifdef __LITTLE_ENDIAN
430 unsigned int bytes_per_word = spi_imx_bytes_per_word(spi_imx->bits_per_word);
431
432 if (bytes_per_word == 1)
433 swab32s(&val);
434 else if (bytes_per_word == 2)
435 swahw32s(&val);
436 #endif
437 if (spi_imx->rx_buf) {
438 int n_bytes = spi_imx->target_burst % sizeof(val);
439
440 if (!n_bytes)
441 n_bytes = sizeof(val);
442
443 memcpy(spi_imx->rx_buf,
444 ((u8 *)&val) + sizeof(val) - n_bytes, n_bytes);
445
446 spi_imx->rx_buf += n_bytes;
447 spi_imx->target_burst -= n_bytes;
448 }
449
450 spi_imx->remainder -= sizeof(u32);
451 }
452
mx53_ecspi_tx_target(struct spi_imx_data * spi_imx)453 static void mx53_ecspi_tx_target(struct spi_imx_data *spi_imx)
454 {
455 u32 val = 0;
456 int n_bytes = spi_imx->count % sizeof(val);
457 #ifdef __LITTLE_ENDIAN
458 unsigned int bytes_per_word;
459 #endif
460
461 if (!n_bytes)
462 n_bytes = sizeof(val);
463
464 if (spi_imx->tx_buf) {
465 memcpy(((u8 *)&val) + sizeof(val) - n_bytes,
466 spi_imx->tx_buf, n_bytes);
467 spi_imx->tx_buf += n_bytes;
468 }
469
470 spi_imx->count -= n_bytes;
471
472 #ifdef __LITTLE_ENDIAN
473 bytes_per_word = spi_imx_bytes_per_word(spi_imx->bits_per_word);
474 if (bytes_per_word == 1)
475 swab32s(&val);
476 else if (bytes_per_word == 2)
477 swahw32s(&val);
478 #endif
479 writel(val, spi_imx->base + MXC_CSPITXDATA);
480 }
481
482 /* MX51 eCSPI */
mx51_ecspi_clkdiv(struct spi_imx_data * spi_imx,unsigned int fspi,unsigned int * fres)483 static unsigned int mx51_ecspi_clkdiv(struct spi_imx_data *spi_imx,
484 unsigned int fspi, unsigned int *fres)
485 {
486 /*
487 * there are two 4-bit dividers, the pre-divider divides by
488 * $pre, the post-divider by 2^$post
489 */
490 unsigned int pre, post;
491 unsigned int fin = spi_imx->spi_clk;
492
493 fspi = min(fspi, fin);
494
495 post = fls(fin) - fls(fspi);
496 if (fin > fspi << post)
497 post++;
498
499 /* now we have: (fin <= fspi << post) with post being minimal */
500
501 post = max(4U, post) - 4;
502 if (unlikely(post > 0xf)) {
503 dev_err(spi_imx->dev, "cannot set clock freq: %u (base freq: %u)\n",
504 fspi, fin);
505 return 0xff;
506 }
507
508 pre = DIV_ROUND_UP(fin, fspi << post) - 1;
509
510 dev_dbg(spi_imx->dev, "%s: fin: %u, fspi: %u, post: %u, pre: %u\n",
511 __func__, fin, fspi, post, pre);
512
513 /* Resulting frequency for the SCLK line. */
514 *fres = (fin / (pre + 1)) >> post;
515
516 return (pre << MX51_ECSPI_CTRL_PREDIV_OFFSET) |
517 (post << MX51_ECSPI_CTRL_POSTDIV_OFFSET);
518 }
519
mx51_ecspi_intctrl(struct spi_imx_data * spi_imx,int enable)520 static void mx51_ecspi_intctrl(struct spi_imx_data *spi_imx, int enable)
521 {
522 unsigned int val = 0;
523
524 if (enable & MXC_INT_TE)
525 val |= MX51_ECSPI_INT_TEEN;
526
527 if (enable & MXC_INT_RR)
528 val |= MX51_ECSPI_INT_RREN;
529
530 if (enable & MXC_INT_RDR)
531 val |= MX51_ECSPI_INT_RDREN;
532
533 writel(val, spi_imx->base + MX51_ECSPI_INT);
534 }
535
mx51_ecspi_trigger(struct spi_imx_data * spi_imx)536 static void mx51_ecspi_trigger(struct spi_imx_data *spi_imx)
537 {
538 u32 reg;
539
540 if (spi_imx->usedma) {
541 reg = readl(spi_imx->base + MX51_ECSPI_DMA);
542 reg |= MX51_ECSPI_DMA_TEDEN | MX51_ECSPI_DMA_RXDEN;
543 writel(reg, spi_imx->base + MX51_ECSPI_DMA);
544 } else {
545 reg = readl(spi_imx->base + MX51_ECSPI_CTRL);
546 reg |= MX51_ECSPI_CTRL_XCH;
547 writel(reg, spi_imx->base + MX51_ECSPI_CTRL);
548 }
549 }
550
mx51_ecspi_disable(struct spi_imx_data * spi_imx)551 static void mx51_ecspi_disable(struct spi_imx_data *spi_imx)
552 {
553 u32 ctrl;
554
555 ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL);
556 ctrl &= ~MX51_ECSPI_CTRL_ENABLE;
557 writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
558 }
559
mx51_ecspi_channel(const struct spi_device * spi)560 static int mx51_ecspi_channel(const struct spi_device *spi)
561 {
562 if (!spi_get_csgpiod(spi, 0))
563 return spi_get_chipselect(spi, 0);
564 return spi->controller->unused_native_cs;
565 }
566
mx51_ecspi_prepare_message(struct spi_imx_data * spi_imx,struct spi_message * msg)567 static int mx51_ecspi_prepare_message(struct spi_imx_data *spi_imx,
568 struct spi_message *msg)
569 {
570 struct spi_device *spi = msg->spi;
571 struct spi_transfer *xfer;
572 u32 ctrl = MX51_ECSPI_CTRL_ENABLE;
573 u32 min_speed_hz = ~0U;
574 u32 testreg, delay;
575 u32 cfg = readl(spi_imx->base + MX51_ECSPI_CONFIG);
576 u32 current_cfg = cfg;
577 int channel = mx51_ecspi_channel(spi);
578
579 /* set Host or Target mode */
580 if (spi_imx->target_mode)
581 ctrl &= ~MX51_ECSPI_CTRL_MODE_MASK;
582 else
583 ctrl |= MX51_ECSPI_CTRL_MODE_MASK;
584
585 /*
586 * Enable SPI_RDY handling (falling edge/level triggered).
587 */
588 if (spi->mode & SPI_READY)
589 ctrl |= MX51_ECSPI_CTRL_DRCTL(spi_imx->spi_drctl);
590
591 /* set chip select to use */
592 ctrl |= MX51_ECSPI_CTRL_CS(channel);
593
594 /*
595 * The ctrl register must be written first, with the EN bit set other
596 * registers must not be written to.
597 */
598 writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
599
600 testreg = readl(spi_imx->base + MX51_ECSPI_TESTREG);
601 if (spi->mode & SPI_LOOP)
602 testreg |= MX51_ECSPI_TESTREG_LBC;
603 else
604 testreg &= ~MX51_ECSPI_TESTREG_LBC;
605 writel(testreg, spi_imx->base + MX51_ECSPI_TESTREG);
606
607 /*
608 * eCSPI burst completion by Chip Select signal in Target mode
609 * is not functional for imx53 Soc, config SPI burst completed when
610 * BURST_LENGTH + 1 bits are received
611 */
612 if (spi_imx->target_mode)
613 cfg &= ~MX51_ECSPI_CONFIG_SBBCTRL(channel);
614 else
615 cfg |= MX51_ECSPI_CONFIG_SBBCTRL(channel);
616
617 if (spi->mode & SPI_CPOL) {
618 cfg |= MX51_ECSPI_CONFIG_SCLKPOL(channel);
619 cfg |= MX51_ECSPI_CONFIG_SCLKCTL(channel);
620 } else {
621 cfg &= ~MX51_ECSPI_CONFIG_SCLKPOL(channel);
622 cfg &= ~MX51_ECSPI_CONFIG_SCLKCTL(channel);
623 }
624
625 if (spi->mode & SPI_MOSI_IDLE_LOW)
626 cfg |= MX51_ECSPI_CONFIG_DATACTL(channel);
627 else
628 cfg &= ~MX51_ECSPI_CONFIG_DATACTL(channel);
629
630 if (spi->mode & SPI_CS_HIGH)
631 cfg |= MX51_ECSPI_CONFIG_SSBPOL(channel);
632 else
633 cfg &= ~MX51_ECSPI_CONFIG_SSBPOL(channel);
634
635 if (cfg == current_cfg)
636 return 0;
637
638 writel(cfg, spi_imx->base + MX51_ECSPI_CONFIG);
639
640 /*
641 * Wait until the changes in the configuration register CONFIGREG
642 * propagate into the hardware. It takes exactly one tick of the
643 * SCLK clock, but we will wait two SCLK clock just to be sure. The
644 * effect of the delay it takes for the hardware to apply changes
645 * is noticable if the SCLK clock run very slow. In such a case, if
646 * the polarity of SCLK should be inverted, the GPIO ChipSelect might
647 * be asserted before the SCLK polarity changes, which would disrupt
648 * the SPI communication as the device on the other end would consider
649 * the change of SCLK polarity as a clock tick already.
650 *
651 * Because spi_imx->spi_bus_clk is only set in prepare_message
652 * callback, iterate over all the transfers in spi_message, find the
653 * one with lowest bus frequency, and use that bus frequency for the
654 * delay calculation. In case all transfers have speed_hz == 0, then
655 * min_speed_hz is ~0 and the resulting delay is zero.
656 */
657 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
658 if (!xfer->speed_hz)
659 continue;
660 min_speed_hz = min(xfer->speed_hz, min_speed_hz);
661 }
662
663 delay = (2 * 1000000) / min_speed_hz;
664 if (likely(delay < 10)) /* SCLK is faster than 200 kHz */
665 udelay(delay);
666 else /* SCLK is _very_ slow */
667 usleep_range(delay, delay + 10);
668
669 return 0;
670 }
671
mx51_configure_cpha(struct spi_imx_data * spi_imx,struct spi_device * spi)672 static void mx51_configure_cpha(struct spi_imx_data *spi_imx,
673 struct spi_device *spi)
674 {
675 bool cpha = (spi->mode & SPI_CPHA);
676 bool flip_cpha = (spi->mode & SPI_RX_CPHA_FLIP) && spi_imx->rx_only;
677 u32 cfg = readl(spi_imx->base + MX51_ECSPI_CONFIG);
678 int channel = mx51_ecspi_channel(spi);
679
680 /* Flip cpha logical value iff flip_cpha */
681 cpha ^= flip_cpha;
682
683 if (cpha)
684 cfg |= MX51_ECSPI_CONFIG_SCLKPHA(channel);
685 else
686 cfg &= ~MX51_ECSPI_CONFIG_SCLKPHA(channel);
687
688 writel(cfg, spi_imx->base + MX51_ECSPI_CONFIG);
689 }
690
mx51_ecspi_prepare_transfer(struct spi_imx_data * spi_imx,struct spi_device * spi,struct spi_transfer * t)691 static int mx51_ecspi_prepare_transfer(struct spi_imx_data *spi_imx,
692 struct spi_device *spi, struct spi_transfer *t)
693 {
694 u32 ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL);
695 u64 word_delay_sck;
696 u32 clk;
697
698 /* Clear BL field and set the right value */
699 ctrl &= ~MX51_ECSPI_CTRL_BL_MASK;
700 if (spi_imx->target_mode)
701 ctrl |= (spi_imx->target_burst * 8 - 1)
702 << MX51_ECSPI_CTRL_BL_OFFSET;
703 else {
704 ctrl |= (spi_imx->bits_per_word - 1)
705 << MX51_ECSPI_CTRL_BL_OFFSET;
706 }
707
708 /* set clock speed */
709 ctrl &= ~(0xf << MX51_ECSPI_CTRL_POSTDIV_OFFSET |
710 0xf << MX51_ECSPI_CTRL_PREDIV_OFFSET);
711
712 if (!spi_imx->target_mode) {
713 ctrl |= mx51_ecspi_clkdiv(spi_imx, spi_imx->spi_bus_clk, &clk);
714 spi_imx->spi_bus_clk = clk;
715 }
716
717 mx51_configure_cpha(spi_imx, spi);
718
719 /*
720 * ERR009165: work in XHC mode instead of SMC as PIO on the chips
721 * before i.mx6ul.
722 */
723 if (spi_imx->usedma && spi_imx->devtype_data->tx_glitch_fixed)
724 ctrl |= MX51_ECSPI_CTRL_SMC;
725 else
726 ctrl &= ~MX51_ECSPI_CTRL_SMC;
727
728 writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
729
730 /* calculate word delay in SPI Clock (SCLK) cycles */
731 if (t->word_delay.value == 0) {
732 word_delay_sck = 0;
733 } else if (t->word_delay.unit == SPI_DELAY_UNIT_SCK) {
734 word_delay_sck = t->word_delay.value;
735
736 if (word_delay_sck <= MX51_ECSPI_PERIOD_MIN_DELAY_SCK)
737 word_delay_sck = 0;
738 else if (word_delay_sck <= MX51_ECSPI_PERIOD_MIN_DELAY_SCK + 1)
739 word_delay_sck = 1;
740 else
741 word_delay_sck -= MX51_ECSPI_PERIOD_MIN_DELAY_SCK + 1;
742 } else {
743 int word_delay_ns;
744
745 word_delay_ns = spi_delay_to_ns(&t->word_delay, t);
746 if (word_delay_ns < 0)
747 return word_delay_ns;
748
749 if (word_delay_ns <= mul_u64_u32_div(NSEC_PER_SEC,
750 MX51_ECSPI_PERIOD_MIN_DELAY_SCK,
751 spi_imx->spi_bus_clk)) {
752 word_delay_sck = 0;
753 } else if (word_delay_ns <= mul_u64_u32_div(NSEC_PER_SEC,
754 MX51_ECSPI_PERIOD_MIN_DELAY_SCK + 1,
755 spi_imx->spi_bus_clk)) {
756 word_delay_sck = 1;
757 } else {
758 word_delay_ns -= mul_u64_u32_div(NSEC_PER_SEC,
759 MX51_ECSPI_PERIOD_MIN_DELAY_SCK + 1,
760 spi_imx->spi_bus_clk);
761
762 word_delay_sck = DIV_U64_ROUND_UP((u64)word_delay_ns * spi_imx->spi_bus_clk,
763 NSEC_PER_SEC);
764 }
765 }
766
767 if (!FIELD_FIT(MX51_ECSPI_PERIOD_MASK, word_delay_sck))
768 return -EINVAL;
769
770 writel(FIELD_PREP(MX51_ECSPI_PERIOD_MASK, word_delay_sck),
771 spi_imx->base + MX51_ECSPI_PERIOD);
772
773 return 0;
774 }
775
mx51_setup_wml(struct spi_imx_data * spi_imx)776 static void mx51_setup_wml(struct spi_imx_data *spi_imx)
777 {
778 u32 tx_wml = 0;
779
780 if (spi_imx->devtype_data->tx_glitch_fixed)
781 tx_wml = spi_imx->wml;
782 /*
783 * Configure the DMA register: setup the watermark
784 * and enable DMA request.
785 */
786 writel(MX51_ECSPI_DMA_RX_WML(spi_imx->wml - 1) |
787 MX51_ECSPI_DMA_TX_WML(tx_wml) |
788 MX51_ECSPI_DMA_RXT_WML(spi_imx->wml) |
789 MX51_ECSPI_DMA_RXTDEN, spi_imx->base + MX51_ECSPI_DMA);
790 }
791
mx51_ecspi_rx_available(struct spi_imx_data * spi_imx)792 static int mx51_ecspi_rx_available(struct spi_imx_data *spi_imx)
793 {
794 return readl(spi_imx->base + MX51_ECSPI_STAT) & MX51_ECSPI_STAT_RR;
795 }
796
mx51_ecspi_reset(struct spi_imx_data * spi_imx)797 static void mx51_ecspi_reset(struct spi_imx_data *spi_imx)
798 {
799 /* drain receive buffer */
800 while (mx51_ecspi_rx_available(spi_imx))
801 readl(spi_imx->base + MXC_CSPIRXDATA);
802 }
803
804 #define MX31_INTREG_TEEN (1 << 0)
805 #define MX31_INTREG_RREN (1 << 3)
806
807 #define MX31_CSPICTRL_ENABLE (1 << 0)
808 #define MX31_CSPICTRL_HOST (1 << 1)
809 #define MX31_CSPICTRL_XCH (1 << 2)
810 #define MX31_CSPICTRL_SMC (1 << 3)
811 #define MX31_CSPICTRL_POL (1 << 4)
812 #define MX31_CSPICTRL_PHA (1 << 5)
813 #define MX31_CSPICTRL_SSCTL (1 << 6)
814 #define MX31_CSPICTRL_SSPOL (1 << 7)
815 #define MX31_CSPICTRL_BC_SHIFT 8
816 #define MX35_CSPICTRL_BL_SHIFT 20
817 #define MX31_CSPICTRL_CS_SHIFT 24
818 #define MX35_CSPICTRL_CS_SHIFT 12
819 #define MX31_CSPICTRL_DR_SHIFT 16
820
821 #define MX31_CSPI_DMAREG 0x10
822 #define MX31_DMAREG_RH_DEN (1<<4)
823 #define MX31_DMAREG_TH_DEN (1<<1)
824
825 #define MX31_CSPISTATUS 0x14
826 #define MX31_STATUS_RR (1 << 3)
827
828 #define MX31_CSPI_TESTREG 0x1C
829 #define MX31_TEST_LBC (1 << 14)
830
831 /* These functions also work for the i.MX35, but be aware that
832 * the i.MX35 has a slightly different register layout for bits
833 * we do not use here.
834 */
mx31_intctrl(struct spi_imx_data * spi_imx,int enable)835 static void mx31_intctrl(struct spi_imx_data *spi_imx, int enable)
836 {
837 unsigned int val = 0;
838
839 if (enable & MXC_INT_TE)
840 val |= MX31_INTREG_TEEN;
841 if (enable & MXC_INT_RR)
842 val |= MX31_INTREG_RREN;
843
844 writel(val, spi_imx->base + MXC_CSPIINT);
845 }
846
mx31_trigger(struct spi_imx_data * spi_imx)847 static void mx31_trigger(struct spi_imx_data *spi_imx)
848 {
849 unsigned int reg;
850
851 reg = readl(spi_imx->base + MXC_CSPICTRL);
852 reg |= MX31_CSPICTRL_XCH;
853 writel(reg, spi_imx->base + MXC_CSPICTRL);
854 }
855
mx31_prepare_message(struct spi_imx_data * spi_imx,struct spi_message * msg)856 static int mx31_prepare_message(struct spi_imx_data *spi_imx,
857 struct spi_message *msg)
858 {
859 return 0;
860 }
861
mx31_prepare_transfer(struct spi_imx_data * spi_imx,struct spi_device * spi,struct spi_transfer * t)862 static int mx31_prepare_transfer(struct spi_imx_data *spi_imx,
863 struct spi_device *spi, struct spi_transfer *t)
864 {
865 unsigned int reg = MX31_CSPICTRL_ENABLE | MX31_CSPICTRL_HOST;
866 unsigned int clk;
867
868 reg |= spi_imx_clkdiv_2(spi_imx->spi_clk, spi_imx->spi_bus_clk, &clk) <<
869 MX31_CSPICTRL_DR_SHIFT;
870 spi_imx->spi_bus_clk = clk;
871
872 if (is_imx35_cspi(spi_imx)) {
873 reg |= (spi_imx->bits_per_word - 1) << MX35_CSPICTRL_BL_SHIFT;
874 reg |= MX31_CSPICTRL_SSCTL;
875 } else {
876 reg |= (spi_imx->bits_per_word - 1) << MX31_CSPICTRL_BC_SHIFT;
877 }
878
879 if (spi->mode & SPI_CPHA)
880 reg |= MX31_CSPICTRL_PHA;
881 if (spi->mode & SPI_CPOL)
882 reg |= MX31_CSPICTRL_POL;
883 if (spi->mode & SPI_CS_HIGH)
884 reg |= MX31_CSPICTRL_SSPOL;
885 if (!spi_get_csgpiod(spi, 0))
886 reg |= (spi_get_chipselect(spi, 0)) <<
887 (is_imx35_cspi(spi_imx) ? MX35_CSPICTRL_CS_SHIFT :
888 MX31_CSPICTRL_CS_SHIFT);
889
890 if (spi_imx->usedma)
891 reg |= MX31_CSPICTRL_SMC;
892
893 writel(reg, spi_imx->base + MXC_CSPICTRL);
894
895 reg = readl(spi_imx->base + MX31_CSPI_TESTREG);
896 if (spi->mode & SPI_LOOP)
897 reg |= MX31_TEST_LBC;
898 else
899 reg &= ~MX31_TEST_LBC;
900 writel(reg, spi_imx->base + MX31_CSPI_TESTREG);
901
902 if (spi_imx->usedma) {
903 /*
904 * configure DMA requests when RXFIFO is half full and
905 * when TXFIFO is half empty
906 */
907 writel(MX31_DMAREG_RH_DEN | MX31_DMAREG_TH_DEN,
908 spi_imx->base + MX31_CSPI_DMAREG);
909 }
910
911 return 0;
912 }
913
mx31_rx_available(struct spi_imx_data * spi_imx)914 static int mx31_rx_available(struct spi_imx_data *spi_imx)
915 {
916 return readl(spi_imx->base + MX31_CSPISTATUS) & MX31_STATUS_RR;
917 }
918
mx31_reset(struct spi_imx_data * spi_imx)919 static void mx31_reset(struct spi_imx_data *spi_imx)
920 {
921 /* drain receive buffer */
922 while (readl(spi_imx->base + MX31_CSPISTATUS) & MX31_STATUS_RR)
923 readl(spi_imx->base + MXC_CSPIRXDATA);
924 }
925
926 #define MX21_INTREG_RR (1 << 4)
927 #define MX21_INTREG_TEEN (1 << 9)
928 #define MX21_INTREG_RREN (1 << 13)
929
930 #define MX21_CSPICTRL_POL (1 << 5)
931 #define MX21_CSPICTRL_PHA (1 << 6)
932 #define MX21_CSPICTRL_SSPOL (1 << 8)
933 #define MX21_CSPICTRL_XCH (1 << 9)
934 #define MX21_CSPICTRL_ENABLE (1 << 10)
935 #define MX21_CSPICTRL_HOST (1 << 11)
936 #define MX21_CSPICTRL_DR_SHIFT 14
937 #define MX21_CSPICTRL_CS_SHIFT 19
938
mx21_intctrl(struct spi_imx_data * spi_imx,int enable)939 static void mx21_intctrl(struct spi_imx_data *spi_imx, int enable)
940 {
941 unsigned int val = 0;
942
943 if (enable & MXC_INT_TE)
944 val |= MX21_INTREG_TEEN;
945 if (enable & MXC_INT_RR)
946 val |= MX21_INTREG_RREN;
947
948 writel(val, spi_imx->base + MXC_CSPIINT);
949 }
950
mx21_trigger(struct spi_imx_data * spi_imx)951 static void mx21_trigger(struct spi_imx_data *spi_imx)
952 {
953 unsigned int reg;
954
955 reg = readl(spi_imx->base + MXC_CSPICTRL);
956 reg |= MX21_CSPICTRL_XCH;
957 writel(reg, spi_imx->base + MXC_CSPICTRL);
958 }
959
mx21_prepare_message(struct spi_imx_data * spi_imx,struct spi_message * msg)960 static int mx21_prepare_message(struct spi_imx_data *spi_imx,
961 struct spi_message *msg)
962 {
963 return 0;
964 }
965
mx21_prepare_transfer(struct spi_imx_data * spi_imx,struct spi_device * spi,struct spi_transfer * t)966 static int mx21_prepare_transfer(struct spi_imx_data *spi_imx,
967 struct spi_device *spi, struct spi_transfer *t)
968 {
969 unsigned int reg = MX21_CSPICTRL_ENABLE | MX21_CSPICTRL_HOST;
970 unsigned int max = is_imx27_cspi(spi_imx) ? 16 : 18;
971 unsigned int clk;
972
973 reg |= spi_imx_clkdiv_1(spi_imx->spi_clk, spi_imx->spi_bus_clk, max, &clk)
974 << MX21_CSPICTRL_DR_SHIFT;
975 spi_imx->spi_bus_clk = clk;
976
977 reg |= spi_imx->bits_per_word - 1;
978
979 if (spi->mode & SPI_CPHA)
980 reg |= MX21_CSPICTRL_PHA;
981 if (spi->mode & SPI_CPOL)
982 reg |= MX21_CSPICTRL_POL;
983 if (spi->mode & SPI_CS_HIGH)
984 reg |= MX21_CSPICTRL_SSPOL;
985 if (!spi_get_csgpiod(spi, 0))
986 reg |= spi_get_chipselect(spi, 0) << MX21_CSPICTRL_CS_SHIFT;
987
988 writel(reg, spi_imx->base + MXC_CSPICTRL);
989
990 return 0;
991 }
992
mx21_rx_available(struct spi_imx_data * spi_imx)993 static int mx21_rx_available(struct spi_imx_data *spi_imx)
994 {
995 return readl(spi_imx->base + MXC_CSPIINT) & MX21_INTREG_RR;
996 }
997
mx21_reset(struct spi_imx_data * spi_imx)998 static void mx21_reset(struct spi_imx_data *spi_imx)
999 {
1000 writel(1, spi_imx->base + MXC_RESET);
1001 }
1002
1003 #define MX1_INTREG_RR (1 << 3)
1004 #define MX1_INTREG_TEEN (1 << 8)
1005 #define MX1_INTREG_RREN (1 << 11)
1006
1007 #define MX1_CSPICTRL_POL (1 << 4)
1008 #define MX1_CSPICTRL_PHA (1 << 5)
1009 #define MX1_CSPICTRL_XCH (1 << 8)
1010 #define MX1_CSPICTRL_ENABLE (1 << 9)
1011 #define MX1_CSPICTRL_HOST (1 << 10)
1012 #define MX1_CSPICTRL_DR_SHIFT 13
1013
mx1_intctrl(struct spi_imx_data * spi_imx,int enable)1014 static void mx1_intctrl(struct spi_imx_data *spi_imx, int enable)
1015 {
1016 unsigned int val = 0;
1017
1018 if (enable & MXC_INT_TE)
1019 val |= MX1_INTREG_TEEN;
1020 if (enable & MXC_INT_RR)
1021 val |= MX1_INTREG_RREN;
1022
1023 writel(val, spi_imx->base + MXC_CSPIINT);
1024 }
1025
mx1_trigger(struct spi_imx_data * spi_imx)1026 static void mx1_trigger(struct spi_imx_data *spi_imx)
1027 {
1028 unsigned int reg;
1029
1030 reg = readl(spi_imx->base + MXC_CSPICTRL);
1031 reg |= MX1_CSPICTRL_XCH;
1032 writel(reg, spi_imx->base + MXC_CSPICTRL);
1033 }
1034
mx1_prepare_message(struct spi_imx_data * spi_imx,struct spi_message * msg)1035 static int mx1_prepare_message(struct spi_imx_data *spi_imx,
1036 struct spi_message *msg)
1037 {
1038 return 0;
1039 }
1040
mx1_prepare_transfer(struct spi_imx_data * spi_imx,struct spi_device * spi,struct spi_transfer * t)1041 static int mx1_prepare_transfer(struct spi_imx_data *spi_imx,
1042 struct spi_device *spi, struct spi_transfer *t)
1043 {
1044 unsigned int reg = MX1_CSPICTRL_ENABLE | MX1_CSPICTRL_HOST;
1045 unsigned int clk;
1046
1047 reg |= spi_imx_clkdiv_2(spi_imx->spi_clk, spi_imx->spi_bus_clk, &clk) <<
1048 MX1_CSPICTRL_DR_SHIFT;
1049 spi_imx->spi_bus_clk = clk;
1050
1051 reg |= spi_imx->bits_per_word - 1;
1052
1053 if (spi->mode & SPI_CPHA)
1054 reg |= MX1_CSPICTRL_PHA;
1055 if (spi->mode & SPI_CPOL)
1056 reg |= MX1_CSPICTRL_POL;
1057
1058 writel(reg, spi_imx->base + MXC_CSPICTRL);
1059
1060 return 0;
1061 }
1062
mx1_rx_available(struct spi_imx_data * spi_imx)1063 static int mx1_rx_available(struct spi_imx_data *spi_imx)
1064 {
1065 return readl(spi_imx->base + MXC_CSPIINT) & MX1_INTREG_RR;
1066 }
1067
mx1_reset(struct spi_imx_data * spi_imx)1068 static void mx1_reset(struct spi_imx_data *spi_imx)
1069 {
1070 writel(1, spi_imx->base + MXC_RESET);
1071 }
1072
1073 static struct spi_imx_devtype_data imx1_cspi_devtype_data = {
1074 .intctrl = mx1_intctrl,
1075 .prepare_message = mx1_prepare_message,
1076 .prepare_transfer = mx1_prepare_transfer,
1077 .trigger = mx1_trigger,
1078 .rx_available = mx1_rx_available,
1079 .reset = mx1_reset,
1080 .fifo_size = 8,
1081 .has_dmamode = false,
1082 .dynamic_burst = false,
1083 .has_targetmode = false,
1084 .devtype = IMX1_CSPI,
1085 };
1086
1087 static struct spi_imx_devtype_data imx21_cspi_devtype_data = {
1088 .intctrl = mx21_intctrl,
1089 .prepare_message = mx21_prepare_message,
1090 .prepare_transfer = mx21_prepare_transfer,
1091 .trigger = mx21_trigger,
1092 .rx_available = mx21_rx_available,
1093 .reset = mx21_reset,
1094 .fifo_size = 8,
1095 .has_dmamode = false,
1096 .dynamic_burst = false,
1097 .has_targetmode = false,
1098 .devtype = IMX21_CSPI,
1099 };
1100
1101 static struct spi_imx_devtype_data imx27_cspi_devtype_data = {
1102 /* i.mx27 cspi shares the functions with i.mx21 one */
1103 .intctrl = mx21_intctrl,
1104 .prepare_message = mx21_prepare_message,
1105 .prepare_transfer = mx21_prepare_transfer,
1106 .trigger = mx21_trigger,
1107 .rx_available = mx21_rx_available,
1108 .reset = mx21_reset,
1109 .fifo_size = 8,
1110 .has_dmamode = false,
1111 .dynamic_burst = false,
1112 .has_targetmode = false,
1113 .devtype = IMX27_CSPI,
1114 };
1115
1116 static struct spi_imx_devtype_data imx31_cspi_devtype_data = {
1117 .intctrl = mx31_intctrl,
1118 .prepare_message = mx31_prepare_message,
1119 .prepare_transfer = mx31_prepare_transfer,
1120 .trigger = mx31_trigger,
1121 .rx_available = mx31_rx_available,
1122 .reset = mx31_reset,
1123 .fifo_size = 8,
1124 .has_dmamode = false,
1125 .dynamic_burst = false,
1126 .has_targetmode = false,
1127 .devtype = IMX31_CSPI,
1128 };
1129
1130 static struct spi_imx_devtype_data imx35_cspi_devtype_data = {
1131 /* i.mx35 and later cspi shares the functions with i.mx31 one */
1132 .intctrl = mx31_intctrl,
1133 .prepare_message = mx31_prepare_message,
1134 .prepare_transfer = mx31_prepare_transfer,
1135 .trigger = mx31_trigger,
1136 .rx_available = mx31_rx_available,
1137 .reset = mx31_reset,
1138 .fifo_size = 8,
1139 .has_dmamode = false,
1140 .dynamic_burst = false,
1141 .has_targetmode = false,
1142 .devtype = IMX35_CSPI,
1143 };
1144
1145 static struct spi_imx_devtype_data imx51_ecspi_devtype_data = {
1146 .intctrl = mx51_ecspi_intctrl,
1147 .prepare_message = mx51_ecspi_prepare_message,
1148 .prepare_transfer = mx51_ecspi_prepare_transfer,
1149 .trigger = mx51_ecspi_trigger,
1150 .rx_available = mx51_ecspi_rx_available,
1151 .reset = mx51_ecspi_reset,
1152 .setup_wml = mx51_setup_wml,
1153 .fifo_size = 64,
1154 .has_dmamode = true,
1155 .dynamic_burst = true,
1156 .has_targetmode = true,
1157 .disable = mx51_ecspi_disable,
1158 .devtype = IMX51_ECSPI,
1159 };
1160
1161 static struct spi_imx_devtype_data imx53_ecspi_devtype_data = {
1162 .intctrl = mx51_ecspi_intctrl,
1163 .prepare_message = mx51_ecspi_prepare_message,
1164 .prepare_transfer = mx51_ecspi_prepare_transfer,
1165 .trigger = mx51_ecspi_trigger,
1166 .rx_available = mx51_ecspi_rx_available,
1167 .reset = mx51_ecspi_reset,
1168 .fifo_size = 64,
1169 .has_dmamode = true,
1170 .has_targetmode = true,
1171 .disable = mx51_ecspi_disable,
1172 .devtype = IMX53_ECSPI,
1173 };
1174
1175 static struct spi_imx_devtype_data imx6ul_ecspi_devtype_data = {
1176 .intctrl = mx51_ecspi_intctrl,
1177 .prepare_message = mx51_ecspi_prepare_message,
1178 .prepare_transfer = mx51_ecspi_prepare_transfer,
1179 .trigger = mx51_ecspi_trigger,
1180 .rx_available = mx51_ecspi_rx_available,
1181 .reset = mx51_ecspi_reset,
1182 .setup_wml = mx51_setup_wml,
1183 .fifo_size = 64,
1184 .has_dmamode = true,
1185 .dynamic_burst = true,
1186 .has_targetmode = true,
1187 .tx_glitch_fixed = true,
1188 .disable = mx51_ecspi_disable,
1189 .devtype = IMX51_ECSPI,
1190 };
1191
1192 static const struct of_device_id spi_imx_dt_ids[] = {
1193 { .compatible = "fsl,imx1-cspi", .data = &imx1_cspi_devtype_data, },
1194 { .compatible = "fsl,imx21-cspi", .data = &imx21_cspi_devtype_data, },
1195 { .compatible = "fsl,imx27-cspi", .data = &imx27_cspi_devtype_data, },
1196 { .compatible = "fsl,imx31-cspi", .data = &imx31_cspi_devtype_data, },
1197 { .compatible = "fsl,imx35-cspi", .data = &imx35_cspi_devtype_data, },
1198 { .compatible = "fsl,imx51-ecspi", .data = &imx51_ecspi_devtype_data, },
1199 { .compatible = "fsl,imx53-ecspi", .data = &imx53_ecspi_devtype_data, },
1200 { .compatible = "fsl,imx6ul-ecspi", .data = &imx6ul_ecspi_devtype_data, },
1201 { /* sentinel */ }
1202 };
1203 MODULE_DEVICE_TABLE(of, spi_imx_dt_ids);
1204
spi_imx_set_burst_len(struct spi_imx_data * spi_imx,int n_bits)1205 static void spi_imx_set_burst_len(struct spi_imx_data *spi_imx, int n_bits)
1206 {
1207 u32 ctrl;
1208
1209 ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL);
1210 ctrl &= ~MX51_ECSPI_CTRL_BL_MASK;
1211 ctrl |= ((n_bits - 1) << MX51_ECSPI_CTRL_BL_OFFSET);
1212 writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
1213 }
1214
spi_imx_push(struct spi_imx_data * spi_imx)1215 static void spi_imx_push(struct spi_imx_data *spi_imx)
1216 {
1217 unsigned int burst_len;
1218
1219 /*
1220 * Reload the FIFO when the remaining bytes to be transferred in the
1221 * current burst is 0. This only applies when bits_per_word is a
1222 * multiple of 8.
1223 */
1224 if (!spi_imx->remainder) {
1225 if (spi_imx->dynamic_burst) {
1226
1227 /* We need to deal unaligned data first */
1228 burst_len = spi_imx->count % MX51_ECSPI_CTRL_MAX_BURST;
1229
1230 if (!burst_len)
1231 burst_len = MX51_ECSPI_CTRL_MAX_BURST;
1232
1233 spi_imx_set_burst_len(spi_imx, burst_len * 8);
1234
1235 spi_imx->remainder = burst_len;
1236 } else {
1237 spi_imx->remainder = spi_imx_bytes_per_word(spi_imx->bits_per_word);
1238 }
1239 }
1240
1241 while (spi_imx->txfifo < spi_imx->devtype_data->fifo_size) {
1242 if (!spi_imx->count)
1243 break;
1244 if (spi_imx->dynamic_burst &&
1245 spi_imx->txfifo >= DIV_ROUND_UP(spi_imx->remainder, 4))
1246 break;
1247 spi_imx->tx(spi_imx);
1248 spi_imx->txfifo++;
1249 }
1250
1251 if (!spi_imx->target_mode)
1252 spi_imx->devtype_data->trigger(spi_imx);
1253 }
1254
spi_imx_isr(int irq,void * dev_id)1255 static irqreturn_t spi_imx_isr(int irq, void *dev_id)
1256 {
1257 struct spi_imx_data *spi_imx = dev_id;
1258
1259 while (spi_imx->txfifo &&
1260 spi_imx->devtype_data->rx_available(spi_imx)) {
1261 spi_imx->rx(spi_imx);
1262 spi_imx->txfifo--;
1263 }
1264
1265 if (spi_imx->count) {
1266 spi_imx_push(spi_imx);
1267 return IRQ_HANDLED;
1268 }
1269
1270 if (spi_imx->txfifo) {
1271 /* No data left to push, but still waiting for rx data,
1272 * enable receive data available interrupt.
1273 */
1274 spi_imx->devtype_data->intctrl(
1275 spi_imx, MXC_INT_RR);
1276 return IRQ_HANDLED;
1277 }
1278
1279 spi_imx->devtype_data->intctrl(spi_imx, 0);
1280 complete(&spi_imx->xfer_done);
1281
1282 return IRQ_HANDLED;
1283 }
1284
spi_imx_dma_configure(struct spi_controller * controller)1285 static int spi_imx_dma_configure(struct spi_controller *controller)
1286 {
1287 int ret;
1288 enum dma_slave_buswidth buswidth;
1289 struct dma_slave_config rx = {}, tx = {};
1290 struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
1291
1292 switch (spi_imx_bytes_per_word(spi_imx->bits_per_word)) {
1293 case 4:
1294 buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
1295 break;
1296 case 2:
1297 buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
1298 break;
1299 case 1:
1300 buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
1301 break;
1302 default:
1303 return -EINVAL;
1304 }
1305
1306 tx.direction = DMA_MEM_TO_DEV;
1307 tx.dst_addr = spi_imx->base_phys + MXC_CSPITXDATA;
1308 tx.dst_addr_width = buswidth;
1309 tx.dst_maxburst = spi_imx->wml;
1310 ret = dmaengine_slave_config(controller->dma_tx, &tx);
1311 if (ret) {
1312 dev_err(spi_imx->dev, "TX dma configuration failed with %d\n", ret);
1313 return ret;
1314 }
1315
1316 rx.direction = DMA_DEV_TO_MEM;
1317 rx.src_addr = spi_imx->base_phys + MXC_CSPIRXDATA;
1318 rx.src_addr_width = buswidth;
1319 rx.src_maxburst = spi_imx->wml;
1320 ret = dmaengine_slave_config(controller->dma_rx, &rx);
1321 if (ret) {
1322 dev_err(spi_imx->dev, "RX dma configuration failed with %d\n", ret);
1323 return ret;
1324 }
1325
1326 return 0;
1327 }
1328
spi_imx_setupxfer(struct spi_device * spi,struct spi_transfer * t)1329 static int spi_imx_setupxfer(struct spi_device *spi,
1330 struct spi_transfer *t)
1331 {
1332 struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller);
1333
1334 if (!t)
1335 return 0;
1336
1337 if (!spi_imx->target_mode) {
1338 if (!t->speed_hz) {
1339 if (!spi->max_speed_hz) {
1340 dev_err(&spi->dev, "no speed_hz provided!\n");
1341 return -EINVAL;
1342 }
1343 dev_dbg(&spi->dev, "using spi->max_speed_hz!\n");
1344 spi_imx->spi_bus_clk = spi->max_speed_hz;
1345 } else {
1346 spi_imx->spi_bus_clk = t->speed_hz;
1347 }
1348 }
1349
1350 spi_imx->bits_per_word = t->bits_per_word;
1351 spi_imx->count = t->len;
1352
1353 /*
1354 * Initialize the functions for transfer. To transfer non byte-aligned
1355 * words, we have to use multiple word-size bursts. To insert word
1356 * delay, the burst size has to equal the word size. We can't use
1357 * dynamic_burst in these cases.
1358 */
1359 if (spi_imx->devtype_data->dynamic_burst && !spi_imx->target_mode &&
1360 !(spi->mode & SPI_CS_WORD) &&
1361 !(t->word_delay.value) &&
1362 (spi_imx->bits_per_word == 8 ||
1363 spi_imx->bits_per_word == 16 ||
1364 spi_imx->bits_per_word == 32)) {
1365
1366 spi_imx->rx = spi_imx_buf_rx_swap;
1367 spi_imx->tx = spi_imx_buf_tx_swap;
1368 spi_imx->dynamic_burst = 1;
1369
1370 } else {
1371 if (spi_imx->bits_per_word <= 8) {
1372 spi_imx->rx = spi_imx_buf_rx_u8;
1373 spi_imx->tx = spi_imx_buf_tx_u8;
1374 } else if (spi_imx->bits_per_word <= 16) {
1375 spi_imx->rx = spi_imx_buf_rx_u16;
1376 spi_imx->tx = spi_imx_buf_tx_u16;
1377 } else {
1378 spi_imx->rx = spi_imx_buf_rx_u32;
1379 spi_imx->tx = spi_imx_buf_tx_u32;
1380 }
1381 spi_imx->dynamic_burst = 0;
1382 }
1383
1384 if (spi_imx_can_dma(spi_imx->controller, spi, t))
1385 spi_imx->usedma = true;
1386 else
1387 spi_imx->usedma = false;
1388
1389 spi_imx->rx_only = ((t->tx_buf == NULL)
1390 || (t->tx_buf == spi->controller->dummy_tx));
1391
1392 if (spi_imx->target_mode) {
1393 spi_imx->rx = mx53_ecspi_rx_target;
1394 spi_imx->tx = mx53_ecspi_tx_target;
1395 spi_imx->target_burst = t->len;
1396 }
1397
1398 spi_imx->devtype_data->prepare_transfer(spi_imx, spi, t);
1399
1400 return 0;
1401 }
1402
spi_imx_sdma_exit(struct spi_imx_data * spi_imx)1403 static void spi_imx_sdma_exit(struct spi_imx_data *spi_imx)
1404 {
1405 struct spi_controller *controller = spi_imx->controller;
1406
1407 if (controller->dma_rx) {
1408 dma_release_channel(controller->dma_rx);
1409 controller->dma_rx = NULL;
1410 }
1411
1412 if (controller->dma_tx) {
1413 dma_release_channel(controller->dma_tx);
1414 controller->dma_tx = NULL;
1415 }
1416 }
1417
spi_imx_sdma_init(struct device * dev,struct spi_imx_data * spi_imx,struct spi_controller * controller)1418 static int spi_imx_sdma_init(struct device *dev, struct spi_imx_data *spi_imx,
1419 struct spi_controller *controller)
1420 {
1421 int ret;
1422
1423 spi_imx->wml = spi_imx->devtype_data->fifo_size / 2;
1424
1425 /* Prepare for TX DMA: */
1426 controller->dma_tx = dma_request_chan(dev, "tx");
1427 if (IS_ERR(controller->dma_tx)) {
1428 ret = PTR_ERR(controller->dma_tx);
1429 dev_err_probe(dev, ret, "can't get the TX DMA channel!\n");
1430 controller->dma_tx = NULL;
1431 goto err;
1432 }
1433
1434 /* Prepare for RX : */
1435 controller->dma_rx = dma_request_chan(dev, "rx");
1436 if (IS_ERR(controller->dma_rx)) {
1437 ret = PTR_ERR(controller->dma_rx);
1438 dev_err_probe(dev, ret, "can't get the RX DMA channel!\n");
1439 controller->dma_rx = NULL;
1440 goto err;
1441 }
1442
1443 init_completion(&spi_imx->dma_rx_completion);
1444 init_completion(&spi_imx->dma_tx_completion);
1445 controller->can_dma = spi_imx_can_dma;
1446 controller->max_dma_len = MAX_SDMA_BD_BYTES;
1447 spi_imx->controller->flags = SPI_CONTROLLER_MUST_RX |
1448 SPI_CONTROLLER_MUST_TX;
1449
1450 return 0;
1451 err:
1452 spi_imx_sdma_exit(spi_imx);
1453 return ret;
1454 }
1455
spi_imx_dma_rx_callback(void * cookie)1456 static void spi_imx_dma_rx_callback(void *cookie)
1457 {
1458 struct spi_imx_data *spi_imx = (struct spi_imx_data *)cookie;
1459
1460 complete(&spi_imx->dma_rx_completion);
1461 }
1462
spi_imx_dma_tx_callback(void * cookie)1463 static void spi_imx_dma_tx_callback(void *cookie)
1464 {
1465 struct spi_imx_data *spi_imx = (struct spi_imx_data *)cookie;
1466
1467 complete(&spi_imx->dma_tx_completion);
1468 }
1469
spi_imx_calculate_timeout(struct spi_imx_data * spi_imx,int size)1470 static int spi_imx_calculate_timeout(struct spi_imx_data *spi_imx, int size)
1471 {
1472 unsigned long timeout = 0;
1473
1474 /* Time with actual data transfer and CS change delay related to HW */
1475 timeout = (8 + 4) * size / spi_imx->spi_bus_clk;
1476
1477 /* Add extra second for scheduler related activities */
1478 timeout += 1;
1479
1480 /* Double calculated timeout */
1481 return secs_to_jiffies(2 * timeout);
1482 }
1483
spi_imx_dma_transfer(struct spi_imx_data * spi_imx,struct spi_transfer * transfer)1484 static int spi_imx_dma_transfer(struct spi_imx_data *spi_imx,
1485 struct spi_transfer *transfer)
1486 {
1487 struct dma_async_tx_descriptor *desc_tx, *desc_rx;
1488 unsigned long transfer_timeout;
1489 unsigned long time_left;
1490 struct spi_controller *controller = spi_imx->controller;
1491 struct sg_table *tx = &transfer->tx_sg, *rx = &transfer->rx_sg;
1492 struct scatterlist *last_sg = sg_last(rx->sgl, rx->nents);
1493 unsigned int bytes_per_word, i;
1494 int ret;
1495
1496 /* Get the right burst length from the last sg to ensure no tail data */
1497 bytes_per_word = spi_imx_bytes_per_word(transfer->bits_per_word);
1498 for (i = spi_imx->devtype_data->fifo_size / 2; i > 0; i--) {
1499 if (!(sg_dma_len(last_sg) % (i * bytes_per_word)))
1500 break;
1501 }
1502 /* Use 1 as wml in case no available burst length got */
1503 if (i == 0)
1504 i = 1;
1505
1506 spi_imx->wml = i;
1507
1508 ret = spi_imx_dma_configure(controller);
1509 if (ret)
1510 goto dma_failure_no_start;
1511
1512 if (!spi_imx->devtype_data->setup_wml) {
1513 dev_err(spi_imx->dev, "No setup_wml()?\n");
1514 ret = -EINVAL;
1515 goto dma_failure_no_start;
1516 }
1517 spi_imx->devtype_data->setup_wml(spi_imx);
1518
1519 /*
1520 * The TX DMA setup starts the transfer, so make sure RX is configured
1521 * before TX.
1522 */
1523 desc_rx = dmaengine_prep_slave_sg(controller->dma_rx,
1524 rx->sgl, rx->nents, DMA_DEV_TO_MEM,
1525 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1526 if (!desc_rx) {
1527 ret = -EINVAL;
1528 goto dma_failure_no_start;
1529 }
1530
1531 desc_rx->callback = spi_imx_dma_rx_callback;
1532 desc_rx->callback_param = (void *)spi_imx;
1533 dmaengine_submit(desc_rx);
1534 reinit_completion(&spi_imx->dma_rx_completion);
1535 dma_async_issue_pending(controller->dma_rx);
1536
1537 desc_tx = dmaengine_prep_slave_sg(controller->dma_tx,
1538 tx->sgl, tx->nents, DMA_MEM_TO_DEV,
1539 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1540 if (!desc_tx) {
1541 dmaengine_terminate_all(controller->dma_tx);
1542 dmaengine_terminate_all(controller->dma_rx);
1543 return -EINVAL;
1544 }
1545
1546 desc_tx->callback = spi_imx_dma_tx_callback;
1547 desc_tx->callback_param = (void *)spi_imx;
1548 dmaengine_submit(desc_tx);
1549 reinit_completion(&spi_imx->dma_tx_completion);
1550 dma_async_issue_pending(controller->dma_tx);
1551
1552 spi_imx->devtype_data->trigger(spi_imx);
1553
1554 transfer_timeout = spi_imx_calculate_timeout(spi_imx, transfer->len);
1555
1556 /* Wait SDMA to finish the data transfer.*/
1557 time_left = wait_for_completion_timeout(&spi_imx->dma_tx_completion,
1558 transfer_timeout);
1559 if (!time_left) {
1560 dev_err(spi_imx->dev, "I/O Error in DMA TX\n");
1561 dmaengine_terminate_all(controller->dma_tx);
1562 dmaengine_terminate_all(controller->dma_rx);
1563 return -ETIMEDOUT;
1564 }
1565
1566 time_left = wait_for_completion_timeout(&spi_imx->dma_rx_completion,
1567 transfer_timeout);
1568 if (!time_left) {
1569 dev_err(&controller->dev, "I/O Error in DMA RX\n");
1570 spi_imx->devtype_data->reset(spi_imx);
1571 dmaengine_terminate_all(controller->dma_rx);
1572 return -ETIMEDOUT;
1573 }
1574
1575 return 0;
1576 /* fallback to pio */
1577 dma_failure_no_start:
1578 transfer->error |= SPI_TRANS_FAIL_NO_START;
1579 return ret;
1580 }
1581
spi_imx_pio_transfer(struct spi_device * spi,struct spi_transfer * transfer)1582 static int spi_imx_pio_transfer(struct spi_device *spi,
1583 struct spi_transfer *transfer)
1584 {
1585 struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller);
1586 unsigned long transfer_timeout;
1587 unsigned long time_left;
1588
1589 spi_imx->tx_buf = transfer->tx_buf;
1590 spi_imx->rx_buf = transfer->rx_buf;
1591 spi_imx->count = transfer->len;
1592 spi_imx->txfifo = 0;
1593 spi_imx->remainder = 0;
1594
1595 reinit_completion(&spi_imx->xfer_done);
1596
1597 spi_imx_push(spi_imx);
1598
1599 spi_imx->devtype_data->intctrl(spi_imx, MXC_INT_TE);
1600
1601 transfer_timeout = spi_imx_calculate_timeout(spi_imx, transfer->len);
1602
1603 time_left = wait_for_completion_timeout(&spi_imx->xfer_done,
1604 transfer_timeout);
1605 if (!time_left) {
1606 dev_err(&spi->dev, "I/O Error in PIO\n");
1607 spi_imx->devtype_data->reset(spi_imx);
1608 return -ETIMEDOUT;
1609 }
1610
1611 return 0;
1612 }
1613
spi_imx_poll_transfer(struct spi_device * spi,struct spi_transfer * transfer)1614 static int spi_imx_poll_transfer(struct spi_device *spi,
1615 struct spi_transfer *transfer)
1616 {
1617 struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller);
1618 unsigned long timeout;
1619
1620 spi_imx->tx_buf = transfer->tx_buf;
1621 spi_imx->rx_buf = transfer->rx_buf;
1622 spi_imx->count = transfer->len;
1623 spi_imx->txfifo = 0;
1624 spi_imx->remainder = 0;
1625
1626 /* fill in the fifo before timeout calculations if we are
1627 * interrupted here, then the data is getting transferred by
1628 * the HW while we are interrupted
1629 */
1630 spi_imx_push(spi_imx);
1631
1632 timeout = spi_imx_calculate_timeout(spi_imx, transfer->len) + jiffies;
1633 while (spi_imx->txfifo) {
1634 /* RX */
1635 while (spi_imx->txfifo &&
1636 spi_imx->devtype_data->rx_available(spi_imx)) {
1637 spi_imx->rx(spi_imx);
1638 spi_imx->txfifo--;
1639 }
1640
1641 /* TX */
1642 if (spi_imx->count) {
1643 spi_imx_push(spi_imx);
1644 continue;
1645 }
1646
1647 if (spi_imx->txfifo &&
1648 time_after(jiffies, timeout)) {
1649
1650 dev_err_ratelimited(&spi->dev,
1651 "timeout period reached: jiffies: %lu- falling back to interrupt mode\n",
1652 jiffies - timeout);
1653
1654 /* fall back to interrupt mode */
1655 return spi_imx_pio_transfer(spi, transfer);
1656 }
1657 }
1658
1659 return 0;
1660 }
1661
spi_imx_pio_transfer_target(struct spi_device * spi,struct spi_transfer * transfer)1662 static int spi_imx_pio_transfer_target(struct spi_device *spi,
1663 struct spi_transfer *transfer)
1664 {
1665 struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller);
1666 int ret = 0;
1667
1668 if (transfer->len > MX53_MAX_TRANSFER_BYTES) {
1669 dev_err(&spi->dev, "Transaction too big, max size is %d bytes\n",
1670 MX53_MAX_TRANSFER_BYTES);
1671 return -EMSGSIZE;
1672 }
1673
1674 spi_imx->tx_buf = transfer->tx_buf;
1675 spi_imx->rx_buf = transfer->rx_buf;
1676 spi_imx->count = transfer->len;
1677 spi_imx->txfifo = 0;
1678 spi_imx->remainder = 0;
1679
1680 reinit_completion(&spi_imx->xfer_done);
1681 spi_imx->target_aborted = false;
1682
1683 spi_imx_push(spi_imx);
1684
1685 spi_imx->devtype_data->intctrl(spi_imx, MXC_INT_TE | MXC_INT_RDR);
1686
1687 if (wait_for_completion_interruptible(&spi_imx->xfer_done) ||
1688 spi_imx->target_aborted) {
1689 dev_dbg(&spi->dev, "interrupted\n");
1690 ret = -EINTR;
1691 }
1692
1693 /* ecspi has a HW issue when works in Target mode,
1694 * after 64 words writtern to TXFIFO, even TXFIFO becomes empty,
1695 * ECSPI_TXDATA keeps shift out the last word data,
1696 * so we have to disable ECSPI when in target mode after the
1697 * transfer completes
1698 */
1699 if (spi_imx->devtype_data->disable)
1700 spi_imx->devtype_data->disable(spi_imx);
1701
1702 return ret;
1703 }
1704
spi_imx_transfer_estimate_time_us(struct spi_transfer * transfer)1705 static unsigned int spi_imx_transfer_estimate_time_us(struct spi_transfer *transfer)
1706 {
1707 u64 result;
1708
1709 result = DIV_U64_ROUND_CLOSEST((u64)USEC_PER_SEC * transfer->len * BITS_PER_BYTE,
1710 transfer->effective_speed_hz);
1711 if (transfer->word_delay.value) {
1712 unsigned int word_delay_us;
1713 unsigned int words;
1714
1715 words = DIV_ROUND_UP(transfer->len * BITS_PER_BYTE, transfer->bits_per_word);
1716 word_delay_us = DIV_ROUND_CLOSEST(spi_delay_to_ns(&transfer->word_delay, transfer),
1717 NSEC_PER_USEC);
1718 result += (u64)words * word_delay_us;
1719 }
1720
1721 return min(result, U32_MAX);
1722 }
1723
spi_imx_transfer_one(struct spi_controller * controller,struct spi_device * spi,struct spi_transfer * transfer)1724 static int spi_imx_transfer_one(struct spi_controller *controller,
1725 struct spi_device *spi,
1726 struct spi_transfer *transfer)
1727 {
1728 int ret;
1729 struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller);
1730
1731 ret = spi_imx_setupxfer(spi, transfer);
1732 if (ret < 0)
1733 return ret;
1734 transfer->effective_speed_hz = spi_imx->spi_bus_clk;
1735
1736 /* flush rxfifo before transfer */
1737 while (spi_imx->devtype_data->rx_available(spi_imx))
1738 readl(spi_imx->base + MXC_CSPIRXDATA);
1739
1740 if (spi_imx->target_mode)
1741 return spi_imx_pio_transfer_target(spi, transfer);
1742
1743 /*
1744 * If we decided in spi_imx_can_dma() that we want to do a DMA
1745 * transfer, the SPI transfer has already been mapped, so we
1746 * have to do the DMA transfer here.
1747 */
1748 if (spi_imx->usedma)
1749 return spi_imx_dma_transfer(spi_imx, transfer);
1750
1751 /* run in polling mode for short transfers */
1752 if (transfer->len == 1 || (polling_limit_us &&
1753 spi_imx_transfer_estimate_time_us(transfer) < polling_limit_us))
1754 return spi_imx_poll_transfer(spi, transfer);
1755
1756 return spi_imx_pio_transfer(spi, transfer);
1757 }
1758
spi_imx_setup(struct spi_device * spi)1759 static int spi_imx_setup(struct spi_device *spi)
1760 {
1761 dev_dbg(&spi->dev, "%s: mode %d, %u bpw, %d hz\n", __func__,
1762 spi->mode, spi->bits_per_word, spi->max_speed_hz);
1763
1764 return 0;
1765 }
1766
1767 static int
spi_imx_prepare_message(struct spi_controller * controller,struct spi_message * msg)1768 spi_imx_prepare_message(struct spi_controller *controller, struct spi_message *msg)
1769 {
1770 struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
1771 int ret;
1772
1773 ret = pm_runtime_resume_and_get(spi_imx->dev);
1774 if (ret < 0) {
1775 dev_err(spi_imx->dev, "failed to enable clock\n");
1776 return ret;
1777 }
1778
1779 ret = spi_imx->devtype_data->prepare_message(spi_imx, msg);
1780 if (ret) {
1781 pm_runtime_put_autosuspend(spi_imx->dev);
1782 }
1783
1784 return ret;
1785 }
1786
1787 static int
spi_imx_unprepare_message(struct spi_controller * controller,struct spi_message * msg)1788 spi_imx_unprepare_message(struct spi_controller *controller, struct spi_message *msg)
1789 {
1790 struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
1791
1792 pm_runtime_put_autosuspend(spi_imx->dev);
1793 return 0;
1794 }
1795
spi_imx_target_abort(struct spi_controller * controller)1796 static int spi_imx_target_abort(struct spi_controller *controller)
1797 {
1798 struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
1799
1800 spi_imx->target_aborted = true;
1801 complete(&spi_imx->xfer_done);
1802
1803 return 0;
1804 }
1805
spi_imx_probe(struct platform_device * pdev)1806 static int spi_imx_probe(struct platform_device *pdev)
1807 {
1808 struct device_node *np = pdev->dev.of_node;
1809 struct spi_controller *controller;
1810 struct spi_imx_data *spi_imx;
1811 struct resource *res;
1812 int ret, irq, spi_drctl;
1813 const struct spi_imx_devtype_data *devtype_data =
1814 of_device_get_match_data(&pdev->dev);
1815 bool target_mode;
1816 u32 val;
1817
1818 target_mode = devtype_data->has_targetmode &&
1819 of_property_read_bool(np, "spi-slave");
1820 if (target_mode)
1821 controller = spi_alloc_target(&pdev->dev,
1822 sizeof(struct spi_imx_data));
1823 else
1824 controller = spi_alloc_host(&pdev->dev,
1825 sizeof(struct spi_imx_data));
1826 if (!controller)
1827 return -ENOMEM;
1828
1829 ret = of_property_read_u32(np, "fsl,spi-rdy-drctl", &spi_drctl);
1830 if ((ret < 0) || (spi_drctl >= 0x3)) {
1831 /* '11' is reserved */
1832 spi_drctl = 0;
1833 }
1834
1835 platform_set_drvdata(pdev, controller);
1836
1837 controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(1, 32);
1838 controller->bus_num = np ? -1 : pdev->id;
1839 controller->use_gpio_descriptors = true;
1840
1841 spi_imx = spi_controller_get_devdata(controller);
1842 spi_imx->controller = controller;
1843 spi_imx->dev = &pdev->dev;
1844 spi_imx->target_mode = target_mode;
1845
1846 spi_imx->devtype_data = devtype_data;
1847
1848 /*
1849 * Get number of chip selects from device properties. This can be
1850 * coming from device tree or boardfiles, if it is not defined,
1851 * a default value of 3 chip selects will be used, as all the legacy
1852 * board files have <= 3 chip selects.
1853 */
1854 if (!device_property_read_u32(&pdev->dev, "num-cs", &val))
1855 controller->num_chipselect = val;
1856 else
1857 controller->num_chipselect = 3;
1858
1859 controller->transfer_one = spi_imx_transfer_one;
1860 controller->setup = spi_imx_setup;
1861 controller->prepare_message = spi_imx_prepare_message;
1862 controller->unprepare_message = spi_imx_unprepare_message;
1863 controller->target_abort = spi_imx_target_abort;
1864 spi_imx->spi_bus_clk = MXC_SPI_DEFAULT_SPEED;
1865 controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_NO_CS |
1866 SPI_MOSI_IDLE_LOW;
1867
1868 if (is_imx35_cspi(spi_imx) || is_imx51_ecspi(spi_imx) ||
1869 is_imx53_ecspi(spi_imx))
1870 controller->mode_bits |= SPI_LOOP | SPI_READY;
1871
1872 if (is_imx51_ecspi(spi_imx) || is_imx53_ecspi(spi_imx))
1873 controller->mode_bits |= SPI_RX_CPHA_FLIP;
1874
1875 if (is_imx51_ecspi(spi_imx) &&
1876 device_property_read_u32(&pdev->dev, "cs-gpios", NULL))
1877 /*
1878 * When using HW-CS implementing SPI_CS_WORD can be done by just
1879 * setting the burst length to the word size. This is
1880 * considerably faster than manually controlling the CS.
1881 */
1882 controller->mode_bits |= SPI_CS_WORD;
1883
1884 if (is_imx51_ecspi(spi_imx) || is_imx53_ecspi(spi_imx)) {
1885 controller->max_native_cs = 4;
1886 controller->flags |= SPI_CONTROLLER_GPIO_SS;
1887 }
1888
1889 spi_imx->spi_drctl = spi_drctl;
1890
1891 init_completion(&spi_imx->xfer_done);
1892
1893 spi_imx->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1894 if (IS_ERR(spi_imx->base)) {
1895 ret = PTR_ERR(spi_imx->base);
1896 goto out_controller_put;
1897 }
1898 spi_imx->base_phys = res->start;
1899
1900 irq = platform_get_irq(pdev, 0);
1901 if (irq < 0) {
1902 ret = irq;
1903 goto out_controller_put;
1904 }
1905
1906 ret = devm_request_irq(&pdev->dev, irq, spi_imx_isr, 0,
1907 dev_name(&pdev->dev), spi_imx);
1908 if (ret) {
1909 dev_err(&pdev->dev, "can't get irq%d: %d\n", irq, ret);
1910 goto out_controller_put;
1911 }
1912
1913 spi_imx->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1914 if (IS_ERR(spi_imx->clk_ipg)) {
1915 ret = PTR_ERR(spi_imx->clk_ipg);
1916 goto out_controller_put;
1917 }
1918
1919 spi_imx->clk_per = devm_clk_get(&pdev->dev, "per");
1920 if (IS_ERR(spi_imx->clk_per)) {
1921 ret = PTR_ERR(spi_imx->clk_per);
1922 goto out_controller_put;
1923 }
1924
1925 ret = clk_prepare_enable(spi_imx->clk_per);
1926 if (ret)
1927 goto out_controller_put;
1928
1929 ret = clk_prepare_enable(spi_imx->clk_ipg);
1930 if (ret)
1931 goto out_put_per;
1932
1933 pm_runtime_set_autosuspend_delay(spi_imx->dev, MXC_RPM_TIMEOUT);
1934 pm_runtime_use_autosuspend(spi_imx->dev);
1935 pm_runtime_get_noresume(spi_imx->dev);
1936 pm_runtime_set_active(spi_imx->dev);
1937 pm_runtime_enable(spi_imx->dev);
1938
1939 spi_imx->spi_clk = clk_get_rate(spi_imx->clk_per);
1940 /*
1941 * Only validated on i.mx35 and i.mx6 now, can remove the constraint
1942 * if validated on other chips.
1943 */
1944 if (spi_imx->devtype_data->has_dmamode) {
1945 ret = spi_imx_sdma_init(&pdev->dev, spi_imx, controller);
1946 if (ret == -EPROBE_DEFER)
1947 goto out_runtime_pm_put;
1948
1949 if (ret < 0)
1950 dev_dbg(&pdev->dev, "dma setup error %d, use pio\n",
1951 ret);
1952 }
1953
1954 spi_imx->devtype_data->reset(spi_imx);
1955
1956 spi_imx->devtype_data->intctrl(spi_imx, 0);
1957
1958 controller->dev.of_node = pdev->dev.of_node;
1959 ret = spi_register_controller(controller);
1960 if (ret) {
1961 dev_err_probe(&pdev->dev, ret, "register controller failed\n");
1962 goto out_register_controller;
1963 }
1964
1965 pm_runtime_put_autosuspend(spi_imx->dev);
1966
1967 return ret;
1968
1969 out_register_controller:
1970 if (spi_imx->devtype_data->has_dmamode)
1971 spi_imx_sdma_exit(spi_imx);
1972 out_runtime_pm_put:
1973 pm_runtime_dont_use_autosuspend(spi_imx->dev);
1974 pm_runtime_disable(spi_imx->dev);
1975 pm_runtime_set_suspended(&pdev->dev);
1976
1977 clk_disable_unprepare(spi_imx->clk_ipg);
1978 out_put_per:
1979 clk_disable_unprepare(spi_imx->clk_per);
1980 out_controller_put:
1981 spi_controller_put(controller);
1982
1983 return ret;
1984 }
1985
spi_imx_remove(struct platform_device * pdev)1986 static void spi_imx_remove(struct platform_device *pdev)
1987 {
1988 struct spi_controller *controller = platform_get_drvdata(pdev);
1989 struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
1990 int ret;
1991
1992 spi_unregister_controller(controller);
1993
1994 ret = pm_runtime_get_sync(spi_imx->dev);
1995 if (ret >= 0)
1996 writel(0, spi_imx->base + MXC_CSPICTRL);
1997 else
1998 dev_warn(spi_imx->dev, "failed to enable clock, skip hw disable\n");
1999
2000 pm_runtime_dont_use_autosuspend(spi_imx->dev);
2001 pm_runtime_put_sync(spi_imx->dev);
2002 pm_runtime_disable(spi_imx->dev);
2003
2004 spi_imx_sdma_exit(spi_imx);
2005 }
2006
spi_imx_runtime_resume(struct device * dev)2007 static int spi_imx_runtime_resume(struct device *dev)
2008 {
2009 struct spi_controller *controller = dev_get_drvdata(dev);
2010 struct spi_imx_data *spi_imx;
2011 int ret;
2012
2013 spi_imx = spi_controller_get_devdata(controller);
2014
2015 ret = clk_prepare_enable(spi_imx->clk_per);
2016 if (ret)
2017 return ret;
2018
2019 ret = clk_prepare_enable(spi_imx->clk_ipg);
2020 if (ret) {
2021 clk_disable_unprepare(spi_imx->clk_per);
2022 return ret;
2023 }
2024
2025 return 0;
2026 }
2027
spi_imx_runtime_suspend(struct device * dev)2028 static int spi_imx_runtime_suspend(struct device *dev)
2029 {
2030 struct spi_controller *controller = dev_get_drvdata(dev);
2031 struct spi_imx_data *spi_imx;
2032
2033 spi_imx = spi_controller_get_devdata(controller);
2034
2035 clk_disable_unprepare(spi_imx->clk_per);
2036 clk_disable_unprepare(spi_imx->clk_ipg);
2037
2038 return 0;
2039 }
2040
spi_imx_suspend(struct device * dev)2041 static int spi_imx_suspend(struct device *dev)
2042 {
2043 pinctrl_pm_select_sleep_state(dev);
2044 return 0;
2045 }
2046
spi_imx_resume(struct device * dev)2047 static int spi_imx_resume(struct device *dev)
2048 {
2049 pinctrl_pm_select_default_state(dev);
2050 return 0;
2051 }
2052
2053 static const struct dev_pm_ops imx_spi_pm = {
2054 RUNTIME_PM_OPS(spi_imx_runtime_suspend, spi_imx_runtime_resume, NULL)
2055 SYSTEM_SLEEP_PM_OPS(spi_imx_suspend, spi_imx_resume)
2056 };
2057
2058 static struct platform_driver spi_imx_driver = {
2059 .driver = {
2060 .name = DRIVER_NAME,
2061 .of_match_table = spi_imx_dt_ids,
2062 .pm = pm_ptr(&imx_spi_pm),
2063 },
2064 .probe = spi_imx_probe,
2065 .remove = spi_imx_remove,
2066 };
2067 module_platform_driver(spi_imx_driver);
2068
2069 MODULE_DESCRIPTION("i.MX SPI Controller driver");
2070 MODULE_AUTHOR("Sascha Hauer, Pengutronix");
2071 MODULE_LICENSE("GPL");
2072 MODULE_ALIAS("platform:" DRIVER_NAME);
2073