1 /* SPDX-License-Identifier: GPL-2.0+ */ 2 #ifndef _LINUX_MAPLE_TREE_H 3 #define _LINUX_MAPLE_TREE_H 4 /* 5 * Maple Tree - An RCU-safe adaptive tree for storing ranges 6 * Copyright (c) 2018-2022 Oracle 7 * Authors: Liam R. Howlett <Liam.Howlett@Oracle.com> 8 * Matthew Wilcox <willy@infradead.org> 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/rcupdate.h> 13 #include <linux/spinlock.h> 14 /* #define CONFIG_MAPLE_RCU_DISABLED */ 15 16 /* 17 * Allocated nodes are mutable until they have been inserted into the tree, 18 * at which time they cannot change their type until they have been removed 19 * from the tree and an RCU grace period has passed. 20 * 21 * Removed nodes have their ->parent set to point to themselves. RCU readers 22 * check ->parent before relying on the value that they loaded from the 23 * slots array. This lets us reuse the slots array for the RCU head. 24 * 25 * Nodes in the tree point to their parent unless bit 0 is set. 26 */ 27 #if defined(CONFIG_64BIT) || defined(BUILD_VDSO32_64) 28 /* 64bit sizes */ 29 #define MAPLE_NODE_SLOTS 31 /* 256 bytes including ->parent */ 30 #define MAPLE_RANGE64_SLOTS 16 /* 256 bytes */ 31 #define MAPLE_ARANGE64_SLOTS 10 /* 240 bytes */ 32 #define MAPLE_ALLOC_SLOTS (MAPLE_NODE_SLOTS - 1) 33 #else 34 /* 32bit sizes */ 35 #define MAPLE_NODE_SLOTS 63 /* 256 bytes including ->parent */ 36 #define MAPLE_RANGE64_SLOTS 32 /* 256 bytes */ 37 #define MAPLE_ARANGE64_SLOTS 21 /* 240 bytes */ 38 #define MAPLE_ALLOC_SLOTS (MAPLE_NODE_SLOTS - 2) 39 #endif /* defined(CONFIG_64BIT) || defined(BUILD_VDSO32_64) */ 40 41 #define MAPLE_NODE_MASK 255UL 42 43 /* 44 * The node->parent of the root node has bit 0 set and the rest of the pointer 45 * is a pointer to the tree itself. No more bits are available in this pointer 46 * (on m68k, the data structure may only be 2-byte aligned). 47 * 48 * Internal non-root nodes can only have maple_range_* nodes as parents. The 49 * parent pointer is 256B aligned like all other tree nodes. When storing a 32 50 * or 64 bit values, the offset can fit into 4 bits. The 16 bit values need an 51 * extra bit to store the offset. This extra bit comes from a reuse of the last 52 * bit in the node type. This is possible by using bit 1 to indicate if bit 2 53 * is part of the type or the slot. 54 * 55 * Once the type is decided, the decision of an allocation range type or a 56 * range type is done by examining the immutable tree flag for the 57 * MT_FLAGS_ALLOC_RANGE flag. 58 * 59 * Node types: 60 * 0b??1 = Root 61 * 0b?00 = 16 bit nodes 62 * 0b010 = 32 bit nodes 63 * 0b110 = 64 bit nodes 64 * 65 * Slot size and location in the parent pointer: 66 * type : slot location 67 * 0b??1 : Root 68 * 0b?00 : 16 bit values, type in 0-1, slot in 2-6 69 * 0b010 : 32 bit values, type in 0-2, slot in 3-6 70 * 0b110 : 64 bit values, type in 0-2, slot in 3-6 71 */ 72 73 /* 74 * This metadata is used to optimize the gap updating code and in reverse 75 * searching for gaps or any other code that needs to find the end of the data. 76 */ 77 struct maple_metadata { 78 unsigned char end; /* end of data */ 79 unsigned char gap; /* offset of largest gap */ 80 }; 81 82 /* 83 * Leaf nodes do not store pointers to nodes, they store user data. Users may 84 * store almost any bit pattern. As noted above, the optimisation of storing an 85 * entry at 0 in the root pointer cannot be done for data which have the bottom 86 * two bits set to '10'. We also reserve values with the bottom two bits set to 87 * '10' which are below 4096 (ie 2, 6, 10 .. 4094) for internal use. Some APIs 88 * return errnos as a negative errno shifted right by two bits and the bottom 89 * two bits set to '10', and while choosing to store these values in the array 90 * is not an error, it may lead to confusion if you're testing for an error with 91 * mas_is_err(). 92 * 93 * Non-leaf nodes store the type of the node pointed to (enum maple_type in bits 94 * 3-6), bit 2 is reserved. That leaves bits 0-1 unused for now. 95 * 96 * In regular B-Tree terms, pivots are called keys. The term pivot is used to 97 * indicate that the tree is specifying ranges, Pivots may appear in the 98 * subtree with an entry attached to the value whereas keys are unique to a 99 * specific position of a B-tree. Pivot values are inclusive of the slot with 100 * the same index. 101 */ 102 103 struct maple_range_64 { 104 struct maple_pnode *parent; 105 unsigned long pivot[MAPLE_RANGE64_SLOTS - 1]; 106 union { 107 void __rcu *slot[MAPLE_RANGE64_SLOTS]; 108 struct { 109 void __rcu *pad[MAPLE_RANGE64_SLOTS - 1]; 110 struct maple_metadata meta; 111 }; 112 }; 113 }; 114 115 /* 116 * At tree creation time, the user can specify that they're willing to trade off 117 * storing fewer entries in a tree in return for storing more information in 118 * each node. 119 * 120 * The maple tree supports recording the largest range of NULL entries available 121 * in this node, also called gaps. This optimises the tree for allocating a 122 * range. 123 */ 124 struct maple_arange_64 { 125 struct maple_pnode *parent; 126 unsigned long pivot[MAPLE_ARANGE64_SLOTS - 1]; 127 void __rcu *slot[MAPLE_ARANGE64_SLOTS]; 128 unsigned long gap[MAPLE_ARANGE64_SLOTS]; 129 struct maple_metadata meta; 130 }; 131 132 struct maple_topiary { 133 struct maple_pnode *parent; 134 struct maple_enode *next; /* Overlaps the pivot */ 135 }; 136 137 enum maple_type { 138 maple_dense, 139 maple_leaf_64, 140 maple_range_64, 141 maple_arange_64, 142 }; 143 144 enum store_type { 145 wr_invalid, 146 wr_new_root, 147 wr_store_root, 148 wr_exact_fit, 149 wr_spanning_store, 150 wr_split_store, 151 wr_rebalance, 152 wr_append, 153 wr_node_store, 154 wr_slot_store, 155 }; 156 157 /** 158 * DOC: Maple tree flags 159 * 160 * * MT_FLAGS_ALLOC_RANGE - Track gaps in this tree 161 * * MT_FLAGS_USE_RCU - Operate in RCU mode 162 * * MT_FLAGS_HEIGHT_OFFSET - The position of the tree height in the flags 163 * * MT_FLAGS_HEIGHT_MASK - The mask for the maple tree height value 164 * * MT_FLAGS_LOCK_MASK - How the mt_lock is used 165 * * MT_FLAGS_LOCK_IRQ - Acquired irq-safe 166 * * MT_FLAGS_LOCK_BH - Acquired bh-safe 167 * * MT_FLAGS_LOCK_EXTERN - mt_lock is not used 168 * 169 * MAPLE_HEIGHT_MAX The largest height that can be stored 170 */ 171 #define MT_FLAGS_ALLOC_RANGE 0x01 172 #define MT_FLAGS_USE_RCU 0x02 173 #define MT_FLAGS_HEIGHT_OFFSET 0x02 174 #define MT_FLAGS_HEIGHT_MASK 0x7C 175 #define MT_FLAGS_LOCK_MASK 0x300 176 #define MT_FLAGS_LOCK_IRQ 0x100 177 #define MT_FLAGS_LOCK_BH 0x200 178 #define MT_FLAGS_LOCK_EXTERN 0x300 179 #define MT_FLAGS_ALLOC_WRAPPED 0x0800 180 181 #define MAPLE_HEIGHT_MAX 31 182 183 184 #define MAPLE_NODE_TYPE_MASK 0x0F 185 #define MAPLE_NODE_TYPE_SHIFT 0x03 186 187 #define MAPLE_RESERVED_RANGE 4096 188 189 #ifdef CONFIG_LOCKDEP 190 #define mt_lock_is_held(mt) \ 191 (!(mt)->ma_external_lock || lock_is_held((mt)->ma_external_lock)) 192 193 #define mt_write_lock_is_held(mt) \ 194 (!(mt)->ma_external_lock || \ 195 lock_is_held_type((mt)->ma_external_lock, 0)) 196 197 #define mt_set_external_lock(mt, lock) \ 198 (mt)->ma_external_lock = &(lock)->dep_map 199 200 #define mt_on_stack(mt) (mt).ma_external_lock = NULL 201 #else 202 #define mt_lock_is_held(mt) 1 203 #define mt_write_lock_is_held(mt) 1 204 #define mt_set_external_lock(mt, lock) do { } while (0) 205 #define mt_on_stack(mt) do { } while (0) 206 #endif 207 208 /* 209 * If the tree contains a single entry at index 0, it is usually stored in 210 * tree->ma_root. To optimise for the page cache, an entry which ends in '00', 211 * '01' or '11' is stored in the root, but an entry which ends in '10' will be 212 * stored in a node. Bits 3-6 are used to store enum maple_type. 213 * 214 * The flags are used both to store some immutable information about this tree 215 * (set at tree creation time) and dynamic information set under the spinlock. 216 * 217 * Another use of flags are to indicate global states of the tree. This is the 218 * case with the MT_FLAGS_USE_RCU flag, which indicates the tree is currently in 219 * RCU mode. This mode was added to allow the tree to reuse nodes instead of 220 * re-allocating and RCU freeing nodes when there is a single user. 221 */ 222 struct maple_tree { 223 union { 224 spinlock_t ma_lock; 225 #ifdef CONFIG_LOCKDEP 226 struct lockdep_map *ma_external_lock; 227 #endif 228 }; 229 unsigned int ma_flags; 230 void __rcu *ma_root; 231 }; 232 233 /** 234 * MTREE_INIT() - Initialize a maple tree 235 * @name: The maple tree name 236 * @__flags: The maple tree flags 237 * 238 */ 239 #define MTREE_INIT(name, __flags) { \ 240 .ma_lock = __SPIN_LOCK_UNLOCKED((name).ma_lock), \ 241 .ma_flags = __flags, \ 242 .ma_root = NULL, \ 243 } 244 245 /** 246 * MTREE_INIT_EXT() - Initialize a maple tree with an external lock. 247 * @name: The tree name 248 * @__flags: The maple tree flags 249 * @__lock: The external lock 250 */ 251 #ifdef CONFIG_LOCKDEP 252 #define MTREE_INIT_EXT(name, __flags, __lock) { \ 253 .ma_external_lock = &(__lock).dep_map, \ 254 .ma_flags = (__flags), \ 255 .ma_root = NULL, \ 256 } 257 #else 258 #define MTREE_INIT_EXT(name, __flags, __lock) MTREE_INIT(name, __flags) 259 #endif 260 261 #define DEFINE_MTREE(name) \ 262 struct maple_tree name = MTREE_INIT(name, 0) 263 264 #define mtree_lock(mt) spin_lock((&(mt)->ma_lock)) 265 #define mtree_lock_nested(mas, subclass) \ 266 spin_lock_nested((&(mt)->ma_lock), subclass) 267 #define mtree_unlock(mt) spin_unlock((&(mt)->ma_lock)) 268 269 /* 270 * The Maple Tree squeezes various bits in at various points which aren't 271 * necessarily obvious. Usually, this is done by observing that pointers are 272 * N-byte aligned and thus the bottom log_2(N) bits are available for use. We 273 * don't use the high bits of pointers to store additional information because 274 * we don't know what bits are unused on any given architecture. 275 * 276 * Nodes are 256 bytes in size and are also aligned to 256 bytes, giving us 8 277 * low bits for our own purposes. Nodes are currently of 4 types: 278 * 1. Single pointer (Range is 0-0) 279 * 2. Non-leaf Allocation Range nodes 280 * 3. Non-leaf Range nodes 281 * 4. Leaf Range nodes All nodes consist of a number of node slots, 282 * pivots, and a parent pointer. 283 */ 284 285 struct maple_node { 286 union { 287 struct { 288 struct maple_pnode *parent; 289 void __rcu *slot[MAPLE_NODE_SLOTS]; 290 }; 291 struct { 292 void *pad; 293 struct rcu_head rcu; 294 struct maple_enode *piv_parent; 295 unsigned char parent_slot; 296 enum maple_type type; 297 unsigned char slot_len; 298 unsigned int ma_flags; 299 }; 300 struct maple_range_64 mr64; 301 struct maple_arange_64 ma64; 302 }; 303 }; 304 305 /* 306 * More complicated stores can cause two nodes to become one or three and 307 * potentially alter the height of the tree. Either half of the tree may need 308 * to be rebalanced against the other. The ma_topiary struct is used to track 309 * which nodes have been 'cut' from the tree so that the change can be done 310 * safely at a later date. This is done to support RCU. 311 */ 312 struct ma_topiary { 313 struct maple_enode *head; 314 struct maple_enode *tail; 315 struct maple_tree *mtree; 316 }; 317 318 void *mtree_load(struct maple_tree *mt, unsigned long index); 319 320 int mtree_insert(struct maple_tree *mt, unsigned long index, 321 void *entry, gfp_t gfp); 322 int mtree_insert_range(struct maple_tree *mt, unsigned long first, 323 unsigned long last, void *entry, gfp_t gfp); 324 int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp, 325 void *entry, unsigned long size, unsigned long min, 326 unsigned long max, gfp_t gfp); 327 int mtree_alloc_cyclic(struct maple_tree *mt, unsigned long *startp, 328 void *entry, unsigned long range_lo, unsigned long range_hi, 329 unsigned long *next, gfp_t gfp); 330 int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp, 331 void *entry, unsigned long size, unsigned long min, 332 unsigned long max, gfp_t gfp); 333 334 int mtree_store_range(struct maple_tree *mt, unsigned long first, 335 unsigned long last, void *entry, gfp_t gfp); 336 int mtree_store(struct maple_tree *mt, unsigned long index, 337 void *entry, gfp_t gfp); 338 void *mtree_erase(struct maple_tree *mt, unsigned long index); 339 340 int mtree_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp); 341 int __mt_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp); 342 343 void mtree_destroy(struct maple_tree *mt); 344 void __mt_destroy(struct maple_tree *mt); 345 346 /** 347 * mtree_empty() - Determine if a tree has any present entries. 348 * @mt: Maple Tree. 349 * 350 * Context: Any context. 351 * Return: %true if the tree contains only NULL pointers. 352 */ 353 static inline bool mtree_empty(const struct maple_tree *mt) 354 { 355 return mt->ma_root == NULL; 356 } 357 358 /* Advanced API */ 359 360 /* 361 * Maple State Status 362 * ma_active means the maple state is pointing to a node and offset and can 363 * continue operating on the tree. 364 * ma_start means we have not searched the tree. 365 * ma_root means we have searched the tree and the entry we found lives in 366 * the root of the tree (ie it has index 0, length 1 and is the only entry in 367 * the tree). 368 * ma_none means we have searched the tree and there is no node in the 369 * tree for this entry. For example, we searched for index 1 in an empty 370 * tree. Or we have a tree which points to a full leaf node and we 371 * searched for an entry which is larger than can be contained in that 372 * leaf node. 373 * ma_pause means the data within the maple state may be stale, restart the 374 * operation 375 * ma_overflow means the search has reached the upper limit of the search 376 * ma_underflow means the search has reached the lower limit of the search 377 * ma_error means there was an error, check the node for the error number. 378 */ 379 enum maple_status { 380 ma_active, 381 ma_start, 382 ma_root, 383 ma_none, 384 ma_pause, 385 ma_overflow, 386 ma_underflow, 387 ma_error, 388 }; 389 390 /* 391 * The maple state is defined in the struct ma_state and is used to keep track 392 * of information during operations, and even between operations when using the 393 * advanced API. 394 * 395 * If state->node has bit 0 set then it references a tree location which is not 396 * a node (eg the root). If bit 1 is set, the rest of the bits are a negative 397 * errno. Bit 2 (the 'unallocated slots' bit) is clear. Bits 3-6 indicate the 398 * node type. 399 * 400 * state->alloc either has a request number of nodes or an allocated node. If 401 * stat->alloc has a requested number of nodes, the first bit will be set (0x1) 402 * and the remaining bits are the value. If state->alloc is a node, then the 403 * node will be of type maple_alloc. maple_alloc has MAPLE_NODE_SLOTS - 1 for 404 * storing more allocated nodes, a total number of nodes allocated, and the 405 * node_count in this node. node_count is the number of allocated nodes in this 406 * node. The scaling beyond MAPLE_NODE_SLOTS - 1 is handled by storing further 407 * nodes into state->alloc->slot[0]'s node. Nodes are taken from state->alloc 408 * by removing a node from the state->alloc node until state->alloc->node_count 409 * is 1, when state->alloc is returned and the state->alloc->slot[0] is promoted 410 * to state->alloc. Nodes are pushed onto state->alloc by putting the current 411 * state->alloc into the pushed node's slot[0]. 412 * 413 * The state also contains the implied min/max of the state->node, the depth of 414 * this search, and the offset. The implied min/max are either from the parent 415 * node or are 0-oo for the root node. The depth is incremented or decremented 416 * every time a node is walked down or up. The offset is the slot/pivot of 417 * interest in the node - either for reading or writing. 418 * 419 * When returning a value the maple state index and last respectively contain 420 * the start and end of the range for the entry. Ranges are inclusive in the 421 * Maple Tree. 422 * 423 * The status of the state is used to determine how the next action should treat 424 * the state. For instance, if the status is ma_start then the next action 425 * should start at the root of the tree and walk down. If the status is 426 * ma_pause then the node may be stale data and should be discarded. If the 427 * status is ma_overflow, then the last action hit the upper limit. 428 * 429 */ 430 struct ma_state { 431 struct maple_tree *tree; /* The tree we're operating in */ 432 unsigned long index; /* The index we're operating on - range start */ 433 unsigned long last; /* The last index we're operating on - range end */ 434 struct maple_enode *node; /* The node containing this entry */ 435 unsigned long min; /* The minimum index of this node - implied pivot min */ 436 unsigned long max; /* The maximum index of this node - implied pivot max */ 437 struct slab_sheaf *sheaf; /* Allocated nodes for this operation */ 438 struct maple_node *alloc; /* A single allocated node for fast path writes */ 439 unsigned long node_request; /* The number of nodes to allocate for this operation */ 440 enum maple_status status; /* The status of the state (active, start, none, etc) */ 441 unsigned char depth; /* depth of tree descent during write */ 442 unsigned char offset; 443 unsigned char mas_flags; 444 unsigned char end; /* The end of the node */ 445 enum store_type store_type; /* The type of store needed for this operation */ 446 }; 447 448 struct ma_wr_state { 449 struct ma_state *mas; 450 struct maple_node *node; /* Decoded mas->node */ 451 unsigned long r_min; /* range min */ 452 unsigned long r_max; /* range max */ 453 enum maple_type type; /* mas->node type */ 454 unsigned char offset_end; /* The offset where the write ends */ 455 unsigned long *pivots; /* mas->node->pivots pointer */ 456 unsigned long end_piv; /* The pivot at the offset end */ 457 void __rcu **slots; /* mas->node->slots pointer */ 458 void *entry; /* The entry to write */ 459 void *content; /* The existing entry that is being overwritten */ 460 unsigned char vacant_height; /* Height of lowest node with free space */ 461 unsigned char sufficient_height;/* Height of lowest node with min sufficiency + 1 nodes */ 462 }; 463 464 #define mas_lock(mas) spin_lock(&((mas)->tree->ma_lock)) 465 #define mas_lock_nested(mas, subclass) \ 466 spin_lock_nested(&((mas)->tree->ma_lock), subclass) 467 #define mas_unlock(mas) spin_unlock(&((mas)->tree->ma_lock)) 468 469 /* 470 * Special values for ma_state.node. 471 * MA_ERROR represents an errno. After dropping the lock and attempting 472 * to resolve the error, the walk would have to be restarted from the 473 * top of the tree as the tree may have been modified. 474 */ 475 #define MA_ERROR(err) \ 476 ((struct maple_enode *)(((unsigned long)err << 2) | 2UL)) 477 478 /* 479 * When changing MA_STATE, remember to also change rust/kernel/maple_tree.rs 480 */ 481 #define MA_STATE(name, mt, first, end) \ 482 struct ma_state name = { \ 483 .tree = mt, \ 484 .index = first, \ 485 .last = end, \ 486 .node = NULL, \ 487 .status = ma_start, \ 488 .min = 0, \ 489 .max = ULONG_MAX, \ 490 .sheaf = NULL, \ 491 .alloc = NULL, \ 492 .node_request = 0, \ 493 .mas_flags = 0, \ 494 .store_type = wr_invalid, \ 495 } 496 497 #define MA_WR_STATE(name, ma_state, wr_entry) \ 498 struct ma_wr_state name = { \ 499 .mas = ma_state, \ 500 .content = NULL, \ 501 .entry = wr_entry, \ 502 .vacant_height = 0, \ 503 .sufficient_height = 0 \ 504 } 505 506 #define MA_TOPIARY(name, tree) \ 507 struct ma_topiary name = { \ 508 .head = NULL, \ 509 .tail = NULL, \ 510 .mtree = tree, \ 511 } 512 513 void *mas_walk(struct ma_state *mas); 514 void *mas_store(struct ma_state *mas, void *entry); 515 void *mas_erase(struct ma_state *mas); 516 int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp); 517 void mas_store_prealloc(struct ma_state *mas, void *entry); 518 void *mas_find(struct ma_state *mas, unsigned long max); 519 void *mas_find_range(struct ma_state *mas, unsigned long max); 520 void *mas_find_rev(struct ma_state *mas, unsigned long min); 521 void *mas_find_range_rev(struct ma_state *mas, unsigned long max); 522 int mas_preallocate(struct ma_state *mas, void *entry, gfp_t gfp); 523 int mas_alloc_cyclic(struct ma_state *mas, unsigned long *startp, 524 void *entry, unsigned long range_lo, unsigned long range_hi, 525 unsigned long *next, gfp_t gfp); 526 527 bool mas_nomem(struct ma_state *mas, gfp_t gfp); 528 void mas_pause(struct ma_state *mas); 529 void maple_tree_init(void); 530 void mas_destroy(struct ma_state *mas); 531 532 void *mas_prev(struct ma_state *mas, unsigned long min); 533 void *mas_prev_range(struct ma_state *mas, unsigned long max); 534 void *mas_next(struct ma_state *mas, unsigned long max); 535 void *mas_next_range(struct ma_state *mas, unsigned long max); 536 537 int mas_empty_area(struct ma_state *mas, unsigned long min, unsigned long max, 538 unsigned long size); 539 /* 540 * This finds an empty area from the highest address to the lowest. 541 * AKA "Topdown" version, 542 */ 543 int mas_empty_area_rev(struct ma_state *mas, unsigned long min, 544 unsigned long max, unsigned long size); 545 546 static inline void mas_init(struct ma_state *mas, struct maple_tree *tree, 547 unsigned long addr) 548 { 549 memset(mas, 0, sizeof(struct ma_state)); 550 mas->tree = tree; 551 mas->index = mas->last = addr; 552 mas->max = ULONG_MAX; 553 mas->status = ma_start; 554 mas->node = NULL; 555 } 556 557 static inline bool mas_is_active(struct ma_state *mas) 558 { 559 return mas->status == ma_active; 560 } 561 562 static inline bool mas_is_err(struct ma_state *mas) 563 { 564 return mas->status == ma_error; 565 } 566 567 /** 568 * mas_reset() - Reset a Maple Tree operation state. 569 * @mas: Maple Tree operation state. 570 * 571 * Resets the error or walk state of the @mas so future walks of the 572 * array will start from the root. Use this if you have dropped the 573 * lock and want to reuse the ma_state. 574 * 575 * Context: Any context. 576 */ 577 static __always_inline void mas_reset(struct ma_state *mas) 578 { 579 mas->status = ma_start; 580 mas->node = NULL; 581 } 582 583 /** 584 * mas_for_each() - Iterate over a range of the maple tree. 585 * @__mas: Maple Tree operation state (maple_state) 586 * @__entry: Entry retrieved from the tree 587 * @__max: maximum index to retrieve from the tree 588 * 589 * When returned, mas->index and mas->last will hold the entire range for the 590 * entry. 591 * 592 * Note: may return the zero entry. 593 */ 594 #define mas_for_each(__mas, __entry, __max) \ 595 while (((__entry) = mas_find((__mas), (__max))) != NULL) 596 597 /** 598 * mas_for_each_rev() - Iterate over a range of the maple tree in reverse order. 599 * @__mas: Maple Tree operation state (maple_state) 600 * @__entry: Entry retrieved from the tree 601 * @__min: minimum index to retrieve from the tree 602 * 603 * When returned, mas->index and mas->last will hold the entire range for the 604 * entry. 605 * 606 * Note: may return the zero entry. 607 */ 608 #define mas_for_each_rev(__mas, __entry, __min) \ 609 while (((__entry) = mas_find_rev((__mas), (__min))) != NULL) 610 611 #ifdef CONFIG_DEBUG_MAPLE_TREE 612 enum mt_dump_format { 613 mt_dump_dec, 614 mt_dump_hex, 615 }; 616 617 extern atomic_t maple_tree_tests_run; 618 extern atomic_t maple_tree_tests_passed; 619 620 void mt_dump(const struct maple_tree *mt, enum mt_dump_format format); 621 void mas_dump(const struct ma_state *mas); 622 void mas_wr_dump(const struct ma_wr_state *wr_mas); 623 void mt_validate(struct maple_tree *mt); 624 void mt_cache_shrink(void); 625 #define MT_BUG_ON(__tree, __x) do { \ 626 atomic_inc(&maple_tree_tests_run); \ 627 if (__x) { \ 628 pr_info("BUG at %s:%d (%u)\n", \ 629 __func__, __LINE__, __x); \ 630 mt_dump(__tree, mt_dump_hex); \ 631 pr_info("Pass: %u Run:%u\n", \ 632 atomic_read(&maple_tree_tests_passed), \ 633 atomic_read(&maple_tree_tests_run)); \ 634 dump_stack(); \ 635 } else { \ 636 atomic_inc(&maple_tree_tests_passed); \ 637 } \ 638 } while (0) 639 640 #define MAS_BUG_ON(__mas, __x) do { \ 641 atomic_inc(&maple_tree_tests_run); \ 642 if (__x) { \ 643 pr_info("BUG at %s:%d (%u)\n", \ 644 __func__, __LINE__, __x); \ 645 mas_dump(__mas); \ 646 mt_dump((__mas)->tree, mt_dump_hex); \ 647 pr_info("Pass: %u Run:%u\n", \ 648 atomic_read(&maple_tree_tests_passed), \ 649 atomic_read(&maple_tree_tests_run)); \ 650 dump_stack(); \ 651 } else { \ 652 atomic_inc(&maple_tree_tests_passed); \ 653 } \ 654 } while (0) 655 656 #define MAS_WR_BUG_ON(__wrmas, __x) do { \ 657 atomic_inc(&maple_tree_tests_run); \ 658 if (__x) { \ 659 pr_info("BUG at %s:%d (%u)\n", \ 660 __func__, __LINE__, __x); \ 661 mas_wr_dump(__wrmas); \ 662 mas_dump((__wrmas)->mas); \ 663 mt_dump((__wrmas)->mas->tree, mt_dump_hex); \ 664 pr_info("Pass: %u Run:%u\n", \ 665 atomic_read(&maple_tree_tests_passed), \ 666 atomic_read(&maple_tree_tests_run)); \ 667 dump_stack(); \ 668 } else { \ 669 atomic_inc(&maple_tree_tests_passed); \ 670 } \ 671 } while (0) 672 673 #define MT_WARN_ON(__tree, __x) ({ \ 674 int ret = !!(__x); \ 675 atomic_inc(&maple_tree_tests_run); \ 676 if (ret) { \ 677 pr_info("WARN at %s:%d (%u)\n", \ 678 __func__, __LINE__, __x); \ 679 mt_dump(__tree, mt_dump_hex); \ 680 pr_info("Pass: %u Run:%u\n", \ 681 atomic_read(&maple_tree_tests_passed), \ 682 atomic_read(&maple_tree_tests_run)); \ 683 dump_stack(); \ 684 } else { \ 685 atomic_inc(&maple_tree_tests_passed); \ 686 } \ 687 unlikely(ret); \ 688 }) 689 690 #define MAS_WARN_ON(__mas, __x) ({ \ 691 int ret = !!(__x); \ 692 atomic_inc(&maple_tree_tests_run); \ 693 if (ret) { \ 694 pr_info("WARN at %s:%d (%u)\n", \ 695 __func__, __LINE__, __x); \ 696 mas_dump(__mas); \ 697 mt_dump((__mas)->tree, mt_dump_hex); \ 698 pr_info("Pass: %u Run:%u\n", \ 699 atomic_read(&maple_tree_tests_passed), \ 700 atomic_read(&maple_tree_tests_run)); \ 701 dump_stack(); \ 702 } else { \ 703 atomic_inc(&maple_tree_tests_passed); \ 704 } \ 705 unlikely(ret); \ 706 }) 707 708 #define MAS_WR_WARN_ON(__wrmas, __x) ({ \ 709 int ret = !!(__x); \ 710 atomic_inc(&maple_tree_tests_run); \ 711 if (ret) { \ 712 pr_info("WARN at %s:%d (%u)\n", \ 713 __func__, __LINE__, __x); \ 714 mas_wr_dump(__wrmas); \ 715 mas_dump((__wrmas)->mas); \ 716 mt_dump((__wrmas)->mas->tree, mt_dump_hex); \ 717 pr_info("Pass: %u Run:%u\n", \ 718 atomic_read(&maple_tree_tests_passed), \ 719 atomic_read(&maple_tree_tests_run)); \ 720 dump_stack(); \ 721 } else { \ 722 atomic_inc(&maple_tree_tests_passed); \ 723 } \ 724 unlikely(ret); \ 725 }) 726 #else 727 #define MT_BUG_ON(__tree, __x) BUG_ON(__x) 728 #define MAS_BUG_ON(__mas, __x) BUG_ON(__x) 729 #define MAS_WR_BUG_ON(__mas, __x) BUG_ON(__x) 730 #define MT_WARN_ON(__tree, __x) WARN_ON(__x) 731 #define MAS_WARN_ON(__mas, __x) WARN_ON(__x) 732 #define MAS_WR_WARN_ON(__mas, __x) WARN_ON(__x) 733 #endif /* CONFIG_DEBUG_MAPLE_TREE */ 734 735 /** 736 * __mas_set_range() - Set up Maple Tree operation state to a sub-range of the 737 * current location. 738 * @mas: Maple Tree operation state. 739 * @start: New start of range in the Maple Tree. 740 * @last: New end of range in the Maple Tree. 741 * 742 * set the internal maple state values to a sub-range. 743 * Please use mas_set_range() if you do not know where you are in the tree. 744 */ 745 static inline void __mas_set_range(struct ma_state *mas, unsigned long start, 746 unsigned long last) 747 { 748 /* Ensure the range starts within the current slot */ 749 MAS_WARN_ON(mas, mas_is_active(mas) && 750 (mas->index > start || mas->last < start)); 751 mas->index = start; 752 mas->last = last; 753 } 754 755 /** 756 * mas_set_range() - Set up Maple Tree operation state for a different index. 757 * @mas: Maple Tree operation state. 758 * @start: New start of range in the Maple Tree. 759 * @last: New end of range in the Maple Tree. 760 * 761 * Move the operation state to refer to a different range. This will 762 * have the effect of starting a walk from the top; see mas_next() 763 * to move to an adjacent index. 764 */ 765 static inline 766 void mas_set_range(struct ma_state *mas, unsigned long start, unsigned long last) 767 { 768 mas_reset(mas); 769 __mas_set_range(mas, start, last); 770 } 771 772 /** 773 * mas_set() - Set up Maple Tree operation state for a different index. 774 * @mas: Maple Tree operation state. 775 * @index: New index into the Maple Tree. 776 * 777 * Move the operation state to refer to a different index. This will 778 * have the effect of starting a walk from the top; see mas_next() 779 * to move to an adjacent index. 780 */ 781 static inline void mas_set(struct ma_state *mas, unsigned long index) 782 { 783 784 mas_set_range(mas, index, index); 785 } 786 787 static inline bool mt_external_lock(const struct maple_tree *mt) 788 { 789 return (mt->ma_flags & MT_FLAGS_LOCK_MASK) == MT_FLAGS_LOCK_EXTERN; 790 } 791 792 /** 793 * mt_init_flags() - Initialise an empty maple tree with flags. 794 * @mt: Maple Tree 795 * @flags: maple tree flags. 796 * 797 * If you need to initialise a Maple Tree with special flags (eg, an 798 * allocation tree), use this function. 799 * 800 * Context: Any context. 801 */ 802 static inline void mt_init_flags(struct maple_tree *mt, unsigned int flags) 803 { 804 mt->ma_flags = flags; 805 if (!mt_external_lock(mt)) 806 spin_lock_init(&mt->ma_lock); 807 rcu_assign_pointer(mt->ma_root, NULL); 808 } 809 810 /** 811 * mt_init() - Initialise an empty maple tree. 812 * @mt: Maple Tree 813 * 814 * An empty Maple Tree. 815 * 816 * Context: Any context. 817 */ 818 static inline void mt_init(struct maple_tree *mt) 819 { 820 mt_init_flags(mt, 0); 821 } 822 823 static inline bool mt_in_rcu(struct maple_tree *mt) 824 { 825 #ifdef CONFIG_MAPLE_RCU_DISABLED 826 return false; 827 #endif 828 return mt->ma_flags & MT_FLAGS_USE_RCU; 829 } 830 831 /** 832 * mt_clear_in_rcu() - Switch the tree to non-RCU mode. 833 * @mt: The Maple Tree 834 */ 835 static inline void mt_clear_in_rcu(struct maple_tree *mt) 836 { 837 if (!mt_in_rcu(mt)) 838 return; 839 840 if (mt_external_lock(mt)) { 841 WARN_ON(!mt_lock_is_held(mt)); 842 mt->ma_flags &= ~MT_FLAGS_USE_RCU; 843 } else { 844 mtree_lock(mt); 845 mt->ma_flags &= ~MT_FLAGS_USE_RCU; 846 mtree_unlock(mt); 847 } 848 } 849 850 /** 851 * mt_set_in_rcu() - Switch the tree to RCU safe mode. 852 * @mt: The Maple Tree 853 */ 854 static inline void mt_set_in_rcu(struct maple_tree *mt) 855 { 856 if (mt_in_rcu(mt)) 857 return; 858 859 if (mt_external_lock(mt)) { 860 WARN_ON(!mt_lock_is_held(mt)); 861 mt->ma_flags |= MT_FLAGS_USE_RCU; 862 } else { 863 mtree_lock(mt); 864 mt->ma_flags |= MT_FLAGS_USE_RCU; 865 mtree_unlock(mt); 866 } 867 } 868 869 static inline unsigned int mt_height(const struct maple_tree *mt) 870 { 871 return (mt->ma_flags & MT_FLAGS_HEIGHT_MASK) >> MT_FLAGS_HEIGHT_OFFSET; 872 } 873 874 void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max); 875 void *mt_find_after(struct maple_tree *mt, unsigned long *index, 876 unsigned long max); 877 void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min); 878 void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max); 879 880 /** 881 * mt_for_each - Iterate over each entry starting at index until max. 882 * @__tree: The Maple Tree 883 * @__entry: The current entry 884 * @__index: The index to start the search from. Subsequently used as iterator. 885 * @__max: The maximum limit for @index 886 * 887 * This iterator skips all entries, which resolve to a NULL pointer, 888 * e.g. entries which has been reserved with XA_ZERO_ENTRY. 889 */ 890 #define mt_for_each(__tree, __entry, __index, __max) \ 891 for (__entry = mt_find(__tree, &(__index), __max); \ 892 __entry; __entry = mt_find_after(__tree, &(__index), __max)) 893 894 #endif /*_LINUX_MAPLE_TREE_H */ 895