xref: /linux/include/linux/maple_tree.h (revision 8804d970fab45726b3c7cd7f240b31122aa94219)
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 #ifndef _LINUX_MAPLE_TREE_H
3 #define _LINUX_MAPLE_TREE_H
4 /*
5  * Maple Tree - An RCU-safe adaptive tree for storing ranges
6  * Copyright (c) 2018-2022 Oracle
7  * Authors:     Liam R. Howlett <Liam.Howlett@Oracle.com>
8  *              Matthew Wilcox <willy@infradead.org>
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/rcupdate.h>
13 #include <linux/spinlock.h>
14 /* #define CONFIG_MAPLE_RCU_DISABLED */
15 
16 /*
17  * Allocated nodes are mutable until they have been inserted into the tree,
18  * at which time they cannot change their type until they have been removed
19  * from the tree and an RCU grace period has passed.
20  *
21  * Removed nodes have their ->parent set to point to themselves.  RCU readers
22  * check ->parent before relying on the value that they loaded from the
23  * slots array.  This lets us reuse the slots array for the RCU head.
24  *
25  * Nodes in the tree point to their parent unless bit 0 is set.
26  */
27 #if defined(CONFIG_64BIT) || defined(BUILD_VDSO32_64)
28 /* 64bit sizes */
29 #define MAPLE_NODE_SLOTS	31	/* 256 bytes including ->parent */
30 #define MAPLE_RANGE64_SLOTS	16	/* 256 bytes */
31 #define MAPLE_ARANGE64_SLOTS	10	/* 240 bytes */
32 #define MAPLE_ALLOC_SLOTS	(MAPLE_NODE_SLOTS - 1)
33 #else
34 /* 32bit sizes */
35 #define MAPLE_NODE_SLOTS	63	/* 256 bytes including ->parent */
36 #define MAPLE_RANGE64_SLOTS	32	/* 256 bytes */
37 #define MAPLE_ARANGE64_SLOTS	21	/* 240 bytes */
38 #define MAPLE_ALLOC_SLOTS	(MAPLE_NODE_SLOTS - 2)
39 #endif /* defined(CONFIG_64BIT) || defined(BUILD_VDSO32_64) */
40 
41 #define MAPLE_NODE_MASK		255UL
42 
43 /*
44  * The node->parent of the root node has bit 0 set and the rest of the pointer
45  * is a pointer to the tree itself.  No more bits are available in this pointer
46  * (on m68k, the data structure may only be 2-byte aligned).
47  *
48  * Internal non-root nodes can only have maple_range_* nodes as parents.  The
49  * parent pointer is 256B aligned like all other tree nodes.  When storing a 32
50  * or 64 bit values, the offset can fit into 4 bits.  The 16 bit values need an
51  * extra bit to store the offset.  This extra bit comes from a reuse of the last
52  * bit in the node type.  This is possible by using bit 1 to indicate if bit 2
53  * is part of the type or the slot.
54  *
55  * Once the type is decided, the decision of an allocation range type or a
56  * range type is done by examining the immutable tree flag for the
57  * MT_FLAGS_ALLOC_RANGE flag.
58  *
59  *  Node types:
60  *   0b??1 = Root
61  *   0b?00 = 16 bit nodes
62  *   0b010 = 32 bit nodes
63  *   0b110 = 64 bit nodes
64  *
65  *  Slot size and location in the parent pointer:
66  *   type  : slot location
67  *   0b??1 : Root
68  *   0b?00 : 16 bit values, type in 0-1, slot in 2-6
69  *   0b010 : 32 bit values, type in 0-2, slot in 3-6
70  *   0b110 : 64 bit values, type in 0-2, slot in 3-6
71  */
72 
73 /*
74  * This metadata is used to optimize the gap updating code and in reverse
75  * searching for gaps or any other code that needs to find the end of the data.
76  */
77 struct maple_metadata {
78 	unsigned char end;	/* end of data */
79 	unsigned char gap;	/* offset of largest gap */
80 };
81 
82 /*
83  * Leaf nodes do not store pointers to nodes, they store user data.  Users may
84  * store almost any bit pattern.  As noted above, the optimisation of storing an
85  * entry at 0 in the root pointer cannot be done for data which have the bottom
86  * two bits set to '10'.  We also reserve values with the bottom two bits set to
87  * '10' which are below 4096 (ie 2, 6, 10 .. 4094) for internal use.  Some APIs
88  * return errnos as a negative errno shifted right by two bits and the bottom
89  * two bits set to '10', and while choosing to store these values in the array
90  * is not an error, it may lead to confusion if you're testing for an error with
91  * mas_is_err().
92  *
93  * Non-leaf nodes store the type of the node pointed to (enum maple_type in bits
94  * 3-6), bit 2 is reserved.  That leaves bits 0-1 unused for now.
95  *
96  * In regular B-Tree terms, pivots are called keys.  The term pivot is used to
97  * indicate that the tree is specifying ranges,  Pivots may appear in the
98  * subtree with an entry attached to the value whereas keys are unique to a
99  * specific position of a B-tree.  Pivot values are inclusive of the slot with
100  * the same index.
101  */
102 
103 struct maple_range_64 {
104 	struct maple_pnode *parent;
105 	unsigned long pivot[MAPLE_RANGE64_SLOTS - 1];
106 	union {
107 		void __rcu *slot[MAPLE_RANGE64_SLOTS];
108 		struct {
109 			void __rcu *pad[MAPLE_RANGE64_SLOTS - 1];
110 			struct maple_metadata meta;
111 		};
112 	};
113 };
114 
115 /*
116  * At tree creation time, the user can specify that they're willing to trade off
117  * storing fewer entries in a tree in return for storing more information in
118  * each node.
119  *
120  * The maple tree supports recording the largest range of NULL entries available
121  * in this node, also called gaps.  This optimises the tree for allocating a
122  * range.
123  */
124 struct maple_arange_64 {
125 	struct maple_pnode *parent;
126 	unsigned long pivot[MAPLE_ARANGE64_SLOTS - 1];
127 	void __rcu *slot[MAPLE_ARANGE64_SLOTS];
128 	unsigned long gap[MAPLE_ARANGE64_SLOTS];
129 	struct maple_metadata meta;
130 };
131 
132 struct maple_alloc {
133 	unsigned long total;
134 	unsigned char node_count;
135 	unsigned int request_count;
136 	struct maple_alloc *slot[MAPLE_ALLOC_SLOTS];
137 };
138 
139 struct maple_topiary {
140 	struct maple_pnode *parent;
141 	struct maple_enode *next; /* Overlaps the pivot */
142 };
143 
144 enum maple_type {
145 	maple_dense,
146 	maple_leaf_64,
147 	maple_range_64,
148 	maple_arange_64,
149 };
150 
151 enum store_type {
152 	wr_invalid,
153 	wr_new_root,
154 	wr_store_root,
155 	wr_exact_fit,
156 	wr_spanning_store,
157 	wr_split_store,
158 	wr_rebalance,
159 	wr_append,
160 	wr_node_store,
161 	wr_slot_store,
162 };
163 
164 /**
165  * DOC: Maple tree flags
166  *
167  * * MT_FLAGS_ALLOC_RANGE	- Track gaps in this tree
168  * * MT_FLAGS_USE_RCU		- Operate in RCU mode
169  * * MT_FLAGS_HEIGHT_OFFSET	- The position of the tree height in the flags
170  * * MT_FLAGS_HEIGHT_MASK	- The mask for the maple tree height value
171  * * MT_FLAGS_LOCK_MASK		- How the mt_lock is used
172  * * MT_FLAGS_LOCK_IRQ		- Acquired irq-safe
173  * * MT_FLAGS_LOCK_BH		- Acquired bh-safe
174  * * MT_FLAGS_LOCK_EXTERN	- mt_lock is not used
175  *
176  * MAPLE_HEIGHT_MAX	The largest height that can be stored
177  */
178 #define MT_FLAGS_ALLOC_RANGE	0x01
179 #define MT_FLAGS_USE_RCU	0x02
180 #define MT_FLAGS_HEIGHT_OFFSET	0x02
181 #define MT_FLAGS_HEIGHT_MASK	0x7C
182 #define MT_FLAGS_LOCK_MASK	0x300
183 #define MT_FLAGS_LOCK_IRQ	0x100
184 #define MT_FLAGS_LOCK_BH	0x200
185 #define MT_FLAGS_LOCK_EXTERN	0x300
186 #define MT_FLAGS_ALLOC_WRAPPED	0x0800
187 
188 #define MAPLE_HEIGHT_MAX	31
189 
190 
191 #define MAPLE_NODE_TYPE_MASK	0x0F
192 #define MAPLE_NODE_TYPE_SHIFT	0x03
193 
194 #define MAPLE_RESERVED_RANGE	4096
195 
196 #ifdef CONFIG_LOCKDEP
197 #define mt_lock_is_held(mt)                                             \
198 	(!(mt)->ma_external_lock || lock_is_held((mt)->ma_external_lock))
199 
200 #define mt_write_lock_is_held(mt)					\
201 	(!(mt)->ma_external_lock ||					\
202 	 lock_is_held_type((mt)->ma_external_lock, 0))
203 
204 #define mt_set_external_lock(mt, lock)					\
205 	(mt)->ma_external_lock = &(lock)->dep_map
206 
207 #define mt_on_stack(mt)			(mt).ma_external_lock = NULL
208 #else
209 #define mt_lock_is_held(mt)		1
210 #define mt_write_lock_is_held(mt)	1
211 #define mt_set_external_lock(mt, lock)	do { } while (0)
212 #define mt_on_stack(mt)			do { } while (0)
213 #endif
214 
215 /*
216  * If the tree contains a single entry at index 0, it is usually stored in
217  * tree->ma_root.  To optimise for the page cache, an entry which ends in '00',
218  * '01' or '11' is stored in the root, but an entry which ends in '10' will be
219  * stored in a node.  Bits 3-6 are used to store enum maple_type.
220  *
221  * The flags are used both to store some immutable information about this tree
222  * (set at tree creation time) and dynamic information set under the spinlock.
223  *
224  * Another use of flags are to indicate global states of the tree.  This is the
225  * case with the MT_FLAGS_USE_RCU flag, which indicates the tree is currently in
226  * RCU mode.  This mode was added to allow the tree to reuse nodes instead of
227  * re-allocating and RCU freeing nodes when there is a single user.
228  */
229 struct maple_tree {
230 	union {
231 		spinlock_t		ma_lock;
232 #ifdef CONFIG_LOCKDEP
233 		struct lockdep_map	*ma_external_lock;
234 #endif
235 	};
236 	unsigned int	ma_flags;
237 	void __rcu      *ma_root;
238 };
239 
240 /**
241  * MTREE_INIT() - Initialize a maple tree
242  * @name: The maple tree name
243  * @__flags: The maple tree flags
244  *
245  */
246 #define MTREE_INIT(name, __flags) {					\
247 	.ma_lock = __SPIN_LOCK_UNLOCKED((name).ma_lock),		\
248 	.ma_flags = __flags,						\
249 	.ma_root = NULL,						\
250 }
251 
252 /**
253  * MTREE_INIT_EXT() - Initialize a maple tree with an external lock.
254  * @name: The tree name
255  * @__flags: The maple tree flags
256  * @__lock: The external lock
257  */
258 #ifdef CONFIG_LOCKDEP
259 #define MTREE_INIT_EXT(name, __flags, __lock) {				\
260 	.ma_external_lock = &(__lock).dep_map,				\
261 	.ma_flags = (__flags),						\
262 	.ma_root = NULL,						\
263 }
264 #else
265 #define MTREE_INIT_EXT(name, __flags, __lock)	MTREE_INIT(name, __flags)
266 #endif
267 
268 #define DEFINE_MTREE(name)						\
269 	struct maple_tree name = MTREE_INIT(name, 0)
270 
271 #define mtree_lock(mt)		spin_lock((&(mt)->ma_lock))
272 #define mtree_lock_nested(mas, subclass) \
273 		spin_lock_nested((&(mt)->ma_lock), subclass)
274 #define mtree_unlock(mt)	spin_unlock((&(mt)->ma_lock))
275 
276 /*
277  * The Maple Tree squeezes various bits in at various points which aren't
278  * necessarily obvious.  Usually, this is done by observing that pointers are
279  * N-byte aligned and thus the bottom log_2(N) bits are available for use.  We
280  * don't use the high bits of pointers to store additional information because
281  * we don't know what bits are unused on any given architecture.
282  *
283  * Nodes are 256 bytes in size and are also aligned to 256 bytes, giving us 8
284  * low bits for our own purposes.  Nodes are currently of 4 types:
285  * 1. Single pointer (Range is 0-0)
286  * 2. Non-leaf Allocation Range nodes
287  * 3. Non-leaf Range nodes
288  * 4. Leaf Range nodes All nodes consist of a number of node slots,
289  *    pivots, and a parent pointer.
290  */
291 
292 struct maple_node {
293 	union {
294 		struct {
295 			struct maple_pnode *parent;
296 			void __rcu *slot[MAPLE_NODE_SLOTS];
297 		};
298 		struct {
299 			void *pad;
300 			struct rcu_head rcu;
301 			struct maple_enode *piv_parent;
302 			unsigned char parent_slot;
303 			enum maple_type type;
304 			unsigned char slot_len;
305 			unsigned int ma_flags;
306 		};
307 		struct maple_range_64 mr64;
308 		struct maple_arange_64 ma64;
309 		struct maple_alloc alloc;
310 	};
311 };
312 
313 /*
314  * More complicated stores can cause two nodes to become one or three and
315  * potentially alter the height of the tree.  Either half of the tree may need
316  * to be rebalanced against the other.  The ma_topiary struct is used to track
317  * which nodes have been 'cut' from the tree so that the change can be done
318  * safely at a later date.  This is done to support RCU.
319  */
320 struct ma_topiary {
321 	struct maple_enode *head;
322 	struct maple_enode *tail;
323 	struct maple_tree *mtree;
324 };
325 
326 void *mtree_load(struct maple_tree *mt, unsigned long index);
327 
328 int mtree_insert(struct maple_tree *mt, unsigned long index,
329 		void *entry, gfp_t gfp);
330 int mtree_insert_range(struct maple_tree *mt, unsigned long first,
331 		unsigned long last, void *entry, gfp_t gfp);
332 int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp,
333 		void *entry, unsigned long size, unsigned long min,
334 		unsigned long max, gfp_t gfp);
335 int mtree_alloc_cyclic(struct maple_tree *mt, unsigned long *startp,
336 		void *entry, unsigned long range_lo, unsigned long range_hi,
337 		unsigned long *next, gfp_t gfp);
338 int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp,
339 		void *entry, unsigned long size, unsigned long min,
340 		unsigned long max, gfp_t gfp);
341 
342 int mtree_store_range(struct maple_tree *mt, unsigned long first,
343 		      unsigned long last, void *entry, gfp_t gfp);
344 int mtree_store(struct maple_tree *mt, unsigned long index,
345 		void *entry, gfp_t gfp);
346 void *mtree_erase(struct maple_tree *mt, unsigned long index);
347 
348 int mtree_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp);
349 int __mt_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp);
350 
351 void mtree_destroy(struct maple_tree *mt);
352 void __mt_destroy(struct maple_tree *mt);
353 
354 /**
355  * mtree_empty() - Determine if a tree has any present entries.
356  * @mt: Maple Tree.
357  *
358  * Context: Any context.
359  * Return: %true if the tree contains only NULL pointers.
360  */
mtree_empty(const struct maple_tree * mt)361 static inline bool mtree_empty(const struct maple_tree *mt)
362 {
363 	return mt->ma_root == NULL;
364 }
365 
366 /* Advanced API */
367 
368 /*
369  * Maple State Status
370  * ma_active means the maple state is pointing to a node and offset and can
371  * continue operating on the tree.
372  * ma_start means we have not searched the tree.
373  * ma_root means we have searched the tree and the entry we found lives in
374  * the root of the tree (ie it has index 0, length 1 and is the only entry in
375  * the tree).
376  * ma_none means we have searched the tree and there is no node in the
377  * tree for this entry.  For example, we searched for index 1 in an empty
378  * tree.  Or we have a tree which points to a full leaf node and we
379  * searched for an entry which is larger than can be contained in that
380  * leaf node.
381  * ma_pause means the data within the maple state may be stale, restart the
382  * operation
383  * ma_overflow means the search has reached the upper limit of the search
384  * ma_underflow means the search has reached the lower limit of the search
385  * ma_error means there was an error, check the node for the error number.
386  */
387 enum maple_status {
388 	ma_active,
389 	ma_start,
390 	ma_root,
391 	ma_none,
392 	ma_pause,
393 	ma_overflow,
394 	ma_underflow,
395 	ma_error,
396 };
397 
398 /*
399  * The maple state is defined in the struct ma_state and is used to keep track
400  * of information during operations, and even between operations when using the
401  * advanced API.
402  *
403  * If state->node has bit 0 set then it references a tree location which is not
404  * a node (eg the root).  If bit 1 is set, the rest of the bits are a negative
405  * errno.  Bit 2 (the 'unallocated slots' bit) is clear.  Bits 3-6 indicate the
406  * node type.
407  *
408  * state->alloc either has a request number of nodes or an allocated node.  If
409  * stat->alloc has a requested number of nodes, the first bit will be set (0x1)
410  * and the remaining bits are the value.  If state->alloc is a node, then the
411  * node will be of type maple_alloc.  maple_alloc has MAPLE_NODE_SLOTS - 1 for
412  * storing more allocated nodes, a total number of nodes allocated, and the
413  * node_count in this node.  node_count is the number of allocated nodes in this
414  * node.  The scaling beyond MAPLE_NODE_SLOTS - 1 is handled by storing further
415  * nodes into state->alloc->slot[0]'s node.  Nodes are taken from state->alloc
416  * by removing a node from the state->alloc node until state->alloc->node_count
417  * is 1, when state->alloc is returned and the state->alloc->slot[0] is promoted
418  * to state->alloc.  Nodes are pushed onto state->alloc by putting the current
419  * state->alloc into the pushed node's slot[0].
420  *
421  * The state also contains the implied min/max of the state->node, the depth of
422  * this search, and the offset. The implied min/max are either from the parent
423  * node or are 0-oo for the root node.  The depth is incremented or decremented
424  * every time a node is walked down or up.  The offset is the slot/pivot of
425  * interest in the node - either for reading or writing.
426  *
427  * When returning a value the maple state index and last respectively contain
428  * the start and end of the range for the entry.  Ranges are inclusive in the
429  * Maple Tree.
430  *
431  * The status of the state is used to determine how the next action should treat
432  * the state.  For instance, if the status is ma_start then the next action
433  * should start at the root of the tree and walk down.  If the status is
434  * ma_pause then the node may be stale data and should be discarded.  If the
435  * status is ma_overflow, then the last action hit the upper limit.
436  *
437  */
438 struct ma_state {
439 	struct maple_tree *tree;	/* The tree we're operating in */
440 	unsigned long index;		/* The index we're operating on - range start */
441 	unsigned long last;		/* The last index we're operating on - range end */
442 	struct maple_enode *node;	/* The node containing this entry */
443 	unsigned long min;		/* The minimum index of this node - implied pivot min */
444 	unsigned long max;		/* The maximum index of this node - implied pivot max */
445 	struct slab_sheaf *sheaf;	/* Allocated nodes for this operation */
446 	struct maple_node *alloc;	/* A single allocated node for fast path writes */
447 	unsigned long node_request;	/* The number of nodes to allocate for this operation */
448 	enum maple_status status;	/* The status of the state (active, start, none, etc) */
449 	unsigned char depth;		/* depth of tree descent during write */
450 	unsigned char offset;
451 	unsigned char mas_flags;
452 	unsigned char end;		/* The end of the node */
453 	enum store_type store_type;	/* The type of store needed for this operation */
454 };
455 
456 struct ma_wr_state {
457 	struct ma_state *mas;
458 	struct maple_node *node;	/* Decoded mas->node */
459 	unsigned long r_min;		/* range min */
460 	unsigned long r_max;		/* range max */
461 	enum maple_type type;		/* mas->node type */
462 	unsigned char offset_end;	/* The offset where the write ends */
463 	unsigned long *pivots;		/* mas->node->pivots pointer */
464 	unsigned long end_piv;		/* The pivot at the offset end */
465 	void __rcu **slots;		/* mas->node->slots pointer */
466 	void *entry;			/* The entry to write */
467 	void *content;			/* The existing entry that is being overwritten */
468 	unsigned char vacant_height;	/* Height of lowest node with free space */
469 	unsigned char sufficient_height;/* Height of lowest node with min sufficiency + 1 nodes */
470 };
471 
472 #define mas_lock(mas)           spin_lock(&((mas)->tree->ma_lock))
473 #define mas_lock_nested(mas, subclass) \
474 		spin_lock_nested(&((mas)->tree->ma_lock), subclass)
475 #define mas_unlock(mas)         spin_unlock(&((mas)->tree->ma_lock))
476 
477 /*
478  * Special values for ma_state.node.
479  * MA_ERROR represents an errno.  After dropping the lock and attempting
480  * to resolve the error, the walk would have to be restarted from the
481  * top of the tree as the tree may have been modified.
482  */
483 #define MA_ERROR(err) \
484 		((struct maple_enode *)(((unsigned long)err << 2) | 2UL))
485 
486 /*
487  * When changing MA_STATE, remember to also change rust/kernel/maple_tree.rs
488  */
489 #define MA_STATE(name, mt, first, end)					\
490 	struct ma_state name = {					\
491 		.tree = mt,						\
492 		.index = first,						\
493 		.last = end,						\
494 		.node = NULL,						\
495 		.status = ma_start,					\
496 		.min = 0,						\
497 		.max = ULONG_MAX,					\
498 		.sheaf = NULL,						\
499 		.alloc = NULL,						\
500 		.node_request = 0,					\
501 		.mas_flags = 0,						\
502 		.store_type = wr_invalid,				\
503 	}
504 
505 #define MA_WR_STATE(name, ma_state, wr_entry)				\
506 	struct ma_wr_state name = {					\
507 		.mas = ma_state,					\
508 		.content = NULL,					\
509 		.entry = wr_entry,					\
510 		.vacant_height = 0,					\
511 		.sufficient_height = 0					\
512 	}
513 
514 #define MA_TOPIARY(name, tree)						\
515 	struct ma_topiary name = {					\
516 		.head = NULL,						\
517 		.tail = NULL,						\
518 		.mtree = tree,						\
519 	}
520 
521 void *mas_walk(struct ma_state *mas);
522 void *mas_store(struct ma_state *mas, void *entry);
523 void *mas_erase(struct ma_state *mas);
524 int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp);
525 void mas_store_prealloc(struct ma_state *mas, void *entry);
526 void *mas_find(struct ma_state *mas, unsigned long max);
527 void *mas_find_range(struct ma_state *mas, unsigned long max);
528 void *mas_find_rev(struct ma_state *mas, unsigned long min);
529 void *mas_find_range_rev(struct ma_state *mas, unsigned long max);
530 int mas_preallocate(struct ma_state *mas, void *entry, gfp_t gfp);
531 int mas_alloc_cyclic(struct ma_state *mas, unsigned long *startp,
532 		void *entry, unsigned long range_lo, unsigned long range_hi,
533 		unsigned long *next, gfp_t gfp);
534 
535 bool mas_nomem(struct ma_state *mas, gfp_t gfp);
536 void mas_pause(struct ma_state *mas);
537 void maple_tree_init(void);
538 void mas_destroy(struct ma_state *mas);
539 int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries);
540 
541 void *mas_prev(struct ma_state *mas, unsigned long min);
542 void *mas_prev_range(struct ma_state *mas, unsigned long max);
543 void *mas_next(struct ma_state *mas, unsigned long max);
544 void *mas_next_range(struct ma_state *mas, unsigned long max);
545 
546 int mas_empty_area(struct ma_state *mas, unsigned long min, unsigned long max,
547 		   unsigned long size);
548 /*
549  * This finds an empty area from the highest address to the lowest.
550  * AKA "Topdown" version,
551  */
552 int mas_empty_area_rev(struct ma_state *mas, unsigned long min,
553 		       unsigned long max, unsigned long size);
554 
mas_init(struct ma_state * mas,struct maple_tree * tree,unsigned long addr)555 static inline void mas_init(struct ma_state *mas, struct maple_tree *tree,
556 			    unsigned long addr)
557 {
558 	memset(mas, 0, sizeof(struct ma_state));
559 	mas->tree = tree;
560 	mas->index = mas->last = addr;
561 	mas->max = ULONG_MAX;
562 	mas->status = ma_start;
563 	mas->node = NULL;
564 }
565 
mas_is_active(struct ma_state * mas)566 static inline bool mas_is_active(struct ma_state *mas)
567 {
568 	return mas->status == ma_active;
569 }
570 
mas_is_err(struct ma_state * mas)571 static inline bool mas_is_err(struct ma_state *mas)
572 {
573 	return mas->status == ma_error;
574 }
575 
576 /**
577  * mas_reset() - Reset a Maple Tree operation state.
578  * @mas: Maple Tree operation state.
579  *
580  * Resets the error or walk state of the @mas so future walks of the
581  * array will start from the root.  Use this if you have dropped the
582  * lock and want to reuse the ma_state.
583  *
584  * Context: Any context.
585  */
mas_reset(struct ma_state * mas)586 static __always_inline void mas_reset(struct ma_state *mas)
587 {
588 	mas->status = ma_start;
589 	mas->node = NULL;
590 }
591 
592 /**
593  * mas_for_each() - Iterate over a range of the maple tree.
594  * @__mas: Maple Tree operation state (maple_state)
595  * @__entry: Entry retrieved from the tree
596  * @__max: maximum index to retrieve from the tree
597  *
598  * When returned, mas->index and mas->last will hold the entire range for the
599  * entry.
600  *
601  * Note: may return the zero entry.
602  */
603 #define mas_for_each(__mas, __entry, __max) \
604 	while (((__entry) = mas_find((__mas), (__max))) != NULL)
605 
606 /**
607  * mas_for_each_rev() - Iterate over a range of the maple tree in reverse order.
608  * @__mas: Maple Tree operation state (maple_state)
609  * @__entry: Entry retrieved from the tree
610  * @__min: minimum index to retrieve from the tree
611  *
612  * When returned, mas->index and mas->last will hold the entire range for the
613  * entry.
614  *
615  * Note: may return the zero entry.
616  */
617 #define mas_for_each_rev(__mas, __entry, __min) \
618 	while (((__entry) = mas_find_rev((__mas), (__min))) != NULL)
619 
620 #ifdef CONFIG_DEBUG_MAPLE_TREE
621 enum mt_dump_format {
622 	mt_dump_dec,
623 	mt_dump_hex,
624 };
625 
626 extern atomic_t maple_tree_tests_run;
627 extern atomic_t maple_tree_tests_passed;
628 
629 void mt_dump(const struct maple_tree *mt, enum mt_dump_format format);
630 void mas_dump(const struct ma_state *mas);
631 void mas_wr_dump(const struct ma_wr_state *wr_mas);
632 void mt_validate(struct maple_tree *mt);
633 void mt_cache_shrink(void);
634 #define MT_BUG_ON(__tree, __x) do {					\
635 	atomic_inc(&maple_tree_tests_run);				\
636 	if (__x) {							\
637 		pr_info("BUG at %s:%d (%u)\n",				\
638 		__func__, __LINE__, __x);				\
639 		mt_dump(__tree, mt_dump_hex);				\
640 		pr_info("Pass: %u Run:%u\n",				\
641 			atomic_read(&maple_tree_tests_passed),		\
642 			atomic_read(&maple_tree_tests_run));		\
643 		dump_stack();						\
644 	} else {							\
645 		atomic_inc(&maple_tree_tests_passed);			\
646 	}								\
647 } while (0)
648 
649 #define MAS_BUG_ON(__mas, __x) do {					\
650 	atomic_inc(&maple_tree_tests_run);				\
651 	if (__x) {							\
652 		pr_info("BUG at %s:%d (%u)\n",				\
653 		__func__, __LINE__, __x);				\
654 		mas_dump(__mas);					\
655 		mt_dump((__mas)->tree, mt_dump_hex);			\
656 		pr_info("Pass: %u Run:%u\n",				\
657 			atomic_read(&maple_tree_tests_passed),		\
658 			atomic_read(&maple_tree_tests_run));		\
659 		dump_stack();						\
660 	} else {							\
661 		atomic_inc(&maple_tree_tests_passed);			\
662 	}								\
663 } while (0)
664 
665 #define MAS_WR_BUG_ON(__wrmas, __x) do {				\
666 	atomic_inc(&maple_tree_tests_run);				\
667 	if (__x) {							\
668 		pr_info("BUG at %s:%d (%u)\n",				\
669 		__func__, __LINE__, __x);				\
670 		mas_wr_dump(__wrmas);					\
671 		mas_dump((__wrmas)->mas);				\
672 		mt_dump((__wrmas)->mas->tree, mt_dump_hex);		\
673 		pr_info("Pass: %u Run:%u\n",				\
674 			atomic_read(&maple_tree_tests_passed),		\
675 			atomic_read(&maple_tree_tests_run));		\
676 		dump_stack();						\
677 	} else {							\
678 		atomic_inc(&maple_tree_tests_passed);			\
679 	}								\
680 } while (0)
681 
682 #define MT_WARN_ON(__tree, __x)  ({					\
683 	int ret = !!(__x);						\
684 	atomic_inc(&maple_tree_tests_run);				\
685 	if (ret) {							\
686 		pr_info("WARN at %s:%d (%u)\n",				\
687 		__func__, __LINE__, __x);				\
688 		mt_dump(__tree, mt_dump_hex);				\
689 		pr_info("Pass: %u Run:%u\n",				\
690 			atomic_read(&maple_tree_tests_passed),		\
691 			atomic_read(&maple_tree_tests_run));		\
692 		dump_stack();						\
693 	} else {							\
694 		atomic_inc(&maple_tree_tests_passed);			\
695 	}								\
696 	unlikely(ret);							\
697 })
698 
699 #define MAS_WARN_ON(__mas, __x) ({					\
700 	int ret = !!(__x);						\
701 	atomic_inc(&maple_tree_tests_run);				\
702 	if (ret) {							\
703 		pr_info("WARN at %s:%d (%u)\n",				\
704 		__func__, __LINE__, __x);				\
705 		mas_dump(__mas);					\
706 		mt_dump((__mas)->tree, mt_dump_hex);			\
707 		pr_info("Pass: %u Run:%u\n",				\
708 			atomic_read(&maple_tree_tests_passed),		\
709 			atomic_read(&maple_tree_tests_run));		\
710 		dump_stack();						\
711 	} else {							\
712 		atomic_inc(&maple_tree_tests_passed);			\
713 	}								\
714 	unlikely(ret);							\
715 })
716 
717 #define MAS_WR_WARN_ON(__wrmas, __x) ({					\
718 	int ret = !!(__x);						\
719 	atomic_inc(&maple_tree_tests_run);				\
720 	if (ret) {							\
721 		pr_info("WARN at %s:%d (%u)\n",				\
722 		__func__, __LINE__, __x);				\
723 		mas_wr_dump(__wrmas);					\
724 		mas_dump((__wrmas)->mas);				\
725 		mt_dump((__wrmas)->mas->tree, mt_dump_hex);		\
726 		pr_info("Pass: %u Run:%u\n",				\
727 			atomic_read(&maple_tree_tests_passed),		\
728 			atomic_read(&maple_tree_tests_run));		\
729 		dump_stack();						\
730 	} else {							\
731 		atomic_inc(&maple_tree_tests_passed);			\
732 	}								\
733 	unlikely(ret);							\
734 })
735 #else
736 #define MT_BUG_ON(__tree, __x)		BUG_ON(__x)
737 #define MAS_BUG_ON(__mas, __x)		BUG_ON(__x)
738 #define MAS_WR_BUG_ON(__mas, __x)	BUG_ON(__x)
739 #define MT_WARN_ON(__tree, __x)		WARN_ON(__x)
740 #define MAS_WARN_ON(__mas, __x)		WARN_ON(__x)
741 #define MAS_WR_WARN_ON(__mas, __x)	WARN_ON(__x)
742 #endif /* CONFIG_DEBUG_MAPLE_TREE */
743 
744 /**
745  * __mas_set_range() - Set up Maple Tree operation state to a sub-range of the
746  * current location.
747  * @mas: Maple Tree operation state.
748  * @start: New start of range in the Maple Tree.
749  * @last: New end of range in the Maple Tree.
750  *
751  * set the internal maple state values to a sub-range.
752  * Please use mas_set_range() if you do not know where you are in the tree.
753  */
__mas_set_range(struct ma_state * mas,unsigned long start,unsigned long last)754 static inline void __mas_set_range(struct ma_state *mas, unsigned long start,
755 		unsigned long last)
756 {
757 	/* Ensure the range starts within the current slot */
758 	MAS_WARN_ON(mas, mas_is_active(mas) &&
759 		   (mas->index > start || mas->last < start));
760 	mas->index = start;
761 	mas->last = last;
762 }
763 
764 /**
765  * mas_set_range() - Set up Maple Tree operation state for a different index.
766  * @mas: Maple Tree operation state.
767  * @start: New start of range in the Maple Tree.
768  * @last: New end of range in the Maple Tree.
769  *
770  * Move the operation state to refer to a different range.  This will
771  * have the effect of starting a walk from the top; see mas_next()
772  * to move to an adjacent index.
773  */
774 static inline
mas_set_range(struct ma_state * mas,unsigned long start,unsigned long last)775 void mas_set_range(struct ma_state *mas, unsigned long start, unsigned long last)
776 {
777 	mas_reset(mas);
778 	__mas_set_range(mas, start, last);
779 }
780 
781 /**
782  * mas_set() - Set up Maple Tree operation state for a different index.
783  * @mas: Maple Tree operation state.
784  * @index: New index into the Maple Tree.
785  *
786  * Move the operation state to refer to a different index.  This will
787  * have the effect of starting a walk from the top; see mas_next()
788  * to move to an adjacent index.
789  */
mas_set(struct ma_state * mas,unsigned long index)790 static inline void mas_set(struct ma_state *mas, unsigned long index)
791 {
792 
793 	mas_set_range(mas, index, index);
794 }
795 
mt_external_lock(const struct maple_tree * mt)796 static inline bool mt_external_lock(const struct maple_tree *mt)
797 {
798 	return (mt->ma_flags & MT_FLAGS_LOCK_MASK) == MT_FLAGS_LOCK_EXTERN;
799 }
800 
801 /**
802  * mt_init_flags() - Initialise an empty maple tree with flags.
803  * @mt: Maple Tree
804  * @flags: maple tree flags.
805  *
806  * If you need to initialise a Maple Tree with special flags (eg, an
807  * allocation tree), use this function.
808  *
809  * Context: Any context.
810  */
mt_init_flags(struct maple_tree * mt,unsigned int flags)811 static inline void mt_init_flags(struct maple_tree *mt, unsigned int flags)
812 {
813 	mt->ma_flags = flags;
814 	if (!mt_external_lock(mt))
815 		spin_lock_init(&mt->ma_lock);
816 	rcu_assign_pointer(mt->ma_root, NULL);
817 }
818 
819 /**
820  * mt_init() - Initialise an empty maple tree.
821  * @mt: Maple Tree
822  *
823  * An empty Maple Tree.
824  *
825  * Context: Any context.
826  */
mt_init(struct maple_tree * mt)827 static inline void mt_init(struct maple_tree *mt)
828 {
829 	mt_init_flags(mt, 0);
830 }
831 
mt_in_rcu(struct maple_tree * mt)832 static inline bool mt_in_rcu(struct maple_tree *mt)
833 {
834 #ifdef CONFIG_MAPLE_RCU_DISABLED
835 	return false;
836 #endif
837 	return mt->ma_flags & MT_FLAGS_USE_RCU;
838 }
839 
840 /**
841  * mt_clear_in_rcu() - Switch the tree to non-RCU mode.
842  * @mt: The Maple Tree
843  */
mt_clear_in_rcu(struct maple_tree * mt)844 static inline void mt_clear_in_rcu(struct maple_tree *mt)
845 {
846 	if (!mt_in_rcu(mt))
847 		return;
848 
849 	if (mt_external_lock(mt)) {
850 		WARN_ON(!mt_lock_is_held(mt));
851 		mt->ma_flags &= ~MT_FLAGS_USE_RCU;
852 	} else {
853 		mtree_lock(mt);
854 		mt->ma_flags &= ~MT_FLAGS_USE_RCU;
855 		mtree_unlock(mt);
856 	}
857 }
858 
859 /**
860  * mt_set_in_rcu() - Switch the tree to RCU safe mode.
861  * @mt: The Maple Tree
862  */
mt_set_in_rcu(struct maple_tree * mt)863 static inline void mt_set_in_rcu(struct maple_tree *mt)
864 {
865 	if (mt_in_rcu(mt))
866 		return;
867 
868 	if (mt_external_lock(mt)) {
869 		WARN_ON(!mt_lock_is_held(mt));
870 		mt->ma_flags |= MT_FLAGS_USE_RCU;
871 	} else {
872 		mtree_lock(mt);
873 		mt->ma_flags |= MT_FLAGS_USE_RCU;
874 		mtree_unlock(mt);
875 	}
876 }
877 
mt_height(const struct maple_tree * mt)878 static inline unsigned int mt_height(const struct maple_tree *mt)
879 {
880 	return (mt->ma_flags & MT_FLAGS_HEIGHT_MASK) >> MT_FLAGS_HEIGHT_OFFSET;
881 }
882 
883 void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max);
884 void *mt_find_after(struct maple_tree *mt, unsigned long *index,
885 		    unsigned long max);
886 void *mt_prev(struct maple_tree *mt, unsigned long index,  unsigned long min);
887 void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max);
888 
889 /**
890  * mt_for_each - Iterate over each entry starting at index until max.
891  * @__tree: The Maple Tree
892  * @__entry: The current entry
893  * @__index: The index to start the search from. Subsequently used as iterator.
894  * @__max: The maximum limit for @index
895  *
896  * This iterator skips all entries, which resolve to a NULL pointer,
897  * e.g. entries which has been reserved with XA_ZERO_ENTRY.
898  */
899 #define mt_for_each(__tree, __entry, __index, __max) \
900 	for (__entry = mt_find(__tree, &(__index), __max); \
901 		__entry; __entry = mt_find_after(__tree, &(__index), __max))
902 
903 #endif /*_LINUX_MAPLE_TREE_H */
904