1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_HUGE_MM_H 3 #define _LINUX_HUGE_MM_H 4 5 #include <linux/mm_types.h> 6 7 #include <linux/fs.h> /* only for vma_is_dax() */ 8 #include <linux/kobject.h> 9 10 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf); 11 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, 12 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 13 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); 14 bool huge_pmd_set_accessed(struct vm_fault *vmf); 15 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm, 16 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 17 struct vm_area_struct *vma); 18 19 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 20 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud); 21 #else 22 static inline void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud) 23 { 24 } 25 #endif 26 27 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf); 28 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 29 pmd_t *pmd, unsigned long addr, unsigned long next); 30 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, pmd_t *pmd, 31 unsigned long addr); 32 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma, pud_t *pud, 33 unsigned long addr); 34 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr, 35 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd); 36 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 37 pmd_t *pmd, unsigned long addr, pgprot_t newprot, 38 unsigned long cp_flags); 39 40 vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, unsigned long pfn, 41 bool write); 42 vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, unsigned long pfn, 43 bool write); 44 vm_fault_t vmf_insert_folio_pmd(struct vm_fault *vmf, struct folio *folio, 45 bool write); 46 vm_fault_t vmf_insert_folio_pud(struct vm_fault *vmf, struct folio *folio, 47 bool write); 48 49 enum transparent_hugepage_flag { 50 TRANSPARENT_HUGEPAGE_UNSUPPORTED, 51 TRANSPARENT_HUGEPAGE_FLAG, 52 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 53 TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, 54 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, 55 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, 56 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, 57 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG, 58 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG, 59 }; 60 61 struct kobject; 62 struct kobj_attribute; 63 64 ssize_t single_hugepage_flag_store(struct kobject *kobj, 65 struct kobj_attribute *attr, 66 const char *buf, size_t count, 67 enum transparent_hugepage_flag flag); 68 ssize_t single_hugepage_flag_show(struct kobject *kobj, 69 struct kobj_attribute *attr, char *buf, 70 enum transparent_hugepage_flag flag); 71 extern struct kobj_attribute shmem_enabled_attr; 72 extern struct kobj_attribute thpsize_shmem_enabled_attr; 73 74 /* 75 * Mask of all large folio orders supported for anonymous THP; all orders up to 76 * and including PMD_ORDER, except order-0 (which is not "huge") and order-1 77 * (which is a limitation of the THP implementation). 78 */ 79 #define THP_ORDERS_ALL_ANON ((BIT(PMD_ORDER + 1) - 1) & ~(BIT(0) | BIT(1))) 80 81 /* 82 * Mask of all large folio orders supported for file THP. Folios in a DAX 83 * file is never split and the MAX_PAGECACHE_ORDER limit does not apply to 84 * it. Same to PFNMAPs where there's neither page* nor pagecache. 85 */ 86 #define THP_ORDERS_ALL_SPECIAL \ 87 (BIT(PMD_ORDER) | BIT(PUD_ORDER)) 88 #define THP_ORDERS_ALL_FILE_DEFAULT \ 89 ((BIT(MAX_PAGECACHE_ORDER + 1) - 1) & ~BIT(0)) 90 91 /* 92 * Mask of all large folio orders supported for THP. 93 */ 94 #define THP_ORDERS_ALL \ 95 (THP_ORDERS_ALL_ANON | THP_ORDERS_ALL_SPECIAL | THP_ORDERS_ALL_FILE_DEFAULT) 96 97 enum tva_type { 98 TVA_SMAPS, /* Exposing "THPeligible:" in smaps. */ 99 TVA_PAGEFAULT, /* Serving a page fault. */ 100 TVA_KHUGEPAGED, /* Khugepaged collapse. */ 101 TVA_FORCED_COLLAPSE, /* Forced collapse (e.g. MADV_COLLAPSE). */ 102 }; 103 104 #define thp_vma_allowable_order(vma, vm_flags, type, order) \ 105 (!!thp_vma_allowable_orders(vma, vm_flags, type, BIT(order))) 106 107 #define split_folio(f) split_folio_to_list(f, NULL) 108 109 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES 110 #define HPAGE_PMD_SHIFT PMD_SHIFT 111 #define HPAGE_PUD_SHIFT PUD_SHIFT 112 #else 113 #define HPAGE_PMD_SHIFT ({ BUILD_BUG(); 0; }) 114 #define HPAGE_PUD_SHIFT ({ BUILD_BUG(); 0; }) 115 #endif 116 117 #define HPAGE_PMD_ORDER (HPAGE_PMD_SHIFT-PAGE_SHIFT) 118 #define HPAGE_PMD_NR (1<<HPAGE_PMD_ORDER) 119 #define HPAGE_PMD_MASK (~(HPAGE_PMD_SIZE - 1)) 120 #define HPAGE_PMD_SIZE ((1UL) << HPAGE_PMD_SHIFT) 121 122 #define HPAGE_PUD_ORDER (HPAGE_PUD_SHIFT-PAGE_SHIFT) 123 #define HPAGE_PUD_NR (1<<HPAGE_PUD_ORDER) 124 #define HPAGE_PUD_MASK (~(HPAGE_PUD_SIZE - 1)) 125 #define HPAGE_PUD_SIZE ((1UL) << HPAGE_PUD_SHIFT) 126 127 enum mthp_stat_item { 128 MTHP_STAT_ANON_FAULT_ALLOC, 129 MTHP_STAT_ANON_FAULT_FALLBACK, 130 MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE, 131 MTHP_STAT_ZSWPOUT, 132 MTHP_STAT_SWPIN, 133 MTHP_STAT_SWPIN_FALLBACK, 134 MTHP_STAT_SWPIN_FALLBACK_CHARGE, 135 MTHP_STAT_SWPOUT, 136 MTHP_STAT_SWPOUT_FALLBACK, 137 MTHP_STAT_SHMEM_ALLOC, 138 MTHP_STAT_SHMEM_FALLBACK, 139 MTHP_STAT_SHMEM_FALLBACK_CHARGE, 140 MTHP_STAT_SPLIT, 141 MTHP_STAT_SPLIT_FAILED, 142 MTHP_STAT_SPLIT_DEFERRED, 143 MTHP_STAT_NR_ANON, 144 MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, 145 __MTHP_STAT_COUNT 146 }; 147 148 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS) 149 struct mthp_stat { 150 unsigned long stats[ilog2(MAX_PTRS_PER_PTE) + 1][__MTHP_STAT_COUNT]; 151 }; 152 153 DECLARE_PER_CPU(struct mthp_stat, mthp_stats); 154 155 static inline void mod_mthp_stat(int order, enum mthp_stat_item item, int delta) 156 { 157 if (order <= 0 || order > PMD_ORDER) 158 return; 159 160 this_cpu_add(mthp_stats.stats[order][item], delta); 161 } 162 163 static inline void count_mthp_stat(int order, enum mthp_stat_item item) 164 { 165 mod_mthp_stat(order, item, 1); 166 } 167 168 #else 169 static inline void mod_mthp_stat(int order, enum mthp_stat_item item, int delta) 170 { 171 } 172 173 static inline void count_mthp_stat(int order, enum mthp_stat_item item) 174 { 175 } 176 #endif 177 178 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 179 180 extern unsigned long transparent_hugepage_flags; 181 extern unsigned long huge_anon_orders_always; 182 extern unsigned long huge_anon_orders_madvise; 183 extern unsigned long huge_anon_orders_inherit; 184 185 static inline bool hugepage_global_enabled(void) 186 { 187 return transparent_hugepage_flags & 188 ((1<<TRANSPARENT_HUGEPAGE_FLAG) | 189 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)); 190 } 191 192 static inline bool hugepage_global_always(void) 193 { 194 return transparent_hugepage_flags & 195 (1<<TRANSPARENT_HUGEPAGE_FLAG); 196 } 197 198 static inline int highest_order(unsigned long orders) 199 { 200 return fls_long(orders) - 1; 201 } 202 203 static inline int next_order(unsigned long *orders, int prev) 204 { 205 *orders &= ~BIT(prev); 206 return highest_order(*orders); 207 } 208 209 /* 210 * Do the below checks: 211 * - For file vma, check if the linear page offset of vma is 212 * order-aligned within the file. The hugepage is 213 * guaranteed to be order-aligned within the file, but we must 214 * check that the order-aligned addresses in the VMA map to 215 * order-aligned offsets within the file, else the hugepage will 216 * not be mappable. 217 * - For all vmas, check if the haddr is in an aligned hugepage 218 * area. 219 */ 220 static inline bool thp_vma_suitable_order(struct vm_area_struct *vma, 221 unsigned long addr, int order) 222 { 223 unsigned long hpage_size = PAGE_SIZE << order; 224 unsigned long haddr; 225 226 /* Don't have to check pgoff for anonymous vma */ 227 if (!vma_is_anonymous(vma)) { 228 if (!IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - vma->vm_pgoff, 229 hpage_size >> PAGE_SHIFT)) 230 return false; 231 } 232 233 haddr = ALIGN_DOWN(addr, hpage_size); 234 235 if (haddr < vma->vm_start || haddr + hpage_size > vma->vm_end) 236 return false; 237 return true; 238 } 239 240 /* 241 * Filter the bitfield of input orders to the ones suitable for use in the vma. 242 * See thp_vma_suitable_order(). 243 * All orders that pass the checks are returned as a bitfield. 244 */ 245 static inline unsigned long thp_vma_suitable_orders(struct vm_area_struct *vma, 246 unsigned long addr, unsigned long orders) 247 { 248 int order; 249 250 /* 251 * Iterate over orders, highest to lowest, removing orders that don't 252 * meet alignment requirements from the set. Exit loop at first order 253 * that meets requirements, since all lower orders must also meet 254 * requirements. 255 */ 256 257 order = highest_order(orders); 258 259 while (orders) { 260 if (thp_vma_suitable_order(vma, addr, order)) 261 break; 262 order = next_order(&orders, order); 263 } 264 265 return orders; 266 } 267 268 unsigned long __thp_vma_allowable_orders(struct vm_area_struct *vma, 269 vm_flags_t vm_flags, 270 enum tva_type type, 271 unsigned long orders); 272 273 /** 274 * thp_vma_allowable_orders - determine hugepage orders that are allowed for vma 275 * @vma: the vm area to check 276 * @vm_flags: use these vm_flags instead of vma->vm_flags 277 * @type: TVA type 278 * @orders: bitfield of all orders to consider 279 * 280 * Calculates the intersection of the requested hugepage orders and the allowed 281 * hugepage orders for the provided vma. Permitted orders are encoded as a set 282 * bit at the corresponding bit position (bit-2 corresponds to order-2, bit-3 283 * corresponds to order-3, etc). Order-0 is never considered a hugepage order. 284 * 285 * Return: bitfield of orders allowed for hugepage in the vma. 0 if no hugepage 286 * orders are allowed. 287 */ 288 static inline 289 unsigned long thp_vma_allowable_orders(struct vm_area_struct *vma, 290 vm_flags_t vm_flags, 291 enum tva_type type, 292 unsigned long orders) 293 { 294 /* 295 * Optimization to check if required orders are enabled early. Only 296 * forced collapse ignores sysfs configs. 297 */ 298 if (type != TVA_FORCED_COLLAPSE && vma_is_anonymous(vma)) { 299 unsigned long mask = READ_ONCE(huge_anon_orders_always); 300 301 if (vm_flags & VM_HUGEPAGE) 302 mask |= READ_ONCE(huge_anon_orders_madvise); 303 if (hugepage_global_always() || 304 ((vm_flags & VM_HUGEPAGE) && hugepage_global_enabled())) 305 mask |= READ_ONCE(huge_anon_orders_inherit); 306 307 orders &= mask; 308 if (!orders) 309 return 0; 310 } 311 312 return __thp_vma_allowable_orders(vma, vm_flags, type, orders); 313 } 314 315 struct thpsize { 316 struct kobject kobj; 317 struct list_head node; 318 int order; 319 }; 320 321 #define to_thpsize(kobj) container_of(kobj, struct thpsize, kobj) 322 323 #define transparent_hugepage_use_zero_page() \ 324 (transparent_hugepage_flags & \ 325 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG)) 326 327 /* 328 * Check whether THPs are explicitly disabled for this VMA, for example, 329 * through madvise or prctl. 330 */ 331 static inline bool vma_thp_disabled(struct vm_area_struct *vma, 332 vm_flags_t vm_flags, bool forced_collapse) 333 { 334 /* Are THPs disabled for this VMA? */ 335 if (vm_flags & VM_NOHUGEPAGE) 336 return true; 337 /* Are THPs disabled for all VMAs in the whole process? */ 338 if (mm_flags_test(MMF_DISABLE_THP_COMPLETELY, vma->vm_mm)) 339 return true; 340 /* 341 * Are THPs disabled only for VMAs where we didn't get an explicit 342 * advise to use them? 343 */ 344 if (vm_flags & VM_HUGEPAGE) 345 return false; 346 /* 347 * Forcing a collapse (e.g., madv_collapse), is a clear advice to 348 * use THPs. 349 */ 350 if (forced_collapse) 351 return false; 352 return mm_flags_test(MMF_DISABLE_THP_EXCEPT_ADVISED, vma->vm_mm); 353 } 354 355 static inline bool thp_disabled_by_hw(void) 356 { 357 /* If the hardware/firmware marked hugepage support disabled. */ 358 return transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED); 359 } 360 361 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr, 362 unsigned long len, unsigned long pgoff, unsigned long flags); 363 unsigned long thp_get_unmapped_area_vmflags(struct file *filp, unsigned long addr, 364 unsigned long len, unsigned long pgoff, unsigned long flags, 365 vm_flags_t vm_flags); 366 367 enum split_type { 368 SPLIT_TYPE_UNIFORM, 369 SPLIT_TYPE_NON_UNIFORM, 370 }; 371 372 int __split_huge_page_to_list_to_order(struct page *page, struct list_head *list, 373 unsigned int new_order); 374 int folio_split_unmapped(struct folio *folio, unsigned int new_order); 375 unsigned int min_order_for_split(struct folio *folio); 376 int split_folio_to_list(struct folio *folio, struct list_head *list); 377 int folio_check_splittable(struct folio *folio, unsigned int new_order, 378 enum split_type split_type); 379 int folio_split(struct folio *folio, unsigned int new_order, struct page *page, 380 struct list_head *list); 381 382 static inline int split_huge_page_to_list_to_order(struct page *page, struct list_head *list, 383 unsigned int new_order) 384 { 385 return __split_huge_page_to_list_to_order(page, list, new_order); 386 } 387 static inline int split_huge_page_to_order(struct page *page, unsigned int new_order) 388 { 389 return split_huge_page_to_list_to_order(page, NULL, new_order); 390 } 391 392 /** 393 * try_folio_split_to_order() - try to split a @folio at @page to @new_order 394 * using non uniform split. 395 * @folio: folio to be split 396 * @page: split to @new_order at the given page 397 * @new_order: the target split order 398 * 399 * Try to split a @folio at @page using non uniform split to @new_order, if 400 * non uniform split is not supported, fall back to uniform split. After-split 401 * folios are put back to LRU list. Use min_order_for_split() to get the lower 402 * bound of @new_order. 403 * 404 * Return: 0 - split is successful, otherwise split failed. 405 */ 406 static inline int try_folio_split_to_order(struct folio *folio, 407 struct page *page, unsigned int new_order) 408 { 409 if (folio_check_splittable(folio, new_order, SPLIT_TYPE_NON_UNIFORM)) 410 return split_huge_page_to_order(&folio->page, new_order); 411 return folio_split(folio, new_order, page, NULL); 412 } 413 static inline int split_huge_page(struct page *page) 414 { 415 return split_huge_page_to_list_to_order(page, NULL, 0); 416 } 417 void deferred_split_folio(struct folio *folio, bool partially_mapped); 418 #ifdef CONFIG_MEMCG 419 void reparent_deferred_split_queue(struct mem_cgroup *memcg); 420 #endif 421 422 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 423 unsigned long address, bool freeze); 424 425 /** 426 * pmd_is_huge() - Is this PMD either a huge PMD entry or a software leaf entry? 427 * @pmd: The PMD to check. 428 * 429 * A huge PMD entry is a non-empty entry which is present and marked huge or a 430 * software leaf entry. This check be performed without the appropriate locks 431 * held, in which case the condition should be rechecked after they are 432 * acquired. 433 * 434 * Returns: true if this PMD is huge, false otherwise. 435 */ 436 static inline bool pmd_is_huge(pmd_t pmd) 437 { 438 if (pmd_present(pmd)) { 439 return pmd_trans_huge(pmd); 440 } else if (!pmd_none(pmd)) { 441 /* 442 * Non-present PMDs must be valid huge non-present entries. We 443 * cannot assert that here due to header dependency issues. 444 */ 445 return true; 446 } 447 448 return false; 449 } 450 451 #define split_huge_pmd(__vma, __pmd, __address) \ 452 do { \ 453 pmd_t *____pmd = (__pmd); \ 454 if (pmd_is_huge(*____pmd)) \ 455 __split_huge_pmd(__vma, __pmd, __address, \ 456 false); \ 457 } while (0) 458 459 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address, 460 bool freeze); 461 462 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud, 463 unsigned long address); 464 465 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 466 int change_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma, 467 pud_t *pudp, unsigned long addr, pgprot_t newprot, 468 unsigned long cp_flags); 469 #else 470 static inline int 471 change_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma, 472 pud_t *pudp, unsigned long addr, pgprot_t newprot, 473 unsigned long cp_flags) { return 0; } 474 #endif 475 476 #define split_huge_pud(__vma, __pud, __address) \ 477 do { \ 478 pud_t *____pud = (__pud); \ 479 if (pud_trans_huge(*____pud)) \ 480 __split_huge_pud(__vma, __pud, __address); \ 481 } while (0) 482 483 int hugepage_madvise(struct vm_area_struct *vma, vm_flags_t *vm_flags, 484 int advice); 485 int madvise_collapse(struct vm_area_struct *vma, unsigned long start, 486 unsigned long end, bool *lock_dropped); 487 void vma_adjust_trans_huge(struct vm_area_struct *vma, unsigned long start, 488 unsigned long end, struct vm_area_struct *next); 489 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma); 490 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma); 491 492 /* mmap_lock must be held on entry */ 493 static inline spinlock_t *pmd_trans_huge_lock(pmd_t *pmd, 494 struct vm_area_struct *vma) 495 { 496 if (pmd_is_huge(*pmd)) 497 return __pmd_trans_huge_lock(pmd, vma); 498 499 return NULL; 500 } 501 static inline spinlock_t *pud_trans_huge_lock(pud_t *pud, 502 struct vm_area_struct *vma) 503 { 504 if (pud_trans_huge(*pud)) 505 return __pud_trans_huge_lock(pud, vma); 506 else 507 return NULL; 508 } 509 510 /** 511 * folio_test_pmd_mappable - Can we map this folio with a PMD? 512 * @folio: The folio to test 513 * 514 * Return: true - @folio can be mapped, false - @folio cannot be mapped. 515 */ 516 static inline bool folio_test_pmd_mappable(struct folio *folio) 517 { 518 return folio_order(folio) >= HPAGE_PMD_ORDER; 519 } 520 521 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf); 522 523 vm_fault_t do_huge_pmd_device_private(struct vm_fault *vmf); 524 525 extern struct folio *huge_zero_folio; 526 extern unsigned long huge_zero_pfn; 527 528 static inline bool is_huge_zero_folio(const struct folio *folio) 529 { 530 VM_WARN_ON_ONCE(!folio); 531 532 return READ_ONCE(huge_zero_folio) == folio; 533 } 534 535 static inline bool is_huge_zero_pfn(unsigned long pfn) 536 { 537 return READ_ONCE(huge_zero_pfn) == (pfn & ~(HPAGE_PMD_NR - 1)); 538 } 539 540 static inline bool is_huge_zero_pmd(pmd_t pmd) 541 { 542 return pmd_present(pmd) && is_huge_zero_pfn(pmd_pfn(pmd)); 543 } 544 545 struct folio *mm_get_huge_zero_folio(struct mm_struct *mm); 546 void mm_put_huge_zero_folio(struct mm_struct *mm); 547 548 static inline struct folio *get_persistent_huge_zero_folio(void) 549 { 550 if (!IS_ENABLED(CONFIG_PERSISTENT_HUGE_ZERO_FOLIO)) 551 return NULL; 552 553 if (unlikely(!huge_zero_folio)) 554 return NULL; 555 556 return huge_zero_folio; 557 } 558 559 static inline bool thp_migration_supported(void) 560 { 561 return IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION); 562 } 563 564 void split_huge_pmd_locked(struct vm_area_struct *vma, unsigned long address, 565 pmd_t *pmd, bool freeze); 566 bool unmap_huge_pmd_locked(struct vm_area_struct *vma, unsigned long addr, 567 pmd_t *pmdp, struct folio *folio); 568 void map_anon_folio_pmd_nopf(struct folio *folio, pmd_t *pmd, 569 struct vm_area_struct *vma, unsigned long haddr); 570 571 #else /* CONFIG_TRANSPARENT_HUGEPAGE */ 572 573 static inline bool folio_test_pmd_mappable(struct folio *folio) 574 { 575 return false; 576 } 577 578 static inline bool thp_vma_suitable_order(struct vm_area_struct *vma, 579 unsigned long addr, int order) 580 { 581 return false; 582 } 583 584 static inline unsigned long thp_vma_suitable_orders(struct vm_area_struct *vma, 585 unsigned long addr, unsigned long orders) 586 { 587 return 0; 588 } 589 590 static inline unsigned long thp_vma_allowable_orders(struct vm_area_struct *vma, 591 vm_flags_t vm_flags, 592 enum tva_type type, 593 unsigned long orders) 594 { 595 return 0; 596 } 597 598 #define transparent_hugepage_flags 0UL 599 600 #define thp_get_unmapped_area NULL 601 602 static inline unsigned long 603 thp_get_unmapped_area_vmflags(struct file *filp, unsigned long addr, 604 unsigned long len, unsigned long pgoff, 605 unsigned long flags, vm_flags_t vm_flags) 606 { 607 return 0; 608 } 609 610 static inline bool 611 can_split_folio(struct folio *folio, int caller_pins, int *pextra_pins) 612 { 613 return false; 614 } 615 static inline int 616 split_huge_page_to_list_to_order(struct page *page, struct list_head *list, 617 unsigned int new_order) 618 { 619 VM_WARN_ON_ONCE_PAGE(1, page); 620 return -EINVAL; 621 } 622 static inline int split_huge_page_to_order(struct page *page, unsigned int new_order) 623 { 624 VM_WARN_ON_ONCE_PAGE(1, page); 625 return -EINVAL; 626 } 627 static inline int split_huge_page(struct page *page) 628 { 629 VM_WARN_ON_ONCE_PAGE(1, page); 630 return -EINVAL; 631 } 632 633 static inline unsigned int min_order_for_split(struct folio *folio) 634 { 635 VM_WARN_ON_ONCE_FOLIO(1, folio); 636 return 0; 637 } 638 639 static inline int split_folio_to_list(struct folio *folio, struct list_head *list) 640 { 641 VM_WARN_ON_ONCE_FOLIO(1, folio); 642 return -EINVAL; 643 } 644 645 static inline int try_folio_split_to_order(struct folio *folio, 646 struct page *page, unsigned int new_order) 647 { 648 VM_WARN_ON_ONCE_FOLIO(1, folio); 649 return -EINVAL; 650 } 651 652 static inline void deferred_split_folio(struct folio *folio, bool partially_mapped) {} 653 static inline void reparent_deferred_split_queue(struct mem_cgroup *memcg) {} 654 #define split_huge_pmd(__vma, __pmd, __address) \ 655 do { } while (0) 656 657 static inline void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 658 unsigned long address, bool freeze) {} 659 static inline void split_huge_pmd_address(struct vm_area_struct *vma, 660 unsigned long address, bool freeze) {} 661 static inline void split_huge_pmd_locked(struct vm_area_struct *vma, 662 unsigned long address, pmd_t *pmd, 663 bool freeze) {} 664 665 static inline bool unmap_huge_pmd_locked(struct vm_area_struct *vma, 666 unsigned long addr, pmd_t *pmdp, 667 struct folio *folio) 668 { 669 return false; 670 } 671 672 #define split_huge_pud(__vma, __pmd, __address) \ 673 do { } while (0) 674 675 static inline int hugepage_madvise(struct vm_area_struct *vma, 676 vm_flags_t *vm_flags, int advice) 677 { 678 return -EINVAL; 679 } 680 681 static inline int madvise_collapse(struct vm_area_struct *vma, 682 unsigned long start, 683 unsigned long end, bool *lock_dropped) 684 { 685 return -EINVAL; 686 } 687 688 static inline void vma_adjust_trans_huge(struct vm_area_struct *vma, 689 unsigned long start, 690 unsigned long end, 691 struct vm_area_struct *next) 692 { 693 } 694 static inline spinlock_t *pmd_trans_huge_lock(pmd_t *pmd, 695 struct vm_area_struct *vma) 696 { 697 return NULL; 698 } 699 static inline spinlock_t *pud_trans_huge_lock(pud_t *pud, 700 struct vm_area_struct *vma) 701 { 702 return NULL; 703 } 704 705 static inline vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf) 706 { 707 return 0; 708 } 709 710 static inline vm_fault_t do_huge_pmd_device_private(struct vm_fault *vmf) 711 { 712 return 0; 713 } 714 715 static inline bool is_huge_zero_folio(const struct folio *folio) 716 { 717 return false; 718 } 719 720 static inline bool is_huge_zero_pfn(unsigned long pfn) 721 { 722 return false; 723 } 724 725 static inline bool is_huge_zero_pmd(pmd_t pmd) 726 { 727 return false; 728 } 729 730 static inline void mm_put_huge_zero_folio(struct mm_struct *mm) 731 { 732 return; 733 } 734 735 static inline bool thp_migration_supported(void) 736 { 737 return false; 738 } 739 740 static inline int highest_order(unsigned long orders) 741 { 742 return 0; 743 } 744 745 static inline int next_order(unsigned long *orders, int prev) 746 { 747 return 0; 748 } 749 750 static inline void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud, 751 unsigned long address) 752 { 753 } 754 755 static inline int change_huge_pud(struct mmu_gather *tlb, 756 struct vm_area_struct *vma, pud_t *pudp, 757 unsigned long addr, pgprot_t newprot, 758 unsigned long cp_flags) 759 { 760 return 0; 761 } 762 763 static inline struct folio *get_persistent_huge_zero_folio(void) 764 { 765 return NULL; 766 } 767 768 static inline bool pmd_is_huge(pmd_t pmd) 769 { 770 return false; 771 } 772 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 773 774 static inline int split_folio_to_list_to_order(struct folio *folio, 775 struct list_head *list, int new_order) 776 { 777 return split_huge_page_to_list_to_order(&folio->page, list, new_order); 778 } 779 780 static inline int split_folio_to_order(struct folio *folio, int new_order) 781 { 782 return split_folio_to_list_to_order(folio, NULL, new_order); 783 } 784 785 /** 786 * largest_zero_folio - Get the largest zero size folio available 787 * 788 * This function shall be used when mm_get_huge_zero_folio() cannot be 789 * used as there is no appropriate mm lifetime to tie the huge zero folio 790 * from the caller. 791 * 792 * Deduce the size of the folio with folio_size instead of assuming the 793 * folio size. 794 * 795 * Return: pointer to PMD sized zero folio if CONFIG_PERSISTENT_HUGE_ZERO_FOLIO 796 * is enabled or a single page sized zero folio 797 */ 798 static inline struct folio *largest_zero_folio(void) 799 { 800 struct folio *folio = get_persistent_huge_zero_folio(); 801 802 if (folio) 803 return folio; 804 805 return page_folio(ZERO_PAGE(0)); 806 } 807 #endif /* _LINUX_HUGE_MM_H */ 808