xref: /linux/mm/mempolicy.c (revision f73a058be5d70dd81a43f16b2bbff4b1576a7af8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Simple NUMA memory policy for the Linux kernel.
4  *
5  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
7  *
8  * NUMA policy allows the user to give hints in which node(s) memory should
9  * be allocated.
10  *
11  * Support four policies per VMA and per process:
12  *
13  * The VMA policy has priority over the process policy for a page fault.
14  *
15  * interleave     Allocate memory interleaved over a set of nodes,
16  *                with normal fallback if it fails.
17  *                For VMA based allocations this interleaves based on the
18  *                offset into the backing object or offset into the mapping
19  *                for anonymous memory. For process policy an process counter
20  *                is used.
21  *
22  * weighted interleave
23  *                Allocate memory interleaved over a set of nodes based on
24  *                a set of weights (per-node), with normal fallback if it
25  *                fails.  Otherwise operates the same as interleave.
26  *                Example: nodeset(0,1) & weights (2,1) - 2 pages allocated
27  *                on node 0 for every 1 page allocated on node 1.
28  *
29  * bind           Only allocate memory on a specific set of nodes,
30  *                no fallback.
31  *                FIXME: memory is allocated starting with the first node
32  *                to the last. It would be better if bind would truly restrict
33  *                the allocation to memory nodes instead
34  *
35  * preferred      Try a specific node first before normal fallback.
36  *                As a special case NUMA_NO_NODE here means do the allocation
37  *                on the local CPU. This is normally identical to default,
38  *                but useful to set in a VMA when you have a non default
39  *                process policy.
40  *
41  * preferred many Try a set of nodes first before normal fallback. This is
42  *                similar to preferred without the special case.
43  *
44  * default        Allocate on the local node first, or when on a VMA
45  *                use the process policy. This is what Linux always did
46  *		  in a NUMA aware kernel and still does by, ahem, default.
47  *
48  * The process policy is applied for most non interrupt memory allocations
49  * in that process' context. Interrupts ignore the policies and always
50  * try to allocate on the local CPU. The VMA policy is only applied for memory
51  * allocations for a VMA in the VM.
52  *
53  * Currently there are a few corner cases in swapping where the policy
54  * is not applied, but the majority should be handled. When process policy
55  * is used it is not remembered over swap outs/swap ins.
56  *
57  * Only the highest zone in the zone hierarchy gets policied. Allocations
58  * requesting a lower zone just use default policy. This implies that
59  * on systems with highmem kernel lowmem allocation don't get policied.
60  * Same with GFP_DMA allocations.
61  *
62  * For shmem/tmpfs shared memory the policy is shared between
63  * all users and remembered even when nobody has memory mapped.
64  */
65 
66 /* Notebook:
67    fix mmap readahead to honour policy and enable policy for any page cache
68    object
69    statistics for bigpages
70    global policy for page cache? currently it uses process policy. Requires
71    first item above.
72    handle mremap for shared memory (currently ignored for the policy)
73    grows down?
74    make bind policy root only? It can trigger oom much faster and the
75    kernel is not always grateful with that.
76 */
77 
78 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
79 
80 #include <linux/mempolicy.h>
81 #include <linux/pagewalk.h>
82 #include <linux/highmem.h>
83 #include <linux/hugetlb.h>
84 #include <linux/kernel.h>
85 #include <linux/sched.h>
86 #include <linux/sched/mm.h>
87 #include <linux/sched/numa_balancing.h>
88 #include <linux/sched/task.h>
89 #include <linux/nodemask.h>
90 #include <linux/cpuset.h>
91 #include <linux/slab.h>
92 #include <linux/string.h>
93 #include <linux/export.h>
94 #include <linux/nsproxy.h>
95 #include <linux/interrupt.h>
96 #include <linux/init.h>
97 #include <linux/compat.h>
98 #include <linux/ptrace.h>
99 #include <linux/swap.h>
100 #include <linux/seq_file.h>
101 #include <linux/proc_fs.h>
102 #include <linux/migrate.h>
103 #include <linux/ksm.h>
104 #include <linux/rmap.h>
105 #include <linux/security.h>
106 #include <linux/syscalls.h>
107 #include <linux/ctype.h>
108 #include <linux/mm_inline.h>
109 #include <linux/mmu_notifier.h>
110 #include <linux/printk.h>
111 #include <linux/swapops.h>
112 
113 #include <asm/tlbflush.h>
114 #include <asm/tlb.h>
115 #include <linux/uaccess.h>
116 
117 #include "internal.h"
118 
119 /* Internal flags */
120 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
121 #define MPOL_MF_INVERT       (MPOL_MF_INTERNAL << 1)	/* Invert check for nodemask */
122 #define MPOL_MF_WRLOCK       (MPOL_MF_INTERNAL << 2)	/* Write-lock walked vmas */
123 
124 static struct kmem_cache *policy_cache;
125 static struct kmem_cache *sn_cache;
126 
127 /* Highest zone. An specific allocation for a zone below that is not
128    policied. */
129 enum zone_type policy_zone = 0;
130 
131 /*
132  * run-time system-wide default policy => local allocation
133  */
134 static struct mempolicy default_policy = {
135 	.refcnt = ATOMIC_INIT(1), /* never free it */
136 	.mode = MPOL_LOCAL,
137 };
138 
139 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
140 
141 /*
142  * iw_table is the sysfs-set interleave weight table, a value of 0 denotes
143  * system-default value should be used. A NULL iw_table also denotes that
144  * system-default values should be used. Until the system-default table
145  * is implemented, the system-default is always 1.
146  *
147  * iw_table is RCU protected
148  */
149 static u8 __rcu *iw_table;
150 static DEFINE_MUTEX(iw_table_lock);
151 
152 static u8 get_il_weight(int node)
153 {
154 	u8 *table;
155 	u8 weight;
156 
157 	rcu_read_lock();
158 	table = rcu_dereference(iw_table);
159 	/* if no iw_table, use system default */
160 	weight = table ? table[node] : 1;
161 	/* if value in iw_table is 0, use system default */
162 	weight = weight ? weight : 1;
163 	rcu_read_unlock();
164 	return weight;
165 }
166 
167 /**
168  * numa_nearest_node - Find nearest node by state
169  * @node: Node id to start the search
170  * @state: State to filter the search
171  *
172  * Lookup the closest node by distance if @nid is not in state.
173  *
174  * Return: this @node if it is in state, otherwise the closest node by distance
175  */
176 int numa_nearest_node(int node, unsigned int state)
177 {
178 	int min_dist = INT_MAX, dist, n, min_node;
179 
180 	if (state >= NR_NODE_STATES)
181 		return -EINVAL;
182 
183 	if (node == NUMA_NO_NODE || node_state(node, state))
184 		return node;
185 
186 	min_node = node;
187 	for_each_node_state(n, state) {
188 		dist = node_distance(node, n);
189 		if (dist < min_dist) {
190 			min_dist = dist;
191 			min_node = n;
192 		}
193 	}
194 
195 	return min_node;
196 }
197 EXPORT_SYMBOL_GPL(numa_nearest_node);
198 
199 struct mempolicy *get_task_policy(struct task_struct *p)
200 {
201 	struct mempolicy *pol = p->mempolicy;
202 	int node;
203 
204 	if (pol)
205 		return pol;
206 
207 	node = numa_node_id();
208 	if (node != NUMA_NO_NODE) {
209 		pol = &preferred_node_policy[node];
210 		/* preferred_node_policy is not initialised early in boot */
211 		if (pol->mode)
212 			return pol;
213 	}
214 
215 	return &default_policy;
216 }
217 
218 static const struct mempolicy_operations {
219 	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
220 	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
221 } mpol_ops[MPOL_MAX];
222 
223 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
224 {
225 	return pol->flags & MPOL_MODE_FLAGS;
226 }
227 
228 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
229 				   const nodemask_t *rel)
230 {
231 	nodemask_t tmp;
232 	nodes_fold(tmp, *orig, nodes_weight(*rel));
233 	nodes_onto(*ret, tmp, *rel);
234 }
235 
236 static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
237 {
238 	if (nodes_empty(*nodes))
239 		return -EINVAL;
240 	pol->nodes = *nodes;
241 	return 0;
242 }
243 
244 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
245 {
246 	if (nodes_empty(*nodes))
247 		return -EINVAL;
248 
249 	nodes_clear(pol->nodes);
250 	node_set(first_node(*nodes), pol->nodes);
251 	return 0;
252 }
253 
254 /*
255  * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
256  * any, for the new policy.  mpol_new() has already validated the nodes
257  * parameter with respect to the policy mode and flags.
258  *
259  * Must be called holding task's alloc_lock to protect task's mems_allowed
260  * and mempolicy.  May also be called holding the mmap_lock for write.
261  */
262 static int mpol_set_nodemask(struct mempolicy *pol,
263 		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
264 {
265 	int ret;
266 
267 	/*
268 	 * Default (pol==NULL) resp. local memory policies are not a
269 	 * subject of any remapping. They also do not need any special
270 	 * constructor.
271 	 */
272 	if (!pol || pol->mode == MPOL_LOCAL)
273 		return 0;
274 
275 	/* Check N_MEMORY */
276 	nodes_and(nsc->mask1,
277 		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
278 
279 	VM_BUG_ON(!nodes);
280 
281 	if (pol->flags & MPOL_F_RELATIVE_NODES)
282 		mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
283 	else
284 		nodes_and(nsc->mask2, *nodes, nsc->mask1);
285 
286 	if (mpol_store_user_nodemask(pol))
287 		pol->w.user_nodemask = *nodes;
288 	else
289 		pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed;
290 
291 	ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
292 	return ret;
293 }
294 
295 /*
296  * This function just creates a new policy, does some check and simple
297  * initialization. You must invoke mpol_set_nodemask() to set nodes.
298  */
299 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
300 				  nodemask_t *nodes)
301 {
302 	struct mempolicy *policy;
303 
304 	if (mode == MPOL_DEFAULT) {
305 		if (nodes && !nodes_empty(*nodes))
306 			return ERR_PTR(-EINVAL);
307 		return NULL;
308 	}
309 	VM_BUG_ON(!nodes);
310 
311 	/*
312 	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
313 	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
314 	 * All other modes require a valid pointer to a non-empty nodemask.
315 	 */
316 	if (mode == MPOL_PREFERRED) {
317 		if (nodes_empty(*nodes)) {
318 			if (((flags & MPOL_F_STATIC_NODES) ||
319 			     (flags & MPOL_F_RELATIVE_NODES)))
320 				return ERR_PTR(-EINVAL);
321 
322 			mode = MPOL_LOCAL;
323 		}
324 	} else if (mode == MPOL_LOCAL) {
325 		if (!nodes_empty(*nodes) ||
326 		    (flags & MPOL_F_STATIC_NODES) ||
327 		    (flags & MPOL_F_RELATIVE_NODES))
328 			return ERR_PTR(-EINVAL);
329 	} else if (nodes_empty(*nodes))
330 		return ERR_PTR(-EINVAL);
331 
332 	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
333 	if (!policy)
334 		return ERR_PTR(-ENOMEM);
335 	atomic_set(&policy->refcnt, 1);
336 	policy->mode = mode;
337 	policy->flags = flags;
338 	policy->home_node = NUMA_NO_NODE;
339 
340 	return policy;
341 }
342 
343 /* Slow path of a mpol destructor. */
344 void __mpol_put(struct mempolicy *pol)
345 {
346 	if (!atomic_dec_and_test(&pol->refcnt))
347 		return;
348 	kmem_cache_free(policy_cache, pol);
349 }
350 
351 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
352 {
353 }
354 
355 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
356 {
357 	nodemask_t tmp;
358 
359 	if (pol->flags & MPOL_F_STATIC_NODES)
360 		nodes_and(tmp, pol->w.user_nodemask, *nodes);
361 	else if (pol->flags & MPOL_F_RELATIVE_NODES)
362 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
363 	else {
364 		nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed,
365 								*nodes);
366 		pol->w.cpuset_mems_allowed = *nodes;
367 	}
368 
369 	if (nodes_empty(tmp))
370 		tmp = *nodes;
371 
372 	pol->nodes = tmp;
373 }
374 
375 static void mpol_rebind_preferred(struct mempolicy *pol,
376 						const nodemask_t *nodes)
377 {
378 	pol->w.cpuset_mems_allowed = *nodes;
379 }
380 
381 /*
382  * mpol_rebind_policy - Migrate a policy to a different set of nodes
383  *
384  * Per-vma policies are protected by mmap_lock. Allocations using per-task
385  * policies are protected by task->mems_allowed_seq to prevent a premature
386  * OOM/allocation failure due to parallel nodemask modification.
387  */
388 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
389 {
390 	if (!pol || pol->mode == MPOL_LOCAL)
391 		return;
392 	if (!mpol_store_user_nodemask(pol) &&
393 	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
394 		return;
395 
396 	mpol_ops[pol->mode].rebind(pol, newmask);
397 }
398 
399 /*
400  * Wrapper for mpol_rebind_policy() that just requires task
401  * pointer, and updates task mempolicy.
402  *
403  * Called with task's alloc_lock held.
404  */
405 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
406 {
407 	mpol_rebind_policy(tsk->mempolicy, new);
408 }
409 
410 /*
411  * Rebind each vma in mm to new nodemask.
412  *
413  * Call holding a reference to mm.  Takes mm->mmap_lock during call.
414  */
415 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
416 {
417 	struct vm_area_struct *vma;
418 	VMA_ITERATOR(vmi, mm, 0);
419 
420 	mmap_write_lock(mm);
421 	for_each_vma(vmi, vma) {
422 		vma_start_write(vma);
423 		mpol_rebind_policy(vma->vm_policy, new);
424 	}
425 	mmap_write_unlock(mm);
426 }
427 
428 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
429 	[MPOL_DEFAULT] = {
430 		.rebind = mpol_rebind_default,
431 	},
432 	[MPOL_INTERLEAVE] = {
433 		.create = mpol_new_nodemask,
434 		.rebind = mpol_rebind_nodemask,
435 	},
436 	[MPOL_PREFERRED] = {
437 		.create = mpol_new_preferred,
438 		.rebind = mpol_rebind_preferred,
439 	},
440 	[MPOL_BIND] = {
441 		.create = mpol_new_nodemask,
442 		.rebind = mpol_rebind_nodemask,
443 	},
444 	[MPOL_LOCAL] = {
445 		.rebind = mpol_rebind_default,
446 	},
447 	[MPOL_PREFERRED_MANY] = {
448 		.create = mpol_new_nodemask,
449 		.rebind = mpol_rebind_preferred,
450 	},
451 	[MPOL_WEIGHTED_INTERLEAVE] = {
452 		.create = mpol_new_nodemask,
453 		.rebind = mpol_rebind_nodemask,
454 	},
455 };
456 
457 static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist,
458 				unsigned long flags);
459 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *pol,
460 				pgoff_t ilx, int *nid);
461 
462 static bool strictly_unmovable(unsigned long flags)
463 {
464 	/*
465 	 * STRICT without MOVE flags lets do_mbind() fail immediately with -EIO
466 	 * if any misplaced page is found.
467 	 */
468 	return (flags & (MPOL_MF_STRICT | MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) ==
469 			 MPOL_MF_STRICT;
470 }
471 
472 struct migration_mpol {		/* for alloc_migration_target_by_mpol() */
473 	struct mempolicy *pol;
474 	pgoff_t ilx;
475 };
476 
477 struct queue_pages {
478 	struct list_head *pagelist;
479 	unsigned long flags;
480 	nodemask_t *nmask;
481 	unsigned long start;
482 	unsigned long end;
483 	struct vm_area_struct *first;
484 	struct folio *large;		/* note last large folio encountered */
485 	long nr_failed;			/* could not be isolated at this time */
486 };
487 
488 /*
489  * Check if the folio's nid is in qp->nmask.
490  *
491  * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
492  * in the invert of qp->nmask.
493  */
494 static inline bool queue_folio_required(struct folio *folio,
495 					struct queue_pages *qp)
496 {
497 	int nid = folio_nid(folio);
498 	unsigned long flags = qp->flags;
499 
500 	return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
501 }
502 
503 static void queue_folios_pmd(pmd_t *pmd, struct mm_walk *walk)
504 {
505 	struct folio *folio;
506 	struct queue_pages *qp = walk->private;
507 
508 	if (unlikely(is_pmd_migration_entry(*pmd))) {
509 		qp->nr_failed++;
510 		return;
511 	}
512 	folio = pmd_folio(*pmd);
513 	if (is_huge_zero_folio(folio)) {
514 		walk->action = ACTION_CONTINUE;
515 		return;
516 	}
517 	if (!queue_folio_required(folio, qp))
518 		return;
519 	if (!(qp->flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) ||
520 	    !vma_migratable(walk->vma) ||
521 	    !migrate_folio_add(folio, qp->pagelist, qp->flags))
522 		qp->nr_failed++;
523 }
524 
525 /*
526  * Scan through folios, checking if they satisfy the required conditions,
527  * moving them from LRU to local pagelist for migration if they do (or not).
528  *
529  * queue_folios_pte_range() has two possible return values:
530  * 0 - continue walking to scan for more, even if an existing folio on the
531  *     wrong node could not be isolated and queued for migration.
532  * -EIO - only MPOL_MF_STRICT was specified, without MPOL_MF_MOVE or ..._ALL,
533  *        and an existing folio was on a node that does not follow the policy.
534  */
535 static int queue_folios_pte_range(pmd_t *pmd, unsigned long addr,
536 			unsigned long end, struct mm_walk *walk)
537 {
538 	struct vm_area_struct *vma = walk->vma;
539 	struct folio *folio;
540 	struct queue_pages *qp = walk->private;
541 	unsigned long flags = qp->flags;
542 	pte_t *pte, *mapped_pte;
543 	pte_t ptent;
544 	spinlock_t *ptl;
545 
546 	ptl = pmd_trans_huge_lock(pmd, vma);
547 	if (ptl) {
548 		queue_folios_pmd(pmd, walk);
549 		spin_unlock(ptl);
550 		goto out;
551 	}
552 
553 	mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
554 	if (!pte) {
555 		walk->action = ACTION_AGAIN;
556 		return 0;
557 	}
558 	for (; addr != end; pte++, addr += PAGE_SIZE) {
559 		ptent = ptep_get(pte);
560 		if (pte_none(ptent))
561 			continue;
562 		if (!pte_present(ptent)) {
563 			if (is_migration_entry(pte_to_swp_entry(ptent)))
564 				qp->nr_failed++;
565 			continue;
566 		}
567 		folio = vm_normal_folio(vma, addr, ptent);
568 		if (!folio || folio_is_zone_device(folio))
569 			continue;
570 		/*
571 		 * vm_normal_folio() filters out zero pages, but there might
572 		 * still be reserved folios to skip, perhaps in a VDSO.
573 		 */
574 		if (folio_test_reserved(folio))
575 			continue;
576 		if (!queue_folio_required(folio, qp))
577 			continue;
578 		if (folio_test_large(folio)) {
579 			/*
580 			 * A large folio can only be isolated from LRU once,
581 			 * but may be mapped by many PTEs (and Copy-On-Write may
582 			 * intersperse PTEs of other, order 0, folios).  This is
583 			 * a common case, so don't mistake it for failure (but
584 			 * there can be other cases of multi-mapped pages which
585 			 * this quick check does not help to filter out - and a
586 			 * search of the pagelist might grow to be prohibitive).
587 			 *
588 			 * migrate_pages(&pagelist) returns nr_failed folios, so
589 			 * check "large" now so that queue_pages_range() returns
590 			 * a comparable nr_failed folios.  This does imply that
591 			 * if folio could not be isolated for some racy reason
592 			 * at its first PTE, later PTEs will not give it another
593 			 * chance of isolation; but keeps the accounting simple.
594 			 */
595 			if (folio == qp->large)
596 				continue;
597 			qp->large = folio;
598 		}
599 		if (!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) ||
600 		    !vma_migratable(vma) ||
601 		    !migrate_folio_add(folio, qp->pagelist, flags)) {
602 			qp->nr_failed++;
603 			if (strictly_unmovable(flags))
604 				break;
605 		}
606 	}
607 	pte_unmap_unlock(mapped_pte, ptl);
608 	cond_resched();
609 out:
610 	if (qp->nr_failed && strictly_unmovable(flags))
611 		return -EIO;
612 	return 0;
613 }
614 
615 static int queue_folios_hugetlb(pte_t *pte, unsigned long hmask,
616 			       unsigned long addr, unsigned long end,
617 			       struct mm_walk *walk)
618 {
619 #ifdef CONFIG_HUGETLB_PAGE
620 	struct queue_pages *qp = walk->private;
621 	unsigned long flags = qp->flags;
622 	struct folio *folio;
623 	spinlock_t *ptl;
624 	pte_t entry;
625 
626 	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
627 	entry = huge_ptep_get(pte);
628 	if (!pte_present(entry)) {
629 		if (unlikely(is_hugetlb_entry_migration(entry)))
630 			qp->nr_failed++;
631 		goto unlock;
632 	}
633 	folio = pfn_folio(pte_pfn(entry));
634 	if (!queue_folio_required(folio, qp))
635 		goto unlock;
636 	if (!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) ||
637 	    !vma_migratable(walk->vma)) {
638 		qp->nr_failed++;
639 		goto unlock;
640 	}
641 	/*
642 	 * Unless MPOL_MF_MOVE_ALL, we try to avoid migrating a shared folio.
643 	 * Choosing not to migrate a shared folio is not counted as a failure.
644 	 *
645 	 * See folio_likely_mapped_shared() on possible imprecision when we
646 	 * cannot easily detect if a folio is shared.
647 	 */
648 	if ((flags & MPOL_MF_MOVE_ALL) ||
649 	    (!folio_likely_mapped_shared(folio) && !hugetlb_pmd_shared(pte)))
650 		if (!isolate_hugetlb(folio, qp->pagelist))
651 			qp->nr_failed++;
652 unlock:
653 	spin_unlock(ptl);
654 	if (qp->nr_failed && strictly_unmovable(flags))
655 		return -EIO;
656 #endif
657 	return 0;
658 }
659 
660 #ifdef CONFIG_NUMA_BALANCING
661 /*
662  * This is used to mark a range of virtual addresses to be inaccessible.
663  * These are later cleared by a NUMA hinting fault. Depending on these
664  * faults, pages may be migrated for better NUMA placement.
665  *
666  * This is assuming that NUMA faults are handled using PROT_NONE. If
667  * an architecture makes a different choice, it will need further
668  * changes to the core.
669  */
670 unsigned long change_prot_numa(struct vm_area_struct *vma,
671 			unsigned long addr, unsigned long end)
672 {
673 	struct mmu_gather tlb;
674 	long nr_updated;
675 
676 	tlb_gather_mmu(&tlb, vma->vm_mm);
677 
678 	nr_updated = change_protection(&tlb, vma, addr, end, MM_CP_PROT_NUMA);
679 	if (nr_updated > 0)
680 		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
681 
682 	tlb_finish_mmu(&tlb);
683 
684 	return nr_updated;
685 }
686 #endif /* CONFIG_NUMA_BALANCING */
687 
688 static int queue_pages_test_walk(unsigned long start, unsigned long end,
689 				struct mm_walk *walk)
690 {
691 	struct vm_area_struct *next, *vma = walk->vma;
692 	struct queue_pages *qp = walk->private;
693 	unsigned long flags = qp->flags;
694 
695 	/* range check first */
696 	VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma);
697 
698 	if (!qp->first) {
699 		qp->first = vma;
700 		if (!(flags & MPOL_MF_DISCONTIG_OK) &&
701 			(qp->start < vma->vm_start))
702 			/* hole at head side of range */
703 			return -EFAULT;
704 	}
705 	next = find_vma(vma->vm_mm, vma->vm_end);
706 	if (!(flags & MPOL_MF_DISCONTIG_OK) &&
707 		((vma->vm_end < qp->end) &&
708 		(!next || vma->vm_end < next->vm_start)))
709 		/* hole at middle or tail of range */
710 		return -EFAULT;
711 
712 	/*
713 	 * Need check MPOL_MF_STRICT to return -EIO if possible
714 	 * regardless of vma_migratable
715 	 */
716 	if (!vma_migratable(vma) &&
717 	    !(flags & MPOL_MF_STRICT))
718 		return 1;
719 
720 	/*
721 	 * Check page nodes, and queue pages to move, in the current vma.
722 	 * But if no moving, and no strict checking, the scan can be skipped.
723 	 */
724 	if (flags & (MPOL_MF_STRICT | MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
725 		return 0;
726 	return 1;
727 }
728 
729 static const struct mm_walk_ops queue_pages_walk_ops = {
730 	.hugetlb_entry		= queue_folios_hugetlb,
731 	.pmd_entry		= queue_folios_pte_range,
732 	.test_walk		= queue_pages_test_walk,
733 	.walk_lock		= PGWALK_RDLOCK,
734 };
735 
736 static const struct mm_walk_ops queue_pages_lock_vma_walk_ops = {
737 	.hugetlb_entry		= queue_folios_hugetlb,
738 	.pmd_entry		= queue_folios_pte_range,
739 	.test_walk		= queue_pages_test_walk,
740 	.walk_lock		= PGWALK_WRLOCK,
741 };
742 
743 /*
744  * Walk through page tables and collect pages to be migrated.
745  *
746  * If pages found in a given range are not on the required set of @nodes,
747  * and migration is allowed, they are isolated and queued to @pagelist.
748  *
749  * queue_pages_range() may return:
750  * 0 - all pages already on the right node, or successfully queued for moving
751  *     (or neither strict checking nor moving requested: only range checking).
752  * >0 - this number of misplaced folios could not be queued for moving
753  *      (a hugetlbfs page or a transparent huge page being counted as 1).
754  * -EIO - a misplaced page found, when MPOL_MF_STRICT specified without MOVEs.
755  * -EFAULT - a hole in the memory range, when MPOL_MF_DISCONTIG_OK unspecified.
756  */
757 static long
758 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
759 		nodemask_t *nodes, unsigned long flags,
760 		struct list_head *pagelist)
761 {
762 	int err;
763 	struct queue_pages qp = {
764 		.pagelist = pagelist,
765 		.flags = flags,
766 		.nmask = nodes,
767 		.start = start,
768 		.end = end,
769 		.first = NULL,
770 	};
771 	const struct mm_walk_ops *ops = (flags & MPOL_MF_WRLOCK) ?
772 			&queue_pages_lock_vma_walk_ops : &queue_pages_walk_ops;
773 
774 	err = walk_page_range(mm, start, end, ops, &qp);
775 
776 	if (!qp.first)
777 		/* whole range in hole */
778 		err = -EFAULT;
779 
780 	return err ? : qp.nr_failed;
781 }
782 
783 /*
784  * Apply policy to a single VMA
785  * This must be called with the mmap_lock held for writing.
786  */
787 static int vma_replace_policy(struct vm_area_struct *vma,
788 				struct mempolicy *pol)
789 {
790 	int err;
791 	struct mempolicy *old;
792 	struct mempolicy *new;
793 
794 	vma_assert_write_locked(vma);
795 
796 	new = mpol_dup(pol);
797 	if (IS_ERR(new))
798 		return PTR_ERR(new);
799 
800 	if (vma->vm_ops && vma->vm_ops->set_policy) {
801 		err = vma->vm_ops->set_policy(vma, new);
802 		if (err)
803 			goto err_out;
804 	}
805 
806 	old = vma->vm_policy;
807 	vma->vm_policy = new; /* protected by mmap_lock */
808 	mpol_put(old);
809 
810 	return 0;
811  err_out:
812 	mpol_put(new);
813 	return err;
814 }
815 
816 /* Split or merge the VMA (if required) and apply the new policy */
817 static int mbind_range(struct vma_iterator *vmi, struct vm_area_struct *vma,
818 		struct vm_area_struct **prev, unsigned long start,
819 		unsigned long end, struct mempolicy *new_pol)
820 {
821 	unsigned long vmstart, vmend;
822 
823 	vmend = min(end, vma->vm_end);
824 	if (start > vma->vm_start) {
825 		*prev = vma;
826 		vmstart = start;
827 	} else {
828 		vmstart = vma->vm_start;
829 	}
830 
831 	if (mpol_equal(vma->vm_policy, new_pol)) {
832 		*prev = vma;
833 		return 0;
834 	}
835 
836 	vma =  vma_modify_policy(vmi, *prev, vma, vmstart, vmend, new_pol);
837 	if (IS_ERR(vma))
838 		return PTR_ERR(vma);
839 
840 	*prev = vma;
841 	return vma_replace_policy(vma, new_pol);
842 }
843 
844 /* Set the process memory policy */
845 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
846 			     nodemask_t *nodes)
847 {
848 	struct mempolicy *new, *old;
849 	NODEMASK_SCRATCH(scratch);
850 	int ret;
851 
852 	if (!scratch)
853 		return -ENOMEM;
854 
855 	new = mpol_new(mode, flags, nodes);
856 	if (IS_ERR(new)) {
857 		ret = PTR_ERR(new);
858 		goto out;
859 	}
860 
861 	task_lock(current);
862 	ret = mpol_set_nodemask(new, nodes, scratch);
863 	if (ret) {
864 		task_unlock(current);
865 		mpol_put(new);
866 		goto out;
867 	}
868 
869 	old = current->mempolicy;
870 	current->mempolicy = new;
871 	if (new && (new->mode == MPOL_INTERLEAVE ||
872 		    new->mode == MPOL_WEIGHTED_INTERLEAVE)) {
873 		current->il_prev = MAX_NUMNODES-1;
874 		current->il_weight = 0;
875 	}
876 	task_unlock(current);
877 	mpol_put(old);
878 	ret = 0;
879 out:
880 	NODEMASK_SCRATCH_FREE(scratch);
881 	return ret;
882 }
883 
884 /*
885  * Return nodemask for policy for get_mempolicy() query
886  *
887  * Called with task's alloc_lock held
888  */
889 static void get_policy_nodemask(struct mempolicy *pol, nodemask_t *nodes)
890 {
891 	nodes_clear(*nodes);
892 	if (pol == &default_policy)
893 		return;
894 
895 	switch (pol->mode) {
896 	case MPOL_BIND:
897 	case MPOL_INTERLEAVE:
898 	case MPOL_PREFERRED:
899 	case MPOL_PREFERRED_MANY:
900 	case MPOL_WEIGHTED_INTERLEAVE:
901 		*nodes = pol->nodes;
902 		break;
903 	case MPOL_LOCAL:
904 		/* return empty node mask for local allocation */
905 		break;
906 	default:
907 		BUG();
908 	}
909 }
910 
911 static int lookup_node(struct mm_struct *mm, unsigned long addr)
912 {
913 	struct page *p = NULL;
914 	int ret;
915 
916 	ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p);
917 	if (ret > 0) {
918 		ret = page_to_nid(p);
919 		put_page(p);
920 	}
921 	return ret;
922 }
923 
924 /* Retrieve NUMA policy */
925 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
926 			     unsigned long addr, unsigned long flags)
927 {
928 	int err;
929 	struct mm_struct *mm = current->mm;
930 	struct vm_area_struct *vma = NULL;
931 	struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
932 
933 	if (flags &
934 		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
935 		return -EINVAL;
936 
937 	if (flags & MPOL_F_MEMS_ALLOWED) {
938 		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
939 			return -EINVAL;
940 		*policy = 0;	/* just so it's initialized */
941 		task_lock(current);
942 		*nmask  = cpuset_current_mems_allowed;
943 		task_unlock(current);
944 		return 0;
945 	}
946 
947 	if (flags & MPOL_F_ADDR) {
948 		pgoff_t ilx;		/* ignored here */
949 		/*
950 		 * Do NOT fall back to task policy if the
951 		 * vma/shared policy at addr is NULL.  We
952 		 * want to return MPOL_DEFAULT in this case.
953 		 */
954 		mmap_read_lock(mm);
955 		vma = vma_lookup(mm, addr);
956 		if (!vma) {
957 			mmap_read_unlock(mm);
958 			return -EFAULT;
959 		}
960 		pol = __get_vma_policy(vma, addr, &ilx);
961 	} else if (addr)
962 		return -EINVAL;
963 
964 	if (!pol)
965 		pol = &default_policy;	/* indicates default behavior */
966 
967 	if (flags & MPOL_F_NODE) {
968 		if (flags & MPOL_F_ADDR) {
969 			/*
970 			 * Take a refcount on the mpol, because we are about to
971 			 * drop the mmap_lock, after which only "pol" remains
972 			 * valid, "vma" is stale.
973 			 */
974 			pol_refcount = pol;
975 			vma = NULL;
976 			mpol_get(pol);
977 			mmap_read_unlock(mm);
978 			err = lookup_node(mm, addr);
979 			if (err < 0)
980 				goto out;
981 			*policy = err;
982 		} else if (pol == current->mempolicy &&
983 				pol->mode == MPOL_INTERLEAVE) {
984 			*policy = next_node_in(current->il_prev, pol->nodes);
985 		} else if (pol == current->mempolicy &&
986 				pol->mode == MPOL_WEIGHTED_INTERLEAVE) {
987 			if (current->il_weight)
988 				*policy = current->il_prev;
989 			else
990 				*policy = next_node_in(current->il_prev,
991 						       pol->nodes);
992 		} else {
993 			err = -EINVAL;
994 			goto out;
995 		}
996 	} else {
997 		*policy = pol == &default_policy ? MPOL_DEFAULT :
998 						pol->mode;
999 		/*
1000 		 * Internal mempolicy flags must be masked off before exposing
1001 		 * the policy to userspace.
1002 		 */
1003 		*policy |= (pol->flags & MPOL_MODE_FLAGS);
1004 	}
1005 
1006 	err = 0;
1007 	if (nmask) {
1008 		if (mpol_store_user_nodemask(pol)) {
1009 			*nmask = pol->w.user_nodemask;
1010 		} else {
1011 			task_lock(current);
1012 			get_policy_nodemask(pol, nmask);
1013 			task_unlock(current);
1014 		}
1015 	}
1016 
1017  out:
1018 	mpol_cond_put(pol);
1019 	if (vma)
1020 		mmap_read_unlock(mm);
1021 	if (pol_refcount)
1022 		mpol_put(pol_refcount);
1023 	return err;
1024 }
1025 
1026 #ifdef CONFIG_MIGRATION
1027 static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist,
1028 				unsigned long flags)
1029 {
1030 	/*
1031 	 * Unless MPOL_MF_MOVE_ALL, we try to avoid migrating a shared folio.
1032 	 * Choosing not to migrate a shared folio is not counted as a failure.
1033 	 *
1034 	 * See folio_likely_mapped_shared() on possible imprecision when we
1035 	 * cannot easily detect if a folio is shared.
1036 	 */
1037 	if ((flags & MPOL_MF_MOVE_ALL) || !folio_likely_mapped_shared(folio)) {
1038 		if (folio_isolate_lru(folio)) {
1039 			list_add_tail(&folio->lru, foliolist);
1040 			node_stat_mod_folio(folio,
1041 				NR_ISOLATED_ANON + folio_is_file_lru(folio),
1042 				folio_nr_pages(folio));
1043 		} else {
1044 			/*
1045 			 * Non-movable folio may reach here.  And, there may be
1046 			 * temporary off LRU folios or non-LRU movable folios.
1047 			 * Treat them as unmovable folios since they can't be
1048 			 * isolated, so they can't be moved at the moment.
1049 			 */
1050 			return false;
1051 		}
1052 	}
1053 	return true;
1054 }
1055 
1056 /*
1057  * Migrate pages from one node to a target node.
1058  * Returns error or the number of pages not migrated.
1059  */
1060 static long migrate_to_node(struct mm_struct *mm, int source, int dest,
1061 			    int flags)
1062 {
1063 	nodemask_t nmask;
1064 	struct vm_area_struct *vma;
1065 	LIST_HEAD(pagelist);
1066 	long nr_failed;
1067 	long err = 0;
1068 	struct migration_target_control mtc = {
1069 		.nid = dest,
1070 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1071 		.reason = MR_SYSCALL,
1072 	};
1073 
1074 	nodes_clear(nmask);
1075 	node_set(source, nmask);
1076 
1077 	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1078 
1079 	mmap_read_lock(mm);
1080 	vma = find_vma(mm, 0);
1081 
1082 	/*
1083 	 * This does not migrate the range, but isolates all pages that
1084 	 * need migration.  Between passing in the full user address
1085 	 * space range and MPOL_MF_DISCONTIG_OK, this call cannot fail,
1086 	 * but passes back the count of pages which could not be isolated.
1087 	 */
1088 	nr_failed = queue_pages_range(mm, vma->vm_start, mm->task_size, &nmask,
1089 				      flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1090 	mmap_read_unlock(mm);
1091 
1092 	if (!list_empty(&pagelist)) {
1093 		err = migrate_pages(&pagelist, alloc_migration_target, NULL,
1094 			(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1095 		if (err)
1096 			putback_movable_pages(&pagelist);
1097 	}
1098 
1099 	if (err >= 0)
1100 		err += nr_failed;
1101 	return err;
1102 }
1103 
1104 /*
1105  * Move pages between the two nodesets so as to preserve the physical
1106  * layout as much as possible.
1107  *
1108  * Returns the number of page that could not be moved.
1109  */
1110 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1111 		     const nodemask_t *to, int flags)
1112 {
1113 	long nr_failed = 0;
1114 	long err = 0;
1115 	nodemask_t tmp;
1116 
1117 	lru_cache_disable();
1118 
1119 	/*
1120 	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1121 	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1122 	 * bit in 'tmp', and return that <source, dest> pair for migration.
1123 	 * The pair of nodemasks 'to' and 'from' define the map.
1124 	 *
1125 	 * If no pair of bits is found that way, fallback to picking some
1126 	 * pair of 'source' and 'dest' bits that are not the same.  If the
1127 	 * 'source' and 'dest' bits are the same, this represents a node
1128 	 * that will be migrating to itself, so no pages need move.
1129 	 *
1130 	 * If no bits are left in 'tmp', or if all remaining bits left
1131 	 * in 'tmp' correspond to the same bit in 'to', return false
1132 	 * (nothing left to migrate).
1133 	 *
1134 	 * This lets us pick a pair of nodes to migrate between, such that
1135 	 * if possible the dest node is not already occupied by some other
1136 	 * source node, minimizing the risk of overloading the memory on a
1137 	 * node that would happen if we migrated incoming memory to a node
1138 	 * before migrating outgoing memory source that same node.
1139 	 *
1140 	 * A single scan of tmp is sufficient.  As we go, we remember the
1141 	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1142 	 * that not only moved, but what's better, moved to an empty slot
1143 	 * (d is not set in tmp), then we break out then, with that pair.
1144 	 * Otherwise when we finish scanning from_tmp, we at least have the
1145 	 * most recent <s, d> pair that moved.  If we get all the way through
1146 	 * the scan of tmp without finding any node that moved, much less
1147 	 * moved to an empty node, then there is nothing left worth migrating.
1148 	 */
1149 
1150 	tmp = *from;
1151 	while (!nodes_empty(tmp)) {
1152 		int s, d;
1153 		int source = NUMA_NO_NODE;
1154 		int dest = 0;
1155 
1156 		for_each_node_mask(s, tmp) {
1157 
1158 			/*
1159 			 * do_migrate_pages() tries to maintain the relative
1160 			 * node relationship of the pages established between
1161 			 * threads and memory areas.
1162                          *
1163 			 * However if the number of source nodes is not equal to
1164 			 * the number of destination nodes we can not preserve
1165 			 * this node relative relationship.  In that case, skip
1166 			 * copying memory from a node that is in the destination
1167 			 * mask.
1168 			 *
1169 			 * Example: [2,3,4] -> [3,4,5] moves everything.
1170 			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1171 			 */
1172 
1173 			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1174 						(node_isset(s, *to)))
1175 				continue;
1176 
1177 			d = node_remap(s, *from, *to);
1178 			if (s == d)
1179 				continue;
1180 
1181 			source = s;	/* Node moved. Memorize */
1182 			dest = d;
1183 
1184 			/* dest not in remaining from nodes? */
1185 			if (!node_isset(dest, tmp))
1186 				break;
1187 		}
1188 		if (source == NUMA_NO_NODE)
1189 			break;
1190 
1191 		node_clear(source, tmp);
1192 		err = migrate_to_node(mm, source, dest, flags);
1193 		if (err > 0)
1194 			nr_failed += err;
1195 		if (err < 0)
1196 			break;
1197 	}
1198 
1199 	lru_cache_enable();
1200 	if (err < 0)
1201 		return err;
1202 	return (nr_failed < INT_MAX) ? nr_failed : INT_MAX;
1203 }
1204 
1205 /*
1206  * Allocate a new folio for page migration, according to NUMA mempolicy.
1207  */
1208 static struct folio *alloc_migration_target_by_mpol(struct folio *src,
1209 						    unsigned long private)
1210 {
1211 	struct migration_mpol *mmpol = (struct migration_mpol *)private;
1212 	struct mempolicy *pol = mmpol->pol;
1213 	pgoff_t ilx = mmpol->ilx;
1214 	struct page *page;
1215 	unsigned int order;
1216 	int nid = numa_node_id();
1217 	gfp_t gfp;
1218 
1219 	order = folio_order(src);
1220 	ilx += src->index >> order;
1221 
1222 	if (folio_test_hugetlb(src)) {
1223 		nodemask_t *nodemask;
1224 		struct hstate *h;
1225 
1226 		h = folio_hstate(src);
1227 		gfp = htlb_alloc_mask(h);
1228 		nodemask = policy_nodemask(gfp, pol, ilx, &nid);
1229 		return alloc_hugetlb_folio_nodemask(h, nid, nodemask, gfp,
1230 				htlb_allow_alloc_fallback(MR_MEMPOLICY_MBIND));
1231 	}
1232 
1233 	if (folio_test_large(src))
1234 		gfp = GFP_TRANSHUGE;
1235 	else
1236 		gfp = GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL | __GFP_COMP;
1237 
1238 	page = alloc_pages_mpol(gfp, order, pol, ilx, nid);
1239 	return page_rmappable_folio(page);
1240 }
1241 #else
1242 
1243 static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist,
1244 				unsigned long flags)
1245 {
1246 	return false;
1247 }
1248 
1249 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1250 		     const nodemask_t *to, int flags)
1251 {
1252 	return -ENOSYS;
1253 }
1254 
1255 static struct folio *alloc_migration_target_by_mpol(struct folio *src,
1256 						    unsigned long private)
1257 {
1258 	return NULL;
1259 }
1260 #endif
1261 
1262 static long do_mbind(unsigned long start, unsigned long len,
1263 		     unsigned short mode, unsigned short mode_flags,
1264 		     nodemask_t *nmask, unsigned long flags)
1265 {
1266 	struct mm_struct *mm = current->mm;
1267 	struct vm_area_struct *vma, *prev;
1268 	struct vma_iterator vmi;
1269 	struct migration_mpol mmpol;
1270 	struct mempolicy *new;
1271 	unsigned long end;
1272 	long err;
1273 	long nr_failed;
1274 	LIST_HEAD(pagelist);
1275 
1276 	if (flags & ~(unsigned long)MPOL_MF_VALID)
1277 		return -EINVAL;
1278 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1279 		return -EPERM;
1280 
1281 	if (start & ~PAGE_MASK)
1282 		return -EINVAL;
1283 
1284 	if (mode == MPOL_DEFAULT)
1285 		flags &= ~MPOL_MF_STRICT;
1286 
1287 	len = PAGE_ALIGN(len);
1288 	end = start + len;
1289 
1290 	if (end < start)
1291 		return -EINVAL;
1292 	if (end == start)
1293 		return 0;
1294 
1295 	new = mpol_new(mode, mode_flags, nmask);
1296 	if (IS_ERR(new))
1297 		return PTR_ERR(new);
1298 
1299 	/*
1300 	 * If we are using the default policy then operation
1301 	 * on discontinuous address spaces is okay after all
1302 	 */
1303 	if (!new)
1304 		flags |= MPOL_MF_DISCONTIG_OK;
1305 
1306 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1307 		lru_cache_disable();
1308 	{
1309 		NODEMASK_SCRATCH(scratch);
1310 		if (scratch) {
1311 			mmap_write_lock(mm);
1312 			err = mpol_set_nodemask(new, nmask, scratch);
1313 			if (err)
1314 				mmap_write_unlock(mm);
1315 		} else
1316 			err = -ENOMEM;
1317 		NODEMASK_SCRATCH_FREE(scratch);
1318 	}
1319 	if (err)
1320 		goto mpol_out;
1321 
1322 	/*
1323 	 * Lock the VMAs before scanning for pages to migrate,
1324 	 * to ensure we don't miss a concurrently inserted page.
1325 	 */
1326 	nr_failed = queue_pages_range(mm, start, end, nmask,
1327 			flags | MPOL_MF_INVERT | MPOL_MF_WRLOCK, &pagelist);
1328 
1329 	if (nr_failed < 0) {
1330 		err = nr_failed;
1331 		nr_failed = 0;
1332 	} else {
1333 		vma_iter_init(&vmi, mm, start);
1334 		prev = vma_prev(&vmi);
1335 		for_each_vma_range(vmi, vma, end) {
1336 			err = mbind_range(&vmi, vma, &prev, start, end, new);
1337 			if (err)
1338 				break;
1339 		}
1340 	}
1341 
1342 	if (!err && !list_empty(&pagelist)) {
1343 		/* Convert MPOL_DEFAULT's NULL to task or default policy */
1344 		if (!new) {
1345 			new = get_task_policy(current);
1346 			mpol_get(new);
1347 		}
1348 		mmpol.pol = new;
1349 		mmpol.ilx = 0;
1350 
1351 		/*
1352 		 * In the interleaved case, attempt to allocate on exactly the
1353 		 * targeted nodes, for the first VMA to be migrated; for later
1354 		 * VMAs, the nodes will still be interleaved from the targeted
1355 		 * nodemask, but one by one may be selected differently.
1356 		 */
1357 		if (new->mode == MPOL_INTERLEAVE ||
1358 		    new->mode == MPOL_WEIGHTED_INTERLEAVE) {
1359 			struct folio *folio;
1360 			unsigned int order;
1361 			unsigned long addr = -EFAULT;
1362 
1363 			list_for_each_entry(folio, &pagelist, lru) {
1364 				if (!folio_test_ksm(folio))
1365 					break;
1366 			}
1367 			if (!list_entry_is_head(folio, &pagelist, lru)) {
1368 				vma_iter_init(&vmi, mm, start);
1369 				for_each_vma_range(vmi, vma, end) {
1370 					addr = page_address_in_vma(
1371 						folio_page(folio, 0), vma);
1372 					if (addr != -EFAULT)
1373 						break;
1374 				}
1375 			}
1376 			if (addr != -EFAULT) {
1377 				order = folio_order(folio);
1378 				/* We already know the pol, but not the ilx */
1379 				mpol_cond_put(get_vma_policy(vma, addr, order,
1380 							     &mmpol.ilx));
1381 				/* Set base from which to increment by index */
1382 				mmpol.ilx -= folio->index >> order;
1383 			}
1384 		}
1385 	}
1386 
1387 	mmap_write_unlock(mm);
1388 
1389 	if (!err && !list_empty(&pagelist)) {
1390 		nr_failed |= migrate_pages(&pagelist,
1391 				alloc_migration_target_by_mpol, NULL,
1392 				(unsigned long)&mmpol, MIGRATE_SYNC,
1393 				MR_MEMPOLICY_MBIND, NULL);
1394 	}
1395 
1396 	if (nr_failed && (flags & MPOL_MF_STRICT))
1397 		err = -EIO;
1398 	if (!list_empty(&pagelist))
1399 		putback_movable_pages(&pagelist);
1400 mpol_out:
1401 	mpol_put(new);
1402 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1403 		lru_cache_enable();
1404 	return err;
1405 }
1406 
1407 /*
1408  * User space interface with variable sized bitmaps for nodelists.
1409  */
1410 static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask,
1411 		      unsigned long maxnode)
1412 {
1413 	unsigned long nlongs = BITS_TO_LONGS(maxnode);
1414 	int ret;
1415 
1416 	if (in_compat_syscall())
1417 		ret = compat_get_bitmap(mask,
1418 					(const compat_ulong_t __user *)nmask,
1419 					maxnode);
1420 	else
1421 		ret = copy_from_user(mask, nmask,
1422 				     nlongs * sizeof(unsigned long));
1423 
1424 	if (ret)
1425 		return -EFAULT;
1426 
1427 	if (maxnode % BITS_PER_LONG)
1428 		mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1;
1429 
1430 	return 0;
1431 }
1432 
1433 /* Copy a node mask from user space. */
1434 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1435 		     unsigned long maxnode)
1436 {
1437 	--maxnode;
1438 	nodes_clear(*nodes);
1439 	if (maxnode == 0 || !nmask)
1440 		return 0;
1441 	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1442 		return -EINVAL;
1443 
1444 	/*
1445 	 * When the user specified more nodes than supported just check
1446 	 * if the non supported part is all zero, one word at a time,
1447 	 * starting at the end.
1448 	 */
1449 	while (maxnode > MAX_NUMNODES) {
1450 		unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG);
1451 		unsigned long t;
1452 
1453 		if (get_bitmap(&t, &nmask[(maxnode - 1) / BITS_PER_LONG], bits))
1454 			return -EFAULT;
1455 
1456 		if (maxnode - bits >= MAX_NUMNODES) {
1457 			maxnode -= bits;
1458 		} else {
1459 			maxnode = MAX_NUMNODES;
1460 			t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1461 		}
1462 		if (t)
1463 			return -EINVAL;
1464 	}
1465 
1466 	return get_bitmap(nodes_addr(*nodes), nmask, maxnode);
1467 }
1468 
1469 /* Copy a kernel node mask to user space */
1470 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1471 			      nodemask_t *nodes)
1472 {
1473 	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1474 	unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1475 	bool compat = in_compat_syscall();
1476 
1477 	if (compat)
1478 		nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t);
1479 
1480 	if (copy > nbytes) {
1481 		if (copy > PAGE_SIZE)
1482 			return -EINVAL;
1483 		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1484 			return -EFAULT;
1485 		copy = nbytes;
1486 		maxnode = nr_node_ids;
1487 	}
1488 
1489 	if (compat)
1490 		return compat_put_bitmap((compat_ulong_t __user *)mask,
1491 					 nodes_addr(*nodes), maxnode);
1492 
1493 	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1494 }
1495 
1496 /* Basic parameter sanity check used by both mbind() and set_mempolicy() */
1497 static inline int sanitize_mpol_flags(int *mode, unsigned short *flags)
1498 {
1499 	*flags = *mode & MPOL_MODE_FLAGS;
1500 	*mode &= ~MPOL_MODE_FLAGS;
1501 
1502 	if ((unsigned int)(*mode) >=  MPOL_MAX)
1503 		return -EINVAL;
1504 	if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES))
1505 		return -EINVAL;
1506 	if (*flags & MPOL_F_NUMA_BALANCING) {
1507 		if (*mode == MPOL_BIND || *mode == MPOL_PREFERRED_MANY)
1508 			*flags |= (MPOL_F_MOF | MPOL_F_MORON);
1509 		else
1510 			return -EINVAL;
1511 	}
1512 	return 0;
1513 }
1514 
1515 static long kernel_mbind(unsigned long start, unsigned long len,
1516 			 unsigned long mode, const unsigned long __user *nmask,
1517 			 unsigned long maxnode, unsigned int flags)
1518 {
1519 	unsigned short mode_flags;
1520 	nodemask_t nodes;
1521 	int lmode = mode;
1522 	int err;
1523 
1524 	start = untagged_addr(start);
1525 	err = sanitize_mpol_flags(&lmode, &mode_flags);
1526 	if (err)
1527 		return err;
1528 
1529 	err = get_nodes(&nodes, nmask, maxnode);
1530 	if (err)
1531 		return err;
1532 
1533 	return do_mbind(start, len, lmode, mode_flags, &nodes, flags);
1534 }
1535 
1536 SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len,
1537 		unsigned long, home_node, unsigned long, flags)
1538 {
1539 	struct mm_struct *mm = current->mm;
1540 	struct vm_area_struct *vma, *prev;
1541 	struct mempolicy *new, *old;
1542 	unsigned long end;
1543 	int err = -ENOENT;
1544 	VMA_ITERATOR(vmi, mm, start);
1545 
1546 	start = untagged_addr(start);
1547 	if (start & ~PAGE_MASK)
1548 		return -EINVAL;
1549 	/*
1550 	 * flags is used for future extension if any.
1551 	 */
1552 	if (flags != 0)
1553 		return -EINVAL;
1554 
1555 	/*
1556 	 * Check home_node is online to avoid accessing uninitialized
1557 	 * NODE_DATA.
1558 	 */
1559 	if (home_node >= MAX_NUMNODES || !node_online(home_node))
1560 		return -EINVAL;
1561 
1562 	len = PAGE_ALIGN(len);
1563 	end = start + len;
1564 
1565 	if (end < start)
1566 		return -EINVAL;
1567 	if (end == start)
1568 		return 0;
1569 	mmap_write_lock(mm);
1570 	prev = vma_prev(&vmi);
1571 	for_each_vma_range(vmi, vma, end) {
1572 		/*
1573 		 * If any vma in the range got policy other than MPOL_BIND
1574 		 * or MPOL_PREFERRED_MANY we return error. We don't reset
1575 		 * the home node for vmas we already updated before.
1576 		 */
1577 		old = vma_policy(vma);
1578 		if (!old) {
1579 			prev = vma;
1580 			continue;
1581 		}
1582 		if (old->mode != MPOL_BIND && old->mode != MPOL_PREFERRED_MANY) {
1583 			err = -EOPNOTSUPP;
1584 			break;
1585 		}
1586 		new = mpol_dup(old);
1587 		if (IS_ERR(new)) {
1588 			err = PTR_ERR(new);
1589 			break;
1590 		}
1591 
1592 		vma_start_write(vma);
1593 		new->home_node = home_node;
1594 		err = mbind_range(&vmi, vma, &prev, start, end, new);
1595 		mpol_put(new);
1596 		if (err)
1597 			break;
1598 	}
1599 	mmap_write_unlock(mm);
1600 	return err;
1601 }
1602 
1603 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1604 		unsigned long, mode, const unsigned long __user *, nmask,
1605 		unsigned long, maxnode, unsigned int, flags)
1606 {
1607 	return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1608 }
1609 
1610 /* Set the process memory policy */
1611 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1612 				 unsigned long maxnode)
1613 {
1614 	unsigned short mode_flags;
1615 	nodemask_t nodes;
1616 	int lmode = mode;
1617 	int err;
1618 
1619 	err = sanitize_mpol_flags(&lmode, &mode_flags);
1620 	if (err)
1621 		return err;
1622 
1623 	err = get_nodes(&nodes, nmask, maxnode);
1624 	if (err)
1625 		return err;
1626 
1627 	return do_set_mempolicy(lmode, mode_flags, &nodes);
1628 }
1629 
1630 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1631 		unsigned long, maxnode)
1632 {
1633 	return kernel_set_mempolicy(mode, nmask, maxnode);
1634 }
1635 
1636 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1637 				const unsigned long __user *old_nodes,
1638 				const unsigned long __user *new_nodes)
1639 {
1640 	struct mm_struct *mm = NULL;
1641 	struct task_struct *task;
1642 	nodemask_t task_nodes;
1643 	int err;
1644 	nodemask_t *old;
1645 	nodemask_t *new;
1646 	NODEMASK_SCRATCH(scratch);
1647 
1648 	if (!scratch)
1649 		return -ENOMEM;
1650 
1651 	old = &scratch->mask1;
1652 	new = &scratch->mask2;
1653 
1654 	err = get_nodes(old, old_nodes, maxnode);
1655 	if (err)
1656 		goto out;
1657 
1658 	err = get_nodes(new, new_nodes, maxnode);
1659 	if (err)
1660 		goto out;
1661 
1662 	/* Find the mm_struct */
1663 	rcu_read_lock();
1664 	task = pid ? find_task_by_vpid(pid) : current;
1665 	if (!task) {
1666 		rcu_read_unlock();
1667 		err = -ESRCH;
1668 		goto out;
1669 	}
1670 	get_task_struct(task);
1671 
1672 	err = -EINVAL;
1673 
1674 	/*
1675 	 * Check if this process has the right to modify the specified process.
1676 	 * Use the regular "ptrace_may_access()" checks.
1677 	 */
1678 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1679 		rcu_read_unlock();
1680 		err = -EPERM;
1681 		goto out_put;
1682 	}
1683 	rcu_read_unlock();
1684 
1685 	task_nodes = cpuset_mems_allowed(task);
1686 	/* Is the user allowed to access the target nodes? */
1687 	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1688 		err = -EPERM;
1689 		goto out_put;
1690 	}
1691 
1692 	task_nodes = cpuset_mems_allowed(current);
1693 	nodes_and(*new, *new, task_nodes);
1694 	if (nodes_empty(*new))
1695 		goto out_put;
1696 
1697 	err = security_task_movememory(task);
1698 	if (err)
1699 		goto out_put;
1700 
1701 	mm = get_task_mm(task);
1702 	put_task_struct(task);
1703 
1704 	if (!mm) {
1705 		err = -EINVAL;
1706 		goto out;
1707 	}
1708 
1709 	err = do_migrate_pages(mm, old, new,
1710 		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1711 
1712 	mmput(mm);
1713 out:
1714 	NODEMASK_SCRATCH_FREE(scratch);
1715 
1716 	return err;
1717 
1718 out_put:
1719 	put_task_struct(task);
1720 	goto out;
1721 }
1722 
1723 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1724 		const unsigned long __user *, old_nodes,
1725 		const unsigned long __user *, new_nodes)
1726 {
1727 	return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1728 }
1729 
1730 /* Retrieve NUMA policy */
1731 static int kernel_get_mempolicy(int __user *policy,
1732 				unsigned long __user *nmask,
1733 				unsigned long maxnode,
1734 				unsigned long addr,
1735 				unsigned long flags)
1736 {
1737 	int err;
1738 	int pval;
1739 	nodemask_t nodes;
1740 
1741 	if (nmask != NULL && maxnode < nr_node_ids)
1742 		return -EINVAL;
1743 
1744 	addr = untagged_addr(addr);
1745 
1746 	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1747 
1748 	if (err)
1749 		return err;
1750 
1751 	if (policy && put_user(pval, policy))
1752 		return -EFAULT;
1753 
1754 	if (nmask)
1755 		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1756 
1757 	return err;
1758 }
1759 
1760 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1761 		unsigned long __user *, nmask, unsigned long, maxnode,
1762 		unsigned long, addr, unsigned long, flags)
1763 {
1764 	return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1765 }
1766 
1767 bool vma_migratable(struct vm_area_struct *vma)
1768 {
1769 	if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1770 		return false;
1771 
1772 	/*
1773 	 * DAX device mappings require predictable access latency, so avoid
1774 	 * incurring periodic faults.
1775 	 */
1776 	if (vma_is_dax(vma))
1777 		return false;
1778 
1779 	if (is_vm_hugetlb_page(vma) &&
1780 		!hugepage_migration_supported(hstate_vma(vma)))
1781 		return false;
1782 
1783 	/*
1784 	 * Migration allocates pages in the highest zone. If we cannot
1785 	 * do so then migration (at least from node to node) is not
1786 	 * possible.
1787 	 */
1788 	if (vma->vm_file &&
1789 		gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1790 			< policy_zone)
1791 		return false;
1792 	return true;
1793 }
1794 
1795 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1796 				   unsigned long addr, pgoff_t *ilx)
1797 {
1798 	*ilx = 0;
1799 	return (vma->vm_ops && vma->vm_ops->get_policy) ?
1800 		vma->vm_ops->get_policy(vma, addr, ilx) : vma->vm_policy;
1801 }
1802 
1803 /*
1804  * get_vma_policy(@vma, @addr, @order, @ilx)
1805  * @vma: virtual memory area whose policy is sought
1806  * @addr: address in @vma for shared policy lookup
1807  * @order: 0, or appropriate huge_page_order for interleaving
1808  * @ilx: interleave index (output), for use only when MPOL_INTERLEAVE or
1809  *       MPOL_WEIGHTED_INTERLEAVE
1810  *
1811  * Returns effective policy for a VMA at specified address.
1812  * Falls back to current->mempolicy or system default policy, as necessary.
1813  * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1814  * count--added by the get_policy() vm_op, as appropriate--to protect against
1815  * freeing by another task.  It is the caller's responsibility to free the
1816  * extra reference for shared policies.
1817  */
1818 struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1819 				 unsigned long addr, int order, pgoff_t *ilx)
1820 {
1821 	struct mempolicy *pol;
1822 
1823 	pol = __get_vma_policy(vma, addr, ilx);
1824 	if (!pol)
1825 		pol = get_task_policy(current);
1826 	if (pol->mode == MPOL_INTERLEAVE ||
1827 	    pol->mode == MPOL_WEIGHTED_INTERLEAVE) {
1828 		*ilx += vma->vm_pgoff >> order;
1829 		*ilx += (addr - vma->vm_start) >> (PAGE_SHIFT + order);
1830 	}
1831 	return pol;
1832 }
1833 
1834 bool vma_policy_mof(struct vm_area_struct *vma)
1835 {
1836 	struct mempolicy *pol;
1837 
1838 	if (vma->vm_ops && vma->vm_ops->get_policy) {
1839 		bool ret = false;
1840 		pgoff_t ilx;		/* ignored here */
1841 
1842 		pol = vma->vm_ops->get_policy(vma, vma->vm_start, &ilx);
1843 		if (pol && (pol->flags & MPOL_F_MOF))
1844 			ret = true;
1845 		mpol_cond_put(pol);
1846 
1847 		return ret;
1848 	}
1849 
1850 	pol = vma->vm_policy;
1851 	if (!pol)
1852 		pol = get_task_policy(current);
1853 
1854 	return pol->flags & MPOL_F_MOF;
1855 }
1856 
1857 bool apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1858 {
1859 	enum zone_type dynamic_policy_zone = policy_zone;
1860 
1861 	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1862 
1863 	/*
1864 	 * if policy->nodes has movable memory only,
1865 	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1866 	 *
1867 	 * policy->nodes is intersect with node_states[N_MEMORY].
1868 	 * so if the following test fails, it implies
1869 	 * policy->nodes has movable memory only.
1870 	 */
1871 	if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY]))
1872 		dynamic_policy_zone = ZONE_MOVABLE;
1873 
1874 	return zone >= dynamic_policy_zone;
1875 }
1876 
1877 static unsigned int weighted_interleave_nodes(struct mempolicy *policy)
1878 {
1879 	unsigned int node;
1880 	unsigned int cpuset_mems_cookie;
1881 
1882 retry:
1883 	/* to prevent miscount use tsk->mems_allowed_seq to detect rebind */
1884 	cpuset_mems_cookie = read_mems_allowed_begin();
1885 	node = current->il_prev;
1886 	if (!current->il_weight || !node_isset(node, policy->nodes)) {
1887 		node = next_node_in(node, policy->nodes);
1888 		if (read_mems_allowed_retry(cpuset_mems_cookie))
1889 			goto retry;
1890 		if (node == MAX_NUMNODES)
1891 			return node;
1892 		current->il_prev = node;
1893 		current->il_weight = get_il_weight(node);
1894 	}
1895 	current->il_weight--;
1896 	return node;
1897 }
1898 
1899 /* Do dynamic interleaving for a process */
1900 static unsigned int interleave_nodes(struct mempolicy *policy)
1901 {
1902 	unsigned int nid;
1903 	unsigned int cpuset_mems_cookie;
1904 
1905 	/* to prevent miscount, use tsk->mems_allowed_seq to detect rebind */
1906 	do {
1907 		cpuset_mems_cookie = read_mems_allowed_begin();
1908 		nid = next_node_in(current->il_prev, policy->nodes);
1909 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
1910 
1911 	if (nid < MAX_NUMNODES)
1912 		current->il_prev = nid;
1913 	return nid;
1914 }
1915 
1916 /*
1917  * Depending on the memory policy provide a node from which to allocate the
1918  * next slab entry.
1919  */
1920 unsigned int mempolicy_slab_node(void)
1921 {
1922 	struct mempolicy *policy;
1923 	int node = numa_mem_id();
1924 
1925 	if (!in_task())
1926 		return node;
1927 
1928 	policy = current->mempolicy;
1929 	if (!policy)
1930 		return node;
1931 
1932 	switch (policy->mode) {
1933 	case MPOL_PREFERRED:
1934 		return first_node(policy->nodes);
1935 
1936 	case MPOL_INTERLEAVE:
1937 		return interleave_nodes(policy);
1938 
1939 	case MPOL_WEIGHTED_INTERLEAVE:
1940 		return weighted_interleave_nodes(policy);
1941 
1942 	case MPOL_BIND:
1943 	case MPOL_PREFERRED_MANY:
1944 	{
1945 		struct zoneref *z;
1946 
1947 		/*
1948 		 * Follow bind policy behavior and start allocation at the
1949 		 * first node.
1950 		 */
1951 		struct zonelist *zonelist;
1952 		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1953 		zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1954 		z = first_zones_zonelist(zonelist, highest_zoneidx,
1955 							&policy->nodes);
1956 		return z->zone ? zone_to_nid(z->zone) : node;
1957 	}
1958 	case MPOL_LOCAL:
1959 		return node;
1960 
1961 	default:
1962 		BUG();
1963 	}
1964 }
1965 
1966 static unsigned int read_once_policy_nodemask(struct mempolicy *pol,
1967 					      nodemask_t *mask)
1968 {
1969 	/*
1970 	 * barrier stabilizes the nodemask locally so that it can be iterated
1971 	 * over safely without concern for changes. Allocators validate node
1972 	 * selection does not violate mems_allowed, so this is safe.
1973 	 */
1974 	barrier();
1975 	memcpy(mask, &pol->nodes, sizeof(nodemask_t));
1976 	barrier();
1977 	return nodes_weight(*mask);
1978 }
1979 
1980 static unsigned int weighted_interleave_nid(struct mempolicy *pol, pgoff_t ilx)
1981 {
1982 	nodemask_t nodemask;
1983 	unsigned int target, nr_nodes;
1984 	u8 *table;
1985 	unsigned int weight_total = 0;
1986 	u8 weight;
1987 	int nid;
1988 
1989 	nr_nodes = read_once_policy_nodemask(pol, &nodemask);
1990 	if (!nr_nodes)
1991 		return numa_node_id();
1992 
1993 	rcu_read_lock();
1994 	table = rcu_dereference(iw_table);
1995 	/* calculate the total weight */
1996 	for_each_node_mask(nid, nodemask) {
1997 		/* detect system default usage */
1998 		weight = table ? table[nid] : 1;
1999 		weight = weight ? weight : 1;
2000 		weight_total += weight;
2001 	}
2002 
2003 	/* Calculate the node offset based on totals */
2004 	target = ilx % weight_total;
2005 	nid = first_node(nodemask);
2006 	while (target) {
2007 		/* detect system default usage */
2008 		weight = table ? table[nid] : 1;
2009 		weight = weight ? weight : 1;
2010 		if (target < weight)
2011 			break;
2012 		target -= weight;
2013 		nid = next_node_in(nid, nodemask);
2014 	}
2015 	rcu_read_unlock();
2016 	return nid;
2017 }
2018 
2019 /*
2020  * Do static interleaving for interleave index @ilx.  Returns the ilx'th
2021  * node in pol->nodes (starting from ilx=0), wrapping around if ilx
2022  * exceeds the number of present nodes.
2023  */
2024 static unsigned int interleave_nid(struct mempolicy *pol, pgoff_t ilx)
2025 {
2026 	nodemask_t nodemask;
2027 	unsigned int target, nnodes;
2028 	int i;
2029 	int nid;
2030 
2031 	nnodes = read_once_policy_nodemask(pol, &nodemask);
2032 	if (!nnodes)
2033 		return numa_node_id();
2034 	target = ilx % nnodes;
2035 	nid = first_node(nodemask);
2036 	for (i = 0; i < target; i++)
2037 		nid = next_node(nid, nodemask);
2038 	return nid;
2039 }
2040 
2041 /*
2042  * Return a nodemask representing a mempolicy for filtering nodes for
2043  * page allocation, together with preferred node id (or the input node id).
2044  */
2045 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *pol,
2046 				   pgoff_t ilx, int *nid)
2047 {
2048 	nodemask_t *nodemask = NULL;
2049 
2050 	switch (pol->mode) {
2051 	case MPOL_PREFERRED:
2052 		/* Override input node id */
2053 		*nid = first_node(pol->nodes);
2054 		break;
2055 	case MPOL_PREFERRED_MANY:
2056 		nodemask = &pol->nodes;
2057 		if (pol->home_node != NUMA_NO_NODE)
2058 			*nid = pol->home_node;
2059 		break;
2060 	case MPOL_BIND:
2061 		/* Restrict to nodemask (but not on lower zones) */
2062 		if (apply_policy_zone(pol, gfp_zone(gfp)) &&
2063 		    cpuset_nodemask_valid_mems_allowed(&pol->nodes))
2064 			nodemask = &pol->nodes;
2065 		if (pol->home_node != NUMA_NO_NODE)
2066 			*nid = pol->home_node;
2067 		/*
2068 		 * __GFP_THISNODE shouldn't even be used with the bind policy
2069 		 * because we might easily break the expectation to stay on the
2070 		 * requested node and not break the policy.
2071 		 */
2072 		WARN_ON_ONCE(gfp & __GFP_THISNODE);
2073 		break;
2074 	case MPOL_INTERLEAVE:
2075 		/* Override input node id */
2076 		*nid = (ilx == NO_INTERLEAVE_INDEX) ?
2077 			interleave_nodes(pol) : interleave_nid(pol, ilx);
2078 		break;
2079 	case MPOL_WEIGHTED_INTERLEAVE:
2080 		*nid = (ilx == NO_INTERLEAVE_INDEX) ?
2081 			weighted_interleave_nodes(pol) :
2082 			weighted_interleave_nid(pol, ilx);
2083 		break;
2084 	}
2085 
2086 	return nodemask;
2087 }
2088 
2089 #ifdef CONFIG_HUGETLBFS
2090 /*
2091  * huge_node(@vma, @addr, @gfp_flags, @mpol)
2092  * @vma: virtual memory area whose policy is sought
2093  * @addr: address in @vma for shared policy lookup and interleave policy
2094  * @gfp_flags: for requested zone
2095  * @mpol: pointer to mempolicy pointer for reference counted mempolicy
2096  * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy
2097  *
2098  * Returns a nid suitable for a huge page allocation and a pointer
2099  * to the struct mempolicy for conditional unref after allocation.
2100  * If the effective policy is 'bind' or 'prefer-many', returns a pointer
2101  * to the mempolicy's @nodemask for filtering the zonelist.
2102  */
2103 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
2104 		struct mempolicy **mpol, nodemask_t **nodemask)
2105 {
2106 	pgoff_t ilx;
2107 	int nid;
2108 
2109 	nid = numa_node_id();
2110 	*mpol = get_vma_policy(vma, addr, hstate_vma(vma)->order, &ilx);
2111 	*nodemask = policy_nodemask(gfp_flags, *mpol, ilx, &nid);
2112 	return nid;
2113 }
2114 
2115 /*
2116  * init_nodemask_of_mempolicy
2117  *
2118  * If the current task's mempolicy is "default" [NULL], return 'false'
2119  * to indicate default policy.  Otherwise, extract the policy nodemask
2120  * for 'bind' or 'interleave' policy into the argument nodemask, or
2121  * initialize the argument nodemask to contain the single node for
2122  * 'preferred' or 'local' policy and return 'true' to indicate presence
2123  * of non-default mempolicy.
2124  *
2125  * We don't bother with reference counting the mempolicy [mpol_get/put]
2126  * because the current task is examining it's own mempolicy and a task's
2127  * mempolicy is only ever changed by the task itself.
2128  *
2129  * N.B., it is the caller's responsibility to free a returned nodemask.
2130  */
2131 bool init_nodemask_of_mempolicy(nodemask_t *mask)
2132 {
2133 	struct mempolicy *mempolicy;
2134 
2135 	if (!(mask && current->mempolicy))
2136 		return false;
2137 
2138 	task_lock(current);
2139 	mempolicy = current->mempolicy;
2140 	switch (mempolicy->mode) {
2141 	case MPOL_PREFERRED:
2142 	case MPOL_PREFERRED_MANY:
2143 	case MPOL_BIND:
2144 	case MPOL_INTERLEAVE:
2145 	case MPOL_WEIGHTED_INTERLEAVE:
2146 		*mask = mempolicy->nodes;
2147 		break;
2148 
2149 	case MPOL_LOCAL:
2150 		init_nodemask_of_node(mask, numa_node_id());
2151 		break;
2152 
2153 	default:
2154 		BUG();
2155 	}
2156 	task_unlock(current);
2157 
2158 	return true;
2159 }
2160 #endif
2161 
2162 /*
2163  * mempolicy_in_oom_domain
2164  *
2165  * If tsk's mempolicy is "bind", check for intersection between mask and
2166  * the policy nodemask. Otherwise, return true for all other policies
2167  * including "interleave", as a tsk with "interleave" policy may have
2168  * memory allocated from all nodes in system.
2169  *
2170  * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2171  */
2172 bool mempolicy_in_oom_domain(struct task_struct *tsk,
2173 					const nodemask_t *mask)
2174 {
2175 	struct mempolicy *mempolicy;
2176 	bool ret = true;
2177 
2178 	if (!mask)
2179 		return ret;
2180 
2181 	task_lock(tsk);
2182 	mempolicy = tsk->mempolicy;
2183 	if (mempolicy && mempolicy->mode == MPOL_BIND)
2184 		ret = nodes_intersects(mempolicy->nodes, *mask);
2185 	task_unlock(tsk);
2186 
2187 	return ret;
2188 }
2189 
2190 static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order,
2191 						int nid, nodemask_t *nodemask)
2192 {
2193 	struct page *page;
2194 	gfp_t preferred_gfp;
2195 
2196 	/*
2197 	 * This is a two pass approach. The first pass will only try the
2198 	 * preferred nodes but skip the direct reclaim and allow the
2199 	 * allocation to fail, while the second pass will try all the
2200 	 * nodes in system.
2201 	 */
2202 	preferred_gfp = gfp | __GFP_NOWARN;
2203 	preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2204 	page = __alloc_pages_noprof(preferred_gfp, order, nid, nodemask);
2205 	if (!page)
2206 		page = __alloc_pages_noprof(gfp, order, nid, NULL);
2207 
2208 	return page;
2209 }
2210 
2211 /**
2212  * alloc_pages_mpol - Allocate pages according to NUMA mempolicy.
2213  * @gfp: GFP flags.
2214  * @order: Order of the page allocation.
2215  * @pol: Pointer to the NUMA mempolicy.
2216  * @ilx: Index for interleave mempolicy (also distinguishes alloc_pages()).
2217  * @nid: Preferred node (usually numa_node_id() but @mpol may override it).
2218  *
2219  * Return: The page on success or NULL if allocation fails.
2220  */
2221 struct page *alloc_pages_mpol_noprof(gfp_t gfp, unsigned int order,
2222 		struct mempolicy *pol, pgoff_t ilx, int nid)
2223 {
2224 	nodemask_t *nodemask;
2225 	struct page *page;
2226 
2227 	nodemask = policy_nodemask(gfp, pol, ilx, &nid);
2228 
2229 	if (pol->mode == MPOL_PREFERRED_MANY)
2230 		return alloc_pages_preferred_many(gfp, order, nid, nodemask);
2231 
2232 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2233 	    /* filter "hugepage" allocation, unless from alloc_pages() */
2234 	    order == HPAGE_PMD_ORDER && ilx != NO_INTERLEAVE_INDEX) {
2235 		/*
2236 		 * For hugepage allocation and non-interleave policy which
2237 		 * allows the current node (or other explicitly preferred
2238 		 * node) we only try to allocate from the current/preferred
2239 		 * node and don't fall back to other nodes, as the cost of
2240 		 * remote accesses would likely offset THP benefits.
2241 		 *
2242 		 * If the policy is interleave or does not allow the current
2243 		 * node in its nodemask, we allocate the standard way.
2244 		 */
2245 		if (pol->mode != MPOL_INTERLEAVE &&
2246 		    pol->mode != MPOL_WEIGHTED_INTERLEAVE &&
2247 		    (!nodemask || node_isset(nid, *nodemask))) {
2248 			/*
2249 			 * First, try to allocate THP only on local node, but
2250 			 * don't reclaim unnecessarily, just compact.
2251 			 */
2252 			page = __alloc_pages_node_noprof(nid,
2253 				gfp | __GFP_THISNODE | __GFP_NORETRY, order);
2254 			if (page || !(gfp & __GFP_DIRECT_RECLAIM))
2255 				return page;
2256 			/*
2257 			 * If hugepage allocations are configured to always
2258 			 * synchronous compact or the vma has been madvised
2259 			 * to prefer hugepage backing, retry allowing remote
2260 			 * memory with both reclaim and compact as well.
2261 			 */
2262 		}
2263 	}
2264 
2265 	page = __alloc_pages_noprof(gfp, order, nid, nodemask);
2266 
2267 	if (unlikely(pol->mode == MPOL_INTERLEAVE) && page) {
2268 		/* skip NUMA_INTERLEAVE_HIT update if numa stats is disabled */
2269 		if (static_branch_likely(&vm_numa_stat_key) &&
2270 		    page_to_nid(page) == nid) {
2271 			preempt_disable();
2272 			__count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT);
2273 			preempt_enable();
2274 		}
2275 	}
2276 
2277 	return page;
2278 }
2279 
2280 /**
2281  * vma_alloc_folio - Allocate a folio for a VMA.
2282  * @gfp: GFP flags.
2283  * @order: Order of the folio.
2284  * @vma: Pointer to VMA.
2285  * @addr: Virtual address of the allocation.  Must be inside @vma.
2286  * @hugepage: Unused (was: For hugepages try only preferred node if possible).
2287  *
2288  * Allocate a folio for a specific address in @vma, using the appropriate
2289  * NUMA policy.  The caller must hold the mmap_lock of the mm_struct of the
2290  * VMA to prevent it from going away.  Should be used for all allocations
2291  * for folios that will be mapped into user space, excepting hugetlbfs, and
2292  * excepting where direct use of alloc_pages_mpol() is more appropriate.
2293  *
2294  * Return: The folio on success or NULL if allocation fails.
2295  */
2296 struct folio *vma_alloc_folio_noprof(gfp_t gfp, int order, struct vm_area_struct *vma,
2297 		unsigned long addr, bool hugepage)
2298 {
2299 	struct mempolicy *pol;
2300 	pgoff_t ilx;
2301 	struct page *page;
2302 
2303 	pol = get_vma_policy(vma, addr, order, &ilx);
2304 	page = alloc_pages_mpol_noprof(gfp | __GFP_COMP, order,
2305 				       pol, ilx, numa_node_id());
2306 	mpol_cond_put(pol);
2307 	return page_rmappable_folio(page);
2308 }
2309 EXPORT_SYMBOL(vma_alloc_folio_noprof);
2310 
2311 /**
2312  * alloc_pages - Allocate pages.
2313  * @gfp: GFP flags.
2314  * @order: Power of two of number of pages to allocate.
2315  *
2316  * Allocate 1 << @order contiguous pages.  The physical address of the
2317  * first page is naturally aligned (eg an order-3 allocation will be aligned
2318  * to a multiple of 8 * PAGE_SIZE bytes).  The NUMA policy of the current
2319  * process is honoured when in process context.
2320  *
2321  * Context: Can be called from any context, providing the appropriate GFP
2322  * flags are used.
2323  * Return: The page on success or NULL if allocation fails.
2324  */
2325 struct page *alloc_pages_noprof(gfp_t gfp, unsigned int order)
2326 {
2327 	struct mempolicy *pol = &default_policy;
2328 
2329 	/*
2330 	 * No reference counting needed for current->mempolicy
2331 	 * nor system default_policy
2332 	 */
2333 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2334 		pol = get_task_policy(current);
2335 
2336 	return alloc_pages_mpol_noprof(gfp, order, pol, NO_INTERLEAVE_INDEX,
2337 				       numa_node_id());
2338 }
2339 EXPORT_SYMBOL(alloc_pages_noprof);
2340 
2341 struct folio *folio_alloc_noprof(gfp_t gfp, unsigned int order)
2342 {
2343 	return page_rmappable_folio(alloc_pages_noprof(gfp | __GFP_COMP, order));
2344 }
2345 EXPORT_SYMBOL(folio_alloc_noprof);
2346 
2347 static unsigned long alloc_pages_bulk_array_interleave(gfp_t gfp,
2348 		struct mempolicy *pol, unsigned long nr_pages,
2349 		struct page **page_array)
2350 {
2351 	int nodes;
2352 	unsigned long nr_pages_per_node;
2353 	int delta;
2354 	int i;
2355 	unsigned long nr_allocated;
2356 	unsigned long total_allocated = 0;
2357 
2358 	nodes = nodes_weight(pol->nodes);
2359 	nr_pages_per_node = nr_pages / nodes;
2360 	delta = nr_pages - nodes * nr_pages_per_node;
2361 
2362 	for (i = 0; i < nodes; i++) {
2363 		if (delta) {
2364 			nr_allocated = alloc_pages_bulk_noprof(gfp,
2365 					interleave_nodes(pol), NULL,
2366 					nr_pages_per_node + 1, NULL,
2367 					page_array);
2368 			delta--;
2369 		} else {
2370 			nr_allocated = alloc_pages_bulk_noprof(gfp,
2371 					interleave_nodes(pol), NULL,
2372 					nr_pages_per_node, NULL, page_array);
2373 		}
2374 
2375 		page_array += nr_allocated;
2376 		total_allocated += nr_allocated;
2377 	}
2378 
2379 	return total_allocated;
2380 }
2381 
2382 static unsigned long alloc_pages_bulk_array_weighted_interleave(gfp_t gfp,
2383 		struct mempolicy *pol, unsigned long nr_pages,
2384 		struct page **page_array)
2385 {
2386 	struct task_struct *me = current;
2387 	unsigned int cpuset_mems_cookie;
2388 	unsigned long total_allocated = 0;
2389 	unsigned long nr_allocated = 0;
2390 	unsigned long rounds;
2391 	unsigned long node_pages, delta;
2392 	u8 *table, *weights, weight;
2393 	unsigned int weight_total = 0;
2394 	unsigned long rem_pages = nr_pages;
2395 	nodemask_t nodes;
2396 	int nnodes, node;
2397 	int resume_node = MAX_NUMNODES - 1;
2398 	u8 resume_weight = 0;
2399 	int prev_node;
2400 	int i;
2401 
2402 	if (!nr_pages)
2403 		return 0;
2404 
2405 	/* read the nodes onto the stack, retry if done during rebind */
2406 	do {
2407 		cpuset_mems_cookie = read_mems_allowed_begin();
2408 		nnodes = read_once_policy_nodemask(pol, &nodes);
2409 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
2410 
2411 	/* if the nodemask has become invalid, we cannot do anything */
2412 	if (!nnodes)
2413 		return 0;
2414 
2415 	/* Continue allocating from most recent node and adjust the nr_pages */
2416 	node = me->il_prev;
2417 	weight = me->il_weight;
2418 	if (weight && node_isset(node, nodes)) {
2419 		node_pages = min(rem_pages, weight);
2420 		nr_allocated = __alloc_pages_bulk(gfp, node, NULL, node_pages,
2421 						  NULL, page_array);
2422 		page_array += nr_allocated;
2423 		total_allocated += nr_allocated;
2424 		/* if that's all the pages, no need to interleave */
2425 		if (rem_pages <= weight) {
2426 			me->il_weight -= rem_pages;
2427 			return total_allocated;
2428 		}
2429 		/* Otherwise we adjust remaining pages, continue from there */
2430 		rem_pages -= weight;
2431 	}
2432 	/* clear active weight in case of an allocation failure */
2433 	me->il_weight = 0;
2434 	prev_node = node;
2435 
2436 	/* create a local copy of node weights to operate on outside rcu */
2437 	weights = kzalloc(nr_node_ids, GFP_KERNEL);
2438 	if (!weights)
2439 		return total_allocated;
2440 
2441 	rcu_read_lock();
2442 	table = rcu_dereference(iw_table);
2443 	if (table)
2444 		memcpy(weights, table, nr_node_ids);
2445 	rcu_read_unlock();
2446 
2447 	/* calculate total, detect system default usage */
2448 	for_each_node_mask(node, nodes) {
2449 		if (!weights[node])
2450 			weights[node] = 1;
2451 		weight_total += weights[node];
2452 	}
2453 
2454 	/*
2455 	 * Calculate rounds/partial rounds to minimize __alloc_pages_bulk calls.
2456 	 * Track which node weighted interleave should resume from.
2457 	 *
2458 	 * if (rounds > 0) and (delta == 0), resume_node will always be
2459 	 * the node following prev_node and its weight.
2460 	 */
2461 	rounds = rem_pages / weight_total;
2462 	delta = rem_pages % weight_total;
2463 	resume_node = next_node_in(prev_node, nodes);
2464 	resume_weight = weights[resume_node];
2465 	for (i = 0; i < nnodes; i++) {
2466 		node = next_node_in(prev_node, nodes);
2467 		weight = weights[node];
2468 		node_pages = weight * rounds;
2469 		/* If a delta exists, add this node's portion of the delta */
2470 		if (delta > weight) {
2471 			node_pages += weight;
2472 			delta -= weight;
2473 		} else if (delta) {
2474 			/* when delta is depleted, resume from that node */
2475 			node_pages += delta;
2476 			resume_node = node;
2477 			resume_weight = weight - delta;
2478 			delta = 0;
2479 		}
2480 		/* node_pages can be 0 if an allocation fails and rounds == 0 */
2481 		if (!node_pages)
2482 			break;
2483 		nr_allocated = __alloc_pages_bulk(gfp, node, NULL, node_pages,
2484 						  NULL, page_array);
2485 		page_array += nr_allocated;
2486 		total_allocated += nr_allocated;
2487 		if (total_allocated == nr_pages)
2488 			break;
2489 		prev_node = node;
2490 	}
2491 	me->il_prev = resume_node;
2492 	me->il_weight = resume_weight;
2493 	kfree(weights);
2494 	return total_allocated;
2495 }
2496 
2497 static unsigned long alloc_pages_bulk_array_preferred_many(gfp_t gfp, int nid,
2498 		struct mempolicy *pol, unsigned long nr_pages,
2499 		struct page **page_array)
2500 {
2501 	gfp_t preferred_gfp;
2502 	unsigned long nr_allocated = 0;
2503 
2504 	preferred_gfp = gfp | __GFP_NOWARN;
2505 	preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2506 
2507 	nr_allocated  = alloc_pages_bulk_noprof(preferred_gfp, nid, &pol->nodes,
2508 					   nr_pages, NULL, page_array);
2509 
2510 	if (nr_allocated < nr_pages)
2511 		nr_allocated += alloc_pages_bulk_noprof(gfp, numa_node_id(), NULL,
2512 				nr_pages - nr_allocated, NULL,
2513 				page_array + nr_allocated);
2514 	return nr_allocated;
2515 }
2516 
2517 /* alloc pages bulk and mempolicy should be considered at the
2518  * same time in some situation such as vmalloc.
2519  *
2520  * It can accelerate memory allocation especially interleaving
2521  * allocate memory.
2522  */
2523 unsigned long alloc_pages_bulk_array_mempolicy_noprof(gfp_t gfp,
2524 		unsigned long nr_pages, struct page **page_array)
2525 {
2526 	struct mempolicy *pol = &default_policy;
2527 	nodemask_t *nodemask;
2528 	int nid;
2529 
2530 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2531 		pol = get_task_policy(current);
2532 
2533 	if (pol->mode == MPOL_INTERLEAVE)
2534 		return alloc_pages_bulk_array_interleave(gfp, pol,
2535 							 nr_pages, page_array);
2536 
2537 	if (pol->mode == MPOL_WEIGHTED_INTERLEAVE)
2538 		return alloc_pages_bulk_array_weighted_interleave(
2539 				  gfp, pol, nr_pages, page_array);
2540 
2541 	if (pol->mode == MPOL_PREFERRED_MANY)
2542 		return alloc_pages_bulk_array_preferred_many(gfp,
2543 				numa_node_id(), pol, nr_pages, page_array);
2544 
2545 	nid = numa_node_id();
2546 	nodemask = policy_nodemask(gfp, pol, NO_INTERLEAVE_INDEX, &nid);
2547 	return alloc_pages_bulk_noprof(gfp, nid, nodemask,
2548 				       nr_pages, NULL, page_array);
2549 }
2550 
2551 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2552 {
2553 	struct mempolicy *pol = mpol_dup(src->vm_policy);
2554 
2555 	if (IS_ERR(pol))
2556 		return PTR_ERR(pol);
2557 	dst->vm_policy = pol;
2558 	return 0;
2559 }
2560 
2561 /*
2562  * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2563  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2564  * with the mems_allowed returned by cpuset_mems_allowed().  This
2565  * keeps mempolicies cpuset relative after its cpuset moves.  See
2566  * further kernel/cpuset.c update_nodemask().
2567  *
2568  * current's mempolicy may be rebinded by the other task(the task that changes
2569  * cpuset's mems), so we needn't do rebind work for current task.
2570  */
2571 
2572 /* Slow path of a mempolicy duplicate */
2573 struct mempolicy *__mpol_dup(struct mempolicy *old)
2574 {
2575 	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2576 
2577 	if (!new)
2578 		return ERR_PTR(-ENOMEM);
2579 
2580 	/* task's mempolicy is protected by alloc_lock */
2581 	if (old == current->mempolicy) {
2582 		task_lock(current);
2583 		*new = *old;
2584 		task_unlock(current);
2585 	} else
2586 		*new = *old;
2587 
2588 	if (current_cpuset_is_being_rebound()) {
2589 		nodemask_t mems = cpuset_mems_allowed(current);
2590 		mpol_rebind_policy(new, &mems);
2591 	}
2592 	atomic_set(&new->refcnt, 1);
2593 	return new;
2594 }
2595 
2596 /* Slow path of a mempolicy comparison */
2597 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2598 {
2599 	if (!a || !b)
2600 		return false;
2601 	if (a->mode != b->mode)
2602 		return false;
2603 	if (a->flags != b->flags)
2604 		return false;
2605 	if (a->home_node != b->home_node)
2606 		return false;
2607 	if (mpol_store_user_nodemask(a))
2608 		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2609 			return false;
2610 
2611 	switch (a->mode) {
2612 	case MPOL_BIND:
2613 	case MPOL_INTERLEAVE:
2614 	case MPOL_PREFERRED:
2615 	case MPOL_PREFERRED_MANY:
2616 	case MPOL_WEIGHTED_INTERLEAVE:
2617 		return !!nodes_equal(a->nodes, b->nodes);
2618 	case MPOL_LOCAL:
2619 		return true;
2620 	default:
2621 		BUG();
2622 		return false;
2623 	}
2624 }
2625 
2626 /*
2627  * Shared memory backing store policy support.
2628  *
2629  * Remember policies even when nobody has shared memory mapped.
2630  * The policies are kept in Red-Black tree linked from the inode.
2631  * They are protected by the sp->lock rwlock, which should be held
2632  * for any accesses to the tree.
2633  */
2634 
2635 /*
2636  * lookup first element intersecting start-end.  Caller holds sp->lock for
2637  * reading or for writing
2638  */
2639 static struct sp_node *sp_lookup(struct shared_policy *sp,
2640 					pgoff_t start, pgoff_t end)
2641 {
2642 	struct rb_node *n = sp->root.rb_node;
2643 
2644 	while (n) {
2645 		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2646 
2647 		if (start >= p->end)
2648 			n = n->rb_right;
2649 		else if (end <= p->start)
2650 			n = n->rb_left;
2651 		else
2652 			break;
2653 	}
2654 	if (!n)
2655 		return NULL;
2656 	for (;;) {
2657 		struct sp_node *w = NULL;
2658 		struct rb_node *prev = rb_prev(n);
2659 		if (!prev)
2660 			break;
2661 		w = rb_entry(prev, struct sp_node, nd);
2662 		if (w->end <= start)
2663 			break;
2664 		n = prev;
2665 	}
2666 	return rb_entry(n, struct sp_node, nd);
2667 }
2668 
2669 /*
2670  * Insert a new shared policy into the list.  Caller holds sp->lock for
2671  * writing.
2672  */
2673 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2674 {
2675 	struct rb_node **p = &sp->root.rb_node;
2676 	struct rb_node *parent = NULL;
2677 	struct sp_node *nd;
2678 
2679 	while (*p) {
2680 		parent = *p;
2681 		nd = rb_entry(parent, struct sp_node, nd);
2682 		if (new->start < nd->start)
2683 			p = &(*p)->rb_left;
2684 		else if (new->end > nd->end)
2685 			p = &(*p)->rb_right;
2686 		else
2687 			BUG();
2688 	}
2689 	rb_link_node(&new->nd, parent, p);
2690 	rb_insert_color(&new->nd, &sp->root);
2691 }
2692 
2693 /* Find shared policy intersecting idx */
2694 struct mempolicy *mpol_shared_policy_lookup(struct shared_policy *sp,
2695 						pgoff_t idx)
2696 {
2697 	struct mempolicy *pol = NULL;
2698 	struct sp_node *sn;
2699 
2700 	if (!sp->root.rb_node)
2701 		return NULL;
2702 	read_lock(&sp->lock);
2703 	sn = sp_lookup(sp, idx, idx+1);
2704 	if (sn) {
2705 		mpol_get(sn->policy);
2706 		pol = sn->policy;
2707 	}
2708 	read_unlock(&sp->lock);
2709 	return pol;
2710 }
2711 
2712 static void sp_free(struct sp_node *n)
2713 {
2714 	mpol_put(n->policy);
2715 	kmem_cache_free(sn_cache, n);
2716 }
2717 
2718 /**
2719  * mpol_misplaced - check whether current folio node is valid in policy
2720  *
2721  * @folio: folio to be checked
2722  * @vmf: structure describing the fault
2723  * @addr: virtual address in @vma for shared policy lookup and interleave policy
2724  *
2725  * Lookup current policy node id for vma,addr and "compare to" folio's
2726  * node id.  Policy determination "mimics" alloc_page_vma().
2727  * Called from fault path where we know the vma and faulting address.
2728  *
2729  * Return: NUMA_NO_NODE if the page is in a node that is valid for this
2730  * policy, or a suitable node ID to allocate a replacement folio from.
2731  */
2732 int mpol_misplaced(struct folio *folio, struct vm_fault *vmf,
2733 		   unsigned long addr)
2734 {
2735 	struct mempolicy *pol;
2736 	pgoff_t ilx;
2737 	struct zoneref *z;
2738 	int curnid = folio_nid(folio);
2739 	struct vm_area_struct *vma = vmf->vma;
2740 	int thiscpu = raw_smp_processor_id();
2741 	int thisnid = numa_node_id();
2742 	int polnid = NUMA_NO_NODE;
2743 	int ret = NUMA_NO_NODE;
2744 
2745 	/*
2746 	 * Make sure ptl is held so that we don't preempt and we
2747 	 * have a stable smp processor id
2748 	 */
2749 	lockdep_assert_held(vmf->ptl);
2750 	pol = get_vma_policy(vma, addr, folio_order(folio), &ilx);
2751 	if (!(pol->flags & MPOL_F_MOF))
2752 		goto out;
2753 
2754 	switch (pol->mode) {
2755 	case MPOL_INTERLEAVE:
2756 		polnid = interleave_nid(pol, ilx);
2757 		break;
2758 
2759 	case MPOL_WEIGHTED_INTERLEAVE:
2760 		polnid = weighted_interleave_nid(pol, ilx);
2761 		break;
2762 
2763 	case MPOL_PREFERRED:
2764 		if (node_isset(curnid, pol->nodes))
2765 			goto out;
2766 		polnid = first_node(pol->nodes);
2767 		break;
2768 
2769 	case MPOL_LOCAL:
2770 		polnid = numa_node_id();
2771 		break;
2772 
2773 	case MPOL_BIND:
2774 	case MPOL_PREFERRED_MANY:
2775 		/*
2776 		 * Even though MPOL_PREFERRED_MANY can allocate pages outside
2777 		 * policy nodemask we don't allow numa migration to nodes
2778 		 * outside policy nodemask for now. This is done so that if we
2779 		 * want demotion to slow memory to happen, before allocating
2780 		 * from some DRAM node say 'x', we will end up using a
2781 		 * MPOL_PREFERRED_MANY mask excluding node 'x'. In such scenario
2782 		 * we should not promote to node 'x' from slow memory node.
2783 		 */
2784 		if (pol->flags & MPOL_F_MORON) {
2785 			/*
2786 			 * Optimize placement among multiple nodes
2787 			 * via NUMA balancing
2788 			 */
2789 			if (node_isset(thisnid, pol->nodes))
2790 				break;
2791 			goto out;
2792 		}
2793 
2794 		/*
2795 		 * use current page if in policy nodemask,
2796 		 * else select nearest allowed node, if any.
2797 		 * If no allowed nodes, use current [!misplaced].
2798 		 */
2799 		if (node_isset(curnid, pol->nodes))
2800 			goto out;
2801 		z = first_zones_zonelist(
2802 				node_zonelist(thisnid, GFP_HIGHUSER),
2803 				gfp_zone(GFP_HIGHUSER),
2804 				&pol->nodes);
2805 		polnid = zone_to_nid(z->zone);
2806 		break;
2807 
2808 	default:
2809 		BUG();
2810 	}
2811 
2812 	/* Migrate the folio towards the node whose CPU is referencing it */
2813 	if (pol->flags & MPOL_F_MORON) {
2814 		polnid = thisnid;
2815 
2816 		if (!should_numa_migrate_memory(current, folio, curnid,
2817 						thiscpu))
2818 			goto out;
2819 	}
2820 
2821 	if (curnid != polnid)
2822 		ret = polnid;
2823 out:
2824 	mpol_cond_put(pol);
2825 
2826 	return ret;
2827 }
2828 
2829 /*
2830  * Drop the (possibly final) reference to task->mempolicy.  It needs to be
2831  * dropped after task->mempolicy is set to NULL so that any allocation done as
2832  * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2833  * policy.
2834  */
2835 void mpol_put_task_policy(struct task_struct *task)
2836 {
2837 	struct mempolicy *pol;
2838 
2839 	task_lock(task);
2840 	pol = task->mempolicy;
2841 	task->mempolicy = NULL;
2842 	task_unlock(task);
2843 	mpol_put(pol);
2844 }
2845 
2846 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2847 {
2848 	rb_erase(&n->nd, &sp->root);
2849 	sp_free(n);
2850 }
2851 
2852 static void sp_node_init(struct sp_node *node, unsigned long start,
2853 			unsigned long end, struct mempolicy *pol)
2854 {
2855 	node->start = start;
2856 	node->end = end;
2857 	node->policy = pol;
2858 }
2859 
2860 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2861 				struct mempolicy *pol)
2862 {
2863 	struct sp_node *n;
2864 	struct mempolicy *newpol;
2865 
2866 	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2867 	if (!n)
2868 		return NULL;
2869 
2870 	newpol = mpol_dup(pol);
2871 	if (IS_ERR(newpol)) {
2872 		kmem_cache_free(sn_cache, n);
2873 		return NULL;
2874 	}
2875 	newpol->flags |= MPOL_F_SHARED;
2876 	sp_node_init(n, start, end, newpol);
2877 
2878 	return n;
2879 }
2880 
2881 /* Replace a policy range. */
2882 static int shared_policy_replace(struct shared_policy *sp, pgoff_t start,
2883 				 pgoff_t end, struct sp_node *new)
2884 {
2885 	struct sp_node *n;
2886 	struct sp_node *n_new = NULL;
2887 	struct mempolicy *mpol_new = NULL;
2888 	int ret = 0;
2889 
2890 restart:
2891 	write_lock(&sp->lock);
2892 	n = sp_lookup(sp, start, end);
2893 	/* Take care of old policies in the same range. */
2894 	while (n && n->start < end) {
2895 		struct rb_node *next = rb_next(&n->nd);
2896 		if (n->start >= start) {
2897 			if (n->end <= end)
2898 				sp_delete(sp, n);
2899 			else
2900 				n->start = end;
2901 		} else {
2902 			/* Old policy spanning whole new range. */
2903 			if (n->end > end) {
2904 				if (!n_new)
2905 					goto alloc_new;
2906 
2907 				*mpol_new = *n->policy;
2908 				atomic_set(&mpol_new->refcnt, 1);
2909 				sp_node_init(n_new, end, n->end, mpol_new);
2910 				n->end = start;
2911 				sp_insert(sp, n_new);
2912 				n_new = NULL;
2913 				mpol_new = NULL;
2914 				break;
2915 			} else
2916 				n->end = start;
2917 		}
2918 		if (!next)
2919 			break;
2920 		n = rb_entry(next, struct sp_node, nd);
2921 	}
2922 	if (new)
2923 		sp_insert(sp, new);
2924 	write_unlock(&sp->lock);
2925 	ret = 0;
2926 
2927 err_out:
2928 	if (mpol_new)
2929 		mpol_put(mpol_new);
2930 	if (n_new)
2931 		kmem_cache_free(sn_cache, n_new);
2932 
2933 	return ret;
2934 
2935 alloc_new:
2936 	write_unlock(&sp->lock);
2937 	ret = -ENOMEM;
2938 	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2939 	if (!n_new)
2940 		goto err_out;
2941 	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2942 	if (!mpol_new)
2943 		goto err_out;
2944 	atomic_set(&mpol_new->refcnt, 1);
2945 	goto restart;
2946 }
2947 
2948 /**
2949  * mpol_shared_policy_init - initialize shared policy for inode
2950  * @sp: pointer to inode shared policy
2951  * @mpol:  struct mempolicy to install
2952  *
2953  * Install non-NULL @mpol in inode's shared policy rb-tree.
2954  * On entry, the current task has a reference on a non-NULL @mpol.
2955  * This must be released on exit.
2956  * This is called at get_inode() calls and we can use GFP_KERNEL.
2957  */
2958 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2959 {
2960 	int ret;
2961 
2962 	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2963 	rwlock_init(&sp->lock);
2964 
2965 	if (mpol) {
2966 		struct sp_node *sn;
2967 		struct mempolicy *npol;
2968 		NODEMASK_SCRATCH(scratch);
2969 
2970 		if (!scratch)
2971 			goto put_mpol;
2972 
2973 		/* contextualize the tmpfs mount point mempolicy to this file */
2974 		npol = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2975 		if (IS_ERR(npol))
2976 			goto free_scratch; /* no valid nodemask intersection */
2977 
2978 		task_lock(current);
2979 		ret = mpol_set_nodemask(npol, &mpol->w.user_nodemask, scratch);
2980 		task_unlock(current);
2981 		if (ret)
2982 			goto put_npol;
2983 
2984 		/* alloc node covering entire file; adds ref to file's npol */
2985 		sn = sp_alloc(0, MAX_LFS_FILESIZE >> PAGE_SHIFT, npol);
2986 		if (sn)
2987 			sp_insert(sp, sn);
2988 put_npol:
2989 		mpol_put(npol);	/* drop initial ref on file's npol */
2990 free_scratch:
2991 		NODEMASK_SCRATCH_FREE(scratch);
2992 put_mpol:
2993 		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2994 	}
2995 }
2996 
2997 int mpol_set_shared_policy(struct shared_policy *sp,
2998 			struct vm_area_struct *vma, struct mempolicy *pol)
2999 {
3000 	int err;
3001 	struct sp_node *new = NULL;
3002 	unsigned long sz = vma_pages(vma);
3003 
3004 	if (pol) {
3005 		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, pol);
3006 		if (!new)
3007 			return -ENOMEM;
3008 	}
3009 	err = shared_policy_replace(sp, vma->vm_pgoff, vma->vm_pgoff + sz, new);
3010 	if (err && new)
3011 		sp_free(new);
3012 	return err;
3013 }
3014 
3015 /* Free a backing policy store on inode delete. */
3016 void mpol_free_shared_policy(struct shared_policy *sp)
3017 {
3018 	struct sp_node *n;
3019 	struct rb_node *next;
3020 
3021 	if (!sp->root.rb_node)
3022 		return;
3023 	write_lock(&sp->lock);
3024 	next = rb_first(&sp->root);
3025 	while (next) {
3026 		n = rb_entry(next, struct sp_node, nd);
3027 		next = rb_next(&n->nd);
3028 		sp_delete(sp, n);
3029 	}
3030 	write_unlock(&sp->lock);
3031 }
3032 
3033 #ifdef CONFIG_NUMA_BALANCING
3034 static int __initdata numabalancing_override;
3035 
3036 static void __init check_numabalancing_enable(void)
3037 {
3038 	bool numabalancing_default = false;
3039 
3040 	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
3041 		numabalancing_default = true;
3042 
3043 	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
3044 	if (numabalancing_override)
3045 		set_numabalancing_state(numabalancing_override == 1);
3046 
3047 	if (num_online_nodes() > 1 && !numabalancing_override) {
3048 		pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
3049 			numabalancing_default ? "Enabling" : "Disabling");
3050 		set_numabalancing_state(numabalancing_default);
3051 	}
3052 }
3053 
3054 static int __init setup_numabalancing(char *str)
3055 {
3056 	int ret = 0;
3057 	if (!str)
3058 		goto out;
3059 
3060 	if (!strcmp(str, "enable")) {
3061 		numabalancing_override = 1;
3062 		ret = 1;
3063 	} else if (!strcmp(str, "disable")) {
3064 		numabalancing_override = -1;
3065 		ret = 1;
3066 	}
3067 out:
3068 	if (!ret)
3069 		pr_warn("Unable to parse numa_balancing=\n");
3070 
3071 	return ret;
3072 }
3073 __setup("numa_balancing=", setup_numabalancing);
3074 #else
3075 static inline void __init check_numabalancing_enable(void)
3076 {
3077 }
3078 #endif /* CONFIG_NUMA_BALANCING */
3079 
3080 void __init numa_policy_init(void)
3081 {
3082 	nodemask_t interleave_nodes;
3083 	unsigned long largest = 0;
3084 	int nid, prefer = 0;
3085 
3086 	policy_cache = kmem_cache_create("numa_policy",
3087 					 sizeof(struct mempolicy),
3088 					 0, SLAB_PANIC, NULL);
3089 
3090 	sn_cache = kmem_cache_create("shared_policy_node",
3091 				     sizeof(struct sp_node),
3092 				     0, SLAB_PANIC, NULL);
3093 
3094 	for_each_node(nid) {
3095 		preferred_node_policy[nid] = (struct mempolicy) {
3096 			.refcnt = ATOMIC_INIT(1),
3097 			.mode = MPOL_PREFERRED,
3098 			.flags = MPOL_F_MOF | MPOL_F_MORON,
3099 			.nodes = nodemask_of_node(nid),
3100 		};
3101 	}
3102 
3103 	/*
3104 	 * Set interleaving policy for system init. Interleaving is only
3105 	 * enabled across suitably sized nodes (default is >= 16MB), or
3106 	 * fall back to the largest node if they're all smaller.
3107 	 */
3108 	nodes_clear(interleave_nodes);
3109 	for_each_node_state(nid, N_MEMORY) {
3110 		unsigned long total_pages = node_present_pages(nid);
3111 
3112 		/* Preserve the largest node */
3113 		if (largest < total_pages) {
3114 			largest = total_pages;
3115 			prefer = nid;
3116 		}
3117 
3118 		/* Interleave this node? */
3119 		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
3120 			node_set(nid, interleave_nodes);
3121 	}
3122 
3123 	/* All too small, use the largest */
3124 	if (unlikely(nodes_empty(interleave_nodes)))
3125 		node_set(prefer, interleave_nodes);
3126 
3127 	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
3128 		pr_err("%s: interleaving failed\n", __func__);
3129 
3130 	check_numabalancing_enable();
3131 }
3132 
3133 /* Reset policy of current process to default */
3134 void numa_default_policy(void)
3135 {
3136 	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
3137 }
3138 
3139 /*
3140  * Parse and format mempolicy from/to strings
3141  */
3142 static const char * const policy_modes[] =
3143 {
3144 	[MPOL_DEFAULT]    = "default",
3145 	[MPOL_PREFERRED]  = "prefer",
3146 	[MPOL_BIND]       = "bind",
3147 	[MPOL_INTERLEAVE] = "interleave",
3148 	[MPOL_WEIGHTED_INTERLEAVE] = "weighted interleave",
3149 	[MPOL_LOCAL]      = "local",
3150 	[MPOL_PREFERRED_MANY]  = "prefer (many)",
3151 };
3152 
3153 #ifdef CONFIG_TMPFS
3154 /**
3155  * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
3156  * @str:  string containing mempolicy to parse
3157  * @mpol:  pointer to struct mempolicy pointer, returned on success.
3158  *
3159  * Format of input:
3160  *	<mode>[=<flags>][:<nodelist>]
3161  *
3162  * Return: %0 on success, else %1
3163  */
3164 int mpol_parse_str(char *str, struct mempolicy **mpol)
3165 {
3166 	struct mempolicy *new = NULL;
3167 	unsigned short mode_flags;
3168 	nodemask_t nodes;
3169 	char *nodelist = strchr(str, ':');
3170 	char *flags = strchr(str, '=');
3171 	int err = 1, mode;
3172 
3173 	if (flags)
3174 		*flags++ = '\0';	/* terminate mode string */
3175 
3176 	if (nodelist) {
3177 		/* NUL-terminate mode or flags string */
3178 		*nodelist++ = '\0';
3179 		if (nodelist_parse(nodelist, nodes))
3180 			goto out;
3181 		if (!nodes_subset(nodes, node_states[N_MEMORY]))
3182 			goto out;
3183 	} else
3184 		nodes_clear(nodes);
3185 
3186 	mode = match_string(policy_modes, MPOL_MAX, str);
3187 	if (mode < 0)
3188 		goto out;
3189 
3190 	switch (mode) {
3191 	case MPOL_PREFERRED:
3192 		/*
3193 		 * Insist on a nodelist of one node only, although later
3194 		 * we use first_node(nodes) to grab a single node, so here
3195 		 * nodelist (or nodes) cannot be empty.
3196 		 */
3197 		if (nodelist) {
3198 			char *rest = nodelist;
3199 			while (isdigit(*rest))
3200 				rest++;
3201 			if (*rest)
3202 				goto out;
3203 			if (nodes_empty(nodes))
3204 				goto out;
3205 		}
3206 		break;
3207 	case MPOL_INTERLEAVE:
3208 	case MPOL_WEIGHTED_INTERLEAVE:
3209 		/*
3210 		 * Default to online nodes with memory if no nodelist
3211 		 */
3212 		if (!nodelist)
3213 			nodes = node_states[N_MEMORY];
3214 		break;
3215 	case MPOL_LOCAL:
3216 		/*
3217 		 * Don't allow a nodelist;  mpol_new() checks flags
3218 		 */
3219 		if (nodelist)
3220 			goto out;
3221 		break;
3222 	case MPOL_DEFAULT:
3223 		/*
3224 		 * Insist on a empty nodelist
3225 		 */
3226 		if (!nodelist)
3227 			err = 0;
3228 		goto out;
3229 	case MPOL_PREFERRED_MANY:
3230 	case MPOL_BIND:
3231 		/*
3232 		 * Insist on a nodelist
3233 		 */
3234 		if (!nodelist)
3235 			goto out;
3236 	}
3237 
3238 	mode_flags = 0;
3239 	if (flags) {
3240 		/*
3241 		 * Currently, we only support two mutually exclusive
3242 		 * mode flags.
3243 		 */
3244 		if (!strcmp(flags, "static"))
3245 			mode_flags |= MPOL_F_STATIC_NODES;
3246 		else if (!strcmp(flags, "relative"))
3247 			mode_flags |= MPOL_F_RELATIVE_NODES;
3248 		else
3249 			goto out;
3250 	}
3251 
3252 	new = mpol_new(mode, mode_flags, &nodes);
3253 	if (IS_ERR(new))
3254 		goto out;
3255 
3256 	/*
3257 	 * Save nodes for mpol_to_str() to show the tmpfs mount options
3258 	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
3259 	 */
3260 	if (mode != MPOL_PREFERRED) {
3261 		new->nodes = nodes;
3262 	} else if (nodelist) {
3263 		nodes_clear(new->nodes);
3264 		node_set(first_node(nodes), new->nodes);
3265 	} else {
3266 		new->mode = MPOL_LOCAL;
3267 	}
3268 
3269 	/*
3270 	 * Save nodes for contextualization: this will be used to "clone"
3271 	 * the mempolicy in a specific context [cpuset] at a later time.
3272 	 */
3273 	new->w.user_nodemask = nodes;
3274 
3275 	err = 0;
3276 
3277 out:
3278 	/* Restore string for error message */
3279 	if (nodelist)
3280 		*--nodelist = ':';
3281 	if (flags)
3282 		*--flags = '=';
3283 	if (!err)
3284 		*mpol = new;
3285 	return err;
3286 }
3287 #endif /* CONFIG_TMPFS */
3288 
3289 /**
3290  * mpol_to_str - format a mempolicy structure for printing
3291  * @buffer:  to contain formatted mempolicy string
3292  * @maxlen:  length of @buffer
3293  * @pol:  pointer to mempolicy to be formatted
3294  *
3295  * Convert @pol into a string.  If @buffer is too short, truncate the string.
3296  * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
3297  * longest flag, "relative", and to display at least a few node ids.
3298  */
3299 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
3300 {
3301 	char *p = buffer;
3302 	nodemask_t nodes = NODE_MASK_NONE;
3303 	unsigned short mode = MPOL_DEFAULT;
3304 	unsigned short flags = 0;
3305 
3306 	if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
3307 		mode = pol->mode;
3308 		flags = pol->flags;
3309 	}
3310 
3311 	switch (mode) {
3312 	case MPOL_DEFAULT:
3313 	case MPOL_LOCAL:
3314 		break;
3315 	case MPOL_PREFERRED:
3316 	case MPOL_PREFERRED_MANY:
3317 	case MPOL_BIND:
3318 	case MPOL_INTERLEAVE:
3319 	case MPOL_WEIGHTED_INTERLEAVE:
3320 		nodes = pol->nodes;
3321 		break;
3322 	default:
3323 		WARN_ON_ONCE(1);
3324 		snprintf(p, maxlen, "unknown");
3325 		return;
3326 	}
3327 
3328 	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3329 
3330 	if (flags & MPOL_MODE_FLAGS) {
3331 		p += snprintf(p, buffer + maxlen - p, "=");
3332 
3333 		/*
3334 		 * Currently, the only defined flags are mutually exclusive
3335 		 */
3336 		if (flags & MPOL_F_STATIC_NODES)
3337 			p += snprintf(p, buffer + maxlen - p, "static");
3338 		else if (flags & MPOL_F_RELATIVE_NODES)
3339 			p += snprintf(p, buffer + maxlen - p, "relative");
3340 	}
3341 
3342 	if (!nodes_empty(nodes))
3343 		p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3344 			       nodemask_pr_args(&nodes));
3345 }
3346 
3347 #ifdef CONFIG_SYSFS
3348 struct iw_node_attr {
3349 	struct kobj_attribute kobj_attr;
3350 	int nid;
3351 };
3352 
3353 static ssize_t node_show(struct kobject *kobj, struct kobj_attribute *attr,
3354 			 char *buf)
3355 {
3356 	struct iw_node_attr *node_attr;
3357 	u8 weight;
3358 
3359 	node_attr = container_of(attr, struct iw_node_attr, kobj_attr);
3360 	weight = get_il_weight(node_attr->nid);
3361 	return sysfs_emit(buf, "%d\n", weight);
3362 }
3363 
3364 static ssize_t node_store(struct kobject *kobj, struct kobj_attribute *attr,
3365 			  const char *buf, size_t count)
3366 {
3367 	struct iw_node_attr *node_attr;
3368 	u8 *new;
3369 	u8 *old;
3370 	u8 weight = 0;
3371 
3372 	node_attr = container_of(attr, struct iw_node_attr, kobj_attr);
3373 	if (count == 0 || sysfs_streq(buf, ""))
3374 		weight = 0;
3375 	else if (kstrtou8(buf, 0, &weight))
3376 		return -EINVAL;
3377 
3378 	new = kzalloc(nr_node_ids, GFP_KERNEL);
3379 	if (!new)
3380 		return -ENOMEM;
3381 
3382 	mutex_lock(&iw_table_lock);
3383 	old = rcu_dereference_protected(iw_table,
3384 					lockdep_is_held(&iw_table_lock));
3385 	if (old)
3386 		memcpy(new, old, nr_node_ids);
3387 	new[node_attr->nid] = weight;
3388 	rcu_assign_pointer(iw_table, new);
3389 	mutex_unlock(&iw_table_lock);
3390 	synchronize_rcu();
3391 	kfree(old);
3392 	return count;
3393 }
3394 
3395 static struct iw_node_attr **node_attrs;
3396 
3397 static void sysfs_wi_node_release(struct iw_node_attr *node_attr,
3398 				  struct kobject *parent)
3399 {
3400 	if (!node_attr)
3401 		return;
3402 	sysfs_remove_file(parent, &node_attr->kobj_attr.attr);
3403 	kfree(node_attr->kobj_attr.attr.name);
3404 	kfree(node_attr);
3405 }
3406 
3407 static void sysfs_wi_release(struct kobject *wi_kobj)
3408 {
3409 	int i;
3410 
3411 	for (i = 0; i < nr_node_ids; i++)
3412 		sysfs_wi_node_release(node_attrs[i], wi_kobj);
3413 	kobject_put(wi_kobj);
3414 }
3415 
3416 static const struct kobj_type wi_ktype = {
3417 	.sysfs_ops = &kobj_sysfs_ops,
3418 	.release = sysfs_wi_release,
3419 };
3420 
3421 static int add_weight_node(int nid, struct kobject *wi_kobj)
3422 {
3423 	struct iw_node_attr *node_attr;
3424 	char *name;
3425 
3426 	node_attr = kzalloc(sizeof(*node_attr), GFP_KERNEL);
3427 	if (!node_attr)
3428 		return -ENOMEM;
3429 
3430 	name = kasprintf(GFP_KERNEL, "node%d", nid);
3431 	if (!name) {
3432 		kfree(node_attr);
3433 		return -ENOMEM;
3434 	}
3435 
3436 	sysfs_attr_init(&node_attr->kobj_attr.attr);
3437 	node_attr->kobj_attr.attr.name = name;
3438 	node_attr->kobj_attr.attr.mode = 0644;
3439 	node_attr->kobj_attr.show = node_show;
3440 	node_attr->kobj_attr.store = node_store;
3441 	node_attr->nid = nid;
3442 
3443 	if (sysfs_create_file(wi_kobj, &node_attr->kobj_attr.attr)) {
3444 		kfree(node_attr->kobj_attr.attr.name);
3445 		kfree(node_attr);
3446 		pr_err("failed to add attribute to weighted_interleave\n");
3447 		return -ENOMEM;
3448 	}
3449 
3450 	node_attrs[nid] = node_attr;
3451 	return 0;
3452 }
3453 
3454 static int add_weighted_interleave_group(struct kobject *root_kobj)
3455 {
3456 	struct kobject *wi_kobj;
3457 	int nid, err;
3458 
3459 	wi_kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
3460 	if (!wi_kobj)
3461 		return -ENOMEM;
3462 
3463 	err = kobject_init_and_add(wi_kobj, &wi_ktype, root_kobj,
3464 				   "weighted_interleave");
3465 	if (err) {
3466 		kfree(wi_kobj);
3467 		return err;
3468 	}
3469 
3470 	for_each_node_state(nid, N_POSSIBLE) {
3471 		err = add_weight_node(nid, wi_kobj);
3472 		if (err) {
3473 			pr_err("failed to add sysfs [node%d]\n", nid);
3474 			break;
3475 		}
3476 	}
3477 	if (err)
3478 		kobject_put(wi_kobj);
3479 	return 0;
3480 }
3481 
3482 static void mempolicy_kobj_release(struct kobject *kobj)
3483 {
3484 	u8 *old;
3485 
3486 	mutex_lock(&iw_table_lock);
3487 	old = rcu_dereference_protected(iw_table,
3488 					lockdep_is_held(&iw_table_lock));
3489 	rcu_assign_pointer(iw_table, NULL);
3490 	mutex_unlock(&iw_table_lock);
3491 	synchronize_rcu();
3492 	kfree(old);
3493 	kfree(node_attrs);
3494 	kfree(kobj);
3495 }
3496 
3497 static const struct kobj_type mempolicy_ktype = {
3498 	.release = mempolicy_kobj_release
3499 };
3500 
3501 static int __init mempolicy_sysfs_init(void)
3502 {
3503 	int err;
3504 	static struct kobject *mempolicy_kobj;
3505 
3506 	mempolicy_kobj = kzalloc(sizeof(*mempolicy_kobj), GFP_KERNEL);
3507 	if (!mempolicy_kobj) {
3508 		err = -ENOMEM;
3509 		goto err_out;
3510 	}
3511 
3512 	node_attrs = kcalloc(nr_node_ids, sizeof(struct iw_node_attr *),
3513 			     GFP_KERNEL);
3514 	if (!node_attrs) {
3515 		err = -ENOMEM;
3516 		goto mempol_out;
3517 	}
3518 
3519 	err = kobject_init_and_add(mempolicy_kobj, &mempolicy_ktype, mm_kobj,
3520 				   "mempolicy");
3521 	if (err)
3522 		goto node_out;
3523 
3524 	err = add_weighted_interleave_group(mempolicy_kobj);
3525 	if (err) {
3526 		pr_err("mempolicy sysfs structure failed to initialize\n");
3527 		kobject_put(mempolicy_kobj);
3528 		return err;
3529 	}
3530 
3531 	return err;
3532 node_out:
3533 	kfree(node_attrs);
3534 mempol_out:
3535 	kfree(mempolicy_kobj);
3536 err_out:
3537 	pr_err("failed to add mempolicy kobject to the system\n");
3538 	return err;
3539 }
3540 
3541 late_initcall(mempolicy_sysfs_init);
3542 #endif /* CONFIG_SYSFS */
3543