1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2003 Sistina Software Limited.
4 * Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved.
5 *
6 * This file is released under the GPL.
7 */
8
9 #include <linux/device-mapper.h>
10
11 #include "dm-rq.h"
12 #include "dm-bio-record.h"
13 #include "dm-path-selector.h"
14 #include "dm-uevent.h"
15
16 #include <linux/blkdev.h>
17 #include <linux/ctype.h>
18 #include <linux/init.h>
19 #include <linux/mempool.h>
20 #include <linux/module.h>
21 #include <linux/pagemap.h>
22 #include <linux/slab.h>
23 #include <linux/time.h>
24 #include <linux/timer.h>
25 #include <linux/workqueue.h>
26 #include <linux/delay.h>
27 #include <scsi/scsi_dh.h>
28 #include <linux/atomic.h>
29 #include <linux/blk-mq.h>
30
31 static struct workqueue_struct *dm_mpath_wq;
32
33 #define DM_MSG_PREFIX "multipath"
34 #define DM_PG_INIT_DELAY_MSECS 2000
35 #define DM_PG_INIT_DELAY_DEFAULT ((unsigned int) -1)
36 #define QUEUE_IF_NO_PATH_TIMEOUT_DEFAULT 0
37
38 static unsigned long queue_if_no_path_timeout_secs = QUEUE_IF_NO_PATH_TIMEOUT_DEFAULT;
39
40 /* Path properties */
41 struct pgpath {
42 struct list_head list;
43
44 struct priority_group *pg; /* Owning PG */
45 unsigned int fail_count; /* Cumulative failure count */
46
47 struct dm_path path;
48 struct delayed_work activate_path;
49
50 bool is_active:1; /* Path status */
51 };
52
53 #define path_to_pgpath(__pgp) container_of((__pgp), struct pgpath, path)
54
55 /*
56 * Paths are grouped into Priority Groups and numbered from 1 upwards.
57 * Each has a path selector which controls which path gets used.
58 */
59 struct priority_group {
60 struct list_head list;
61
62 struct multipath *m; /* Owning multipath instance */
63 struct path_selector ps;
64
65 unsigned int pg_num; /* Reference number */
66 unsigned int nr_pgpaths; /* Number of paths in PG */
67 struct list_head pgpaths;
68
69 bool bypassed:1; /* Temporarily bypass this PG? */
70 };
71
72 /* Multipath context */
73 struct multipath {
74 unsigned long flags; /* Multipath state flags */
75
76 spinlock_t lock;
77 enum dm_queue_mode queue_mode;
78
79 struct pgpath *current_pgpath;
80 struct priority_group *current_pg;
81 struct priority_group *next_pg; /* Switch to this PG if set */
82 struct priority_group *last_probed_pg;
83
84 atomic_t nr_valid_paths; /* Total number of usable paths */
85 unsigned int nr_priority_groups;
86 struct list_head priority_groups;
87
88 const char *hw_handler_name;
89 char *hw_handler_params;
90 wait_queue_head_t pg_init_wait; /* Wait for pg_init completion */
91 wait_queue_head_t probe_wait; /* Wait for probing paths */
92 unsigned int pg_init_retries; /* Number of times to retry pg_init */
93 unsigned int pg_init_delay_msecs; /* Number of msecs before pg_init retry */
94 atomic_t pg_init_in_progress; /* Only one pg_init allowed at once */
95 atomic_t pg_init_count; /* Number of times pg_init called */
96
97 struct mutex work_mutex;
98 struct work_struct trigger_event;
99 struct dm_target *ti;
100
101 struct work_struct process_queued_bios;
102 struct bio_list queued_bios;
103
104 struct timer_list nopath_timer; /* Timeout for queue_if_no_path */
105 bool is_suspending;
106 };
107
108 /*
109 * Context information attached to each io we process.
110 */
111 struct dm_mpath_io {
112 struct pgpath *pgpath;
113 size_t nr_bytes;
114 u64 start_time_ns;
115 };
116
117 typedef int (*action_fn) (struct pgpath *pgpath);
118
119 static struct workqueue_struct *kmultipathd, *kmpath_handlerd;
120 static void trigger_event(struct work_struct *work);
121 static void activate_or_offline_path(struct pgpath *pgpath);
122 static void activate_path_work(struct work_struct *work);
123 static void process_queued_bios(struct work_struct *work);
124 static void queue_if_no_path_timeout_work(struct timer_list *t);
125
126 /*
127 *-----------------------------------------------
128 * Multipath state flags.
129 *-----------------------------------------------
130 */
131 #define MPATHF_QUEUE_IO 0 /* Must we queue all I/O? */
132 #define MPATHF_QUEUE_IF_NO_PATH 1 /* Queue I/O if last path fails? */
133 #define MPATHF_SAVED_QUEUE_IF_NO_PATH 2 /* Saved state during suspension */
134 /* MPATHF_RETAIN_ATTACHED_HW_HANDLER no longer has any effect */
135 #define MPATHF_PG_INIT_DISABLED 4 /* pg_init is not currently allowed */
136 #define MPATHF_PG_INIT_REQUIRED 5 /* pg_init needs calling? */
137 #define MPATHF_PG_INIT_DELAY_RETRY 6 /* Delay pg_init retry? */
138 #define MPATHF_DELAY_PG_SWITCH 7 /* Delay switching pg if it still has paths */
139 #define MPATHF_NEED_PG_SWITCH 8 /* Need to switch pgs after the delay has ended */
140
mpath_double_check_test_bit(int MPATHF_bit,struct multipath * m)141 static bool mpath_double_check_test_bit(int MPATHF_bit, struct multipath *m)
142 {
143 bool r = test_bit(MPATHF_bit, &m->flags);
144
145 if (r) {
146 unsigned long flags;
147
148 spin_lock_irqsave(&m->lock, flags);
149 r = test_bit(MPATHF_bit, &m->flags);
150 spin_unlock_irqrestore(&m->lock, flags);
151 }
152
153 return r;
154 }
155
156 /*
157 *-----------------------------------------------
158 * Allocation routines
159 *-----------------------------------------------
160 */
alloc_pgpath(void)161 static struct pgpath *alloc_pgpath(void)
162 {
163 struct pgpath *pgpath = kzalloc(sizeof(*pgpath), GFP_KERNEL);
164
165 if (!pgpath)
166 return NULL;
167
168 pgpath->is_active = true;
169
170 return pgpath;
171 }
172
free_pgpath(struct pgpath * pgpath)173 static void free_pgpath(struct pgpath *pgpath)
174 {
175 kfree(pgpath);
176 }
177
alloc_priority_group(void)178 static struct priority_group *alloc_priority_group(void)
179 {
180 struct priority_group *pg;
181
182 pg = kzalloc(sizeof(*pg), GFP_KERNEL);
183
184 if (pg)
185 INIT_LIST_HEAD(&pg->pgpaths);
186
187 return pg;
188 }
189
free_pgpaths(struct list_head * pgpaths,struct dm_target * ti)190 static void free_pgpaths(struct list_head *pgpaths, struct dm_target *ti)
191 {
192 struct pgpath *pgpath, *tmp;
193
194 list_for_each_entry_safe(pgpath, tmp, pgpaths, list) {
195 list_del(&pgpath->list);
196 dm_put_device(ti, pgpath->path.dev);
197 free_pgpath(pgpath);
198 }
199 }
200
free_priority_group(struct priority_group * pg,struct dm_target * ti)201 static void free_priority_group(struct priority_group *pg,
202 struct dm_target *ti)
203 {
204 struct path_selector *ps = &pg->ps;
205
206 if (ps->type) {
207 ps->type->destroy(ps);
208 dm_put_path_selector(ps->type);
209 }
210
211 free_pgpaths(&pg->pgpaths, ti);
212 kfree(pg);
213 }
214
alloc_multipath(struct dm_target * ti)215 static struct multipath *alloc_multipath(struct dm_target *ti)
216 {
217 struct multipath *m;
218
219 m = kzalloc(sizeof(*m), GFP_KERNEL);
220 if (m) {
221 INIT_LIST_HEAD(&m->priority_groups);
222 spin_lock_init(&m->lock);
223 atomic_set(&m->nr_valid_paths, 0);
224 INIT_WORK(&m->trigger_event, trigger_event);
225 mutex_init(&m->work_mutex);
226
227 m->queue_mode = DM_TYPE_NONE;
228
229 m->ti = ti;
230 ti->private = m;
231
232 timer_setup(&m->nopath_timer, queue_if_no_path_timeout_work, 0);
233 }
234
235 return m;
236 }
237
alloc_multipath_stage2(struct dm_target * ti,struct multipath * m)238 static int alloc_multipath_stage2(struct dm_target *ti, struct multipath *m)
239 {
240 if (m->queue_mode == DM_TYPE_NONE)
241 m->queue_mode = DM_TYPE_REQUEST_BASED;
242 else if (m->queue_mode == DM_TYPE_BIO_BASED)
243 INIT_WORK(&m->process_queued_bios, process_queued_bios);
244
245 dm_table_set_type(ti->table, m->queue_mode);
246
247 /*
248 * Init fields that are only used when a scsi_dh is attached
249 * - must do this unconditionally (really doesn't hurt non-SCSI uses)
250 */
251 set_bit(MPATHF_QUEUE_IO, &m->flags);
252 atomic_set(&m->pg_init_in_progress, 0);
253 atomic_set(&m->pg_init_count, 0);
254 m->pg_init_delay_msecs = DM_PG_INIT_DELAY_DEFAULT;
255 init_waitqueue_head(&m->pg_init_wait);
256 init_waitqueue_head(&m->probe_wait);
257
258 return 0;
259 }
260
free_multipath(struct multipath * m)261 static void free_multipath(struct multipath *m)
262 {
263 struct priority_group *pg, *tmp;
264
265 list_for_each_entry_safe(pg, tmp, &m->priority_groups, list) {
266 list_del(&pg->list);
267 free_priority_group(pg, m->ti);
268 }
269
270 kfree(m->hw_handler_name);
271 kfree(m->hw_handler_params);
272 mutex_destroy(&m->work_mutex);
273 kfree(m);
274 }
275
get_mpio(union map_info * info)276 static struct dm_mpath_io *get_mpio(union map_info *info)
277 {
278 return info->ptr;
279 }
280
multipath_per_bio_data_size(void)281 static size_t multipath_per_bio_data_size(void)
282 {
283 return sizeof(struct dm_mpath_io) + sizeof(struct dm_bio_details);
284 }
285
get_mpio_from_bio(struct bio * bio)286 static struct dm_mpath_io *get_mpio_from_bio(struct bio *bio)
287 {
288 return dm_per_bio_data(bio, multipath_per_bio_data_size());
289 }
290
get_bio_details_from_mpio(struct dm_mpath_io * mpio)291 static struct dm_bio_details *get_bio_details_from_mpio(struct dm_mpath_io *mpio)
292 {
293 /* dm_bio_details is immediately after the dm_mpath_io in bio's per-bio-data */
294 void *bio_details = mpio + 1;
295 return bio_details;
296 }
297
multipath_init_per_bio_data(struct bio * bio,struct dm_mpath_io ** mpio_p)298 static void multipath_init_per_bio_data(struct bio *bio, struct dm_mpath_io **mpio_p)
299 {
300 struct dm_mpath_io *mpio = get_mpio_from_bio(bio);
301 struct dm_bio_details *bio_details = get_bio_details_from_mpio(mpio);
302
303 mpio->nr_bytes = bio->bi_iter.bi_size;
304 mpio->pgpath = NULL;
305 mpio->start_time_ns = 0;
306 *mpio_p = mpio;
307
308 dm_bio_record(bio_details, bio);
309 }
310
311 /*
312 *-----------------------------------------------
313 * Path selection
314 *-----------------------------------------------
315 */
__pg_init_all_paths(struct multipath * m)316 static int __pg_init_all_paths(struct multipath *m)
317 {
318 struct pgpath *pgpath;
319 unsigned long pg_init_delay = 0;
320
321 lockdep_assert_held(&m->lock);
322
323 if (atomic_read(&m->pg_init_in_progress) || test_bit(MPATHF_PG_INIT_DISABLED, &m->flags))
324 return 0;
325
326 atomic_inc(&m->pg_init_count);
327 clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
328
329 /* Check here to reset pg_init_required */
330 if (!m->current_pg)
331 return 0;
332
333 if (test_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags))
334 pg_init_delay = msecs_to_jiffies(m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT ?
335 m->pg_init_delay_msecs : DM_PG_INIT_DELAY_MSECS);
336 list_for_each_entry(pgpath, &m->current_pg->pgpaths, list) {
337 /* Skip failed paths */
338 if (!pgpath->is_active)
339 continue;
340 if (queue_delayed_work(kmpath_handlerd, &pgpath->activate_path,
341 pg_init_delay))
342 atomic_inc(&m->pg_init_in_progress);
343 }
344 return atomic_read(&m->pg_init_in_progress);
345 }
346
pg_init_all_paths(struct multipath * m)347 static int pg_init_all_paths(struct multipath *m)
348 {
349 int ret;
350 unsigned long flags;
351
352 spin_lock_irqsave(&m->lock, flags);
353 ret = __pg_init_all_paths(m);
354 spin_unlock_irqrestore(&m->lock, flags);
355
356 return ret;
357 }
358
__switch_pg(struct multipath * m,struct priority_group * pg)359 static void __switch_pg(struct multipath *m, struct priority_group *pg)
360 {
361 lockdep_assert_held(&m->lock);
362
363 m->current_pg = pg;
364
365 /* Must we initialise the PG first, and queue I/O till it's ready? */
366 if (m->hw_handler_name) {
367 set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
368 set_bit(MPATHF_QUEUE_IO, &m->flags);
369 } else {
370 clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
371 clear_bit(MPATHF_QUEUE_IO, &m->flags);
372 }
373
374 atomic_set(&m->pg_init_count, 0);
375 }
376
choose_path_in_pg(struct multipath * m,struct priority_group * pg,size_t nr_bytes)377 static struct pgpath *choose_path_in_pg(struct multipath *m,
378 struct priority_group *pg,
379 size_t nr_bytes)
380 {
381 unsigned long flags;
382 struct dm_path *path;
383 struct pgpath *pgpath;
384
385 path = pg->ps.type->select_path(&pg->ps, nr_bytes);
386 if (!path)
387 return ERR_PTR(-ENXIO);
388
389 pgpath = path_to_pgpath(path);
390
391 if (unlikely(READ_ONCE(m->current_pg) != pg)) {
392 /* Only update current_pgpath if pg changed */
393 spin_lock_irqsave(&m->lock, flags);
394 m->current_pgpath = pgpath;
395 __switch_pg(m, pg);
396 spin_unlock_irqrestore(&m->lock, flags);
397 }
398
399 return pgpath;
400 }
401
choose_pgpath(struct multipath * m,size_t nr_bytes)402 static struct pgpath *choose_pgpath(struct multipath *m, size_t nr_bytes)
403 {
404 unsigned long flags;
405 struct priority_group *pg;
406 struct pgpath *pgpath;
407 unsigned int bypassed = 1;
408
409 if (!atomic_read(&m->nr_valid_paths)) {
410 spin_lock_irqsave(&m->lock, flags);
411 clear_bit(MPATHF_QUEUE_IO, &m->flags);
412 spin_unlock_irqrestore(&m->lock, flags);
413 goto failed;
414 }
415
416 /* Don't change PG until it has no remaining paths */
417 pg = READ_ONCE(m->current_pg);
418 if (pg) {
419 pgpath = choose_path_in_pg(m, pg, nr_bytes);
420 if (!IS_ERR_OR_NULL(pgpath))
421 return pgpath;
422 }
423
424 /* Were we instructed to switch PG? */
425 if (READ_ONCE(m->next_pg)) {
426 spin_lock_irqsave(&m->lock, flags);
427 pg = m->next_pg;
428 if (!pg) {
429 spin_unlock_irqrestore(&m->lock, flags);
430 goto check_all_pgs;
431 }
432 m->next_pg = NULL;
433 spin_unlock_irqrestore(&m->lock, flags);
434 pgpath = choose_path_in_pg(m, pg, nr_bytes);
435 if (!IS_ERR_OR_NULL(pgpath))
436 return pgpath;
437 }
438 check_all_pgs:
439 /*
440 * Loop through priority groups until we find a valid path.
441 * First time we skip PGs marked 'bypassed'.
442 * Second time we only try the ones we skipped, but set
443 * pg_init_delay_retry so we do not hammer controllers.
444 */
445 do {
446 list_for_each_entry(pg, &m->priority_groups, list) {
447 if (pg->bypassed == !!bypassed)
448 continue;
449 pgpath = choose_path_in_pg(m, pg, nr_bytes);
450 if (!IS_ERR_OR_NULL(pgpath)) {
451 if (!bypassed) {
452 spin_lock_irqsave(&m->lock, flags);
453 set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
454 spin_unlock_irqrestore(&m->lock, flags);
455 }
456 return pgpath;
457 }
458 }
459 } while (bypassed--);
460
461 failed:
462 spin_lock_irqsave(&m->lock, flags);
463 m->current_pgpath = NULL;
464 m->current_pg = NULL;
465 spin_unlock_irqrestore(&m->lock, flags);
466
467 return NULL;
468 }
469
470 /*
471 * dm_report_EIO() is a macro instead of a function to make pr_debug_ratelimited()
472 * report the function name and line number of the function from which
473 * it has been invoked.
474 */
475 #define dm_report_EIO(m) \
476 DMDEBUG_LIMIT("%s: returning EIO; QIFNP = %d; SQIFNP = %d; DNFS = %d", \
477 dm_table_device_name((m)->ti->table), \
478 test_bit(MPATHF_QUEUE_IF_NO_PATH, &(m)->flags), \
479 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &(m)->flags), \
480 dm_noflush_suspending((m)->ti))
481
482 /*
483 * Check whether bios must be queued in the device-mapper core rather
484 * than here in the target.
485 */
__must_push_back(struct multipath * m)486 static bool __must_push_back(struct multipath *m)
487 {
488 return dm_noflush_suspending(m->ti);
489 }
490
must_push_back_rq(struct multipath * m)491 static bool must_push_back_rq(struct multipath *m)
492 {
493 unsigned long flags;
494 bool ret;
495
496 spin_lock_irqsave(&m->lock, flags);
497 ret = (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags) || __must_push_back(m));
498 spin_unlock_irqrestore(&m->lock, flags);
499
500 return ret;
501 }
502
503 /*
504 * Map cloned requests (request-based multipath)
505 */
multipath_clone_and_map(struct dm_target * ti,struct request * rq,union map_info * map_context,struct request ** __clone)506 static int multipath_clone_and_map(struct dm_target *ti, struct request *rq,
507 union map_info *map_context,
508 struct request **__clone)
509 {
510 struct multipath *m = ti->private;
511 size_t nr_bytes = blk_rq_bytes(rq);
512 struct pgpath *pgpath;
513 struct block_device *bdev;
514 struct dm_mpath_io *mpio = get_mpio(map_context);
515 struct request_queue *q;
516 struct request *clone;
517
518 /* Do we need to select a new pgpath? */
519 pgpath = READ_ONCE(m->current_pgpath);
520 if (!pgpath || !mpath_double_check_test_bit(MPATHF_QUEUE_IO, m))
521 pgpath = choose_pgpath(m, nr_bytes);
522
523 if (!pgpath) {
524 if (must_push_back_rq(m))
525 return DM_MAPIO_DELAY_REQUEUE;
526 dm_report_EIO(m); /* Failed */
527 return DM_MAPIO_KILL;
528 } else if (mpath_double_check_test_bit(MPATHF_QUEUE_IO, m) ||
529 mpath_double_check_test_bit(MPATHF_PG_INIT_REQUIRED, m)) {
530 pg_init_all_paths(m);
531 return DM_MAPIO_DELAY_REQUEUE;
532 }
533
534 mpio->pgpath = pgpath;
535 mpio->nr_bytes = nr_bytes;
536
537 bdev = pgpath->path.dev->bdev;
538 q = bdev_get_queue(bdev);
539 clone = blk_mq_alloc_request(q, rq->cmd_flags | REQ_NOMERGE,
540 BLK_MQ_REQ_NOWAIT);
541 if (IS_ERR(clone)) {
542 /* EBUSY, ENODEV or EWOULDBLOCK: requeue */
543 if (blk_queue_dying(q)) {
544 atomic_inc(&m->pg_init_in_progress);
545 activate_or_offline_path(pgpath);
546 return DM_MAPIO_DELAY_REQUEUE;
547 }
548
549 /*
550 * blk-mq's SCHED_RESTART can cover this requeue, so we
551 * needn't deal with it by DELAY_REQUEUE. More importantly,
552 * we have to return DM_MAPIO_REQUEUE so that blk-mq can
553 * get the queue busy feedback (via BLK_STS_RESOURCE),
554 * otherwise I/O merging can suffer.
555 */
556 return DM_MAPIO_REQUEUE;
557 }
558 clone->bio = clone->biotail = NULL;
559 clone->cmd_flags |= REQ_FAILFAST_TRANSPORT;
560 *__clone = clone;
561
562 if (pgpath->pg->ps.type->start_io)
563 pgpath->pg->ps.type->start_io(&pgpath->pg->ps,
564 &pgpath->path,
565 nr_bytes);
566 return DM_MAPIO_REMAPPED;
567 }
568
multipath_release_clone(struct request * clone,union map_info * map_context)569 static void multipath_release_clone(struct request *clone,
570 union map_info *map_context)
571 {
572 if (unlikely(map_context)) {
573 /*
574 * non-NULL map_context means caller is still map
575 * method; must undo multipath_clone_and_map()
576 */
577 struct dm_mpath_io *mpio = get_mpio(map_context);
578 struct pgpath *pgpath = mpio->pgpath;
579
580 if (pgpath && pgpath->pg->ps.type->end_io)
581 pgpath->pg->ps.type->end_io(&pgpath->pg->ps,
582 &pgpath->path,
583 mpio->nr_bytes,
584 clone->io_start_time_ns);
585 }
586
587 blk_mq_free_request(clone);
588 }
589
590 /*
591 * Map cloned bios (bio-based multipath)
592 */
593
__multipath_queue_bio(struct multipath * m,struct bio * bio)594 static void __multipath_queue_bio(struct multipath *m, struct bio *bio)
595 {
596 /* Queue for the daemon to resubmit */
597 bio_list_add(&m->queued_bios, bio);
598 if (!test_bit(MPATHF_QUEUE_IO, &m->flags))
599 queue_work(kmultipathd, &m->process_queued_bios);
600 }
601
multipath_queue_bio(struct multipath * m,struct bio * bio)602 static void multipath_queue_bio(struct multipath *m, struct bio *bio)
603 {
604 unsigned long flags;
605
606 spin_lock_irqsave(&m->lock, flags);
607 __multipath_queue_bio(m, bio);
608 spin_unlock_irqrestore(&m->lock, flags);
609 }
610
__map_bio(struct multipath * m,struct bio * bio)611 static struct pgpath *__map_bio(struct multipath *m, struct bio *bio)
612 {
613 struct pgpath *pgpath;
614
615 /* Do we need to select a new pgpath? */
616 pgpath = READ_ONCE(m->current_pgpath);
617 if (!pgpath || !mpath_double_check_test_bit(MPATHF_QUEUE_IO, m))
618 pgpath = choose_pgpath(m, bio->bi_iter.bi_size);
619
620 if (!pgpath) {
621 spin_lock_irq(&m->lock);
622 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) {
623 __multipath_queue_bio(m, bio);
624 pgpath = ERR_PTR(-EAGAIN);
625 }
626 spin_unlock_irq(&m->lock);
627
628 } else if (mpath_double_check_test_bit(MPATHF_QUEUE_IO, m) ||
629 mpath_double_check_test_bit(MPATHF_PG_INIT_REQUIRED, m)) {
630 multipath_queue_bio(m, bio);
631 pg_init_all_paths(m);
632 return ERR_PTR(-EAGAIN);
633 }
634
635 return pgpath;
636 }
637
__multipath_map_bio(struct multipath * m,struct bio * bio,struct dm_mpath_io * mpio)638 static int __multipath_map_bio(struct multipath *m, struct bio *bio,
639 struct dm_mpath_io *mpio)
640 {
641 struct pgpath *pgpath = __map_bio(m, bio);
642
643 if (IS_ERR(pgpath))
644 return DM_MAPIO_SUBMITTED;
645
646 if (!pgpath) {
647 if (__must_push_back(m))
648 return DM_MAPIO_REQUEUE;
649 dm_report_EIO(m);
650 return DM_MAPIO_KILL;
651 }
652
653 mpio->pgpath = pgpath;
654
655 if (dm_ps_use_hr_timer(pgpath->pg->ps.type))
656 mpio->start_time_ns = ktime_get_ns();
657
658 bio->bi_status = 0;
659 bio_set_dev(bio, pgpath->path.dev->bdev);
660 bio->bi_opf |= REQ_FAILFAST_TRANSPORT;
661
662 if (pgpath->pg->ps.type->start_io)
663 pgpath->pg->ps.type->start_io(&pgpath->pg->ps,
664 &pgpath->path,
665 mpio->nr_bytes);
666 return DM_MAPIO_REMAPPED;
667 }
668
multipath_map_bio(struct dm_target * ti,struct bio * bio)669 static int multipath_map_bio(struct dm_target *ti, struct bio *bio)
670 {
671 struct multipath *m = ti->private;
672 struct dm_mpath_io *mpio = NULL;
673
674 multipath_init_per_bio_data(bio, &mpio);
675 return __multipath_map_bio(m, bio, mpio);
676 }
677
process_queued_io_list(struct multipath * m)678 static void process_queued_io_list(struct multipath *m)
679 {
680 if (m->queue_mode == DM_TYPE_REQUEST_BASED)
681 dm_mq_kick_requeue_list(dm_table_get_md(m->ti->table));
682 else if (m->queue_mode == DM_TYPE_BIO_BASED)
683 queue_work(kmultipathd, &m->process_queued_bios);
684 }
685
process_queued_bios(struct work_struct * work)686 static void process_queued_bios(struct work_struct *work)
687 {
688 int r;
689 struct bio *bio;
690 struct bio_list bios;
691 struct blk_plug plug;
692 struct multipath *m =
693 container_of(work, struct multipath, process_queued_bios);
694
695 bio_list_init(&bios);
696
697 spin_lock_irq(&m->lock);
698
699 if (bio_list_empty(&m->queued_bios)) {
700 spin_unlock_irq(&m->lock);
701 return;
702 }
703
704 bio_list_merge_init(&bios, &m->queued_bios);
705
706 spin_unlock_irq(&m->lock);
707
708 blk_start_plug(&plug);
709 while ((bio = bio_list_pop(&bios))) {
710 struct dm_mpath_io *mpio = get_mpio_from_bio(bio);
711
712 dm_bio_restore(get_bio_details_from_mpio(mpio), bio);
713 r = __multipath_map_bio(m, bio, mpio);
714 switch (r) {
715 case DM_MAPIO_KILL:
716 bio->bi_status = BLK_STS_IOERR;
717 bio_endio(bio);
718 break;
719 case DM_MAPIO_REQUEUE:
720 bio->bi_status = BLK_STS_DM_REQUEUE;
721 bio_endio(bio);
722 break;
723 case DM_MAPIO_REMAPPED:
724 submit_bio_noacct(bio);
725 break;
726 case DM_MAPIO_SUBMITTED:
727 break;
728 default:
729 WARN_ONCE(true, "__multipath_map_bio() returned %d\n", r);
730 }
731 }
732 blk_finish_plug(&plug);
733 }
734
735 /*
736 * If we run out of usable paths, should we queue I/O or error it?
737 */
queue_if_no_path(struct multipath * m,bool f_queue_if_no_path,bool save_old_value,const char * caller)738 static int queue_if_no_path(struct multipath *m, bool f_queue_if_no_path,
739 bool save_old_value, const char *caller)
740 {
741 unsigned long flags;
742 bool queue_if_no_path_bit, saved_queue_if_no_path_bit;
743 const char *dm_dev_name = dm_table_device_name(m->ti->table);
744
745 DMDEBUG("%s: %s caller=%s f_queue_if_no_path=%d save_old_value=%d",
746 dm_dev_name, __func__, caller, f_queue_if_no_path, save_old_value);
747
748 spin_lock_irqsave(&m->lock, flags);
749
750 queue_if_no_path_bit = test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags);
751 saved_queue_if_no_path_bit = test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags);
752
753 if (save_old_value) {
754 if (unlikely(!queue_if_no_path_bit && saved_queue_if_no_path_bit)) {
755 DMERR("%s: QIFNP disabled but saved as enabled, saving again loses state, not saving!",
756 dm_dev_name);
757 } else
758 assign_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags, queue_if_no_path_bit);
759 } else if (!f_queue_if_no_path && saved_queue_if_no_path_bit) {
760 /* due to "fail_if_no_path" message, need to honor it. */
761 clear_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags);
762 }
763 assign_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags, f_queue_if_no_path);
764
765 DMDEBUG("%s: after %s changes; QIFNP = %d; SQIFNP = %d; DNFS = %d",
766 dm_dev_name, __func__,
767 test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags),
768 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags),
769 dm_noflush_suspending(m->ti));
770
771 spin_unlock_irqrestore(&m->lock, flags);
772
773 if (!f_queue_if_no_path) {
774 dm_table_run_md_queue_async(m->ti->table);
775 process_queued_io_list(m);
776 }
777
778 return 0;
779 }
780
781 /*
782 * If the queue_if_no_path timeout fires, turn off queue_if_no_path and
783 * process any queued I/O.
784 */
queue_if_no_path_timeout_work(struct timer_list * t)785 static void queue_if_no_path_timeout_work(struct timer_list *t)
786 {
787 struct multipath *m = timer_container_of(m, t, nopath_timer);
788
789 DMWARN("queue_if_no_path timeout on %s, failing queued IO",
790 dm_table_device_name(m->ti->table));
791 queue_if_no_path(m, false, false, __func__);
792 }
793
794 /*
795 * Enable the queue_if_no_path timeout if necessary.
796 * Called with m->lock held.
797 */
enable_nopath_timeout(struct multipath * m)798 static void enable_nopath_timeout(struct multipath *m)
799 {
800 unsigned long queue_if_no_path_timeout =
801 READ_ONCE(queue_if_no_path_timeout_secs) * HZ;
802
803 lockdep_assert_held(&m->lock);
804
805 if (queue_if_no_path_timeout > 0 &&
806 atomic_read(&m->nr_valid_paths) == 0 &&
807 test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) {
808 mod_timer(&m->nopath_timer,
809 jiffies + queue_if_no_path_timeout);
810 }
811 }
812
disable_nopath_timeout(struct multipath * m)813 static void disable_nopath_timeout(struct multipath *m)
814 {
815 timer_delete_sync(&m->nopath_timer);
816 }
817
818 /*
819 * An event is triggered whenever a path is taken out of use.
820 * Includes path failure and PG bypass.
821 */
trigger_event(struct work_struct * work)822 static void trigger_event(struct work_struct *work)
823 {
824 struct multipath *m =
825 container_of(work, struct multipath, trigger_event);
826
827 dm_table_event(m->ti->table);
828 }
829
830 /*
831 *---------------------------------------------------------------
832 * Constructor/argument parsing:
833 * <#multipath feature args> [<arg>]*
834 * <#hw_handler args> [hw_handler [<arg>]*]
835 * <#priority groups>
836 * <initial priority group>
837 * [<selector> <#selector args> [<arg>]*
838 * <#paths> <#per-path selector args>
839 * [<path> [<arg>]* ]+ ]+
840 *---------------------------------------------------------------
841 */
parse_path_selector(struct dm_arg_set * as,struct priority_group * pg,struct dm_target * ti)842 static int parse_path_selector(struct dm_arg_set *as, struct priority_group *pg,
843 struct dm_target *ti)
844 {
845 int r;
846 struct path_selector_type *pst;
847 unsigned int ps_argc;
848
849 static const struct dm_arg _args[] = {
850 {0, 1024, "invalid number of path selector args"},
851 };
852
853 pst = dm_get_path_selector(dm_shift_arg(as));
854 if (!pst) {
855 ti->error = "unknown path selector type";
856 return -EINVAL;
857 }
858
859 r = dm_read_arg_group(_args, as, &ps_argc, &ti->error);
860 if (r) {
861 dm_put_path_selector(pst);
862 return -EINVAL;
863 }
864
865 r = pst->create(&pg->ps, ps_argc, as->argv);
866 if (r) {
867 dm_put_path_selector(pst);
868 ti->error = "path selector constructor failed";
869 return r;
870 }
871
872 pg->ps.type = pst;
873 dm_consume_args(as, ps_argc);
874
875 return 0;
876 }
877
setup_scsi_dh(struct block_device * bdev,struct multipath * m,const char ** attached_handler_name,char ** error)878 static int setup_scsi_dh(struct block_device *bdev, struct multipath *m,
879 const char **attached_handler_name, char **error)
880 {
881 struct request_queue *q = bdev_get_queue(bdev);
882 int r;
883
884 if (*attached_handler_name) {
885 /*
886 * Clear any hw_handler_params associated with a
887 * handler that isn't already attached.
888 */
889 if (m->hw_handler_name && strcmp(*attached_handler_name,
890 m->hw_handler_name)) {
891 kfree(m->hw_handler_params);
892 m->hw_handler_params = NULL;
893 }
894
895 /*
896 * Reset hw_handler_name to match the attached handler
897 *
898 * NB. This modifies the table line to show the actual
899 * handler instead of the original table passed in.
900 */
901 kfree(m->hw_handler_name);
902 m->hw_handler_name = *attached_handler_name;
903 *attached_handler_name = NULL;
904 }
905
906 if (m->hw_handler_name) {
907 r = scsi_dh_attach(q, m->hw_handler_name);
908 if (r < 0) {
909 *error = "error attaching hardware handler";
910 return r;
911 }
912
913 if (m->hw_handler_params) {
914 r = scsi_dh_set_params(q, m->hw_handler_params);
915 if (r < 0) {
916 *error = "unable to set hardware handler parameters";
917 return r;
918 }
919 }
920 }
921
922 return 0;
923 }
924
parse_path(struct dm_arg_set * as,struct path_selector * ps,struct dm_target * ti)925 static struct pgpath *parse_path(struct dm_arg_set *as, struct path_selector *ps,
926 struct dm_target *ti)
927 {
928 int r;
929 struct pgpath *p;
930 struct multipath *m = ti->private;
931 struct request_queue *q;
932 const char *attached_handler_name = NULL;
933
934 /* we need at least a path arg */
935 if (as->argc < 1) {
936 ti->error = "no device given";
937 return ERR_PTR(-EINVAL);
938 }
939
940 p = alloc_pgpath();
941 if (!p)
942 return ERR_PTR(-ENOMEM);
943
944 r = dm_get_device(ti, dm_shift_arg(as), dm_table_get_mode(ti->table),
945 &p->path.dev);
946 if (r) {
947 ti->error = "error getting device";
948 goto bad;
949 }
950
951 q = bdev_get_queue(p->path.dev->bdev);
952 attached_handler_name = scsi_dh_attached_handler_name(q, GFP_KERNEL);
953 if (attached_handler_name || m->hw_handler_name) {
954 INIT_DELAYED_WORK(&p->activate_path, activate_path_work);
955 r = setup_scsi_dh(p->path.dev->bdev, m, &attached_handler_name, &ti->error);
956 kfree(attached_handler_name);
957 if (r) {
958 dm_put_device(ti, p->path.dev);
959 goto bad;
960 }
961 }
962
963 r = ps->type->add_path(ps, &p->path, as->argc, as->argv, &ti->error);
964 if (r) {
965 dm_put_device(ti, p->path.dev);
966 goto bad;
967 }
968
969 return p;
970 bad:
971 free_pgpath(p);
972 return ERR_PTR(r);
973 }
974
parse_priority_group(struct dm_arg_set * as,struct multipath * m)975 static struct priority_group *parse_priority_group(struct dm_arg_set *as,
976 struct multipath *m)
977 {
978 static const struct dm_arg _args[] = {
979 {1, 1024, "invalid number of paths"},
980 {0, 1024, "invalid number of selector args"}
981 };
982
983 int r;
984 unsigned int i, nr_selector_args, nr_args;
985 struct priority_group *pg;
986 struct dm_target *ti = m->ti;
987
988 if (as->argc < 2) {
989 as->argc = 0;
990 ti->error = "not enough priority group arguments";
991 return ERR_PTR(-EINVAL);
992 }
993
994 pg = alloc_priority_group();
995 if (!pg) {
996 ti->error = "couldn't allocate priority group";
997 return ERR_PTR(-ENOMEM);
998 }
999 pg->m = m;
1000
1001 r = parse_path_selector(as, pg, ti);
1002 if (r)
1003 goto bad;
1004
1005 /*
1006 * read the paths
1007 */
1008 r = dm_read_arg(_args, as, &pg->nr_pgpaths, &ti->error);
1009 if (r)
1010 goto bad;
1011
1012 r = dm_read_arg(_args + 1, as, &nr_selector_args, &ti->error);
1013 if (r)
1014 goto bad;
1015
1016 nr_args = 1 + nr_selector_args;
1017 for (i = 0; i < pg->nr_pgpaths; i++) {
1018 struct pgpath *pgpath;
1019 struct dm_arg_set path_args;
1020
1021 if (as->argc < nr_args) {
1022 ti->error = "not enough path parameters";
1023 r = -EINVAL;
1024 goto bad;
1025 }
1026
1027 path_args.argc = nr_args;
1028 path_args.argv = as->argv;
1029
1030 pgpath = parse_path(&path_args, &pg->ps, ti);
1031 if (IS_ERR(pgpath)) {
1032 r = PTR_ERR(pgpath);
1033 goto bad;
1034 }
1035
1036 pgpath->pg = pg;
1037 list_add_tail(&pgpath->list, &pg->pgpaths);
1038 dm_consume_args(as, nr_args);
1039 }
1040
1041 return pg;
1042
1043 bad:
1044 free_priority_group(pg, ti);
1045 return ERR_PTR(r);
1046 }
1047
parse_hw_handler(struct dm_arg_set * as,struct multipath * m)1048 static int parse_hw_handler(struct dm_arg_set *as, struct multipath *m)
1049 {
1050 unsigned int hw_argc;
1051 int ret;
1052 struct dm_target *ti = m->ti;
1053
1054 static const struct dm_arg _args[] = {
1055 {0, 1024, "invalid number of hardware handler args"},
1056 };
1057
1058 if (dm_read_arg_group(_args, as, &hw_argc, &ti->error))
1059 return -EINVAL;
1060
1061 if (!hw_argc)
1062 return 0;
1063
1064 if (m->queue_mode == DM_TYPE_BIO_BASED) {
1065 dm_consume_args(as, hw_argc);
1066 DMERR("bio-based multipath doesn't allow hardware handler args");
1067 return 0;
1068 }
1069
1070 m->hw_handler_name = kstrdup(dm_shift_arg(as), GFP_KERNEL);
1071 if (!m->hw_handler_name)
1072 return -EINVAL;
1073
1074 if (hw_argc > 1) {
1075 char *p;
1076 int i, j, len = 4;
1077
1078 for (i = 0; i <= hw_argc - 2; i++)
1079 len += strlen(as->argv[i]) + 1;
1080 p = m->hw_handler_params = kzalloc(len, GFP_KERNEL);
1081 if (!p) {
1082 ti->error = "memory allocation failed";
1083 ret = -ENOMEM;
1084 goto fail;
1085 }
1086 j = sprintf(p, "%d", hw_argc - 1);
1087 for (i = 0, p += j + 1; i <= hw_argc - 2; i++, p += j + 1)
1088 j = sprintf(p, "%s", as->argv[i]);
1089 }
1090 dm_consume_args(as, hw_argc - 1);
1091
1092 return 0;
1093 fail:
1094 kfree(m->hw_handler_name);
1095 m->hw_handler_name = NULL;
1096 return ret;
1097 }
1098
parse_features(struct dm_arg_set * as,struct multipath * m)1099 static int parse_features(struct dm_arg_set *as, struct multipath *m)
1100 {
1101 int r;
1102 unsigned int argc;
1103 struct dm_target *ti = m->ti;
1104 const char *arg_name;
1105
1106 static const struct dm_arg _args[] = {
1107 {0, 8, "invalid number of feature args"},
1108 {1, 50, "pg_init_retries must be between 1 and 50"},
1109 {0, 60000, "pg_init_delay_msecs must be between 0 and 60000"},
1110 };
1111
1112 r = dm_read_arg_group(_args, as, &argc, &ti->error);
1113 if (r)
1114 return -EINVAL;
1115
1116 if (!argc)
1117 return 0;
1118
1119 do {
1120 arg_name = dm_shift_arg(as);
1121 argc--;
1122
1123 if (!strcasecmp(arg_name, "queue_if_no_path")) {
1124 r = queue_if_no_path(m, true, false, __func__);
1125 continue;
1126 }
1127
1128 if (!strcasecmp(arg_name, "retain_attached_hw_handler")) {
1129 /* no longer has any effect */
1130 continue;
1131 }
1132
1133 if (!strcasecmp(arg_name, "pg_init_retries") &&
1134 (argc >= 1)) {
1135 r = dm_read_arg(_args + 1, as, &m->pg_init_retries, &ti->error);
1136 argc--;
1137 continue;
1138 }
1139
1140 if (!strcasecmp(arg_name, "pg_init_delay_msecs") &&
1141 (argc >= 1)) {
1142 r = dm_read_arg(_args + 2, as, &m->pg_init_delay_msecs, &ti->error);
1143 argc--;
1144 continue;
1145 }
1146
1147 if (!strcasecmp(arg_name, "queue_mode") &&
1148 (argc >= 1)) {
1149 const char *queue_mode_name = dm_shift_arg(as);
1150
1151 if (!strcasecmp(queue_mode_name, "bio"))
1152 m->queue_mode = DM_TYPE_BIO_BASED;
1153 else if (!strcasecmp(queue_mode_name, "rq") ||
1154 !strcasecmp(queue_mode_name, "mq"))
1155 m->queue_mode = DM_TYPE_REQUEST_BASED;
1156 else {
1157 ti->error = "Unknown 'queue_mode' requested";
1158 r = -EINVAL;
1159 }
1160 argc--;
1161 continue;
1162 }
1163
1164 ti->error = "Unrecognised multipath feature request";
1165 r = -EINVAL;
1166 } while (argc && !r);
1167
1168 return r;
1169 }
1170
multipath_ctr(struct dm_target * ti,unsigned int argc,char ** argv)1171 static int multipath_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1172 {
1173 /* target arguments */
1174 static const struct dm_arg _args[] = {
1175 {0, 1024, "invalid number of priority groups"},
1176 {0, 1024, "invalid initial priority group number"},
1177 };
1178
1179 int r;
1180 struct multipath *m;
1181 struct dm_arg_set as;
1182 unsigned int pg_count = 0;
1183 unsigned int next_pg_num;
1184
1185 as.argc = argc;
1186 as.argv = argv;
1187
1188 m = alloc_multipath(ti);
1189 if (!m) {
1190 ti->error = "can't allocate multipath";
1191 return -EINVAL;
1192 }
1193
1194 r = parse_features(&as, m);
1195 if (r)
1196 goto bad;
1197
1198 r = alloc_multipath_stage2(ti, m);
1199 if (r)
1200 goto bad;
1201
1202 r = parse_hw_handler(&as, m);
1203 if (r)
1204 goto bad;
1205
1206 r = dm_read_arg(_args, &as, &m->nr_priority_groups, &ti->error);
1207 if (r)
1208 goto bad;
1209
1210 r = dm_read_arg(_args + 1, &as, &next_pg_num, &ti->error);
1211 if (r)
1212 goto bad;
1213
1214 if ((!m->nr_priority_groups && next_pg_num) ||
1215 (m->nr_priority_groups && !next_pg_num)) {
1216 ti->error = "invalid initial priority group";
1217 r = -EINVAL;
1218 goto bad;
1219 }
1220
1221 /* parse the priority groups */
1222 while (as.argc) {
1223 struct priority_group *pg;
1224 unsigned int nr_valid_paths = atomic_read(&m->nr_valid_paths);
1225
1226 pg = parse_priority_group(&as, m);
1227 if (IS_ERR(pg)) {
1228 r = PTR_ERR(pg);
1229 goto bad;
1230 }
1231
1232 nr_valid_paths += pg->nr_pgpaths;
1233 atomic_set(&m->nr_valid_paths, nr_valid_paths);
1234
1235 list_add_tail(&pg->list, &m->priority_groups);
1236 pg_count++;
1237 pg->pg_num = pg_count;
1238 if (!--next_pg_num)
1239 m->next_pg = pg;
1240 }
1241
1242 if (pg_count != m->nr_priority_groups) {
1243 ti->error = "priority group count mismatch";
1244 r = -EINVAL;
1245 goto bad;
1246 }
1247
1248 spin_lock_irq(&m->lock);
1249 enable_nopath_timeout(m);
1250 spin_unlock_irq(&m->lock);
1251
1252 ti->num_flush_bios = 1;
1253 ti->num_discard_bios = 1;
1254 ti->num_write_zeroes_bios = 1;
1255 if (m->queue_mode == DM_TYPE_BIO_BASED)
1256 ti->per_io_data_size = multipath_per_bio_data_size();
1257 else
1258 ti->per_io_data_size = sizeof(struct dm_mpath_io);
1259
1260 return 0;
1261
1262 bad:
1263 free_multipath(m);
1264 return r;
1265 }
1266
multipath_wait_for_pg_init_completion(struct multipath * m)1267 static void multipath_wait_for_pg_init_completion(struct multipath *m)
1268 {
1269 DEFINE_WAIT(wait);
1270
1271 while (1) {
1272 prepare_to_wait(&m->pg_init_wait, &wait, TASK_UNINTERRUPTIBLE);
1273
1274 if (!atomic_read(&m->pg_init_in_progress))
1275 break;
1276
1277 io_schedule();
1278 }
1279 finish_wait(&m->pg_init_wait, &wait);
1280 }
1281
flush_multipath_work(struct multipath * m)1282 static void flush_multipath_work(struct multipath *m)
1283 {
1284 if (m->hw_handler_name) {
1285 if (!atomic_read(&m->pg_init_in_progress))
1286 goto skip;
1287
1288 spin_lock_irq(&m->lock);
1289 if (atomic_read(&m->pg_init_in_progress) &&
1290 !test_and_set_bit(MPATHF_PG_INIT_DISABLED, &m->flags)) {
1291 spin_unlock_irq(&m->lock);
1292
1293 flush_workqueue(kmpath_handlerd);
1294 multipath_wait_for_pg_init_completion(m);
1295
1296 spin_lock_irq(&m->lock);
1297 clear_bit(MPATHF_PG_INIT_DISABLED, &m->flags);
1298 }
1299 spin_unlock_irq(&m->lock);
1300 }
1301 skip:
1302 if (m->queue_mode == DM_TYPE_BIO_BASED)
1303 flush_work(&m->process_queued_bios);
1304 flush_work(&m->trigger_event);
1305 }
1306
multipath_dtr(struct dm_target * ti)1307 static void multipath_dtr(struct dm_target *ti)
1308 {
1309 struct multipath *m = ti->private;
1310
1311 disable_nopath_timeout(m);
1312 flush_multipath_work(m);
1313 free_multipath(m);
1314 }
1315
1316 /*
1317 * Take a path out of use.
1318 */
fail_path(struct pgpath * pgpath)1319 static int fail_path(struct pgpath *pgpath)
1320 {
1321 unsigned long flags;
1322 struct multipath *m = pgpath->pg->m;
1323
1324 spin_lock_irqsave(&m->lock, flags);
1325
1326 if (!pgpath->is_active)
1327 goto out;
1328
1329 DMWARN("%s: Failing path %s.",
1330 dm_table_device_name(m->ti->table),
1331 pgpath->path.dev->name);
1332
1333 pgpath->pg->ps.type->fail_path(&pgpath->pg->ps, &pgpath->path);
1334 pgpath->is_active = false;
1335 pgpath->fail_count++;
1336
1337 atomic_dec(&m->nr_valid_paths);
1338
1339 if (pgpath == m->current_pgpath)
1340 m->current_pgpath = NULL;
1341
1342 dm_path_uevent(DM_UEVENT_PATH_FAILED, m->ti,
1343 pgpath->path.dev->name, atomic_read(&m->nr_valid_paths));
1344
1345 queue_work(dm_mpath_wq, &m->trigger_event);
1346
1347 enable_nopath_timeout(m);
1348
1349 out:
1350 spin_unlock_irqrestore(&m->lock, flags);
1351
1352 return 0;
1353 }
1354
1355 /*
1356 * Reinstate a previously-failed path
1357 */
reinstate_path(struct pgpath * pgpath)1358 static int reinstate_path(struct pgpath *pgpath)
1359 {
1360 int r = 0, run_queue = 0;
1361 struct multipath *m = pgpath->pg->m;
1362 unsigned int nr_valid_paths;
1363
1364 spin_lock_irq(&m->lock);
1365
1366 if (pgpath->is_active)
1367 goto out;
1368
1369 DMWARN("%s: Reinstating path %s.",
1370 dm_table_device_name(m->ti->table),
1371 pgpath->path.dev->name);
1372
1373 r = pgpath->pg->ps.type->reinstate_path(&pgpath->pg->ps, &pgpath->path);
1374 if (r)
1375 goto out;
1376
1377 pgpath->is_active = true;
1378
1379 nr_valid_paths = atomic_inc_return(&m->nr_valid_paths);
1380 if (nr_valid_paths == 1) {
1381 m->current_pgpath = NULL;
1382 run_queue = 1;
1383 } else if (m->hw_handler_name && (m->current_pg == pgpath->pg)) {
1384 if (queue_work(kmpath_handlerd, &pgpath->activate_path.work))
1385 atomic_inc(&m->pg_init_in_progress);
1386 }
1387
1388 dm_path_uevent(DM_UEVENT_PATH_REINSTATED, m->ti,
1389 pgpath->path.dev->name, nr_valid_paths);
1390
1391 schedule_work(&m->trigger_event);
1392
1393 out:
1394 spin_unlock_irq(&m->lock);
1395 if (run_queue) {
1396 dm_table_run_md_queue_async(m->ti->table);
1397 process_queued_io_list(m);
1398 }
1399
1400 if (pgpath->is_active)
1401 disable_nopath_timeout(m);
1402
1403 return r;
1404 }
1405
1406 /*
1407 * Fail or reinstate all paths that match the provided struct dm_dev.
1408 */
action_dev(struct multipath * m,dev_t dev,action_fn action)1409 static int action_dev(struct multipath *m, dev_t dev, action_fn action)
1410 {
1411 int r = -EINVAL;
1412 struct pgpath *pgpath;
1413 struct priority_group *pg;
1414
1415 list_for_each_entry(pg, &m->priority_groups, list) {
1416 list_for_each_entry(pgpath, &pg->pgpaths, list) {
1417 if (pgpath->path.dev->bdev->bd_dev == dev)
1418 r = action(pgpath);
1419 }
1420 }
1421
1422 return r;
1423 }
1424
1425 /*
1426 * Temporarily try to avoid having to use the specified PG
1427 */
bypass_pg(struct multipath * m,struct priority_group * pg,bool bypassed,bool can_be_delayed)1428 static void bypass_pg(struct multipath *m, struct priority_group *pg,
1429 bool bypassed, bool can_be_delayed)
1430 {
1431 unsigned long flags;
1432
1433 spin_lock_irqsave(&m->lock, flags);
1434
1435 pg->bypassed = bypassed;
1436 if (can_be_delayed && test_bit(MPATHF_DELAY_PG_SWITCH, &m->flags))
1437 set_bit(MPATHF_NEED_PG_SWITCH, &m->flags);
1438 else {
1439 m->current_pgpath = NULL;
1440 m->current_pg = NULL;
1441 }
1442
1443 spin_unlock_irqrestore(&m->lock, flags);
1444
1445 schedule_work(&m->trigger_event);
1446 }
1447
1448 /*
1449 * Switch to using the specified PG from the next I/O that gets mapped
1450 */
switch_pg_num(struct multipath * m,const char * pgstr)1451 static int switch_pg_num(struct multipath *m, const char *pgstr)
1452 {
1453 struct priority_group *pg;
1454 unsigned int pgnum;
1455 char dummy;
1456
1457 if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum ||
1458 !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) {
1459 DMWARN("invalid PG number supplied to %s", __func__);
1460 return -EINVAL;
1461 }
1462
1463 spin_lock_irq(&m->lock);
1464 list_for_each_entry(pg, &m->priority_groups, list) {
1465 pg->bypassed = false;
1466 if (--pgnum)
1467 continue;
1468
1469 if (test_bit(MPATHF_DELAY_PG_SWITCH, &m->flags))
1470 set_bit(MPATHF_NEED_PG_SWITCH, &m->flags);
1471 else {
1472 m->current_pgpath = NULL;
1473 m->current_pg = NULL;
1474 }
1475 m->next_pg = pg;
1476 }
1477 spin_unlock_irq(&m->lock);
1478
1479 schedule_work(&m->trigger_event);
1480 return 0;
1481 }
1482
1483 /*
1484 * Set/clear bypassed status of a PG.
1485 * PGs are numbered upwards from 1 in the order they were declared.
1486 */
bypass_pg_num(struct multipath * m,const char * pgstr,bool bypassed)1487 static int bypass_pg_num(struct multipath *m, const char *pgstr, bool bypassed)
1488 {
1489 struct priority_group *pg;
1490 unsigned int pgnum;
1491 char dummy;
1492
1493 if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum ||
1494 !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) {
1495 DMWARN("invalid PG number supplied to bypass_pg");
1496 return -EINVAL;
1497 }
1498
1499 list_for_each_entry(pg, &m->priority_groups, list) {
1500 if (!--pgnum)
1501 break;
1502 }
1503
1504 bypass_pg(m, pg, bypassed, true);
1505 return 0;
1506 }
1507
1508 /*
1509 * Should we retry pg_init immediately?
1510 */
pg_init_limit_reached(struct multipath * m,struct pgpath * pgpath)1511 static bool pg_init_limit_reached(struct multipath *m, struct pgpath *pgpath)
1512 {
1513 unsigned long flags;
1514 bool limit_reached = false;
1515
1516 spin_lock_irqsave(&m->lock, flags);
1517
1518 if (atomic_read(&m->pg_init_count) <= m->pg_init_retries &&
1519 !test_bit(MPATHF_PG_INIT_DISABLED, &m->flags))
1520 set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
1521 else
1522 limit_reached = true;
1523
1524 spin_unlock_irqrestore(&m->lock, flags);
1525
1526 return limit_reached;
1527 }
1528
pg_init_done(void * data,int errors)1529 static void pg_init_done(void *data, int errors)
1530 {
1531 struct pgpath *pgpath = data;
1532 struct priority_group *pg = pgpath->pg;
1533 struct multipath *m = pg->m;
1534 unsigned long flags;
1535 bool delay_retry = false;
1536
1537 /* device or driver problems */
1538 switch (errors) {
1539 case SCSI_DH_OK:
1540 break;
1541 case SCSI_DH_NOSYS:
1542 if (!m->hw_handler_name) {
1543 errors = 0;
1544 break;
1545 }
1546 DMERR("Could not failover the device: Handler scsi_dh_%s "
1547 "Error %d.", m->hw_handler_name, errors);
1548 /*
1549 * Fail path for now, so we do not ping pong
1550 */
1551 fail_path(pgpath);
1552 break;
1553 case SCSI_DH_DEV_TEMP_BUSY:
1554 /*
1555 * Probably doing something like FW upgrade on the
1556 * controller so try the other pg.
1557 */
1558 bypass_pg(m, pg, true, false);
1559 break;
1560 case SCSI_DH_RETRY:
1561 /* Wait before retrying. */
1562 delay_retry = true;
1563 fallthrough;
1564 case SCSI_DH_IMM_RETRY:
1565 case SCSI_DH_RES_TEMP_UNAVAIL:
1566 if (pg_init_limit_reached(m, pgpath))
1567 fail_path(pgpath);
1568 errors = 0;
1569 break;
1570 case SCSI_DH_DEV_OFFLINED:
1571 default:
1572 /*
1573 * We probably do not want to fail the path for a device
1574 * error, but this is what the old dm did. In future
1575 * patches we can do more advanced handling.
1576 */
1577 fail_path(pgpath);
1578 }
1579
1580 spin_lock_irqsave(&m->lock, flags);
1581 if (errors) {
1582 if (pgpath == m->current_pgpath) {
1583 DMERR("Could not failover device. Error %d.", errors);
1584 m->current_pgpath = NULL;
1585 m->current_pg = NULL;
1586 }
1587 } else if (!test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
1588 pg->bypassed = false;
1589
1590 if (atomic_dec_return(&m->pg_init_in_progress) > 0)
1591 /* Activations of other paths are still on going */
1592 goto out;
1593
1594 if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) {
1595 if (delay_retry)
1596 set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
1597 else
1598 clear_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
1599
1600 if (__pg_init_all_paths(m))
1601 goto out;
1602 }
1603 clear_bit(MPATHF_QUEUE_IO, &m->flags);
1604
1605 process_queued_io_list(m);
1606
1607 /*
1608 * Wake up any thread waiting to suspend.
1609 */
1610 wake_up(&m->pg_init_wait);
1611
1612 out:
1613 spin_unlock_irqrestore(&m->lock, flags);
1614 }
1615
activate_or_offline_path(struct pgpath * pgpath)1616 static void activate_or_offline_path(struct pgpath *pgpath)
1617 {
1618 struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev);
1619
1620 if (pgpath->is_active && !blk_queue_dying(q))
1621 scsi_dh_activate(q, pg_init_done, pgpath);
1622 else
1623 pg_init_done(pgpath, SCSI_DH_DEV_OFFLINED);
1624 }
1625
activate_path_work(struct work_struct * work)1626 static void activate_path_work(struct work_struct *work)
1627 {
1628 struct pgpath *pgpath =
1629 container_of(work, struct pgpath, activate_path.work);
1630
1631 activate_or_offline_path(pgpath);
1632 }
1633
multipath_end_io(struct dm_target * ti,struct request * clone,blk_status_t error,union map_info * map_context)1634 static int multipath_end_io(struct dm_target *ti, struct request *clone,
1635 blk_status_t error, union map_info *map_context)
1636 {
1637 struct dm_mpath_io *mpio = get_mpio(map_context);
1638 struct pgpath *pgpath = mpio->pgpath;
1639 int r = DM_ENDIO_DONE;
1640
1641 /*
1642 * We don't queue any clone request inside the multipath target
1643 * during end I/O handling, since those clone requests don't have
1644 * bio clones. If we queue them inside the multipath target,
1645 * we need to make bio clones, that requires memory allocation.
1646 * (See drivers/md/dm-rq.c:end_clone_bio() about why the clone requests
1647 * don't have bio clones.)
1648 * Instead of queueing the clone request here, we queue the original
1649 * request into dm core, which will remake a clone request and
1650 * clone bios for it and resubmit it later.
1651 */
1652 if (error && blk_path_error(error)) {
1653 struct multipath *m = ti->private;
1654
1655 if (error == BLK_STS_RESOURCE)
1656 r = DM_ENDIO_DELAY_REQUEUE;
1657 else
1658 r = DM_ENDIO_REQUEUE;
1659
1660 if (pgpath)
1661 fail_path(pgpath);
1662
1663 if (!atomic_read(&m->nr_valid_paths) &&
1664 !must_push_back_rq(m)) {
1665 if (error == BLK_STS_IOERR)
1666 dm_report_EIO(m);
1667 /* complete with the original error */
1668 r = DM_ENDIO_DONE;
1669 }
1670 }
1671
1672 if (pgpath) {
1673 struct path_selector *ps = &pgpath->pg->ps;
1674
1675 if (ps->type->end_io)
1676 ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes,
1677 clone->io_start_time_ns);
1678 }
1679
1680 return r;
1681 }
1682
multipath_end_io_bio(struct dm_target * ti,struct bio * clone,blk_status_t * error)1683 static int multipath_end_io_bio(struct dm_target *ti, struct bio *clone,
1684 blk_status_t *error)
1685 {
1686 struct multipath *m = ti->private;
1687 struct dm_mpath_io *mpio = get_mpio_from_bio(clone);
1688 struct pgpath *pgpath = mpio->pgpath;
1689 unsigned long flags;
1690 int r = DM_ENDIO_DONE;
1691
1692 if (!*error || !blk_path_error(*error))
1693 goto done;
1694
1695 if (pgpath)
1696 fail_path(pgpath);
1697
1698 if (!atomic_read(&m->nr_valid_paths)) {
1699 spin_lock_irqsave(&m->lock, flags);
1700 if (!test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) {
1701 if (__must_push_back(m)) {
1702 r = DM_ENDIO_REQUEUE;
1703 } else {
1704 dm_report_EIO(m);
1705 *error = BLK_STS_IOERR;
1706 }
1707 spin_unlock_irqrestore(&m->lock, flags);
1708 goto done;
1709 }
1710 spin_unlock_irqrestore(&m->lock, flags);
1711 }
1712
1713 multipath_queue_bio(m, clone);
1714 r = DM_ENDIO_INCOMPLETE;
1715 done:
1716 if (pgpath) {
1717 struct path_selector *ps = &pgpath->pg->ps;
1718
1719 if (ps->type->end_io)
1720 ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes,
1721 (mpio->start_time_ns ?:
1722 dm_start_time_ns_from_clone(clone)));
1723 }
1724
1725 return r;
1726 }
1727
1728 /*
1729 * Suspend with flush can't complete until all the I/O is processed
1730 * so if the last path fails we must error any remaining I/O.
1731 * - Note that if the freeze_bdev fails while suspending, the
1732 * queue_if_no_path state is lost - userspace should reset it.
1733 * Otherwise, during noflush suspend, queue_if_no_path will not change.
1734 */
multipath_presuspend(struct dm_target * ti)1735 static void multipath_presuspend(struct dm_target *ti)
1736 {
1737 struct multipath *m = ti->private;
1738
1739 spin_lock_irq(&m->lock);
1740 m->is_suspending = true;
1741 spin_unlock_irq(&m->lock);
1742 /* FIXME: bio-based shouldn't need to always disable queue_if_no_path */
1743 if (m->queue_mode == DM_TYPE_BIO_BASED || !dm_noflush_suspending(m->ti))
1744 queue_if_no_path(m, false, true, __func__);
1745 }
1746
multipath_postsuspend(struct dm_target * ti)1747 static void multipath_postsuspend(struct dm_target *ti)
1748 {
1749 struct multipath *m = ti->private;
1750
1751 mutex_lock(&m->work_mutex);
1752 flush_multipath_work(m);
1753 mutex_unlock(&m->work_mutex);
1754 }
1755
1756 /*
1757 * Restore the queue_if_no_path setting.
1758 */
multipath_resume(struct dm_target * ti)1759 static void multipath_resume(struct dm_target *ti)
1760 {
1761 struct multipath *m = ti->private;
1762
1763 spin_lock_irq(&m->lock);
1764 m->is_suspending = false;
1765 if (test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags)) {
1766 set_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags);
1767 clear_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags);
1768 }
1769
1770 DMDEBUG("%s: %s finished; QIFNP = %d; SQIFNP = %d",
1771 dm_table_device_name(m->ti->table), __func__,
1772 test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags),
1773 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags));
1774
1775 spin_unlock_irq(&m->lock);
1776 }
1777
1778 /*
1779 * Info output has the following format:
1780 * num_multipath_feature_args [multipath_feature_args]*
1781 * num_handler_status_args [handler_status_args]*
1782 * num_groups init_group_number
1783 * [A|D|E num_ps_status_args [ps_status_args]*
1784 * num_paths num_selector_args
1785 * [path_dev A|F fail_count [selector_args]* ]+ ]+
1786 *
1787 * Table output has the following format (identical to the constructor string):
1788 * num_feature_args [features_args]*
1789 * num_handler_args hw_handler [hw_handler_args]*
1790 * num_groups init_group_number
1791 * [priority selector-name num_ps_args [ps_args]*
1792 * num_paths num_selector_args [path_dev [selector_args]* ]+ ]+
1793 */
multipath_status(struct dm_target * ti,status_type_t type,unsigned int status_flags,char * result,unsigned int maxlen)1794 static void multipath_status(struct dm_target *ti, status_type_t type,
1795 unsigned int status_flags, char *result, unsigned int maxlen)
1796 {
1797 int sz = 0, pg_counter, pgpath_counter;
1798 struct multipath *m = ti->private;
1799 struct priority_group *pg;
1800 struct pgpath *p;
1801 unsigned int pg_num;
1802 char state;
1803
1804 spin_lock_irq(&m->lock);
1805
1806 /* Features */
1807 if (type == STATUSTYPE_INFO)
1808 DMEMIT("2 %u %u ", test_bit(MPATHF_QUEUE_IO, &m->flags),
1809 atomic_read(&m->pg_init_count));
1810 else {
1811 DMEMIT("%u ", test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags) +
1812 (m->pg_init_retries > 0) * 2 +
1813 (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) * 2 +
1814 (m->queue_mode != DM_TYPE_REQUEST_BASED) * 2);
1815
1816 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
1817 DMEMIT("queue_if_no_path ");
1818 if (m->pg_init_retries)
1819 DMEMIT("pg_init_retries %u ", m->pg_init_retries);
1820 if (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT)
1821 DMEMIT("pg_init_delay_msecs %u ", m->pg_init_delay_msecs);
1822 if (m->queue_mode != DM_TYPE_REQUEST_BASED) {
1823 switch (m->queue_mode) {
1824 case DM_TYPE_BIO_BASED:
1825 DMEMIT("queue_mode bio ");
1826 break;
1827 default:
1828 WARN_ON_ONCE(true);
1829 break;
1830 }
1831 }
1832 }
1833
1834 if (!m->hw_handler_name || type == STATUSTYPE_INFO)
1835 DMEMIT("0 ");
1836 else
1837 DMEMIT("1 %s ", m->hw_handler_name);
1838
1839 DMEMIT("%u ", m->nr_priority_groups);
1840
1841 if (m->current_pg)
1842 pg_num = m->current_pg->pg_num;
1843 else if (m->next_pg)
1844 pg_num = m->next_pg->pg_num;
1845 else
1846 pg_num = (m->nr_priority_groups ? 1 : 0);
1847
1848 DMEMIT("%u ", pg_num);
1849
1850 switch (type) {
1851 case STATUSTYPE_INFO:
1852 list_for_each_entry(pg, &m->priority_groups, list) {
1853 if (pg->bypassed)
1854 state = 'D'; /* Disabled */
1855 else if (pg == m->current_pg)
1856 state = 'A'; /* Currently Active */
1857 else
1858 state = 'E'; /* Enabled */
1859
1860 DMEMIT("%c ", state);
1861
1862 if (pg->ps.type->status)
1863 sz += pg->ps.type->status(&pg->ps, NULL, type,
1864 result + sz,
1865 maxlen - sz);
1866 else
1867 DMEMIT("0 ");
1868
1869 DMEMIT("%u %u ", pg->nr_pgpaths,
1870 pg->ps.type->info_args);
1871
1872 list_for_each_entry(p, &pg->pgpaths, list) {
1873 DMEMIT("%s %s %u ", p->path.dev->name,
1874 p->is_active ? "A" : "F",
1875 p->fail_count);
1876 if (pg->ps.type->status)
1877 sz += pg->ps.type->status(&pg->ps,
1878 &p->path, type, result + sz,
1879 maxlen - sz);
1880 }
1881 }
1882 break;
1883
1884 case STATUSTYPE_TABLE:
1885 list_for_each_entry(pg, &m->priority_groups, list) {
1886 DMEMIT("%s ", pg->ps.type->name);
1887
1888 if (pg->ps.type->status)
1889 sz += pg->ps.type->status(&pg->ps, NULL, type,
1890 result + sz,
1891 maxlen - sz);
1892 else
1893 DMEMIT("0 ");
1894
1895 DMEMIT("%u %u ", pg->nr_pgpaths,
1896 pg->ps.type->table_args);
1897
1898 list_for_each_entry(p, &pg->pgpaths, list) {
1899 DMEMIT("%s ", p->path.dev->name);
1900 if (pg->ps.type->status)
1901 sz += pg->ps.type->status(&pg->ps,
1902 &p->path, type, result + sz,
1903 maxlen - sz);
1904 }
1905 }
1906 break;
1907
1908 case STATUSTYPE_IMA:
1909 sz = 0; /*reset the result pointer*/
1910
1911 DMEMIT_TARGET_NAME_VERSION(ti->type);
1912 DMEMIT(",nr_priority_groups=%u", m->nr_priority_groups);
1913
1914 pg_counter = 0;
1915 list_for_each_entry(pg, &m->priority_groups, list) {
1916 if (pg->bypassed)
1917 state = 'D'; /* Disabled */
1918 else if (pg == m->current_pg)
1919 state = 'A'; /* Currently Active */
1920 else
1921 state = 'E'; /* Enabled */
1922 DMEMIT(",pg_state_%d=%c", pg_counter, state);
1923 DMEMIT(",nr_pgpaths_%d=%u", pg_counter, pg->nr_pgpaths);
1924 DMEMIT(",path_selector_name_%d=%s", pg_counter, pg->ps.type->name);
1925
1926 pgpath_counter = 0;
1927 list_for_each_entry(p, &pg->pgpaths, list) {
1928 DMEMIT(",path_name_%d_%d=%s,is_active_%d_%d=%c,fail_count_%d_%d=%u",
1929 pg_counter, pgpath_counter, p->path.dev->name,
1930 pg_counter, pgpath_counter, p->is_active ? 'A' : 'F',
1931 pg_counter, pgpath_counter, p->fail_count);
1932 if (pg->ps.type->status) {
1933 DMEMIT(",path_selector_status_%d_%d=",
1934 pg_counter, pgpath_counter);
1935 sz += pg->ps.type->status(&pg->ps, &p->path,
1936 type, result + sz,
1937 maxlen - sz);
1938 }
1939 pgpath_counter++;
1940 }
1941 pg_counter++;
1942 }
1943 DMEMIT(";");
1944 break;
1945 }
1946
1947 spin_unlock_irq(&m->lock);
1948 }
1949
multipath_message(struct dm_target * ti,unsigned int argc,char ** argv,char * result,unsigned int maxlen)1950 static int multipath_message(struct dm_target *ti, unsigned int argc, char **argv,
1951 char *result, unsigned int maxlen)
1952 {
1953 int r = -EINVAL;
1954 dev_t dev;
1955 struct multipath *m = ti->private;
1956 action_fn action;
1957
1958 mutex_lock(&m->work_mutex);
1959
1960 if (dm_suspended(ti)) {
1961 r = -EBUSY;
1962 goto out;
1963 }
1964
1965 if (argc == 1) {
1966 if (!strcasecmp(argv[0], "queue_if_no_path")) {
1967 r = queue_if_no_path(m, true, false, __func__);
1968 spin_lock_irq(&m->lock);
1969 enable_nopath_timeout(m);
1970 spin_unlock_irq(&m->lock);
1971 goto out;
1972 } else if (!strcasecmp(argv[0], "fail_if_no_path")) {
1973 r = queue_if_no_path(m, false, false, __func__);
1974 disable_nopath_timeout(m);
1975 goto out;
1976 }
1977 }
1978
1979 if (argc != 2) {
1980 DMWARN("Invalid multipath message arguments. Expected 2 arguments, got %d.", argc);
1981 goto out;
1982 }
1983
1984 if (!strcasecmp(argv[0], "disable_group")) {
1985 r = bypass_pg_num(m, argv[1], true);
1986 goto out;
1987 } else if (!strcasecmp(argv[0], "enable_group")) {
1988 r = bypass_pg_num(m, argv[1], false);
1989 goto out;
1990 } else if (!strcasecmp(argv[0], "switch_group")) {
1991 r = switch_pg_num(m, argv[1]);
1992 goto out;
1993 } else if (!strcasecmp(argv[0], "reinstate_path"))
1994 action = reinstate_path;
1995 else if (!strcasecmp(argv[0], "fail_path"))
1996 action = fail_path;
1997 else {
1998 DMWARN("Unrecognised multipath message received: %s", argv[0]);
1999 goto out;
2000 }
2001
2002 r = dm_devt_from_path(argv[1], &dev);
2003 if (r) {
2004 DMWARN("message: error getting device %s",
2005 argv[1]);
2006 goto out;
2007 }
2008
2009 r = action_dev(m, dev, action);
2010
2011 out:
2012 mutex_unlock(&m->work_mutex);
2013 return r;
2014 }
2015
2016 /*
2017 * Perform a minimal read from the given path to find out whether the
2018 * path still works. If a path error occurs, fail it.
2019 */
probe_path(struct pgpath * pgpath)2020 static int probe_path(struct pgpath *pgpath)
2021 {
2022 struct block_device *bdev = pgpath->path.dev->bdev;
2023 unsigned int read_size = bdev_logical_block_size(bdev);
2024 struct page *page;
2025 struct bio *bio;
2026 blk_status_t status;
2027 int r = 0;
2028
2029 if (WARN_ON_ONCE(read_size > PAGE_SIZE))
2030 return -EINVAL;
2031
2032 page = alloc_page(GFP_KERNEL);
2033 if (!page)
2034 return -ENOMEM;
2035
2036 /* Perform a minimal read: Sector 0, length read_size */
2037 bio = bio_alloc(bdev, 1, REQ_OP_READ, GFP_KERNEL);
2038 if (!bio) {
2039 r = -ENOMEM;
2040 goto out;
2041 }
2042
2043 bio->bi_iter.bi_sector = 0;
2044 __bio_add_page(bio, page, read_size, 0);
2045 submit_bio_wait(bio);
2046 status = bio->bi_status;
2047 bio_put(bio);
2048
2049 if (status && blk_path_error(status))
2050 fail_path(pgpath);
2051
2052 out:
2053 __free_page(page);
2054 return r;
2055 }
2056
2057 /*
2058 * Probe all active paths in current_pg to find out whether they still work.
2059 * Fail all paths that do not work.
2060 *
2061 * Return -ENOTCONN if no valid path is left (even outside of current_pg). We
2062 * cannot probe paths in other pgs without switching current_pg, so if valid
2063 * paths are only in different pgs, they may or may not work. Additionally
2064 * we should not probe paths in a pathgroup that is in the process of
2065 * Initializing. Userspace can submit a request and we'll switch and wait
2066 * for the pathgroup to be initialized. If the request fails, it may need to
2067 * probe again.
2068 */
probe_active_paths(struct multipath * m)2069 static int probe_active_paths(struct multipath *m)
2070 {
2071 struct pgpath *pgpath;
2072 struct priority_group *pg = NULL;
2073 int r = 0;
2074
2075 spin_lock_irq(&m->lock);
2076 if (test_bit(MPATHF_DELAY_PG_SWITCH, &m->flags)) {
2077 wait_event_lock_irq(m->probe_wait,
2078 !test_bit(MPATHF_DELAY_PG_SWITCH, &m->flags),
2079 m->lock);
2080 /*
2081 * if we waited because a probe was already in progress,
2082 * and it probed the current active pathgroup, don't
2083 * reprobe. Just return the number of valid paths
2084 */
2085 if (m->current_pg == m->last_probed_pg)
2086 goto skip_probe;
2087 }
2088 if (!m->current_pg || m->is_suspending ||
2089 test_bit(MPATHF_QUEUE_IO, &m->flags))
2090 goto skip_probe;
2091 set_bit(MPATHF_DELAY_PG_SWITCH, &m->flags);
2092 pg = m->last_probed_pg = m->current_pg;
2093 spin_unlock_irq(&m->lock);
2094
2095 list_for_each_entry(pgpath, &pg->pgpaths, list) {
2096 if (pg != READ_ONCE(m->current_pg) ||
2097 READ_ONCE(m->is_suspending))
2098 goto out;
2099 if (!pgpath->is_active)
2100 continue;
2101
2102 r = probe_path(pgpath);
2103 if (r < 0)
2104 goto out;
2105 }
2106
2107 out:
2108 spin_lock_irq(&m->lock);
2109 clear_bit(MPATHF_DELAY_PG_SWITCH, &m->flags);
2110 if (test_and_clear_bit(MPATHF_NEED_PG_SWITCH, &m->flags)) {
2111 m->current_pgpath = NULL;
2112 m->current_pg = NULL;
2113 }
2114 skip_probe:
2115 if (r == 0 && !atomic_read(&m->nr_valid_paths))
2116 r = -ENOTCONN;
2117 spin_unlock_irq(&m->lock);
2118 if (pg)
2119 wake_up(&m->probe_wait);
2120 return r;
2121 }
2122
multipath_prepare_ioctl(struct dm_target * ti,struct block_device ** bdev,unsigned int cmd,unsigned long arg,bool * forward)2123 static int multipath_prepare_ioctl(struct dm_target *ti,
2124 struct block_device **bdev,
2125 unsigned int cmd, unsigned long arg,
2126 bool *forward)
2127 {
2128 struct multipath *m = ti->private;
2129 struct pgpath *pgpath;
2130 int r;
2131
2132 if (_IOC_TYPE(cmd) == DM_IOCTL) {
2133 *forward = false;
2134 switch (cmd) {
2135 case DM_MPATH_PROBE_PATHS:
2136 return probe_active_paths(m);
2137 default:
2138 return -ENOTTY;
2139 }
2140 }
2141
2142 pgpath = READ_ONCE(m->current_pgpath);
2143 if (!pgpath || !mpath_double_check_test_bit(MPATHF_QUEUE_IO, m))
2144 pgpath = choose_pgpath(m, 0);
2145
2146 if (pgpath) {
2147 if (!mpath_double_check_test_bit(MPATHF_QUEUE_IO, m)) {
2148 *bdev = pgpath->path.dev->bdev;
2149 r = 0;
2150 } else {
2151 /* pg_init has not started or completed */
2152 r = -ENOTCONN;
2153 }
2154 } else {
2155 /* No path is available */
2156 r = -EIO;
2157 spin_lock_irq(&m->lock);
2158 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
2159 r = -ENOTCONN;
2160 spin_unlock_irq(&m->lock);
2161 }
2162
2163 if (r == -ENOTCONN) {
2164 if (!READ_ONCE(m->current_pg)) {
2165 /* Path status changed, redo selection */
2166 (void) choose_pgpath(m, 0);
2167 }
2168 spin_lock_irq(&m->lock);
2169 if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
2170 (void) __pg_init_all_paths(m);
2171 spin_unlock_irq(&m->lock);
2172 dm_table_run_md_queue_async(m->ti->table);
2173 process_queued_io_list(m);
2174 }
2175
2176 /*
2177 * Only pass ioctls through if the device sizes match exactly.
2178 */
2179 if (!r && ti->len != bdev_nr_sectors((*bdev)))
2180 return 1;
2181 return r;
2182 }
2183
multipath_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)2184 static int multipath_iterate_devices(struct dm_target *ti,
2185 iterate_devices_callout_fn fn, void *data)
2186 {
2187 struct multipath *m = ti->private;
2188 struct priority_group *pg;
2189 struct pgpath *p;
2190 int ret = 0;
2191
2192 list_for_each_entry(pg, &m->priority_groups, list) {
2193 list_for_each_entry(p, &pg->pgpaths, list) {
2194 ret = fn(ti, p->path.dev, ti->begin, ti->len, data);
2195 if (ret)
2196 goto out;
2197 }
2198 }
2199
2200 out:
2201 return ret;
2202 }
2203
pgpath_busy(struct pgpath * pgpath)2204 static int pgpath_busy(struct pgpath *pgpath)
2205 {
2206 struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev);
2207
2208 return blk_lld_busy(q);
2209 }
2210
2211 /*
2212 * We return "busy", only when we can map I/Os but underlying devices
2213 * are busy (so even if we map I/Os now, the I/Os will wait on
2214 * the underlying queue).
2215 * In other words, if we want to kill I/Os or queue them inside us
2216 * due to map unavailability, we don't return "busy". Otherwise,
2217 * dm core won't give us the I/Os and we can't do what we want.
2218 */
multipath_busy(struct dm_target * ti)2219 static int multipath_busy(struct dm_target *ti)
2220 {
2221 bool busy = false, has_active = false;
2222 struct multipath *m = ti->private;
2223 struct priority_group *pg, *next_pg;
2224 struct pgpath *pgpath;
2225
2226 /* pg_init in progress */
2227 if (atomic_read(&m->pg_init_in_progress))
2228 return true;
2229
2230 /* no paths available, for blk-mq: rely on IO mapping to delay requeue */
2231 if (!atomic_read(&m->nr_valid_paths)) {
2232 unsigned long flags;
2233
2234 spin_lock_irqsave(&m->lock, flags);
2235 if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) {
2236 spin_unlock_irqrestore(&m->lock, flags);
2237 return (m->queue_mode != DM_TYPE_REQUEST_BASED);
2238 }
2239 spin_unlock_irqrestore(&m->lock, flags);
2240 }
2241
2242 /* Guess which priority_group will be used at next mapping time */
2243 pg = READ_ONCE(m->current_pg);
2244 next_pg = READ_ONCE(m->next_pg);
2245 if (unlikely(!READ_ONCE(m->current_pgpath) && next_pg))
2246 pg = next_pg;
2247
2248 if (!pg) {
2249 /*
2250 * We don't know which pg will be used at next mapping time.
2251 * We don't call choose_pgpath() here to avoid to trigger
2252 * pg_init just by busy checking.
2253 * So we don't know whether underlying devices we will be using
2254 * at next mapping time are busy or not. Just try mapping.
2255 */
2256 return busy;
2257 }
2258
2259 /*
2260 * If there is one non-busy active path at least, the path selector
2261 * will be able to select it. So we consider such a pg as not busy.
2262 */
2263 busy = true;
2264 list_for_each_entry(pgpath, &pg->pgpaths, list) {
2265 if (pgpath->is_active) {
2266 has_active = true;
2267 if (!pgpath_busy(pgpath)) {
2268 busy = false;
2269 break;
2270 }
2271 }
2272 }
2273
2274 if (!has_active) {
2275 /*
2276 * No active path in this pg, so this pg won't be used and
2277 * the current_pg will be changed at next mapping time.
2278 * We need to try mapping to determine it.
2279 */
2280 busy = false;
2281 }
2282
2283 return busy;
2284 }
2285
2286 /*
2287 *---------------------------------------------------------------
2288 * Module setup
2289 *---------------------------------------------------------------
2290 */
2291 static struct target_type multipath_target = {
2292 .name = "multipath",
2293 .version = {1, 15, 0},
2294 .features = DM_TARGET_SINGLETON | DM_TARGET_IMMUTABLE |
2295 DM_TARGET_PASSES_INTEGRITY | DM_TARGET_ATOMIC_WRITES,
2296 .module = THIS_MODULE,
2297 .ctr = multipath_ctr,
2298 .dtr = multipath_dtr,
2299 .clone_and_map_rq = multipath_clone_and_map,
2300 .release_clone_rq = multipath_release_clone,
2301 .rq_end_io = multipath_end_io,
2302 .map = multipath_map_bio,
2303 .end_io = multipath_end_io_bio,
2304 .presuspend = multipath_presuspend,
2305 .postsuspend = multipath_postsuspend,
2306 .resume = multipath_resume,
2307 .status = multipath_status,
2308 .message = multipath_message,
2309 .prepare_ioctl = multipath_prepare_ioctl,
2310 .iterate_devices = multipath_iterate_devices,
2311 .busy = multipath_busy,
2312 };
2313
dm_multipath_init(void)2314 static int __init dm_multipath_init(void)
2315 {
2316 int r = -ENOMEM;
2317
2318 kmultipathd = alloc_workqueue("kmpathd", WQ_MEM_RECLAIM, 0);
2319 if (!kmultipathd) {
2320 DMERR("failed to create workqueue kmpathd");
2321 goto bad_alloc_kmultipathd;
2322 }
2323
2324 /*
2325 * A separate workqueue is used to handle the device handlers
2326 * to avoid overloading existing workqueue. Overloading the
2327 * old workqueue would also create a bottleneck in the
2328 * path of the storage hardware device activation.
2329 */
2330 kmpath_handlerd = alloc_ordered_workqueue("kmpath_handlerd",
2331 WQ_MEM_RECLAIM);
2332 if (!kmpath_handlerd) {
2333 DMERR("failed to create workqueue kmpath_handlerd");
2334 goto bad_alloc_kmpath_handlerd;
2335 }
2336
2337 dm_mpath_wq = alloc_workqueue("dm_mpath_wq", 0, 0);
2338 if (!dm_mpath_wq) {
2339 DMERR("failed to create workqueue dm_mpath_wq");
2340 goto bad_alloc_dm_mpath_wq;
2341 }
2342
2343 r = dm_register_target(&multipath_target);
2344 if (r < 0)
2345 goto bad_register_target;
2346
2347 return 0;
2348
2349 bad_register_target:
2350 destroy_workqueue(dm_mpath_wq);
2351 bad_alloc_dm_mpath_wq:
2352 destroy_workqueue(kmpath_handlerd);
2353 bad_alloc_kmpath_handlerd:
2354 destroy_workqueue(kmultipathd);
2355 bad_alloc_kmultipathd:
2356 return r;
2357 }
2358
dm_multipath_exit(void)2359 static void __exit dm_multipath_exit(void)
2360 {
2361 destroy_workqueue(dm_mpath_wq);
2362 destroy_workqueue(kmpath_handlerd);
2363 destroy_workqueue(kmultipathd);
2364
2365 dm_unregister_target(&multipath_target);
2366 }
2367
2368 module_init(dm_multipath_init);
2369 module_exit(dm_multipath_exit);
2370
2371 module_param_named(queue_if_no_path_timeout_secs, queue_if_no_path_timeout_secs, ulong, 0644);
2372 MODULE_PARM_DESC(queue_if_no_path_timeout_secs, "No available paths queue IO timeout in seconds");
2373
2374 MODULE_DESCRIPTION(DM_NAME " multipath target");
2375 MODULE_AUTHOR("Sistina Software <dm-devel@lists.linux.dev>");
2376 MODULE_LICENSE("GPL");
2377