xref: /linux/drivers/mmc/core/mmc_test.c (revision dd463c51a327d341d3ece63dd50e1a0f8f09c468)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Copyright 2007-2008 Pierre Ossman
4  */
5 
6 #include <linux/mmc/core.h>
7 #include <linux/mmc/card.h>
8 #include <linux/mmc/host.h>
9 #include <linux/mmc/mmc.h>
10 #include <linux/slab.h>
11 
12 #include <linux/scatterlist.h>
13 #include <linux/list.h>
14 
15 #include <linux/debugfs.h>
16 #include <linux/uaccess.h>
17 #include <linux/seq_file.h>
18 #include <linux/module.h>
19 
20 #include "core.h"
21 #include "card.h"
22 #include "host.h"
23 #include "bus.h"
24 #include "mmc_ops.h"
25 
26 #define RESULT_OK		0
27 #define RESULT_FAIL		1
28 #define RESULT_UNSUP_HOST	2
29 #define RESULT_UNSUP_CARD	3
30 
31 #define BUFFER_ORDER		2
32 #define BUFFER_SIZE		(PAGE_SIZE << BUFFER_ORDER)
33 
34 #define TEST_ALIGN_END		8
35 
36 /*
37  * Limit the test area size to the maximum MMC HC erase group size.  Note that
38  * the maximum SD allocation unit size is just 4MiB.
39  */
40 #define TEST_AREA_MAX_SIZE (128 * 1024 * 1024)
41 
42 /**
43  * struct mmc_test_pages - pages allocated by 'alloc_pages()'.
44  * @page: first page in the allocation
45  * @order: order of the number of pages allocated
46  */
47 struct mmc_test_pages {
48 	struct page *page;
49 	unsigned int order;
50 };
51 
52 /**
53  * struct mmc_test_mem - allocated memory.
54  * @arr: array of allocations
55  * @cnt: number of allocations
56  */
57 struct mmc_test_mem {
58 	struct mmc_test_pages *arr;
59 	unsigned int cnt;
60 };
61 
62 /**
63  * struct mmc_test_area - information for performance tests.
64  * @max_sz: test area size (in bytes)
65  * @dev_addr: address on card at which to do performance tests
66  * @max_tfr: maximum transfer size allowed by driver (in bytes)
67  * @max_segs: maximum segments allowed by driver in scatterlist @sg
68  * @max_seg_sz: maximum segment size allowed by driver
69  * @blocks: number of (512 byte) blocks currently mapped by @sg
70  * @sg_len: length of currently mapped scatterlist @sg
71  * @mem: allocated memory
72  * @sg: scatterlist
73  * @sg_areq: scatterlist for non-blocking request
74  */
75 struct mmc_test_area {
76 	unsigned long max_sz;
77 	unsigned int dev_addr;
78 	unsigned int max_tfr;
79 	unsigned int max_segs;
80 	unsigned int max_seg_sz;
81 	unsigned int blocks;
82 	unsigned int sg_len;
83 	struct mmc_test_mem *mem;
84 	struct scatterlist *sg;
85 	struct scatterlist *sg_areq;
86 };
87 
88 /**
89  * struct mmc_test_transfer_result - transfer results for performance tests.
90  * @link: double-linked list
91  * @count: amount of group of sectors to check
92  * @sectors: amount of sectors to check in one group
93  * @ts: time values of transfer
94  * @rate: calculated transfer rate
95  * @iops: I/O operations per second (times 100)
96  */
97 struct mmc_test_transfer_result {
98 	struct list_head link;
99 	unsigned int count;
100 	unsigned int sectors;
101 	struct timespec64 ts;
102 	unsigned int rate;
103 	unsigned int iops;
104 };
105 
106 /**
107  * struct mmc_test_general_result - results for tests.
108  * @link: double-linked list
109  * @card: card under test
110  * @testcase: number of test case
111  * @result: result of test run
112  * @tr_lst: transfer measurements if any as mmc_test_transfer_result
113  */
114 struct mmc_test_general_result {
115 	struct list_head link;
116 	struct mmc_card *card;
117 	int testcase;
118 	int result;
119 	struct list_head tr_lst;
120 };
121 
122 /**
123  * struct mmc_test_dbgfs_file - debugfs related file.
124  * @link: double-linked list
125  * @card: card under test
126  * @file: file created under debugfs
127  */
128 struct mmc_test_dbgfs_file {
129 	struct list_head link;
130 	struct mmc_card *card;
131 	struct dentry *file;
132 };
133 
134 /**
135  * struct mmc_test_card - test information.
136  * @card: card under test
137  * @scratch: transfer buffer
138  * @buffer: transfer buffer
139  * @highmem: buffer for highmem tests
140  * @area: information for performance tests
141  * @gr: pointer to results of current testcase
142  */
143 struct mmc_test_card {
144 	struct mmc_card	*card;
145 
146 	u8		scratch[BUFFER_SIZE];
147 	u8		*buffer;
148 #ifdef CONFIG_HIGHMEM
149 	struct page	*highmem;
150 #endif
151 	struct mmc_test_area		area;
152 	struct mmc_test_general_result	*gr;
153 };
154 
155 enum mmc_test_prep_media {
156 	MMC_TEST_PREP_NONE = 0,
157 	MMC_TEST_PREP_WRITE_FULL = 1 << 0,
158 	MMC_TEST_PREP_ERASE = 1 << 1,
159 };
160 
161 struct mmc_test_multiple_rw {
162 	unsigned int *sg_len;
163 	unsigned int *bs;
164 	unsigned int len;
165 	unsigned int size;
166 	bool do_write;
167 	bool do_nonblock_req;
168 	enum mmc_test_prep_media prepare;
169 };
170 
171 /*******************************************************************/
172 /*  General helper functions                                       */
173 /*******************************************************************/
174 
175 /*
176  * Configure correct block size in card
177  */
178 static int mmc_test_set_blksize(struct mmc_test_card *test, unsigned size)
179 {
180 	return mmc_set_blocklen(test->card, size);
181 }
182 
183 static void mmc_test_prepare_sbc(struct mmc_test_card *test,
184 				 struct mmc_request *mrq, unsigned int blocks)
185 {
186 	struct mmc_card *card = test->card;
187 
188 	if (!mrq->sbc || !mmc_host_can_cmd23(card->host) ||
189 	    !mmc_card_can_cmd23(card) || !mmc_op_multi(mrq->cmd->opcode) ||
190 	    mmc_card_blk_no_cmd23(card)) {
191 		mrq->sbc = NULL;
192 		return;
193 	}
194 
195 	mrq->sbc->opcode = MMC_SET_BLOCK_COUNT;
196 	mrq->sbc->arg = blocks;
197 	mrq->sbc->flags = MMC_RSP_R1 | MMC_CMD_AC;
198 }
199 
200 /*
201  * Fill in the mmc_request structure given a set of transfer parameters.
202  */
203 static void mmc_test_prepare_mrq(struct mmc_test_card *test,
204 	struct mmc_request *mrq, struct scatterlist *sg, unsigned sg_len,
205 	unsigned dev_addr, unsigned blocks, unsigned blksz, int write)
206 {
207 	if (WARN_ON(!mrq || !mrq->cmd || !mrq->data || !mrq->stop))
208 		return;
209 
210 	if (blocks > 1) {
211 		mrq->cmd->opcode = write ?
212 			MMC_WRITE_MULTIPLE_BLOCK : MMC_READ_MULTIPLE_BLOCK;
213 	} else {
214 		mrq->cmd->opcode = write ?
215 			MMC_WRITE_BLOCK : MMC_READ_SINGLE_BLOCK;
216 	}
217 
218 	mrq->cmd->arg = dev_addr;
219 	if (!mmc_card_blockaddr(test->card))
220 		mrq->cmd->arg <<= 9;
221 
222 	mrq->cmd->flags = MMC_RSP_R1 | MMC_CMD_ADTC;
223 
224 	if (blocks == 1)
225 		mrq->stop = NULL;
226 	else {
227 		mrq->stop->opcode = MMC_STOP_TRANSMISSION;
228 		mrq->stop->arg = 0;
229 		mrq->stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
230 	}
231 
232 	mrq->data->blksz = blksz;
233 	mrq->data->blocks = blocks;
234 	mrq->data->flags = write ? MMC_DATA_WRITE : MMC_DATA_READ;
235 	mrq->data->sg = sg;
236 	mrq->data->sg_len = sg_len;
237 
238 	mmc_test_prepare_sbc(test, mrq, blocks);
239 
240 	mmc_set_data_timeout(mrq->data, test->card);
241 }
242 
243 static int mmc_test_busy(struct mmc_command *cmd)
244 {
245 	return !(cmd->resp[0] & R1_READY_FOR_DATA) ||
246 		(R1_CURRENT_STATE(cmd->resp[0]) == R1_STATE_PRG);
247 }
248 
249 /*
250  * Wait for the card to finish the busy state
251  */
252 static int mmc_test_wait_busy(struct mmc_test_card *test)
253 {
254 	int ret, busy;
255 	struct mmc_command cmd = {};
256 
257 	busy = 0;
258 	do {
259 		memset(&cmd, 0, sizeof(struct mmc_command));
260 
261 		cmd.opcode = MMC_SEND_STATUS;
262 		cmd.arg = test->card->rca << 16;
263 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
264 
265 		ret = mmc_wait_for_cmd(test->card->host, &cmd, 0);
266 		if (ret)
267 			break;
268 
269 		if (!busy && mmc_test_busy(&cmd)) {
270 			busy = 1;
271 			if (test->card->host->caps & MMC_CAP_WAIT_WHILE_BUSY)
272 				pr_info("%s: Warning: Host did not wait for busy state to end.\n",
273 					mmc_hostname(test->card->host));
274 		}
275 	} while (mmc_test_busy(&cmd));
276 
277 	return ret;
278 }
279 
280 /*
281  * Transfer a single sector of kernel addressable data
282  */
283 static int mmc_test_buffer_transfer(struct mmc_test_card *test,
284 	u8 *buffer, unsigned addr, unsigned blksz, int write)
285 {
286 	struct mmc_request mrq = {};
287 	struct mmc_command cmd = {};
288 	struct mmc_command stop = {};
289 	struct mmc_data data = {};
290 
291 	struct scatterlist sg;
292 
293 	mrq.cmd = &cmd;
294 	mrq.data = &data;
295 	mrq.stop = &stop;
296 
297 	sg_init_one(&sg, buffer, blksz);
298 
299 	mmc_test_prepare_mrq(test, &mrq, &sg, 1, addr, 1, blksz, write);
300 
301 	mmc_wait_for_req(test->card->host, &mrq);
302 
303 	if (cmd.error)
304 		return cmd.error;
305 	if (data.error)
306 		return data.error;
307 
308 	return mmc_test_wait_busy(test);
309 }
310 
311 static void mmc_test_free_mem(struct mmc_test_mem *mem)
312 {
313 	if (!mem)
314 		return;
315 	while (mem->cnt--)
316 		__free_pages(mem->arr[mem->cnt].page,
317 			     mem->arr[mem->cnt].order);
318 	kfree(mem->arr);
319 	kfree(mem);
320 }
321 
322 /*
323  * Allocate a lot of memory, preferably max_sz but at least min_sz.  In case
324  * there isn't much memory do not exceed 1/16th total lowmem pages.  Also do
325  * not exceed a maximum number of segments and try not to make segments much
326  * bigger than maximum segment size.
327  */
328 static struct mmc_test_mem *mmc_test_alloc_mem(unsigned long min_sz,
329 					       unsigned long max_sz,
330 					       unsigned int max_segs,
331 					       unsigned int max_seg_sz)
332 {
333 	unsigned long max_page_cnt = DIV_ROUND_UP(max_sz, PAGE_SIZE);
334 	unsigned long min_page_cnt = DIV_ROUND_UP(min_sz, PAGE_SIZE);
335 	unsigned long max_seg_page_cnt = DIV_ROUND_UP(max_seg_sz, PAGE_SIZE);
336 	unsigned long page_cnt = 0;
337 	unsigned long limit = nr_free_buffer_pages() >> 4;
338 	struct mmc_test_mem *mem;
339 
340 	if (max_page_cnt > limit)
341 		max_page_cnt = limit;
342 	if (min_page_cnt > max_page_cnt)
343 		min_page_cnt = max_page_cnt;
344 
345 	if (max_seg_page_cnt > max_page_cnt)
346 		max_seg_page_cnt = max_page_cnt;
347 
348 	if (max_segs > max_page_cnt)
349 		max_segs = max_page_cnt;
350 
351 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
352 	if (!mem)
353 		return NULL;
354 
355 	mem->arr = kcalloc(max_segs, sizeof(*mem->arr), GFP_KERNEL);
356 	if (!mem->arr)
357 		goto out_free;
358 
359 	while (max_page_cnt) {
360 		struct page *page;
361 		unsigned int order;
362 		gfp_t flags = GFP_KERNEL | GFP_DMA | __GFP_NOWARN |
363 				__GFP_NORETRY;
364 
365 		order = get_order(max_seg_page_cnt << PAGE_SHIFT);
366 		while (1) {
367 			page = alloc_pages(flags, order);
368 			if (page || !order)
369 				break;
370 			order -= 1;
371 		}
372 		if (!page) {
373 			if (page_cnt < min_page_cnt)
374 				goto out_free;
375 			break;
376 		}
377 		mem->arr[mem->cnt].page = page;
378 		mem->arr[mem->cnt].order = order;
379 		mem->cnt += 1;
380 		if (max_page_cnt <= (1UL << order))
381 			break;
382 		max_page_cnt -= 1UL << order;
383 		page_cnt += 1UL << order;
384 		if (mem->cnt >= max_segs) {
385 			if (page_cnt < min_page_cnt)
386 				goto out_free;
387 			break;
388 		}
389 	}
390 
391 	return mem;
392 
393 out_free:
394 	mmc_test_free_mem(mem);
395 	return NULL;
396 }
397 
398 /*
399  * Map memory into a scatterlist.  Optionally allow the same memory to be
400  * mapped more than once.
401  */
402 static int mmc_test_map_sg(struct mmc_test_mem *mem, unsigned long size,
403 			   struct scatterlist *sglist, int repeat,
404 			   unsigned int max_segs, unsigned int max_seg_sz,
405 			   unsigned int *sg_len, int min_sg_len)
406 {
407 	struct scatterlist *sg = NULL;
408 	unsigned int i;
409 	unsigned long sz = size;
410 
411 	sg_init_table(sglist, max_segs);
412 	if (min_sg_len > max_segs)
413 		min_sg_len = max_segs;
414 
415 	*sg_len = 0;
416 	do {
417 		for (i = 0; i < mem->cnt; i++) {
418 			unsigned long len = PAGE_SIZE << mem->arr[i].order;
419 
420 			if (min_sg_len && (size / min_sg_len < len))
421 				len = ALIGN(size / min_sg_len, 512);
422 			if (len > sz)
423 				len = sz;
424 			if (len > max_seg_sz)
425 				len = max_seg_sz;
426 			if (sg)
427 				sg = sg_next(sg);
428 			else
429 				sg = sglist;
430 			if (!sg)
431 				return -EINVAL;
432 			sg_set_page(sg, mem->arr[i].page, len, 0);
433 			sz -= len;
434 			*sg_len += 1;
435 			if (!sz)
436 				break;
437 		}
438 	} while (sz && repeat);
439 
440 	if (sz)
441 		return -EINVAL;
442 
443 	if (sg)
444 		sg_mark_end(sg);
445 
446 	return 0;
447 }
448 
449 /*
450  * Map memory into a scatterlist so that no pages are contiguous.  Allow the
451  * same memory to be mapped more than once.
452  */
453 static int mmc_test_map_sg_max_scatter(struct mmc_test_mem *mem,
454 				       unsigned long sz,
455 				       struct scatterlist *sglist,
456 				       unsigned int max_segs,
457 				       unsigned int max_seg_sz,
458 				       unsigned int *sg_len)
459 {
460 	struct scatterlist *sg = NULL;
461 	unsigned int i = mem->cnt, cnt;
462 	unsigned long len;
463 	void *base, *addr, *last_addr = NULL;
464 
465 	sg_init_table(sglist, max_segs);
466 
467 	*sg_len = 0;
468 	while (sz) {
469 		base = page_address(mem->arr[--i].page);
470 		cnt = 1 << mem->arr[i].order;
471 		while (sz && cnt) {
472 			addr = base + PAGE_SIZE * --cnt;
473 			if (last_addr && last_addr + PAGE_SIZE == addr)
474 				continue;
475 			last_addr = addr;
476 			len = PAGE_SIZE;
477 			if (len > max_seg_sz)
478 				len = max_seg_sz;
479 			if (len > sz)
480 				len = sz;
481 			if (sg)
482 				sg = sg_next(sg);
483 			else
484 				sg = sglist;
485 			if (!sg)
486 				return -EINVAL;
487 			sg_set_page(sg, virt_to_page(addr), len, 0);
488 			sz -= len;
489 			*sg_len += 1;
490 		}
491 		if (i == 0)
492 			i = mem->cnt;
493 	}
494 
495 	if (sg)
496 		sg_mark_end(sg);
497 
498 	return 0;
499 }
500 
501 /*
502  * Calculate transfer rate in bytes per second.
503  */
504 static unsigned int mmc_test_rate(uint64_t bytes, struct timespec64 *ts)
505 {
506 	uint64_t ns;
507 
508 	ns = timespec64_to_ns(ts);
509 	bytes *= 1000000000;
510 
511 	while (ns > UINT_MAX) {
512 		bytes >>= 1;
513 		ns >>= 1;
514 	}
515 
516 	if (!ns)
517 		return 0;
518 
519 	do_div(bytes, (uint32_t)ns);
520 
521 	return bytes;
522 }
523 
524 /*
525  * Save transfer results for future usage
526  */
527 static void mmc_test_save_transfer_result(struct mmc_test_card *test,
528 	unsigned int count, unsigned int sectors, struct timespec64 ts,
529 	unsigned int rate, unsigned int iops)
530 {
531 	struct mmc_test_transfer_result *tr;
532 
533 	if (!test->gr)
534 		return;
535 
536 	tr = kmalloc(sizeof(*tr), GFP_KERNEL);
537 	if (!tr)
538 		return;
539 
540 	tr->count = count;
541 	tr->sectors = sectors;
542 	tr->ts = ts;
543 	tr->rate = rate;
544 	tr->iops = iops;
545 
546 	list_add_tail(&tr->link, &test->gr->tr_lst);
547 }
548 
549 /*
550  * Print the transfer rate.
551  */
552 static void mmc_test_print_rate(struct mmc_test_card *test, uint64_t bytes,
553 				struct timespec64 *ts1, struct timespec64 *ts2)
554 {
555 	unsigned int rate, iops, sectors = bytes >> 9;
556 	struct timespec64 ts;
557 
558 	ts = timespec64_sub(*ts2, *ts1);
559 
560 	rate = mmc_test_rate(bytes, &ts);
561 	iops = mmc_test_rate(100, &ts); /* I/O ops per sec x 100 */
562 
563 	pr_info("%s: Transfer of %u sectors (%u%s KiB) took %llu.%09u "
564 			 "seconds (%u kB/s, %u KiB/s, %u.%02u IOPS)\n",
565 			 mmc_hostname(test->card->host), sectors, sectors >> 1,
566 			 (sectors & 1 ? ".5" : ""), (u64)ts.tv_sec,
567 			 (u32)ts.tv_nsec, rate / 1000, rate / 1024,
568 			 iops / 100, iops % 100);
569 
570 	mmc_test_save_transfer_result(test, 1, sectors, ts, rate, iops);
571 }
572 
573 /*
574  * Print the average transfer rate.
575  */
576 static void mmc_test_print_avg_rate(struct mmc_test_card *test, uint64_t bytes,
577 				    unsigned int count, struct timespec64 *ts1,
578 				    struct timespec64 *ts2)
579 {
580 	unsigned int rate, iops, sectors = bytes >> 9;
581 	uint64_t tot = bytes * count;
582 	struct timespec64 ts;
583 
584 	ts = timespec64_sub(*ts2, *ts1);
585 
586 	rate = mmc_test_rate(tot, &ts);
587 	iops = mmc_test_rate(count * 100, &ts); /* I/O ops per sec x 100 */
588 
589 	pr_info("%s: Transfer of %u x %u sectors (%u x %u%s KiB) took %ptSp seconds (%u kB/s, %u KiB/s, %u.%02u IOPS, sg_len %d)\n",
590 		mmc_hostname(test->card->host), count, sectors, count,
591 		sectors >> 1, (sectors & 1 ? ".5" : ""), &ts,
592 		rate / 1000, rate / 1024, iops / 100, iops % 100,
593 		test->area.sg_len);
594 
595 	mmc_test_save_transfer_result(test, count, sectors, ts, rate, iops);
596 }
597 
598 /*
599  * Return the card size in sectors.
600  */
601 static unsigned int mmc_test_capacity(struct mmc_card *card)
602 {
603 	if (!mmc_card_sd(card) && mmc_card_blockaddr(card))
604 		return card->ext_csd.sectors;
605 	else
606 		return card->csd.capacity << (card->csd.read_blkbits - 9);
607 }
608 
609 /*******************************************************************/
610 /*  Test preparation and cleanup                                   */
611 /*******************************************************************/
612 
613 /*
614  * Fill the first couple of sectors of the card with known data
615  * so that bad reads/writes can be detected
616  */
617 static int __mmc_test_prepare(struct mmc_test_card *test, int write, int val)
618 {
619 	int ret, i;
620 
621 	ret = mmc_test_set_blksize(test, 512);
622 	if (ret)
623 		return ret;
624 
625 	if (write)
626 		memset(test->buffer, val, 512);
627 	else {
628 		for (i = 0; i < 512; i++)
629 			test->buffer[i] = i;
630 	}
631 
632 	for (i = 0; i < BUFFER_SIZE / 512; i++) {
633 		ret = mmc_test_buffer_transfer(test, test->buffer, i, 512, 1);
634 		if (ret)
635 			return ret;
636 	}
637 
638 	return 0;
639 }
640 
641 static int mmc_test_prepare_write(struct mmc_test_card *test)
642 {
643 	return __mmc_test_prepare(test, 1, 0xDF);
644 }
645 
646 static int mmc_test_prepare_read(struct mmc_test_card *test)
647 {
648 	return __mmc_test_prepare(test, 0, 0);
649 }
650 
651 static int mmc_test_cleanup(struct mmc_test_card *test)
652 {
653 	return __mmc_test_prepare(test, 1, 0);
654 }
655 
656 /*******************************************************************/
657 /*  Test execution helpers                                         */
658 /*******************************************************************/
659 
660 /*
661  * Modifies the mmc_request to perform the "short transfer" tests
662  */
663 static void mmc_test_prepare_broken_mrq(struct mmc_test_card *test,
664 	struct mmc_request *mrq, int write)
665 {
666 	if (WARN_ON(!mrq || !mrq->cmd || !mrq->data))
667 		return;
668 
669 	if (mrq->data->blocks > 1) {
670 		mrq->cmd->opcode = write ?
671 			MMC_WRITE_BLOCK : MMC_READ_SINGLE_BLOCK;
672 		mrq->stop = NULL;
673 	} else {
674 		mrq->cmd->opcode = MMC_SEND_STATUS;
675 		mrq->cmd->arg = test->card->rca << 16;
676 	}
677 }
678 
679 /*
680  * Checks that a normal transfer didn't have any errors
681  */
682 static int mmc_test_check_result(struct mmc_test_card *test,
683 				 struct mmc_request *mrq)
684 {
685 	int ret;
686 
687 	if (WARN_ON(!mrq || !mrq->cmd || !mrq->data))
688 		return -EINVAL;
689 
690 	ret = 0;
691 
692 	if (mrq->sbc && mrq->sbc->error)
693 		ret = mrq->sbc->error;
694 	if (!ret && mrq->cmd->error)
695 		ret = mrq->cmd->error;
696 	if (!ret && mrq->data->error)
697 		ret = mrq->data->error;
698 	if (!ret && mrq->stop && mrq->stop->error)
699 		ret = mrq->stop->error;
700 	if (!ret && mrq->data->bytes_xfered !=
701 		mrq->data->blocks * mrq->data->blksz)
702 		ret = RESULT_FAIL;
703 
704 	if (ret == -EINVAL)
705 		ret = RESULT_UNSUP_HOST;
706 
707 	return ret;
708 }
709 
710 /*
711  * Checks that a "short transfer" behaved as expected
712  */
713 static int mmc_test_check_broken_result(struct mmc_test_card *test,
714 	struct mmc_request *mrq)
715 {
716 	int ret;
717 
718 	if (WARN_ON(!mrq || !mrq->cmd || !mrq->data))
719 		return -EINVAL;
720 
721 	ret = 0;
722 
723 	if (!ret && mrq->cmd->error)
724 		ret = mrq->cmd->error;
725 	if (!ret && mrq->data->error == 0)
726 		ret = RESULT_FAIL;
727 	if (!ret && mrq->data->error != -ETIMEDOUT)
728 		ret = mrq->data->error;
729 	if (!ret && mrq->stop && mrq->stop->error)
730 		ret = mrq->stop->error;
731 	if (mrq->data->blocks > 1) {
732 		if (!ret && mrq->data->bytes_xfered > mrq->data->blksz)
733 			ret = RESULT_FAIL;
734 	} else {
735 		if (!ret && mrq->data->bytes_xfered > 0)
736 			ret = RESULT_FAIL;
737 	}
738 
739 	if (ret == -EINVAL)
740 		ret = RESULT_UNSUP_HOST;
741 
742 	return ret;
743 }
744 
745 struct mmc_test_req {
746 	struct mmc_request mrq;
747 	struct mmc_command sbc;
748 	struct mmc_command cmd;
749 	struct mmc_command stop;
750 	struct mmc_command status;
751 	struct mmc_data data;
752 };
753 
754 /*
755  * Tests nonblock transfer with certain parameters
756  */
757 static void mmc_test_req_reset(struct mmc_test_req *rq)
758 {
759 	memset(rq, 0, sizeof(struct mmc_test_req));
760 
761 	rq->mrq.cmd = &rq->cmd;
762 	rq->mrq.data = &rq->data;
763 	rq->mrq.stop = &rq->stop;
764 }
765 
766 static struct mmc_test_req *mmc_test_req_alloc(void)
767 {
768 	struct mmc_test_req *rq = kmalloc(sizeof(*rq), GFP_KERNEL);
769 
770 	if (rq)
771 		mmc_test_req_reset(rq);
772 
773 	return rq;
774 }
775 
776 static void mmc_test_wait_done(struct mmc_request *mrq)
777 {
778 	complete(&mrq->completion);
779 }
780 
781 static int mmc_test_start_areq(struct mmc_test_card *test,
782 			       struct mmc_request *mrq,
783 			       struct mmc_request *prev_mrq)
784 {
785 	struct mmc_host *host = test->card->host;
786 	int err = 0;
787 
788 	if (mrq) {
789 		init_completion(&mrq->completion);
790 		mrq->done = mmc_test_wait_done;
791 		mmc_pre_req(host, mrq);
792 	}
793 
794 	if (prev_mrq) {
795 		wait_for_completion(&prev_mrq->completion);
796 		err = mmc_test_wait_busy(test);
797 		if (!err)
798 			err = mmc_test_check_result(test, prev_mrq);
799 	}
800 
801 	if (!err && mrq) {
802 		err = mmc_start_request(host, mrq);
803 		if (err)
804 			mmc_retune_release(host);
805 	}
806 
807 	if (prev_mrq)
808 		mmc_post_req(host, prev_mrq, 0);
809 
810 	if (err && mrq)
811 		mmc_post_req(host, mrq, err);
812 
813 	return err;
814 }
815 
816 static int mmc_test_nonblock_transfer(struct mmc_test_card *test,
817 				      unsigned int dev_addr, int write,
818 				      int count)
819 {
820 	struct mmc_test_req *rq1, *rq2;
821 	struct mmc_request *mrq, *prev_mrq;
822 	int i;
823 	int ret = RESULT_OK;
824 	struct mmc_test_area *t = &test->area;
825 	struct scatterlist *sg = t->sg;
826 	struct scatterlist *sg_areq = t->sg_areq;
827 
828 	rq1 = mmc_test_req_alloc();
829 	rq2 = mmc_test_req_alloc();
830 	if (!rq1 || !rq2) {
831 		ret = RESULT_FAIL;
832 		goto err;
833 	}
834 
835 	mrq = &rq1->mrq;
836 	prev_mrq = NULL;
837 
838 	for (i = 0; i < count; i++) {
839 		mmc_test_req_reset(container_of(mrq, struct mmc_test_req, mrq));
840 		mmc_test_prepare_mrq(test, mrq, sg, t->sg_len, dev_addr,
841 				     t->blocks, 512, write);
842 		ret = mmc_test_start_areq(test, mrq, prev_mrq);
843 		if (ret)
844 			goto err;
845 
846 		if (!prev_mrq)
847 			prev_mrq = &rq2->mrq;
848 
849 		swap(mrq, prev_mrq);
850 		swap(sg, sg_areq);
851 		dev_addr += t->blocks;
852 	}
853 
854 	ret = mmc_test_start_areq(test, NULL, prev_mrq);
855 err:
856 	kfree(rq1);
857 	kfree(rq2);
858 	return ret;
859 }
860 
861 /*
862  * Tests a basic transfer with certain parameters
863  */
864 static int mmc_test_simple_transfer(struct mmc_test_card *test,
865 	struct scatterlist *sg, unsigned sg_len, unsigned dev_addr,
866 	unsigned blocks, unsigned blksz, int write)
867 {
868 	struct mmc_request mrq = {};
869 	struct mmc_command cmd = {};
870 	struct mmc_command stop = {};
871 	struct mmc_data data = {};
872 
873 	mrq.cmd = &cmd;
874 	mrq.data = &data;
875 	mrq.stop = &stop;
876 
877 	mmc_test_prepare_mrq(test, &mrq, sg, sg_len, dev_addr,
878 		blocks, blksz, write);
879 
880 	mmc_wait_for_req(test->card->host, &mrq);
881 
882 	mmc_test_wait_busy(test);
883 
884 	return mmc_test_check_result(test, &mrq);
885 }
886 
887 /*
888  * Tests a transfer where the card will fail completely or partly
889  */
890 static int mmc_test_broken_transfer(struct mmc_test_card *test,
891 	unsigned blocks, unsigned blksz, int write)
892 {
893 	struct mmc_request mrq = {};
894 	struct mmc_command cmd = {};
895 	struct mmc_command stop = {};
896 	struct mmc_data data = {};
897 
898 	struct scatterlist sg;
899 
900 	mrq.cmd = &cmd;
901 	mrq.data = &data;
902 	mrq.stop = &stop;
903 
904 	sg_init_one(&sg, test->buffer, blocks * blksz);
905 
906 	mmc_test_prepare_mrq(test, &mrq, &sg, 1, 0, blocks, blksz, write);
907 	mmc_test_prepare_broken_mrq(test, &mrq, write);
908 
909 	mmc_wait_for_req(test->card->host, &mrq);
910 
911 	mmc_test_wait_busy(test);
912 
913 	return mmc_test_check_broken_result(test, &mrq);
914 }
915 
916 /*
917  * Does a complete transfer test where data is also validated
918  *
919  * Note: mmc_test_prepare() must have been done before this call
920  */
921 static int mmc_test_transfer(struct mmc_test_card *test,
922 	struct scatterlist *sg, unsigned sg_len, unsigned dev_addr,
923 	unsigned blocks, unsigned blksz, int write)
924 {
925 	int ret, i;
926 
927 	if (write) {
928 		for (i = 0; i < blocks * blksz; i++)
929 			test->scratch[i] = i;
930 	} else {
931 		memset(test->scratch, 0, BUFFER_SIZE);
932 	}
933 	sg_copy_from_buffer(sg, sg_len, test->scratch, BUFFER_SIZE);
934 
935 	ret = mmc_test_set_blksize(test, blksz);
936 	if (ret)
937 		return ret;
938 
939 	ret = mmc_test_simple_transfer(test, sg, sg_len, dev_addr,
940 		blocks, blksz, write);
941 	if (ret)
942 		return ret;
943 
944 	if (write) {
945 		int sectors;
946 
947 		ret = mmc_test_set_blksize(test, 512);
948 		if (ret)
949 			return ret;
950 
951 		sectors = (blocks * blksz + 511) / 512;
952 		if ((sectors * 512) == (blocks * blksz))
953 			sectors++;
954 
955 		if ((sectors * 512) > BUFFER_SIZE)
956 			return -EINVAL;
957 
958 		memset(test->buffer, 0, sectors * 512);
959 
960 		for (i = 0; i < sectors; i++) {
961 			ret = mmc_test_buffer_transfer(test,
962 				test->buffer + i * 512,
963 				dev_addr + i, 512, 0);
964 			if (ret)
965 				return ret;
966 		}
967 
968 		for (i = 0; i < blocks * blksz; i++) {
969 			if (test->buffer[i] != (u8)i)
970 				return RESULT_FAIL;
971 		}
972 
973 		for (; i < sectors * 512; i++) {
974 			if (test->buffer[i] != 0xDF)
975 				return RESULT_FAIL;
976 		}
977 	} else {
978 		sg_copy_to_buffer(sg, sg_len, test->scratch, BUFFER_SIZE);
979 		for (i = 0; i < blocks * blksz; i++) {
980 			if (test->scratch[i] != (u8)i)
981 				return RESULT_FAIL;
982 		}
983 	}
984 
985 	return 0;
986 }
987 
988 /*******************************************************************/
989 /*  Tests                                                          */
990 /*******************************************************************/
991 
992 struct mmc_test_case {
993 	const char *name;
994 
995 	int (*prepare)(struct mmc_test_card *);
996 	int (*run)(struct mmc_test_card *);
997 	int (*cleanup)(struct mmc_test_card *);
998 };
999 
1000 static int mmc_test_basic_write(struct mmc_test_card *test)
1001 {
1002 	int ret;
1003 	struct scatterlist sg;
1004 
1005 	ret = mmc_test_set_blksize(test, 512);
1006 	if (ret)
1007 		return ret;
1008 
1009 	sg_init_one(&sg, test->buffer, 512);
1010 
1011 	return mmc_test_simple_transfer(test, &sg, 1, 0, 1, 512, 1);
1012 }
1013 
1014 static int mmc_test_basic_read(struct mmc_test_card *test)
1015 {
1016 	int ret;
1017 	struct scatterlist sg;
1018 
1019 	ret = mmc_test_set_blksize(test, 512);
1020 	if (ret)
1021 		return ret;
1022 
1023 	sg_init_one(&sg, test->buffer, 512);
1024 
1025 	return mmc_test_simple_transfer(test, &sg, 1, 0, 1, 512, 0);
1026 }
1027 
1028 static int mmc_test_verify_write(struct mmc_test_card *test)
1029 {
1030 	struct scatterlist sg;
1031 
1032 	sg_init_one(&sg, test->buffer, 512);
1033 
1034 	return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1035 }
1036 
1037 static int mmc_test_verify_read(struct mmc_test_card *test)
1038 {
1039 	struct scatterlist sg;
1040 
1041 	sg_init_one(&sg, test->buffer, 512);
1042 
1043 	return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1044 }
1045 
1046 static int mmc_test_multi_write(struct mmc_test_card *test)
1047 {
1048 	unsigned int size;
1049 	struct scatterlist sg;
1050 
1051 	if (test->card->host->max_blk_count == 1)
1052 		return RESULT_UNSUP_HOST;
1053 
1054 	size = PAGE_SIZE * 2;
1055 	size = min(size, test->card->host->max_req_size);
1056 	size = min(size, test->card->host->max_seg_size);
1057 	size = min(size, test->card->host->max_blk_count * 512);
1058 
1059 	if (size < 1024)
1060 		return RESULT_UNSUP_HOST;
1061 
1062 	sg_init_one(&sg, test->buffer, size);
1063 
1064 	return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 1);
1065 }
1066 
1067 static int mmc_test_multi_read(struct mmc_test_card *test)
1068 {
1069 	unsigned int size;
1070 	struct scatterlist sg;
1071 
1072 	if (test->card->host->max_blk_count == 1)
1073 		return RESULT_UNSUP_HOST;
1074 
1075 	size = PAGE_SIZE * 2;
1076 	size = min(size, test->card->host->max_req_size);
1077 	size = min(size, test->card->host->max_seg_size);
1078 	size = min(size, test->card->host->max_blk_count * 512);
1079 
1080 	if (size < 1024)
1081 		return RESULT_UNSUP_HOST;
1082 
1083 	sg_init_one(&sg, test->buffer, size);
1084 
1085 	return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 0);
1086 }
1087 
1088 static int mmc_test_pow2_write(struct mmc_test_card *test)
1089 {
1090 	int ret, i;
1091 	struct scatterlist sg;
1092 
1093 	if (!test->card->csd.write_partial)
1094 		return RESULT_UNSUP_CARD;
1095 
1096 	for (i = 1; i < 512; i <<= 1) {
1097 		sg_init_one(&sg, test->buffer, i);
1098 		ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 1);
1099 		if (ret)
1100 			return ret;
1101 	}
1102 
1103 	return 0;
1104 }
1105 
1106 static int mmc_test_pow2_read(struct mmc_test_card *test)
1107 {
1108 	int ret, i;
1109 	struct scatterlist sg;
1110 
1111 	if (!test->card->csd.read_partial)
1112 		return RESULT_UNSUP_CARD;
1113 
1114 	for (i = 1; i < 512; i <<= 1) {
1115 		sg_init_one(&sg, test->buffer, i);
1116 		ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 0);
1117 		if (ret)
1118 			return ret;
1119 	}
1120 
1121 	return 0;
1122 }
1123 
1124 static int mmc_test_weird_write(struct mmc_test_card *test)
1125 {
1126 	int ret, i;
1127 	struct scatterlist sg;
1128 
1129 	if (!test->card->csd.write_partial)
1130 		return RESULT_UNSUP_CARD;
1131 
1132 	for (i = 3; i < 512; i += 7) {
1133 		sg_init_one(&sg, test->buffer, i);
1134 		ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 1);
1135 		if (ret)
1136 			return ret;
1137 	}
1138 
1139 	return 0;
1140 }
1141 
1142 static int mmc_test_weird_read(struct mmc_test_card *test)
1143 {
1144 	int ret, i;
1145 	struct scatterlist sg;
1146 
1147 	if (!test->card->csd.read_partial)
1148 		return RESULT_UNSUP_CARD;
1149 
1150 	for (i = 3; i < 512; i += 7) {
1151 		sg_init_one(&sg, test->buffer, i);
1152 		ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 0);
1153 		if (ret)
1154 			return ret;
1155 	}
1156 
1157 	return 0;
1158 }
1159 
1160 static int mmc_test_align_write(struct mmc_test_card *test)
1161 {
1162 	int ret, i;
1163 	struct scatterlist sg;
1164 
1165 	for (i = 1; i < TEST_ALIGN_END; i++) {
1166 		sg_init_one(&sg, test->buffer + i, 512);
1167 		ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1168 		if (ret)
1169 			return ret;
1170 	}
1171 
1172 	return 0;
1173 }
1174 
1175 static int mmc_test_align_read(struct mmc_test_card *test)
1176 {
1177 	int ret, i;
1178 	struct scatterlist sg;
1179 
1180 	for (i = 1; i < TEST_ALIGN_END; i++) {
1181 		sg_init_one(&sg, test->buffer + i, 512);
1182 		ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1183 		if (ret)
1184 			return ret;
1185 	}
1186 
1187 	return 0;
1188 }
1189 
1190 static int mmc_test_align_multi_write(struct mmc_test_card *test)
1191 {
1192 	int ret, i;
1193 	unsigned int size;
1194 	struct scatterlist sg;
1195 
1196 	if (test->card->host->max_blk_count == 1)
1197 		return RESULT_UNSUP_HOST;
1198 
1199 	size = PAGE_SIZE * 2;
1200 	size = min(size, test->card->host->max_req_size);
1201 	size = min(size, test->card->host->max_seg_size);
1202 	size = min(size, test->card->host->max_blk_count * 512);
1203 
1204 	if (size < 1024)
1205 		return RESULT_UNSUP_HOST;
1206 
1207 	for (i = 1; i < TEST_ALIGN_END; i++) {
1208 		sg_init_one(&sg, test->buffer + i, size);
1209 		ret = mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 1);
1210 		if (ret)
1211 			return ret;
1212 	}
1213 
1214 	return 0;
1215 }
1216 
1217 static int mmc_test_align_multi_read(struct mmc_test_card *test)
1218 {
1219 	int ret, i;
1220 	unsigned int size;
1221 	struct scatterlist sg;
1222 
1223 	if (test->card->host->max_blk_count == 1)
1224 		return RESULT_UNSUP_HOST;
1225 
1226 	size = PAGE_SIZE * 2;
1227 	size = min(size, test->card->host->max_req_size);
1228 	size = min(size, test->card->host->max_seg_size);
1229 	size = min(size, test->card->host->max_blk_count * 512);
1230 
1231 	if (size < 1024)
1232 		return RESULT_UNSUP_HOST;
1233 
1234 	for (i = 1; i < TEST_ALIGN_END; i++) {
1235 		sg_init_one(&sg, test->buffer + i, size);
1236 		ret = mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 0);
1237 		if (ret)
1238 			return ret;
1239 	}
1240 
1241 	return 0;
1242 }
1243 
1244 static int mmc_test_xfersize_write(struct mmc_test_card *test)
1245 {
1246 	int ret;
1247 
1248 	ret = mmc_test_set_blksize(test, 512);
1249 	if (ret)
1250 		return ret;
1251 
1252 	return mmc_test_broken_transfer(test, 1, 512, 1);
1253 }
1254 
1255 static int mmc_test_xfersize_read(struct mmc_test_card *test)
1256 {
1257 	int ret;
1258 
1259 	ret = mmc_test_set_blksize(test, 512);
1260 	if (ret)
1261 		return ret;
1262 
1263 	return mmc_test_broken_transfer(test, 1, 512, 0);
1264 }
1265 
1266 static int mmc_test_multi_xfersize_write(struct mmc_test_card *test)
1267 {
1268 	int ret;
1269 
1270 	if (test->card->host->max_blk_count == 1)
1271 		return RESULT_UNSUP_HOST;
1272 
1273 	ret = mmc_test_set_blksize(test, 512);
1274 	if (ret)
1275 		return ret;
1276 
1277 	return mmc_test_broken_transfer(test, 2, 512, 1);
1278 }
1279 
1280 static int mmc_test_multi_xfersize_read(struct mmc_test_card *test)
1281 {
1282 	int ret;
1283 
1284 	if (test->card->host->max_blk_count == 1)
1285 		return RESULT_UNSUP_HOST;
1286 
1287 	ret = mmc_test_set_blksize(test, 512);
1288 	if (ret)
1289 		return ret;
1290 
1291 	return mmc_test_broken_transfer(test, 2, 512, 0);
1292 }
1293 
1294 #ifdef CONFIG_HIGHMEM
1295 
1296 static int mmc_test_write_high(struct mmc_test_card *test)
1297 {
1298 	struct scatterlist sg;
1299 
1300 	sg_init_table(&sg, 1);
1301 	sg_set_page(&sg, test->highmem, 512, 0);
1302 
1303 	return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1304 }
1305 
1306 static int mmc_test_read_high(struct mmc_test_card *test)
1307 {
1308 	struct scatterlist sg;
1309 
1310 	sg_init_table(&sg, 1);
1311 	sg_set_page(&sg, test->highmem, 512, 0);
1312 
1313 	return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1314 }
1315 
1316 static int mmc_test_multi_write_high(struct mmc_test_card *test)
1317 {
1318 	unsigned int size;
1319 	struct scatterlist sg;
1320 
1321 	if (test->card->host->max_blk_count == 1)
1322 		return RESULT_UNSUP_HOST;
1323 
1324 	size = PAGE_SIZE * 2;
1325 	size = min(size, test->card->host->max_req_size);
1326 	size = min(size, test->card->host->max_seg_size);
1327 	size = min(size, test->card->host->max_blk_count * 512);
1328 
1329 	if (size < 1024)
1330 		return RESULT_UNSUP_HOST;
1331 
1332 	sg_init_table(&sg, 1);
1333 	sg_set_page(&sg, test->highmem, size, 0);
1334 
1335 	return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 1);
1336 }
1337 
1338 static int mmc_test_multi_read_high(struct mmc_test_card *test)
1339 {
1340 	unsigned int size;
1341 	struct scatterlist sg;
1342 
1343 	if (test->card->host->max_blk_count == 1)
1344 		return RESULT_UNSUP_HOST;
1345 
1346 	size = PAGE_SIZE * 2;
1347 	size = min(size, test->card->host->max_req_size);
1348 	size = min(size, test->card->host->max_seg_size);
1349 	size = min(size, test->card->host->max_blk_count * 512);
1350 
1351 	if (size < 1024)
1352 		return RESULT_UNSUP_HOST;
1353 
1354 	sg_init_table(&sg, 1);
1355 	sg_set_page(&sg, test->highmem, size, 0);
1356 
1357 	return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 0);
1358 }
1359 
1360 #else
1361 
1362 static int mmc_test_no_highmem(struct mmc_test_card *test)
1363 {
1364 	pr_info("%s: Highmem not configured - test skipped\n",
1365 	       mmc_hostname(test->card->host));
1366 	return 0;
1367 }
1368 
1369 #endif /* CONFIG_HIGHMEM */
1370 
1371 /*
1372  * Map sz bytes so that it can be transferred.
1373  */
1374 static int mmc_test_area_map(struct mmc_test_card *test, unsigned long sz,
1375 			     int max_scatter, int min_sg_len, bool nonblock)
1376 {
1377 	struct mmc_test_area *t = &test->area;
1378 	int err;
1379 	unsigned int sg_len = 0;
1380 
1381 	t->blocks = sz >> 9;
1382 
1383 	if (max_scatter) {
1384 		err = mmc_test_map_sg_max_scatter(t->mem, sz, t->sg,
1385 						  t->max_segs, t->max_seg_sz,
1386 				       &t->sg_len);
1387 	} else {
1388 		err = mmc_test_map_sg(t->mem, sz, t->sg, 1, t->max_segs,
1389 				      t->max_seg_sz, &t->sg_len, min_sg_len);
1390 	}
1391 
1392 	if (err || !nonblock)
1393 		goto err;
1394 
1395 	if (max_scatter) {
1396 		err = mmc_test_map_sg_max_scatter(t->mem, sz, t->sg_areq,
1397 						  t->max_segs, t->max_seg_sz,
1398 						  &sg_len);
1399 	} else {
1400 		err = mmc_test_map_sg(t->mem, sz, t->sg_areq, 1, t->max_segs,
1401 				      t->max_seg_sz, &sg_len, min_sg_len);
1402 	}
1403 	if (!err && sg_len != t->sg_len)
1404 		err = -EINVAL;
1405 
1406 err:
1407 	if (err)
1408 		pr_info("%s: Failed to map sg list\n",
1409 		       mmc_hostname(test->card->host));
1410 	return err;
1411 }
1412 
1413 /*
1414  * Transfer bytes mapped by mmc_test_area_map().
1415  */
1416 static int mmc_test_area_transfer(struct mmc_test_card *test,
1417 				  unsigned int dev_addr, int write)
1418 {
1419 	struct mmc_test_area *t = &test->area;
1420 
1421 	return mmc_test_simple_transfer(test, t->sg, t->sg_len, dev_addr,
1422 					t->blocks, 512, write);
1423 }
1424 
1425 /*
1426  * Map and transfer bytes for multiple transfers.
1427  */
1428 static int mmc_test_area_io_seq(struct mmc_test_card *test, unsigned long sz,
1429 				unsigned int dev_addr, int write,
1430 				int max_scatter, int timed, int count,
1431 				bool nonblock, int min_sg_len)
1432 {
1433 	struct timespec64 ts1, ts2;
1434 	int ret = 0;
1435 	int i;
1436 
1437 	/*
1438 	 * In the case of a maximally scattered transfer, the maximum transfer
1439 	 * size is further limited by using PAGE_SIZE segments.
1440 	 */
1441 	if (max_scatter) {
1442 		struct mmc_test_area *t = &test->area;
1443 		unsigned long max_tfr;
1444 
1445 		if (t->max_seg_sz >= PAGE_SIZE)
1446 			max_tfr = t->max_segs * PAGE_SIZE;
1447 		else
1448 			max_tfr = t->max_segs * t->max_seg_sz;
1449 		if (sz > max_tfr)
1450 			sz = max_tfr;
1451 	}
1452 
1453 	ret = mmc_test_area_map(test, sz, max_scatter, min_sg_len, nonblock);
1454 	if (ret)
1455 		return ret;
1456 
1457 	if (timed)
1458 		ktime_get_ts64(&ts1);
1459 	if (nonblock)
1460 		ret = mmc_test_nonblock_transfer(test, dev_addr, write, count);
1461 	else
1462 		for (i = 0; i < count && ret == 0; i++) {
1463 			ret = mmc_test_area_transfer(test, dev_addr, write);
1464 			dev_addr += sz >> 9;
1465 		}
1466 
1467 	if (ret)
1468 		return ret;
1469 
1470 	if (timed)
1471 		ktime_get_ts64(&ts2);
1472 
1473 	if (timed)
1474 		mmc_test_print_avg_rate(test, sz, count, &ts1, &ts2);
1475 
1476 	return 0;
1477 }
1478 
1479 static int mmc_test_area_io(struct mmc_test_card *test, unsigned long sz,
1480 			    unsigned int dev_addr, int write, int max_scatter,
1481 			    int timed)
1482 {
1483 	return mmc_test_area_io_seq(test, sz, dev_addr, write, max_scatter,
1484 				    timed, 1, false, 0);
1485 }
1486 
1487 /*
1488  * Write the test area entirely.
1489  */
1490 static int mmc_test_area_fill(struct mmc_test_card *test)
1491 {
1492 	struct mmc_test_area *t = &test->area;
1493 
1494 	return mmc_test_area_io(test, t->max_tfr, t->dev_addr, 1, 0, 0);
1495 }
1496 
1497 /*
1498  * Erase the test area entirely.
1499  */
1500 static int mmc_test_area_erase(struct mmc_test_card *test)
1501 {
1502 	struct mmc_test_area *t = &test->area;
1503 
1504 	if (!mmc_card_can_erase(test->card))
1505 		return 0;
1506 
1507 	return mmc_erase(test->card, t->dev_addr, t->max_sz >> 9,
1508 			 MMC_ERASE_ARG);
1509 }
1510 
1511 /*
1512  * Cleanup struct mmc_test_area.
1513  */
1514 static int mmc_test_area_cleanup(struct mmc_test_card *test)
1515 {
1516 	struct mmc_test_area *t = &test->area;
1517 
1518 	kfree(t->sg);
1519 	kfree(t->sg_areq);
1520 	mmc_test_free_mem(t->mem);
1521 
1522 	return 0;
1523 }
1524 
1525 /*
1526  * Initialize an area for testing large transfers.  The test area is set to the
1527  * middle of the card because cards may have different characteristics at the
1528  * front (for FAT file system optimization).  Optionally, the area is erased
1529  * (if the card supports it) which may improve write performance.  Optionally,
1530  * the area is filled with data for subsequent read tests.
1531  */
1532 static int mmc_test_area_init(struct mmc_test_card *test, int erase, int fill)
1533 {
1534 	struct mmc_test_area *t = &test->area;
1535 	unsigned long min_sz = 64 * 1024, sz;
1536 	int ret;
1537 
1538 	ret = mmc_test_set_blksize(test, 512);
1539 	if (ret)
1540 		return ret;
1541 
1542 	/* Make the test area size about 4MiB */
1543 	sz = (unsigned long)test->card->pref_erase << 9;
1544 	t->max_sz = sz;
1545 	while (t->max_sz < 4 * 1024 * 1024)
1546 		t->max_sz += sz;
1547 	while (t->max_sz > TEST_AREA_MAX_SIZE && t->max_sz > sz)
1548 		t->max_sz -= sz;
1549 
1550 	t->max_segs = test->card->host->max_segs;
1551 	t->max_seg_sz = test->card->host->max_seg_size;
1552 	t->max_seg_sz -= t->max_seg_sz % 512;
1553 
1554 	t->max_tfr = t->max_sz;
1555 	if (t->max_tfr >> 9 > test->card->host->max_blk_count)
1556 		t->max_tfr = test->card->host->max_blk_count << 9;
1557 	if (t->max_tfr > test->card->host->max_req_size)
1558 		t->max_tfr = test->card->host->max_req_size;
1559 	if (t->max_tfr / t->max_seg_sz > t->max_segs)
1560 		t->max_tfr = t->max_segs * t->max_seg_sz;
1561 
1562 	/*
1563 	 * Try to allocate enough memory for a max. sized transfer.  Less is OK
1564 	 * because the same memory can be mapped into the scatterlist more than
1565 	 * once.  Also, take into account the limits imposed on scatterlist
1566 	 * segments by the host driver.
1567 	 */
1568 	t->mem = mmc_test_alloc_mem(min_sz, t->max_tfr, t->max_segs,
1569 				    t->max_seg_sz);
1570 	if (!t->mem)
1571 		return -ENOMEM;
1572 
1573 	t->sg = kmalloc_array(t->max_segs, sizeof(*t->sg), GFP_KERNEL);
1574 	if (!t->sg) {
1575 		ret = -ENOMEM;
1576 		goto out_free;
1577 	}
1578 
1579 	t->sg_areq = kmalloc_array(t->max_segs, sizeof(*t->sg_areq),
1580 				   GFP_KERNEL);
1581 	if (!t->sg_areq) {
1582 		ret = -ENOMEM;
1583 		goto out_free;
1584 	}
1585 
1586 	t->dev_addr = mmc_test_capacity(test->card) / 2;
1587 	t->dev_addr -= t->dev_addr % (t->max_sz >> 9);
1588 
1589 	if (erase) {
1590 		ret = mmc_test_area_erase(test);
1591 		if (ret)
1592 			goto out_free;
1593 	}
1594 
1595 	if (fill) {
1596 		ret = mmc_test_area_fill(test);
1597 		if (ret)
1598 			goto out_free;
1599 	}
1600 
1601 	return 0;
1602 
1603 out_free:
1604 	mmc_test_area_cleanup(test);
1605 	return ret;
1606 }
1607 
1608 /*
1609  * Prepare for large transfers.  Do not erase the test area.
1610  */
1611 static int mmc_test_area_prepare(struct mmc_test_card *test)
1612 {
1613 	return mmc_test_area_init(test, 0, 0);
1614 }
1615 
1616 /*
1617  * Prepare for large transfers.  Do erase the test area.
1618  */
1619 static int mmc_test_area_prepare_erase(struct mmc_test_card *test)
1620 {
1621 	return mmc_test_area_init(test, 1, 0);
1622 }
1623 
1624 /*
1625  * Prepare for large transfers.  Erase and fill the test area.
1626  */
1627 static int mmc_test_area_prepare_fill(struct mmc_test_card *test)
1628 {
1629 	return mmc_test_area_init(test, 1, 1);
1630 }
1631 
1632 /*
1633  * Test best-case performance.  Best-case performance is expected from
1634  * a single large transfer.
1635  *
1636  * An additional option (max_scatter) allows the measurement of the same
1637  * transfer but with no contiguous pages in the scatter list.  This tests
1638  * the efficiency of DMA to handle scattered pages.
1639  */
1640 static int mmc_test_best_performance(struct mmc_test_card *test, int write,
1641 				     int max_scatter)
1642 {
1643 	struct mmc_test_area *t = &test->area;
1644 
1645 	return mmc_test_area_io(test, t->max_tfr, t->dev_addr, write,
1646 				max_scatter, 1);
1647 }
1648 
1649 /*
1650  * Best-case read performance.
1651  */
1652 static int mmc_test_best_read_performance(struct mmc_test_card *test)
1653 {
1654 	return mmc_test_best_performance(test, 0, 0);
1655 }
1656 
1657 /*
1658  * Best-case write performance.
1659  */
1660 static int mmc_test_best_write_performance(struct mmc_test_card *test)
1661 {
1662 	return mmc_test_best_performance(test, 1, 0);
1663 }
1664 
1665 /*
1666  * Best-case read performance into scattered pages.
1667  */
1668 static int mmc_test_best_read_perf_max_scatter(struct mmc_test_card *test)
1669 {
1670 	return mmc_test_best_performance(test, 0, 1);
1671 }
1672 
1673 /*
1674  * Best-case write performance from scattered pages.
1675  */
1676 static int mmc_test_best_write_perf_max_scatter(struct mmc_test_card *test)
1677 {
1678 	return mmc_test_best_performance(test, 1, 1);
1679 }
1680 
1681 /*
1682  * Single read performance by transfer size.
1683  */
1684 static int mmc_test_profile_read_perf(struct mmc_test_card *test)
1685 {
1686 	struct mmc_test_area *t = &test->area;
1687 	unsigned long sz;
1688 	unsigned int dev_addr;
1689 	int ret;
1690 
1691 	for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1692 		dev_addr = t->dev_addr + (sz >> 9);
1693 		ret = mmc_test_area_io(test, sz, dev_addr, 0, 0, 1);
1694 		if (ret)
1695 			return ret;
1696 	}
1697 	sz = t->max_tfr;
1698 	dev_addr = t->dev_addr;
1699 	return mmc_test_area_io(test, sz, dev_addr, 0, 0, 1);
1700 }
1701 
1702 /*
1703  * Single write performance by transfer size.
1704  */
1705 static int mmc_test_profile_write_perf(struct mmc_test_card *test)
1706 {
1707 	struct mmc_test_area *t = &test->area;
1708 	unsigned long sz;
1709 	unsigned int dev_addr;
1710 	int ret;
1711 
1712 	ret = mmc_test_area_erase(test);
1713 	if (ret)
1714 		return ret;
1715 	for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1716 		dev_addr = t->dev_addr + (sz >> 9);
1717 		ret = mmc_test_area_io(test, sz, dev_addr, 1, 0, 1);
1718 		if (ret)
1719 			return ret;
1720 	}
1721 	ret = mmc_test_area_erase(test);
1722 	if (ret)
1723 		return ret;
1724 	sz = t->max_tfr;
1725 	dev_addr = t->dev_addr;
1726 	return mmc_test_area_io(test, sz, dev_addr, 1, 0, 1);
1727 }
1728 
1729 /*
1730  * Single trim performance by transfer size.
1731  */
1732 static int mmc_test_profile_trim_perf(struct mmc_test_card *test)
1733 {
1734 	struct mmc_test_area *t = &test->area;
1735 	unsigned long sz;
1736 	unsigned int dev_addr;
1737 	struct timespec64 ts1, ts2;
1738 	int ret;
1739 
1740 	if (!mmc_card_can_trim(test->card))
1741 		return RESULT_UNSUP_CARD;
1742 
1743 	if (!mmc_card_can_erase(test->card))
1744 		return RESULT_UNSUP_HOST;
1745 
1746 	for (sz = 512; sz < t->max_sz; sz <<= 1) {
1747 		dev_addr = t->dev_addr + (sz >> 9);
1748 		ktime_get_ts64(&ts1);
1749 		ret = mmc_erase(test->card, dev_addr, sz >> 9, MMC_TRIM_ARG);
1750 		if (ret)
1751 			return ret;
1752 		ktime_get_ts64(&ts2);
1753 		mmc_test_print_rate(test, sz, &ts1, &ts2);
1754 	}
1755 	dev_addr = t->dev_addr;
1756 	ktime_get_ts64(&ts1);
1757 	ret = mmc_erase(test->card, dev_addr, sz >> 9, MMC_TRIM_ARG);
1758 	if (ret)
1759 		return ret;
1760 	ktime_get_ts64(&ts2);
1761 	mmc_test_print_rate(test, sz, &ts1, &ts2);
1762 	return 0;
1763 }
1764 
1765 static int mmc_test_seq_read_perf(struct mmc_test_card *test, unsigned long sz)
1766 {
1767 	struct mmc_test_area *t = &test->area;
1768 	unsigned int dev_addr, i, cnt;
1769 	struct timespec64 ts1, ts2;
1770 	int ret;
1771 
1772 	cnt = t->max_sz / sz;
1773 	dev_addr = t->dev_addr;
1774 	ktime_get_ts64(&ts1);
1775 	for (i = 0; i < cnt; i++) {
1776 		ret = mmc_test_area_io(test, sz, dev_addr, 0, 0, 0);
1777 		if (ret)
1778 			return ret;
1779 		dev_addr += (sz >> 9);
1780 	}
1781 	ktime_get_ts64(&ts2);
1782 	mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1783 	return 0;
1784 }
1785 
1786 /*
1787  * Consecutive read performance by transfer size.
1788  */
1789 static int mmc_test_profile_seq_read_perf(struct mmc_test_card *test)
1790 {
1791 	struct mmc_test_area *t = &test->area;
1792 	unsigned long sz;
1793 	int ret;
1794 
1795 	for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1796 		ret = mmc_test_seq_read_perf(test, sz);
1797 		if (ret)
1798 			return ret;
1799 	}
1800 	sz = t->max_tfr;
1801 	return mmc_test_seq_read_perf(test, sz);
1802 }
1803 
1804 static int mmc_test_seq_write_perf(struct mmc_test_card *test, unsigned long sz)
1805 {
1806 	struct mmc_test_area *t = &test->area;
1807 	unsigned int dev_addr, i, cnt;
1808 	struct timespec64 ts1, ts2;
1809 	int ret;
1810 
1811 	ret = mmc_test_area_erase(test);
1812 	if (ret)
1813 		return ret;
1814 	cnt = t->max_sz / sz;
1815 	dev_addr = t->dev_addr;
1816 	ktime_get_ts64(&ts1);
1817 	for (i = 0; i < cnt; i++) {
1818 		ret = mmc_test_area_io(test, sz, dev_addr, 1, 0, 0);
1819 		if (ret)
1820 			return ret;
1821 		dev_addr += (sz >> 9);
1822 	}
1823 	ktime_get_ts64(&ts2);
1824 	mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1825 	return 0;
1826 }
1827 
1828 /*
1829  * Consecutive write performance by transfer size.
1830  */
1831 static int mmc_test_profile_seq_write_perf(struct mmc_test_card *test)
1832 {
1833 	struct mmc_test_area *t = &test->area;
1834 	unsigned long sz;
1835 	int ret;
1836 
1837 	for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1838 		ret = mmc_test_seq_write_perf(test, sz);
1839 		if (ret)
1840 			return ret;
1841 	}
1842 	sz = t->max_tfr;
1843 	return mmc_test_seq_write_perf(test, sz);
1844 }
1845 
1846 /*
1847  * Consecutive trim performance by transfer size.
1848  */
1849 static int mmc_test_profile_seq_trim_perf(struct mmc_test_card *test)
1850 {
1851 	struct mmc_test_area *t = &test->area;
1852 	unsigned long sz;
1853 	unsigned int dev_addr, i, cnt;
1854 	struct timespec64 ts1, ts2;
1855 	int ret;
1856 
1857 	if (!mmc_card_can_trim(test->card))
1858 		return RESULT_UNSUP_CARD;
1859 
1860 	if (!mmc_card_can_erase(test->card))
1861 		return RESULT_UNSUP_HOST;
1862 
1863 	for (sz = 512; sz <= t->max_sz; sz <<= 1) {
1864 		ret = mmc_test_area_erase(test);
1865 		if (ret)
1866 			return ret;
1867 		ret = mmc_test_area_fill(test);
1868 		if (ret)
1869 			return ret;
1870 		cnt = t->max_sz / sz;
1871 		dev_addr = t->dev_addr;
1872 		ktime_get_ts64(&ts1);
1873 		for (i = 0; i < cnt; i++) {
1874 			ret = mmc_erase(test->card, dev_addr, sz >> 9,
1875 					MMC_TRIM_ARG);
1876 			if (ret)
1877 				return ret;
1878 			dev_addr += (sz >> 9);
1879 		}
1880 		ktime_get_ts64(&ts2);
1881 		mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1882 	}
1883 	return 0;
1884 }
1885 
1886 static unsigned int rnd_next = 1;
1887 
1888 static unsigned int mmc_test_rnd_num(unsigned int rnd_cnt)
1889 {
1890 	uint64_t r;
1891 
1892 	rnd_next = rnd_next * 1103515245 + 12345;
1893 	r = (rnd_next >> 16) & 0x7fff;
1894 	return (r * rnd_cnt) >> 15;
1895 }
1896 
1897 static int mmc_test_rnd_perf(struct mmc_test_card *test, int write, int print,
1898 			     unsigned long sz, int secs, int force_retuning)
1899 {
1900 	unsigned int dev_addr, cnt, rnd_addr, range1, range2, last_ea = 0, ea;
1901 	unsigned int ssz;
1902 	struct timespec64 ts1, ts2, ts;
1903 	int ret;
1904 
1905 	ssz = sz >> 9;
1906 
1907 	rnd_addr = mmc_test_capacity(test->card) / 4;
1908 	range1 = rnd_addr / test->card->pref_erase;
1909 	range2 = range1 / ssz;
1910 
1911 	ktime_get_ts64(&ts1);
1912 	for (cnt = 0; cnt < UINT_MAX; cnt++) {
1913 		ktime_get_ts64(&ts2);
1914 		ts = timespec64_sub(ts2, ts1);
1915 		if (ts.tv_sec >= secs)
1916 			break;
1917 		ea = mmc_test_rnd_num(range1);
1918 		if (ea == last_ea)
1919 			ea -= 1;
1920 		last_ea = ea;
1921 		dev_addr = rnd_addr + test->card->pref_erase * ea +
1922 			   ssz * mmc_test_rnd_num(range2);
1923 		if (force_retuning)
1924 			mmc_retune_needed(test->card->host);
1925 		ret = mmc_test_area_io(test, sz, dev_addr, write, 0, 0);
1926 		if (ret)
1927 			return ret;
1928 	}
1929 	if (print)
1930 		mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1931 	return 0;
1932 }
1933 
1934 static int mmc_test_random_perf(struct mmc_test_card *test, int write)
1935 {
1936 	struct mmc_test_area *t = &test->area;
1937 	unsigned int next;
1938 	unsigned long sz;
1939 	int ret;
1940 
1941 	for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1942 		/*
1943 		 * When writing, try to get more consistent results by running
1944 		 * the test twice with exactly the same I/O but outputting the
1945 		 * results only for the 2nd run.
1946 		 */
1947 		if (write) {
1948 			next = rnd_next;
1949 			ret = mmc_test_rnd_perf(test, write, 0, sz, 10, 0);
1950 			if (ret)
1951 				return ret;
1952 			rnd_next = next;
1953 		}
1954 		ret = mmc_test_rnd_perf(test, write, 1, sz, 10, 0);
1955 		if (ret)
1956 			return ret;
1957 	}
1958 	sz = t->max_tfr;
1959 	if (write) {
1960 		next = rnd_next;
1961 		ret = mmc_test_rnd_perf(test, write, 0, sz, 10, 0);
1962 		if (ret)
1963 			return ret;
1964 		rnd_next = next;
1965 	}
1966 	return mmc_test_rnd_perf(test, write, 1, sz, 10, 0);
1967 }
1968 
1969 static int mmc_test_retuning(struct mmc_test_card *test)
1970 {
1971 	if (!mmc_can_retune(test->card->host)) {
1972 		pr_info("%s: No retuning - test skipped\n",
1973 			mmc_hostname(test->card->host));
1974 		return RESULT_UNSUP_HOST;
1975 	}
1976 
1977 	return mmc_test_rnd_perf(test, 0, 0, 8192, 30, 1);
1978 }
1979 
1980 /*
1981  * Random read performance by transfer size.
1982  */
1983 static int mmc_test_random_read_perf(struct mmc_test_card *test)
1984 {
1985 	return mmc_test_random_perf(test, 0);
1986 }
1987 
1988 /*
1989  * Random write performance by transfer size.
1990  */
1991 static int mmc_test_random_write_perf(struct mmc_test_card *test)
1992 {
1993 	return mmc_test_random_perf(test, 1);
1994 }
1995 
1996 static int mmc_test_seq_perf(struct mmc_test_card *test, int write,
1997 			     unsigned int tot_sz, int max_scatter)
1998 {
1999 	struct mmc_test_area *t = &test->area;
2000 	unsigned int dev_addr, i, cnt, sz, ssz;
2001 	struct timespec64 ts1, ts2;
2002 	int ret;
2003 
2004 	sz = t->max_tfr;
2005 
2006 	/*
2007 	 * In the case of a maximally scattered transfer, the maximum transfer
2008 	 * size is further limited by using PAGE_SIZE segments.
2009 	 */
2010 	if (max_scatter) {
2011 		unsigned long max_tfr;
2012 
2013 		if (t->max_seg_sz >= PAGE_SIZE)
2014 			max_tfr = t->max_segs * PAGE_SIZE;
2015 		else
2016 			max_tfr = t->max_segs * t->max_seg_sz;
2017 		if (sz > max_tfr)
2018 			sz = max_tfr;
2019 	}
2020 
2021 	ssz = sz >> 9;
2022 	dev_addr = mmc_test_capacity(test->card) / 4;
2023 	if (tot_sz > dev_addr << 9)
2024 		tot_sz = dev_addr << 9;
2025 	cnt = tot_sz / sz;
2026 	dev_addr &= 0xffff0000; /* Round to 64MiB boundary */
2027 
2028 	ktime_get_ts64(&ts1);
2029 	for (i = 0; i < cnt; i++) {
2030 		ret = mmc_test_area_io(test, sz, dev_addr, write,
2031 				       max_scatter, 0);
2032 		if (ret)
2033 			return ret;
2034 		dev_addr += ssz;
2035 	}
2036 	ktime_get_ts64(&ts2);
2037 
2038 	mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
2039 
2040 	return 0;
2041 }
2042 
2043 static int mmc_test_large_seq_perf(struct mmc_test_card *test, int write)
2044 {
2045 	int ret, i;
2046 
2047 	for (i = 0; i < 10; i++) {
2048 		ret = mmc_test_seq_perf(test, write, 10 * 1024 * 1024, 1);
2049 		if (ret)
2050 			return ret;
2051 	}
2052 	for (i = 0; i < 5; i++) {
2053 		ret = mmc_test_seq_perf(test, write, 100 * 1024 * 1024, 1);
2054 		if (ret)
2055 			return ret;
2056 	}
2057 	for (i = 0; i < 3; i++) {
2058 		ret = mmc_test_seq_perf(test, write, 1000 * 1024 * 1024, 1);
2059 		if (ret)
2060 			return ret;
2061 	}
2062 
2063 	return ret;
2064 }
2065 
2066 /*
2067  * Large sequential read performance.
2068  */
2069 static int mmc_test_large_seq_read_perf(struct mmc_test_card *test)
2070 {
2071 	return mmc_test_large_seq_perf(test, 0);
2072 }
2073 
2074 /*
2075  * Large sequential write performance.
2076  */
2077 static int mmc_test_large_seq_write_perf(struct mmc_test_card *test)
2078 {
2079 	return mmc_test_large_seq_perf(test, 1);
2080 }
2081 
2082 static int mmc_test_rw_multiple(struct mmc_test_card *test,
2083 				struct mmc_test_multiple_rw *tdata,
2084 				unsigned int reqsize, unsigned int size,
2085 				int min_sg_len)
2086 {
2087 	unsigned int dev_addr;
2088 	struct mmc_test_area *t = &test->area;
2089 	int ret = 0;
2090 
2091 	/* Set up test area */
2092 	if (size > mmc_test_capacity(test->card) / 2 * 512)
2093 		size = mmc_test_capacity(test->card) / 2 * 512;
2094 	if (reqsize > t->max_tfr)
2095 		reqsize = t->max_tfr;
2096 	dev_addr = mmc_test_capacity(test->card) / 4;
2097 	if ((dev_addr & 0xffff0000))
2098 		dev_addr &= 0xffff0000; /* Round to 64MiB boundary */
2099 	else
2100 		dev_addr &= 0xfffff800; /* Round to 1MiB boundary */
2101 	if (!dev_addr)
2102 		goto err;
2103 
2104 	if (reqsize > size)
2105 		return 0;
2106 
2107 	/* prepare test area */
2108 	if (mmc_card_can_erase(test->card) &&
2109 	    tdata->prepare & MMC_TEST_PREP_ERASE) {
2110 		ret = mmc_erase(test->card, dev_addr,
2111 				size / 512, test->card->erase_arg);
2112 		if (ret)
2113 			ret = mmc_erase(test->card, dev_addr,
2114 					size / 512, MMC_ERASE_ARG);
2115 		if (ret)
2116 			goto err;
2117 	}
2118 
2119 	/* Run test */
2120 	ret = mmc_test_area_io_seq(test, reqsize, dev_addr,
2121 				   tdata->do_write, 0, 1, size / reqsize,
2122 				   tdata->do_nonblock_req, min_sg_len);
2123 	if (ret)
2124 		goto err;
2125 
2126 	return ret;
2127  err:
2128 	pr_info("[%s] error\n", __func__);
2129 	return ret;
2130 }
2131 
2132 static int mmc_test_rw_multiple_size(struct mmc_test_card *test,
2133 				     struct mmc_test_multiple_rw *rw)
2134 {
2135 	int ret = 0;
2136 	int i;
2137 	void *pre_req = test->card->host->ops->pre_req;
2138 	void *post_req = test->card->host->ops->post_req;
2139 
2140 	if (rw->do_nonblock_req &&
2141 	    ((!pre_req && post_req) || (pre_req && !post_req))) {
2142 		pr_info("error: only one of pre/post is defined\n");
2143 		return -EINVAL;
2144 	}
2145 
2146 	for (i = 0 ; i < rw->len && ret == 0; i++) {
2147 		ret = mmc_test_rw_multiple(test, rw, rw->bs[i], rw->size, 0);
2148 		if (ret)
2149 			break;
2150 	}
2151 	return ret;
2152 }
2153 
2154 static int mmc_test_rw_multiple_sg_len(struct mmc_test_card *test,
2155 				       struct mmc_test_multiple_rw *rw)
2156 {
2157 	int ret = 0;
2158 	int i;
2159 
2160 	for (i = 0 ; i < rw->len && ret == 0; i++) {
2161 		ret = mmc_test_rw_multiple(test, rw, 512 * 1024, rw->size,
2162 					   rw->sg_len[i]);
2163 		if (ret)
2164 			break;
2165 	}
2166 	return ret;
2167 }
2168 
2169 /*
2170  * Multiple blocking write 4k to 4 MB chunks
2171  */
2172 static int mmc_test_profile_mult_write_blocking_perf(struct mmc_test_card *test)
2173 {
2174 	unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2175 			     1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2176 	struct mmc_test_multiple_rw test_data = {
2177 		.bs = bs,
2178 		.size = TEST_AREA_MAX_SIZE,
2179 		.len = ARRAY_SIZE(bs),
2180 		.do_write = true,
2181 		.do_nonblock_req = false,
2182 		.prepare = MMC_TEST_PREP_ERASE,
2183 	};
2184 
2185 	return mmc_test_rw_multiple_size(test, &test_data);
2186 };
2187 
2188 /*
2189  * Multiple non-blocking write 4k to 4 MB chunks
2190  */
2191 static int mmc_test_profile_mult_write_nonblock_perf(struct mmc_test_card *test)
2192 {
2193 	unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2194 			     1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2195 	struct mmc_test_multiple_rw test_data = {
2196 		.bs = bs,
2197 		.size = TEST_AREA_MAX_SIZE,
2198 		.len = ARRAY_SIZE(bs),
2199 		.do_write = true,
2200 		.do_nonblock_req = true,
2201 		.prepare = MMC_TEST_PREP_ERASE,
2202 	};
2203 
2204 	return mmc_test_rw_multiple_size(test, &test_data);
2205 }
2206 
2207 /*
2208  * Multiple blocking read 4k to 4 MB chunks
2209  */
2210 static int mmc_test_profile_mult_read_blocking_perf(struct mmc_test_card *test)
2211 {
2212 	unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2213 			     1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2214 	struct mmc_test_multiple_rw test_data = {
2215 		.bs = bs,
2216 		.size = TEST_AREA_MAX_SIZE,
2217 		.len = ARRAY_SIZE(bs),
2218 		.do_write = false,
2219 		.do_nonblock_req = false,
2220 		.prepare = MMC_TEST_PREP_NONE,
2221 	};
2222 
2223 	return mmc_test_rw_multiple_size(test, &test_data);
2224 }
2225 
2226 /*
2227  * Multiple non-blocking read 4k to 4 MB chunks
2228  */
2229 static int mmc_test_profile_mult_read_nonblock_perf(struct mmc_test_card *test)
2230 {
2231 	unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2232 			     1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2233 	struct mmc_test_multiple_rw test_data = {
2234 		.bs = bs,
2235 		.size = TEST_AREA_MAX_SIZE,
2236 		.len = ARRAY_SIZE(bs),
2237 		.do_write = false,
2238 		.do_nonblock_req = true,
2239 		.prepare = MMC_TEST_PREP_NONE,
2240 	};
2241 
2242 	return mmc_test_rw_multiple_size(test, &test_data);
2243 }
2244 
2245 /*
2246  * Multiple blocking write 1 to 512 sg elements
2247  */
2248 static int mmc_test_profile_sglen_wr_blocking_perf(struct mmc_test_card *test)
2249 {
2250 	unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2251 				 1 << 7, 1 << 8, 1 << 9};
2252 	struct mmc_test_multiple_rw test_data = {
2253 		.sg_len = sg_len,
2254 		.size = TEST_AREA_MAX_SIZE,
2255 		.len = ARRAY_SIZE(sg_len),
2256 		.do_write = true,
2257 		.do_nonblock_req = false,
2258 		.prepare = MMC_TEST_PREP_ERASE,
2259 	};
2260 
2261 	return mmc_test_rw_multiple_sg_len(test, &test_data);
2262 };
2263 
2264 /*
2265  * Multiple non-blocking write 1 to 512 sg elements
2266  */
2267 static int mmc_test_profile_sglen_wr_nonblock_perf(struct mmc_test_card *test)
2268 {
2269 	unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2270 				 1 << 7, 1 << 8, 1 << 9};
2271 	struct mmc_test_multiple_rw test_data = {
2272 		.sg_len = sg_len,
2273 		.size = TEST_AREA_MAX_SIZE,
2274 		.len = ARRAY_SIZE(sg_len),
2275 		.do_write = true,
2276 		.do_nonblock_req = true,
2277 		.prepare = MMC_TEST_PREP_ERASE,
2278 	};
2279 
2280 	return mmc_test_rw_multiple_sg_len(test, &test_data);
2281 }
2282 
2283 /*
2284  * Multiple blocking read 1 to 512 sg elements
2285  */
2286 static int mmc_test_profile_sglen_r_blocking_perf(struct mmc_test_card *test)
2287 {
2288 	unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2289 				 1 << 7, 1 << 8, 1 << 9};
2290 	struct mmc_test_multiple_rw test_data = {
2291 		.sg_len = sg_len,
2292 		.size = TEST_AREA_MAX_SIZE,
2293 		.len = ARRAY_SIZE(sg_len),
2294 		.do_write = false,
2295 		.do_nonblock_req = false,
2296 		.prepare = MMC_TEST_PREP_NONE,
2297 	};
2298 
2299 	return mmc_test_rw_multiple_sg_len(test, &test_data);
2300 }
2301 
2302 /*
2303  * Multiple non-blocking read 1 to 512 sg elements
2304  */
2305 static int mmc_test_profile_sglen_r_nonblock_perf(struct mmc_test_card *test)
2306 {
2307 	unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2308 				 1 << 7, 1 << 8, 1 << 9};
2309 	struct mmc_test_multiple_rw test_data = {
2310 		.sg_len = sg_len,
2311 		.size = TEST_AREA_MAX_SIZE,
2312 		.len = ARRAY_SIZE(sg_len),
2313 		.do_write = false,
2314 		.do_nonblock_req = true,
2315 		.prepare = MMC_TEST_PREP_NONE,
2316 	};
2317 
2318 	return mmc_test_rw_multiple_sg_len(test, &test_data);
2319 }
2320 
2321 /*
2322  * eMMC hardware reset.
2323  */
2324 static int mmc_test_reset(struct mmc_test_card *test)
2325 {
2326 	struct mmc_card *card = test->card;
2327 	int err;
2328 
2329 	err = mmc_hw_reset(card);
2330 	if (!err) {
2331 		/*
2332 		 * Reset will re-enable the card's command queue, but tests
2333 		 * expect it to be disabled.
2334 		 */
2335 		if (card->ext_csd.cmdq_en)
2336 			mmc_cmdq_disable(card);
2337 		return RESULT_OK;
2338 	} else if (err == -EOPNOTSUPP) {
2339 		return RESULT_UNSUP_HOST;
2340 	}
2341 
2342 	return RESULT_FAIL;
2343 }
2344 
2345 static int mmc_test_send_status(struct mmc_test_card *test,
2346 				struct mmc_command *cmd)
2347 {
2348 	memset(cmd, 0, sizeof(*cmd));
2349 
2350 	cmd->opcode = MMC_SEND_STATUS;
2351 	if (!mmc_host_is_spi(test->card->host))
2352 		cmd->arg = test->card->rca << 16;
2353 	cmd->flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
2354 
2355 	return mmc_wait_for_cmd(test->card->host, cmd, 0);
2356 }
2357 
2358 static int mmc_test_ongoing_transfer(struct mmc_test_card *test,
2359 				     unsigned int dev_addr, int use_sbc,
2360 				     int repeat_cmd, int write, int use_areq)
2361 {
2362 	struct mmc_test_req *rq = mmc_test_req_alloc();
2363 	struct mmc_host *host = test->card->host;
2364 	struct mmc_test_area *t = &test->area;
2365 	struct mmc_request *mrq;
2366 	unsigned long timeout;
2367 	bool expired = false;
2368 	int ret = 0, cmd_ret;
2369 	u32 status = 0;
2370 	int count = 0;
2371 
2372 	if (!rq)
2373 		return -ENOMEM;
2374 
2375 	mrq = &rq->mrq;
2376 	if (use_sbc)
2377 		mrq->sbc = &rq->sbc;
2378 	mrq->cap_cmd_during_tfr = true;
2379 
2380 	mmc_test_prepare_mrq(test, mrq, t->sg, t->sg_len, dev_addr, t->blocks,
2381 			     512, write);
2382 
2383 	if (use_sbc && t->blocks > 1 && !mrq->sbc) {
2384 		ret =  mmc_host_can_cmd23(host) ?
2385 		       RESULT_UNSUP_CARD :
2386 		       RESULT_UNSUP_HOST;
2387 		goto out_free;
2388 	}
2389 
2390 	/* Start ongoing data request */
2391 	if (use_areq) {
2392 		ret = mmc_test_start_areq(test, mrq, NULL);
2393 		if (ret)
2394 			goto out_free;
2395 	} else {
2396 		mmc_wait_for_req(host, mrq);
2397 	}
2398 
2399 	timeout = jiffies + msecs_to_jiffies(3000);
2400 	do {
2401 		count += 1;
2402 
2403 		/* Send status command while data transfer in progress */
2404 		cmd_ret = mmc_test_send_status(test, &rq->status);
2405 		if (cmd_ret)
2406 			break;
2407 
2408 		status = rq->status.resp[0];
2409 		if (status & R1_ERROR) {
2410 			cmd_ret = -EIO;
2411 			break;
2412 		}
2413 
2414 		if (mmc_is_req_done(host, mrq))
2415 			break;
2416 
2417 		expired = time_after(jiffies, timeout);
2418 		if (expired) {
2419 			pr_info("%s: timeout waiting for Tran state status %#x\n",
2420 				mmc_hostname(host), status);
2421 			cmd_ret = -ETIMEDOUT;
2422 			break;
2423 		}
2424 	} while (repeat_cmd && R1_CURRENT_STATE(status) != R1_STATE_TRAN);
2425 
2426 	/* Wait for data request to complete */
2427 	if (use_areq) {
2428 		ret = mmc_test_start_areq(test, NULL, mrq);
2429 	} else {
2430 		mmc_wait_for_req_done(test->card->host, mrq);
2431 	}
2432 
2433 	/*
2434 	 * For cap_cmd_during_tfr request, upper layer must send stop if
2435 	 * required.
2436 	 */
2437 	if (mrq->data->stop && (mrq->data->error || !mrq->sbc)) {
2438 		if (ret)
2439 			mmc_wait_for_cmd(host, mrq->data->stop, 0);
2440 		else
2441 			ret = mmc_wait_for_cmd(host, mrq->data->stop, 0);
2442 	}
2443 
2444 	if (ret)
2445 		goto out_free;
2446 
2447 	if (cmd_ret) {
2448 		pr_info("%s: Send Status failed: status %#x, error %d\n",
2449 			mmc_hostname(test->card->host), status, cmd_ret);
2450 	}
2451 
2452 	ret = mmc_test_check_result(test, mrq);
2453 	if (ret)
2454 		goto out_free;
2455 
2456 	ret = mmc_test_wait_busy(test);
2457 	if (ret)
2458 		goto out_free;
2459 
2460 	if (repeat_cmd && (t->blocks + 1) << 9 > t->max_tfr)
2461 		pr_info("%s: %d commands completed during transfer of %u blocks\n",
2462 			mmc_hostname(test->card->host), count, t->blocks);
2463 
2464 	if (cmd_ret)
2465 		ret = cmd_ret;
2466 out_free:
2467 	kfree(rq);
2468 
2469 	return ret;
2470 }
2471 
2472 static int __mmc_test_cmds_during_tfr(struct mmc_test_card *test,
2473 				      unsigned long sz, int use_sbc, int write,
2474 				      int use_areq)
2475 {
2476 	struct mmc_test_area *t = &test->area;
2477 	int ret;
2478 
2479 	if (!(test->card->host->caps & MMC_CAP_CMD_DURING_TFR))
2480 		return RESULT_UNSUP_HOST;
2481 
2482 	ret = mmc_test_area_map(test, sz, 0, 0, use_areq);
2483 	if (ret)
2484 		return ret;
2485 
2486 	ret = mmc_test_ongoing_transfer(test, t->dev_addr, use_sbc, 0, write,
2487 					use_areq);
2488 	if (ret)
2489 		return ret;
2490 
2491 	return mmc_test_ongoing_transfer(test, t->dev_addr, use_sbc, 1, write,
2492 					 use_areq);
2493 }
2494 
2495 static int mmc_test_cmds_during_tfr(struct mmc_test_card *test, int use_sbc,
2496 				    int write, int use_areq)
2497 {
2498 	struct mmc_test_area *t = &test->area;
2499 	unsigned long sz;
2500 	int ret;
2501 
2502 	for (sz = 512; sz <= t->max_tfr; sz += 512) {
2503 		ret = __mmc_test_cmds_during_tfr(test, sz, use_sbc, write,
2504 						 use_areq);
2505 		if (ret)
2506 			return ret;
2507 	}
2508 	return 0;
2509 }
2510 
2511 /*
2512  * Commands during read - no Set Block Count (CMD23).
2513  */
2514 static int mmc_test_cmds_during_read(struct mmc_test_card *test)
2515 {
2516 	return mmc_test_cmds_during_tfr(test, 0, 0, 0);
2517 }
2518 
2519 /*
2520  * Commands during write - no Set Block Count (CMD23).
2521  */
2522 static int mmc_test_cmds_during_write(struct mmc_test_card *test)
2523 {
2524 	return mmc_test_cmds_during_tfr(test, 0, 1, 0);
2525 }
2526 
2527 /*
2528  * Commands during read - use Set Block Count (CMD23).
2529  */
2530 static int mmc_test_cmds_during_read_cmd23(struct mmc_test_card *test)
2531 {
2532 	return mmc_test_cmds_during_tfr(test, 1, 0, 0);
2533 }
2534 
2535 /*
2536  * Commands during write - use Set Block Count (CMD23).
2537  */
2538 static int mmc_test_cmds_during_write_cmd23(struct mmc_test_card *test)
2539 {
2540 	return mmc_test_cmds_during_tfr(test, 1, 1, 0);
2541 }
2542 
2543 /*
2544  * Commands during non-blocking read - use Set Block Count (CMD23).
2545  */
2546 static int mmc_test_cmds_during_read_cmd23_nonblock(struct mmc_test_card *test)
2547 {
2548 	return mmc_test_cmds_during_tfr(test, 1, 0, 1);
2549 }
2550 
2551 /*
2552  * Commands during non-blocking write - use Set Block Count (CMD23).
2553  */
2554 static int mmc_test_cmds_during_write_cmd23_nonblock(struct mmc_test_card *test)
2555 {
2556 	return mmc_test_cmds_during_tfr(test, 1, 1, 1);
2557 }
2558 
2559 static const struct mmc_test_case mmc_test_cases[] = {
2560 	{
2561 		.name = "Basic write (no data verification)",
2562 		.run = mmc_test_basic_write,
2563 	},
2564 
2565 	{
2566 		.name = "Basic read (no data verification)",
2567 		.run = mmc_test_basic_read,
2568 	},
2569 
2570 	{
2571 		.name = "Basic write (with data verification)",
2572 		.prepare = mmc_test_prepare_write,
2573 		.run = mmc_test_verify_write,
2574 		.cleanup = mmc_test_cleanup,
2575 	},
2576 
2577 	{
2578 		.name = "Basic read (with data verification)",
2579 		.prepare = mmc_test_prepare_read,
2580 		.run = mmc_test_verify_read,
2581 		.cleanup = mmc_test_cleanup,
2582 	},
2583 
2584 	{
2585 		.name = "Multi-block write",
2586 		.prepare = mmc_test_prepare_write,
2587 		.run = mmc_test_multi_write,
2588 		.cleanup = mmc_test_cleanup,
2589 	},
2590 
2591 	{
2592 		.name = "Multi-block read",
2593 		.prepare = mmc_test_prepare_read,
2594 		.run = mmc_test_multi_read,
2595 		.cleanup = mmc_test_cleanup,
2596 	},
2597 
2598 	{
2599 		.name = "Power of two block writes",
2600 		.prepare = mmc_test_prepare_write,
2601 		.run = mmc_test_pow2_write,
2602 		.cleanup = mmc_test_cleanup,
2603 	},
2604 
2605 	{
2606 		.name = "Power of two block reads",
2607 		.prepare = mmc_test_prepare_read,
2608 		.run = mmc_test_pow2_read,
2609 		.cleanup = mmc_test_cleanup,
2610 	},
2611 
2612 	{
2613 		.name = "Weird sized block writes",
2614 		.prepare = mmc_test_prepare_write,
2615 		.run = mmc_test_weird_write,
2616 		.cleanup = mmc_test_cleanup,
2617 	},
2618 
2619 	{
2620 		.name = "Weird sized block reads",
2621 		.prepare = mmc_test_prepare_read,
2622 		.run = mmc_test_weird_read,
2623 		.cleanup = mmc_test_cleanup,
2624 	},
2625 
2626 	{
2627 		.name = "Badly aligned write",
2628 		.prepare = mmc_test_prepare_write,
2629 		.run = mmc_test_align_write,
2630 		.cleanup = mmc_test_cleanup,
2631 	},
2632 
2633 	{
2634 		.name = "Badly aligned read",
2635 		.prepare = mmc_test_prepare_read,
2636 		.run = mmc_test_align_read,
2637 		.cleanup = mmc_test_cleanup,
2638 	},
2639 
2640 	{
2641 		.name = "Badly aligned multi-block write",
2642 		.prepare = mmc_test_prepare_write,
2643 		.run = mmc_test_align_multi_write,
2644 		.cleanup = mmc_test_cleanup,
2645 	},
2646 
2647 	{
2648 		.name = "Badly aligned multi-block read",
2649 		.prepare = mmc_test_prepare_read,
2650 		.run = mmc_test_align_multi_read,
2651 		.cleanup = mmc_test_cleanup,
2652 	},
2653 
2654 	{
2655 		.name = "Proper xfer_size at write (start failure)",
2656 		.run = mmc_test_xfersize_write,
2657 	},
2658 
2659 	{
2660 		.name = "Proper xfer_size at read (start failure)",
2661 		.run = mmc_test_xfersize_read,
2662 	},
2663 
2664 	{
2665 		.name = "Proper xfer_size at write (midway failure)",
2666 		.run = mmc_test_multi_xfersize_write,
2667 	},
2668 
2669 	{
2670 		.name = "Proper xfer_size at read (midway failure)",
2671 		.run = mmc_test_multi_xfersize_read,
2672 	},
2673 
2674 #ifdef CONFIG_HIGHMEM
2675 
2676 	{
2677 		.name = "Highmem write",
2678 		.prepare = mmc_test_prepare_write,
2679 		.run = mmc_test_write_high,
2680 		.cleanup = mmc_test_cleanup,
2681 	},
2682 
2683 	{
2684 		.name = "Highmem read",
2685 		.prepare = mmc_test_prepare_read,
2686 		.run = mmc_test_read_high,
2687 		.cleanup = mmc_test_cleanup,
2688 	},
2689 
2690 	{
2691 		.name = "Multi-block highmem write",
2692 		.prepare = mmc_test_prepare_write,
2693 		.run = mmc_test_multi_write_high,
2694 		.cleanup = mmc_test_cleanup,
2695 	},
2696 
2697 	{
2698 		.name = "Multi-block highmem read",
2699 		.prepare = mmc_test_prepare_read,
2700 		.run = mmc_test_multi_read_high,
2701 		.cleanup = mmc_test_cleanup,
2702 	},
2703 
2704 #else
2705 
2706 	{
2707 		.name = "Highmem write",
2708 		.run = mmc_test_no_highmem,
2709 	},
2710 
2711 	{
2712 		.name = "Highmem read",
2713 		.run = mmc_test_no_highmem,
2714 	},
2715 
2716 	{
2717 		.name = "Multi-block highmem write",
2718 		.run = mmc_test_no_highmem,
2719 	},
2720 
2721 	{
2722 		.name = "Multi-block highmem read",
2723 		.run = mmc_test_no_highmem,
2724 	},
2725 
2726 #endif /* CONFIG_HIGHMEM */
2727 
2728 	{
2729 		.name = "Best-case read performance",
2730 		.prepare = mmc_test_area_prepare_fill,
2731 		.run = mmc_test_best_read_performance,
2732 		.cleanup = mmc_test_area_cleanup,
2733 	},
2734 
2735 	{
2736 		.name = "Best-case write performance",
2737 		.prepare = mmc_test_area_prepare_erase,
2738 		.run = mmc_test_best_write_performance,
2739 		.cleanup = mmc_test_area_cleanup,
2740 	},
2741 
2742 	{
2743 		.name = "Best-case read performance into scattered pages",
2744 		.prepare = mmc_test_area_prepare_fill,
2745 		.run = mmc_test_best_read_perf_max_scatter,
2746 		.cleanup = mmc_test_area_cleanup,
2747 	},
2748 
2749 	{
2750 		.name = "Best-case write performance from scattered pages",
2751 		.prepare = mmc_test_area_prepare_erase,
2752 		.run = mmc_test_best_write_perf_max_scatter,
2753 		.cleanup = mmc_test_area_cleanup,
2754 	},
2755 
2756 	{
2757 		.name = "Single read performance by transfer size",
2758 		.prepare = mmc_test_area_prepare_fill,
2759 		.run = mmc_test_profile_read_perf,
2760 		.cleanup = mmc_test_area_cleanup,
2761 	},
2762 
2763 	{
2764 		.name = "Single write performance by transfer size",
2765 		.prepare = mmc_test_area_prepare,
2766 		.run = mmc_test_profile_write_perf,
2767 		.cleanup = mmc_test_area_cleanup,
2768 	},
2769 
2770 	{
2771 		.name = "Single trim performance by transfer size",
2772 		.prepare = mmc_test_area_prepare_fill,
2773 		.run = mmc_test_profile_trim_perf,
2774 		.cleanup = mmc_test_area_cleanup,
2775 	},
2776 
2777 	{
2778 		.name = "Consecutive read performance by transfer size",
2779 		.prepare = mmc_test_area_prepare_fill,
2780 		.run = mmc_test_profile_seq_read_perf,
2781 		.cleanup = mmc_test_area_cleanup,
2782 	},
2783 
2784 	{
2785 		.name = "Consecutive write performance by transfer size",
2786 		.prepare = mmc_test_area_prepare,
2787 		.run = mmc_test_profile_seq_write_perf,
2788 		.cleanup = mmc_test_area_cleanup,
2789 	},
2790 
2791 	{
2792 		.name = "Consecutive trim performance by transfer size",
2793 		.prepare = mmc_test_area_prepare,
2794 		.run = mmc_test_profile_seq_trim_perf,
2795 		.cleanup = mmc_test_area_cleanup,
2796 	},
2797 
2798 	{
2799 		.name = "Random read performance by transfer size",
2800 		.prepare = mmc_test_area_prepare,
2801 		.run = mmc_test_random_read_perf,
2802 		.cleanup = mmc_test_area_cleanup,
2803 	},
2804 
2805 	{
2806 		.name = "Random write performance by transfer size",
2807 		.prepare = mmc_test_area_prepare,
2808 		.run = mmc_test_random_write_perf,
2809 		.cleanup = mmc_test_area_cleanup,
2810 	},
2811 
2812 	{
2813 		.name = "Large sequential read into scattered pages",
2814 		.prepare = mmc_test_area_prepare,
2815 		.run = mmc_test_large_seq_read_perf,
2816 		.cleanup = mmc_test_area_cleanup,
2817 	},
2818 
2819 	{
2820 		.name = "Large sequential write from scattered pages",
2821 		.prepare = mmc_test_area_prepare,
2822 		.run = mmc_test_large_seq_write_perf,
2823 		.cleanup = mmc_test_area_cleanup,
2824 	},
2825 
2826 	{
2827 		.name = "Write performance with blocking req 4k to 4MB",
2828 		.prepare = mmc_test_area_prepare,
2829 		.run = mmc_test_profile_mult_write_blocking_perf,
2830 		.cleanup = mmc_test_area_cleanup,
2831 	},
2832 
2833 	{
2834 		.name = "Write performance with non-blocking req 4k to 4MB",
2835 		.prepare = mmc_test_area_prepare,
2836 		.run = mmc_test_profile_mult_write_nonblock_perf,
2837 		.cleanup = mmc_test_area_cleanup,
2838 	},
2839 
2840 	{
2841 		.name = "Read performance with blocking req 4k to 4MB",
2842 		.prepare = mmc_test_area_prepare,
2843 		.run = mmc_test_profile_mult_read_blocking_perf,
2844 		.cleanup = mmc_test_area_cleanup,
2845 	},
2846 
2847 	{
2848 		.name = "Read performance with non-blocking req 4k to 4MB",
2849 		.prepare = mmc_test_area_prepare,
2850 		.run = mmc_test_profile_mult_read_nonblock_perf,
2851 		.cleanup = mmc_test_area_cleanup,
2852 	},
2853 
2854 	{
2855 		.name = "Write performance blocking req 1 to 512 sg elems",
2856 		.prepare = mmc_test_area_prepare,
2857 		.run = mmc_test_profile_sglen_wr_blocking_perf,
2858 		.cleanup = mmc_test_area_cleanup,
2859 	},
2860 
2861 	{
2862 		.name = "Write performance non-blocking req 1 to 512 sg elems",
2863 		.prepare = mmc_test_area_prepare,
2864 		.run = mmc_test_profile_sglen_wr_nonblock_perf,
2865 		.cleanup = mmc_test_area_cleanup,
2866 	},
2867 
2868 	{
2869 		.name = "Read performance blocking req 1 to 512 sg elems",
2870 		.prepare = mmc_test_area_prepare,
2871 		.run = mmc_test_profile_sglen_r_blocking_perf,
2872 		.cleanup = mmc_test_area_cleanup,
2873 	},
2874 
2875 	{
2876 		.name = "Read performance non-blocking req 1 to 512 sg elems",
2877 		.prepare = mmc_test_area_prepare,
2878 		.run = mmc_test_profile_sglen_r_nonblock_perf,
2879 		.cleanup = mmc_test_area_cleanup,
2880 	},
2881 
2882 	{
2883 		.name = "Reset test",
2884 		.run = mmc_test_reset,
2885 	},
2886 
2887 	{
2888 		.name = "Commands during read - no Set Block Count (CMD23)",
2889 		.prepare = mmc_test_area_prepare,
2890 		.run = mmc_test_cmds_during_read,
2891 		.cleanup = mmc_test_area_cleanup,
2892 	},
2893 
2894 	{
2895 		.name = "Commands during write - no Set Block Count (CMD23)",
2896 		.prepare = mmc_test_area_prepare,
2897 		.run = mmc_test_cmds_during_write,
2898 		.cleanup = mmc_test_area_cleanup,
2899 	},
2900 
2901 	{
2902 		.name = "Commands during read - use Set Block Count (CMD23)",
2903 		.prepare = mmc_test_area_prepare,
2904 		.run = mmc_test_cmds_during_read_cmd23,
2905 		.cleanup = mmc_test_area_cleanup,
2906 	},
2907 
2908 	{
2909 		.name = "Commands during write - use Set Block Count (CMD23)",
2910 		.prepare = mmc_test_area_prepare,
2911 		.run = mmc_test_cmds_during_write_cmd23,
2912 		.cleanup = mmc_test_area_cleanup,
2913 	},
2914 
2915 	{
2916 		.name = "Commands during non-blocking read - use Set Block Count (CMD23)",
2917 		.prepare = mmc_test_area_prepare,
2918 		.run = mmc_test_cmds_during_read_cmd23_nonblock,
2919 		.cleanup = mmc_test_area_cleanup,
2920 	},
2921 
2922 	{
2923 		.name = "Commands during non-blocking write - use Set Block Count (CMD23)",
2924 		.prepare = mmc_test_area_prepare,
2925 		.run = mmc_test_cmds_during_write_cmd23_nonblock,
2926 		.cleanup = mmc_test_area_cleanup,
2927 	},
2928 
2929 	{
2930 		.name = "Re-tuning reliability",
2931 		.prepare = mmc_test_area_prepare,
2932 		.run = mmc_test_retuning,
2933 		.cleanup = mmc_test_area_cleanup,
2934 	},
2935 
2936 };
2937 
2938 static DEFINE_MUTEX(mmc_test_lock);
2939 
2940 static LIST_HEAD(mmc_test_result);
2941 
2942 static void mmc_test_run(struct mmc_test_card *test, int testcase)
2943 {
2944 	int i, ret;
2945 
2946 	pr_info("%s: Starting tests of card %s...\n",
2947 		mmc_hostname(test->card->host), mmc_card_id(test->card));
2948 
2949 	mmc_claim_host(test->card->host);
2950 
2951 	for (i = 0; i < ARRAY_SIZE(mmc_test_cases); i++) {
2952 		struct mmc_test_general_result *gr;
2953 
2954 		if (testcase && ((i + 1) != testcase))
2955 			continue;
2956 
2957 		pr_info("%s: Test case %d. %s...\n",
2958 			mmc_hostname(test->card->host), i + 1,
2959 			mmc_test_cases[i].name);
2960 
2961 		if (mmc_test_cases[i].prepare) {
2962 			ret = mmc_test_cases[i].prepare(test);
2963 			if (ret) {
2964 				pr_info("%s: Result: Prepare stage failed! (%d)\n",
2965 					mmc_hostname(test->card->host),
2966 					ret);
2967 				continue;
2968 			}
2969 		}
2970 
2971 		gr = kzalloc(sizeof(*gr), GFP_KERNEL);
2972 		if (gr) {
2973 			INIT_LIST_HEAD(&gr->tr_lst);
2974 
2975 			/* Assign data what we know already */
2976 			gr->card = test->card;
2977 			gr->testcase = i;
2978 
2979 			/* Append container to global one */
2980 			list_add_tail(&gr->link, &mmc_test_result);
2981 
2982 			/*
2983 			 * Save the pointer to created container in our private
2984 			 * structure.
2985 			 */
2986 			test->gr = gr;
2987 		}
2988 
2989 		ret = mmc_test_cases[i].run(test);
2990 		switch (ret) {
2991 		case RESULT_OK:
2992 			pr_info("%s: Result: OK\n",
2993 				mmc_hostname(test->card->host));
2994 			break;
2995 		case RESULT_FAIL:
2996 			pr_info("%s: Result: FAILED\n",
2997 				mmc_hostname(test->card->host));
2998 			break;
2999 		case RESULT_UNSUP_HOST:
3000 			pr_info("%s: Result: UNSUPPORTED (by host)\n",
3001 				mmc_hostname(test->card->host));
3002 			break;
3003 		case RESULT_UNSUP_CARD:
3004 			pr_info("%s: Result: UNSUPPORTED (by card)\n",
3005 				mmc_hostname(test->card->host));
3006 			break;
3007 		default:
3008 			pr_info("%s: Result: ERROR (%d)\n",
3009 				mmc_hostname(test->card->host), ret);
3010 		}
3011 
3012 		/* Save the result */
3013 		if (gr)
3014 			gr->result = ret;
3015 
3016 		if (mmc_test_cases[i].cleanup) {
3017 			ret = mmc_test_cases[i].cleanup(test);
3018 			if (ret) {
3019 				pr_info("%s: Warning: Cleanup stage failed! (%d)\n",
3020 					mmc_hostname(test->card->host),
3021 					ret);
3022 			}
3023 		}
3024 	}
3025 
3026 	mmc_release_host(test->card->host);
3027 
3028 	pr_info("%s: Tests completed.\n",
3029 		mmc_hostname(test->card->host));
3030 }
3031 
3032 static void mmc_test_free_result(struct mmc_card *card)
3033 {
3034 	struct mmc_test_general_result *gr, *grs;
3035 
3036 	mutex_lock(&mmc_test_lock);
3037 
3038 	list_for_each_entry_safe(gr, grs, &mmc_test_result, link) {
3039 		struct mmc_test_transfer_result *tr, *trs;
3040 
3041 		if (card && gr->card != card)
3042 			continue;
3043 
3044 		list_for_each_entry_safe(tr, trs, &gr->tr_lst, link) {
3045 			list_del(&tr->link);
3046 			kfree(tr);
3047 		}
3048 
3049 		list_del(&gr->link);
3050 		kfree(gr);
3051 	}
3052 
3053 	mutex_unlock(&mmc_test_lock);
3054 }
3055 
3056 static LIST_HEAD(mmc_test_file_test);
3057 
3058 static int mtf_test_show(struct seq_file *sf, void *data)
3059 {
3060 	struct mmc_card *card = sf->private;
3061 	struct mmc_test_general_result *gr;
3062 
3063 	mutex_lock(&mmc_test_lock);
3064 
3065 	list_for_each_entry(gr, &mmc_test_result, link) {
3066 		struct mmc_test_transfer_result *tr;
3067 
3068 		if (gr->card != card)
3069 			continue;
3070 
3071 		seq_printf(sf, "Test %d: %d\n", gr->testcase + 1, gr->result);
3072 
3073 		list_for_each_entry(tr, &gr->tr_lst, link) {
3074 			seq_printf(sf, "%u %d %ptSp %u %u.%02u\n",
3075 				   tr->count, tr->sectors, &tr->ts, tr->rate,
3076 				   tr->iops / 100, tr->iops % 100);
3077 		}
3078 	}
3079 
3080 	mutex_unlock(&mmc_test_lock);
3081 
3082 	return 0;
3083 }
3084 
3085 static int mtf_test_open(struct inode *inode, struct file *file)
3086 {
3087 	return single_open(file, mtf_test_show, inode->i_private);
3088 }
3089 
3090 static ssize_t mtf_test_write(struct file *file, const char __user *buf,
3091 	size_t count, loff_t *pos)
3092 {
3093 	struct seq_file *sf = file->private_data;
3094 	struct mmc_card *card = sf->private;
3095 	struct mmc_test_card *test;
3096 	long testcase;
3097 	int ret;
3098 
3099 	ret = kstrtol_from_user(buf, count, 10, &testcase);
3100 	if (ret)
3101 		return ret;
3102 
3103 	test = kzalloc(sizeof(*test), GFP_KERNEL);
3104 	if (!test)
3105 		return -ENOMEM;
3106 
3107 	/*
3108 	 * Remove all test cases associated with given card. Thus we have only
3109 	 * actual data of the last run.
3110 	 */
3111 	mmc_test_free_result(card);
3112 
3113 	test->card = card;
3114 
3115 	test->buffer = kzalloc(BUFFER_SIZE, GFP_KERNEL);
3116 #ifdef CONFIG_HIGHMEM
3117 	test->highmem = alloc_pages(GFP_KERNEL | __GFP_HIGHMEM, BUFFER_ORDER);
3118 	if (!test->highmem) {
3119 		count = -ENOMEM;
3120 		goto free_test_buffer;
3121 	}
3122 #endif
3123 
3124 	if (test->buffer) {
3125 		mutex_lock(&mmc_test_lock);
3126 		mmc_test_run(test, testcase);
3127 		mutex_unlock(&mmc_test_lock);
3128 	}
3129 
3130 #ifdef CONFIG_HIGHMEM
3131 	__free_pages(test->highmem, BUFFER_ORDER);
3132 free_test_buffer:
3133 #endif
3134 	kfree(test->buffer);
3135 	kfree(test);
3136 
3137 	return count;
3138 }
3139 
3140 static const struct file_operations mmc_test_fops_test = {
3141 	.open		= mtf_test_open,
3142 	.read		= seq_read,
3143 	.write		= mtf_test_write,
3144 	.llseek		= seq_lseek,
3145 	.release	= single_release,
3146 };
3147 
3148 static int mtf_testlist_show(struct seq_file *sf, void *data)
3149 {
3150 	int i;
3151 
3152 	mutex_lock(&mmc_test_lock);
3153 
3154 	seq_puts(sf, "0:\tRun all tests\n");
3155 	for (i = 0; i < ARRAY_SIZE(mmc_test_cases); i++)
3156 		seq_printf(sf, "%d:\t%s\n", i + 1, mmc_test_cases[i].name);
3157 
3158 	mutex_unlock(&mmc_test_lock);
3159 
3160 	return 0;
3161 }
3162 
3163 DEFINE_SHOW_ATTRIBUTE(mtf_testlist);
3164 
3165 static void mmc_test_free_dbgfs_file(struct mmc_card *card)
3166 {
3167 	struct mmc_test_dbgfs_file *df, *dfs;
3168 
3169 	mutex_lock(&mmc_test_lock);
3170 
3171 	list_for_each_entry_safe(df, dfs, &mmc_test_file_test, link) {
3172 		if (card && df->card != card)
3173 			continue;
3174 		debugfs_remove(df->file);
3175 		list_del(&df->link);
3176 		kfree(df);
3177 	}
3178 
3179 	mutex_unlock(&mmc_test_lock);
3180 }
3181 
3182 static int __mmc_test_register_dbgfs_file(struct mmc_card *card,
3183 	const char *name, umode_t mode, const struct file_operations *fops)
3184 {
3185 	struct dentry *file = NULL;
3186 	struct mmc_test_dbgfs_file *df;
3187 
3188 	if (card->debugfs_root)
3189 		file = debugfs_create_file(name, mode, card->debugfs_root,
3190 					   card, fops);
3191 
3192 	df = kmalloc(sizeof(*df), GFP_KERNEL);
3193 	if (!df) {
3194 		debugfs_remove(file);
3195 		return -ENOMEM;
3196 	}
3197 
3198 	df->card = card;
3199 	df->file = file;
3200 
3201 	list_add(&df->link, &mmc_test_file_test);
3202 	return 0;
3203 }
3204 
3205 static int mmc_test_register_dbgfs_file(struct mmc_card *card)
3206 {
3207 	int ret;
3208 
3209 	mutex_lock(&mmc_test_lock);
3210 
3211 	ret = __mmc_test_register_dbgfs_file(card, "test", 0644,
3212 		&mmc_test_fops_test);
3213 	if (ret)
3214 		goto err;
3215 
3216 	ret = __mmc_test_register_dbgfs_file(card, "testlist", 0444,
3217 		&mtf_testlist_fops);
3218 	if (ret)
3219 		goto err;
3220 
3221 err:
3222 	mutex_unlock(&mmc_test_lock);
3223 
3224 	return ret;
3225 }
3226 
3227 static int mmc_test_probe(struct mmc_card *card)
3228 {
3229 	int ret;
3230 
3231 	if (!mmc_card_mmc(card) && !mmc_card_sd(card))
3232 		return -ENODEV;
3233 
3234 	if (mmc_card_ult_capacity(card)) {
3235 		pr_info("%s: mmc-test currently UNSUPPORTED for SDUC\n",
3236 			mmc_hostname(card->host));
3237 		return -EOPNOTSUPP;
3238 	}
3239 
3240 	ret = mmc_test_register_dbgfs_file(card);
3241 	if (ret)
3242 		return ret;
3243 
3244 	if (card->ext_csd.cmdq_en) {
3245 		mmc_claim_host(card->host);
3246 		ret = mmc_cmdq_disable(card);
3247 		mmc_release_host(card->host);
3248 		if (ret)
3249 			return ret;
3250 	}
3251 
3252 	dev_info(&card->dev, "Card claimed for testing.\n");
3253 
3254 	return 0;
3255 }
3256 
3257 static void mmc_test_remove(struct mmc_card *card)
3258 {
3259 	if (card->reenable_cmdq) {
3260 		mmc_claim_host(card->host);
3261 		mmc_cmdq_enable(card);
3262 		mmc_release_host(card->host);
3263 	}
3264 	mmc_test_free_result(card);
3265 	mmc_test_free_dbgfs_file(card);
3266 }
3267 
3268 static struct mmc_driver mmc_driver = {
3269 	.drv		= {
3270 		.name	= "mmc_test",
3271 	},
3272 	.probe		= mmc_test_probe,
3273 	.remove		= mmc_test_remove,
3274 };
3275 
3276 static int __init mmc_test_init(void)
3277 {
3278 	return mmc_register_driver(&mmc_driver);
3279 }
3280 
3281 static void __exit mmc_test_exit(void)
3282 {
3283 	/* Clear stalled data if card is still plugged */
3284 	mmc_test_free_result(NULL);
3285 	mmc_test_free_dbgfs_file(NULL);
3286 
3287 	mmc_unregister_driver(&mmc_driver);
3288 }
3289 
3290 module_init(mmc_test_init);
3291 module_exit(mmc_test_exit);
3292 
3293 MODULE_LICENSE("GPL");
3294 MODULE_DESCRIPTION("Multimedia Card (MMC) host test driver");
3295 MODULE_AUTHOR("Pierre Ossman");
3296