xref: /linux/arch/arm64/include/asm/mmu.h (revision c8bc81a52d5a2ac2e4b257ae123677cf94112755)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012 ARM Ltd.
4  */
5 #ifndef __ASM_MMU_H
6 #define __ASM_MMU_H
7 
8 #include <asm/cputype.h>
9 
10 #define MMCF_AARCH32	0x1	/* mm context flag for AArch32 executables */
11 #define USER_ASID_BIT	48
12 #define USER_ASID_FLAG	(UL(1) << USER_ASID_BIT)
13 #define TTBR_ASID_MASK	(UL(0xffff) << 48)
14 
15 #ifndef __ASSEMBLY__
16 
17 #include <linux/refcount.h>
18 #include <asm/cpufeature.h>
19 
20 enum pgtable_type {
21 	TABLE_PTE,
22 	TABLE_PMD,
23 	TABLE_PUD,
24 	TABLE_P4D,
25 };
26 
27 typedef struct {
28 	atomic64_t	id;
29 #ifdef CONFIG_COMPAT
30 	void		*sigpage;
31 #endif
32 	refcount_t	pinned;
33 	void		*vdso;
34 	unsigned long	flags;
35 	u8		pkey_allocation_map;
36 } mm_context_t;
37 
38 /*
39  * We use atomic64_read() here because the ASID for an 'mm_struct' can
40  * be reallocated when scheduling one of its threads following a
41  * rollover event (see new_context() and flush_context()). In this case,
42  * a concurrent TLBI (e.g. via try_to_unmap_one() and ptep_clear_flush())
43  * may use a stale ASID. This is fine in principle as the new ASID is
44  * guaranteed to be clean in the TLB, but the TLBI routines have to take
45  * care to handle the following race:
46  *
47  *    CPU 0                    CPU 1                          CPU 2
48  *
49  *    // ptep_clear_flush(mm)
50  *    xchg_relaxed(pte, 0)
51  *    DSB ISHST
52  *    old = ASID(mm)
53  *         |                                                  <rollover>
54  *         |                   new = new_context(mm)
55  *         \-----------------> atomic_set(mm->context.id, new)
56  *                             cpu_switch_mm(mm)
57  *                             // Hardware walk of pte using new ASID
58  *    TLBI(old)
59  *
60  * In this scenario, the barrier on CPU 0 and the dependency on CPU 1
61  * ensure that the page-table walker on CPU 1 *must* see the invalid PTE
62  * written by CPU 0.
63  */
64 #define ASID(mm)	(atomic64_read(&(mm)->context.id) & 0xffff)
65 
arm64_kernel_unmapped_at_el0(void)66 static inline bool arm64_kernel_unmapped_at_el0(void)
67 {
68 	return alternative_has_cap_unlikely(ARM64_UNMAP_KERNEL_AT_EL0);
69 }
70 
71 extern void arm64_memblock_init(void);
72 extern void paging_init(void);
73 extern void bootmem_init(void);
74 extern void create_mapping_noalloc(phys_addr_t phys, unsigned long virt,
75 				   phys_addr_t size, pgprot_t prot);
76 extern void create_pgd_mapping(struct mm_struct *mm, phys_addr_t phys,
77 			       unsigned long virt, phys_addr_t size,
78 			       pgprot_t prot, bool page_mappings_only);
79 extern void *fixmap_remap_fdt(phys_addr_t dt_phys, int *size, pgprot_t prot);
80 extern void mark_linear_text_alias_ro(void);
81 
82 /*
83  * This check is triggered during the early boot before the cpufeature
84  * is initialised. Checking the status on the local CPU allows the boot
85  * CPU to detect the need for non-global mappings and thus avoiding a
86  * pagetable re-write after all the CPUs are booted. This check will be
87  * anyway run on individual CPUs, allowing us to get the consistent
88  * state once the SMP CPUs are up and thus make the switch to non-global
89  * mappings if required.
90  */
kaslr_requires_kpti(void)91 static inline bool kaslr_requires_kpti(void)
92 {
93 	/*
94 	 * E0PD does a similar job to KPTI so can be used instead
95 	 * where available.
96 	 */
97 	if (IS_ENABLED(CONFIG_ARM64_E0PD)) {
98 		u64 mmfr2 = read_sysreg_s(SYS_ID_AA64MMFR2_EL1);
99 		if (cpuid_feature_extract_unsigned_field(mmfr2,
100 						ID_AA64MMFR2_EL1_E0PD_SHIFT))
101 			return false;
102 	}
103 
104 	return true;
105 }
106 
107 #endif	/* !__ASSEMBLY__ */
108 #endif
109