1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2003 Jana Saout <jana@saout.de>
4 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
5 * Copyright (C) 2006-2020 Red Hat, Inc. All rights reserved.
6 * Copyright (C) 2013-2020 Milan Broz <gmazyland@gmail.com>
7 *
8 * This file is released under the GPL.
9 */
10
11 #include <linux/completion.h>
12 #include <linux/err.h>
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/key.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-integrity.h>
20 #include <linux/crc32.h>
21 #include <linux/mempool.h>
22 #include <linux/slab.h>
23 #include <linux/crypto.h>
24 #include <linux/workqueue.h>
25 #include <linux/kthread.h>
26 #include <linux/backing-dev.h>
27 #include <linux/atomic.h>
28 #include <linux/scatterlist.h>
29 #include <linux/rbtree.h>
30 #include <linux/ctype.h>
31 #include <asm/page.h>
32 #include <linux/unaligned.h>
33 #include <crypto/hash.h>
34 #include <crypto/md5.h>
35 #include <crypto/skcipher.h>
36 #include <crypto/aead.h>
37 #include <crypto/authenc.h>
38 #include <crypto/utils.h>
39 #include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */
40 #include <linux/key-type.h>
41 #include <keys/user-type.h>
42 #include <keys/encrypted-type.h>
43 #include <keys/trusted-type.h>
44
45 #include <linux/device-mapper.h>
46
47 #include "dm-audit.h"
48
49 #define DM_MSG_PREFIX "crypt"
50
51 static DEFINE_IDA(workqueue_ida);
52
53 /*
54 * context holding the current state of a multi-part conversion
55 */
56 struct convert_context {
57 struct completion restart;
58 struct bio *bio_in;
59 struct bvec_iter iter_in;
60 struct bio *bio_out;
61 struct bvec_iter iter_out;
62 atomic_t cc_pending;
63 unsigned int tag_offset;
64 u64 cc_sector;
65 union {
66 struct skcipher_request *req;
67 struct aead_request *req_aead;
68 } r;
69 bool aead_recheck;
70 bool aead_failed;
71
72 };
73
74 /*
75 * per bio private data
76 */
77 struct dm_crypt_io {
78 struct crypt_config *cc;
79 struct bio *base_bio;
80 u8 *integrity_metadata;
81 bool integrity_metadata_from_pool:1;
82
83 struct work_struct work;
84
85 struct convert_context ctx;
86
87 atomic_t io_pending;
88 blk_status_t error;
89 sector_t sector;
90
91 struct bvec_iter saved_bi_iter;
92
93 struct rb_node rb_node;
94 } CRYPTO_MINALIGN_ATTR;
95
96 struct dm_crypt_request {
97 struct convert_context *ctx;
98 struct scatterlist sg_in[4];
99 struct scatterlist sg_out[4];
100 u64 iv_sector;
101 };
102
103 struct crypt_config;
104
105 struct crypt_iv_operations {
106 int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
107 const char *opts);
108 void (*dtr)(struct crypt_config *cc);
109 int (*init)(struct crypt_config *cc);
110 int (*wipe)(struct crypt_config *cc);
111 int (*generator)(struct crypt_config *cc, u8 *iv,
112 struct dm_crypt_request *dmreq);
113 int (*post)(struct crypt_config *cc, u8 *iv,
114 struct dm_crypt_request *dmreq);
115 };
116
117 struct iv_benbi_private {
118 int shift;
119 };
120
121 #define LMK_SEED_SIZE 64 /* hash + 0 */
122 struct iv_lmk_private {
123 struct crypto_shash *hash_tfm;
124 u8 *seed;
125 };
126
127 #define TCW_WHITENING_SIZE 16
128 struct iv_tcw_private {
129 u8 *iv_seed;
130 u8 *whitening;
131 };
132
133 #define ELEPHANT_MAX_KEY_SIZE 32
134 struct iv_elephant_private {
135 struct crypto_skcipher *tfm;
136 };
137
138 /*
139 * Crypt: maps a linear range of a block device
140 * and encrypts / decrypts at the same time.
141 */
142 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
143 DM_CRYPT_SAME_CPU, DM_CRYPT_HIGH_PRIORITY,
144 DM_CRYPT_NO_OFFLOAD, DM_CRYPT_NO_READ_WORKQUEUE,
145 DM_CRYPT_NO_WRITE_WORKQUEUE, DM_CRYPT_WRITE_INLINE };
146
147 enum cipher_flags {
148 CRYPT_MODE_INTEGRITY_AEAD, /* Use authenticated mode for cipher */
149 CRYPT_IV_LARGE_SECTORS, /* Calculate IV from sector_size, not 512B sectors */
150 CRYPT_ENCRYPT_PREPROCESS, /* Must preprocess data for encryption (elephant) */
151 CRYPT_KEY_MAC_SIZE_SET, /* The integrity_key_size option was used */
152 };
153
154 /*
155 * The fields in here must be read only after initialization.
156 */
157 struct crypt_config {
158 struct dm_dev *dev;
159 sector_t start;
160
161 struct percpu_counter n_allocated_pages;
162
163 struct workqueue_struct *io_queue;
164 struct workqueue_struct *crypt_queue;
165
166 spinlock_t write_thread_lock;
167 struct task_struct *write_thread;
168 struct rb_root write_tree;
169
170 char *cipher_string;
171 char *cipher_auth;
172 char *key_string;
173
174 const struct crypt_iv_operations *iv_gen_ops;
175 union {
176 struct iv_benbi_private benbi;
177 struct iv_lmk_private lmk;
178 struct iv_tcw_private tcw;
179 struct iv_elephant_private elephant;
180 } iv_gen_private;
181 u64 iv_offset;
182 unsigned int iv_size;
183 unsigned short sector_size;
184 unsigned char sector_shift;
185
186 union {
187 struct crypto_skcipher **tfms;
188 struct crypto_aead **tfms_aead;
189 } cipher_tfm;
190 unsigned int tfms_count;
191 int workqueue_id;
192 unsigned long cipher_flags;
193
194 /*
195 * Layout of each crypto request:
196 *
197 * struct skcipher_request
198 * context
199 * padding
200 * struct dm_crypt_request
201 * padding
202 * IV
203 *
204 * The padding is added so that dm_crypt_request and the IV are
205 * correctly aligned.
206 */
207 unsigned int dmreq_start;
208
209 unsigned int per_bio_data_size;
210
211 unsigned long flags;
212 unsigned int key_size;
213 unsigned int key_parts; /* independent parts in key buffer */
214 unsigned int key_extra_size; /* additional keys length */
215 unsigned int key_mac_size; /* MAC key size for authenc(...) */
216
217 unsigned int integrity_tag_size;
218 unsigned int integrity_iv_size;
219 unsigned int used_tag_size;
220 unsigned int tuple_size;
221
222 /*
223 * pool for per bio private data, crypto requests,
224 * encryption requeusts/buffer pages and integrity tags
225 */
226 unsigned int tag_pool_max_sectors;
227 mempool_t tag_pool;
228 mempool_t req_pool;
229 mempool_t page_pool;
230
231 struct bio_set bs;
232 struct mutex bio_alloc_lock;
233
234 u8 *authenc_key; /* space for keys in authenc() format (if used) */
235 u8 key[] __counted_by(key_size);
236 };
237
238 #define MIN_IOS 64
239 #define MAX_TAG_SIZE 480
240 #define POOL_ENTRY_SIZE 512
241
242 static DEFINE_SPINLOCK(dm_crypt_clients_lock);
243 static unsigned int dm_crypt_clients_n;
244 static volatile unsigned long dm_crypt_pages_per_client;
245 #define DM_CRYPT_MEMORY_PERCENT 2
246 #define DM_CRYPT_MIN_PAGES_PER_CLIENT (BIO_MAX_VECS * 16)
247 #define DM_CRYPT_DEFAULT_MAX_READ_SIZE 131072
248 #define DM_CRYPT_DEFAULT_MAX_WRITE_SIZE 131072
249
250 static unsigned int max_read_size = 0;
251 module_param(max_read_size, uint, 0644);
252 MODULE_PARM_DESC(max_read_size, "Maximum size of a read request");
253 static unsigned int max_write_size = 0;
254 module_param(max_write_size, uint, 0644);
255 MODULE_PARM_DESC(max_write_size, "Maximum size of a write request");
get_max_request_size(struct crypt_config * cc,bool wrt)256 static unsigned get_max_request_size(struct crypt_config *cc, bool wrt)
257 {
258 unsigned val, sector_align;
259 val = !wrt ? READ_ONCE(max_read_size) : READ_ONCE(max_write_size);
260 if (likely(!val))
261 val = !wrt ? DM_CRYPT_DEFAULT_MAX_READ_SIZE : DM_CRYPT_DEFAULT_MAX_WRITE_SIZE;
262 if (wrt || cc->used_tag_size) {
263 if (unlikely(val > BIO_MAX_VECS << PAGE_SHIFT))
264 val = BIO_MAX_VECS << PAGE_SHIFT;
265 }
266 sector_align = max(bdev_logical_block_size(cc->dev->bdev), (unsigned)cc->sector_size);
267 val = round_down(val, sector_align);
268 if (unlikely(!val))
269 val = sector_align;
270 return val >> SECTOR_SHIFT;
271 }
272
273 static void crypt_endio(struct bio *clone);
274 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
275 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
276 struct scatterlist *sg);
277
278 static bool crypt_integrity_aead(struct crypt_config *cc);
279
280 /*
281 * Use this to access cipher attributes that are independent of the key.
282 */
any_tfm(struct crypt_config * cc)283 static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
284 {
285 return cc->cipher_tfm.tfms[0];
286 }
287
any_tfm_aead(struct crypt_config * cc)288 static struct crypto_aead *any_tfm_aead(struct crypt_config *cc)
289 {
290 return cc->cipher_tfm.tfms_aead[0];
291 }
292
293 /*
294 * Different IV generation algorithms:
295 *
296 * plain: the initial vector is the 32-bit little-endian version of the sector
297 * number, padded with zeros if necessary.
298 *
299 * plain64: the initial vector is the 64-bit little-endian version of the sector
300 * number, padded with zeros if necessary.
301 *
302 * plain64be: the initial vector is the 64-bit big-endian version of the sector
303 * number, padded with zeros if necessary.
304 *
305 * essiv: "encrypted sector|salt initial vector", the sector number is
306 * encrypted with the bulk cipher using a salt as key. The salt
307 * should be derived from the bulk cipher's key via hashing.
308 *
309 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
310 * (needed for LRW-32-AES and possible other narrow block modes)
311 *
312 * null: the initial vector is always zero. Provides compatibility with
313 * obsolete loop_fish2 devices. Do not use for new devices.
314 *
315 * lmk: Compatible implementation of the block chaining mode used
316 * by the Loop-AES block device encryption system
317 * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
318 * It operates on full 512 byte sectors and uses CBC
319 * with an IV derived from the sector number, the data and
320 * optionally extra IV seed.
321 * This means that after decryption the first block
322 * of sector must be tweaked according to decrypted data.
323 * Loop-AES can use three encryption schemes:
324 * version 1: is plain aes-cbc mode
325 * version 2: uses 64 multikey scheme with lmk IV generator
326 * version 3: the same as version 2 with additional IV seed
327 * (it uses 65 keys, last key is used as IV seed)
328 *
329 * tcw: Compatible implementation of the block chaining mode used
330 * by the TrueCrypt device encryption system (prior to version 4.1).
331 * For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
332 * It operates on full 512 byte sectors and uses CBC
333 * with an IV derived from initial key and the sector number.
334 * In addition, whitening value is applied on every sector, whitening
335 * is calculated from initial key, sector number and mixed using CRC32.
336 * Note that this encryption scheme is vulnerable to watermarking attacks
337 * and should be used for old compatible containers access only.
338 *
339 * eboiv: Encrypted byte-offset IV (used in Bitlocker in CBC mode)
340 * The IV is encrypted little-endian byte-offset (with the same key
341 * and cipher as the volume).
342 *
343 * elephant: The extended version of eboiv with additional Elephant diffuser
344 * used with Bitlocker CBC mode.
345 * This mode was used in older Windows systems
346 * https://download.microsoft.com/download/0/2/3/0238acaf-d3bf-4a6d-b3d6-0a0be4bbb36e/bitlockercipher200608.pdf
347 */
348
crypt_iv_plain_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)349 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
350 struct dm_crypt_request *dmreq)
351 {
352 memset(iv, 0, cc->iv_size);
353 *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
354
355 return 0;
356 }
357
crypt_iv_plain64_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)358 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
359 struct dm_crypt_request *dmreq)
360 {
361 memset(iv, 0, cc->iv_size);
362 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
363
364 return 0;
365 }
366
crypt_iv_plain64be_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)367 static int crypt_iv_plain64be_gen(struct crypt_config *cc, u8 *iv,
368 struct dm_crypt_request *dmreq)
369 {
370 memset(iv, 0, cc->iv_size);
371 /* iv_size is at least of size u64; usually it is 16 bytes */
372 *(__be64 *)&iv[cc->iv_size - sizeof(u64)] = cpu_to_be64(dmreq->iv_sector);
373
374 return 0;
375 }
376
crypt_iv_essiv_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)377 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
378 struct dm_crypt_request *dmreq)
379 {
380 /*
381 * ESSIV encryption of the IV is now handled by the crypto API,
382 * so just pass the plain sector number here.
383 */
384 memset(iv, 0, cc->iv_size);
385 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
386
387 return 0;
388 }
389
crypt_iv_benbi_ctr(struct crypt_config * cc,struct dm_target * ti,const char * opts)390 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
391 const char *opts)
392 {
393 unsigned int bs;
394 int log;
395
396 if (crypt_integrity_aead(cc))
397 bs = crypto_aead_blocksize(any_tfm_aead(cc));
398 else
399 bs = crypto_skcipher_blocksize(any_tfm(cc));
400 log = ilog2(bs);
401
402 /*
403 * We need to calculate how far we must shift the sector count
404 * to get the cipher block count, we use this shift in _gen.
405 */
406 if (1 << log != bs) {
407 ti->error = "cypher blocksize is not a power of 2";
408 return -EINVAL;
409 }
410
411 if (log > 9) {
412 ti->error = "cypher blocksize is > 512";
413 return -EINVAL;
414 }
415
416 cc->iv_gen_private.benbi.shift = 9 - log;
417
418 return 0;
419 }
420
crypt_iv_benbi_dtr(struct crypt_config * cc)421 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
422 {
423 }
424
crypt_iv_benbi_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)425 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
426 struct dm_crypt_request *dmreq)
427 {
428 __be64 val;
429
430 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
431
432 val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
433 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
434
435 return 0;
436 }
437
crypt_iv_null_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)438 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
439 struct dm_crypt_request *dmreq)
440 {
441 memset(iv, 0, cc->iv_size);
442
443 return 0;
444 }
445
crypt_iv_lmk_dtr(struct crypt_config * cc)446 static void crypt_iv_lmk_dtr(struct crypt_config *cc)
447 {
448 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
449
450 if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
451 crypto_free_shash(lmk->hash_tfm);
452 lmk->hash_tfm = NULL;
453
454 kfree_sensitive(lmk->seed);
455 lmk->seed = NULL;
456 }
457
crypt_iv_lmk_ctr(struct crypt_config * cc,struct dm_target * ti,const char * opts)458 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
459 const char *opts)
460 {
461 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
462
463 if (cc->sector_size != (1 << SECTOR_SHIFT)) {
464 ti->error = "Unsupported sector size for LMK";
465 return -EINVAL;
466 }
467
468 lmk->hash_tfm = crypto_alloc_shash("md5", 0,
469 CRYPTO_ALG_ALLOCATES_MEMORY);
470 if (IS_ERR(lmk->hash_tfm)) {
471 ti->error = "Error initializing LMK hash";
472 return PTR_ERR(lmk->hash_tfm);
473 }
474
475 /* No seed in LMK version 2 */
476 if (cc->key_parts == cc->tfms_count) {
477 lmk->seed = NULL;
478 return 0;
479 }
480
481 lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
482 if (!lmk->seed) {
483 crypt_iv_lmk_dtr(cc);
484 ti->error = "Error kmallocing seed storage in LMK";
485 return -ENOMEM;
486 }
487
488 return 0;
489 }
490
crypt_iv_lmk_init(struct crypt_config * cc)491 static int crypt_iv_lmk_init(struct crypt_config *cc)
492 {
493 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
494 int subkey_size = cc->key_size / cc->key_parts;
495
496 /* LMK seed is on the position of LMK_KEYS + 1 key */
497 if (lmk->seed)
498 memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
499 crypto_shash_digestsize(lmk->hash_tfm));
500
501 return 0;
502 }
503
crypt_iv_lmk_wipe(struct crypt_config * cc)504 static int crypt_iv_lmk_wipe(struct crypt_config *cc)
505 {
506 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
507
508 if (lmk->seed)
509 memset(lmk->seed, 0, LMK_SEED_SIZE);
510
511 return 0;
512 }
513
crypt_iv_lmk_one(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq,u8 * data)514 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
515 struct dm_crypt_request *dmreq,
516 u8 *data)
517 {
518 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
519 SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
520 struct md5_state md5state;
521 __le32 buf[4];
522 int i, r;
523
524 desc->tfm = lmk->hash_tfm;
525
526 r = crypto_shash_init(desc);
527 if (r)
528 return r;
529
530 if (lmk->seed) {
531 r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
532 if (r)
533 return r;
534 }
535
536 /* Sector is always 512B, block size 16, add data of blocks 1-31 */
537 r = crypto_shash_update(desc, data + 16, 16 * 31);
538 if (r)
539 return r;
540
541 /* Sector is cropped to 56 bits here */
542 buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
543 buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
544 buf[2] = cpu_to_le32(4024);
545 buf[3] = 0;
546 r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
547 if (r)
548 return r;
549
550 /* No MD5 padding here */
551 r = crypto_shash_export(desc, &md5state);
552 if (r)
553 return r;
554
555 for (i = 0; i < MD5_HASH_WORDS; i++)
556 __cpu_to_le32s(&md5state.hash[i]);
557 memcpy(iv, &md5state.hash, cc->iv_size);
558
559 return 0;
560 }
561
crypt_iv_lmk_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)562 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
563 struct dm_crypt_request *dmreq)
564 {
565 struct scatterlist *sg;
566 u8 *src;
567 int r = 0;
568
569 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
570 sg = crypt_get_sg_data(cc, dmreq->sg_in);
571 src = kmap_local_page(sg_page(sg));
572 r = crypt_iv_lmk_one(cc, iv, dmreq, src + sg->offset);
573 kunmap_local(src);
574 } else
575 memset(iv, 0, cc->iv_size);
576
577 return r;
578 }
579
crypt_iv_lmk_post(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)580 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
581 struct dm_crypt_request *dmreq)
582 {
583 struct scatterlist *sg;
584 u8 *dst;
585 int r;
586
587 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
588 return 0;
589
590 sg = crypt_get_sg_data(cc, dmreq->sg_out);
591 dst = kmap_local_page(sg_page(sg));
592 r = crypt_iv_lmk_one(cc, iv, dmreq, dst + sg->offset);
593
594 /* Tweak the first block of plaintext sector */
595 if (!r)
596 crypto_xor(dst + sg->offset, iv, cc->iv_size);
597
598 kunmap_local(dst);
599 return r;
600 }
601
crypt_iv_tcw_dtr(struct crypt_config * cc)602 static void crypt_iv_tcw_dtr(struct crypt_config *cc)
603 {
604 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
605
606 kfree_sensitive(tcw->iv_seed);
607 tcw->iv_seed = NULL;
608 kfree_sensitive(tcw->whitening);
609 tcw->whitening = NULL;
610 }
611
crypt_iv_tcw_ctr(struct crypt_config * cc,struct dm_target * ti,const char * opts)612 static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
613 const char *opts)
614 {
615 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
616
617 if (cc->sector_size != (1 << SECTOR_SHIFT)) {
618 ti->error = "Unsupported sector size for TCW";
619 return -EINVAL;
620 }
621
622 if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
623 ti->error = "Wrong key size for TCW";
624 return -EINVAL;
625 }
626
627 tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
628 tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
629 if (!tcw->iv_seed || !tcw->whitening) {
630 crypt_iv_tcw_dtr(cc);
631 ti->error = "Error allocating seed storage in TCW";
632 return -ENOMEM;
633 }
634
635 return 0;
636 }
637
crypt_iv_tcw_init(struct crypt_config * cc)638 static int crypt_iv_tcw_init(struct crypt_config *cc)
639 {
640 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
641 int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
642
643 memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
644 memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
645 TCW_WHITENING_SIZE);
646
647 return 0;
648 }
649
crypt_iv_tcw_wipe(struct crypt_config * cc)650 static int crypt_iv_tcw_wipe(struct crypt_config *cc)
651 {
652 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
653
654 memset(tcw->iv_seed, 0, cc->iv_size);
655 memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
656
657 return 0;
658 }
659
crypt_iv_tcw_whitening(struct crypt_config * cc,struct dm_crypt_request * dmreq,u8 * data)660 static void crypt_iv_tcw_whitening(struct crypt_config *cc,
661 struct dm_crypt_request *dmreq, u8 *data)
662 {
663 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
664 __le64 sector = cpu_to_le64(dmreq->iv_sector);
665 u8 buf[TCW_WHITENING_SIZE];
666 int i;
667
668 /* xor whitening with sector number */
669 crypto_xor_cpy(buf, tcw->whitening, (u8 *)§or, 8);
670 crypto_xor_cpy(&buf[8], tcw->whitening + 8, (u8 *)§or, 8);
671
672 /* calculate crc32 for every 32bit part and xor it */
673 for (i = 0; i < 4; i++)
674 put_unaligned_le32(crc32(0, &buf[i * 4], 4), &buf[i * 4]);
675 crypto_xor(&buf[0], &buf[12], 4);
676 crypto_xor(&buf[4], &buf[8], 4);
677
678 /* apply whitening (8 bytes) to whole sector */
679 for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
680 crypto_xor(data + i * 8, buf, 8);
681 memzero_explicit(buf, sizeof(buf));
682 }
683
crypt_iv_tcw_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)684 static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
685 struct dm_crypt_request *dmreq)
686 {
687 struct scatterlist *sg;
688 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
689 __le64 sector = cpu_to_le64(dmreq->iv_sector);
690 u8 *src;
691
692 /* Remove whitening from ciphertext */
693 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
694 sg = crypt_get_sg_data(cc, dmreq->sg_in);
695 src = kmap_local_page(sg_page(sg));
696 crypt_iv_tcw_whitening(cc, dmreq, src + sg->offset);
697 kunmap_local(src);
698 }
699
700 /* Calculate IV */
701 crypto_xor_cpy(iv, tcw->iv_seed, (u8 *)§or, 8);
702 if (cc->iv_size > 8)
703 crypto_xor_cpy(&iv[8], tcw->iv_seed + 8, (u8 *)§or,
704 cc->iv_size - 8);
705
706 return 0;
707 }
708
crypt_iv_tcw_post(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)709 static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
710 struct dm_crypt_request *dmreq)
711 {
712 struct scatterlist *sg;
713 u8 *dst;
714
715 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
716 return 0;
717
718 /* Apply whitening on ciphertext */
719 sg = crypt_get_sg_data(cc, dmreq->sg_out);
720 dst = kmap_local_page(sg_page(sg));
721 crypt_iv_tcw_whitening(cc, dmreq, dst + sg->offset);
722 kunmap_local(dst);
723
724 return 0;
725 }
726
crypt_iv_random_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)727 static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv,
728 struct dm_crypt_request *dmreq)
729 {
730 /* Used only for writes, there must be an additional space to store IV */
731 get_random_bytes(iv, cc->iv_size);
732 return 0;
733 }
734
crypt_iv_eboiv_ctr(struct crypt_config * cc,struct dm_target * ti,const char * opts)735 static int crypt_iv_eboiv_ctr(struct crypt_config *cc, struct dm_target *ti,
736 const char *opts)
737 {
738 if (crypt_integrity_aead(cc)) {
739 ti->error = "AEAD transforms not supported for EBOIV";
740 return -EINVAL;
741 }
742
743 if (crypto_skcipher_blocksize(any_tfm(cc)) != cc->iv_size) {
744 ti->error = "Block size of EBOIV cipher does not match IV size of block cipher";
745 return -EINVAL;
746 }
747
748 return 0;
749 }
750
crypt_iv_eboiv_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)751 static int crypt_iv_eboiv_gen(struct crypt_config *cc, u8 *iv,
752 struct dm_crypt_request *dmreq)
753 {
754 struct crypto_skcipher *tfm = any_tfm(cc);
755 struct skcipher_request *req;
756 struct scatterlist src, dst;
757 DECLARE_CRYPTO_WAIT(wait);
758 unsigned int reqsize;
759 int err;
760 u8 *buf;
761
762 reqsize = sizeof(*req) + crypto_skcipher_reqsize(tfm);
763 reqsize = ALIGN(reqsize, __alignof__(__le64));
764
765 req = kmalloc(reqsize + cc->iv_size, GFP_NOIO);
766 if (!req)
767 return -ENOMEM;
768
769 skcipher_request_set_tfm(req, tfm);
770
771 buf = (u8 *)req + reqsize;
772 memset(buf, 0, cc->iv_size);
773 *(__le64 *)buf = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
774
775 sg_init_one(&src, page_address(ZERO_PAGE(0)), cc->iv_size);
776 sg_init_one(&dst, iv, cc->iv_size);
777 skcipher_request_set_crypt(req, &src, &dst, cc->iv_size, buf);
778 skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
779 err = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
780 kfree_sensitive(req);
781
782 return err;
783 }
784
crypt_iv_elephant_dtr(struct crypt_config * cc)785 static void crypt_iv_elephant_dtr(struct crypt_config *cc)
786 {
787 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
788
789 crypto_free_skcipher(elephant->tfm);
790 elephant->tfm = NULL;
791 }
792
crypt_iv_elephant_ctr(struct crypt_config * cc,struct dm_target * ti,const char * opts)793 static int crypt_iv_elephant_ctr(struct crypt_config *cc, struct dm_target *ti,
794 const char *opts)
795 {
796 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
797 int r;
798
799 elephant->tfm = crypto_alloc_skcipher("ecb(aes)", 0,
800 CRYPTO_ALG_ALLOCATES_MEMORY);
801 if (IS_ERR(elephant->tfm)) {
802 r = PTR_ERR(elephant->tfm);
803 elephant->tfm = NULL;
804 return r;
805 }
806
807 r = crypt_iv_eboiv_ctr(cc, ti, NULL);
808 if (r)
809 crypt_iv_elephant_dtr(cc);
810 return r;
811 }
812
diffuser_disk_to_cpu(u32 * d,size_t n)813 static void diffuser_disk_to_cpu(u32 *d, size_t n)
814 {
815 #ifndef __LITTLE_ENDIAN
816 int i;
817
818 for (i = 0; i < n; i++)
819 d[i] = le32_to_cpu((__le32)d[i]);
820 #endif
821 }
822
diffuser_cpu_to_disk(__le32 * d,size_t n)823 static void diffuser_cpu_to_disk(__le32 *d, size_t n)
824 {
825 #ifndef __LITTLE_ENDIAN
826 int i;
827
828 for (i = 0; i < n; i++)
829 d[i] = cpu_to_le32((u32)d[i]);
830 #endif
831 }
832
diffuser_a_decrypt(u32 * d,size_t n)833 static void diffuser_a_decrypt(u32 *d, size_t n)
834 {
835 int i, i1, i2, i3;
836
837 for (i = 0; i < 5; i++) {
838 i1 = 0;
839 i2 = n - 2;
840 i3 = n - 5;
841
842 while (i1 < (n - 1)) {
843 d[i1] += d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
844 i1++; i2++; i3++;
845
846 if (i3 >= n)
847 i3 -= n;
848
849 d[i1] += d[i2] ^ d[i3];
850 i1++; i2++; i3++;
851
852 if (i2 >= n)
853 i2 -= n;
854
855 d[i1] += d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
856 i1++; i2++; i3++;
857
858 d[i1] += d[i2] ^ d[i3];
859 i1++; i2++; i3++;
860 }
861 }
862 }
863
diffuser_a_encrypt(u32 * d,size_t n)864 static void diffuser_a_encrypt(u32 *d, size_t n)
865 {
866 int i, i1, i2, i3;
867
868 for (i = 0; i < 5; i++) {
869 i1 = n - 1;
870 i2 = n - 2 - 1;
871 i3 = n - 5 - 1;
872
873 while (i1 > 0) {
874 d[i1] -= d[i2] ^ d[i3];
875 i1--; i2--; i3--;
876
877 d[i1] -= d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
878 i1--; i2--; i3--;
879
880 if (i2 < 0)
881 i2 += n;
882
883 d[i1] -= d[i2] ^ d[i3];
884 i1--; i2--; i3--;
885
886 if (i3 < 0)
887 i3 += n;
888
889 d[i1] -= d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
890 i1--; i2--; i3--;
891 }
892 }
893 }
894
diffuser_b_decrypt(u32 * d,size_t n)895 static void diffuser_b_decrypt(u32 *d, size_t n)
896 {
897 int i, i1, i2, i3;
898
899 for (i = 0; i < 3; i++) {
900 i1 = 0;
901 i2 = 2;
902 i3 = 5;
903
904 while (i1 < (n - 1)) {
905 d[i1] += d[i2] ^ d[i3];
906 i1++; i2++; i3++;
907
908 d[i1] += d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
909 i1++; i2++; i3++;
910
911 if (i2 >= n)
912 i2 -= n;
913
914 d[i1] += d[i2] ^ d[i3];
915 i1++; i2++; i3++;
916
917 if (i3 >= n)
918 i3 -= n;
919
920 d[i1] += d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
921 i1++; i2++; i3++;
922 }
923 }
924 }
925
diffuser_b_encrypt(u32 * d,size_t n)926 static void diffuser_b_encrypt(u32 *d, size_t n)
927 {
928 int i, i1, i2, i3;
929
930 for (i = 0; i < 3; i++) {
931 i1 = n - 1;
932 i2 = 2 - 1;
933 i3 = 5 - 1;
934
935 while (i1 > 0) {
936 d[i1] -= d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
937 i1--; i2--; i3--;
938
939 if (i3 < 0)
940 i3 += n;
941
942 d[i1] -= d[i2] ^ d[i3];
943 i1--; i2--; i3--;
944
945 if (i2 < 0)
946 i2 += n;
947
948 d[i1] -= d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
949 i1--; i2--; i3--;
950
951 d[i1] -= d[i2] ^ d[i3];
952 i1--; i2--; i3--;
953 }
954 }
955 }
956
crypt_iv_elephant(struct crypt_config * cc,struct dm_crypt_request * dmreq)957 static int crypt_iv_elephant(struct crypt_config *cc, struct dm_crypt_request *dmreq)
958 {
959 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
960 u8 *es, *ks, *data, *data2, *data_offset;
961 struct skcipher_request *req;
962 struct scatterlist *sg, *sg2, src, dst;
963 DECLARE_CRYPTO_WAIT(wait);
964 int i, r;
965
966 req = skcipher_request_alloc(elephant->tfm, GFP_NOIO);
967 es = kzalloc(16, GFP_NOIO); /* Key for AES */
968 ks = kzalloc(32, GFP_NOIO); /* Elephant sector key */
969
970 if (!req || !es || !ks) {
971 r = -ENOMEM;
972 goto out;
973 }
974
975 *(__le64 *)es = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
976
977 /* E(Ks, e(s)) */
978 sg_init_one(&src, es, 16);
979 sg_init_one(&dst, ks, 16);
980 skcipher_request_set_crypt(req, &src, &dst, 16, NULL);
981 skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
982 r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
983 if (r)
984 goto out;
985
986 /* E(Ks, e'(s)) */
987 es[15] = 0x80;
988 sg_init_one(&dst, &ks[16], 16);
989 r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
990 if (r)
991 goto out;
992
993 sg = crypt_get_sg_data(cc, dmreq->sg_out);
994 data = kmap_local_page(sg_page(sg));
995 data_offset = data + sg->offset;
996
997 /* Cannot modify original bio, copy to sg_out and apply Elephant to it */
998 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
999 sg2 = crypt_get_sg_data(cc, dmreq->sg_in);
1000 data2 = kmap_local_page(sg_page(sg2));
1001 memcpy(data_offset, data2 + sg2->offset, cc->sector_size);
1002 kunmap_local(data2);
1003 }
1004
1005 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
1006 diffuser_disk_to_cpu((u32 *)data_offset, cc->sector_size / sizeof(u32));
1007 diffuser_b_decrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
1008 diffuser_a_decrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
1009 diffuser_cpu_to_disk((__le32 *)data_offset, cc->sector_size / sizeof(u32));
1010 }
1011
1012 for (i = 0; i < (cc->sector_size / 32); i++)
1013 crypto_xor(data_offset + i * 32, ks, 32);
1014
1015 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
1016 diffuser_disk_to_cpu((u32 *)data_offset, cc->sector_size / sizeof(u32));
1017 diffuser_a_encrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
1018 diffuser_b_encrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
1019 diffuser_cpu_to_disk((__le32 *)data_offset, cc->sector_size / sizeof(u32));
1020 }
1021
1022 kunmap_local(data);
1023 out:
1024 kfree_sensitive(ks);
1025 kfree_sensitive(es);
1026 skcipher_request_free(req);
1027 return r;
1028 }
1029
crypt_iv_elephant_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)1030 static int crypt_iv_elephant_gen(struct crypt_config *cc, u8 *iv,
1031 struct dm_crypt_request *dmreq)
1032 {
1033 int r;
1034
1035 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
1036 r = crypt_iv_elephant(cc, dmreq);
1037 if (r)
1038 return r;
1039 }
1040
1041 return crypt_iv_eboiv_gen(cc, iv, dmreq);
1042 }
1043
crypt_iv_elephant_post(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)1044 static int crypt_iv_elephant_post(struct crypt_config *cc, u8 *iv,
1045 struct dm_crypt_request *dmreq)
1046 {
1047 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
1048 return crypt_iv_elephant(cc, dmreq);
1049
1050 return 0;
1051 }
1052
crypt_iv_elephant_init(struct crypt_config * cc)1053 static int crypt_iv_elephant_init(struct crypt_config *cc)
1054 {
1055 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1056 int key_offset = cc->key_size - cc->key_extra_size;
1057
1058 return crypto_skcipher_setkey(elephant->tfm, &cc->key[key_offset], cc->key_extra_size);
1059 }
1060
crypt_iv_elephant_wipe(struct crypt_config * cc)1061 static int crypt_iv_elephant_wipe(struct crypt_config *cc)
1062 {
1063 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1064 u8 key[ELEPHANT_MAX_KEY_SIZE];
1065
1066 memset(key, 0, cc->key_extra_size);
1067 return crypto_skcipher_setkey(elephant->tfm, key, cc->key_extra_size);
1068 }
1069
1070 static const struct crypt_iv_operations crypt_iv_plain_ops = {
1071 .generator = crypt_iv_plain_gen
1072 };
1073
1074 static const struct crypt_iv_operations crypt_iv_plain64_ops = {
1075 .generator = crypt_iv_plain64_gen
1076 };
1077
1078 static const struct crypt_iv_operations crypt_iv_plain64be_ops = {
1079 .generator = crypt_iv_plain64be_gen
1080 };
1081
1082 static const struct crypt_iv_operations crypt_iv_essiv_ops = {
1083 .generator = crypt_iv_essiv_gen
1084 };
1085
1086 static const struct crypt_iv_operations crypt_iv_benbi_ops = {
1087 .ctr = crypt_iv_benbi_ctr,
1088 .dtr = crypt_iv_benbi_dtr,
1089 .generator = crypt_iv_benbi_gen
1090 };
1091
1092 static const struct crypt_iv_operations crypt_iv_null_ops = {
1093 .generator = crypt_iv_null_gen
1094 };
1095
1096 static const struct crypt_iv_operations crypt_iv_lmk_ops = {
1097 .ctr = crypt_iv_lmk_ctr,
1098 .dtr = crypt_iv_lmk_dtr,
1099 .init = crypt_iv_lmk_init,
1100 .wipe = crypt_iv_lmk_wipe,
1101 .generator = crypt_iv_lmk_gen,
1102 .post = crypt_iv_lmk_post
1103 };
1104
1105 static const struct crypt_iv_operations crypt_iv_tcw_ops = {
1106 .ctr = crypt_iv_tcw_ctr,
1107 .dtr = crypt_iv_tcw_dtr,
1108 .init = crypt_iv_tcw_init,
1109 .wipe = crypt_iv_tcw_wipe,
1110 .generator = crypt_iv_tcw_gen,
1111 .post = crypt_iv_tcw_post
1112 };
1113
1114 static const struct crypt_iv_operations crypt_iv_random_ops = {
1115 .generator = crypt_iv_random_gen
1116 };
1117
1118 static const struct crypt_iv_operations crypt_iv_eboiv_ops = {
1119 .ctr = crypt_iv_eboiv_ctr,
1120 .generator = crypt_iv_eboiv_gen
1121 };
1122
1123 static const struct crypt_iv_operations crypt_iv_elephant_ops = {
1124 .ctr = crypt_iv_elephant_ctr,
1125 .dtr = crypt_iv_elephant_dtr,
1126 .init = crypt_iv_elephant_init,
1127 .wipe = crypt_iv_elephant_wipe,
1128 .generator = crypt_iv_elephant_gen,
1129 .post = crypt_iv_elephant_post
1130 };
1131
1132 /*
1133 * Integrity extensions
1134 */
crypt_integrity_aead(struct crypt_config * cc)1135 static bool crypt_integrity_aead(struct crypt_config *cc)
1136 {
1137 return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
1138 }
1139
crypt_integrity_hmac(struct crypt_config * cc)1140 static bool crypt_integrity_hmac(struct crypt_config *cc)
1141 {
1142 return crypt_integrity_aead(cc) && cc->key_mac_size;
1143 }
1144
1145 /* Get sg containing data */
crypt_get_sg_data(struct crypt_config * cc,struct scatterlist * sg)1146 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
1147 struct scatterlist *sg)
1148 {
1149 if (unlikely(crypt_integrity_aead(cc)))
1150 return &sg[2];
1151
1152 return sg;
1153 }
1154
dm_crypt_integrity_io_alloc(struct dm_crypt_io * io,struct bio * bio)1155 static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio)
1156 {
1157 struct bio_integrity_payload *bip;
1158 unsigned int tag_len;
1159 int ret;
1160
1161 if (!bio_sectors(bio) || !io->cc->tuple_size)
1162 return 0;
1163
1164 bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
1165 if (IS_ERR(bip))
1166 return PTR_ERR(bip);
1167
1168 tag_len = io->cc->tuple_size * (bio_sectors(bio) >> io->cc->sector_shift);
1169
1170 bip->bip_iter.bi_sector = bio->bi_iter.bi_sector;
1171
1172 ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata),
1173 tag_len, offset_in_page(io->integrity_metadata));
1174 if (unlikely(ret != tag_len))
1175 return -ENOMEM;
1176
1177 return 0;
1178 }
1179
crypt_integrity_ctr(struct crypt_config * cc,struct dm_target * ti)1180 static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti)
1181 {
1182 #ifdef CONFIG_BLK_DEV_INTEGRITY
1183 struct blk_integrity *bi = blk_get_integrity(cc->dev->bdev->bd_disk);
1184 struct mapped_device *md = dm_table_get_md(ti->table);
1185
1186 /* We require an underlying device with non-PI metadata */
1187 if (!bi || bi->csum_type != BLK_INTEGRITY_CSUM_NONE) {
1188 ti->error = "Integrity profile not supported.";
1189 return -EINVAL;
1190 }
1191
1192 if (bi->tuple_size < cc->used_tag_size) {
1193 ti->error = "Integrity profile tag size mismatch.";
1194 return -EINVAL;
1195 }
1196 cc->tuple_size = bi->tuple_size;
1197 if (1 << bi->interval_exp != cc->sector_size) {
1198 ti->error = "Integrity profile sector size mismatch.";
1199 return -EINVAL;
1200 }
1201
1202 if (crypt_integrity_aead(cc)) {
1203 cc->integrity_tag_size = cc->used_tag_size - cc->integrity_iv_size;
1204 DMDEBUG("%s: Integrity AEAD, tag size %u, IV size %u.", dm_device_name(md),
1205 cc->integrity_tag_size, cc->integrity_iv_size);
1206
1207 if (crypto_aead_setauthsize(any_tfm_aead(cc), cc->integrity_tag_size)) {
1208 ti->error = "Integrity AEAD auth tag size is not supported.";
1209 return -EINVAL;
1210 }
1211 } else if (cc->integrity_iv_size)
1212 DMDEBUG("%s: Additional per-sector space %u bytes for IV.", dm_device_name(md),
1213 cc->integrity_iv_size);
1214
1215 if ((cc->integrity_tag_size + cc->integrity_iv_size) > cc->tuple_size) {
1216 ti->error = "Not enough space for integrity tag in the profile.";
1217 return -EINVAL;
1218 }
1219
1220 return 0;
1221 #else
1222 ti->error = "Integrity profile not supported.";
1223 return -EINVAL;
1224 #endif
1225 }
1226
crypt_convert_init(struct crypt_config * cc,struct convert_context * ctx,struct bio * bio_out,struct bio * bio_in,sector_t sector)1227 static void crypt_convert_init(struct crypt_config *cc,
1228 struct convert_context *ctx,
1229 struct bio *bio_out, struct bio *bio_in,
1230 sector_t sector)
1231 {
1232 ctx->bio_in = bio_in;
1233 ctx->bio_out = bio_out;
1234 if (bio_in)
1235 ctx->iter_in = bio_in->bi_iter;
1236 if (bio_out)
1237 ctx->iter_out = bio_out->bi_iter;
1238 ctx->cc_sector = sector + cc->iv_offset;
1239 ctx->tag_offset = 0;
1240 init_completion(&ctx->restart);
1241 }
1242
dmreq_of_req(struct crypt_config * cc,void * req)1243 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
1244 void *req)
1245 {
1246 return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
1247 }
1248
req_of_dmreq(struct crypt_config * cc,struct dm_crypt_request * dmreq)1249 static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq)
1250 {
1251 return (void *)((char *)dmreq - cc->dmreq_start);
1252 }
1253
iv_of_dmreq(struct crypt_config * cc,struct dm_crypt_request * dmreq)1254 static u8 *iv_of_dmreq(struct crypt_config *cc,
1255 struct dm_crypt_request *dmreq)
1256 {
1257 if (crypt_integrity_aead(cc))
1258 return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1259 crypto_aead_alignmask(any_tfm_aead(cc)) + 1);
1260 else
1261 return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1262 crypto_skcipher_alignmask(any_tfm(cc)) + 1);
1263 }
1264
org_iv_of_dmreq(struct crypt_config * cc,struct dm_crypt_request * dmreq)1265 static u8 *org_iv_of_dmreq(struct crypt_config *cc,
1266 struct dm_crypt_request *dmreq)
1267 {
1268 return iv_of_dmreq(cc, dmreq) + cc->iv_size;
1269 }
1270
org_sector_of_dmreq(struct crypt_config * cc,struct dm_crypt_request * dmreq)1271 static __le64 *org_sector_of_dmreq(struct crypt_config *cc,
1272 struct dm_crypt_request *dmreq)
1273 {
1274 u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size;
1275
1276 return (__le64 *) ptr;
1277 }
1278
org_tag_of_dmreq(struct crypt_config * cc,struct dm_crypt_request * dmreq)1279 static unsigned int *org_tag_of_dmreq(struct crypt_config *cc,
1280 struct dm_crypt_request *dmreq)
1281 {
1282 u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size +
1283 cc->iv_size + sizeof(uint64_t);
1284
1285 return (unsigned int *)ptr;
1286 }
1287
tag_from_dmreq(struct crypt_config * cc,struct dm_crypt_request * dmreq)1288 static void *tag_from_dmreq(struct crypt_config *cc,
1289 struct dm_crypt_request *dmreq)
1290 {
1291 struct convert_context *ctx = dmreq->ctx;
1292 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1293
1294 return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) *
1295 cc->tuple_size];
1296 }
1297
iv_tag_from_dmreq(struct crypt_config * cc,struct dm_crypt_request * dmreq)1298 static void *iv_tag_from_dmreq(struct crypt_config *cc,
1299 struct dm_crypt_request *dmreq)
1300 {
1301 return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size;
1302 }
1303
crypt_convert_block_aead(struct crypt_config * cc,struct convert_context * ctx,struct aead_request * req,unsigned int tag_offset)1304 static int crypt_convert_block_aead(struct crypt_config *cc,
1305 struct convert_context *ctx,
1306 struct aead_request *req,
1307 unsigned int tag_offset)
1308 {
1309 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1310 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1311 struct dm_crypt_request *dmreq;
1312 u8 *iv, *org_iv, *tag_iv, *tag;
1313 __le64 *sector;
1314 int r = 0;
1315
1316 BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size);
1317
1318 /* Reject unexpected unaligned bio. */
1319 if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1320 return -EIO;
1321
1322 dmreq = dmreq_of_req(cc, req);
1323 dmreq->iv_sector = ctx->cc_sector;
1324 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1325 dmreq->iv_sector >>= cc->sector_shift;
1326 dmreq->ctx = ctx;
1327
1328 *org_tag_of_dmreq(cc, dmreq) = tag_offset;
1329
1330 sector = org_sector_of_dmreq(cc, dmreq);
1331 *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1332
1333 iv = iv_of_dmreq(cc, dmreq);
1334 org_iv = org_iv_of_dmreq(cc, dmreq);
1335 tag = tag_from_dmreq(cc, dmreq);
1336 tag_iv = iv_tag_from_dmreq(cc, dmreq);
1337
1338 /* AEAD request:
1339 * |----- AAD -------|------ DATA -------|-- AUTH TAG --|
1340 * | (authenticated) | (auth+encryption) | |
1341 * | sector_LE | IV | sector in/out | tag in/out |
1342 */
1343 sg_init_table(dmreq->sg_in, 4);
1344 sg_set_buf(&dmreq->sg_in[0], sector, sizeof(uint64_t));
1345 sg_set_buf(&dmreq->sg_in[1], org_iv, cc->iv_size);
1346 sg_set_page(&dmreq->sg_in[2], bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1347 sg_set_buf(&dmreq->sg_in[3], tag, cc->integrity_tag_size);
1348
1349 sg_init_table(dmreq->sg_out, 4);
1350 sg_set_buf(&dmreq->sg_out[0], sector, sizeof(uint64_t));
1351 sg_set_buf(&dmreq->sg_out[1], org_iv, cc->iv_size);
1352 sg_set_page(&dmreq->sg_out[2], bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1353 sg_set_buf(&dmreq->sg_out[3], tag, cc->integrity_tag_size);
1354
1355 if (cc->iv_gen_ops) {
1356 /* For READs use IV stored in integrity metadata */
1357 if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1358 memcpy(org_iv, tag_iv, cc->iv_size);
1359 } else {
1360 r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1361 if (r < 0)
1362 return r;
1363 /* Store generated IV in integrity metadata */
1364 if (cc->integrity_iv_size)
1365 memcpy(tag_iv, org_iv, cc->iv_size);
1366 }
1367 /* Working copy of IV, to be modified in crypto API */
1368 memcpy(iv, org_iv, cc->iv_size);
1369 }
1370
1371 aead_request_set_ad(req, sizeof(uint64_t) + cc->iv_size);
1372 if (bio_data_dir(ctx->bio_in) == WRITE) {
1373 aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1374 cc->sector_size, iv);
1375 r = crypto_aead_encrypt(req);
1376 if (cc->integrity_tag_size + cc->integrity_iv_size != cc->tuple_size)
1377 memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0,
1378 cc->tuple_size - (cc->integrity_tag_size + cc->integrity_iv_size));
1379 } else {
1380 aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1381 cc->sector_size + cc->integrity_tag_size, iv);
1382 r = crypto_aead_decrypt(req);
1383 }
1384
1385 if (r == -EBADMSG) {
1386 sector_t s = le64_to_cpu(*sector);
1387
1388 ctx->aead_failed = true;
1389 if (ctx->aead_recheck) {
1390 DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu",
1391 ctx->bio_in->bi_bdev, s);
1392 dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead",
1393 ctx->bio_in, s, 0);
1394 }
1395 }
1396
1397 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1398 r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1399
1400 bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1401 bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1402
1403 return r;
1404 }
1405
crypt_convert_block_skcipher(struct crypt_config * cc,struct convert_context * ctx,struct skcipher_request * req,unsigned int tag_offset)1406 static int crypt_convert_block_skcipher(struct crypt_config *cc,
1407 struct convert_context *ctx,
1408 struct skcipher_request *req,
1409 unsigned int tag_offset)
1410 {
1411 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1412 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1413 struct scatterlist *sg_in, *sg_out;
1414 struct dm_crypt_request *dmreq;
1415 u8 *iv, *org_iv, *tag_iv;
1416 __le64 *sector;
1417 int r = 0;
1418
1419 /* Reject unexpected unaligned bio. */
1420 if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1421 return -EIO;
1422
1423 dmreq = dmreq_of_req(cc, req);
1424 dmreq->iv_sector = ctx->cc_sector;
1425 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1426 dmreq->iv_sector >>= cc->sector_shift;
1427 dmreq->ctx = ctx;
1428
1429 *org_tag_of_dmreq(cc, dmreq) = tag_offset;
1430
1431 iv = iv_of_dmreq(cc, dmreq);
1432 org_iv = org_iv_of_dmreq(cc, dmreq);
1433 tag_iv = iv_tag_from_dmreq(cc, dmreq);
1434
1435 sector = org_sector_of_dmreq(cc, dmreq);
1436 *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1437
1438 /* For skcipher we use only the first sg item */
1439 sg_in = &dmreq->sg_in[0];
1440 sg_out = &dmreq->sg_out[0];
1441
1442 sg_init_table(sg_in, 1);
1443 sg_set_page(sg_in, bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1444
1445 sg_init_table(sg_out, 1);
1446 sg_set_page(sg_out, bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1447
1448 if (cc->iv_gen_ops) {
1449 /* For READs use IV stored in integrity metadata */
1450 if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1451 memcpy(org_iv, tag_iv, cc->integrity_iv_size);
1452 } else {
1453 r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1454 if (r < 0)
1455 return r;
1456 /* Data can be already preprocessed in generator */
1457 if (test_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags))
1458 sg_in = sg_out;
1459 /* Store generated IV in integrity metadata */
1460 if (cc->integrity_iv_size)
1461 memcpy(tag_iv, org_iv, cc->integrity_iv_size);
1462 }
1463 /* Working copy of IV, to be modified in crypto API */
1464 memcpy(iv, org_iv, cc->iv_size);
1465 }
1466
1467 skcipher_request_set_crypt(req, sg_in, sg_out, cc->sector_size, iv);
1468
1469 if (bio_data_dir(ctx->bio_in) == WRITE)
1470 r = crypto_skcipher_encrypt(req);
1471 else
1472 r = crypto_skcipher_decrypt(req);
1473
1474 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1475 r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1476
1477 bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1478 bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1479
1480 return r;
1481 }
1482
1483 static void kcryptd_async_done(void *async_req, int error);
1484
crypt_alloc_req_skcipher(struct crypt_config * cc,struct convert_context * ctx)1485 static int crypt_alloc_req_skcipher(struct crypt_config *cc,
1486 struct convert_context *ctx)
1487 {
1488 unsigned int key_index = ctx->cc_sector & (cc->tfms_count - 1);
1489
1490 if (!ctx->r.req) {
1491 ctx->r.req = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
1492 if (!ctx->r.req)
1493 return -ENOMEM;
1494 }
1495
1496 skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfms[key_index]);
1497
1498 /*
1499 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1500 * requests if driver request queue is full.
1501 */
1502 skcipher_request_set_callback(ctx->r.req,
1503 CRYPTO_TFM_REQ_MAY_BACKLOG,
1504 kcryptd_async_done, dmreq_of_req(cc, ctx->r.req));
1505
1506 return 0;
1507 }
1508
crypt_alloc_req_aead(struct crypt_config * cc,struct convert_context * ctx)1509 static int crypt_alloc_req_aead(struct crypt_config *cc,
1510 struct convert_context *ctx)
1511 {
1512 if (!ctx->r.req_aead) {
1513 ctx->r.req_aead = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
1514 if (!ctx->r.req_aead)
1515 return -ENOMEM;
1516 }
1517
1518 aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfms_aead[0]);
1519
1520 /*
1521 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1522 * requests if driver request queue is full.
1523 */
1524 aead_request_set_callback(ctx->r.req_aead,
1525 CRYPTO_TFM_REQ_MAY_BACKLOG,
1526 kcryptd_async_done, dmreq_of_req(cc, ctx->r.req_aead));
1527
1528 return 0;
1529 }
1530
crypt_alloc_req(struct crypt_config * cc,struct convert_context * ctx)1531 static int crypt_alloc_req(struct crypt_config *cc,
1532 struct convert_context *ctx)
1533 {
1534 if (crypt_integrity_aead(cc))
1535 return crypt_alloc_req_aead(cc, ctx);
1536 else
1537 return crypt_alloc_req_skcipher(cc, ctx);
1538 }
1539
crypt_free_req_skcipher(struct crypt_config * cc,struct skcipher_request * req,struct bio * base_bio)1540 static void crypt_free_req_skcipher(struct crypt_config *cc,
1541 struct skcipher_request *req, struct bio *base_bio)
1542 {
1543 struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1544
1545 if ((struct skcipher_request *)(io + 1) != req)
1546 mempool_free(req, &cc->req_pool);
1547 }
1548
crypt_free_req_aead(struct crypt_config * cc,struct aead_request * req,struct bio * base_bio)1549 static void crypt_free_req_aead(struct crypt_config *cc,
1550 struct aead_request *req, struct bio *base_bio)
1551 {
1552 struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1553
1554 if ((struct aead_request *)(io + 1) != req)
1555 mempool_free(req, &cc->req_pool);
1556 }
1557
crypt_free_req(struct crypt_config * cc,void * req,struct bio * base_bio)1558 static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio)
1559 {
1560 if (crypt_integrity_aead(cc))
1561 crypt_free_req_aead(cc, req, base_bio);
1562 else
1563 crypt_free_req_skcipher(cc, req, base_bio);
1564 }
1565
1566 /*
1567 * Encrypt / decrypt data from one bio to another one (can be the same one)
1568 */
crypt_convert(struct crypt_config * cc,struct convert_context * ctx,bool atomic,bool reset_pending)1569 static blk_status_t crypt_convert(struct crypt_config *cc,
1570 struct convert_context *ctx, bool atomic, bool reset_pending)
1571 {
1572 unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT;
1573 int r;
1574
1575 /*
1576 * if reset_pending is set we are dealing with the bio for the first time,
1577 * else we're continuing to work on the previous bio, so don't mess with
1578 * the cc_pending counter
1579 */
1580 if (reset_pending)
1581 atomic_set(&ctx->cc_pending, 1);
1582
1583 while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
1584
1585 r = crypt_alloc_req(cc, ctx);
1586 if (r) {
1587 complete(&ctx->restart);
1588 return BLK_STS_DEV_RESOURCE;
1589 }
1590
1591 atomic_inc(&ctx->cc_pending);
1592
1593 if (crypt_integrity_aead(cc))
1594 r = crypt_convert_block_aead(cc, ctx, ctx->r.req_aead, ctx->tag_offset);
1595 else
1596 r = crypt_convert_block_skcipher(cc, ctx, ctx->r.req, ctx->tag_offset);
1597
1598 switch (r) {
1599 /*
1600 * The request was queued by a crypto driver
1601 * but the driver request queue is full, let's wait.
1602 */
1603 case -EBUSY:
1604 if (in_interrupt()) {
1605 if (try_wait_for_completion(&ctx->restart)) {
1606 /*
1607 * we don't have to block to wait for completion,
1608 * so proceed
1609 */
1610 } else {
1611 /*
1612 * we can't wait for completion without blocking
1613 * exit and continue processing in a workqueue
1614 */
1615 ctx->r.req = NULL;
1616 ctx->tag_offset++;
1617 ctx->cc_sector += sector_step;
1618 return BLK_STS_DEV_RESOURCE;
1619 }
1620 } else {
1621 wait_for_completion(&ctx->restart);
1622 }
1623 reinit_completion(&ctx->restart);
1624 fallthrough;
1625 /*
1626 * The request is queued and processed asynchronously,
1627 * completion function kcryptd_async_done() will be called.
1628 */
1629 case -EINPROGRESS:
1630 ctx->r.req = NULL;
1631 ctx->tag_offset++;
1632 ctx->cc_sector += sector_step;
1633 continue;
1634 /*
1635 * The request was already processed (synchronously).
1636 */
1637 case 0:
1638 atomic_dec(&ctx->cc_pending);
1639 ctx->cc_sector += sector_step;
1640 ctx->tag_offset++;
1641 if (!atomic)
1642 cond_resched();
1643 continue;
1644 /*
1645 * There was a data integrity error.
1646 */
1647 case -EBADMSG:
1648 atomic_dec(&ctx->cc_pending);
1649 return BLK_STS_PROTECTION;
1650 /*
1651 * There was an error while processing the request.
1652 */
1653 default:
1654 atomic_dec(&ctx->cc_pending);
1655 return BLK_STS_IOERR;
1656 }
1657 }
1658
1659 return 0;
1660 }
1661
1662 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
1663
1664 /*
1665 * Generate a new unfragmented bio with the given size
1666 * This should never violate the device limitations (but if it did then block
1667 * core should split the bio as needed).
1668 *
1669 * This function may be called concurrently. If we allocate from the mempool
1670 * concurrently, there is a possibility of deadlock. For example, if we have
1671 * mempool of 256 pages, two processes, each wanting 256, pages allocate from
1672 * the mempool concurrently, it may deadlock in a situation where both processes
1673 * have allocated 128 pages and the mempool is exhausted.
1674 *
1675 * In order to avoid this scenario we allocate the pages under a mutex.
1676 *
1677 * In order to not degrade performance with excessive locking, we try
1678 * non-blocking allocations without a mutex first but on failure we fallback
1679 * to blocking allocations with a mutex.
1680 *
1681 * In order to reduce allocation overhead, we try to allocate compound pages in
1682 * the first pass. If they are not available, we fall back to the mempool.
1683 */
crypt_alloc_buffer(struct dm_crypt_io * io,unsigned int size)1684 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned int size)
1685 {
1686 struct crypt_config *cc = io->cc;
1687 struct bio *clone;
1688 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1689 gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
1690 unsigned int remaining_size;
1691 unsigned int order = MAX_PAGE_ORDER;
1692
1693 retry:
1694 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1695 mutex_lock(&cc->bio_alloc_lock);
1696
1697 clone = bio_alloc_bioset(cc->dev->bdev, nr_iovecs, io->base_bio->bi_opf,
1698 GFP_NOIO, &cc->bs);
1699 clone->bi_private = io;
1700 clone->bi_end_io = crypt_endio;
1701 clone->bi_ioprio = io->base_bio->bi_ioprio;
1702 clone->bi_iter.bi_sector = cc->start + io->sector;
1703
1704 remaining_size = size;
1705
1706 while (remaining_size) {
1707 struct page *pages;
1708 unsigned size_to_add;
1709 unsigned remaining_order = __fls((remaining_size + PAGE_SIZE - 1) >> PAGE_SHIFT);
1710 order = min(order, remaining_order);
1711
1712 while (order > 0) {
1713 if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) +
1714 (1 << order) > dm_crypt_pages_per_client))
1715 goto decrease_order;
1716 pages = alloc_pages(gfp_mask
1717 | __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN | __GFP_COMP,
1718 order);
1719 if (likely(pages != NULL)) {
1720 percpu_counter_add(&cc->n_allocated_pages, 1 << order);
1721 goto have_pages;
1722 }
1723 decrease_order:
1724 order--;
1725 }
1726
1727 pages = mempool_alloc(&cc->page_pool, gfp_mask);
1728 if (!pages) {
1729 crypt_free_buffer_pages(cc, clone);
1730 bio_put(clone);
1731 gfp_mask |= __GFP_DIRECT_RECLAIM;
1732 order = 0;
1733 goto retry;
1734 }
1735
1736 have_pages:
1737 size_to_add = min((unsigned)PAGE_SIZE << order, remaining_size);
1738 __bio_add_page(clone, pages, size_to_add, 0);
1739 remaining_size -= size_to_add;
1740 }
1741
1742 /* Allocate space for integrity tags */
1743 if (dm_crypt_integrity_io_alloc(io, clone)) {
1744 crypt_free_buffer_pages(cc, clone);
1745 bio_put(clone);
1746 clone = NULL;
1747 }
1748
1749 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1750 mutex_unlock(&cc->bio_alloc_lock);
1751
1752 return clone;
1753 }
1754
crypt_free_buffer_pages(struct crypt_config * cc,struct bio * clone)1755 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1756 {
1757 struct folio_iter fi;
1758
1759 if (clone->bi_vcnt > 0) { /* bio_for_each_folio_all crashes with an empty bio */
1760 bio_for_each_folio_all(fi, clone) {
1761 if (folio_test_large(fi.folio)) {
1762 percpu_counter_sub(&cc->n_allocated_pages,
1763 1 << folio_order(fi.folio));
1764 folio_put(fi.folio);
1765 } else {
1766 mempool_free(&fi.folio->page, &cc->page_pool);
1767 }
1768 }
1769 }
1770 }
1771
crypt_io_init(struct dm_crypt_io * io,struct crypt_config * cc,struct bio * bio,sector_t sector)1772 static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1773 struct bio *bio, sector_t sector)
1774 {
1775 io->cc = cc;
1776 io->base_bio = bio;
1777 io->sector = sector;
1778 io->error = 0;
1779 io->ctx.aead_recheck = false;
1780 io->ctx.aead_failed = false;
1781 io->ctx.r.req = NULL;
1782 io->integrity_metadata = NULL;
1783 io->integrity_metadata_from_pool = false;
1784 atomic_set(&io->io_pending, 0);
1785 }
1786
crypt_inc_pending(struct dm_crypt_io * io)1787 static void crypt_inc_pending(struct dm_crypt_io *io)
1788 {
1789 atomic_inc(&io->io_pending);
1790 }
1791
1792 static void kcryptd_queue_read(struct dm_crypt_io *io);
1793
1794 /*
1795 * One of the bios was finished. Check for completion of
1796 * the whole request and correctly clean up the buffer.
1797 */
crypt_dec_pending(struct dm_crypt_io * io)1798 static void crypt_dec_pending(struct dm_crypt_io *io)
1799 {
1800 struct crypt_config *cc = io->cc;
1801 struct bio *base_bio = io->base_bio;
1802 blk_status_t error = io->error;
1803
1804 if (!atomic_dec_and_test(&io->io_pending))
1805 return;
1806
1807 if (likely(!io->ctx.aead_recheck) && unlikely(io->ctx.aead_failed) &&
1808 cc->used_tag_size && bio_data_dir(base_bio) == READ) {
1809 io->ctx.aead_recheck = true;
1810 io->ctx.aead_failed = false;
1811 io->error = 0;
1812 kcryptd_queue_read(io);
1813 return;
1814 }
1815
1816 if (io->ctx.r.req)
1817 crypt_free_req(cc, io->ctx.r.req, base_bio);
1818
1819 if (unlikely(io->integrity_metadata_from_pool))
1820 mempool_free(io->integrity_metadata, &io->cc->tag_pool);
1821 else
1822 kfree(io->integrity_metadata);
1823
1824 base_bio->bi_status = error;
1825
1826 bio_endio(base_bio);
1827 }
1828
1829 /*
1830 * kcryptd/kcryptd_io:
1831 *
1832 * Needed because it would be very unwise to do decryption in an
1833 * interrupt context.
1834 *
1835 * kcryptd performs the actual encryption or decryption.
1836 *
1837 * kcryptd_io performs the IO submission.
1838 *
1839 * They must be separated as otherwise the final stages could be
1840 * starved by new requests which can block in the first stages due
1841 * to memory allocation.
1842 *
1843 * The work is done per CPU global for all dm-crypt instances.
1844 * They should not depend on each other and do not block.
1845 */
crypt_endio(struct bio * clone)1846 static void crypt_endio(struct bio *clone)
1847 {
1848 struct dm_crypt_io *io = clone->bi_private;
1849 struct crypt_config *cc = io->cc;
1850 unsigned int rw = bio_data_dir(clone);
1851 blk_status_t error = clone->bi_status;
1852
1853 if (io->ctx.aead_recheck && !error) {
1854 kcryptd_queue_crypt(io);
1855 return;
1856 }
1857
1858 /*
1859 * free the processed pages
1860 */
1861 if (rw == WRITE || io->ctx.aead_recheck)
1862 crypt_free_buffer_pages(cc, clone);
1863
1864 bio_put(clone);
1865
1866 if (rw == READ && !error) {
1867 kcryptd_queue_crypt(io);
1868 return;
1869 }
1870
1871 if (unlikely(error))
1872 io->error = error;
1873
1874 crypt_dec_pending(io);
1875 }
1876
1877 #define CRYPT_MAP_READ_GFP GFP_NOWAIT
1878
kcryptd_io_read(struct dm_crypt_io * io,gfp_t gfp)1879 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1880 {
1881 struct crypt_config *cc = io->cc;
1882 struct bio *clone;
1883
1884 if (io->ctx.aead_recheck) {
1885 if (!(gfp & __GFP_DIRECT_RECLAIM))
1886 return 1;
1887 crypt_inc_pending(io);
1888 clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
1889 if (unlikely(!clone)) {
1890 crypt_dec_pending(io);
1891 return 1;
1892 }
1893 crypt_convert_init(cc, &io->ctx, clone, clone, io->sector);
1894 io->saved_bi_iter = clone->bi_iter;
1895 dm_submit_bio_remap(io->base_bio, clone);
1896 return 0;
1897 }
1898
1899 /*
1900 * We need the original biovec array in order to decrypt the whole bio
1901 * data *afterwards* -- thanks to immutable biovecs we don't need to
1902 * worry about the block layer modifying the biovec array; so leverage
1903 * bio_alloc_clone().
1904 */
1905 clone = bio_alloc_clone(cc->dev->bdev, io->base_bio, gfp, &cc->bs);
1906 if (!clone)
1907 return 1;
1908
1909 clone->bi_iter.bi_sector = cc->start + io->sector;
1910 clone->bi_private = io;
1911 clone->bi_end_io = crypt_endio;
1912
1913 crypt_inc_pending(io);
1914
1915 if (dm_crypt_integrity_io_alloc(io, clone)) {
1916 crypt_dec_pending(io);
1917 bio_put(clone);
1918 return 1;
1919 }
1920
1921 dm_submit_bio_remap(io->base_bio, clone);
1922 return 0;
1923 }
1924
kcryptd_io_read_work(struct work_struct * work)1925 static void kcryptd_io_read_work(struct work_struct *work)
1926 {
1927 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1928
1929 crypt_inc_pending(io);
1930 if (kcryptd_io_read(io, GFP_NOIO))
1931 io->error = BLK_STS_RESOURCE;
1932 crypt_dec_pending(io);
1933 }
1934
kcryptd_queue_read(struct dm_crypt_io * io)1935 static void kcryptd_queue_read(struct dm_crypt_io *io)
1936 {
1937 struct crypt_config *cc = io->cc;
1938
1939 INIT_WORK(&io->work, kcryptd_io_read_work);
1940 queue_work(cc->io_queue, &io->work);
1941 }
1942
kcryptd_io_write(struct dm_crypt_io * io)1943 static void kcryptd_io_write(struct dm_crypt_io *io)
1944 {
1945 struct bio *clone = io->ctx.bio_out;
1946
1947 dm_submit_bio_remap(io->base_bio, clone);
1948 }
1949
1950 #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1951
dmcrypt_write(void * data)1952 static int dmcrypt_write(void *data)
1953 {
1954 struct crypt_config *cc = data;
1955 struct dm_crypt_io *io;
1956
1957 while (1) {
1958 struct rb_root write_tree;
1959 struct blk_plug plug;
1960
1961 spin_lock_irq(&cc->write_thread_lock);
1962 continue_locked:
1963
1964 if (!RB_EMPTY_ROOT(&cc->write_tree))
1965 goto pop_from_list;
1966
1967 set_current_state(TASK_INTERRUPTIBLE);
1968
1969 spin_unlock_irq(&cc->write_thread_lock);
1970
1971 if (unlikely(kthread_should_stop())) {
1972 set_current_state(TASK_RUNNING);
1973 break;
1974 }
1975
1976 schedule();
1977
1978 spin_lock_irq(&cc->write_thread_lock);
1979 goto continue_locked;
1980
1981 pop_from_list:
1982 write_tree = cc->write_tree;
1983 cc->write_tree = RB_ROOT;
1984 spin_unlock_irq(&cc->write_thread_lock);
1985
1986 BUG_ON(rb_parent(write_tree.rb_node));
1987
1988 /*
1989 * Note: we cannot walk the tree here with rb_next because
1990 * the structures may be freed when kcryptd_io_write is called.
1991 */
1992 blk_start_plug(&plug);
1993 do {
1994 io = crypt_io_from_node(rb_first(&write_tree));
1995 rb_erase(&io->rb_node, &write_tree);
1996 kcryptd_io_write(io);
1997 cond_resched();
1998 } while (!RB_EMPTY_ROOT(&write_tree));
1999 blk_finish_plug(&plug);
2000 }
2001 return 0;
2002 }
2003
kcryptd_crypt_write_io_submit(struct dm_crypt_io * io,int async)2004 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
2005 {
2006 struct bio *clone = io->ctx.bio_out;
2007 struct crypt_config *cc = io->cc;
2008 unsigned long flags;
2009 sector_t sector;
2010 struct rb_node **rbp, *parent;
2011
2012 if (unlikely(io->error)) {
2013 crypt_free_buffer_pages(cc, clone);
2014 bio_put(clone);
2015 crypt_dec_pending(io);
2016 return;
2017 }
2018
2019 /* crypt_convert should have filled the clone bio */
2020 BUG_ON(io->ctx.iter_out.bi_size);
2021
2022 if ((likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) ||
2023 test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags)) {
2024 dm_submit_bio_remap(io->base_bio, clone);
2025 return;
2026 }
2027
2028 spin_lock_irqsave(&cc->write_thread_lock, flags);
2029 if (RB_EMPTY_ROOT(&cc->write_tree))
2030 wake_up_process(cc->write_thread);
2031 rbp = &cc->write_tree.rb_node;
2032 parent = NULL;
2033 sector = io->sector;
2034 while (*rbp) {
2035 parent = *rbp;
2036 if (sector < crypt_io_from_node(parent)->sector)
2037 rbp = &(*rbp)->rb_left;
2038 else
2039 rbp = &(*rbp)->rb_right;
2040 }
2041 rb_link_node(&io->rb_node, parent, rbp);
2042 rb_insert_color(&io->rb_node, &cc->write_tree);
2043 spin_unlock_irqrestore(&cc->write_thread_lock, flags);
2044 }
2045
kcryptd_crypt_write_inline(struct crypt_config * cc,struct convert_context * ctx)2046 static bool kcryptd_crypt_write_inline(struct crypt_config *cc,
2047 struct convert_context *ctx)
2048
2049 {
2050 if (!test_bit(DM_CRYPT_WRITE_INLINE, &cc->flags))
2051 return false;
2052
2053 /*
2054 * Note: zone append writes (REQ_OP_ZONE_APPEND) do not have ordering
2055 * constraints so they do not need to be issued inline by
2056 * kcryptd_crypt_write_convert().
2057 */
2058 switch (bio_op(ctx->bio_in)) {
2059 case REQ_OP_WRITE:
2060 case REQ_OP_WRITE_ZEROES:
2061 return true;
2062 default:
2063 return false;
2064 }
2065 }
2066
kcryptd_crypt_write_continue(struct work_struct * work)2067 static void kcryptd_crypt_write_continue(struct work_struct *work)
2068 {
2069 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2070 struct crypt_config *cc = io->cc;
2071 struct convert_context *ctx = &io->ctx;
2072 int crypt_finished;
2073 blk_status_t r;
2074
2075 wait_for_completion(&ctx->restart);
2076 reinit_completion(&ctx->restart);
2077
2078 r = crypt_convert(cc, &io->ctx, false, false);
2079 if (r)
2080 io->error = r;
2081 crypt_finished = atomic_dec_and_test(&ctx->cc_pending);
2082 if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
2083 /* Wait for completion signaled by kcryptd_async_done() */
2084 wait_for_completion(&ctx->restart);
2085 crypt_finished = 1;
2086 }
2087
2088 /* Encryption was already finished, submit io now */
2089 if (crypt_finished)
2090 kcryptd_crypt_write_io_submit(io, 0);
2091
2092 crypt_dec_pending(io);
2093 }
2094
kcryptd_crypt_write_convert(struct dm_crypt_io * io)2095 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
2096 {
2097 struct crypt_config *cc = io->cc;
2098 struct convert_context *ctx = &io->ctx;
2099 struct bio *clone;
2100 int crypt_finished;
2101 blk_status_t r;
2102
2103 /*
2104 * Prevent io from disappearing until this function completes.
2105 */
2106 crypt_inc_pending(io);
2107 crypt_convert_init(cc, ctx, NULL, io->base_bio, io->sector);
2108
2109 clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
2110 if (unlikely(!clone)) {
2111 io->error = BLK_STS_IOERR;
2112 goto dec;
2113 }
2114
2115 io->ctx.bio_out = clone;
2116 io->ctx.iter_out = clone->bi_iter;
2117
2118 if (crypt_integrity_aead(cc)) {
2119 bio_copy_data(clone, io->base_bio);
2120 io->ctx.bio_in = clone;
2121 io->ctx.iter_in = clone->bi_iter;
2122 }
2123
2124 crypt_inc_pending(io);
2125 r = crypt_convert(cc, ctx,
2126 test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags), true);
2127 /*
2128 * Crypto API backlogged the request, because its queue was full
2129 * and we're in softirq context, so continue from a workqueue
2130 * (TODO: is it actually possible to be in softirq in the write path?)
2131 */
2132 if (r == BLK_STS_DEV_RESOURCE) {
2133 INIT_WORK(&io->work, kcryptd_crypt_write_continue);
2134 queue_work(cc->crypt_queue, &io->work);
2135 return;
2136 }
2137 if (r)
2138 io->error = r;
2139 crypt_finished = atomic_dec_and_test(&ctx->cc_pending);
2140 if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
2141 /* Wait for completion signaled by kcryptd_async_done() */
2142 wait_for_completion(&ctx->restart);
2143 crypt_finished = 1;
2144 }
2145
2146 /* Encryption was already finished, submit io now */
2147 if (crypt_finished)
2148 kcryptd_crypt_write_io_submit(io, 0);
2149
2150 dec:
2151 crypt_dec_pending(io);
2152 }
2153
kcryptd_crypt_read_done(struct dm_crypt_io * io)2154 static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
2155 {
2156 if (io->ctx.aead_recheck) {
2157 if (!io->error) {
2158 io->ctx.bio_in->bi_iter = io->saved_bi_iter;
2159 bio_copy_data(io->base_bio, io->ctx.bio_in);
2160 }
2161 crypt_free_buffer_pages(io->cc, io->ctx.bio_in);
2162 bio_put(io->ctx.bio_in);
2163 }
2164 crypt_dec_pending(io);
2165 }
2166
kcryptd_crypt_read_continue(struct work_struct * work)2167 static void kcryptd_crypt_read_continue(struct work_struct *work)
2168 {
2169 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2170 struct crypt_config *cc = io->cc;
2171 blk_status_t r;
2172
2173 wait_for_completion(&io->ctx.restart);
2174 reinit_completion(&io->ctx.restart);
2175
2176 r = crypt_convert(cc, &io->ctx, false, false);
2177 if (r)
2178 io->error = r;
2179
2180 if (atomic_dec_and_test(&io->ctx.cc_pending))
2181 kcryptd_crypt_read_done(io);
2182
2183 crypt_dec_pending(io);
2184 }
2185
kcryptd_crypt_read_convert(struct dm_crypt_io * io)2186 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
2187 {
2188 struct crypt_config *cc = io->cc;
2189 blk_status_t r;
2190
2191 crypt_inc_pending(io);
2192
2193 if (io->ctx.aead_recheck) {
2194 r = crypt_convert(cc, &io->ctx,
2195 test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), true);
2196 } else {
2197 crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
2198 io->sector);
2199
2200 r = crypt_convert(cc, &io->ctx,
2201 test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), true);
2202 }
2203 /*
2204 * Crypto API backlogged the request, because its queue was full
2205 * and we're in softirq context, so continue from a workqueue
2206 */
2207 if (r == BLK_STS_DEV_RESOURCE) {
2208 INIT_WORK(&io->work, kcryptd_crypt_read_continue);
2209 queue_work(cc->crypt_queue, &io->work);
2210 return;
2211 }
2212 if (r)
2213 io->error = r;
2214
2215 if (atomic_dec_and_test(&io->ctx.cc_pending))
2216 kcryptd_crypt_read_done(io);
2217
2218 crypt_dec_pending(io);
2219 }
2220
kcryptd_async_done(void * data,int error)2221 static void kcryptd_async_done(void *data, int error)
2222 {
2223 struct dm_crypt_request *dmreq = data;
2224 struct convert_context *ctx = dmreq->ctx;
2225 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
2226 struct crypt_config *cc = io->cc;
2227
2228 /*
2229 * A request from crypto driver backlog is going to be processed now,
2230 * finish the completion and continue in crypt_convert().
2231 * (Callback will be called for the second time for this request.)
2232 */
2233 if (error == -EINPROGRESS) {
2234 complete(&ctx->restart);
2235 return;
2236 }
2237
2238 if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
2239 error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq);
2240
2241 if (error == -EBADMSG) {
2242 sector_t s = le64_to_cpu(*org_sector_of_dmreq(cc, dmreq));
2243
2244 ctx->aead_failed = true;
2245 if (ctx->aead_recheck) {
2246 DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu",
2247 ctx->bio_in->bi_bdev, s);
2248 dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead",
2249 ctx->bio_in, s, 0);
2250 }
2251 io->error = BLK_STS_PROTECTION;
2252 } else if (error < 0)
2253 io->error = BLK_STS_IOERR;
2254
2255 crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
2256
2257 if (!atomic_dec_and_test(&ctx->cc_pending))
2258 return;
2259
2260 /*
2261 * The request is fully completed: for inline writes, let
2262 * kcryptd_crypt_write_convert() do the IO submission.
2263 */
2264 if (bio_data_dir(io->base_bio) == READ) {
2265 kcryptd_crypt_read_done(io);
2266 return;
2267 }
2268
2269 if (kcryptd_crypt_write_inline(cc, ctx)) {
2270 complete(&ctx->restart);
2271 return;
2272 }
2273
2274 kcryptd_crypt_write_io_submit(io, 1);
2275 }
2276
kcryptd_crypt(struct work_struct * work)2277 static void kcryptd_crypt(struct work_struct *work)
2278 {
2279 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2280
2281 if (bio_data_dir(io->base_bio) == READ)
2282 kcryptd_crypt_read_convert(io);
2283 else
2284 kcryptd_crypt_write_convert(io);
2285 }
2286
kcryptd_queue_crypt(struct dm_crypt_io * io)2287 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
2288 {
2289 struct crypt_config *cc = io->cc;
2290
2291 if ((bio_data_dir(io->base_bio) == READ && test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags)) ||
2292 (bio_data_dir(io->base_bio) == WRITE && test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))) {
2293 /*
2294 * in_hardirq(): Crypto API's skcipher_walk_first() refuses to work in hard IRQ context.
2295 * irqs_disabled(): the kernel may run some IO completion from the idle thread, but
2296 * it is being executed with irqs disabled.
2297 */
2298 if (in_hardirq() || irqs_disabled()) {
2299 INIT_WORK(&io->work, kcryptd_crypt);
2300 queue_work(system_bh_wq, &io->work);
2301 return;
2302 } else {
2303 kcryptd_crypt(&io->work);
2304 return;
2305 }
2306 }
2307
2308 INIT_WORK(&io->work, kcryptd_crypt);
2309 queue_work(cc->crypt_queue, &io->work);
2310 }
2311
crypt_free_tfms_aead(struct crypt_config * cc)2312 static void crypt_free_tfms_aead(struct crypt_config *cc)
2313 {
2314 if (!cc->cipher_tfm.tfms_aead)
2315 return;
2316
2317 if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
2318 crypto_free_aead(cc->cipher_tfm.tfms_aead[0]);
2319 cc->cipher_tfm.tfms_aead[0] = NULL;
2320 }
2321
2322 kfree(cc->cipher_tfm.tfms_aead);
2323 cc->cipher_tfm.tfms_aead = NULL;
2324 }
2325
crypt_free_tfms_skcipher(struct crypt_config * cc)2326 static void crypt_free_tfms_skcipher(struct crypt_config *cc)
2327 {
2328 unsigned int i;
2329
2330 if (!cc->cipher_tfm.tfms)
2331 return;
2332
2333 for (i = 0; i < cc->tfms_count; i++)
2334 if (cc->cipher_tfm.tfms[i] && !IS_ERR(cc->cipher_tfm.tfms[i])) {
2335 crypto_free_skcipher(cc->cipher_tfm.tfms[i]);
2336 cc->cipher_tfm.tfms[i] = NULL;
2337 }
2338
2339 kfree(cc->cipher_tfm.tfms);
2340 cc->cipher_tfm.tfms = NULL;
2341 }
2342
crypt_free_tfms(struct crypt_config * cc)2343 static void crypt_free_tfms(struct crypt_config *cc)
2344 {
2345 if (crypt_integrity_aead(cc))
2346 crypt_free_tfms_aead(cc);
2347 else
2348 crypt_free_tfms_skcipher(cc);
2349 }
2350
crypt_alloc_tfms_skcipher(struct crypt_config * cc,char * ciphermode)2351 static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode)
2352 {
2353 unsigned int i;
2354 int err;
2355
2356 cc->cipher_tfm.tfms = kcalloc(cc->tfms_count,
2357 sizeof(struct crypto_skcipher *),
2358 GFP_KERNEL);
2359 if (!cc->cipher_tfm.tfms)
2360 return -ENOMEM;
2361
2362 for (i = 0; i < cc->tfms_count; i++) {
2363 cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(ciphermode, 0,
2364 CRYPTO_ALG_ALLOCATES_MEMORY);
2365 if (IS_ERR(cc->cipher_tfm.tfms[i])) {
2366 err = PTR_ERR(cc->cipher_tfm.tfms[i]);
2367 crypt_free_tfms(cc);
2368 return err;
2369 }
2370 }
2371
2372 /*
2373 * dm-crypt performance can vary greatly depending on which crypto
2374 * algorithm implementation is used. Help people debug performance
2375 * problems by logging the ->cra_driver_name.
2376 */
2377 DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2378 crypto_skcipher_alg(any_tfm(cc))->base.cra_driver_name);
2379 return 0;
2380 }
2381
crypt_alloc_tfms_aead(struct crypt_config * cc,char * ciphermode)2382 static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode)
2383 {
2384 int err;
2385
2386 cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL);
2387 if (!cc->cipher_tfm.tfms)
2388 return -ENOMEM;
2389
2390 cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(ciphermode, 0,
2391 CRYPTO_ALG_ALLOCATES_MEMORY);
2392 if (IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
2393 err = PTR_ERR(cc->cipher_tfm.tfms_aead[0]);
2394 crypt_free_tfms(cc);
2395 return err;
2396 }
2397
2398 DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2399 crypto_aead_alg(any_tfm_aead(cc))->base.cra_driver_name);
2400 return 0;
2401 }
2402
crypt_alloc_tfms(struct crypt_config * cc,char * ciphermode)2403 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
2404 {
2405 if (crypt_integrity_aead(cc))
2406 return crypt_alloc_tfms_aead(cc, ciphermode);
2407 else
2408 return crypt_alloc_tfms_skcipher(cc, ciphermode);
2409 }
2410
crypt_subkey_size(struct crypt_config * cc)2411 static unsigned int crypt_subkey_size(struct crypt_config *cc)
2412 {
2413 return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
2414 }
2415
crypt_authenckey_size(struct crypt_config * cc)2416 static unsigned int crypt_authenckey_size(struct crypt_config *cc)
2417 {
2418 return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param));
2419 }
2420
2421 /*
2422 * If AEAD is composed like authenc(hmac(sha256),xts(aes)),
2423 * the key must be for some reason in special format.
2424 * This funcion converts cc->key to this special format.
2425 */
crypt_copy_authenckey(char * p,const void * key,unsigned int enckeylen,unsigned int authkeylen)2426 static void crypt_copy_authenckey(char *p, const void *key,
2427 unsigned int enckeylen, unsigned int authkeylen)
2428 {
2429 struct crypto_authenc_key_param *param;
2430 struct rtattr *rta;
2431
2432 rta = (struct rtattr *)p;
2433 param = RTA_DATA(rta);
2434 param->enckeylen = cpu_to_be32(enckeylen);
2435 rta->rta_len = RTA_LENGTH(sizeof(*param));
2436 rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
2437 p += RTA_SPACE(sizeof(*param));
2438 memcpy(p, key + enckeylen, authkeylen);
2439 p += authkeylen;
2440 memcpy(p, key, enckeylen);
2441 }
2442
crypt_setkey(struct crypt_config * cc)2443 static int crypt_setkey(struct crypt_config *cc)
2444 {
2445 unsigned int subkey_size;
2446 int err = 0, i, r;
2447
2448 /* Ignore extra keys (which are used for IV etc) */
2449 subkey_size = crypt_subkey_size(cc);
2450
2451 if (crypt_integrity_hmac(cc)) {
2452 if (subkey_size < cc->key_mac_size)
2453 return -EINVAL;
2454
2455 crypt_copy_authenckey(cc->authenc_key, cc->key,
2456 subkey_size - cc->key_mac_size,
2457 cc->key_mac_size);
2458 }
2459
2460 for (i = 0; i < cc->tfms_count; i++) {
2461 if (crypt_integrity_hmac(cc))
2462 r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2463 cc->authenc_key, crypt_authenckey_size(cc));
2464 else if (crypt_integrity_aead(cc))
2465 r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2466 cc->key + (i * subkey_size),
2467 subkey_size);
2468 else
2469 r = crypto_skcipher_setkey(cc->cipher_tfm.tfms[i],
2470 cc->key + (i * subkey_size),
2471 subkey_size);
2472 if (r)
2473 err = r;
2474 }
2475
2476 if (crypt_integrity_hmac(cc))
2477 memzero_explicit(cc->authenc_key, crypt_authenckey_size(cc));
2478
2479 return err;
2480 }
2481
2482 #ifdef CONFIG_KEYS
2483
contains_whitespace(const char * str)2484 static bool contains_whitespace(const char *str)
2485 {
2486 while (*str)
2487 if (isspace(*str++))
2488 return true;
2489 return false;
2490 }
2491
set_key_user(struct crypt_config * cc,struct key * key)2492 static int set_key_user(struct crypt_config *cc, struct key *key)
2493 {
2494 const struct user_key_payload *ukp;
2495
2496 ukp = user_key_payload_locked(key);
2497 if (!ukp)
2498 return -EKEYREVOKED;
2499
2500 if (cc->key_size != ukp->datalen)
2501 return -EINVAL;
2502
2503 memcpy(cc->key, ukp->data, cc->key_size);
2504
2505 return 0;
2506 }
2507
set_key_encrypted(struct crypt_config * cc,struct key * key)2508 static int set_key_encrypted(struct crypt_config *cc, struct key *key)
2509 {
2510 const struct encrypted_key_payload *ekp;
2511
2512 ekp = key->payload.data[0];
2513 if (!ekp)
2514 return -EKEYREVOKED;
2515
2516 if (cc->key_size != ekp->decrypted_datalen)
2517 return -EINVAL;
2518
2519 memcpy(cc->key, ekp->decrypted_data, cc->key_size);
2520
2521 return 0;
2522 }
2523
set_key_trusted(struct crypt_config * cc,struct key * key)2524 static int set_key_trusted(struct crypt_config *cc, struct key *key)
2525 {
2526 const struct trusted_key_payload *tkp;
2527
2528 tkp = key->payload.data[0];
2529 if (!tkp)
2530 return -EKEYREVOKED;
2531
2532 if (cc->key_size != tkp->key_len)
2533 return -EINVAL;
2534
2535 memcpy(cc->key, tkp->key, cc->key_size);
2536
2537 return 0;
2538 }
2539
crypt_set_keyring_key(struct crypt_config * cc,const char * key_string)2540 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2541 {
2542 char *new_key_string, *key_desc;
2543 int ret;
2544 struct key_type *type;
2545 struct key *key;
2546 int (*set_key)(struct crypt_config *cc, struct key *key);
2547
2548 /*
2549 * Reject key_string with whitespace. dm core currently lacks code for
2550 * proper whitespace escaping in arguments on DM_TABLE_STATUS path.
2551 */
2552 if (contains_whitespace(key_string)) {
2553 DMERR("whitespace chars not allowed in key string");
2554 return -EINVAL;
2555 }
2556
2557 /* look for next ':' separating key_type from key_description */
2558 key_desc = strchr(key_string, ':');
2559 if (!key_desc || key_desc == key_string || !strlen(key_desc + 1))
2560 return -EINVAL;
2561
2562 if (!strncmp(key_string, "logon:", key_desc - key_string + 1)) {
2563 type = &key_type_logon;
2564 set_key = set_key_user;
2565 } else if (!strncmp(key_string, "user:", key_desc - key_string + 1)) {
2566 type = &key_type_user;
2567 set_key = set_key_user;
2568 } else if (IS_ENABLED(CONFIG_ENCRYPTED_KEYS) &&
2569 !strncmp(key_string, "encrypted:", key_desc - key_string + 1)) {
2570 type = &key_type_encrypted;
2571 set_key = set_key_encrypted;
2572 } else if (IS_ENABLED(CONFIG_TRUSTED_KEYS) &&
2573 !strncmp(key_string, "trusted:", key_desc - key_string + 1)) {
2574 type = &key_type_trusted;
2575 set_key = set_key_trusted;
2576 } else {
2577 return -EINVAL;
2578 }
2579
2580 new_key_string = kstrdup(key_string, GFP_KERNEL);
2581 if (!new_key_string)
2582 return -ENOMEM;
2583
2584 key = request_key(type, key_desc + 1, NULL);
2585 if (IS_ERR(key)) {
2586 ret = PTR_ERR(key);
2587 goto free_new_key_string;
2588 }
2589
2590 down_read(&key->sem);
2591 ret = set_key(cc, key);
2592 up_read(&key->sem);
2593 key_put(key);
2594 if (ret < 0)
2595 goto free_new_key_string;
2596
2597 /* clear the flag since following operations may invalidate previously valid key */
2598 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2599
2600 ret = crypt_setkey(cc);
2601 if (ret)
2602 goto free_new_key_string;
2603
2604 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2605 kfree_sensitive(cc->key_string);
2606 cc->key_string = new_key_string;
2607 return 0;
2608
2609 free_new_key_string:
2610 kfree_sensitive(new_key_string);
2611 return ret;
2612 }
2613
get_key_size(char ** key_string)2614 static int get_key_size(char **key_string)
2615 {
2616 char *colon, dummy;
2617 int ret;
2618
2619 if (*key_string[0] != ':')
2620 return strlen(*key_string) >> 1;
2621
2622 /* look for next ':' in key string */
2623 colon = strpbrk(*key_string + 1, ":");
2624 if (!colon)
2625 return -EINVAL;
2626
2627 if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':')
2628 return -EINVAL;
2629
2630 *key_string = colon;
2631
2632 /* remaining key string should be :<logon|user>:<key_desc> */
2633
2634 return ret;
2635 }
2636
2637 #else
2638
crypt_set_keyring_key(struct crypt_config * cc,const char * key_string)2639 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2640 {
2641 return -EINVAL;
2642 }
2643
get_key_size(char ** key_string)2644 static int get_key_size(char **key_string)
2645 {
2646 return (*key_string[0] == ':') ? -EINVAL : (int)(strlen(*key_string) >> 1);
2647 }
2648
2649 #endif /* CONFIG_KEYS */
2650
crypt_set_key(struct crypt_config * cc,char * key)2651 static int crypt_set_key(struct crypt_config *cc, char *key)
2652 {
2653 int r = -EINVAL;
2654 int key_string_len = strlen(key);
2655
2656 /* Hyphen (which gives a key_size of zero) means there is no key. */
2657 if (!cc->key_size && strcmp(key, "-"))
2658 goto out;
2659
2660 /* ':' means the key is in kernel keyring, short-circuit normal key processing */
2661 if (key[0] == ':') {
2662 r = crypt_set_keyring_key(cc, key + 1);
2663 goto out;
2664 }
2665
2666 /* clear the flag since following operations may invalidate previously valid key */
2667 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2668
2669 /* wipe references to any kernel keyring key */
2670 kfree_sensitive(cc->key_string);
2671 cc->key_string = NULL;
2672
2673 /* Decode key from its hex representation. */
2674 if (cc->key_size && hex2bin(cc->key, key, cc->key_size) < 0)
2675 goto out;
2676
2677 r = crypt_setkey(cc);
2678 if (!r)
2679 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2680
2681 out:
2682 /* Hex key string not needed after here, so wipe it. */
2683 memset(key, '0', key_string_len);
2684
2685 return r;
2686 }
2687
crypt_wipe_key(struct crypt_config * cc)2688 static int crypt_wipe_key(struct crypt_config *cc)
2689 {
2690 int r;
2691
2692 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2693 get_random_bytes(&cc->key, cc->key_size);
2694
2695 /* Wipe IV private keys */
2696 if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2697 r = cc->iv_gen_ops->wipe(cc);
2698 if (r)
2699 return r;
2700 }
2701
2702 kfree_sensitive(cc->key_string);
2703 cc->key_string = NULL;
2704 r = crypt_setkey(cc);
2705 memset(&cc->key, 0, cc->key_size * sizeof(u8));
2706
2707 return r;
2708 }
2709
crypt_calculate_pages_per_client(void)2710 static void crypt_calculate_pages_per_client(void)
2711 {
2712 unsigned long pages = (totalram_pages() - totalhigh_pages()) * DM_CRYPT_MEMORY_PERCENT / 100;
2713
2714 if (!dm_crypt_clients_n)
2715 return;
2716
2717 pages /= dm_crypt_clients_n;
2718 if (pages < DM_CRYPT_MIN_PAGES_PER_CLIENT)
2719 pages = DM_CRYPT_MIN_PAGES_PER_CLIENT;
2720 dm_crypt_pages_per_client = pages;
2721 }
2722
crypt_page_alloc(gfp_t gfp_mask,void * pool_data)2723 static void *crypt_page_alloc(gfp_t gfp_mask, void *pool_data)
2724 {
2725 struct crypt_config *cc = pool_data;
2726 struct page *page;
2727
2728 /*
2729 * Note, percpu_counter_read_positive() may over (and under) estimate
2730 * the current usage by at most (batch - 1) * num_online_cpus() pages,
2731 * but avoids potential spinlock contention of an exact result.
2732 */
2733 if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) >= dm_crypt_pages_per_client) &&
2734 likely(gfp_mask & __GFP_NORETRY))
2735 return NULL;
2736
2737 page = alloc_page(gfp_mask);
2738 if (likely(page != NULL))
2739 percpu_counter_add(&cc->n_allocated_pages, 1);
2740
2741 return page;
2742 }
2743
crypt_page_free(void * page,void * pool_data)2744 static void crypt_page_free(void *page, void *pool_data)
2745 {
2746 struct crypt_config *cc = pool_data;
2747
2748 __free_page(page);
2749 percpu_counter_sub(&cc->n_allocated_pages, 1);
2750 }
2751
crypt_dtr(struct dm_target * ti)2752 static void crypt_dtr(struct dm_target *ti)
2753 {
2754 struct crypt_config *cc = ti->private;
2755
2756 ti->private = NULL;
2757
2758 if (!cc)
2759 return;
2760
2761 if (cc->write_thread)
2762 kthread_stop(cc->write_thread);
2763
2764 if (cc->io_queue)
2765 destroy_workqueue(cc->io_queue);
2766 if (cc->crypt_queue)
2767 destroy_workqueue(cc->crypt_queue);
2768
2769 if (cc->workqueue_id)
2770 ida_free(&workqueue_ida, cc->workqueue_id);
2771
2772 crypt_free_tfms(cc);
2773
2774 bioset_exit(&cc->bs);
2775
2776 mempool_exit(&cc->page_pool);
2777 mempool_exit(&cc->req_pool);
2778 mempool_exit(&cc->tag_pool);
2779
2780 WARN_ON(percpu_counter_sum(&cc->n_allocated_pages) != 0);
2781 percpu_counter_destroy(&cc->n_allocated_pages);
2782
2783 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
2784 cc->iv_gen_ops->dtr(cc);
2785
2786 if (cc->dev)
2787 dm_put_device(ti, cc->dev);
2788
2789 kfree_sensitive(cc->cipher_string);
2790 kfree_sensitive(cc->key_string);
2791 kfree_sensitive(cc->cipher_auth);
2792 kfree_sensitive(cc->authenc_key);
2793
2794 mutex_destroy(&cc->bio_alloc_lock);
2795
2796 /* Must zero key material before freeing */
2797 kfree_sensitive(cc);
2798
2799 spin_lock(&dm_crypt_clients_lock);
2800 WARN_ON(!dm_crypt_clients_n);
2801 dm_crypt_clients_n--;
2802 crypt_calculate_pages_per_client();
2803 spin_unlock(&dm_crypt_clients_lock);
2804
2805 dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
2806 }
2807
crypt_ctr_ivmode(struct dm_target * ti,const char * ivmode)2808 static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode)
2809 {
2810 struct crypt_config *cc = ti->private;
2811
2812 if (crypt_integrity_aead(cc))
2813 cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2814 else
2815 cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2816
2817 if (cc->iv_size)
2818 /* at least a 64 bit sector number should fit in our buffer */
2819 cc->iv_size = max(cc->iv_size,
2820 (unsigned int)(sizeof(u64) / sizeof(u8)));
2821 else if (ivmode) {
2822 DMWARN("Selected cipher does not support IVs");
2823 ivmode = NULL;
2824 }
2825
2826 /* Choose ivmode, see comments at iv code. */
2827 if (ivmode == NULL)
2828 cc->iv_gen_ops = NULL;
2829 else if (strcmp(ivmode, "plain") == 0)
2830 cc->iv_gen_ops = &crypt_iv_plain_ops;
2831 else if (strcmp(ivmode, "plain64") == 0)
2832 cc->iv_gen_ops = &crypt_iv_plain64_ops;
2833 else if (strcmp(ivmode, "plain64be") == 0)
2834 cc->iv_gen_ops = &crypt_iv_plain64be_ops;
2835 else if (strcmp(ivmode, "essiv") == 0)
2836 cc->iv_gen_ops = &crypt_iv_essiv_ops;
2837 else if (strcmp(ivmode, "benbi") == 0)
2838 cc->iv_gen_ops = &crypt_iv_benbi_ops;
2839 else if (strcmp(ivmode, "null") == 0)
2840 cc->iv_gen_ops = &crypt_iv_null_ops;
2841 else if (strcmp(ivmode, "eboiv") == 0)
2842 cc->iv_gen_ops = &crypt_iv_eboiv_ops;
2843 else if (strcmp(ivmode, "elephant") == 0) {
2844 cc->iv_gen_ops = &crypt_iv_elephant_ops;
2845 cc->key_parts = 2;
2846 cc->key_extra_size = cc->key_size / 2;
2847 if (cc->key_extra_size > ELEPHANT_MAX_KEY_SIZE)
2848 return -EINVAL;
2849 set_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags);
2850 } else if (strcmp(ivmode, "lmk") == 0) {
2851 cc->iv_gen_ops = &crypt_iv_lmk_ops;
2852 /*
2853 * Version 2 and 3 is recognised according
2854 * to length of provided multi-key string.
2855 * If present (version 3), last key is used as IV seed.
2856 * All keys (including IV seed) are always the same size.
2857 */
2858 if (cc->key_size % cc->key_parts) {
2859 cc->key_parts++;
2860 cc->key_extra_size = cc->key_size / cc->key_parts;
2861 }
2862 } else if (strcmp(ivmode, "tcw") == 0) {
2863 cc->iv_gen_ops = &crypt_iv_tcw_ops;
2864 cc->key_parts += 2; /* IV + whitening */
2865 cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
2866 } else if (strcmp(ivmode, "random") == 0) {
2867 cc->iv_gen_ops = &crypt_iv_random_ops;
2868 /* Need storage space in integrity fields. */
2869 cc->integrity_iv_size = cc->iv_size;
2870 } else {
2871 ti->error = "Invalid IV mode";
2872 return -EINVAL;
2873 }
2874
2875 return 0;
2876 }
2877
2878 /*
2879 * Workaround to parse HMAC algorithm from AEAD crypto API spec.
2880 * The HMAC is needed to calculate tag size (HMAC digest size).
2881 * This should be probably done by crypto-api calls (once available...)
2882 */
crypt_ctr_auth_cipher(struct crypt_config * cc,char * cipher_api)2883 static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api)
2884 {
2885 char *start, *end, *mac_alg = NULL;
2886 struct crypto_ahash *mac;
2887
2888 if (!strstarts(cipher_api, "authenc("))
2889 return 0;
2890
2891 start = strchr(cipher_api, '(');
2892 end = strchr(cipher_api, ',');
2893 if (!start || !end || ++start > end)
2894 return -EINVAL;
2895
2896 mac_alg = kmemdup_nul(start, end - start, GFP_KERNEL);
2897 if (!mac_alg)
2898 return -ENOMEM;
2899
2900 mac = crypto_alloc_ahash(mac_alg, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
2901 kfree(mac_alg);
2902
2903 if (IS_ERR(mac))
2904 return PTR_ERR(mac);
2905
2906 if (!test_bit(CRYPT_KEY_MAC_SIZE_SET, &cc->cipher_flags))
2907 cc->key_mac_size = crypto_ahash_digestsize(mac);
2908 crypto_free_ahash(mac);
2909
2910 cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL);
2911 if (!cc->authenc_key)
2912 return -ENOMEM;
2913
2914 return 0;
2915 }
2916
crypt_ctr_cipher_new(struct dm_target * ti,char * cipher_in,char * key,char ** ivmode,char ** ivopts)2917 static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key,
2918 char **ivmode, char **ivopts)
2919 {
2920 struct crypt_config *cc = ti->private;
2921 char *tmp, *cipher_api, buf[CRYPTO_MAX_ALG_NAME];
2922 int ret = -EINVAL;
2923
2924 cc->tfms_count = 1;
2925
2926 /*
2927 * New format (capi: prefix)
2928 * capi:cipher_api_spec-iv:ivopts
2929 */
2930 tmp = &cipher_in[strlen("capi:")];
2931
2932 /* Separate IV options if present, it can contain another '-' in hash name */
2933 *ivopts = strrchr(tmp, ':');
2934 if (*ivopts) {
2935 **ivopts = '\0';
2936 (*ivopts)++;
2937 }
2938 /* Parse IV mode */
2939 *ivmode = strrchr(tmp, '-');
2940 if (*ivmode) {
2941 **ivmode = '\0';
2942 (*ivmode)++;
2943 }
2944 /* The rest is crypto API spec */
2945 cipher_api = tmp;
2946
2947 /* Alloc AEAD, can be used only in new format. */
2948 if (crypt_integrity_aead(cc)) {
2949 ret = crypt_ctr_auth_cipher(cc, cipher_api);
2950 if (ret < 0) {
2951 ti->error = "Invalid AEAD cipher spec";
2952 return ret;
2953 }
2954 }
2955
2956 if (*ivmode && !strcmp(*ivmode, "lmk"))
2957 cc->tfms_count = 64;
2958
2959 if (*ivmode && !strcmp(*ivmode, "essiv")) {
2960 if (!*ivopts) {
2961 ti->error = "Digest algorithm missing for ESSIV mode";
2962 return -EINVAL;
2963 }
2964 ret = snprintf(buf, CRYPTO_MAX_ALG_NAME, "essiv(%s,%s)",
2965 cipher_api, *ivopts);
2966 if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
2967 ti->error = "Cannot allocate cipher string";
2968 return -ENOMEM;
2969 }
2970 cipher_api = buf;
2971 }
2972
2973 cc->key_parts = cc->tfms_count;
2974
2975 /* Allocate cipher */
2976 ret = crypt_alloc_tfms(cc, cipher_api);
2977 if (ret < 0) {
2978 ti->error = "Error allocating crypto tfm";
2979 return ret;
2980 }
2981
2982 if (crypt_integrity_aead(cc))
2983 cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2984 else
2985 cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2986
2987 return 0;
2988 }
2989
crypt_ctr_cipher_old(struct dm_target * ti,char * cipher_in,char * key,char ** ivmode,char ** ivopts)2990 static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key,
2991 char **ivmode, char **ivopts)
2992 {
2993 struct crypt_config *cc = ti->private;
2994 char *tmp, *cipher, *chainmode, *keycount;
2995 char *cipher_api = NULL;
2996 int ret = -EINVAL;
2997 char dummy;
2998
2999 if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) {
3000 ti->error = "Bad cipher specification";
3001 return -EINVAL;
3002 }
3003
3004 /*
3005 * Legacy dm-crypt cipher specification
3006 * cipher[:keycount]-mode-iv:ivopts
3007 */
3008 tmp = cipher_in;
3009 keycount = strsep(&tmp, "-");
3010 cipher = strsep(&keycount, ":");
3011
3012 if (!keycount)
3013 cc->tfms_count = 1;
3014 else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
3015 !is_power_of_2(cc->tfms_count)) {
3016 ti->error = "Bad cipher key count specification";
3017 return -EINVAL;
3018 }
3019 cc->key_parts = cc->tfms_count;
3020
3021 chainmode = strsep(&tmp, "-");
3022 *ivmode = strsep(&tmp, ":");
3023 *ivopts = tmp;
3024
3025 /*
3026 * For compatibility with the original dm-crypt mapping format, if
3027 * only the cipher name is supplied, use cbc-plain.
3028 */
3029 if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) {
3030 chainmode = "cbc";
3031 *ivmode = "plain";
3032 }
3033
3034 if (strcmp(chainmode, "ecb") && !*ivmode) {
3035 ti->error = "IV mechanism required";
3036 return -EINVAL;
3037 }
3038
3039 cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
3040 if (!cipher_api)
3041 goto bad_mem;
3042
3043 if (*ivmode && !strcmp(*ivmode, "essiv")) {
3044 if (!*ivopts) {
3045 ti->error = "Digest algorithm missing for ESSIV mode";
3046 kfree(cipher_api);
3047 return -EINVAL;
3048 }
3049 ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
3050 "essiv(%s(%s),%s)", chainmode, cipher, *ivopts);
3051 } else {
3052 ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
3053 "%s(%s)", chainmode, cipher);
3054 }
3055 if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
3056 kfree(cipher_api);
3057 goto bad_mem;
3058 }
3059
3060 /* Allocate cipher */
3061 ret = crypt_alloc_tfms(cc, cipher_api);
3062 if (ret < 0) {
3063 ti->error = "Error allocating crypto tfm";
3064 kfree(cipher_api);
3065 return ret;
3066 }
3067 kfree(cipher_api);
3068
3069 return 0;
3070 bad_mem:
3071 ti->error = "Cannot allocate cipher strings";
3072 return -ENOMEM;
3073 }
3074
crypt_ctr_cipher(struct dm_target * ti,char * cipher_in,char * key)3075 static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key)
3076 {
3077 struct crypt_config *cc = ti->private;
3078 char *ivmode = NULL, *ivopts = NULL;
3079 int ret;
3080
3081 cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
3082 if (!cc->cipher_string) {
3083 ti->error = "Cannot allocate cipher strings";
3084 return -ENOMEM;
3085 }
3086
3087 if (strstarts(cipher_in, "capi:"))
3088 ret = crypt_ctr_cipher_new(ti, cipher_in, key, &ivmode, &ivopts);
3089 else
3090 ret = crypt_ctr_cipher_old(ti, cipher_in, key, &ivmode, &ivopts);
3091 if (ret)
3092 return ret;
3093
3094 /* Initialize IV */
3095 ret = crypt_ctr_ivmode(ti, ivmode);
3096 if (ret < 0)
3097 return ret;
3098
3099 /* Initialize and set key */
3100 ret = crypt_set_key(cc, key);
3101 if (ret < 0) {
3102 ti->error = "Error decoding and setting key";
3103 return ret;
3104 }
3105
3106 /* Allocate IV */
3107 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
3108 ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
3109 if (ret < 0) {
3110 ti->error = "Error creating IV";
3111 return ret;
3112 }
3113 }
3114
3115 /* Initialize IV (set keys for ESSIV etc) */
3116 if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
3117 ret = cc->iv_gen_ops->init(cc);
3118 if (ret < 0) {
3119 ti->error = "Error initialising IV";
3120 return ret;
3121 }
3122 }
3123
3124 /* wipe the kernel key payload copy */
3125 if (cc->key_string)
3126 memset(cc->key, 0, cc->key_size * sizeof(u8));
3127
3128 return ret;
3129 }
3130
crypt_ctr_optional(struct dm_target * ti,unsigned int argc,char ** argv)3131 static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv)
3132 {
3133 struct crypt_config *cc = ti->private;
3134 struct dm_arg_set as;
3135 static const struct dm_arg _args[] = {
3136 {0, 9, "Invalid number of feature args"},
3137 };
3138 unsigned int opt_params, val;
3139 const char *opt_string, *sval;
3140 char dummy;
3141 int ret;
3142
3143 /* Optional parameters */
3144 as.argc = argc;
3145 as.argv = argv;
3146
3147 ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
3148 if (ret)
3149 return ret;
3150
3151 while (opt_params--) {
3152 opt_string = dm_shift_arg(&as);
3153 if (!opt_string) {
3154 ti->error = "Not enough feature arguments";
3155 return -EINVAL;
3156 }
3157
3158 if (!strcasecmp(opt_string, "allow_discards"))
3159 ti->num_discard_bios = 1;
3160
3161 else if (!strcasecmp(opt_string, "same_cpu_crypt"))
3162 set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
3163 else if (!strcasecmp(opt_string, "high_priority"))
3164 set_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags);
3165
3166 else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
3167 set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
3168 else if (!strcasecmp(opt_string, "no_read_workqueue"))
3169 set_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
3170 else if (!strcasecmp(opt_string, "no_write_workqueue"))
3171 set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3172 else if (sscanf(opt_string, "integrity:%u:", &val) == 1) {
3173 if (val == 0 || val > MAX_TAG_SIZE) {
3174 ti->error = "Invalid integrity arguments";
3175 return -EINVAL;
3176 }
3177 cc->used_tag_size = val;
3178 sval = strchr(opt_string + strlen("integrity:"), ':') + 1;
3179 if (!strcasecmp(sval, "aead")) {
3180 set_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
3181 } else if (strcasecmp(sval, "none")) {
3182 ti->error = "Unknown integrity profile";
3183 return -EINVAL;
3184 }
3185
3186 cc->cipher_auth = kstrdup(sval, GFP_KERNEL);
3187 if (!cc->cipher_auth)
3188 return -ENOMEM;
3189 } else if (sscanf(opt_string, "integrity_key_size:%u%c", &val, &dummy) == 1) {
3190 if (!val) {
3191 ti->error = "Invalid integrity_key_size argument";
3192 return -EINVAL;
3193 }
3194 cc->key_mac_size = val;
3195 set_bit(CRYPT_KEY_MAC_SIZE_SET, &cc->cipher_flags);
3196 } else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) {
3197 if (cc->sector_size < (1 << SECTOR_SHIFT) ||
3198 cc->sector_size > 4096 ||
3199 (cc->sector_size & (cc->sector_size - 1))) {
3200 ti->error = "Invalid feature value for sector_size";
3201 return -EINVAL;
3202 }
3203 if (ti->len & ((cc->sector_size >> SECTOR_SHIFT) - 1)) {
3204 ti->error = "Device size is not multiple of sector_size feature";
3205 return -EINVAL;
3206 }
3207 cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT;
3208 } else if (!strcasecmp(opt_string, "iv_large_sectors"))
3209 set_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
3210 else {
3211 ti->error = "Invalid feature arguments";
3212 return -EINVAL;
3213 }
3214 }
3215
3216 return 0;
3217 }
3218
3219 #ifdef CONFIG_BLK_DEV_ZONED
crypt_report_zones(struct dm_target * ti,struct dm_report_zones_args * args,unsigned int nr_zones)3220 static int crypt_report_zones(struct dm_target *ti,
3221 struct dm_report_zones_args *args, unsigned int nr_zones)
3222 {
3223 struct crypt_config *cc = ti->private;
3224
3225 return dm_report_zones(cc->dev->bdev, cc->start,
3226 cc->start + dm_target_offset(ti, args->next_sector),
3227 args, nr_zones);
3228 }
3229 #else
3230 #define crypt_report_zones NULL
3231 #endif
3232
3233 /*
3234 * Construct an encryption mapping:
3235 * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start>
3236 */
crypt_ctr(struct dm_target * ti,unsigned int argc,char ** argv)3237 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
3238 {
3239 struct crypt_config *cc;
3240 const char *devname = dm_table_device_name(ti->table);
3241 int key_size, wq_id;
3242 unsigned int align_mask;
3243 unsigned int common_wq_flags;
3244 unsigned long long tmpll;
3245 int ret;
3246 size_t iv_size_padding, additional_req_size;
3247 char dummy;
3248
3249 if (argc < 5) {
3250 ti->error = "Not enough arguments";
3251 return -EINVAL;
3252 }
3253
3254 key_size = get_key_size(&argv[1]);
3255 if (key_size < 0) {
3256 ti->error = "Cannot parse key size";
3257 return -EINVAL;
3258 }
3259
3260 cc = kzalloc(struct_size(cc, key, key_size), GFP_KERNEL);
3261 if (!cc) {
3262 ti->error = "Cannot allocate encryption context";
3263 return -ENOMEM;
3264 }
3265 cc->key_size = key_size;
3266 cc->sector_size = (1 << SECTOR_SHIFT);
3267 cc->sector_shift = 0;
3268
3269 ti->private = cc;
3270
3271 spin_lock(&dm_crypt_clients_lock);
3272 dm_crypt_clients_n++;
3273 crypt_calculate_pages_per_client();
3274 spin_unlock(&dm_crypt_clients_lock);
3275
3276 ret = percpu_counter_init(&cc->n_allocated_pages, 0, GFP_KERNEL);
3277 if (ret < 0)
3278 goto bad;
3279
3280 /* Optional parameters need to be read before cipher constructor */
3281 if (argc > 5) {
3282 ret = crypt_ctr_optional(ti, argc - 5, &argv[5]);
3283 if (ret)
3284 goto bad;
3285 }
3286
3287 ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
3288 if (ret < 0)
3289 goto bad;
3290
3291 if (crypt_integrity_aead(cc)) {
3292 cc->dmreq_start = sizeof(struct aead_request);
3293 cc->dmreq_start += crypto_aead_reqsize(any_tfm_aead(cc));
3294 align_mask = crypto_aead_alignmask(any_tfm_aead(cc));
3295 } else {
3296 cc->dmreq_start = sizeof(struct skcipher_request);
3297 cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
3298 align_mask = crypto_skcipher_alignmask(any_tfm(cc));
3299 }
3300 cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
3301
3302 if (align_mask < CRYPTO_MINALIGN) {
3303 /* Allocate the padding exactly */
3304 iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
3305 & align_mask;
3306 } else {
3307 /*
3308 * If the cipher requires greater alignment than kmalloc
3309 * alignment, we don't know the exact position of the
3310 * initialization vector. We must assume worst case.
3311 */
3312 iv_size_padding = align_mask;
3313 }
3314
3315 /* ...| IV + padding | original IV | original sec. number | bio tag offset | */
3316 additional_req_size = sizeof(struct dm_crypt_request) +
3317 iv_size_padding + cc->iv_size +
3318 cc->iv_size +
3319 sizeof(uint64_t) +
3320 sizeof(unsigned int);
3321
3322 ret = mempool_init_kmalloc_pool(&cc->req_pool, MIN_IOS, cc->dmreq_start + additional_req_size);
3323 if (ret) {
3324 ti->error = "Cannot allocate crypt request mempool";
3325 goto bad;
3326 }
3327
3328 cc->per_bio_data_size = ti->per_io_data_size =
3329 ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size,
3330 ARCH_DMA_MINALIGN);
3331
3332 ret = mempool_init(&cc->page_pool, BIO_MAX_VECS, crypt_page_alloc, crypt_page_free, cc);
3333 if (ret) {
3334 ti->error = "Cannot allocate page mempool";
3335 goto bad;
3336 }
3337
3338 ret = bioset_init(&cc->bs, MIN_IOS, 0, BIOSET_NEED_BVECS);
3339 if (ret) {
3340 ti->error = "Cannot allocate crypt bioset";
3341 goto bad;
3342 }
3343
3344 mutex_init(&cc->bio_alloc_lock);
3345
3346 ret = -EINVAL;
3347 if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) ||
3348 (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) {
3349 ti->error = "Invalid iv_offset sector";
3350 goto bad;
3351 }
3352 cc->iv_offset = tmpll;
3353
3354 ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
3355 if (ret) {
3356 ti->error = "Device lookup failed";
3357 goto bad;
3358 }
3359
3360 ret = -EINVAL;
3361 if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1 || tmpll != (sector_t)tmpll) {
3362 ti->error = "Invalid device sector";
3363 goto bad;
3364 }
3365 cc->start = tmpll;
3366
3367 if (bdev_is_zoned(cc->dev->bdev)) {
3368 /*
3369 * For zoned block devices, we need to preserve the issuer write
3370 * ordering. To do so, disable write workqueues and force inline
3371 * encryption completion.
3372 */
3373 set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3374 set_bit(DM_CRYPT_WRITE_INLINE, &cc->flags);
3375
3376 /*
3377 * All zone append writes to a zone of a zoned block device will
3378 * have the same BIO sector, the start of the zone. When the
3379 * cypher IV mode uses sector values, all data targeting a
3380 * zone will be encrypted using the first sector numbers of the
3381 * zone. This will not result in write errors but will
3382 * cause most reads to fail as reads will use the sector values
3383 * for the actual data locations, resulting in IV mismatch.
3384 * To avoid this problem, ask DM core to emulate zone append
3385 * operations with regular writes.
3386 */
3387 DMDEBUG("Zone append operations will be emulated");
3388 ti->emulate_zone_append = true;
3389 }
3390
3391 if (crypt_integrity_aead(cc) || cc->integrity_iv_size) {
3392 ret = crypt_integrity_ctr(cc, ti);
3393 if (ret)
3394 goto bad;
3395
3396 cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->tuple_size;
3397 if (!cc->tag_pool_max_sectors)
3398 cc->tag_pool_max_sectors = 1;
3399
3400 ret = mempool_init_kmalloc_pool(&cc->tag_pool, MIN_IOS,
3401 cc->tag_pool_max_sectors * cc->tuple_size);
3402 if (ret) {
3403 ti->error = "Cannot allocate integrity tags mempool";
3404 goto bad;
3405 }
3406
3407 cc->tag_pool_max_sectors <<= cc->sector_shift;
3408 }
3409
3410 wq_id = ida_alloc_min(&workqueue_ida, 1, GFP_KERNEL);
3411 if (wq_id < 0) {
3412 ti->error = "Couldn't get workqueue id";
3413 ret = wq_id;
3414 goto bad;
3415 }
3416 cc->workqueue_id = wq_id;
3417
3418 ret = -ENOMEM;
3419 common_wq_flags = WQ_MEM_RECLAIM | WQ_SYSFS;
3420 if (test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags))
3421 common_wq_flags |= WQ_HIGHPRI;
3422
3423 cc->io_queue = alloc_workqueue("kcryptd_io-%s-%d", common_wq_flags, 1, devname, wq_id);
3424 if (!cc->io_queue) {
3425 ti->error = "Couldn't create kcryptd io queue";
3426 goto bad;
3427 }
3428
3429 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags)) {
3430 cc->crypt_queue = alloc_workqueue("kcryptd-%s-%d",
3431 common_wq_flags | WQ_CPU_INTENSIVE,
3432 1, devname, wq_id);
3433 } else {
3434 /*
3435 * While crypt_queue is certainly CPU intensive, the use of
3436 * WQ_CPU_INTENSIVE is meaningless with WQ_UNBOUND.
3437 */
3438 cc->crypt_queue = alloc_workqueue("kcryptd-%s-%d",
3439 common_wq_flags | WQ_UNBOUND,
3440 num_online_cpus(), devname, wq_id);
3441 }
3442 if (!cc->crypt_queue) {
3443 ti->error = "Couldn't create kcryptd queue";
3444 goto bad;
3445 }
3446
3447 spin_lock_init(&cc->write_thread_lock);
3448 cc->write_tree = RB_ROOT;
3449
3450 cc->write_thread = kthread_run(dmcrypt_write, cc, "dmcrypt_write/%s", devname);
3451 if (IS_ERR(cc->write_thread)) {
3452 ret = PTR_ERR(cc->write_thread);
3453 cc->write_thread = NULL;
3454 ti->error = "Couldn't spawn write thread";
3455 goto bad;
3456 }
3457 if (test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags))
3458 set_user_nice(cc->write_thread, MIN_NICE);
3459
3460 ti->num_flush_bios = 1;
3461 ti->limit_swap_bios = true;
3462 ti->accounts_remapped_io = true;
3463
3464 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
3465 return 0;
3466
3467 bad:
3468 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
3469 crypt_dtr(ti);
3470 return ret;
3471 }
3472
crypt_map(struct dm_target * ti,struct bio * bio)3473 static int crypt_map(struct dm_target *ti, struct bio *bio)
3474 {
3475 struct dm_crypt_io *io;
3476 struct crypt_config *cc = ti->private;
3477 unsigned max_sectors;
3478
3479 /*
3480 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
3481 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
3482 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
3483 */
3484 if (unlikely(bio->bi_opf & REQ_PREFLUSH ||
3485 bio_op(bio) == REQ_OP_DISCARD)) {
3486 bio_set_dev(bio, cc->dev->bdev);
3487 if (bio_sectors(bio))
3488 bio->bi_iter.bi_sector = cc->start +
3489 dm_target_offset(ti, bio->bi_iter.bi_sector);
3490 return DM_MAPIO_REMAPPED;
3491 }
3492
3493 /*
3494 * Check if bio is too large, split as needed.
3495 */
3496 max_sectors = get_max_request_size(cc, bio_data_dir(bio) == WRITE);
3497 if (unlikely(bio_sectors(bio) > max_sectors))
3498 dm_accept_partial_bio(bio, max_sectors);
3499
3500 /*
3501 * Ensure that bio is a multiple of internal sector encryption size
3502 * and is aligned to this size as defined in IO hints.
3503 */
3504 if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0))
3505 return DM_MAPIO_KILL;
3506
3507 if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1)))
3508 return DM_MAPIO_KILL;
3509
3510 io = dm_per_bio_data(bio, cc->per_bio_data_size);
3511 crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
3512
3513 if (cc->tuple_size) {
3514 unsigned int tag_len = cc->tuple_size * (bio_sectors(bio) >> cc->sector_shift);
3515
3516 if (unlikely(tag_len > KMALLOC_MAX_SIZE))
3517 io->integrity_metadata = NULL;
3518 else
3519 io->integrity_metadata = kmalloc(tag_len, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3520
3521 if (unlikely(!io->integrity_metadata)) {
3522 if (bio_sectors(bio) > cc->tag_pool_max_sectors)
3523 dm_accept_partial_bio(bio, cc->tag_pool_max_sectors);
3524 io->integrity_metadata = mempool_alloc(&cc->tag_pool, GFP_NOIO);
3525 io->integrity_metadata_from_pool = true;
3526 }
3527 }
3528
3529 if (crypt_integrity_aead(cc))
3530 io->ctx.r.req_aead = (struct aead_request *)(io + 1);
3531 else
3532 io->ctx.r.req = (struct skcipher_request *)(io + 1);
3533
3534 if (bio_data_dir(io->base_bio) == READ) {
3535 if (kcryptd_io_read(io, CRYPT_MAP_READ_GFP))
3536 kcryptd_queue_read(io);
3537 } else
3538 kcryptd_queue_crypt(io);
3539
3540 return DM_MAPIO_SUBMITTED;
3541 }
3542
hex2asc(unsigned char c)3543 static char hex2asc(unsigned char c)
3544 {
3545 return c + '0' + ((unsigned int)(9 - c) >> 4 & 0x27);
3546 }
3547
crypt_status(struct dm_target * ti,status_type_t type,unsigned int status_flags,char * result,unsigned int maxlen)3548 static void crypt_status(struct dm_target *ti, status_type_t type,
3549 unsigned int status_flags, char *result, unsigned int maxlen)
3550 {
3551 struct crypt_config *cc = ti->private;
3552 unsigned int i, sz = 0;
3553 int num_feature_args = 0;
3554
3555 switch (type) {
3556 case STATUSTYPE_INFO:
3557 result[0] = '\0';
3558 break;
3559
3560 case STATUSTYPE_TABLE:
3561 DMEMIT("%s ", cc->cipher_string);
3562
3563 if (cc->key_size > 0) {
3564 if (cc->key_string)
3565 DMEMIT(":%u:%s", cc->key_size, cc->key_string);
3566 else {
3567 for (i = 0; i < cc->key_size; i++) {
3568 DMEMIT("%c%c", hex2asc(cc->key[i] >> 4),
3569 hex2asc(cc->key[i] & 0xf));
3570 }
3571 }
3572 } else
3573 DMEMIT("-");
3574
3575 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
3576 cc->dev->name, (unsigned long long)cc->start);
3577
3578 num_feature_args += !!ti->num_discard_bios;
3579 num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
3580 num_feature_args += test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags);
3581 num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
3582 num_feature_args += test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
3583 num_feature_args += test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3584 num_feature_args += !!cc->used_tag_size;
3585 num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT);
3586 num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
3587 num_feature_args += test_bit(CRYPT_KEY_MAC_SIZE_SET, &cc->cipher_flags);
3588 if (num_feature_args) {
3589 DMEMIT(" %d", num_feature_args);
3590 if (ti->num_discard_bios)
3591 DMEMIT(" allow_discards");
3592 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
3593 DMEMIT(" same_cpu_crypt");
3594 if (test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags))
3595 DMEMIT(" high_priority");
3596 if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
3597 DMEMIT(" submit_from_crypt_cpus");
3598 if (test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags))
3599 DMEMIT(" no_read_workqueue");
3600 if (test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))
3601 DMEMIT(" no_write_workqueue");
3602 if (cc->used_tag_size)
3603 DMEMIT(" integrity:%u:%s", cc->used_tag_size, cc->cipher_auth);
3604 if (cc->sector_size != (1 << SECTOR_SHIFT))
3605 DMEMIT(" sector_size:%d", cc->sector_size);
3606 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
3607 DMEMIT(" iv_large_sectors");
3608 if (test_bit(CRYPT_KEY_MAC_SIZE_SET, &cc->cipher_flags))
3609 DMEMIT(" integrity_key_size:%u", cc->key_mac_size);
3610 }
3611 break;
3612
3613 case STATUSTYPE_IMA:
3614 DMEMIT_TARGET_NAME_VERSION(ti->type);
3615 DMEMIT(",allow_discards=%c", ti->num_discard_bios ? 'y' : 'n');
3616 DMEMIT(",same_cpu_crypt=%c", test_bit(DM_CRYPT_SAME_CPU, &cc->flags) ? 'y' : 'n');
3617 DMEMIT(",high_priority=%c", test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags) ? 'y' : 'n');
3618 DMEMIT(",submit_from_crypt_cpus=%c", test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags) ?
3619 'y' : 'n');
3620 DMEMIT(",no_read_workqueue=%c", test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags) ?
3621 'y' : 'n');
3622 DMEMIT(",no_write_workqueue=%c", test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags) ?
3623 'y' : 'n');
3624 DMEMIT(",iv_large_sectors=%c", test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags) ?
3625 'y' : 'n');
3626
3627 if (cc->used_tag_size)
3628 DMEMIT(",integrity_tag_size=%u,cipher_auth=%s",
3629 cc->used_tag_size, cc->cipher_auth);
3630 if (cc->sector_size != (1 << SECTOR_SHIFT))
3631 DMEMIT(",sector_size=%d", cc->sector_size);
3632 if (cc->cipher_string)
3633 DMEMIT(",cipher_string=%s", cc->cipher_string);
3634
3635 DMEMIT(",key_size=%u", cc->key_size);
3636 DMEMIT(",key_parts=%u", cc->key_parts);
3637 DMEMIT(",key_extra_size=%u", cc->key_extra_size);
3638 DMEMIT(",key_mac_size=%u", cc->key_mac_size);
3639 DMEMIT(";");
3640 break;
3641 }
3642 }
3643
crypt_postsuspend(struct dm_target * ti)3644 static void crypt_postsuspend(struct dm_target *ti)
3645 {
3646 struct crypt_config *cc = ti->private;
3647
3648 set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3649 }
3650
crypt_preresume(struct dm_target * ti)3651 static int crypt_preresume(struct dm_target *ti)
3652 {
3653 struct crypt_config *cc = ti->private;
3654
3655 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
3656 DMERR("aborting resume - crypt key is not set.");
3657 return -EAGAIN;
3658 }
3659
3660 return 0;
3661 }
3662
crypt_resume(struct dm_target * ti)3663 static void crypt_resume(struct dm_target *ti)
3664 {
3665 struct crypt_config *cc = ti->private;
3666
3667 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3668 }
3669
3670 /* Message interface
3671 * key set <key>
3672 * key wipe
3673 */
crypt_message(struct dm_target * ti,unsigned int argc,char ** argv,char * result,unsigned int maxlen)3674 static int crypt_message(struct dm_target *ti, unsigned int argc, char **argv,
3675 char *result, unsigned int maxlen)
3676 {
3677 struct crypt_config *cc = ti->private;
3678 int key_size, ret = -EINVAL;
3679
3680 if (argc < 2)
3681 goto error;
3682
3683 if (!strcasecmp(argv[0], "key")) {
3684 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
3685 DMWARN("not suspended during key manipulation.");
3686 return -EINVAL;
3687 }
3688 if (argc == 3 && !strcasecmp(argv[1], "set")) {
3689 /* The key size may not be changed. */
3690 key_size = get_key_size(&argv[2]);
3691 if (key_size < 0 || cc->key_size != key_size) {
3692 memset(argv[2], '0', strlen(argv[2]));
3693 return -EINVAL;
3694 }
3695
3696 ret = crypt_set_key(cc, argv[2]);
3697 if (ret)
3698 return ret;
3699 if (cc->iv_gen_ops && cc->iv_gen_ops->init)
3700 ret = cc->iv_gen_ops->init(cc);
3701 /* wipe the kernel key payload copy */
3702 if (cc->key_string)
3703 memset(cc->key, 0, cc->key_size * sizeof(u8));
3704 return ret;
3705 }
3706 if (argc == 2 && !strcasecmp(argv[1], "wipe"))
3707 return crypt_wipe_key(cc);
3708 }
3709
3710 error:
3711 DMWARN("unrecognised message received.");
3712 return -EINVAL;
3713 }
3714
crypt_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)3715 static int crypt_iterate_devices(struct dm_target *ti,
3716 iterate_devices_callout_fn fn, void *data)
3717 {
3718 struct crypt_config *cc = ti->private;
3719
3720 return fn(ti, cc->dev, cc->start, ti->len, data);
3721 }
3722
crypt_io_hints(struct dm_target * ti,struct queue_limits * limits)3723 static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
3724 {
3725 struct crypt_config *cc = ti->private;
3726
3727 limits->logical_block_size =
3728 max_t(unsigned int, limits->logical_block_size, cc->sector_size);
3729 limits->physical_block_size =
3730 max_t(unsigned int, limits->physical_block_size, cc->sector_size);
3731 limits->io_min = max_t(unsigned int, limits->io_min, cc->sector_size);
3732 limits->dma_alignment = limits->logical_block_size - 1;
3733 }
3734
3735 static struct target_type crypt_target = {
3736 .name = "crypt",
3737 .version = {1, 28, 0},
3738 .module = THIS_MODULE,
3739 .ctr = crypt_ctr,
3740 .dtr = crypt_dtr,
3741 .features = DM_TARGET_ZONED_HM,
3742 .report_zones = crypt_report_zones,
3743 .map = crypt_map,
3744 .status = crypt_status,
3745 .postsuspend = crypt_postsuspend,
3746 .preresume = crypt_preresume,
3747 .resume = crypt_resume,
3748 .message = crypt_message,
3749 .iterate_devices = crypt_iterate_devices,
3750 .io_hints = crypt_io_hints,
3751 };
3752 module_dm(crypt);
3753
3754 MODULE_AUTHOR("Jana Saout <jana@saout.de>");
3755 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
3756 MODULE_LICENSE("GPL");
3757