xref: /linux/include/linux/mm.h (revision 7ba45f15049b4442c932ca2499aec739bb6bdbcf)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 #include <linux/mmdebug.h>
7 #include <linux/gfp.h>
8 #include <linux/pgalloc_tag.h>
9 #include <linux/bug.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/atomic.h>
14 #include <linux/debug_locks.h>
15 #include <linux/compiler.h>
16 #include <linux/mm_types.h>
17 #include <linux/mmap_lock.h>
18 #include <linux/range.h>
19 #include <linux/pfn.h>
20 #include <linux/percpu-refcount.h>
21 #include <linux/bit_spinlock.h>
22 #include <linux/shrinker.h>
23 #include <linux/resource.h>
24 #include <linux/page_ext.h>
25 #include <linux/err.h>
26 #include <linux/page-flags.h>
27 #include <linux/page_ref.h>
28 #include <linux/overflow.h>
29 #include <linux/sizes.h>
30 #include <linux/sched.h>
31 #include <linux/pgtable.h>
32 #include <linux/kasan.h>
33 #include <linux/memremap.h>
34 #include <linux/slab.h>
35 #include <linux/cacheinfo.h>
36 #include <linux/rcuwait.h>
37 #include <linux/bitmap.h>
38 #include <linux/bitops.h>
39 
40 struct mempolicy;
41 struct anon_vma;
42 struct anon_vma_chain;
43 struct user_struct;
44 struct pt_regs;
45 struct folio_batch;
46 
47 void arch_mm_preinit(void);
48 void mm_core_init(void);
49 void init_mm_internals(void);
50 
51 extern atomic_long_t _totalram_pages;
totalram_pages(void)52 static inline unsigned long totalram_pages(void)
53 {
54 	return (unsigned long)atomic_long_read(&_totalram_pages);
55 }
56 
totalram_pages_inc(void)57 static inline void totalram_pages_inc(void)
58 {
59 	atomic_long_inc(&_totalram_pages);
60 }
61 
totalram_pages_dec(void)62 static inline void totalram_pages_dec(void)
63 {
64 	atomic_long_dec(&_totalram_pages);
65 }
66 
totalram_pages_add(long count)67 static inline void totalram_pages_add(long count)
68 {
69 	atomic_long_add(count, &_totalram_pages);
70 }
71 
72 extern void * high_memory;
73 
74 /*
75  * Convert between pages and MB
76  * 20 is the shift for 1MB (2^20 = 1MB)
77  * PAGE_SHIFT is the shift for page size (e.g., 12 for 4KB pages)
78  * So (20 - PAGE_SHIFT) converts between pages and MB
79  */
80 #define PAGES_TO_MB(pages) ((pages) >> (20 - PAGE_SHIFT))
81 #define MB_TO_PAGES(mb)    ((mb) << (20 - PAGE_SHIFT))
82 
83 #ifdef CONFIG_SYSCTL
84 extern int sysctl_legacy_va_layout;
85 #else
86 #define sysctl_legacy_va_layout 0
87 #endif
88 
89 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
90 extern const int mmap_rnd_bits_min;
91 extern int mmap_rnd_bits_max __ro_after_init;
92 extern int mmap_rnd_bits __read_mostly;
93 #endif
94 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
95 extern const int mmap_rnd_compat_bits_min;
96 extern const int mmap_rnd_compat_bits_max;
97 extern int mmap_rnd_compat_bits __read_mostly;
98 #endif
99 
100 #ifndef DIRECT_MAP_PHYSMEM_END
101 # ifdef MAX_PHYSMEM_BITS
102 # define DIRECT_MAP_PHYSMEM_END	((1ULL << MAX_PHYSMEM_BITS) - 1)
103 # else
104 # define DIRECT_MAP_PHYSMEM_END	(((phys_addr_t)-1)&~(1ULL<<63))
105 # endif
106 #endif
107 
108 #include <asm/page.h>
109 #include <asm/processor.h>
110 
111 #ifndef __pa_symbol
112 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
113 #endif
114 
115 #ifndef page_to_virt
116 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
117 #endif
118 
119 #ifndef lm_alias
120 #define lm_alias(x)	__va(__pa_symbol(x))
121 #endif
122 
123 /*
124  * To prevent common memory management code establishing
125  * a zero page mapping on a read fault.
126  * This macro should be defined within <asm/pgtable.h>.
127  * s390 does this to prevent multiplexing of hardware bits
128  * related to the physical page in case of virtualization.
129  */
130 #ifndef mm_forbids_zeropage
131 #define mm_forbids_zeropage(X)	(0)
132 #endif
133 
134 /*
135  * On some architectures it is expensive to call memset() for small sizes.
136  * If an architecture decides to implement their own version of
137  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
138  * define their own version of this macro in <asm/pgtable.h>
139  */
140 #if BITS_PER_LONG == 64
141 /* This function must be updated when the size of struct page grows above 96
142  * or reduces below 56. The idea that compiler optimizes out switch()
143  * statement, and only leaves move/store instructions. Also the compiler can
144  * combine write statements if they are both assignments and can be reordered,
145  * this can result in several of the writes here being dropped.
146  */
147 #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
__mm_zero_struct_page(struct page * page)148 static inline void __mm_zero_struct_page(struct page *page)
149 {
150 	unsigned long *_pp = (void *)page;
151 
152 	 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
153 	BUILD_BUG_ON(sizeof(struct page) & 7);
154 	BUILD_BUG_ON(sizeof(struct page) < 56);
155 	BUILD_BUG_ON(sizeof(struct page) > 96);
156 
157 	switch (sizeof(struct page)) {
158 	case 96:
159 		_pp[11] = 0;
160 		fallthrough;
161 	case 88:
162 		_pp[10] = 0;
163 		fallthrough;
164 	case 80:
165 		_pp[9] = 0;
166 		fallthrough;
167 	case 72:
168 		_pp[8] = 0;
169 		fallthrough;
170 	case 64:
171 		_pp[7] = 0;
172 		fallthrough;
173 	case 56:
174 		_pp[6] = 0;
175 		_pp[5] = 0;
176 		_pp[4] = 0;
177 		_pp[3] = 0;
178 		_pp[2] = 0;
179 		_pp[1] = 0;
180 		_pp[0] = 0;
181 	}
182 }
183 #else
184 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
185 #endif
186 
187 /*
188  * Default maximum number of active map areas, this limits the number of vmas
189  * per mm struct. Users can overwrite this number by sysctl but there is a
190  * problem.
191  *
192  * When a program's coredump is generated as ELF format, a section is created
193  * per a vma. In ELF, the number of sections is represented in unsigned short.
194  * This means the number of sections should be smaller than 65535 at coredump.
195  * Because the kernel adds some informative sections to a image of program at
196  * generating coredump, we need some margin. The number of extra sections is
197  * 1-3 now and depends on arch. We use "5" as safe margin, here.
198  *
199  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
200  * not a hard limit any more. Although some userspace tools can be surprised by
201  * that.
202  */
203 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
204 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
205 
206 extern int sysctl_max_map_count;
207 
208 extern unsigned long sysctl_user_reserve_kbytes;
209 extern unsigned long sysctl_admin_reserve_kbytes;
210 
211 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
212 bool page_range_contiguous(const struct page *page, unsigned long nr_pages);
213 #else
page_range_contiguous(const struct page * page,unsigned long nr_pages)214 static inline bool page_range_contiguous(const struct page *page,
215 		unsigned long nr_pages)
216 {
217 	return true;
218 }
219 #endif
220 
221 /* to align the pointer to the (next) page boundary */
222 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
223 
224 /* to align the pointer to the (prev) page boundary */
225 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
226 
227 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
228 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
229 
230 /**
231  * folio_page_idx - Return the number of a page in a folio.
232  * @folio: The folio.
233  * @page: The folio page.
234  *
235  * This function expects that the page is actually part of the folio.
236  * The returned number is relative to the start of the folio.
237  */
folio_page_idx(const struct folio * folio,const struct page * page)238 static inline unsigned long folio_page_idx(const struct folio *folio,
239 		const struct page *page)
240 {
241 	return page - &folio->page;
242 }
243 
lru_to_folio(struct list_head * head)244 static inline struct folio *lru_to_folio(struct list_head *head)
245 {
246 	return list_entry((head)->prev, struct folio, lru);
247 }
248 
249 void setup_initial_init_mm(void *start_code, void *end_code,
250 			   void *end_data, void *brk);
251 
252 /*
253  * Linux kernel virtual memory manager primitives.
254  * The idea being to have a "virtual" mm in the same way
255  * we have a virtual fs - giving a cleaner interface to the
256  * mm details, and allowing different kinds of memory mappings
257  * (from shared memory to executable loading to arbitrary
258  * mmap() functions).
259  */
260 
261 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
262 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
263 void vm_area_free(struct vm_area_struct *);
264 
265 #ifndef CONFIG_MMU
266 extern struct rb_root nommu_region_tree;
267 extern struct rw_semaphore nommu_region_sem;
268 
269 extern unsigned int kobjsize(const void *objp);
270 #endif
271 
272 /*
273  * vm_flags in vm_area_struct, see mm_types.h.
274  * When changing, update also include/trace/events/mmflags.h
275  */
276 #define VM_NONE		0x00000000
277 
278 #define VM_READ		0x00000001	/* currently active flags */
279 #define VM_WRITE	0x00000002
280 #define VM_EXEC		0x00000004
281 #define VM_SHARED	0x00000008
282 
283 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
284 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
285 #define VM_MAYWRITE	0x00000020
286 #define VM_MAYEXEC	0x00000040
287 #define VM_MAYSHARE	0x00000080
288 
289 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
290 #ifdef CONFIG_MMU
291 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
292 #else /* CONFIG_MMU */
293 #define VM_MAYOVERLAY	0x00000200	/* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
294 #define VM_UFFD_MISSING	0
295 #endif /* CONFIG_MMU */
296 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
297 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
298 
299 #define VM_LOCKED	0x00002000
300 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
301 
302 					/* Used by sys_madvise() */
303 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
304 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
305 
306 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
307 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
308 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
309 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
310 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
311 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
312 #define VM_SYNC		0x00800000	/* Synchronous page faults */
313 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
314 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
315 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
316 
317 #ifdef CONFIG_MEM_SOFT_DIRTY
318 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
319 #else
320 # define VM_SOFTDIRTY	0
321 #endif
322 
323 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
324 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
325 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
326 #define VM_MERGEABLE	BIT(31)		/* KSM may merge identical pages */
327 
328 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
329 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
330 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
331 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
332 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
333 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
334 #define VM_HIGH_ARCH_BIT_5	37	/* bit only usable on 64-bit architectures */
335 #define VM_HIGH_ARCH_BIT_6	38	/* bit only usable on 64-bit architectures */
336 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
337 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
338 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
339 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
340 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
341 #define VM_HIGH_ARCH_5	BIT(VM_HIGH_ARCH_BIT_5)
342 #define VM_HIGH_ARCH_6	BIT(VM_HIGH_ARCH_BIT_6)
343 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
344 
345 #ifdef CONFIG_ARCH_HAS_PKEYS
346 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
347 # define VM_PKEY_BIT0  VM_HIGH_ARCH_0
348 # define VM_PKEY_BIT1  VM_HIGH_ARCH_1
349 # define VM_PKEY_BIT2  VM_HIGH_ARCH_2
350 #if CONFIG_ARCH_PKEY_BITS > 3
351 # define VM_PKEY_BIT3  VM_HIGH_ARCH_3
352 #else
353 # define VM_PKEY_BIT3  0
354 #endif
355 #if CONFIG_ARCH_PKEY_BITS > 4
356 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
357 #else
358 # define VM_PKEY_BIT4  0
359 #endif
360 #endif /* CONFIG_ARCH_HAS_PKEYS */
361 
362 #ifdef CONFIG_X86_USER_SHADOW_STACK
363 /*
364  * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of
365  * support core mm.
366  *
367  * These VMAs will get a single end guard page. This helps userspace protect
368  * itself from attacks. A single page is enough for current shadow stack archs
369  * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c
370  * for more details on the guard size.
371  */
372 # define VM_SHADOW_STACK	VM_HIGH_ARCH_5
373 #endif
374 
375 #if defined(CONFIG_ARM64_GCS)
376 /*
377  * arm64's Guarded Control Stack implements similar functionality and
378  * has similar constraints to shadow stacks.
379  */
380 # define VM_SHADOW_STACK	VM_HIGH_ARCH_6
381 #endif
382 
383 #ifndef VM_SHADOW_STACK
384 # define VM_SHADOW_STACK	VM_NONE
385 #endif
386 
387 #if defined(CONFIG_PPC64)
388 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
389 #elif defined(CONFIG_PARISC)
390 # define VM_GROWSUP	VM_ARCH_1
391 #elif defined(CONFIG_SPARC64)
392 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
393 # define VM_ARCH_CLEAR	VM_SPARC_ADI
394 #elif defined(CONFIG_ARM64)
395 # define VM_ARM64_BTI	VM_ARCH_1	/* BTI guarded page, a.k.a. GP bit */
396 # define VM_ARCH_CLEAR	VM_ARM64_BTI
397 #elif !defined(CONFIG_MMU)
398 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
399 #endif
400 
401 #if defined(CONFIG_ARM64_MTE)
402 # define VM_MTE		VM_HIGH_ARCH_4	/* Use Tagged memory for access control */
403 # define VM_MTE_ALLOWED	VM_HIGH_ARCH_5	/* Tagged memory permitted */
404 #else
405 # define VM_MTE		VM_NONE
406 # define VM_MTE_ALLOWED	VM_NONE
407 #endif
408 
409 #ifndef VM_GROWSUP
410 # define VM_GROWSUP	VM_NONE
411 #endif
412 
413 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
414 # define VM_UFFD_MINOR_BIT	41
415 # define VM_UFFD_MINOR		BIT(VM_UFFD_MINOR_BIT)	/* UFFD minor faults */
416 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
417 # define VM_UFFD_MINOR		VM_NONE
418 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
419 
420 /*
421  * This flag is used to connect VFIO to arch specific KVM code. It
422  * indicates that the memory under this VMA is safe for use with any
423  * non-cachable memory type inside KVM. Some VFIO devices, on some
424  * platforms, are thought to be unsafe and can cause machine crashes
425  * if KVM does not lock down the memory type.
426  */
427 #ifdef CONFIG_64BIT
428 #define VM_ALLOW_ANY_UNCACHED_BIT	39
429 #define VM_ALLOW_ANY_UNCACHED		BIT(VM_ALLOW_ANY_UNCACHED_BIT)
430 #else
431 #define VM_ALLOW_ANY_UNCACHED		VM_NONE
432 #endif
433 
434 #ifdef CONFIG_64BIT
435 #define VM_DROPPABLE_BIT	40
436 #define VM_DROPPABLE		BIT(VM_DROPPABLE_BIT)
437 #elif defined(CONFIG_PPC32)
438 #define VM_DROPPABLE		VM_ARCH_1
439 #else
440 #define VM_DROPPABLE		VM_NONE
441 #endif
442 
443 #ifdef CONFIG_64BIT
444 #define VM_SEALED_BIT	42
445 #define VM_SEALED	BIT(VM_SEALED_BIT)
446 #else
447 #define VM_SEALED	VM_NONE
448 #endif
449 
450 /* Bits set in the VMA until the stack is in its final location */
451 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY)
452 
453 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
454 
455 /* Common data flag combinations */
456 #define VM_DATA_FLAGS_TSK_EXEC	(VM_READ | VM_WRITE | TASK_EXEC | \
457 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
458 #define VM_DATA_FLAGS_NON_EXEC	(VM_READ | VM_WRITE | VM_MAYREAD | \
459 				 VM_MAYWRITE | VM_MAYEXEC)
460 #define VM_DATA_FLAGS_EXEC	(VM_READ | VM_WRITE | VM_EXEC | \
461 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
462 
463 #ifndef VM_DATA_DEFAULT_FLAGS		/* arch can override this */
464 #define VM_DATA_DEFAULT_FLAGS  VM_DATA_FLAGS_EXEC
465 #endif
466 
467 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
468 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
469 #endif
470 
471 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK)
472 
473 #ifdef CONFIG_STACK_GROWSUP
474 #define VM_STACK	VM_GROWSUP
475 #define VM_STACK_EARLY	VM_GROWSDOWN
476 #else
477 #define VM_STACK	VM_GROWSDOWN
478 #define VM_STACK_EARLY	0
479 #endif
480 
481 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
482 
483 /* VMA basic access permission flags */
484 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
485 
486 
487 /*
488  * Special vmas that are non-mergable, non-mlock()able.
489  */
490 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
491 
492 /* This mask prevents VMA from being scanned with khugepaged */
493 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
494 
495 /* This mask defines which mm->def_flags a process can inherit its parent */
496 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
497 
498 /* This mask represents all the VMA flag bits used by mlock */
499 #define VM_LOCKED_MASK	(VM_LOCKED | VM_LOCKONFAULT)
500 
501 /* Arch-specific flags to clear when updating VM flags on protection change */
502 #ifndef VM_ARCH_CLEAR
503 # define VM_ARCH_CLEAR	VM_NONE
504 #endif
505 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
506 
507 /*
508  * mapping from the currently active vm_flags protection bits (the
509  * low four bits) to a page protection mask..
510  */
511 
512 /*
513  * The default fault flags that should be used by most of the
514  * arch-specific page fault handlers.
515  */
516 #define FAULT_FLAG_DEFAULT  (FAULT_FLAG_ALLOW_RETRY | \
517 			     FAULT_FLAG_KILLABLE | \
518 			     FAULT_FLAG_INTERRUPTIBLE)
519 
520 /**
521  * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
522  * @flags: Fault flags.
523  *
524  * This is mostly used for places where we want to try to avoid taking
525  * the mmap_lock for too long a time when waiting for another condition
526  * to change, in which case we can try to be polite to release the
527  * mmap_lock in the first round to avoid potential starvation of other
528  * processes that would also want the mmap_lock.
529  *
530  * Return: true if the page fault allows retry and this is the first
531  * attempt of the fault handling; false otherwise.
532  */
fault_flag_allow_retry_first(enum fault_flag flags)533 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
534 {
535 	return (flags & FAULT_FLAG_ALLOW_RETRY) &&
536 	    (!(flags & FAULT_FLAG_TRIED));
537 }
538 
539 #define FAULT_FLAG_TRACE \
540 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
541 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
542 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
543 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
544 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
545 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
546 	{ FAULT_FLAG_USER,		"USER" }, \
547 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
548 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }, \
549 	{ FAULT_FLAG_INTERRUPTIBLE,	"INTERRUPTIBLE" }, \
550 	{ FAULT_FLAG_VMA_LOCK,		"VMA_LOCK" }
551 
552 /*
553  * vm_fault is filled by the pagefault handler and passed to the vma's
554  * ->fault function. The vma's ->fault is responsible for returning a bitmask
555  * of VM_FAULT_xxx flags that give details about how the fault was handled.
556  *
557  * MM layer fills up gfp_mask for page allocations but fault handler might
558  * alter it if its implementation requires a different allocation context.
559  *
560  * pgoff should be used in favour of virtual_address, if possible.
561  */
562 struct vm_fault {
563 	const struct {
564 		struct vm_area_struct *vma;	/* Target VMA */
565 		gfp_t gfp_mask;			/* gfp mask to be used for allocations */
566 		pgoff_t pgoff;			/* Logical page offset based on vma */
567 		unsigned long address;		/* Faulting virtual address - masked */
568 		unsigned long real_address;	/* Faulting virtual address - unmasked */
569 	};
570 	enum fault_flag flags;		/* FAULT_FLAG_xxx flags
571 					 * XXX: should really be 'const' */
572 	pmd_t *pmd;			/* Pointer to pmd entry matching
573 					 * the 'address' */
574 	pud_t *pud;			/* Pointer to pud entry matching
575 					 * the 'address'
576 					 */
577 	union {
578 		pte_t orig_pte;		/* Value of PTE at the time of fault */
579 		pmd_t orig_pmd;		/* Value of PMD at the time of fault,
580 					 * used by PMD fault only.
581 					 */
582 	};
583 
584 	struct page *cow_page;		/* Page handler may use for COW fault */
585 	struct page *page;		/* ->fault handlers should return a
586 					 * page here, unless VM_FAULT_NOPAGE
587 					 * is set (which is also implied by
588 					 * VM_FAULT_ERROR).
589 					 */
590 	/* These three entries are valid only while holding ptl lock */
591 	pte_t *pte;			/* Pointer to pte entry matching
592 					 * the 'address'. NULL if the page
593 					 * table hasn't been allocated.
594 					 */
595 	spinlock_t *ptl;		/* Page table lock.
596 					 * Protects pte page table if 'pte'
597 					 * is not NULL, otherwise pmd.
598 					 */
599 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
600 					 * vm_ops->map_pages() sets up a page
601 					 * table from atomic context.
602 					 * do_fault_around() pre-allocates
603 					 * page table to avoid allocation from
604 					 * atomic context.
605 					 */
606 };
607 
608 /*
609  * These are the virtual MM functions - opening of an area, closing and
610  * unmapping it (needed to keep files on disk up-to-date etc), pointer
611  * to the functions called when a no-page or a wp-page exception occurs.
612  */
613 struct vm_operations_struct {
614 	void (*open)(struct vm_area_struct * area);
615 	/**
616 	 * @close: Called when the VMA is being removed from the MM.
617 	 * Context: User context.  May sleep.  Caller holds mmap_lock.
618 	 */
619 	void (*close)(struct vm_area_struct * area);
620 	/* Called any time before splitting to check if it's allowed */
621 	int (*may_split)(struct vm_area_struct *area, unsigned long addr);
622 	int (*mremap)(struct vm_area_struct *area);
623 	/*
624 	 * Called by mprotect() to make driver-specific permission
625 	 * checks before mprotect() is finalised.   The VMA must not
626 	 * be modified.  Returns 0 if mprotect() can proceed.
627 	 */
628 	int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
629 			unsigned long end, unsigned long newflags);
630 	vm_fault_t (*fault)(struct vm_fault *vmf);
631 	vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order);
632 	vm_fault_t (*map_pages)(struct vm_fault *vmf,
633 			pgoff_t start_pgoff, pgoff_t end_pgoff);
634 	unsigned long (*pagesize)(struct vm_area_struct * area);
635 
636 	/* notification that a previously read-only page is about to become
637 	 * writable, if an error is returned it will cause a SIGBUS */
638 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
639 
640 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
641 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
642 
643 	/* called by access_process_vm when get_user_pages() fails, typically
644 	 * for use by special VMAs. See also generic_access_phys() for a generic
645 	 * implementation useful for any iomem mapping.
646 	 */
647 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
648 		      void *buf, int len, int write);
649 
650 	/* Called by the /proc/PID/maps code to ask the vma whether it
651 	 * has a special name.  Returning non-NULL will also cause this
652 	 * vma to be dumped unconditionally. */
653 	const char *(*name)(struct vm_area_struct *vma);
654 
655 #ifdef CONFIG_NUMA
656 	/*
657 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
658 	 * to hold the policy upon return.  Caller should pass NULL @new to
659 	 * remove a policy and fall back to surrounding context--i.e. do not
660 	 * install a MPOL_DEFAULT policy, nor the task or system default
661 	 * mempolicy.
662 	 */
663 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
664 
665 	/*
666 	 * get_policy() op must add reference [mpol_get()] to any policy at
667 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
668 	 * in mm/mempolicy.c will do this automatically.
669 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
670 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
671 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
672 	 * must return NULL--i.e., do not "fallback" to task or system default
673 	 * policy.
674 	 */
675 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
676 					unsigned long addr, pgoff_t *ilx);
677 #endif
678 #ifdef CONFIG_FIND_NORMAL_PAGE
679 	/*
680 	 * Called by vm_normal_page() for special PTEs in @vma at @addr. This
681 	 * allows for returning a "normal" page from vm_normal_page() even
682 	 * though the PTE indicates that the "struct page" either does not exist
683 	 * or should not be touched: "special".
684 	 *
685 	 * Do not add new users: this really only works when a "normal" page
686 	 * was mapped, but then the PTE got changed to something weird (+
687 	 * marked special) that would not make pte_pfn() identify the originally
688 	 * inserted page.
689 	 */
690 	struct page *(*find_normal_page)(struct vm_area_struct *vma,
691 					 unsigned long addr);
692 #endif /* CONFIG_FIND_NORMAL_PAGE */
693 };
694 
695 #ifdef CONFIG_NUMA_BALANCING
vma_numab_state_init(struct vm_area_struct * vma)696 static inline void vma_numab_state_init(struct vm_area_struct *vma)
697 {
698 	vma->numab_state = NULL;
699 }
vma_numab_state_free(struct vm_area_struct * vma)700 static inline void vma_numab_state_free(struct vm_area_struct *vma)
701 {
702 	kfree(vma->numab_state);
703 }
704 #else
vma_numab_state_init(struct vm_area_struct * vma)705 static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
vma_numab_state_free(struct vm_area_struct * vma)706 static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
707 #endif /* CONFIG_NUMA_BALANCING */
708 
709 /*
710  * These must be here rather than mmap_lock.h as dependent on vm_fault type,
711  * declared in this header.
712  */
713 #ifdef CONFIG_PER_VMA_LOCK
release_fault_lock(struct vm_fault * vmf)714 static inline void release_fault_lock(struct vm_fault *vmf)
715 {
716 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
717 		vma_end_read(vmf->vma);
718 	else
719 		mmap_read_unlock(vmf->vma->vm_mm);
720 }
721 
assert_fault_locked(const struct vm_fault * vmf)722 static inline void assert_fault_locked(const struct vm_fault *vmf)
723 {
724 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
725 		vma_assert_locked(vmf->vma);
726 	else
727 		mmap_assert_locked(vmf->vma->vm_mm);
728 }
729 #else
release_fault_lock(struct vm_fault * vmf)730 static inline void release_fault_lock(struct vm_fault *vmf)
731 {
732 	mmap_read_unlock(vmf->vma->vm_mm);
733 }
734 
assert_fault_locked(const struct vm_fault * vmf)735 static inline void assert_fault_locked(const struct vm_fault *vmf)
736 {
737 	mmap_assert_locked(vmf->vma->vm_mm);
738 }
739 #endif /* CONFIG_PER_VMA_LOCK */
740 
mm_flags_test(int flag,const struct mm_struct * mm)741 static inline bool mm_flags_test(int flag, const struct mm_struct *mm)
742 {
743 	return test_bit(flag, ACCESS_PRIVATE(&mm->flags, __mm_flags));
744 }
745 
mm_flags_test_and_set(int flag,struct mm_struct * mm)746 static inline bool mm_flags_test_and_set(int flag, struct mm_struct *mm)
747 {
748 	return test_and_set_bit(flag, ACCESS_PRIVATE(&mm->flags, __mm_flags));
749 }
750 
mm_flags_test_and_clear(int flag,struct mm_struct * mm)751 static inline bool mm_flags_test_and_clear(int flag, struct mm_struct *mm)
752 {
753 	return test_and_clear_bit(flag, ACCESS_PRIVATE(&mm->flags, __mm_flags));
754 }
755 
mm_flags_set(int flag,struct mm_struct * mm)756 static inline void mm_flags_set(int flag, struct mm_struct *mm)
757 {
758 	set_bit(flag, ACCESS_PRIVATE(&mm->flags, __mm_flags));
759 }
760 
mm_flags_clear(int flag,struct mm_struct * mm)761 static inline void mm_flags_clear(int flag, struct mm_struct *mm)
762 {
763 	clear_bit(flag, ACCESS_PRIVATE(&mm->flags, __mm_flags));
764 }
765 
mm_flags_clear_all(struct mm_struct * mm)766 static inline void mm_flags_clear_all(struct mm_struct *mm)
767 {
768 	bitmap_zero(ACCESS_PRIVATE(&mm->flags, __mm_flags), NUM_MM_FLAG_BITS);
769 }
770 
771 extern const struct vm_operations_struct vma_dummy_vm_ops;
772 
vma_init(struct vm_area_struct * vma,struct mm_struct * mm)773 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
774 {
775 	memset(vma, 0, sizeof(*vma));
776 	vma->vm_mm = mm;
777 	vma->vm_ops = &vma_dummy_vm_ops;
778 	INIT_LIST_HEAD(&vma->anon_vma_chain);
779 	vma_lock_init(vma, false);
780 }
781 
782 /* Use when VMA is not part of the VMA tree and needs no locking */
vm_flags_init(struct vm_area_struct * vma,vm_flags_t flags)783 static inline void vm_flags_init(struct vm_area_struct *vma,
784 				 vm_flags_t flags)
785 {
786 	ACCESS_PRIVATE(vma, __vm_flags) = flags;
787 }
788 
789 /*
790  * Use when VMA is part of the VMA tree and modifications need coordination
791  * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and
792  * it should be locked explicitly beforehand.
793  */
vm_flags_reset(struct vm_area_struct * vma,vm_flags_t flags)794 static inline void vm_flags_reset(struct vm_area_struct *vma,
795 				  vm_flags_t flags)
796 {
797 	vma_assert_write_locked(vma);
798 	vm_flags_init(vma, flags);
799 }
800 
vm_flags_reset_once(struct vm_area_struct * vma,vm_flags_t flags)801 static inline void vm_flags_reset_once(struct vm_area_struct *vma,
802 				       vm_flags_t flags)
803 {
804 	vma_assert_write_locked(vma);
805 	WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
806 }
807 
vm_flags_set(struct vm_area_struct * vma,vm_flags_t flags)808 static inline void vm_flags_set(struct vm_area_struct *vma,
809 				vm_flags_t flags)
810 {
811 	vma_start_write(vma);
812 	ACCESS_PRIVATE(vma, __vm_flags) |= flags;
813 }
814 
vm_flags_clear(struct vm_area_struct * vma,vm_flags_t flags)815 static inline void vm_flags_clear(struct vm_area_struct *vma,
816 				  vm_flags_t flags)
817 {
818 	vma_start_write(vma);
819 	ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
820 }
821 
822 /*
823  * Use only if VMA is not part of the VMA tree or has no other users and
824  * therefore needs no locking.
825  */
__vm_flags_mod(struct vm_area_struct * vma,vm_flags_t set,vm_flags_t clear)826 static inline void __vm_flags_mod(struct vm_area_struct *vma,
827 				  vm_flags_t set, vm_flags_t clear)
828 {
829 	vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
830 }
831 
832 /*
833  * Use only when the order of set/clear operations is unimportant, otherwise
834  * use vm_flags_{set|clear} explicitly.
835  */
vm_flags_mod(struct vm_area_struct * vma,vm_flags_t set,vm_flags_t clear)836 static inline void vm_flags_mod(struct vm_area_struct *vma,
837 				vm_flags_t set, vm_flags_t clear)
838 {
839 	vma_start_write(vma);
840 	__vm_flags_mod(vma, set, clear);
841 }
842 
vma_set_anonymous(struct vm_area_struct * vma)843 static inline void vma_set_anonymous(struct vm_area_struct *vma)
844 {
845 	vma->vm_ops = NULL;
846 }
847 
vma_is_anonymous(struct vm_area_struct * vma)848 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
849 {
850 	return !vma->vm_ops;
851 }
852 
853 /*
854  * Indicate if the VMA is a heap for the given task; for
855  * /proc/PID/maps that is the heap of the main task.
856  */
vma_is_initial_heap(const struct vm_area_struct * vma)857 static inline bool vma_is_initial_heap(const struct vm_area_struct *vma)
858 {
859 	return vma->vm_start < vma->vm_mm->brk &&
860 		vma->vm_end > vma->vm_mm->start_brk;
861 }
862 
863 /*
864  * Indicate if the VMA is a stack for the given task; for
865  * /proc/PID/maps that is the stack of the main task.
866  */
vma_is_initial_stack(const struct vm_area_struct * vma)867 static inline bool vma_is_initial_stack(const struct vm_area_struct *vma)
868 {
869 	/*
870 	 * We make no effort to guess what a given thread considers to be
871 	 * its "stack".  It's not even well-defined for programs written
872 	 * languages like Go.
873 	 */
874 	return vma->vm_start <= vma->vm_mm->start_stack &&
875 		vma->vm_end >= vma->vm_mm->start_stack;
876 }
877 
vma_is_temporary_stack(const struct vm_area_struct * vma)878 static inline bool vma_is_temporary_stack(const struct vm_area_struct *vma)
879 {
880 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
881 
882 	if (!maybe_stack)
883 		return false;
884 
885 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
886 						VM_STACK_INCOMPLETE_SETUP)
887 		return true;
888 
889 	return false;
890 }
891 
vma_is_foreign(const struct vm_area_struct * vma)892 static inline bool vma_is_foreign(const struct vm_area_struct *vma)
893 {
894 	if (!current->mm)
895 		return true;
896 
897 	if (current->mm != vma->vm_mm)
898 		return true;
899 
900 	return false;
901 }
902 
vma_is_accessible(const struct vm_area_struct * vma)903 static inline bool vma_is_accessible(const struct vm_area_struct *vma)
904 {
905 	return vma->vm_flags & VM_ACCESS_FLAGS;
906 }
907 
is_shared_maywrite(vm_flags_t vm_flags)908 static inline bool is_shared_maywrite(vm_flags_t vm_flags)
909 {
910 	return (vm_flags & (VM_SHARED | VM_MAYWRITE)) ==
911 		(VM_SHARED | VM_MAYWRITE);
912 }
913 
vma_is_shared_maywrite(const struct vm_area_struct * vma)914 static inline bool vma_is_shared_maywrite(const struct vm_area_struct *vma)
915 {
916 	return is_shared_maywrite(vma->vm_flags);
917 }
918 
919 static inline
vma_find(struct vma_iterator * vmi,unsigned long max)920 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
921 {
922 	return mas_find(&vmi->mas, max - 1);
923 }
924 
vma_next(struct vma_iterator * vmi)925 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
926 {
927 	/*
928 	 * Uses mas_find() to get the first VMA when the iterator starts.
929 	 * Calling mas_next() could skip the first entry.
930 	 */
931 	return mas_find(&vmi->mas, ULONG_MAX);
932 }
933 
934 static inline
vma_iter_next_range(struct vma_iterator * vmi)935 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
936 {
937 	return mas_next_range(&vmi->mas, ULONG_MAX);
938 }
939 
940 
vma_prev(struct vma_iterator * vmi)941 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
942 {
943 	return mas_prev(&vmi->mas, 0);
944 }
945 
vma_iter_clear_gfp(struct vma_iterator * vmi,unsigned long start,unsigned long end,gfp_t gfp)946 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
947 			unsigned long start, unsigned long end, gfp_t gfp)
948 {
949 	__mas_set_range(&vmi->mas, start, end - 1);
950 	mas_store_gfp(&vmi->mas, NULL, gfp);
951 	if (unlikely(mas_is_err(&vmi->mas)))
952 		return -ENOMEM;
953 
954 	return 0;
955 }
956 
957 /* Free any unused preallocations */
vma_iter_free(struct vma_iterator * vmi)958 static inline void vma_iter_free(struct vma_iterator *vmi)
959 {
960 	mas_destroy(&vmi->mas);
961 }
962 
vma_iter_bulk_store(struct vma_iterator * vmi,struct vm_area_struct * vma)963 static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
964 				      struct vm_area_struct *vma)
965 {
966 	vmi->mas.index = vma->vm_start;
967 	vmi->mas.last = vma->vm_end - 1;
968 	mas_store(&vmi->mas, vma);
969 	if (unlikely(mas_is_err(&vmi->mas)))
970 		return -ENOMEM;
971 
972 	vma_mark_attached(vma);
973 	return 0;
974 }
975 
vma_iter_invalidate(struct vma_iterator * vmi)976 static inline void vma_iter_invalidate(struct vma_iterator *vmi)
977 {
978 	mas_pause(&vmi->mas);
979 }
980 
vma_iter_set(struct vma_iterator * vmi,unsigned long addr)981 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
982 {
983 	mas_set(&vmi->mas, addr);
984 }
985 
986 #define for_each_vma(__vmi, __vma)					\
987 	while (((__vma) = vma_next(&(__vmi))) != NULL)
988 
989 /* The MM code likes to work with exclusive end addresses */
990 #define for_each_vma_range(__vmi, __vma, __end)				\
991 	while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
992 
993 #ifdef CONFIG_SHMEM
994 /*
995  * The vma_is_shmem is not inline because it is used only by slow
996  * paths in userfault.
997  */
998 bool vma_is_shmem(const struct vm_area_struct *vma);
999 bool vma_is_anon_shmem(const struct vm_area_struct *vma);
1000 #else
vma_is_shmem(const struct vm_area_struct * vma)1001 static inline bool vma_is_shmem(const struct vm_area_struct *vma) { return false; }
vma_is_anon_shmem(const struct vm_area_struct * vma)1002 static inline bool vma_is_anon_shmem(const struct vm_area_struct *vma) { return false; }
1003 #endif
1004 
1005 int vma_is_stack_for_current(const struct vm_area_struct *vma);
1006 
1007 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
1008 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
1009 
1010 struct mmu_gather;
1011 struct inode;
1012 
1013 extern void prep_compound_page(struct page *page, unsigned int order);
1014 
folio_large_order(const struct folio * folio)1015 static inline unsigned int folio_large_order(const struct folio *folio)
1016 {
1017 	return folio->_flags_1 & 0xff;
1018 }
1019 
1020 #ifdef NR_PAGES_IN_LARGE_FOLIO
folio_large_nr_pages(const struct folio * folio)1021 static inline unsigned long folio_large_nr_pages(const struct folio *folio)
1022 {
1023 	return folio->_nr_pages;
1024 }
1025 #else
folio_large_nr_pages(const struct folio * folio)1026 static inline unsigned long folio_large_nr_pages(const struct folio *folio)
1027 {
1028 	return 1L << folio_large_order(folio);
1029 }
1030 #endif
1031 
1032 /*
1033  * compound_order() can be called without holding a reference, which means
1034  * that niceties like page_folio() don't work.  These callers should be
1035  * prepared to handle wild return values.  For example, PG_head may be
1036  * set before the order is initialised, or this may be a tail page.
1037  * See compaction.c for some good examples.
1038  */
compound_order(const struct page * page)1039 static inline unsigned int compound_order(const struct page *page)
1040 {
1041 	const struct folio *folio = (struct folio *)page;
1042 
1043 	if (!test_bit(PG_head, &folio->flags.f))
1044 		return 0;
1045 	return folio_large_order(folio);
1046 }
1047 
1048 /**
1049  * folio_order - The allocation order of a folio.
1050  * @folio: The folio.
1051  *
1052  * A folio is composed of 2^order pages.  See get_order() for the definition
1053  * of order.
1054  *
1055  * Return: The order of the folio.
1056  */
folio_order(const struct folio * folio)1057 static inline unsigned int folio_order(const struct folio *folio)
1058 {
1059 	if (!folio_test_large(folio))
1060 		return 0;
1061 	return folio_large_order(folio);
1062 }
1063 
1064 /**
1065  * folio_reset_order - Reset the folio order and derived _nr_pages
1066  * @folio: The folio.
1067  *
1068  * Reset the order and derived _nr_pages to 0. Must only be used in the
1069  * process of splitting large folios.
1070  */
folio_reset_order(struct folio * folio)1071 static inline void folio_reset_order(struct folio *folio)
1072 {
1073 	if (WARN_ON_ONCE(!folio_test_large(folio)))
1074 		return;
1075 	folio->_flags_1 &= ~0xffUL;
1076 #ifdef NR_PAGES_IN_LARGE_FOLIO
1077 	folio->_nr_pages = 0;
1078 #endif
1079 }
1080 
1081 #include <linux/huge_mm.h>
1082 
1083 /*
1084  * Methods to modify the page usage count.
1085  *
1086  * What counts for a page usage:
1087  * - cache mapping   (page->mapping)
1088  * - private data    (page->private)
1089  * - page mapped in a task's page tables, each mapping
1090  *   is counted separately
1091  *
1092  * Also, many kernel routines increase the page count before a critical
1093  * routine so they can be sure the page doesn't go away from under them.
1094  */
1095 
1096 /*
1097  * Drop a ref, return true if the refcount fell to zero (the page has no users)
1098  */
put_page_testzero(struct page * page)1099 static inline int put_page_testzero(struct page *page)
1100 {
1101 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
1102 	return page_ref_dec_and_test(page);
1103 }
1104 
folio_put_testzero(struct folio * folio)1105 static inline int folio_put_testzero(struct folio *folio)
1106 {
1107 	return put_page_testzero(&folio->page);
1108 }
1109 
1110 /*
1111  * Try to grab a ref unless the page has a refcount of zero, return false if
1112  * that is the case.
1113  * This can be called when MMU is off so it must not access
1114  * any of the virtual mappings.
1115  */
get_page_unless_zero(struct page * page)1116 static inline bool get_page_unless_zero(struct page *page)
1117 {
1118 	return page_ref_add_unless(page, 1, 0);
1119 }
1120 
folio_get_nontail_page(struct page * page)1121 static inline struct folio *folio_get_nontail_page(struct page *page)
1122 {
1123 	if (unlikely(!get_page_unless_zero(page)))
1124 		return NULL;
1125 	return (struct folio *)page;
1126 }
1127 
1128 extern int page_is_ram(unsigned long pfn);
1129 
1130 enum {
1131 	REGION_INTERSECTS,
1132 	REGION_DISJOINT,
1133 	REGION_MIXED,
1134 };
1135 
1136 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1137 		      unsigned long desc);
1138 
1139 /* Support for virtually mapped pages */
1140 struct page *vmalloc_to_page(const void *addr);
1141 unsigned long vmalloc_to_pfn(const void *addr);
1142 
1143 /*
1144  * Determine if an address is within the vmalloc range
1145  *
1146  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1147  * is no special casing required.
1148  */
1149 #ifdef CONFIG_MMU
1150 extern bool is_vmalloc_addr(const void *x);
1151 extern int is_vmalloc_or_module_addr(const void *x);
1152 #else
is_vmalloc_addr(const void * x)1153 static inline bool is_vmalloc_addr(const void *x)
1154 {
1155 	return false;
1156 }
is_vmalloc_or_module_addr(const void * x)1157 static inline int is_vmalloc_or_module_addr(const void *x)
1158 {
1159 	return 0;
1160 }
1161 #endif
1162 
1163 /*
1164  * How many times the entire folio is mapped as a single unit (eg by a
1165  * PMD or PUD entry).  This is probably not what you want, except for
1166  * debugging purposes or implementation of other core folio_*() primitives.
1167  */
folio_entire_mapcount(const struct folio * folio)1168 static inline int folio_entire_mapcount(const struct folio *folio)
1169 {
1170 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1171 	if (!IS_ENABLED(CONFIG_64BIT) && unlikely(folio_large_order(folio) == 1))
1172 		return 0;
1173 	return atomic_read(&folio->_entire_mapcount) + 1;
1174 }
1175 
folio_large_mapcount(const struct folio * folio)1176 static inline int folio_large_mapcount(const struct folio *folio)
1177 {
1178 	VM_WARN_ON_FOLIO(!folio_test_large(folio), folio);
1179 	return atomic_read(&folio->_large_mapcount) + 1;
1180 }
1181 
1182 /**
1183  * folio_mapcount() - Number of mappings of this folio.
1184  * @folio: The folio.
1185  *
1186  * The folio mapcount corresponds to the number of present user page table
1187  * entries that reference any part of a folio. Each such present user page
1188  * table entry must be paired with exactly on folio reference.
1189  *
1190  * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts
1191  * exactly once.
1192  *
1193  * For hugetlb folios, each abstracted "hugetlb" user page table entry that
1194  * references the entire folio counts exactly once, even when such special
1195  * page table entries are comprised of multiple ordinary page table entries.
1196  *
1197  * Will report 0 for pages which cannot be mapped into userspace, such as
1198  * slab, page tables and similar.
1199  *
1200  * Return: The number of times this folio is mapped.
1201  */
folio_mapcount(const struct folio * folio)1202 static inline int folio_mapcount(const struct folio *folio)
1203 {
1204 	int mapcount;
1205 
1206 	if (likely(!folio_test_large(folio))) {
1207 		mapcount = atomic_read(&folio->_mapcount) + 1;
1208 		if (page_mapcount_is_type(mapcount))
1209 			mapcount = 0;
1210 		return mapcount;
1211 	}
1212 	return folio_large_mapcount(folio);
1213 }
1214 
1215 /**
1216  * folio_mapped - Is this folio mapped into userspace?
1217  * @folio: The folio.
1218  *
1219  * Return: True if any page in this folio is referenced by user page tables.
1220  */
folio_mapped(const struct folio * folio)1221 static inline bool folio_mapped(const struct folio *folio)
1222 {
1223 	return folio_mapcount(folio) >= 1;
1224 }
1225 
1226 /*
1227  * Return true if this page is mapped into pagetables.
1228  * For compound page it returns true if any sub-page of compound page is mapped,
1229  * even if this particular sub-page is not itself mapped by any PTE or PMD.
1230  */
page_mapped(const struct page * page)1231 static inline bool page_mapped(const struct page *page)
1232 {
1233 	return folio_mapped(page_folio(page));
1234 }
1235 
virt_to_head_page(const void * x)1236 static inline struct page *virt_to_head_page(const void *x)
1237 {
1238 	struct page *page = virt_to_page(x);
1239 
1240 	return compound_head(page);
1241 }
1242 
virt_to_folio(const void * x)1243 static inline struct folio *virt_to_folio(const void *x)
1244 {
1245 	struct page *page = virt_to_page(x);
1246 
1247 	return page_folio(page);
1248 }
1249 
1250 void __folio_put(struct folio *folio);
1251 
1252 void split_page(struct page *page, unsigned int order);
1253 void folio_copy(struct folio *dst, struct folio *src);
1254 int folio_mc_copy(struct folio *dst, struct folio *src);
1255 
1256 unsigned long nr_free_buffer_pages(void);
1257 
1258 /* Returns the number of bytes in this potentially compound page. */
page_size(const struct page * page)1259 static inline unsigned long page_size(const struct page *page)
1260 {
1261 	return PAGE_SIZE << compound_order(page);
1262 }
1263 
1264 /* Returns the number of bits needed for the number of bytes in a page */
page_shift(struct page * page)1265 static inline unsigned int page_shift(struct page *page)
1266 {
1267 	return PAGE_SHIFT + compound_order(page);
1268 }
1269 
1270 /**
1271  * thp_order - Order of a transparent huge page.
1272  * @page: Head page of a transparent huge page.
1273  */
thp_order(struct page * page)1274 static inline unsigned int thp_order(struct page *page)
1275 {
1276 	VM_BUG_ON_PGFLAGS(PageTail(page), page);
1277 	return compound_order(page);
1278 }
1279 
1280 /**
1281  * thp_size - Size of a transparent huge page.
1282  * @page: Head page of a transparent huge page.
1283  *
1284  * Return: Number of bytes in this page.
1285  */
thp_size(struct page * page)1286 static inline unsigned long thp_size(struct page *page)
1287 {
1288 	return PAGE_SIZE << thp_order(page);
1289 }
1290 
1291 #ifdef CONFIG_MMU
1292 /*
1293  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1294  * servicing faults for write access.  In the normal case, do always want
1295  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1296  * that do not have writing enabled, when used by access_process_vm.
1297  */
maybe_mkwrite(pte_t pte,struct vm_area_struct * vma)1298 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1299 {
1300 	if (likely(vma->vm_flags & VM_WRITE))
1301 		pte = pte_mkwrite(pte, vma);
1302 	return pte;
1303 }
1304 
1305 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct folio *folio, struct page *page);
1306 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
1307 		struct page *page, unsigned int nr, unsigned long addr);
1308 
1309 vm_fault_t finish_fault(struct vm_fault *vmf);
1310 #endif
1311 
1312 /*
1313  * Multiple processes may "see" the same page. E.g. for untouched
1314  * mappings of /dev/null, all processes see the same page full of
1315  * zeroes, and text pages of executables and shared libraries have
1316  * only one copy in memory, at most, normally.
1317  *
1318  * For the non-reserved pages, page_count(page) denotes a reference count.
1319  *   page_count() == 0 means the page is free. page->lru is then used for
1320  *   freelist management in the buddy allocator.
1321  *   page_count() > 0  means the page has been allocated.
1322  *
1323  * Pages are allocated by the slab allocator in order to provide memory
1324  * to kmalloc and kmem_cache_alloc. In this case, the management of the
1325  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1326  * unless a particular usage is carefully commented. (the responsibility of
1327  * freeing the kmalloc memory is the caller's, of course).
1328  *
1329  * A page may be used by anyone else who does a __get_free_page().
1330  * In this case, page_count still tracks the references, and should only
1331  * be used through the normal accessor functions. The top bits of page->flags
1332  * and page->virtual store page management information, but all other fields
1333  * are unused and could be used privately, carefully. The management of this
1334  * page is the responsibility of the one who allocated it, and those who have
1335  * subsequently been given references to it.
1336  *
1337  * The other pages (we may call them "pagecache pages") are completely
1338  * managed by the Linux memory manager: I/O, buffers, swapping etc.
1339  * The following discussion applies only to them.
1340  *
1341  * A pagecache page contains an opaque `private' member, which belongs to the
1342  * page's address_space. Usually, this is the address of a circular list of
1343  * the page's disk buffers. PG_private must be set to tell the VM to call
1344  * into the filesystem to release these pages.
1345  *
1346  * A folio may belong to an inode's memory mapping. In this case,
1347  * folio->mapping points to the inode, and folio->index is the file
1348  * offset of the folio, in units of PAGE_SIZE.
1349  *
1350  * If pagecache pages are not associated with an inode, they are said to be
1351  * anonymous pages. These may become associated with the swapcache, and in that
1352  * case PG_swapcache is set, and page->private is an offset into the swapcache.
1353  *
1354  * In either case (swapcache or inode backed), the pagecache itself holds one
1355  * reference to the page. Setting PG_private should also increment the
1356  * refcount. The each user mapping also has a reference to the page.
1357  *
1358  * The pagecache pages are stored in a per-mapping radix tree, which is
1359  * rooted at mapping->i_pages, and indexed by offset.
1360  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1361  * lists, we instead now tag pages as dirty/writeback in the radix tree.
1362  *
1363  * All pagecache pages may be subject to I/O:
1364  * - inode pages may need to be read from disk,
1365  * - inode pages which have been modified and are MAP_SHARED may need
1366  *   to be written back to the inode on disk,
1367  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1368  *   modified may need to be swapped out to swap space and (later) to be read
1369  *   back into memory.
1370  */
1371 
1372 /* 127: arbitrary random number, small enough to assemble well */
1373 #define folio_ref_zero_or_close_to_overflow(folio) \
1374 	((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1375 
1376 /**
1377  * folio_get - Increment the reference count on a folio.
1378  * @folio: The folio.
1379  *
1380  * Context: May be called in any context, as long as you know that
1381  * you have a refcount on the folio.  If you do not already have one,
1382  * folio_try_get() may be the right interface for you to use.
1383  */
folio_get(struct folio * folio)1384 static inline void folio_get(struct folio *folio)
1385 {
1386 	VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1387 	folio_ref_inc(folio);
1388 }
1389 
get_page(struct page * page)1390 static inline void get_page(struct page *page)
1391 {
1392 	struct folio *folio = page_folio(page);
1393 	if (WARN_ON_ONCE(folio_test_slab(folio)))
1394 		return;
1395 	if (WARN_ON_ONCE(folio_test_large_kmalloc(folio)))
1396 		return;
1397 	folio_get(folio);
1398 }
1399 
try_get_page(struct page * page)1400 static inline __must_check bool try_get_page(struct page *page)
1401 {
1402 	page = compound_head(page);
1403 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1404 		return false;
1405 	page_ref_inc(page);
1406 	return true;
1407 }
1408 
1409 /**
1410  * folio_put - Decrement the reference count on a folio.
1411  * @folio: The folio.
1412  *
1413  * If the folio's reference count reaches zero, the memory will be
1414  * released back to the page allocator and may be used by another
1415  * allocation immediately.  Do not access the memory or the struct folio
1416  * after calling folio_put() unless you can be sure that it wasn't the
1417  * last reference.
1418  *
1419  * Context: May be called in process or interrupt context, but not in NMI
1420  * context.  May be called while holding a spinlock.
1421  */
folio_put(struct folio * folio)1422 static inline void folio_put(struct folio *folio)
1423 {
1424 	if (folio_put_testzero(folio))
1425 		__folio_put(folio);
1426 }
1427 
1428 /**
1429  * folio_put_refs - Reduce the reference count on a folio.
1430  * @folio: The folio.
1431  * @refs: The amount to subtract from the folio's reference count.
1432  *
1433  * If the folio's reference count reaches zero, the memory will be
1434  * released back to the page allocator and may be used by another
1435  * allocation immediately.  Do not access the memory or the struct folio
1436  * after calling folio_put_refs() unless you can be sure that these weren't
1437  * the last references.
1438  *
1439  * Context: May be called in process or interrupt context, but not in NMI
1440  * context.  May be called while holding a spinlock.
1441  */
folio_put_refs(struct folio * folio,int refs)1442 static inline void folio_put_refs(struct folio *folio, int refs)
1443 {
1444 	if (folio_ref_sub_and_test(folio, refs))
1445 		__folio_put(folio);
1446 }
1447 
1448 void folios_put_refs(struct folio_batch *folios, unsigned int *refs);
1449 
1450 /*
1451  * union release_pages_arg - an array of pages or folios
1452  *
1453  * release_pages() releases a simple array of multiple pages, and
1454  * accepts various different forms of said page array: either
1455  * a regular old boring array of pages, an array of folios, or
1456  * an array of encoded page pointers.
1457  *
1458  * The transparent union syntax for this kind of "any of these
1459  * argument types" is all kinds of ugly, so look away.
1460  */
1461 typedef union {
1462 	struct page **pages;
1463 	struct folio **folios;
1464 	struct encoded_page **encoded_pages;
1465 } release_pages_arg __attribute__ ((__transparent_union__));
1466 
1467 void release_pages(release_pages_arg, int nr);
1468 
1469 /**
1470  * folios_put - Decrement the reference count on an array of folios.
1471  * @folios: The folios.
1472  *
1473  * Like folio_put(), but for a batch of folios.  This is more efficient
1474  * than writing the loop yourself as it will optimise the locks which need
1475  * to be taken if the folios are freed.  The folios batch is returned
1476  * empty and ready to be reused for another batch; there is no need to
1477  * reinitialise it.
1478  *
1479  * Context: May be called in process or interrupt context, but not in NMI
1480  * context.  May be called while holding a spinlock.
1481  */
folios_put(struct folio_batch * folios)1482 static inline void folios_put(struct folio_batch *folios)
1483 {
1484 	folios_put_refs(folios, NULL);
1485 }
1486 
put_page(struct page * page)1487 static inline void put_page(struct page *page)
1488 {
1489 	struct folio *folio = page_folio(page);
1490 
1491 	if (folio_test_slab(folio) || folio_test_large_kmalloc(folio))
1492 		return;
1493 
1494 	folio_put(folio);
1495 }
1496 
1497 /*
1498  * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1499  * the page's refcount so that two separate items are tracked: the original page
1500  * reference count, and also a new count of how many pin_user_pages() calls were
1501  * made against the page. ("gup-pinned" is another term for the latter).
1502  *
1503  * With this scheme, pin_user_pages() becomes special: such pages are marked as
1504  * distinct from normal pages. As such, the unpin_user_page() call (and its
1505  * variants) must be used in order to release gup-pinned pages.
1506  *
1507  * Choice of value:
1508  *
1509  * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1510  * counts with respect to pin_user_pages() and unpin_user_page() becomes
1511  * simpler, due to the fact that adding an even power of two to the page
1512  * refcount has the effect of using only the upper N bits, for the code that
1513  * counts up using the bias value. This means that the lower bits are left for
1514  * the exclusive use of the original code that increments and decrements by one
1515  * (or at least, by much smaller values than the bias value).
1516  *
1517  * Of course, once the lower bits overflow into the upper bits (and this is
1518  * OK, because subtraction recovers the original values), then visual inspection
1519  * no longer suffices to directly view the separate counts. However, for normal
1520  * applications that don't have huge page reference counts, this won't be an
1521  * issue.
1522  *
1523  * Locking: the lockless algorithm described in folio_try_get_rcu()
1524  * provides safe operation for get_user_pages(), folio_mkclean() and
1525  * other calls that race to set up page table entries.
1526  */
1527 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1528 
1529 void unpin_user_page(struct page *page);
1530 void unpin_folio(struct folio *folio);
1531 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1532 				 bool make_dirty);
1533 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1534 				      bool make_dirty);
1535 void unpin_user_pages(struct page **pages, unsigned long npages);
1536 void unpin_user_folio(struct folio *folio, unsigned long npages);
1537 void unpin_folios(struct folio **folios, unsigned long nfolios);
1538 
is_cow_mapping(vm_flags_t flags)1539 static inline bool is_cow_mapping(vm_flags_t flags)
1540 {
1541 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1542 }
1543 
1544 #ifndef CONFIG_MMU
is_nommu_shared_mapping(vm_flags_t flags)1545 static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1546 {
1547 	/*
1548 	 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1549 	 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1550 	 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1551 	 * underlying memory if ptrace is active, so this is only possible if
1552 	 * ptrace does not apply. Note that there is no mprotect() to upgrade
1553 	 * write permissions later.
1554 	 */
1555 	return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
1556 }
1557 #endif
1558 
1559 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1560 #define SECTION_IN_PAGE_FLAGS
1561 #endif
1562 
1563 /*
1564  * The identification function is mainly used by the buddy allocator for
1565  * determining if two pages could be buddies. We are not really identifying
1566  * the zone since we could be using the section number id if we do not have
1567  * node id available in page flags.
1568  * We only guarantee that it will return the same value for two combinable
1569  * pages in a zone.
1570  */
page_zone_id(struct page * page)1571 static inline int page_zone_id(struct page *page)
1572 {
1573 	return (page->flags.f >> ZONEID_PGSHIFT) & ZONEID_MASK;
1574 }
1575 
1576 #ifdef NODE_NOT_IN_PAGE_FLAGS
1577 int memdesc_nid(memdesc_flags_t mdf);
1578 #else
memdesc_nid(memdesc_flags_t mdf)1579 static inline int memdesc_nid(memdesc_flags_t mdf)
1580 {
1581 	return (mdf.f >> NODES_PGSHIFT) & NODES_MASK;
1582 }
1583 #endif
1584 
page_to_nid(const struct page * page)1585 static inline int page_to_nid(const struct page *page)
1586 {
1587 	return memdesc_nid(PF_POISONED_CHECK(page)->flags);
1588 }
1589 
folio_nid(const struct folio * folio)1590 static inline int folio_nid(const struct folio *folio)
1591 {
1592 	return memdesc_nid(folio->flags);
1593 }
1594 
1595 #ifdef CONFIG_NUMA_BALANCING
1596 /* page access time bits needs to hold at least 4 seconds */
1597 #define PAGE_ACCESS_TIME_MIN_BITS	12
1598 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1599 #define PAGE_ACCESS_TIME_BUCKETS				\
1600 	(PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1601 #else
1602 #define PAGE_ACCESS_TIME_BUCKETS	0
1603 #endif
1604 
1605 #define PAGE_ACCESS_TIME_MASK				\
1606 	(LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1607 
cpu_pid_to_cpupid(int cpu,int pid)1608 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1609 {
1610 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1611 }
1612 
cpupid_to_pid(int cpupid)1613 static inline int cpupid_to_pid(int cpupid)
1614 {
1615 	return cpupid & LAST__PID_MASK;
1616 }
1617 
cpupid_to_cpu(int cpupid)1618 static inline int cpupid_to_cpu(int cpupid)
1619 {
1620 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1621 }
1622 
cpupid_to_nid(int cpupid)1623 static inline int cpupid_to_nid(int cpupid)
1624 {
1625 	return cpu_to_node(cpupid_to_cpu(cpupid));
1626 }
1627 
cpupid_pid_unset(int cpupid)1628 static inline bool cpupid_pid_unset(int cpupid)
1629 {
1630 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1631 }
1632 
cpupid_cpu_unset(int cpupid)1633 static inline bool cpupid_cpu_unset(int cpupid)
1634 {
1635 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1636 }
1637 
__cpupid_match_pid(pid_t task_pid,int cpupid)1638 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1639 {
1640 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1641 }
1642 
1643 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1644 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
folio_xchg_last_cpupid(struct folio * folio,int cpupid)1645 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1646 {
1647 	return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1648 }
1649 
folio_last_cpupid(struct folio * folio)1650 static inline int folio_last_cpupid(struct folio *folio)
1651 {
1652 	return folio->_last_cpupid;
1653 }
page_cpupid_reset_last(struct page * page)1654 static inline void page_cpupid_reset_last(struct page *page)
1655 {
1656 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1657 }
1658 #else
folio_last_cpupid(struct folio * folio)1659 static inline int folio_last_cpupid(struct folio *folio)
1660 {
1661 	return (folio->flags.f >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1662 }
1663 
1664 int folio_xchg_last_cpupid(struct folio *folio, int cpupid);
1665 
page_cpupid_reset_last(struct page * page)1666 static inline void page_cpupid_reset_last(struct page *page)
1667 {
1668 	page->flags.f |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1669 }
1670 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1671 
folio_xchg_access_time(struct folio * folio,int time)1672 static inline int folio_xchg_access_time(struct folio *folio, int time)
1673 {
1674 	int last_time;
1675 
1676 	last_time = folio_xchg_last_cpupid(folio,
1677 					   time >> PAGE_ACCESS_TIME_BUCKETS);
1678 	return last_time << PAGE_ACCESS_TIME_BUCKETS;
1679 }
1680 
vma_set_access_pid_bit(struct vm_area_struct * vma)1681 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1682 {
1683 	unsigned int pid_bit;
1684 
1685 	pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
1686 	if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) {
1687 		__set_bit(pid_bit, &vma->numab_state->pids_active[1]);
1688 	}
1689 }
1690 
1691 bool folio_use_access_time(struct folio *folio);
1692 #else /* !CONFIG_NUMA_BALANCING */
folio_xchg_last_cpupid(struct folio * folio,int cpupid)1693 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1694 {
1695 	return folio_nid(folio); /* XXX */
1696 }
1697 
folio_xchg_access_time(struct folio * folio,int time)1698 static inline int folio_xchg_access_time(struct folio *folio, int time)
1699 {
1700 	return 0;
1701 }
1702 
folio_last_cpupid(struct folio * folio)1703 static inline int folio_last_cpupid(struct folio *folio)
1704 {
1705 	return folio_nid(folio); /* XXX */
1706 }
1707 
cpupid_to_nid(int cpupid)1708 static inline int cpupid_to_nid(int cpupid)
1709 {
1710 	return -1;
1711 }
1712 
cpupid_to_pid(int cpupid)1713 static inline int cpupid_to_pid(int cpupid)
1714 {
1715 	return -1;
1716 }
1717 
cpupid_to_cpu(int cpupid)1718 static inline int cpupid_to_cpu(int cpupid)
1719 {
1720 	return -1;
1721 }
1722 
cpu_pid_to_cpupid(int nid,int pid)1723 static inline int cpu_pid_to_cpupid(int nid, int pid)
1724 {
1725 	return -1;
1726 }
1727 
cpupid_pid_unset(int cpupid)1728 static inline bool cpupid_pid_unset(int cpupid)
1729 {
1730 	return true;
1731 }
1732 
page_cpupid_reset_last(struct page * page)1733 static inline void page_cpupid_reset_last(struct page *page)
1734 {
1735 }
1736 
cpupid_match_pid(struct task_struct * task,int cpupid)1737 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1738 {
1739 	return false;
1740 }
1741 
vma_set_access_pid_bit(struct vm_area_struct * vma)1742 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1743 {
1744 }
folio_use_access_time(struct folio * folio)1745 static inline bool folio_use_access_time(struct folio *folio)
1746 {
1747 	return false;
1748 }
1749 #endif /* CONFIG_NUMA_BALANCING */
1750 
1751 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1752 
1753 /*
1754  * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1755  * setting tags for all pages to native kernel tag value 0xff, as the default
1756  * value 0x00 maps to 0xff.
1757  */
1758 
page_kasan_tag(const struct page * page)1759 static inline u8 page_kasan_tag(const struct page *page)
1760 {
1761 	u8 tag = KASAN_TAG_KERNEL;
1762 
1763 	if (kasan_enabled()) {
1764 		tag = (page->flags.f >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1765 		tag ^= 0xff;
1766 	}
1767 
1768 	return tag;
1769 }
1770 
page_kasan_tag_set(struct page * page,u8 tag)1771 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1772 {
1773 	unsigned long old_flags, flags;
1774 
1775 	if (!kasan_enabled())
1776 		return;
1777 
1778 	tag ^= 0xff;
1779 	old_flags = READ_ONCE(page->flags.f);
1780 	do {
1781 		flags = old_flags;
1782 		flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1783 		flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1784 	} while (unlikely(!try_cmpxchg(&page->flags.f, &old_flags, flags)));
1785 }
1786 
page_kasan_tag_reset(struct page * page)1787 static inline void page_kasan_tag_reset(struct page *page)
1788 {
1789 	if (kasan_enabled())
1790 		page_kasan_tag_set(page, KASAN_TAG_KERNEL);
1791 }
1792 
1793 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1794 
page_kasan_tag(const struct page * page)1795 static inline u8 page_kasan_tag(const struct page *page)
1796 {
1797 	return 0xff;
1798 }
1799 
page_kasan_tag_set(struct page * page,u8 tag)1800 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
page_kasan_tag_reset(struct page * page)1801 static inline void page_kasan_tag_reset(struct page *page) { }
1802 
1803 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1804 
page_zone(const struct page * page)1805 static inline struct zone *page_zone(const struct page *page)
1806 {
1807 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1808 }
1809 
page_pgdat(const struct page * page)1810 static inline pg_data_t *page_pgdat(const struct page *page)
1811 {
1812 	return NODE_DATA(page_to_nid(page));
1813 }
1814 
folio_pgdat(const struct folio * folio)1815 static inline pg_data_t *folio_pgdat(const struct folio *folio)
1816 {
1817 	return NODE_DATA(folio_nid(folio));
1818 }
1819 
folio_zone(const struct folio * folio)1820 static inline struct zone *folio_zone(const struct folio *folio)
1821 {
1822 	return &folio_pgdat(folio)->node_zones[folio_zonenum(folio)];
1823 }
1824 
1825 #ifdef SECTION_IN_PAGE_FLAGS
set_page_section(struct page * page,unsigned long section)1826 static inline void set_page_section(struct page *page, unsigned long section)
1827 {
1828 	page->flags.f &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1829 	page->flags.f |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1830 }
1831 
memdesc_section(memdesc_flags_t mdf)1832 static inline unsigned long memdesc_section(memdesc_flags_t mdf)
1833 {
1834 	return (mdf.f >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1835 }
1836 #else /* !SECTION_IN_PAGE_FLAGS */
memdesc_section(memdesc_flags_t mdf)1837 static inline unsigned long memdesc_section(memdesc_flags_t mdf)
1838 {
1839 	return 0;
1840 }
1841 #endif /* SECTION_IN_PAGE_FLAGS */
1842 
1843 /**
1844  * folio_pfn - Return the Page Frame Number of a folio.
1845  * @folio: The folio.
1846  *
1847  * A folio may contain multiple pages.  The pages have consecutive
1848  * Page Frame Numbers.
1849  *
1850  * Return: The Page Frame Number of the first page in the folio.
1851  */
folio_pfn(const struct folio * folio)1852 static inline unsigned long folio_pfn(const struct folio *folio)
1853 {
1854 	return page_to_pfn(&folio->page);
1855 }
1856 
pfn_folio(unsigned long pfn)1857 static inline struct folio *pfn_folio(unsigned long pfn)
1858 {
1859 	return page_folio(pfn_to_page(pfn));
1860 }
1861 
1862 #ifdef CONFIG_MMU
mk_pte(const struct page * page,pgprot_t pgprot)1863 static inline pte_t mk_pte(const struct page *page, pgprot_t pgprot)
1864 {
1865 	return pfn_pte(page_to_pfn(page), pgprot);
1866 }
1867 
1868 /**
1869  * folio_mk_pte - Create a PTE for this folio
1870  * @folio: The folio to create a PTE for
1871  * @pgprot: The page protection bits to use
1872  *
1873  * Create a page table entry for the first page of this folio.
1874  * This is suitable for passing to set_ptes().
1875  *
1876  * Return: A page table entry suitable for mapping this folio.
1877  */
folio_mk_pte(const struct folio * folio,pgprot_t pgprot)1878 static inline pte_t folio_mk_pte(const struct folio *folio, pgprot_t pgprot)
1879 {
1880 	return pfn_pte(folio_pfn(folio), pgprot);
1881 }
1882 
1883 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1884 /**
1885  * folio_mk_pmd - Create a PMD for this folio
1886  * @folio: The folio to create a PMD for
1887  * @pgprot: The page protection bits to use
1888  *
1889  * Create a page table entry for the first page of this folio.
1890  * This is suitable for passing to set_pmd_at().
1891  *
1892  * Return: A page table entry suitable for mapping this folio.
1893  */
folio_mk_pmd(const struct folio * folio,pgprot_t pgprot)1894 static inline pmd_t folio_mk_pmd(const struct folio *folio, pgprot_t pgprot)
1895 {
1896 	return pmd_mkhuge(pfn_pmd(folio_pfn(folio), pgprot));
1897 }
1898 
1899 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1900 /**
1901  * folio_mk_pud - Create a PUD for this folio
1902  * @folio: The folio to create a PUD for
1903  * @pgprot: The page protection bits to use
1904  *
1905  * Create a page table entry for the first page of this folio.
1906  * This is suitable for passing to set_pud_at().
1907  *
1908  * Return: A page table entry suitable for mapping this folio.
1909  */
folio_mk_pud(const struct folio * folio,pgprot_t pgprot)1910 static inline pud_t folio_mk_pud(const struct folio *folio, pgprot_t pgprot)
1911 {
1912 	return pud_mkhuge(pfn_pud(folio_pfn(folio), pgprot));
1913 }
1914 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1915 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1916 #endif /* CONFIG_MMU */
1917 
folio_has_pincount(const struct folio * folio)1918 static inline bool folio_has_pincount(const struct folio *folio)
1919 {
1920 	if (IS_ENABLED(CONFIG_64BIT))
1921 		return folio_test_large(folio);
1922 	return folio_order(folio) > 1;
1923 }
1924 
1925 /**
1926  * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1927  * @folio: The folio.
1928  *
1929  * This function checks if a folio has been pinned via a call to
1930  * a function in the pin_user_pages() family.
1931  *
1932  * For small folios, the return value is partially fuzzy: false is not fuzzy,
1933  * because it means "definitely not pinned for DMA", but true means "probably
1934  * pinned for DMA, but possibly a false positive due to having at least
1935  * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1936  *
1937  * False positives are OK, because: a) it's unlikely for a folio to
1938  * get that many refcounts, and b) all the callers of this routine are
1939  * expected to be able to deal gracefully with a false positive.
1940  *
1941  * For most large folios, the result will be exactly correct. That's because
1942  * we have more tracking data available: the _pincount field is used
1943  * instead of the GUP_PIN_COUNTING_BIAS scheme.
1944  *
1945  * For more information, please see Documentation/core-api/pin_user_pages.rst.
1946  *
1947  * Return: True, if it is likely that the folio has been "dma-pinned".
1948  * False, if the folio is definitely not dma-pinned.
1949  */
folio_maybe_dma_pinned(struct folio * folio)1950 static inline bool folio_maybe_dma_pinned(struct folio *folio)
1951 {
1952 	if (folio_has_pincount(folio))
1953 		return atomic_read(&folio->_pincount) > 0;
1954 
1955 	/*
1956 	 * folio_ref_count() is signed. If that refcount overflows, then
1957 	 * folio_ref_count() returns a negative value, and callers will avoid
1958 	 * further incrementing the refcount.
1959 	 *
1960 	 * Here, for that overflow case, use the sign bit to count a little
1961 	 * bit higher via unsigned math, and thus still get an accurate result.
1962 	 */
1963 	return ((unsigned int)folio_ref_count(folio)) >=
1964 		GUP_PIN_COUNTING_BIAS;
1965 }
1966 
1967 /*
1968  * This should most likely only be called during fork() to see whether we
1969  * should break the cow immediately for an anon page on the src mm.
1970  *
1971  * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
1972  */
folio_needs_cow_for_dma(struct vm_area_struct * vma,struct folio * folio)1973 static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma,
1974 					  struct folio *folio)
1975 {
1976 	VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
1977 
1978 	if (!mm_flags_test(MMF_HAS_PINNED, vma->vm_mm))
1979 		return false;
1980 
1981 	return folio_maybe_dma_pinned(folio);
1982 }
1983 
1984 /**
1985  * is_zero_page - Query if a page is a zero page
1986  * @page: The page to query
1987  *
1988  * This returns true if @page is one of the permanent zero pages.
1989  */
is_zero_page(const struct page * page)1990 static inline bool is_zero_page(const struct page *page)
1991 {
1992 	return is_zero_pfn(page_to_pfn(page));
1993 }
1994 
1995 /**
1996  * is_zero_folio - Query if a folio is a zero page
1997  * @folio: The folio to query
1998  *
1999  * This returns true if @folio is one of the permanent zero pages.
2000  */
is_zero_folio(const struct folio * folio)2001 static inline bool is_zero_folio(const struct folio *folio)
2002 {
2003 	return is_zero_page(&folio->page);
2004 }
2005 
2006 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */
2007 #ifdef CONFIG_MIGRATION
folio_is_longterm_pinnable(struct folio * folio)2008 static inline bool folio_is_longterm_pinnable(struct folio *folio)
2009 {
2010 #ifdef CONFIG_CMA
2011 	int mt = folio_migratetype(folio);
2012 
2013 	if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
2014 		return false;
2015 #endif
2016 	/* The zero page can be "pinned" but gets special handling. */
2017 	if (is_zero_folio(folio))
2018 		return true;
2019 
2020 	/* Coherent device memory must always allow eviction. */
2021 	if (folio_is_device_coherent(folio))
2022 		return false;
2023 
2024 	/*
2025 	 * Filesystems can only tolerate transient delays to truncate and
2026 	 * hole-punch operations
2027 	 */
2028 	if (folio_is_fsdax(folio))
2029 		return false;
2030 
2031 	/* Otherwise, non-movable zone folios can be pinned. */
2032 	return !folio_is_zone_movable(folio);
2033 
2034 }
2035 #else
folio_is_longterm_pinnable(struct folio * folio)2036 static inline bool folio_is_longterm_pinnable(struct folio *folio)
2037 {
2038 	return true;
2039 }
2040 #endif
2041 
set_page_zone(struct page * page,enum zone_type zone)2042 static inline void set_page_zone(struct page *page, enum zone_type zone)
2043 {
2044 	page->flags.f &= ~(ZONES_MASK << ZONES_PGSHIFT);
2045 	page->flags.f |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
2046 }
2047 
set_page_node(struct page * page,unsigned long node)2048 static inline void set_page_node(struct page *page, unsigned long node)
2049 {
2050 	page->flags.f &= ~(NODES_MASK << NODES_PGSHIFT);
2051 	page->flags.f |= (node & NODES_MASK) << NODES_PGSHIFT;
2052 }
2053 
set_page_links(struct page * page,enum zone_type zone,unsigned long node,unsigned long pfn)2054 static inline void set_page_links(struct page *page, enum zone_type zone,
2055 	unsigned long node, unsigned long pfn)
2056 {
2057 	set_page_zone(page, zone);
2058 	set_page_node(page, node);
2059 #ifdef SECTION_IN_PAGE_FLAGS
2060 	set_page_section(page, pfn_to_section_nr(pfn));
2061 #endif
2062 }
2063 
2064 /**
2065  * folio_nr_pages - The number of pages in the folio.
2066  * @folio: The folio.
2067  *
2068  * Return: A positive power of two.
2069  */
folio_nr_pages(const struct folio * folio)2070 static inline unsigned long folio_nr_pages(const struct folio *folio)
2071 {
2072 	if (!folio_test_large(folio))
2073 		return 1;
2074 	return folio_large_nr_pages(folio);
2075 }
2076 
2077 #if !defined(CONFIG_HAVE_GIGANTIC_FOLIOS)
2078 /*
2079  * We don't expect any folios that exceed buddy sizes (and consequently
2080  * memory sections).
2081  */
2082 #define MAX_FOLIO_ORDER		MAX_PAGE_ORDER
2083 #elif defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
2084 /*
2085  * Only pages within a single memory section are guaranteed to be
2086  * contiguous. By limiting folios to a single memory section, all folio
2087  * pages are guaranteed to be contiguous.
2088  */
2089 #define MAX_FOLIO_ORDER		PFN_SECTION_SHIFT
2090 #elif defined(CONFIG_HUGETLB_PAGE)
2091 /*
2092  * There is no real limit on the folio size. We limit them to the maximum we
2093  * currently expect (see CONFIG_HAVE_GIGANTIC_FOLIOS): with hugetlb, we expect
2094  * no folios larger than 16 GiB on 64bit and 1 GiB on 32bit.
2095  */
2096 #define MAX_FOLIO_ORDER		get_order(IS_ENABLED(CONFIG_64BIT) ? SZ_16G : SZ_1G)
2097 #else
2098 /*
2099  * Without hugetlb, gigantic folios that are bigger than a single PUD are
2100  * currently impossible.
2101  */
2102 #define MAX_FOLIO_ORDER		PUD_ORDER
2103 #endif
2104 
2105 #define MAX_FOLIO_NR_PAGES	(1UL << MAX_FOLIO_ORDER)
2106 
2107 /*
2108  * compound_nr() returns the number of pages in this potentially compound
2109  * page.  compound_nr() can be called on a tail page, and is defined to
2110  * return 1 in that case.
2111  */
compound_nr(const struct page * page)2112 static inline unsigned long compound_nr(const struct page *page)
2113 {
2114 	const struct folio *folio = (struct folio *)page;
2115 
2116 	if (!test_bit(PG_head, &folio->flags.f))
2117 		return 1;
2118 	return folio_large_nr_pages(folio);
2119 }
2120 
2121 /**
2122  * folio_next - Move to the next physical folio.
2123  * @folio: The folio we're currently operating on.
2124  *
2125  * If you have physically contiguous memory which may span more than
2126  * one folio (eg a &struct bio_vec), use this function to move from one
2127  * folio to the next.  Do not use it if the memory is only virtually
2128  * contiguous as the folios are almost certainly not adjacent to each
2129  * other.  This is the folio equivalent to writing ``page++``.
2130  *
2131  * Context: We assume that the folios are refcounted and/or locked at a
2132  * higher level and do not adjust the reference counts.
2133  * Return: The next struct folio.
2134  */
folio_next(struct folio * folio)2135 static inline struct folio *folio_next(struct folio *folio)
2136 {
2137 	return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2138 }
2139 
2140 /**
2141  * folio_shift - The size of the memory described by this folio.
2142  * @folio: The folio.
2143  *
2144  * A folio represents a number of bytes which is a power-of-two in size.
2145  * This function tells you which power-of-two the folio is.  See also
2146  * folio_size() and folio_order().
2147  *
2148  * Context: The caller should have a reference on the folio to prevent
2149  * it from being split.  It is not necessary for the folio to be locked.
2150  * Return: The base-2 logarithm of the size of this folio.
2151  */
folio_shift(const struct folio * folio)2152 static inline unsigned int folio_shift(const struct folio *folio)
2153 {
2154 	return PAGE_SHIFT + folio_order(folio);
2155 }
2156 
2157 /**
2158  * folio_size - The number of bytes in a folio.
2159  * @folio: The folio.
2160  *
2161  * Context: The caller should have a reference on the folio to prevent
2162  * it from being split.  It is not necessary for the folio to be locked.
2163  * Return: The number of bytes in this folio.
2164  */
folio_size(const struct folio * folio)2165 static inline size_t folio_size(const struct folio *folio)
2166 {
2167 	return PAGE_SIZE << folio_order(folio);
2168 }
2169 
2170 /**
2171  * folio_maybe_mapped_shared - Whether the folio is mapped into the page
2172  *			       tables of more than one MM
2173  * @folio: The folio.
2174  *
2175  * This function checks if the folio maybe currently mapped into more than one
2176  * MM ("maybe mapped shared"), or if the folio is certainly mapped into a single
2177  * MM ("mapped exclusively").
2178  *
2179  * For KSM folios, this function also returns "mapped shared" when a folio is
2180  * mapped multiple times into the same MM, because the individual page mappings
2181  * are independent.
2182  *
2183  * For small anonymous folios and anonymous hugetlb folios, the return
2184  * value will be exactly correct: non-KSM folios can only be mapped at most once
2185  * into an MM, and they cannot be partially mapped. KSM folios are
2186  * considered shared even if mapped multiple times into the same MM.
2187  *
2188  * For other folios, the result can be fuzzy:
2189  *    #. For partially-mappable large folios (THP), the return value can wrongly
2190  *       indicate "mapped shared" (false positive) if a folio was mapped by
2191  *       more than two MMs at one point in time.
2192  *    #. For pagecache folios (including hugetlb), the return value can wrongly
2193  *       indicate "mapped shared" (false positive) when two VMAs in the same MM
2194  *       cover the same file range.
2195  *
2196  * Further, this function only considers current page table mappings that
2197  * are tracked using the folio mapcount(s).
2198  *
2199  * This function does not consider:
2200  *    #. If the folio might get mapped in the (near) future (e.g., swapcache,
2201  *       pagecache, temporary unmapping for migration).
2202  *    #. If the folio is mapped differently (VM_PFNMAP).
2203  *    #. If hugetlb page table sharing applies. Callers might want to check
2204  *       hugetlb_pmd_shared().
2205  *
2206  * Return: Whether the folio is estimated to be mapped into more than one MM.
2207  */
folio_maybe_mapped_shared(struct folio * folio)2208 static inline bool folio_maybe_mapped_shared(struct folio *folio)
2209 {
2210 	int mapcount = folio_mapcount(folio);
2211 
2212 	/* Only partially-mappable folios require more care. */
2213 	if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio)))
2214 		return mapcount > 1;
2215 
2216 	/*
2217 	 * vm_insert_page() without CONFIG_TRANSPARENT_HUGEPAGE ...
2218 	 * simply assume "mapped shared", nobody should really care
2219 	 * about this for arbitrary kernel allocations.
2220 	 */
2221 	if (!IS_ENABLED(CONFIG_MM_ID))
2222 		return true;
2223 
2224 	/*
2225 	 * A single mapping implies "mapped exclusively", even if the
2226 	 * folio flag says something different: it's easier to handle this
2227 	 * case here instead of on the RMAP hot path.
2228 	 */
2229 	if (mapcount <= 1)
2230 		return false;
2231 	return test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids);
2232 }
2233 
2234 /**
2235  * folio_expected_ref_count - calculate the expected folio refcount
2236  * @folio: the folio
2237  *
2238  * Calculate the expected folio refcount, taking references from the pagecache,
2239  * swapcache, PG_private and page table mappings into account. Useful in
2240  * combination with folio_ref_count() to detect unexpected references (e.g.,
2241  * GUP or other temporary references).
2242  *
2243  * Does currently not consider references from the LRU cache. If the folio
2244  * was isolated from the LRU (which is the case during migration or split),
2245  * the LRU cache does not apply.
2246  *
2247  * Calling this function on an unmapped folio -- !folio_mapped() -- that is
2248  * locked will return a stable result.
2249  *
2250  * Calling this function on a mapped folio will not result in a stable result,
2251  * because nothing stops additional page table mappings from coming (e.g.,
2252  * fork()) or going (e.g., munmap()).
2253  *
2254  * Calling this function without the folio lock will also not result in a
2255  * stable result: for example, the folio might get dropped from the swapcache
2256  * concurrently.
2257  *
2258  * However, even when called without the folio lock or on a mapped folio,
2259  * this function can be used to detect unexpected references early (for example,
2260  * if it makes sense to even lock the folio and unmap it).
2261  *
2262  * The caller must add any reference (e.g., from folio_try_get()) it might be
2263  * holding itself to the result.
2264  *
2265  * Returns the expected folio refcount.
2266  */
folio_expected_ref_count(const struct folio * folio)2267 static inline int folio_expected_ref_count(const struct folio *folio)
2268 {
2269 	const int order = folio_order(folio);
2270 	int ref_count = 0;
2271 
2272 	if (WARN_ON_ONCE(page_has_type(&folio->page) && !folio_test_hugetlb(folio)))
2273 		return 0;
2274 
2275 	if (folio_test_anon(folio)) {
2276 		/* One reference per page from the swapcache. */
2277 		ref_count += folio_test_swapcache(folio) << order;
2278 	} else {
2279 		/* One reference per page from the pagecache. */
2280 		ref_count += !!folio->mapping << order;
2281 		/* One reference from PG_private. */
2282 		ref_count += folio_test_private(folio);
2283 	}
2284 
2285 	/* One reference per page table mapping. */
2286 	return ref_count + folio_mapcount(folio);
2287 }
2288 
2289 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
arch_make_folio_accessible(struct folio * folio)2290 static inline int arch_make_folio_accessible(struct folio *folio)
2291 {
2292 	return 0;
2293 }
2294 #endif
2295 
2296 /*
2297  * Some inline functions in vmstat.h depend on page_zone()
2298  */
2299 #include <linux/vmstat.h>
2300 
2301 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2302 #define HASHED_PAGE_VIRTUAL
2303 #endif
2304 
2305 #if defined(WANT_PAGE_VIRTUAL)
page_address(const struct page * page)2306 static inline void *page_address(const struct page *page)
2307 {
2308 	return page->virtual;
2309 }
set_page_address(struct page * page,void * address)2310 static inline void set_page_address(struct page *page, void *address)
2311 {
2312 	page->virtual = address;
2313 }
2314 #define page_address_init()  do { } while(0)
2315 #endif
2316 
2317 #if defined(HASHED_PAGE_VIRTUAL)
2318 void *page_address(const struct page *page);
2319 void set_page_address(struct page *page, void *virtual);
2320 void page_address_init(void);
2321 #endif
2322 
lowmem_page_address(const struct page * page)2323 static __always_inline void *lowmem_page_address(const struct page *page)
2324 {
2325 	return page_to_virt(page);
2326 }
2327 
2328 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2329 #define page_address(page) lowmem_page_address(page)
2330 #define set_page_address(page, address)  do { } while(0)
2331 #define page_address_init()  do { } while(0)
2332 #endif
2333 
folio_address(const struct folio * folio)2334 static inline void *folio_address(const struct folio *folio)
2335 {
2336 	return page_address(&folio->page);
2337 }
2338 
2339 /*
2340  * Return true only if the page has been allocated with
2341  * ALLOC_NO_WATERMARKS and the low watermark was not
2342  * met implying that the system is under some pressure.
2343  */
page_is_pfmemalloc(const struct page * page)2344 static inline bool page_is_pfmemalloc(const struct page *page)
2345 {
2346 	/*
2347 	 * lru.next has bit 1 set if the page is allocated from the
2348 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2349 	 * they do not need to preserve that information.
2350 	 */
2351 	return (uintptr_t)page->lru.next & BIT(1);
2352 }
2353 
2354 /*
2355  * Return true only if the folio has been allocated with
2356  * ALLOC_NO_WATERMARKS and the low watermark was not
2357  * met implying that the system is under some pressure.
2358  */
folio_is_pfmemalloc(const struct folio * folio)2359 static inline bool folio_is_pfmemalloc(const struct folio *folio)
2360 {
2361 	/*
2362 	 * lru.next has bit 1 set if the page is allocated from the
2363 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2364 	 * they do not need to preserve that information.
2365 	 */
2366 	return (uintptr_t)folio->lru.next & BIT(1);
2367 }
2368 
2369 /*
2370  * Only to be called by the page allocator on a freshly allocated
2371  * page.
2372  */
set_page_pfmemalloc(struct page * page)2373 static inline void set_page_pfmemalloc(struct page *page)
2374 {
2375 	page->lru.next = (void *)BIT(1);
2376 }
2377 
clear_page_pfmemalloc(struct page * page)2378 static inline void clear_page_pfmemalloc(struct page *page)
2379 {
2380 	page->lru.next = NULL;
2381 }
2382 
2383 /*
2384  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2385  */
2386 extern void pagefault_out_of_memory(void);
2387 
2388 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
2389 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
2390 
2391 /*
2392  * Parameter block passed down to zap_pte_range in exceptional cases.
2393  */
2394 struct zap_details {
2395 	struct folio *single_folio;	/* Locked folio to be unmapped */
2396 	bool even_cows;			/* Zap COWed private pages too? */
2397 	bool reclaim_pt;		/* Need reclaim page tables? */
2398 	zap_flags_t zap_flags;		/* Extra flags for zapping */
2399 };
2400 
2401 /*
2402  * Whether to drop the pte markers, for example, the uffd-wp information for
2403  * file-backed memory.  This should only be specified when we will completely
2404  * drop the page in the mm, either by truncation or unmapping of the vma.  By
2405  * default, the flag is not set.
2406  */
2407 #define  ZAP_FLAG_DROP_MARKER        ((__force zap_flags_t) BIT(0))
2408 /* Set in unmap_vmas() to indicate a final unmap call.  Only used by hugetlb */
2409 #define  ZAP_FLAG_UNMAP              ((__force zap_flags_t) BIT(1))
2410 
2411 #ifdef CONFIG_SCHED_MM_CID
2412 void sched_mm_cid_before_execve(struct task_struct *t);
2413 void sched_mm_cid_after_execve(struct task_struct *t);
2414 void sched_mm_cid_fork(struct task_struct *t);
2415 void sched_mm_cid_exit_signals(struct task_struct *t);
task_mm_cid(struct task_struct * t)2416 static inline int task_mm_cid(struct task_struct *t)
2417 {
2418 	return t->mm_cid;
2419 }
2420 #else
sched_mm_cid_before_execve(struct task_struct * t)2421 static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
sched_mm_cid_after_execve(struct task_struct * t)2422 static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
sched_mm_cid_fork(struct task_struct * t)2423 static inline void sched_mm_cid_fork(struct task_struct *t) { }
sched_mm_cid_exit_signals(struct task_struct * t)2424 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
task_mm_cid(struct task_struct * t)2425 static inline int task_mm_cid(struct task_struct *t)
2426 {
2427 	/*
2428 	 * Use the processor id as a fall-back when the mm cid feature is
2429 	 * disabled. This provides functional per-cpu data structure accesses
2430 	 * in user-space, althrough it won't provide the memory usage benefits.
2431 	 */
2432 	return raw_smp_processor_id();
2433 }
2434 #endif
2435 
2436 #ifdef CONFIG_MMU
2437 extern bool can_do_mlock(void);
2438 #else
can_do_mlock(void)2439 static inline bool can_do_mlock(void) { return false; }
2440 #endif
2441 extern int user_shm_lock(size_t, struct ucounts *);
2442 extern void user_shm_unlock(size_t, struct ucounts *);
2443 
2444 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2445 			     pte_t pte);
2446 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2447 			     pte_t pte);
2448 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
2449 				  unsigned long addr, pmd_t pmd);
2450 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2451 				pmd_t pmd);
2452 struct page *vm_normal_page_pud(struct vm_area_struct *vma, unsigned long addr,
2453 		pud_t pud);
2454 
2455 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2456 		  unsigned long size);
2457 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2458 			   unsigned long size, struct zap_details *details);
zap_vma_pages(struct vm_area_struct * vma)2459 static inline void zap_vma_pages(struct vm_area_struct *vma)
2460 {
2461 	zap_page_range_single(vma, vma->vm_start,
2462 			      vma->vm_end - vma->vm_start, NULL);
2463 }
2464 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
2465 		struct vm_area_struct *start_vma, unsigned long start,
2466 		unsigned long end, unsigned long tree_end, bool mm_wr_locked);
2467 
2468 struct mmu_notifier_range;
2469 
2470 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
2471 		unsigned long end, unsigned long floor, unsigned long ceiling);
2472 int
2473 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
2474 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2475 			void *buf, int len, int write);
2476 
2477 struct follow_pfnmap_args {
2478 	/**
2479 	 * Inputs:
2480 	 * @vma: Pointer to @vm_area_struct struct
2481 	 * @address: the virtual address to walk
2482 	 */
2483 	struct vm_area_struct *vma;
2484 	unsigned long address;
2485 	/**
2486 	 * Internals:
2487 	 *
2488 	 * The caller shouldn't touch any of these.
2489 	 */
2490 	spinlock_t *lock;
2491 	pte_t *ptep;
2492 	/**
2493 	 * Outputs:
2494 	 *
2495 	 * @pfn: the PFN of the address
2496 	 * @addr_mask: address mask covering pfn
2497 	 * @pgprot: the pgprot_t of the mapping
2498 	 * @writable: whether the mapping is writable
2499 	 * @special: whether the mapping is a special mapping (real PFN maps)
2500 	 */
2501 	unsigned long pfn;
2502 	unsigned long addr_mask;
2503 	pgprot_t pgprot;
2504 	bool writable;
2505 	bool special;
2506 };
2507 int follow_pfnmap_start(struct follow_pfnmap_args *args);
2508 void follow_pfnmap_end(struct follow_pfnmap_args *args);
2509 
2510 extern void truncate_pagecache(struct inode *inode, loff_t new);
2511 extern void truncate_setsize(struct inode *inode, loff_t newsize);
2512 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
2513 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
2514 int generic_error_remove_folio(struct address_space *mapping,
2515 		struct folio *folio);
2516 
2517 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
2518 		unsigned long address, struct pt_regs *regs);
2519 
2520 #ifdef CONFIG_MMU
2521 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2522 				  unsigned long address, unsigned int flags,
2523 				  struct pt_regs *regs);
2524 extern int fixup_user_fault(struct mm_struct *mm,
2525 			    unsigned long address, unsigned int fault_flags,
2526 			    bool *unlocked);
2527 void unmap_mapping_pages(struct address_space *mapping,
2528 		pgoff_t start, pgoff_t nr, bool even_cows);
2529 void unmap_mapping_range(struct address_space *mapping,
2530 		loff_t const holebegin, loff_t const holelen, int even_cows);
2531 #else
handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct pt_regs * regs)2532 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2533 					 unsigned long address, unsigned int flags,
2534 					 struct pt_regs *regs)
2535 {
2536 	/* should never happen if there's no MMU */
2537 	BUG();
2538 	return VM_FAULT_SIGBUS;
2539 }
fixup_user_fault(struct mm_struct * mm,unsigned long address,unsigned int fault_flags,bool * unlocked)2540 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
2541 		unsigned int fault_flags, bool *unlocked)
2542 {
2543 	/* should never happen if there's no MMU */
2544 	BUG();
2545 	return -EFAULT;
2546 }
unmap_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t nr,bool even_cows)2547 static inline void unmap_mapping_pages(struct address_space *mapping,
2548 		pgoff_t start, pgoff_t nr, bool even_cows) { }
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)2549 static inline void unmap_mapping_range(struct address_space *mapping,
2550 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
2551 #endif
2552 
unmap_shared_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen)2553 static inline void unmap_shared_mapping_range(struct address_space *mapping,
2554 		loff_t const holebegin, loff_t const holelen)
2555 {
2556 	unmap_mapping_range(mapping, holebegin, holelen, 0);
2557 }
2558 
2559 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm,
2560 						unsigned long addr);
2561 
2562 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2563 		void *buf, int len, unsigned int gup_flags);
2564 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2565 		void *buf, int len, unsigned int gup_flags);
2566 
2567 #ifdef CONFIG_BPF_SYSCALL
2568 extern int copy_remote_vm_str(struct task_struct *tsk, unsigned long addr,
2569 			      void *buf, int len, unsigned int gup_flags);
2570 #endif
2571 
2572 long get_user_pages_remote(struct mm_struct *mm,
2573 			   unsigned long start, unsigned long nr_pages,
2574 			   unsigned int gup_flags, struct page **pages,
2575 			   int *locked);
2576 long pin_user_pages_remote(struct mm_struct *mm,
2577 			   unsigned long start, unsigned long nr_pages,
2578 			   unsigned int gup_flags, struct page **pages,
2579 			   int *locked);
2580 
2581 /*
2582  * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT.
2583  */
get_user_page_vma_remote(struct mm_struct * mm,unsigned long addr,int gup_flags,struct vm_area_struct ** vmap)2584 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
2585 						    unsigned long addr,
2586 						    int gup_flags,
2587 						    struct vm_area_struct **vmap)
2588 {
2589 	struct page *page;
2590 	struct vm_area_struct *vma;
2591 	int got;
2592 
2593 	if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT)))
2594 		return ERR_PTR(-EINVAL);
2595 
2596 	got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL);
2597 
2598 	if (got < 0)
2599 		return ERR_PTR(got);
2600 
2601 	vma = vma_lookup(mm, addr);
2602 	if (WARN_ON_ONCE(!vma)) {
2603 		put_page(page);
2604 		return ERR_PTR(-EINVAL);
2605 	}
2606 
2607 	*vmap = vma;
2608 	return page;
2609 }
2610 
2611 long get_user_pages(unsigned long start, unsigned long nr_pages,
2612 		    unsigned int gup_flags, struct page **pages);
2613 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2614 		    unsigned int gup_flags, struct page **pages);
2615 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2616 		    struct page **pages, unsigned int gup_flags);
2617 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2618 		    struct page **pages, unsigned int gup_flags);
2619 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end,
2620 		      struct folio **folios, unsigned int max_folios,
2621 		      pgoff_t *offset);
2622 int folio_add_pins(struct folio *folio, unsigned int pins);
2623 
2624 int get_user_pages_fast(unsigned long start, int nr_pages,
2625 			unsigned int gup_flags, struct page **pages);
2626 int pin_user_pages_fast(unsigned long start, int nr_pages,
2627 			unsigned int gup_flags, struct page **pages);
2628 void folio_add_pin(struct folio *folio);
2629 
2630 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2631 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2632 			const struct task_struct *task, bool bypass_rlim);
2633 
2634 struct kvec;
2635 struct page *get_dump_page(unsigned long addr, int *locked);
2636 
2637 bool folio_mark_dirty(struct folio *folio);
2638 bool folio_mark_dirty_lock(struct folio *folio);
2639 bool set_page_dirty(struct page *page);
2640 int set_page_dirty_lock(struct page *page);
2641 
2642 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
2643 
2644 /*
2645  * Flags used by change_protection().  For now we make it a bitmap so
2646  * that we can pass in multiple flags just like parameters.  However
2647  * for now all the callers are only use one of the flags at the same
2648  * time.
2649  */
2650 /*
2651  * Whether we should manually check if we can map individual PTEs writable,
2652  * because something (e.g., COW, uffd-wp) blocks that from happening for all
2653  * PTEs automatically in a writable mapping.
2654  */
2655 #define  MM_CP_TRY_CHANGE_WRITABLE	   (1UL << 0)
2656 /* Whether this protection change is for NUMA hints */
2657 #define  MM_CP_PROT_NUMA                   (1UL << 1)
2658 /* Whether this change is for write protecting */
2659 #define  MM_CP_UFFD_WP                     (1UL << 2) /* do wp */
2660 #define  MM_CP_UFFD_WP_RESOLVE             (1UL << 3) /* Resolve wp */
2661 #define  MM_CP_UFFD_WP_ALL                 (MM_CP_UFFD_WP | \
2662 					    MM_CP_UFFD_WP_RESOLVE)
2663 
2664 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2665 			     pte_t pte);
2666 extern long change_protection(struct mmu_gather *tlb,
2667 			      struct vm_area_struct *vma, unsigned long start,
2668 			      unsigned long end, unsigned long cp_flags);
2669 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2670 	  struct vm_area_struct *vma, struct vm_area_struct **pprev,
2671 	  unsigned long start, unsigned long end, vm_flags_t newflags);
2672 
2673 /*
2674  * doesn't attempt to fault and will return short.
2675  */
2676 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2677 			     unsigned int gup_flags, struct page **pages);
2678 
get_user_page_fast_only(unsigned long addr,unsigned int gup_flags,struct page ** pagep)2679 static inline bool get_user_page_fast_only(unsigned long addr,
2680 			unsigned int gup_flags, struct page **pagep)
2681 {
2682 	return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2683 }
2684 /*
2685  * per-process(per-mm_struct) statistics.
2686  */
get_mm_counter(struct mm_struct * mm,int member)2687 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2688 {
2689 	return percpu_counter_read_positive(&mm->rss_stat[member]);
2690 }
2691 
get_mm_counter_sum(struct mm_struct * mm,int member)2692 static inline unsigned long get_mm_counter_sum(struct mm_struct *mm, int member)
2693 {
2694 	return percpu_counter_sum_positive(&mm->rss_stat[member]);
2695 }
2696 
2697 void mm_trace_rss_stat(struct mm_struct *mm, int member);
2698 
add_mm_counter(struct mm_struct * mm,int member,long value)2699 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2700 {
2701 	percpu_counter_add(&mm->rss_stat[member], value);
2702 
2703 	mm_trace_rss_stat(mm, member);
2704 }
2705 
inc_mm_counter(struct mm_struct * mm,int member)2706 static inline void inc_mm_counter(struct mm_struct *mm, int member)
2707 {
2708 	percpu_counter_inc(&mm->rss_stat[member]);
2709 
2710 	mm_trace_rss_stat(mm, member);
2711 }
2712 
dec_mm_counter(struct mm_struct * mm,int member)2713 static inline void dec_mm_counter(struct mm_struct *mm, int member)
2714 {
2715 	percpu_counter_dec(&mm->rss_stat[member]);
2716 
2717 	mm_trace_rss_stat(mm, member);
2718 }
2719 
2720 /* Optimized variant when folio is already known not to be anon */
mm_counter_file(struct folio * folio)2721 static inline int mm_counter_file(struct folio *folio)
2722 {
2723 	if (folio_test_swapbacked(folio))
2724 		return MM_SHMEMPAGES;
2725 	return MM_FILEPAGES;
2726 }
2727 
mm_counter(struct folio * folio)2728 static inline int mm_counter(struct folio *folio)
2729 {
2730 	if (folio_test_anon(folio))
2731 		return MM_ANONPAGES;
2732 	return mm_counter_file(folio);
2733 }
2734 
get_mm_rss(struct mm_struct * mm)2735 static inline unsigned long get_mm_rss(struct mm_struct *mm)
2736 {
2737 	return get_mm_counter(mm, MM_FILEPAGES) +
2738 		get_mm_counter(mm, MM_ANONPAGES) +
2739 		get_mm_counter(mm, MM_SHMEMPAGES);
2740 }
2741 
get_mm_hiwater_rss(struct mm_struct * mm)2742 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2743 {
2744 	return max(mm->hiwater_rss, get_mm_rss(mm));
2745 }
2746 
get_mm_hiwater_vm(struct mm_struct * mm)2747 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2748 {
2749 	return max(mm->hiwater_vm, mm->total_vm);
2750 }
2751 
update_hiwater_rss(struct mm_struct * mm)2752 static inline void update_hiwater_rss(struct mm_struct *mm)
2753 {
2754 	unsigned long _rss = get_mm_rss(mm);
2755 
2756 	if (data_race(mm->hiwater_rss) < _rss)
2757 		data_race(mm->hiwater_rss = _rss);
2758 }
2759 
update_hiwater_vm(struct mm_struct * mm)2760 static inline void update_hiwater_vm(struct mm_struct *mm)
2761 {
2762 	if (mm->hiwater_vm < mm->total_vm)
2763 		mm->hiwater_vm = mm->total_vm;
2764 }
2765 
reset_mm_hiwater_rss(struct mm_struct * mm)2766 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2767 {
2768 	mm->hiwater_rss = get_mm_rss(mm);
2769 }
2770 
setmax_mm_hiwater_rss(unsigned long * maxrss,struct mm_struct * mm)2771 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2772 					 struct mm_struct *mm)
2773 {
2774 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2775 
2776 	if (*maxrss < hiwater_rss)
2777 		*maxrss = hiwater_rss;
2778 }
2779 
2780 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
pte_special(pte_t pte)2781 static inline int pte_special(pte_t pte)
2782 {
2783 	return 0;
2784 }
2785 
pte_mkspecial(pte_t pte)2786 static inline pte_t pte_mkspecial(pte_t pte)
2787 {
2788 	return pte;
2789 }
2790 #endif
2791 
2792 #ifndef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP
pmd_special(pmd_t pmd)2793 static inline bool pmd_special(pmd_t pmd)
2794 {
2795 	return false;
2796 }
2797 
pmd_mkspecial(pmd_t pmd)2798 static inline pmd_t pmd_mkspecial(pmd_t pmd)
2799 {
2800 	return pmd;
2801 }
2802 #endif	/* CONFIG_ARCH_SUPPORTS_PMD_PFNMAP */
2803 
2804 #ifndef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP
pud_special(pud_t pud)2805 static inline bool pud_special(pud_t pud)
2806 {
2807 	return false;
2808 }
2809 
pud_mkspecial(pud_t pud)2810 static inline pud_t pud_mkspecial(pud_t pud)
2811 {
2812 	return pud;
2813 }
2814 #endif	/* CONFIG_ARCH_SUPPORTS_PUD_PFNMAP */
2815 
2816 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2817 			       spinlock_t **ptl);
get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)2818 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2819 				    spinlock_t **ptl)
2820 {
2821 	pte_t *ptep;
2822 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2823 	return ptep;
2824 }
2825 
2826 #ifdef __PAGETABLE_P4D_FOLDED
__p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)2827 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2828 						unsigned long address)
2829 {
2830 	return 0;
2831 }
2832 #else
2833 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2834 #endif
2835 
2836 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
__pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)2837 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2838 						unsigned long address)
2839 {
2840 	return 0;
2841 }
mm_inc_nr_puds(struct mm_struct * mm)2842 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
mm_dec_nr_puds(struct mm_struct * mm)2843 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2844 
2845 #else
2846 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2847 
mm_inc_nr_puds(struct mm_struct * mm)2848 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2849 {
2850 	if (mm_pud_folded(mm))
2851 		return;
2852 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2853 }
2854 
mm_dec_nr_puds(struct mm_struct * mm)2855 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2856 {
2857 	if (mm_pud_folded(mm))
2858 		return;
2859 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2860 }
2861 #endif
2862 
2863 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)2864 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2865 						unsigned long address)
2866 {
2867 	return 0;
2868 }
2869 
mm_inc_nr_pmds(struct mm_struct * mm)2870 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
mm_dec_nr_pmds(struct mm_struct * mm)2871 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2872 
2873 #else
2874 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2875 
mm_inc_nr_pmds(struct mm_struct * mm)2876 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2877 {
2878 	if (mm_pmd_folded(mm))
2879 		return;
2880 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2881 }
2882 
mm_dec_nr_pmds(struct mm_struct * mm)2883 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2884 {
2885 	if (mm_pmd_folded(mm))
2886 		return;
2887 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2888 }
2889 #endif
2890 
2891 #ifdef CONFIG_MMU
mm_pgtables_bytes_init(struct mm_struct * mm)2892 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2893 {
2894 	atomic_long_set(&mm->pgtables_bytes, 0);
2895 }
2896 
mm_pgtables_bytes(const struct mm_struct * mm)2897 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2898 {
2899 	return atomic_long_read(&mm->pgtables_bytes);
2900 }
2901 
mm_inc_nr_ptes(struct mm_struct * mm)2902 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2903 {
2904 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2905 }
2906 
mm_dec_nr_ptes(struct mm_struct * mm)2907 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2908 {
2909 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2910 }
2911 #else
2912 
mm_pgtables_bytes_init(struct mm_struct * mm)2913 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
mm_pgtables_bytes(const struct mm_struct * mm)2914 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2915 {
2916 	return 0;
2917 }
2918 
mm_inc_nr_ptes(struct mm_struct * mm)2919 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
mm_dec_nr_ptes(struct mm_struct * mm)2920 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2921 #endif
2922 
2923 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2924 int __pte_alloc_kernel(pmd_t *pmd);
2925 
2926 #if defined(CONFIG_MMU)
2927 
p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)2928 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2929 		unsigned long address)
2930 {
2931 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2932 		NULL : p4d_offset(pgd, address);
2933 }
2934 
pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)2935 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2936 		unsigned long address)
2937 {
2938 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2939 		NULL : pud_offset(p4d, address);
2940 }
2941 
pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)2942 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2943 {
2944 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2945 		NULL: pmd_offset(pud, address);
2946 }
2947 #endif /* CONFIG_MMU */
2948 
2949 enum pt_flags {
2950 	PT_reserved = PG_reserved,
2951 	/* High bits are used for zone/node/section */
2952 };
2953 
virt_to_ptdesc(const void * x)2954 static inline struct ptdesc *virt_to_ptdesc(const void *x)
2955 {
2956 	return page_ptdesc(virt_to_page(x));
2957 }
2958 
2959 /**
2960  * ptdesc_address - Virtual address of page table.
2961  * @pt: Page table descriptor.
2962  *
2963  * Return: The first byte of the page table described by @pt.
2964  */
ptdesc_address(const struct ptdesc * pt)2965 static inline void *ptdesc_address(const struct ptdesc *pt)
2966 {
2967 	return folio_address(ptdesc_folio(pt));
2968 }
2969 
pagetable_is_reserved(struct ptdesc * pt)2970 static inline bool pagetable_is_reserved(struct ptdesc *pt)
2971 {
2972 	return test_bit(PT_reserved, &pt->pt_flags.f);
2973 }
2974 
2975 /**
2976  * pagetable_alloc - Allocate pagetables
2977  * @gfp:    GFP flags
2978  * @order:  desired pagetable order
2979  *
2980  * pagetable_alloc allocates memory for page tables as well as a page table
2981  * descriptor to describe that memory.
2982  *
2983  * Return: The ptdesc describing the allocated page tables.
2984  */
pagetable_alloc_noprof(gfp_t gfp,unsigned int order)2985 static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order)
2986 {
2987 	struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order);
2988 
2989 	return page_ptdesc(page);
2990 }
2991 #define pagetable_alloc(...)	alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__))
2992 
2993 /**
2994  * pagetable_free - Free pagetables
2995  * @pt:	The page table descriptor
2996  *
2997  * pagetable_free frees the memory of all page tables described by a page
2998  * table descriptor and the memory for the descriptor itself.
2999  */
pagetable_free(struct ptdesc * pt)3000 static inline void pagetable_free(struct ptdesc *pt)
3001 {
3002 	struct page *page = ptdesc_page(pt);
3003 
3004 	__free_pages(page, compound_order(page));
3005 }
3006 
3007 #if defined(CONFIG_SPLIT_PTE_PTLOCKS)
3008 #if ALLOC_SPLIT_PTLOCKS
3009 void __init ptlock_cache_init(void);
3010 bool ptlock_alloc(struct ptdesc *ptdesc);
3011 void ptlock_free(struct ptdesc *ptdesc);
3012 
ptlock_ptr(struct ptdesc * ptdesc)3013 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
3014 {
3015 	return ptdesc->ptl;
3016 }
3017 #else /* ALLOC_SPLIT_PTLOCKS */
ptlock_cache_init(void)3018 static inline void ptlock_cache_init(void)
3019 {
3020 }
3021 
ptlock_alloc(struct ptdesc * ptdesc)3022 static inline bool ptlock_alloc(struct ptdesc *ptdesc)
3023 {
3024 	return true;
3025 }
3026 
ptlock_free(struct ptdesc * ptdesc)3027 static inline void ptlock_free(struct ptdesc *ptdesc)
3028 {
3029 }
3030 
ptlock_ptr(struct ptdesc * ptdesc)3031 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
3032 {
3033 	return &ptdesc->ptl;
3034 }
3035 #endif /* ALLOC_SPLIT_PTLOCKS */
3036 
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)3037 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
3038 {
3039 	return ptlock_ptr(page_ptdesc(pmd_page(*pmd)));
3040 }
3041 
ptep_lockptr(struct mm_struct * mm,pte_t * pte)3042 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
3043 {
3044 	BUILD_BUG_ON(IS_ENABLED(CONFIG_HIGHPTE));
3045 	BUILD_BUG_ON(MAX_PTRS_PER_PTE * sizeof(pte_t) > PAGE_SIZE);
3046 	return ptlock_ptr(virt_to_ptdesc(pte));
3047 }
3048 
ptlock_init(struct ptdesc * ptdesc)3049 static inline bool ptlock_init(struct ptdesc *ptdesc)
3050 {
3051 	/*
3052 	 * prep_new_page() initialize page->private (and therefore page->ptl)
3053 	 * with 0. Make sure nobody took it in use in between.
3054 	 *
3055 	 * It can happen if arch try to use slab for page table allocation:
3056 	 * slab code uses page->slab_cache, which share storage with page->ptl.
3057 	 */
3058 	VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc));
3059 	if (!ptlock_alloc(ptdesc))
3060 		return false;
3061 	spin_lock_init(ptlock_ptr(ptdesc));
3062 	return true;
3063 }
3064 
3065 #else	/* !defined(CONFIG_SPLIT_PTE_PTLOCKS) */
3066 /*
3067  * We use mm->page_table_lock to guard all pagetable pages of the mm.
3068  */
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)3069 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
3070 {
3071 	return &mm->page_table_lock;
3072 }
ptep_lockptr(struct mm_struct * mm,pte_t * pte)3073 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
3074 {
3075 	return &mm->page_table_lock;
3076 }
ptlock_cache_init(void)3077 static inline void ptlock_cache_init(void) {}
ptlock_init(struct ptdesc * ptdesc)3078 static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; }
ptlock_free(struct ptdesc * ptdesc)3079 static inline void ptlock_free(struct ptdesc *ptdesc) {}
3080 #endif /* defined(CONFIG_SPLIT_PTE_PTLOCKS) */
3081 
ptdesc_nr_pages(const struct ptdesc * ptdesc)3082 static inline unsigned long ptdesc_nr_pages(const struct ptdesc *ptdesc)
3083 {
3084 	return compound_nr(ptdesc_page(ptdesc));
3085 }
3086 
__pagetable_ctor(struct ptdesc * ptdesc)3087 static inline void __pagetable_ctor(struct ptdesc *ptdesc)
3088 {
3089 	pg_data_t *pgdat = NODE_DATA(memdesc_nid(ptdesc->pt_flags));
3090 
3091 	__SetPageTable(ptdesc_page(ptdesc));
3092 	mod_node_page_state(pgdat, NR_PAGETABLE, ptdesc_nr_pages(ptdesc));
3093 }
3094 
pagetable_dtor(struct ptdesc * ptdesc)3095 static inline void pagetable_dtor(struct ptdesc *ptdesc)
3096 {
3097 	pg_data_t *pgdat = NODE_DATA(memdesc_nid(ptdesc->pt_flags));
3098 
3099 	ptlock_free(ptdesc);
3100 	__ClearPageTable(ptdesc_page(ptdesc));
3101 	mod_node_page_state(pgdat, NR_PAGETABLE, -ptdesc_nr_pages(ptdesc));
3102 }
3103 
pagetable_dtor_free(struct ptdesc * ptdesc)3104 static inline void pagetable_dtor_free(struct ptdesc *ptdesc)
3105 {
3106 	pagetable_dtor(ptdesc);
3107 	pagetable_free(ptdesc);
3108 }
3109 
pagetable_pte_ctor(struct mm_struct * mm,struct ptdesc * ptdesc)3110 static inline bool pagetable_pte_ctor(struct mm_struct *mm,
3111 				      struct ptdesc *ptdesc)
3112 {
3113 	if (mm != &init_mm && !ptlock_init(ptdesc))
3114 		return false;
3115 	__pagetable_ctor(ptdesc);
3116 	return true;
3117 }
3118 
3119 pte_t *___pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp);
__pte_offset_map(pmd_t * pmd,unsigned long addr,pmd_t * pmdvalp)3120 static inline pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr,
3121 			pmd_t *pmdvalp)
3122 {
3123 	pte_t *pte;
3124 
3125 	__cond_lock(RCU, pte = ___pte_offset_map(pmd, addr, pmdvalp));
3126 	return pte;
3127 }
pte_offset_map(pmd_t * pmd,unsigned long addr)3128 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr)
3129 {
3130 	return __pte_offset_map(pmd, addr, NULL);
3131 }
3132 
3133 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3134 			unsigned long addr, spinlock_t **ptlp);
pte_offset_map_lock(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,spinlock_t ** ptlp)3135 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3136 			unsigned long addr, spinlock_t **ptlp)
3137 {
3138 	pte_t *pte;
3139 
3140 	__cond_lock(RCU, __cond_lock(*ptlp,
3141 			pte = __pte_offset_map_lock(mm, pmd, addr, ptlp)));
3142 	return pte;
3143 }
3144 
3145 pte_t *pte_offset_map_ro_nolock(struct mm_struct *mm, pmd_t *pmd,
3146 				unsigned long addr, spinlock_t **ptlp);
3147 pte_t *pte_offset_map_rw_nolock(struct mm_struct *mm, pmd_t *pmd,
3148 				unsigned long addr, pmd_t *pmdvalp,
3149 				spinlock_t **ptlp);
3150 
3151 #define pte_unmap_unlock(pte, ptl)	do {		\
3152 	spin_unlock(ptl);				\
3153 	pte_unmap(pte);					\
3154 } while (0)
3155 
3156 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3157 
3158 #define pte_alloc_map(mm, pmd, address)			\
3159 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
3160 
3161 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
3162 	(pte_alloc(mm, pmd) ?			\
3163 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
3164 
3165 #define pte_alloc_kernel(pmd, address)			\
3166 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
3167 		NULL: pte_offset_kernel(pmd, address))
3168 
3169 #if defined(CONFIG_SPLIT_PMD_PTLOCKS)
3170 
pmd_pgtable_page(pmd_t * pmd)3171 static inline struct page *pmd_pgtable_page(pmd_t *pmd)
3172 {
3173 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
3174 	return virt_to_page((void *)((unsigned long) pmd & mask));
3175 }
3176 
pmd_ptdesc(pmd_t * pmd)3177 static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd)
3178 {
3179 	return page_ptdesc(pmd_pgtable_page(pmd));
3180 }
3181 
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)3182 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3183 {
3184 	return ptlock_ptr(pmd_ptdesc(pmd));
3185 }
3186 
pmd_ptlock_init(struct ptdesc * ptdesc)3187 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc)
3188 {
3189 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3190 	ptdesc->pmd_huge_pte = NULL;
3191 #endif
3192 	return ptlock_init(ptdesc);
3193 }
3194 
3195 #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte)
3196 
3197 #else
3198 
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)3199 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3200 {
3201 	return &mm->page_table_lock;
3202 }
3203 
pmd_ptlock_init(struct ptdesc * ptdesc)3204 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; }
3205 
3206 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
3207 
3208 #endif
3209 
pmd_lock(struct mm_struct * mm,pmd_t * pmd)3210 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
3211 {
3212 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
3213 	spin_lock(ptl);
3214 	return ptl;
3215 }
3216 
pagetable_pmd_ctor(struct mm_struct * mm,struct ptdesc * ptdesc)3217 static inline bool pagetable_pmd_ctor(struct mm_struct *mm,
3218 				      struct ptdesc *ptdesc)
3219 {
3220 	if (mm != &init_mm && !pmd_ptlock_init(ptdesc))
3221 		return false;
3222 	ptdesc_pmd_pts_init(ptdesc);
3223 	__pagetable_ctor(ptdesc);
3224 	return true;
3225 }
3226 
3227 /*
3228  * No scalability reason to split PUD locks yet, but follow the same pattern
3229  * as the PMD locks to make it easier if we decide to.  The VM should not be
3230  * considered ready to switch to split PUD locks yet; there may be places
3231  * which need to be converted from page_table_lock.
3232  */
pud_lockptr(struct mm_struct * mm,pud_t * pud)3233 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
3234 {
3235 	return &mm->page_table_lock;
3236 }
3237 
pud_lock(struct mm_struct * mm,pud_t * pud)3238 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
3239 {
3240 	spinlock_t *ptl = pud_lockptr(mm, pud);
3241 
3242 	spin_lock(ptl);
3243 	return ptl;
3244 }
3245 
pagetable_pud_ctor(struct ptdesc * ptdesc)3246 static inline void pagetable_pud_ctor(struct ptdesc *ptdesc)
3247 {
3248 	__pagetable_ctor(ptdesc);
3249 }
3250 
pagetable_p4d_ctor(struct ptdesc * ptdesc)3251 static inline void pagetable_p4d_ctor(struct ptdesc *ptdesc)
3252 {
3253 	__pagetable_ctor(ptdesc);
3254 }
3255 
pagetable_pgd_ctor(struct ptdesc * ptdesc)3256 static inline void pagetable_pgd_ctor(struct ptdesc *ptdesc)
3257 {
3258 	__pagetable_ctor(ptdesc);
3259 }
3260 
3261 extern void __init pagecache_init(void);
3262 extern void free_initmem(void);
3263 
3264 /*
3265  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
3266  * into the buddy system. The freed pages will be poisoned with pattern
3267  * "poison" if it's within range [0, UCHAR_MAX].
3268  * Return pages freed into the buddy system.
3269  */
3270 extern unsigned long free_reserved_area(void *start, void *end,
3271 					int poison, const char *s);
3272 
3273 extern void adjust_managed_page_count(struct page *page, long count);
3274 
3275 extern void reserve_bootmem_region(phys_addr_t start,
3276 				   phys_addr_t end, int nid);
3277 
3278 /* Free the reserved page into the buddy system, so it gets managed. */
3279 void free_reserved_page(struct page *page);
3280 
mark_page_reserved(struct page * page)3281 static inline void mark_page_reserved(struct page *page)
3282 {
3283 	SetPageReserved(page);
3284 	adjust_managed_page_count(page, -1);
3285 }
3286 
free_reserved_ptdesc(struct ptdesc * pt)3287 static inline void free_reserved_ptdesc(struct ptdesc *pt)
3288 {
3289 	free_reserved_page(ptdesc_page(pt));
3290 }
3291 
3292 /*
3293  * Default method to free all the __init memory into the buddy system.
3294  * The freed pages will be poisoned with pattern "poison" if it's within
3295  * range [0, UCHAR_MAX].
3296  * Return pages freed into the buddy system.
3297  */
free_initmem_default(int poison)3298 static inline unsigned long free_initmem_default(int poison)
3299 {
3300 	extern char __init_begin[], __init_end[];
3301 
3302 	return free_reserved_area(&__init_begin, &__init_end,
3303 				  poison, "unused kernel image (initmem)");
3304 }
3305 
get_num_physpages(void)3306 static inline unsigned long get_num_physpages(void)
3307 {
3308 	int nid;
3309 	unsigned long phys_pages = 0;
3310 
3311 	for_each_online_node(nid)
3312 		phys_pages += node_present_pages(nid);
3313 
3314 	return phys_pages;
3315 }
3316 
3317 /*
3318  * Using memblock node mappings, an architecture may initialise its
3319  * zones, allocate the backing mem_map and account for memory holes in an
3320  * architecture independent manner.
3321  *
3322  * An architecture is expected to register range of page frames backed by
3323  * physical memory with memblock_add[_node]() before calling
3324  * free_area_init() passing in the PFN each zone ends at. At a basic
3325  * usage, an architecture is expected to do something like
3326  *
3327  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
3328  * 							 max_highmem_pfn};
3329  * for_each_valid_physical_page_range()
3330  *	memblock_add_node(base, size, nid, MEMBLOCK_NONE)
3331  * free_area_init(max_zone_pfns);
3332  */
3333 void free_area_init(unsigned long *max_zone_pfn);
3334 unsigned long node_map_pfn_alignment(void);
3335 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
3336 						unsigned long end_pfn);
3337 extern void get_pfn_range_for_nid(unsigned int nid,
3338 			unsigned long *start_pfn, unsigned long *end_pfn);
3339 
3340 #ifndef CONFIG_NUMA
early_pfn_to_nid(unsigned long pfn)3341 static inline int early_pfn_to_nid(unsigned long pfn)
3342 {
3343 	return 0;
3344 }
3345 #else
3346 /* please see mm/page_alloc.c */
3347 extern int __meminit early_pfn_to_nid(unsigned long pfn);
3348 #endif
3349 
3350 extern void mem_init(void);
3351 extern void __init mmap_init(void);
3352 
3353 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
show_mem(void)3354 static inline void show_mem(void)
3355 {
3356 	__show_mem(0, NULL, MAX_NR_ZONES - 1);
3357 }
3358 extern long si_mem_available(void);
3359 extern void si_meminfo(struct sysinfo * val);
3360 extern void si_meminfo_node(struct sysinfo *val, int nid);
3361 
3362 extern __printf(3, 4)
3363 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
3364 
3365 extern void setup_per_cpu_pageset(void);
3366 
3367 /* nommu.c */
3368 extern atomic_long_t mmap_pages_allocated;
3369 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
3370 
3371 /* interval_tree.c */
3372 void vma_interval_tree_insert(struct vm_area_struct *node,
3373 			      struct rb_root_cached *root);
3374 void vma_interval_tree_insert_after(struct vm_area_struct *node,
3375 				    struct vm_area_struct *prev,
3376 				    struct rb_root_cached *root);
3377 void vma_interval_tree_remove(struct vm_area_struct *node,
3378 			      struct rb_root_cached *root);
3379 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
3380 				unsigned long start, unsigned long last);
3381 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3382 				unsigned long start, unsigned long last);
3383 
3384 #define vma_interval_tree_foreach(vma, root, start, last)		\
3385 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
3386 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
3387 
3388 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
3389 				   struct rb_root_cached *root);
3390 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
3391 				   struct rb_root_cached *root);
3392 struct anon_vma_chain *
3393 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3394 				  unsigned long start, unsigned long last);
3395 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3396 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
3397 #ifdef CONFIG_DEBUG_VM_RB
3398 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3399 #endif
3400 
3401 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
3402 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3403 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3404 
3405 /* mmap.c */
3406 extern int __vm_enough_memory(const struct mm_struct *mm, long pages, int cap_sys_admin);
3407 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
3408 extern void exit_mmap(struct mm_struct *);
3409 bool mmap_read_lock_maybe_expand(struct mm_struct *mm, struct vm_area_struct *vma,
3410 				 unsigned long addr, bool write);
3411 
check_data_rlimit(unsigned long rlim,unsigned long new,unsigned long start,unsigned long end_data,unsigned long start_data)3412 static inline int check_data_rlimit(unsigned long rlim,
3413 				    unsigned long new,
3414 				    unsigned long start,
3415 				    unsigned long end_data,
3416 				    unsigned long start_data)
3417 {
3418 	if (rlim < RLIM_INFINITY) {
3419 		if (((new - start) + (end_data - start_data)) > rlim)
3420 			return -ENOSPC;
3421 	}
3422 
3423 	return 0;
3424 }
3425 
3426 extern int mm_take_all_locks(struct mm_struct *mm);
3427 extern void mm_drop_all_locks(struct mm_struct *mm);
3428 
3429 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3430 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3431 extern struct file *get_mm_exe_file(struct mm_struct *mm);
3432 extern struct file *get_task_exe_file(struct task_struct *task);
3433 
3434 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3435 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3436 
3437 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3438 				   const struct vm_special_mapping *sm);
3439 struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3440 				   unsigned long addr, unsigned long len,
3441 				   vm_flags_t vm_flags,
3442 				   const struct vm_special_mapping *spec);
3443 
3444 unsigned long randomize_stack_top(unsigned long stack_top);
3445 unsigned long randomize_page(unsigned long start, unsigned long range);
3446 
3447 unsigned long
3448 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3449 		    unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags);
3450 
3451 static inline unsigned long
get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)3452 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3453 		  unsigned long pgoff, unsigned long flags)
3454 {
3455 	return __get_unmapped_area(file, addr, len, pgoff, flags, 0);
3456 }
3457 
3458 extern unsigned long do_mmap(struct file *file, unsigned long addr,
3459 	unsigned long len, unsigned long prot, unsigned long flags,
3460 	vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
3461 	struct list_head *uf);
3462 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
3463 			 unsigned long start, size_t len, struct list_head *uf,
3464 			 bool unlock);
3465 int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3466 		    struct mm_struct *mm, unsigned long start,
3467 		    unsigned long end, struct list_head *uf, bool unlock);
3468 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3469 		     struct list_head *uf);
3470 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
3471 
3472 #ifdef CONFIG_MMU
3473 extern int __mm_populate(unsigned long addr, unsigned long len,
3474 			 int ignore_errors);
mm_populate(unsigned long addr,unsigned long len)3475 static inline void mm_populate(unsigned long addr, unsigned long len)
3476 {
3477 	/* Ignore errors */
3478 	(void) __mm_populate(addr, len, 1);
3479 }
3480 #else
mm_populate(unsigned long addr,unsigned long len)3481 static inline void mm_populate(unsigned long addr, unsigned long len) {}
3482 #endif
3483 
3484 /* This takes the mm semaphore itself */
3485 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
3486 extern int vm_munmap(unsigned long, size_t);
3487 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
3488         unsigned long, unsigned long,
3489         unsigned long, unsigned long);
3490 
3491 struct vm_unmapped_area_info {
3492 #define VM_UNMAPPED_AREA_TOPDOWN 1
3493 	unsigned long flags;
3494 	unsigned long length;
3495 	unsigned long low_limit;
3496 	unsigned long high_limit;
3497 	unsigned long align_mask;
3498 	unsigned long align_offset;
3499 	unsigned long start_gap;
3500 };
3501 
3502 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
3503 
3504 /* truncate.c */
3505 extern void truncate_inode_pages(struct address_space *, loff_t);
3506 extern void truncate_inode_pages_range(struct address_space *,
3507 				       loff_t lstart, loff_t lend);
3508 extern void truncate_inode_pages_final(struct address_space *);
3509 
3510 /* generic vm_area_ops exported for stackable file systems */
3511 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
3512 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3513 		pgoff_t start_pgoff, pgoff_t end_pgoff);
3514 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
3515 
3516 extern unsigned long stack_guard_gap;
3517 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
3518 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address);
3519 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr);
3520 
3521 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
3522 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3523 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3524 					     struct vm_area_struct **pprev);
3525 
3526 /*
3527  * Look up the first VMA which intersects the interval [start_addr, end_addr)
3528  * NULL if none.  Assume start_addr < end_addr.
3529  */
3530 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
3531 			unsigned long start_addr, unsigned long end_addr);
3532 
3533 /**
3534  * vma_lookup() - Find a VMA at a specific address
3535  * @mm: The process address space.
3536  * @addr: The user address.
3537  *
3538  * Return: The vm_area_struct at the given address, %NULL otherwise.
3539  */
3540 static inline
vma_lookup(struct mm_struct * mm,unsigned long addr)3541 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3542 {
3543 	return mtree_load(&mm->mm_mt, addr);
3544 }
3545 
stack_guard_start_gap(const struct vm_area_struct * vma)3546 static inline unsigned long stack_guard_start_gap(const struct vm_area_struct *vma)
3547 {
3548 	if (vma->vm_flags & VM_GROWSDOWN)
3549 		return stack_guard_gap;
3550 
3551 	/* See reasoning around the VM_SHADOW_STACK definition */
3552 	if (vma->vm_flags & VM_SHADOW_STACK)
3553 		return PAGE_SIZE;
3554 
3555 	return 0;
3556 }
3557 
vm_start_gap(const struct vm_area_struct * vma)3558 static inline unsigned long vm_start_gap(const struct vm_area_struct *vma)
3559 {
3560 	unsigned long gap = stack_guard_start_gap(vma);
3561 	unsigned long vm_start = vma->vm_start;
3562 
3563 	vm_start -= gap;
3564 	if (vm_start > vma->vm_start)
3565 		vm_start = 0;
3566 	return vm_start;
3567 }
3568 
vm_end_gap(const struct vm_area_struct * vma)3569 static inline unsigned long vm_end_gap(const struct vm_area_struct *vma)
3570 {
3571 	unsigned long vm_end = vma->vm_end;
3572 
3573 	if (vma->vm_flags & VM_GROWSUP) {
3574 		vm_end += stack_guard_gap;
3575 		if (vm_end < vma->vm_end)
3576 			vm_end = -PAGE_SIZE;
3577 	}
3578 	return vm_end;
3579 }
3580 
vma_pages(const struct vm_area_struct * vma)3581 static inline unsigned long vma_pages(const struct vm_area_struct *vma)
3582 {
3583 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3584 }
3585 
3586 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
find_exact_vma(struct mm_struct * mm,unsigned long vm_start,unsigned long vm_end)3587 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3588 				unsigned long vm_start, unsigned long vm_end)
3589 {
3590 	struct vm_area_struct *vma = vma_lookup(mm, vm_start);
3591 
3592 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3593 		vma = NULL;
3594 
3595 	return vma;
3596 }
3597 
range_in_vma(const struct vm_area_struct * vma,unsigned long start,unsigned long end)3598 static inline bool range_in_vma(const struct vm_area_struct *vma,
3599 				unsigned long start, unsigned long end)
3600 {
3601 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
3602 }
3603 
3604 #ifdef CONFIG_MMU
3605 pgprot_t vm_get_page_prot(vm_flags_t vm_flags);
3606 void vma_set_page_prot(struct vm_area_struct *vma);
3607 #else
vm_get_page_prot(vm_flags_t vm_flags)3608 static inline pgprot_t vm_get_page_prot(vm_flags_t vm_flags)
3609 {
3610 	return __pgprot(0);
3611 }
vma_set_page_prot(struct vm_area_struct * vma)3612 static inline void vma_set_page_prot(struct vm_area_struct *vma)
3613 {
3614 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3615 }
3616 #endif
3617 
3618 void vma_set_file(struct vm_area_struct *vma, struct file *file);
3619 
3620 #ifdef CONFIG_NUMA_BALANCING
3621 unsigned long change_prot_numa(struct vm_area_struct *vma,
3622 			unsigned long start, unsigned long end);
3623 #endif
3624 
3625 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *,
3626 		unsigned long addr);
3627 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3628 			unsigned long pfn, unsigned long size, pgprot_t);
3629 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3630 		unsigned long pfn, unsigned long size, pgprot_t prot);
3631 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
3632 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3633 			struct page **pages, unsigned long *num);
3634 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3635 				unsigned long num);
3636 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3637 				unsigned long num);
3638 vm_fault_t vmf_insert_page_mkwrite(struct vm_fault *vmf, struct page *page,
3639 			bool write);
3640 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
3641 			unsigned long pfn);
3642 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3643 			unsigned long pfn, pgprot_t pgprot);
3644 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
3645 			unsigned long pfn);
3646 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3647 		unsigned long addr, unsigned long pfn);
3648 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3649 
vmf_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)3650 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3651 				unsigned long addr, struct page *page)
3652 {
3653 	int err = vm_insert_page(vma, addr, page);
3654 
3655 	if (err == -ENOMEM)
3656 		return VM_FAULT_OOM;
3657 	if (err < 0 && err != -EBUSY)
3658 		return VM_FAULT_SIGBUS;
3659 
3660 	return VM_FAULT_NOPAGE;
3661 }
3662 
3663 #ifndef io_remap_pfn_range
io_remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)3664 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3665 				     unsigned long addr, unsigned long pfn,
3666 				     unsigned long size, pgprot_t prot)
3667 {
3668 	return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3669 }
3670 #endif
3671 
vmf_error(int err)3672 static inline vm_fault_t vmf_error(int err)
3673 {
3674 	if (err == -ENOMEM)
3675 		return VM_FAULT_OOM;
3676 	else if (err == -EHWPOISON)
3677 		return VM_FAULT_HWPOISON;
3678 	return VM_FAULT_SIGBUS;
3679 }
3680 
3681 /*
3682  * Convert errno to return value for ->page_mkwrite() calls.
3683  *
3684  * This should eventually be merged with vmf_error() above, but will need a
3685  * careful audit of all vmf_error() callers.
3686  */
vmf_fs_error(int err)3687 static inline vm_fault_t vmf_fs_error(int err)
3688 {
3689 	if (err == 0)
3690 		return VM_FAULT_LOCKED;
3691 	if (err == -EFAULT || err == -EAGAIN)
3692 		return VM_FAULT_NOPAGE;
3693 	if (err == -ENOMEM)
3694 		return VM_FAULT_OOM;
3695 	/* -ENOSPC, -EDQUOT, -EIO ... */
3696 	return VM_FAULT_SIGBUS;
3697 }
3698 
vm_fault_to_errno(vm_fault_t vm_fault,int foll_flags)3699 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3700 {
3701 	if (vm_fault & VM_FAULT_OOM)
3702 		return -ENOMEM;
3703 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3704 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3705 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3706 		return -EFAULT;
3707 	return 0;
3708 }
3709 
3710 /*
3711  * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3712  * a (NUMA hinting) fault is required.
3713  */
gup_can_follow_protnone(const struct vm_area_struct * vma,unsigned int flags)3714 static inline bool gup_can_follow_protnone(const struct vm_area_struct *vma,
3715 					   unsigned int flags)
3716 {
3717 	/*
3718 	 * If callers don't want to honor NUMA hinting faults, no need to
3719 	 * determine if we would actually have to trigger a NUMA hinting fault.
3720 	 */
3721 	if (!(flags & FOLL_HONOR_NUMA_FAULT))
3722 		return true;
3723 
3724 	/*
3725 	 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs.
3726 	 *
3727 	 * Requiring a fault here even for inaccessible VMAs would mean that
3728 	 * FOLL_FORCE cannot make any progress, because handle_mm_fault()
3729 	 * refuses to process NUMA hinting faults in inaccessible VMAs.
3730 	 */
3731 	return !vma_is_accessible(vma);
3732 }
3733 
3734 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3735 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3736 			       unsigned long size, pte_fn_t fn, void *data);
3737 extern int apply_to_existing_page_range(struct mm_struct *mm,
3738 				   unsigned long address, unsigned long size,
3739 				   pte_fn_t fn, void *data);
3740 
3741 #ifdef CONFIG_PAGE_POISONING
3742 extern void __kernel_poison_pages(struct page *page, int numpages);
3743 extern void __kernel_unpoison_pages(struct page *page, int numpages);
3744 extern bool _page_poisoning_enabled_early;
3745 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
page_poisoning_enabled(void)3746 static inline bool page_poisoning_enabled(void)
3747 {
3748 	return _page_poisoning_enabled_early;
3749 }
3750 /*
3751  * For use in fast paths after init_mem_debugging() has run, or when a
3752  * false negative result is not harmful when called too early.
3753  */
page_poisoning_enabled_static(void)3754 static inline bool page_poisoning_enabled_static(void)
3755 {
3756 	return static_branch_unlikely(&_page_poisoning_enabled);
3757 }
kernel_poison_pages(struct page * page,int numpages)3758 static inline void kernel_poison_pages(struct page *page, int numpages)
3759 {
3760 	if (page_poisoning_enabled_static())
3761 		__kernel_poison_pages(page, numpages);
3762 }
kernel_unpoison_pages(struct page * page,int numpages)3763 static inline void kernel_unpoison_pages(struct page *page, int numpages)
3764 {
3765 	if (page_poisoning_enabled_static())
3766 		__kernel_unpoison_pages(page, numpages);
3767 }
3768 #else
page_poisoning_enabled(void)3769 static inline bool page_poisoning_enabled(void) { return false; }
page_poisoning_enabled_static(void)3770 static inline bool page_poisoning_enabled_static(void) { return false; }
__kernel_poison_pages(struct page * page,int nunmpages)3771 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
kernel_poison_pages(struct page * page,int numpages)3772 static inline void kernel_poison_pages(struct page *page, int numpages) { }
kernel_unpoison_pages(struct page * page,int numpages)3773 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3774 #endif
3775 
3776 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
want_init_on_alloc(gfp_t flags)3777 static inline bool want_init_on_alloc(gfp_t flags)
3778 {
3779 	if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3780 				&init_on_alloc))
3781 		return true;
3782 	return flags & __GFP_ZERO;
3783 }
3784 
3785 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
want_init_on_free(void)3786 static inline bool want_init_on_free(void)
3787 {
3788 	return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3789 				   &init_on_free);
3790 }
3791 
3792 extern bool _debug_pagealloc_enabled_early;
3793 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3794 
debug_pagealloc_enabled(void)3795 static inline bool debug_pagealloc_enabled(void)
3796 {
3797 	return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3798 		_debug_pagealloc_enabled_early;
3799 }
3800 
3801 /*
3802  * For use in fast paths after mem_debugging_and_hardening_init() has run,
3803  * or when a false negative result is not harmful when called too early.
3804  */
debug_pagealloc_enabled_static(void)3805 static inline bool debug_pagealloc_enabled_static(void)
3806 {
3807 	if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3808 		return false;
3809 
3810 	return static_branch_unlikely(&_debug_pagealloc_enabled);
3811 }
3812 
3813 /*
3814  * To support DEBUG_PAGEALLOC architecture must ensure that
3815  * __kernel_map_pages() never fails
3816  */
3817 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3818 #ifdef CONFIG_DEBUG_PAGEALLOC
debug_pagealloc_map_pages(struct page * page,int numpages)3819 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3820 {
3821 	if (debug_pagealloc_enabled_static())
3822 		__kernel_map_pages(page, numpages, 1);
3823 }
3824 
debug_pagealloc_unmap_pages(struct page * page,int numpages)3825 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3826 {
3827 	if (debug_pagealloc_enabled_static())
3828 		__kernel_map_pages(page, numpages, 0);
3829 }
3830 
3831 extern unsigned int _debug_guardpage_minorder;
3832 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3833 
debug_guardpage_minorder(void)3834 static inline unsigned int debug_guardpage_minorder(void)
3835 {
3836 	return _debug_guardpage_minorder;
3837 }
3838 
debug_guardpage_enabled(void)3839 static inline bool debug_guardpage_enabled(void)
3840 {
3841 	return static_branch_unlikely(&_debug_guardpage_enabled);
3842 }
3843 
page_is_guard(const struct page * page)3844 static inline bool page_is_guard(const struct page *page)
3845 {
3846 	if (!debug_guardpage_enabled())
3847 		return false;
3848 
3849 	return PageGuard(page);
3850 }
3851 
3852 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order);
set_page_guard(struct zone * zone,struct page * page,unsigned int order)3853 static inline bool set_page_guard(struct zone *zone, struct page *page,
3854 				  unsigned int order)
3855 {
3856 	if (!debug_guardpage_enabled())
3857 		return false;
3858 	return __set_page_guard(zone, page, order);
3859 }
3860 
3861 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order);
clear_page_guard(struct zone * zone,struct page * page,unsigned int order)3862 static inline void clear_page_guard(struct zone *zone, struct page *page,
3863 				    unsigned int order)
3864 {
3865 	if (!debug_guardpage_enabled())
3866 		return;
3867 	__clear_page_guard(zone, page, order);
3868 }
3869 
3870 #else	/* CONFIG_DEBUG_PAGEALLOC */
debug_pagealloc_map_pages(struct page * page,int numpages)3871 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
debug_pagealloc_unmap_pages(struct page * page,int numpages)3872 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
debug_guardpage_minorder(void)3873 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
debug_guardpage_enabled(void)3874 static inline bool debug_guardpage_enabled(void) { return false; }
page_is_guard(const struct page * page)3875 static inline bool page_is_guard(const struct page *page) { return false; }
set_page_guard(struct zone * zone,struct page * page,unsigned int order)3876 static inline bool set_page_guard(struct zone *zone, struct page *page,
3877 			unsigned int order) { return false; }
clear_page_guard(struct zone * zone,struct page * page,unsigned int order)3878 static inline void clear_page_guard(struct zone *zone, struct page *page,
3879 				unsigned int order) {}
3880 #endif	/* CONFIG_DEBUG_PAGEALLOC */
3881 
3882 #ifdef __HAVE_ARCH_GATE_AREA
3883 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3884 extern int in_gate_area_no_mm(unsigned long addr);
3885 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3886 #else
get_gate_vma(struct mm_struct * mm)3887 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3888 {
3889 	return NULL;
3890 }
in_gate_area_no_mm(unsigned long addr)3891 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
in_gate_area(struct mm_struct * mm,unsigned long addr)3892 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3893 {
3894 	return 0;
3895 }
3896 #endif	/* __HAVE_ARCH_GATE_AREA */
3897 
3898 bool process_shares_mm(const struct task_struct *p, const struct mm_struct *mm);
3899 
3900 void drop_slab(void);
3901 
3902 #ifndef CONFIG_MMU
3903 #define randomize_va_space 0
3904 #else
3905 extern int randomize_va_space;
3906 #endif
3907 
3908 const char * arch_vma_name(struct vm_area_struct *vma);
3909 #ifdef CONFIG_MMU
3910 void print_vma_addr(char *prefix, unsigned long rip);
3911 #else
print_vma_addr(char * prefix,unsigned long rip)3912 static inline void print_vma_addr(char *prefix, unsigned long rip)
3913 {
3914 }
3915 #endif
3916 
3917 void *sparse_buffer_alloc(unsigned long size);
3918 unsigned long section_map_size(void);
3919 struct page * __populate_section_memmap(unsigned long pfn,
3920 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3921 		struct dev_pagemap *pgmap);
3922 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3923 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3924 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3925 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3926 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3927 			    struct vmem_altmap *altmap, unsigned long ptpfn,
3928 			    unsigned long flags);
3929 void *vmemmap_alloc_block(unsigned long size, int node);
3930 struct vmem_altmap;
3931 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3932 			      struct vmem_altmap *altmap);
3933 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3934 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3935 		     unsigned long addr, unsigned long next);
3936 int vmemmap_check_pmd(pmd_t *pmd, int node,
3937 		      unsigned long addr, unsigned long next);
3938 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3939 			       int node, struct vmem_altmap *altmap);
3940 int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3941 			       int node, struct vmem_altmap *altmap);
3942 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3943 		struct vmem_altmap *altmap);
3944 int vmemmap_populate_hvo(unsigned long start, unsigned long end, int node,
3945 			 unsigned long headsize);
3946 int vmemmap_undo_hvo(unsigned long start, unsigned long end, int node,
3947 		     unsigned long headsize);
3948 void vmemmap_wrprotect_hvo(unsigned long start, unsigned long end, int node,
3949 			  unsigned long headsize);
3950 void vmemmap_populate_print_last(void);
3951 #ifdef CONFIG_MEMORY_HOTPLUG
3952 void vmemmap_free(unsigned long start, unsigned long end,
3953 		struct vmem_altmap *altmap);
3954 #endif
3955 
3956 #ifdef CONFIG_SPARSEMEM_VMEMMAP
vmem_altmap_offset(const struct vmem_altmap * altmap)3957 static inline unsigned long vmem_altmap_offset(const struct vmem_altmap *altmap)
3958 {
3959 	/* number of pfns from base where pfn_to_page() is valid */
3960 	if (altmap)
3961 		return altmap->reserve + altmap->free;
3962 	return 0;
3963 }
3964 
vmem_altmap_free(struct vmem_altmap * altmap,unsigned long nr_pfns)3965 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3966 				    unsigned long nr_pfns)
3967 {
3968 	altmap->alloc -= nr_pfns;
3969 }
3970 #else
vmem_altmap_offset(const struct vmem_altmap * altmap)3971 static inline unsigned long vmem_altmap_offset(const struct vmem_altmap *altmap)
3972 {
3973 	return 0;
3974 }
3975 
vmem_altmap_free(struct vmem_altmap * altmap,unsigned long nr_pfns)3976 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3977 				    unsigned long nr_pfns)
3978 {
3979 }
3980 #endif
3981 
3982 #define VMEMMAP_RESERVE_NR	2
3983 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP
__vmemmap_can_optimize(struct vmem_altmap * altmap,struct dev_pagemap * pgmap)3984 static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap,
3985 					  struct dev_pagemap *pgmap)
3986 {
3987 	unsigned long nr_pages;
3988 	unsigned long nr_vmemmap_pages;
3989 
3990 	if (!pgmap || !is_power_of_2(sizeof(struct page)))
3991 		return false;
3992 
3993 	nr_pages = pgmap_vmemmap_nr(pgmap);
3994 	nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT);
3995 	/*
3996 	 * For vmemmap optimization with DAX we need minimum 2 vmemmap
3997 	 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst
3998 	 */
3999 	return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR);
4000 }
4001 /*
4002  * If we don't have an architecture override, use the generic rule
4003  */
4004 #ifndef vmemmap_can_optimize
4005 #define vmemmap_can_optimize __vmemmap_can_optimize
4006 #endif
4007 
4008 #else
vmemmap_can_optimize(struct vmem_altmap * altmap,struct dev_pagemap * pgmap)4009 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
4010 					   struct dev_pagemap *pgmap)
4011 {
4012 	return false;
4013 }
4014 #endif
4015 
4016 enum mf_flags {
4017 	MF_COUNT_INCREASED = 1 << 0,
4018 	MF_ACTION_REQUIRED = 1 << 1,
4019 	MF_MUST_KILL = 1 << 2,
4020 	MF_SOFT_OFFLINE = 1 << 3,
4021 	MF_UNPOISON = 1 << 4,
4022 	MF_SW_SIMULATED = 1 << 5,
4023 	MF_NO_RETRY = 1 << 6,
4024 	MF_MEM_PRE_REMOVE = 1 << 7,
4025 };
4026 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
4027 		      unsigned long count, int mf_flags);
4028 extern int memory_failure(unsigned long pfn, int flags);
4029 extern int unpoison_memory(unsigned long pfn);
4030 extern atomic_long_t num_poisoned_pages __read_mostly;
4031 extern int soft_offline_page(unsigned long pfn, int flags);
4032 #ifdef CONFIG_MEMORY_FAILURE
4033 /*
4034  * Sysfs entries for memory failure handling statistics.
4035  */
4036 extern const struct attribute_group memory_failure_attr_group;
4037 extern void memory_failure_queue(unsigned long pfn, int flags);
4038 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
4039 					bool *migratable_cleared);
4040 void num_poisoned_pages_inc(unsigned long pfn);
4041 void num_poisoned_pages_sub(unsigned long pfn, long i);
4042 #else
memory_failure_queue(unsigned long pfn,int flags)4043 static inline void memory_failure_queue(unsigned long pfn, int flags)
4044 {
4045 }
4046 
__get_huge_page_for_hwpoison(unsigned long pfn,int flags,bool * migratable_cleared)4047 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
4048 					bool *migratable_cleared)
4049 {
4050 	return 0;
4051 }
4052 
num_poisoned_pages_inc(unsigned long pfn)4053 static inline void num_poisoned_pages_inc(unsigned long pfn)
4054 {
4055 }
4056 
num_poisoned_pages_sub(unsigned long pfn,long i)4057 static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
4058 {
4059 }
4060 #endif
4061 
4062 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
4063 extern void memblk_nr_poison_inc(unsigned long pfn);
4064 extern void memblk_nr_poison_sub(unsigned long pfn, long i);
4065 #else
memblk_nr_poison_inc(unsigned long pfn)4066 static inline void memblk_nr_poison_inc(unsigned long pfn)
4067 {
4068 }
4069 
memblk_nr_poison_sub(unsigned long pfn,long i)4070 static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
4071 {
4072 }
4073 #endif
4074 
4075 #ifndef arch_memory_failure
arch_memory_failure(unsigned long pfn,int flags)4076 static inline int arch_memory_failure(unsigned long pfn, int flags)
4077 {
4078 	return -ENXIO;
4079 }
4080 #endif
4081 
4082 #ifndef arch_is_platform_page
arch_is_platform_page(u64 paddr)4083 static inline bool arch_is_platform_page(u64 paddr)
4084 {
4085 	return false;
4086 }
4087 #endif
4088 
4089 /*
4090  * Error handlers for various types of pages.
4091  */
4092 enum mf_result {
4093 	MF_IGNORED,	/* Error: cannot be handled */
4094 	MF_FAILED,	/* Error: handling failed */
4095 	MF_DELAYED,	/* Will be handled later */
4096 	MF_RECOVERED,	/* Successfully recovered */
4097 };
4098 
4099 enum mf_action_page_type {
4100 	MF_MSG_KERNEL,
4101 	MF_MSG_KERNEL_HIGH_ORDER,
4102 	MF_MSG_DIFFERENT_COMPOUND,
4103 	MF_MSG_HUGE,
4104 	MF_MSG_FREE_HUGE,
4105 	MF_MSG_GET_HWPOISON,
4106 	MF_MSG_UNMAP_FAILED,
4107 	MF_MSG_DIRTY_SWAPCACHE,
4108 	MF_MSG_CLEAN_SWAPCACHE,
4109 	MF_MSG_DIRTY_MLOCKED_LRU,
4110 	MF_MSG_CLEAN_MLOCKED_LRU,
4111 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
4112 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
4113 	MF_MSG_DIRTY_LRU,
4114 	MF_MSG_CLEAN_LRU,
4115 	MF_MSG_TRUNCATED_LRU,
4116 	MF_MSG_BUDDY,
4117 	MF_MSG_DAX,
4118 	MF_MSG_UNSPLIT_THP,
4119 	MF_MSG_ALREADY_POISONED,
4120 	MF_MSG_UNKNOWN,
4121 };
4122 
4123 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4124 void folio_zero_user(struct folio *folio, unsigned long addr_hint);
4125 int copy_user_large_folio(struct folio *dst, struct folio *src,
4126 			  unsigned long addr_hint,
4127 			  struct vm_area_struct *vma);
4128 long copy_folio_from_user(struct folio *dst_folio,
4129 			   const void __user *usr_src,
4130 			   bool allow_pagefault);
4131 
4132 /**
4133  * vma_is_special_huge - Are transhuge page-table entries considered special?
4134  * @vma: Pointer to the struct vm_area_struct to consider
4135  *
4136  * Whether transhuge page-table entries are considered "special" following
4137  * the definition in vm_normal_page().
4138  *
4139  * Return: true if transhuge page-table entries should be considered special,
4140  * false otherwise.
4141  */
vma_is_special_huge(const struct vm_area_struct * vma)4142 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
4143 {
4144 	return vma_is_dax(vma) || (vma->vm_file &&
4145 				   (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
4146 }
4147 
4148 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4149 
4150 #if MAX_NUMNODES > 1
4151 void __init setup_nr_node_ids(void);
4152 #else
setup_nr_node_ids(void)4153 static inline void setup_nr_node_ids(void) {}
4154 #endif
4155 
4156 extern int memcmp_pages(struct page *page1, struct page *page2);
4157 
pages_identical(struct page * page1,struct page * page2)4158 static inline int pages_identical(struct page *page1, struct page *page2)
4159 {
4160 	return !memcmp_pages(page1, page2);
4161 }
4162 
4163 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
4164 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
4165 						pgoff_t first_index, pgoff_t nr,
4166 						pgoff_t bitmap_pgoff,
4167 						unsigned long *bitmap,
4168 						pgoff_t *start,
4169 						pgoff_t *end);
4170 
4171 unsigned long wp_shared_mapping_range(struct address_space *mapping,
4172 				      pgoff_t first_index, pgoff_t nr);
4173 #endif
4174 
4175 #ifdef CONFIG_ANON_VMA_NAME
4176 int set_anon_vma_name(unsigned long addr, unsigned long size,
4177 		      const char __user *uname);
4178 #else
4179 static inline
set_anon_vma_name(unsigned long addr,unsigned long size,const char __user * uname)4180 int set_anon_vma_name(unsigned long addr, unsigned long size,
4181 		      const char __user *uname)
4182 {
4183 	return -EINVAL;
4184 }
4185 #endif
4186 
4187 #ifdef CONFIG_UNACCEPTED_MEMORY
4188 
4189 bool range_contains_unaccepted_memory(phys_addr_t start, unsigned long size);
4190 void accept_memory(phys_addr_t start, unsigned long size);
4191 
4192 #else
4193 
range_contains_unaccepted_memory(phys_addr_t start,unsigned long size)4194 static inline bool range_contains_unaccepted_memory(phys_addr_t start,
4195 						    unsigned long size)
4196 {
4197 	return false;
4198 }
4199 
accept_memory(phys_addr_t start,unsigned long size)4200 static inline void accept_memory(phys_addr_t start, unsigned long size)
4201 {
4202 }
4203 
4204 #endif
4205 
pfn_is_unaccepted_memory(unsigned long pfn)4206 static inline bool pfn_is_unaccepted_memory(unsigned long pfn)
4207 {
4208 	return range_contains_unaccepted_memory(pfn << PAGE_SHIFT, PAGE_SIZE);
4209 }
4210 
4211 void vma_pgtable_walk_begin(struct vm_area_struct *vma);
4212 void vma_pgtable_walk_end(struct vm_area_struct *vma);
4213 
4214 int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size);
4215 int reserve_mem_release_by_name(const char *name);
4216 
4217 #ifdef CONFIG_64BIT
4218 int do_mseal(unsigned long start, size_t len_in, unsigned long flags);
4219 #else
do_mseal(unsigned long start,size_t len_in,unsigned long flags)4220 static inline int do_mseal(unsigned long start, size_t len_in, unsigned long flags)
4221 {
4222 	/* noop on 32 bit */
4223 	return 0;
4224 }
4225 #endif
4226 
4227 /*
4228  * user_alloc_needs_zeroing checks if a user folio from page allocator needs to
4229  * be zeroed or not.
4230  */
user_alloc_needs_zeroing(void)4231 static inline bool user_alloc_needs_zeroing(void)
4232 {
4233 	/*
4234 	 * for user folios, arch with cache aliasing requires cache flush and
4235 	 * arc changes folio->flags to make icache coherent with dcache, so
4236 	 * always return false to make caller use
4237 	 * clear_user_page()/clear_user_highpage().
4238 	 */
4239 	return cpu_dcache_is_aliasing() || cpu_icache_is_aliasing() ||
4240 	       !static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
4241 				   &init_on_alloc);
4242 }
4243 
4244 int arch_get_shadow_stack_status(struct task_struct *t, unsigned long __user *status);
4245 int arch_set_shadow_stack_status(struct task_struct *t, unsigned long status);
4246 int arch_lock_shadow_stack_status(struct task_struct *t, unsigned long status);
4247 
4248 
4249 /*
4250  * mseal of userspace process's system mappings.
4251  */
4252 #ifdef CONFIG_MSEAL_SYSTEM_MAPPINGS
4253 #define VM_SEALED_SYSMAP	VM_SEALED
4254 #else
4255 #define VM_SEALED_SYSMAP	VM_NONE
4256 #endif
4257 
4258 /*
4259  * DMA mapping IDs for page_pool
4260  *
4261  * When DMA-mapping a page, page_pool allocates an ID (from an xarray) and
4262  * stashes it in the upper bits of page->pp_magic. We always want to be able to
4263  * unambiguously identify page pool pages (using page_pool_page_is_pp()). Non-PP
4264  * pages can have arbitrary kernel pointers stored in the same field as pp_magic
4265  * (since it overlaps with page->lru.next), so we must ensure that we cannot
4266  * mistake a valid kernel pointer with any of the values we write into this
4267  * field.
4268  *
4269  * On architectures that set POISON_POINTER_DELTA, this is already ensured,
4270  * since this value becomes part of PP_SIGNATURE; meaning we can just use the
4271  * space between the PP_SIGNATURE value (without POISON_POINTER_DELTA), and the
4272  * lowest bits of POISON_POINTER_DELTA. On arches where POISON_POINTER_DELTA is
4273  * 0, we use the lowest bit of PAGE_OFFSET as the boundary if that value is
4274  * known at compile-time.
4275  *
4276  * If the value of PAGE_OFFSET is not known at compile time, or if it is too
4277  * small to leave at least 8 bits available above PP_SIGNATURE, we define the
4278  * number of bits to be 0, which turns off the DMA index tracking altogether
4279  * (see page_pool_register_dma_index()).
4280  */
4281 #define PP_DMA_INDEX_SHIFT (1 + __fls(PP_SIGNATURE - POISON_POINTER_DELTA))
4282 #if POISON_POINTER_DELTA > 0
4283 /* PP_SIGNATURE includes POISON_POINTER_DELTA, so limit the size of the DMA
4284  * index to not overlap with that if set
4285  */
4286 #define PP_DMA_INDEX_BITS MIN(32, __ffs(POISON_POINTER_DELTA) - PP_DMA_INDEX_SHIFT)
4287 #else
4288 /* Use the lowest bit of PAGE_OFFSET if there's at least 8 bits available; see above */
4289 #define PP_DMA_INDEX_MIN_OFFSET (1 << (PP_DMA_INDEX_SHIFT + 8))
4290 #define PP_DMA_INDEX_BITS ((__builtin_constant_p(PAGE_OFFSET) && \
4291 			    PAGE_OFFSET >= PP_DMA_INDEX_MIN_OFFSET && \
4292 			    !(PAGE_OFFSET & (PP_DMA_INDEX_MIN_OFFSET - 1))) ? \
4293 			      MIN(32, __ffs(PAGE_OFFSET) - PP_DMA_INDEX_SHIFT) : 0)
4294 
4295 #endif
4296 
4297 #define PP_DMA_INDEX_MASK GENMASK(PP_DMA_INDEX_BITS + PP_DMA_INDEX_SHIFT - 1, \
4298 				  PP_DMA_INDEX_SHIFT)
4299 
4300 /* Mask used for checking in page_pool_page_is_pp() below. page->pp_magic is
4301  * OR'ed with PP_SIGNATURE after the allocation in order to preserve bit 0 for
4302  * the head page of compound page and bit 1 for pfmemalloc page, as well as the
4303  * bits used for the DMA index. page_is_pfmemalloc() is checked in
4304  * __page_pool_put_page() to avoid recycling the pfmemalloc page.
4305  */
4306 #define PP_MAGIC_MASK ~(PP_DMA_INDEX_MASK | 0x3UL)
4307 
4308 #ifdef CONFIG_PAGE_POOL
page_pool_page_is_pp(const struct page * page)4309 static inline bool page_pool_page_is_pp(const struct page *page)
4310 {
4311 	return (page->pp_magic & PP_MAGIC_MASK) == PP_SIGNATURE;
4312 }
4313 #else
page_pool_page_is_pp(const struct page * page)4314 static inline bool page_pool_page_is_pp(const struct page *page)
4315 {
4316 	return false;
4317 }
4318 #endif
4319 
4320 #define PAGE_SNAPSHOT_FAITHFUL (1 << 0)
4321 #define PAGE_SNAPSHOT_PG_BUDDY (1 << 1)
4322 #define PAGE_SNAPSHOT_PG_IDLE  (1 << 2)
4323 
4324 struct page_snapshot {
4325 	struct folio folio_snapshot;
4326 	struct page page_snapshot;
4327 	unsigned long pfn;
4328 	unsigned long idx;
4329 	unsigned long flags;
4330 };
4331 
snapshot_page_is_faithful(const struct page_snapshot * ps)4332 static inline bool snapshot_page_is_faithful(const struct page_snapshot *ps)
4333 {
4334 	return ps->flags & PAGE_SNAPSHOT_FAITHFUL;
4335 }
4336 
4337 void snapshot_page(struct page_snapshot *ps, const struct page *page);
4338 
4339 #endif /* _LINUX_MM_H */
4340