1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* memcontrol.h - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 */ 10 11 #ifndef _LINUX_MEMCONTROL_H 12 #define _LINUX_MEMCONTROL_H 13 #include <linux/cgroup.h> 14 #include <linux/vm_event_item.h> 15 #include <linux/hardirq.h> 16 #include <linux/jump_label.h> 17 #include <linux/kernel.h> 18 #include <linux/page_counter.h> 19 #include <linux/vmpressure.h> 20 #include <linux/eventfd.h> 21 #include <linux/mm.h> 22 #include <linux/vmstat.h> 23 #include <linux/writeback.h> 24 #include <linux/page-flags.h> 25 #include <linux/shrinker.h> 26 27 struct mem_cgroup; 28 struct obj_cgroup; 29 struct page; 30 struct mm_struct; 31 struct kmem_cache; 32 33 /* Cgroup-specific page state, on top of universal node page state */ 34 enum memcg_stat_item { 35 MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS, 36 MEMCG_SOCK, 37 MEMCG_PERCPU_B, 38 MEMCG_VMALLOC, 39 MEMCG_KMEM, 40 MEMCG_ZSWAP_B, 41 MEMCG_ZSWAPPED, 42 MEMCG_NR_STAT, 43 }; 44 45 enum memcg_memory_event { 46 MEMCG_LOW, 47 MEMCG_HIGH, 48 MEMCG_MAX, 49 MEMCG_OOM, 50 MEMCG_OOM_KILL, 51 MEMCG_OOM_GROUP_KILL, 52 MEMCG_SWAP_HIGH, 53 MEMCG_SWAP_MAX, 54 MEMCG_SWAP_FAIL, 55 MEMCG_NR_MEMORY_EVENTS, 56 }; 57 58 struct mem_cgroup_reclaim_cookie { 59 pg_data_t *pgdat; 60 int generation; 61 }; 62 63 #ifdef CONFIG_MEMCG 64 65 #define MEM_CGROUP_ID_SHIFT 16 66 67 struct mem_cgroup_id { 68 int id; 69 refcount_t ref; 70 }; 71 72 struct memcg_vmstats_percpu; 73 struct memcg1_events_percpu; 74 struct memcg_vmstats; 75 struct lruvec_stats_percpu; 76 struct lruvec_stats; 77 78 struct mem_cgroup_reclaim_iter { 79 struct mem_cgroup *position; 80 /* scan generation, increased every round-trip */ 81 atomic_t generation; 82 }; 83 84 /* 85 * per-node information in memory controller. 86 */ 87 struct mem_cgroup_per_node { 88 /* Keep the read-only fields at the start */ 89 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 90 /* use container_of */ 91 92 struct lruvec_stats_percpu __percpu *lruvec_stats_percpu; 93 struct lruvec_stats *lruvec_stats; 94 struct shrinker_info __rcu *shrinker_info; 95 96 #ifdef CONFIG_MEMCG_V1 97 /* 98 * Memcg-v1 only stuff in middle as buffer between read mostly fields 99 * and update often fields to avoid false sharing. If v1 stuff is 100 * not present, an explicit padding is needed. 101 */ 102 103 struct rb_node tree_node; /* RB tree node */ 104 unsigned long usage_in_excess;/* Set to the value by which */ 105 /* the soft limit is exceeded*/ 106 bool on_tree; 107 #else 108 CACHELINE_PADDING(_pad1_); 109 #endif 110 111 /* Fields which get updated often at the end. */ 112 struct lruvec lruvec; 113 CACHELINE_PADDING(_pad2_); 114 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS]; 115 struct mem_cgroup_reclaim_iter iter; 116 117 #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC 118 /* slab stats for nmi context */ 119 atomic_t slab_reclaimable; 120 atomic_t slab_unreclaimable; 121 #endif 122 }; 123 124 struct mem_cgroup_threshold { 125 struct eventfd_ctx *eventfd; 126 unsigned long threshold; 127 }; 128 129 /* For threshold */ 130 struct mem_cgroup_threshold_ary { 131 /* An array index points to threshold just below or equal to usage. */ 132 int current_threshold; 133 /* Size of entries[] */ 134 unsigned int size; 135 /* Array of thresholds */ 136 struct mem_cgroup_threshold entries[] __counted_by(size); 137 }; 138 139 struct mem_cgroup_thresholds { 140 /* Primary thresholds array */ 141 struct mem_cgroup_threshold_ary *primary; 142 /* 143 * Spare threshold array. 144 * This is needed to make mem_cgroup_unregister_event() "never fail". 145 * It must be able to store at least primary->size - 1 entries. 146 */ 147 struct mem_cgroup_threshold_ary *spare; 148 }; 149 150 /* 151 * Remember four most recent foreign writebacks with dirty pages in this 152 * cgroup. Inode sharing is expected to be uncommon and, even if we miss 153 * one in a given round, we're likely to catch it later if it keeps 154 * foreign-dirtying, so a fairly low count should be enough. 155 * 156 * See mem_cgroup_track_foreign_dirty_slowpath() for details. 157 */ 158 #define MEMCG_CGWB_FRN_CNT 4 159 160 struct memcg_cgwb_frn { 161 u64 bdi_id; /* bdi->id of the foreign inode */ 162 int memcg_id; /* memcg->css.id of foreign inode */ 163 u64 at; /* jiffies_64 at the time of dirtying */ 164 struct wb_completion done; /* tracks in-flight foreign writebacks */ 165 }; 166 167 /* 168 * Bucket for arbitrarily byte-sized objects charged to a memory 169 * cgroup. The bucket can be reparented in one piece when the cgroup 170 * is destroyed, without having to round up the individual references 171 * of all live memory objects in the wild. 172 */ 173 struct obj_cgroup { 174 struct percpu_ref refcnt; 175 struct mem_cgroup *memcg; 176 atomic_t nr_charged_bytes; 177 union { 178 struct list_head list; /* protected by objcg_lock */ 179 struct rcu_head rcu; 180 }; 181 }; 182 183 /* 184 * The memory controller data structure. The memory controller controls both 185 * page cache and RSS per cgroup. We would eventually like to provide 186 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 187 * to help the administrator determine what knobs to tune. 188 */ 189 struct mem_cgroup { 190 struct cgroup_subsys_state css; 191 192 /* Private memcg ID. Used to ID objects that outlive the cgroup */ 193 struct mem_cgroup_id id; 194 195 /* Accounted resources */ 196 struct page_counter memory; /* Both v1 & v2 */ 197 198 union { 199 struct page_counter swap; /* v2 only */ 200 struct page_counter memsw; /* v1 only */ 201 }; 202 203 /* registered local peak watchers */ 204 struct list_head memory_peaks; 205 struct list_head swap_peaks; 206 spinlock_t peaks_lock; 207 208 /* Range enforcement for interrupt charges */ 209 struct work_struct high_work; 210 211 #ifdef CONFIG_ZSWAP 212 unsigned long zswap_max; 213 214 /* 215 * Prevent pages from this memcg from being written back from zswap to 216 * swap, and from being swapped out on zswap store failures. 217 */ 218 bool zswap_writeback; 219 #endif 220 221 /* vmpressure notifications */ 222 struct vmpressure vmpressure; 223 224 /* 225 * Should the OOM killer kill all belonging tasks, had it kill one? 226 */ 227 bool oom_group; 228 229 int swappiness; 230 231 /* memory.events and memory.events.local */ 232 struct cgroup_file events_file; 233 struct cgroup_file events_local_file; 234 235 /* handle for "memory.swap.events" */ 236 struct cgroup_file swap_events_file; 237 238 /* memory.stat */ 239 struct memcg_vmstats *vmstats; 240 241 /* memory.events */ 242 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS]; 243 atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS]; 244 245 #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC 246 /* MEMCG_KMEM for nmi context */ 247 atomic_t kmem_stat; 248 #endif 249 /* 250 * Hint of reclaim pressure for socket memroy management. Note 251 * that this indicator should NOT be used in legacy cgroup mode 252 * where socket memory is accounted/charged separately. 253 */ 254 u64 socket_pressure; 255 #if BITS_PER_LONG < 64 256 seqlock_t socket_pressure_seqlock; 257 #endif 258 int kmemcg_id; 259 /* 260 * memcg->objcg is wiped out as a part of the objcg repaprenting 261 * process. memcg->orig_objcg preserves a pointer (and a reference) 262 * to the original objcg until the end of live of memcg. 263 */ 264 struct obj_cgroup __rcu *objcg; 265 struct obj_cgroup *orig_objcg; 266 /* list of inherited objcgs, protected by objcg_lock */ 267 struct list_head objcg_list; 268 269 struct memcg_vmstats_percpu __percpu *vmstats_percpu; 270 271 #ifdef CONFIG_CGROUP_WRITEBACK 272 struct list_head cgwb_list; 273 struct wb_domain cgwb_domain; 274 struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT]; 275 #endif 276 277 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 278 struct deferred_split deferred_split_queue; 279 #endif 280 281 #ifdef CONFIG_LRU_GEN_WALKS_MMU 282 /* per-memcg mm_struct list */ 283 struct lru_gen_mm_list mm_list; 284 #endif 285 286 #ifdef CONFIG_MEMCG_V1 287 /* Legacy consumer-oriented counters */ 288 struct page_counter kmem; /* v1 only */ 289 struct page_counter tcpmem; /* v1 only */ 290 291 struct memcg1_events_percpu __percpu *events_percpu; 292 293 unsigned long soft_limit; 294 295 /* protected by memcg_oom_lock */ 296 bool oom_lock; 297 int under_oom; 298 299 /* OOM-Killer disable */ 300 int oom_kill_disable; 301 302 /* protect arrays of thresholds */ 303 struct mutex thresholds_lock; 304 305 /* thresholds for memory usage. RCU-protected */ 306 struct mem_cgroup_thresholds thresholds; 307 308 /* thresholds for mem+swap usage. RCU-protected */ 309 struct mem_cgroup_thresholds memsw_thresholds; 310 311 /* For oom notifier event fd */ 312 struct list_head oom_notify; 313 314 /* Legacy tcp memory accounting */ 315 bool tcpmem_active; 316 int tcpmem_pressure; 317 318 /* List of events which userspace want to receive */ 319 struct list_head event_list; 320 spinlock_t event_list_lock; 321 #endif /* CONFIG_MEMCG_V1 */ 322 323 struct mem_cgroup_per_node *nodeinfo[]; 324 }; 325 326 /* 327 * size of first charge trial. 328 * TODO: maybe necessary to use big numbers in big irons or dynamic based of the 329 * workload. 330 */ 331 #define MEMCG_CHARGE_BATCH 64U 332 333 extern struct mem_cgroup *root_mem_cgroup; 334 335 enum page_memcg_data_flags { 336 /* page->memcg_data is a pointer to an slabobj_ext vector */ 337 MEMCG_DATA_OBJEXTS = (1UL << 0), 338 /* page has been accounted as a non-slab kernel page */ 339 MEMCG_DATA_KMEM = (1UL << 1), 340 /* the next bit after the last actual flag */ 341 __NR_MEMCG_DATA_FLAGS = (1UL << 2), 342 }; 343 344 #define __FIRST_OBJEXT_FLAG __NR_MEMCG_DATA_FLAGS 345 346 #else /* CONFIG_MEMCG */ 347 348 #define __FIRST_OBJEXT_FLAG (1UL << 0) 349 350 #endif /* CONFIG_MEMCG */ 351 352 enum objext_flags { 353 /* slabobj_ext vector failed to allocate */ 354 OBJEXTS_ALLOC_FAIL = __FIRST_OBJEXT_FLAG, 355 /* the next bit after the last actual flag */ 356 __NR_OBJEXTS_FLAGS = (__FIRST_OBJEXT_FLAG << 1), 357 }; 358 359 #define OBJEXTS_FLAGS_MASK (__NR_OBJEXTS_FLAGS - 1) 360 361 #ifdef CONFIG_MEMCG 362 363 static inline bool folio_memcg_kmem(struct folio *folio); 364 365 /* 366 * After the initialization objcg->memcg is always pointing at 367 * a valid memcg, but can be atomically swapped to the parent memcg. 368 * 369 * The caller must ensure that the returned memcg won't be released. 370 */ 371 static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg) 372 { 373 lockdep_assert_once(rcu_read_lock_held() || lockdep_is_held(&cgroup_mutex)); 374 return READ_ONCE(objcg->memcg); 375 } 376 377 /* 378 * __folio_memcg - Get the memory cgroup associated with a non-kmem folio 379 * @folio: Pointer to the folio. 380 * 381 * Returns a pointer to the memory cgroup associated with the folio, 382 * or NULL. This function assumes that the folio is known to have a 383 * proper memory cgroup pointer. It's not safe to call this function 384 * against some type of folios, e.g. slab folios or ex-slab folios or 385 * kmem folios. 386 */ 387 static inline struct mem_cgroup *__folio_memcg(struct folio *folio) 388 { 389 unsigned long memcg_data = folio->memcg_data; 390 391 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio); 392 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJEXTS, folio); 393 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_KMEM, folio); 394 395 return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK); 396 } 397 398 /* 399 * __folio_objcg - get the object cgroup associated with a kmem folio. 400 * @folio: Pointer to the folio. 401 * 402 * Returns a pointer to the object cgroup associated with the folio, 403 * or NULL. This function assumes that the folio is known to have a 404 * proper object cgroup pointer. It's not safe to call this function 405 * against some type of folios, e.g. slab folios or ex-slab folios or 406 * LRU folios. 407 */ 408 static inline struct obj_cgroup *__folio_objcg(struct folio *folio) 409 { 410 unsigned long memcg_data = folio->memcg_data; 411 412 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio); 413 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJEXTS, folio); 414 VM_BUG_ON_FOLIO(!(memcg_data & MEMCG_DATA_KMEM), folio); 415 416 return (struct obj_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK); 417 } 418 419 /* 420 * folio_memcg - Get the memory cgroup associated with a folio. 421 * @folio: Pointer to the folio. 422 * 423 * Returns a pointer to the memory cgroup associated with the folio, 424 * or NULL. This function assumes that the folio is known to have a 425 * proper memory cgroup pointer. It's not safe to call this function 426 * against some type of folios, e.g. slab folios or ex-slab folios. 427 * 428 * For a non-kmem folio any of the following ensures folio and memcg binding 429 * stability: 430 * 431 * - the folio lock 432 * - LRU isolation 433 * - exclusive reference 434 * 435 * For a kmem folio a caller should hold an rcu read lock to protect memcg 436 * associated with a kmem folio from being released. 437 */ 438 static inline struct mem_cgroup *folio_memcg(struct folio *folio) 439 { 440 if (folio_memcg_kmem(folio)) 441 return obj_cgroup_memcg(__folio_objcg(folio)); 442 return __folio_memcg(folio); 443 } 444 445 /* 446 * folio_memcg_charged - If a folio is charged to a memory cgroup. 447 * @folio: Pointer to the folio. 448 * 449 * Returns true if folio is charged to a memory cgroup, otherwise returns false. 450 */ 451 static inline bool folio_memcg_charged(struct folio *folio) 452 { 453 return folio->memcg_data != 0; 454 } 455 456 /* 457 * folio_memcg_check - Get the memory cgroup associated with a folio. 458 * @folio: Pointer to the folio. 459 * 460 * Returns a pointer to the memory cgroup associated with the folio, 461 * or NULL. This function unlike folio_memcg() can take any folio 462 * as an argument. It has to be used in cases when it's not known if a folio 463 * has an associated memory cgroup pointer or an object cgroups vector or 464 * an object cgroup. 465 * 466 * For a non-kmem folio any of the following ensures folio and memcg binding 467 * stability: 468 * 469 * - the folio lock 470 * - LRU isolation 471 * - exclusive reference 472 * 473 * For a kmem folio a caller should hold an rcu read lock to protect memcg 474 * associated with a kmem folio from being released. 475 */ 476 static inline struct mem_cgroup *folio_memcg_check(struct folio *folio) 477 { 478 /* 479 * Because folio->memcg_data might be changed asynchronously 480 * for slabs, READ_ONCE() should be used here. 481 */ 482 unsigned long memcg_data = READ_ONCE(folio->memcg_data); 483 484 if (memcg_data & MEMCG_DATA_OBJEXTS) 485 return NULL; 486 487 if (memcg_data & MEMCG_DATA_KMEM) { 488 struct obj_cgroup *objcg; 489 490 objcg = (void *)(memcg_data & ~OBJEXTS_FLAGS_MASK); 491 return obj_cgroup_memcg(objcg); 492 } 493 494 return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK); 495 } 496 497 static inline struct mem_cgroup *page_memcg_check(struct page *page) 498 { 499 if (PageTail(page)) 500 return NULL; 501 return folio_memcg_check((struct folio *)page); 502 } 503 504 static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg) 505 { 506 struct mem_cgroup *memcg; 507 508 rcu_read_lock(); 509 retry: 510 memcg = obj_cgroup_memcg(objcg); 511 if (unlikely(!css_tryget(&memcg->css))) 512 goto retry; 513 rcu_read_unlock(); 514 515 return memcg; 516 } 517 518 /* 519 * folio_memcg_kmem - Check if the folio has the memcg_kmem flag set. 520 * @folio: Pointer to the folio. 521 * 522 * Checks if the folio has MemcgKmem flag set. The caller must ensure 523 * that the folio has an associated memory cgroup. It's not safe to call 524 * this function against some types of folios, e.g. slab folios. 525 */ 526 static inline bool folio_memcg_kmem(struct folio *folio) 527 { 528 VM_BUG_ON_PGFLAGS(PageTail(&folio->page), &folio->page); 529 VM_BUG_ON_FOLIO(folio->memcg_data & MEMCG_DATA_OBJEXTS, folio); 530 return folio->memcg_data & MEMCG_DATA_KMEM; 531 } 532 533 static inline bool PageMemcgKmem(struct page *page) 534 { 535 return folio_memcg_kmem(page_folio(page)); 536 } 537 538 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 539 { 540 return (memcg == root_mem_cgroup); 541 } 542 543 static inline bool mem_cgroup_disabled(void) 544 { 545 return !cgroup_subsys_enabled(memory_cgrp_subsys); 546 } 547 548 static inline void mem_cgroup_protection(struct mem_cgroup *root, 549 struct mem_cgroup *memcg, 550 unsigned long *min, 551 unsigned long *low) 552 { 553 *min = *low = 0; 554 555 if (mem_cgroup_disabled()) 556 return; 557 558 /* 559 * There is no reclaim protection applied to a targeted reclaim. 560 * We are special casing this specific case here because 561 * mem_cgroup_calculate_protection is not robust enough to keep 562 * the protection invariant for calculated effective values for 563 * parallel reclaimers with different reclaim target. This is 564 * especially a problem for tail memcgs (as they have pages on LRU) 565 * which would want to have effective values 0 for targeted reclaim 566 * but a different value for external reclaim. 567 * 568 * Example 569 * Let's have global and A's reclaim in parallel: 570 * | 571 * A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G) 572 * |\ 573 * | C (low = 1G, usage = 2.5G) 574 * B (low = 1G, usage = 0.5G) 575 * 576 * For the global reclaim 577 * A.elow = A.low 578 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow 579 * C.elow = min(C.usage, C.low) 580 * 581 * With the effective values resetting we have A reclaim 582 * A.elow = 0 583 * B.elow = B.low 584 * C.elow = C.low 585 * 586 * If the global reclaim races with A's reclaim then 587 * B.elow = C.elow = 0 because children_low_usage > A.elow) 588 * is possible and reclaiming B would be violating the protection. 589 * 590 */ 591 if (root == memcg) 592 return; 593 594 *min = READ_ONCE(memcg->memory.emin); 595 *low = READ_ONCE(memcg->memory.elow); 596 } 597 598 void mem_cgroup_calculate_protection(struct mem_cgroup *root, 599 struct mem_cgroup *memcg); 600 601 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target, 602 struct mem_cgroup *memcg) 603 { 604 /* 605 * The root memcg doesn't account charges, and doesn't support 606 * protection. The target memcg's protection is ignored, see 607 * mem_cgroup_calculate_protection() and mem_cgroup_protection() 608 */ 609 return mem_cgroup_disabled() || mem_cgroup_is_root(memcg) || 610 memcg == target; 611 } 612 613 static inline bool mem_cgroup_below_low(struct mem_cgroup *target, 614 struct mem_cgroup *memcg) 615 { 616 if (mem_cgroup_unprotected(target, memcg)) 617 return false; 618 619 return READ_ONCE(memcg->memory.elow) >= 620 page_counter_read(&memcg->memory); 621 } 622 623 static inline bool mem_cgroup_below_min(struct mem_cgroup *target, 624 struct mem_cgroup *memcg) 625 { 626 if (mem_cgroup_unprotected(target, memcg)) 627 return false; 628 629 return READ_ONCE(memcg->memory.emin) >= 630 page_counter_read(&memcg->memory); 631 } 632 633 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp); 634 635 /** 636 * mem_cgroup_charge - Charge a newly allocated folio to a cgroup. 637 * @folio: Folio to charge. 638 * @mm: mm context of the allocating task. 639 * @gfp: Reclaim mode. 640 * 641 * Try to charge @folio to the memcg that @mm belongs to, reclaiming 642 * pages according to @gfp if necessary. If @mm is NULL, try to 643 * charge to the active memcg. 644 * 645 * Do not use this for folios allocated for swapin. 646 * 647 * Return: 0 on success. Otherwise, an error code is returned. 648 */ 649 static inline int mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, 650 gfp_t gfp) 651 { 652 if (mem_cgroup_disabled()) 653 return 0; 654 return __mem_cgroup_charge(folio, mm, gfp); 655 } 656 657 int mem_cgroup_charge_hugetlb(struct folio* folio, gfp_t gfp); 658 659 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm, 660 gfp_t gfp, swp_entry_t entry); 661 662 void __mem_cgroup_uncharge(struct folio *folio); 663 664 /** 665 * mem_cgroup_uncharge - Uncharge a folio. 666 * @folio: Folio to uncharge. 667 * 668 * Uncharge a folio previously charged with mem_cgroup_charge(). 669 */ 670 static inline void mem_cgroup_uncharge(struct folio *folio) 671 { 672 if (mem_cgroup_disabled()) 673 return; 674 __mem_cgroup_uncharge(folio); 675 } 676 677 void __mem_cgroup_uncharge_folios(struct folio_batch *folios); 678 static inline void mem_cgroup_uncharge_folios(struct folio_batch *folios) 679 { 680 if (mem_cgroup_disabled()) 681 return; 682 __mem_cgroup_uncharge_folios(folios); 683 } 684 685 void mem_cgroup_replace_folio(struct folio *old, struct folio *new); 686 void mem_cgroup_migrate(struct folio *old, struct folio *new); 687 688 /** 689 * mem_cgroup_lruvec - get the lru list vector for a memcg & node 690 * @memcg: memcg of the wanted lruvec 691 * @pgdat: pglist_data 692 * 693 * Returns the lru list vector holding pages for a given @memcg & 694 * @pgdat combination. This can be the node lruvec, if the memory 695 * controller is disabled. 696 */ 697 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, 698 struct pglist_data *pgdat) 699 { 700 struct mem_cgroup_per_node *mz; 701 struct lruvec *lruvec; 702 703 if (mem_cgroup_disabled()) { 704 lruvec = &pgdat->__lruvec; 705 goto out; 706 } 707 708 if (!memcg) 709 memcg = root_mem_cgroup; 710 711 mz = memcg->nodeinfo[pgdat->node_id]; 712 lruvec = &mz->lruvec; 713 out: 714 /* 715 * Since a node can be onlined after the mem_cgroup was created, 716 * we have to be prepared to initialize lruvec->pgdat here; 717 * and if offlined then reonlined, we need to reinitialize it. 718 */ 719 if (unlikely(lruvec->pgdat != pgdat)) 720 lruvec->pgdat = pgdat; 721 return lruvec; 722 } 723 724 /** 725 * folio_lruvec - return lruvec for isolating/putting an LRU folio 726 * @folio: Pointer to the folio. 727 * 728 * This function relies on folio->mem_cgroup being stable. 729 */ 730 static inline struct lruvec *folio_lruvec(struct folio *folio) 731 { 732 struct mem_cgroup *memcg = folio_memcg(folio); 733 734 VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled(), folio); 735 return mem_cgroup_lruvec(memcg, folio_pgdat(folio)); 736 } 737 738 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p); 739 740 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm); 741 742 struct mem_cgroup *get_mem_cgroup_from_current(void); 743 744 struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio); 745 746 struct lruvec *folio_lruvec_lock(struct folio *folio); 747 struct lruvec *folio_lruvec_lock_irq(struct folio *folio); 748 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 749 unsigned long *flags); 750 751 #ifdef CONFIG_DEBUG_VM 752 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio); 753 #else 754 static inline 755 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 756 { 757 } 758 #endif 759 760 static inline 761 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){ 762 return css ? container_of(css, struct mem_cgroup, css) : NULL; 763 } 764 765 static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg) 766 { 767 return percpu_ref_tryget(&objcg->refcnt); 768 } 769 770 static inline void obj_cgroup_get(struct obj_cgroup *objcg) 771 { 772 percpu_ref_get(&objcg->refcnt); 773 } 774 775 static inline void obj_cgroup_get_many(struct obj_cgroup *objcg, 776 unsigned long nr) 777 { 778 percpu_ref_get_many(&objcg->refcnt, nr); 779 } 780 781 static inline void obj_cgroup_put(struct obj_cgroup *objcg) 782 { 783 if (objcg) 784 percpu_ref_put(&objcg->refcnt); 785 } 786 787 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg) 788 { 789 return !memcg || css_tryget(&memcg->css); 790 } 791 792 static inline bool mem_cgroup_tryget_online(struct mem_cgroup *memcg) 793 { 794 return !memcg || css_tryget_online(&memcg->css); 795 } 796 797 static inline void mem_cgroup_put(struct mem_cgroup *memcg) 798 { 799 if (memcg) 800 css_put(&memcg->css); 801 } 802 803 #define mem_cgroup_from_counter(counter, member) \ 804 container_of(counter, struct mem_cgroup, member) 805 806 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *, 807 struct mem_cgroup *, 808 struct mem_cgroup_reclaim_cookie *); 809 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *); 810 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 811 int (*)(struct task_struct *, void *), void *arg); 812 813 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 814 { 815 if (mem_cgroup_disabled()) 816 return 0; 817 818 return memcg->id.id; 819 } 820 struct mem_cgroup *mem_cgroup_from_id(unsigned short id); 821 822 #ifdef CONFIG_SHRINKER_DEBUG 823 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg) 824 { 825 return memcg ? cgroup_ino(memcg->css.cgroup) : 0; 826 } 827 828 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino); 829 #endif 830 831 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 832 { 833 return mem_cgroup_from_css(seq_css(m)); 834 } 835 836 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 837 { 838 struct mem_cgroup_per_node *mz; 839 840 if (mem_cgroup_disabled()) 841 return NULL; 842 843 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 844 return mz->memcg; 845 } 846 847 /** 848 * parent_mem_cgroup - find the accounting parent of a memcg 849 * @memcg: memcg whose parent to find 850 * 851 * Returns the parent memcg, or NULL if this is the root. 852 */ 853 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 854 { 855 return mem_cgroup_from_css(memcg->css.parent); 856 } 857 858 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, 859 struct mem_cgroup *root) 860 { 861 if (root == memcg) 862 return true; 863 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup); 864 } 865 866 static inline bool mm_match_cgroup(struct mm_struct *mm, 867 struct mem_cgroup *memcg) 868 { 869 struct mem_cgroup *task_memcg; 870 bool match = false; 871 872 rcu_read_lock(); 873 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 874 if (task_memcg) 875 match = mem_cgroup_is_descendant(task_memcg, memcg); 876 rcu_read_unlock(); 877 return match; 878 } 879 880 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio); 881 ino_t page_cgroup_ino(struct page *page); 882 883 static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 884 { 885 if (mem_cgroup_disabled()) 886 return true; 887 return !!(memcg->css.flags & CSS_ONLINE); 888 } 889 890 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 891 int zid, int nr_pages); 892 893 static inline 894 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 895 enum lru_list lru, int zone_idx) 896 { 897 struct mem_cgroup_per_node *mz; 898 899 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 900 return READ_ONCE(mz->lru_zone_size[zone_idx][lru]); 901 } 902 903 void mem_cgroup_handle_over_high(gfp_t gfp_mask); 904 905 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg); 906 907 unsigned long mem_cgroup_size(struct mem_cgroup *memcg); 908 909 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, 910 struct task_struct *p); 911 912 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg); 913 914 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 915 struct mem_cgroup *oom_domain); 916 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg); 917 918 /* idx can be of type enum memcg_stat_item or node_stat_item */ 919 void mod_memcg_state(struct mem_cgroup *memcg, 920 enum memcg_stat_item idx, int val); 921 922 static inline void mod_memcg_page_state(struct page *page, 923 enum memcg_stat_item idx, int val) 924 { 925 struct mem_cgroup *memcg; 926 927 if (mem_cgroup_disabled()) 928 return; 929 930 rcu_read_lock(); 931 memcg = folio_memcg(page_folio(page)); 932 if (memcg) 933 mod_memcg_state(memcg, idx, val); 934 rcu_read_unlock(); 935 } 936 937 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx); 938 unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx); 939 unsigned long lruvec_page_state_local(struct lruvec *lruvec, 940 enum node_stat_item idx); 941 942 void mem_cgroup_flush_stats(struct mem_cgroup *memcg); 943 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg); 944 945 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val); 946 947 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx, 948 int val) 949 { 950 unsigned long flags; 951 952 local_irq_save(flags); 953 __mod_lruvec_kmem_state(p, idx, val); 954 local_irq_restore(flags); 955 } 956 957 void count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 958 unsigned long count); 959 960 static inline void count_memcg_folio_events(struct folio *folio, 961 enum vm_event_item idx, unsigned long nr) 962 { 963 struct mem_cgroup *memcg = folio_memcg(folio); 964 965 if (memcg) 966 count_memcg_events(memcg, idx, nr); 967 } 968 969 static inline void count_memcg_events_mm(struct mm_struct *mm, 970 enum vm_event_item idx, unsigned long count) 971 { 972 struct mem_cgroup *memcg; 973 974 if (mem_cgroup_disabled()) 975 return; 976 977 rcu_read_lock(); 978 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 979 if (likely(memcg)) 980 count_memcg_events(memcg, idx, count); 981 rcu_read_unlock(); 982 } 983 984 static inline void count_memcg_event_mm(struct mm_struct *mm, 985 enum vm_event_item idx) 986 { 987 count_memcg_events_mm(mm, idx, 1); 988 } 989 990 static inline void memcg_memory_event(struct mem_cgroup *memcg, 991 enum memcg_memory_event event) 992 { 993 bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX || 994 event == MEMCG_SWAP_FAIL; 995 996 atomic_long_inc(&memcg->memory_events_local[event]); 997 if (!swap_event) 998 cgroup_file_notify(&memcg->events_local_file); 999 1000 do { 1001 atomic_long_inc(&memcg->memory_events[event]); 1002 if (swap_event) 1003 cgroup_file_notify(&memcg->swap_events_file); 1004 else 1005 cgroup_file_notify(&memcg->events_file); 1006 1007 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1008 break; 1009 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1010 break; 1011 } while ((memcg = parent_mem_cgroup(memcg)) && 1012 !mem_cgroup_is_root(memcg)); 1013 } 1014 1015 static inline void memcg_memory_event_mm(struct mm_struct *mm, 1016 enum memcg_memory_event event) 1017 { 1018 struct mem_cgroup *memcg; 1019 1020 if (mem_cgroup_disabled()) 1021 return; 1022 1023 rcu_read_lock(); 1024 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1025 if (likely(memcg)) 1026 memcg_memory_event(memcg, event); 1027 rcu_read_unlock(); 1028 } 1029 1030 void split_page_memcg(struct page *first, unsigned order); 1031 void folio_split_memcg_refs(struct folio *folio, unsigned old_order, 1032 unsigned new_order); 1033 1034 static inline u64 cgroup_id_from_mm(struct mm_struct *mm) 1035 { 1036 struct mem_cgroup *memcg; 1037 u64 id; 1038 1039 if (mem_cgroup_disabled()) 1040 return 0; 1041 1042 rcu_read_lock(); 1043 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1044 if (!memcg) 1045 memcg = root_mem_cgroup; 1046 id = cgroup_id(memcg->css.cgroup); 1047 rcu_read_unlock(); 1048 return id; 1049 } 1050 1051 extern int mem_cgroup_init(void); 1052 #else /* CONFIG_MEMCG */ 1053 1054 #define MEM_CGROUP_ID_SHIFT 0 1055 1056 static inline struct mem_cgroup *folio_memcg(struct folio *folio) 1057 { 1058 return NULL; 1059 } 1060 1061 static inline bool folio_memcg_charged(struct folio *folio) 1062 { 1063 return false; 1064 } 1065 1066 static inline struct mem_cgroup *folio_memcg_check(struct folio *folio) 1067 { 1068 return NULL; 1069 } 1070 1071 static inline struct mem_cgroup *page_memcg_check(struct page *page) 1072 { 1073 return NULL; 1074 } 1075 1076 static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg) 1077 { 1078 return NULL; 1079 } 1080 1081 static inline bool folio_memcg_kmem(struct folio *folio) 1082 { 1083 return false; 1084 } 1085 1086 static inline bool PageMemcgKmem(struct page *page) 1087 { 1088 return false; 1089 } 1090 1091 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 1092 { 1093 return true; 1094 } 1095 1096 static inline bool mem_cgroup_disabled(void) 1097 { 1098 return true; 1099 } 1100 1101 static inline void memcg_memory_event(struct mem_cgroup *memcg, 1102 enum memcg_memory_event event) 1103 { 1104 } 1105 1106 static inline void memcg_memory_event_mm(struct mm_struct *mm, 1107 enum memcg_memory_event event) 1108 { 1109 } 1110 1111 static inline void mem_cgroup_protection(struct mem_cgroup *root, 1112 struct mem_cgroup *memcg, 1113 unsigned long *min, 1114 unsigned long *low) 1115 { 1116 *min = *low = 0; 1117 } 1118 1119 static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root, 1120 struct mem_cgroup *memcg) 1121 { 1122 } 1123 1124 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target, 1125 struct mem_cgroup *memcg) 1126 { 1127 return true; 1128 } 1129 static inline bool mem_cgroup_below_low(struct mem_cgroup *target, 1130 struct mem_cgroup *memcg) 1131 { 1132 return false; 1133 } 1134 1135 static inline bool mem_cgroup_below_min(struct mem_cgroup *target, 1136 struct mem_cgroup *memcg) 1137 { 1138 return false; 1139 } 1140 1141 static inline int mem_cgroup_charge(struct folio *folio, 1142 struct mm_struct *mm, gfp_t gfp) 1143 { 1144 return 0; 1145 } 1146 1147 static inline int mem_cgroup_charge_hugetlb(struct folio* folio, gfp_t gfp) 1148 { 1149 return 0; 1150 } 1151 1152 static inline int mem_cgroup_swapin_charge_folio(struct folio *folio, 1153 struct mm_struct *mm, gfp_t gfp, swp_entry_t entry) 1154 { 1155 return 0; 1156 } 1157 1158 static inline void mem_cgroup_uncharge(struct folio *folio) 1159 { 1160 } 1161 1162 static inline void mem_cgroup_uncharge_folios(struct folio_batch *folios) 1163 { 1164 } 1165 1166 static inline void mem_cgroup_replace_folio(struct folio *old, 1167 struct folio *new) 1168 { 1169 } 1170 1171 static inline void mem_cgroup_migrate(struct folio *old, struct folio *new) 1172 { 1173 } 1174 1175 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, 1176 struct pglist_data *pgdat) 1177 { 1178 return &pgdat->__lruvec; 1179 } 1180 1181 static inline struct lruvec *folio_lruvec(struct folio *folio) 1182 { 1183 struct pglist_data *pgdat = folio_pgdat(folio); 1184 return &pgdat->__lruvec; 1185 } 1186 1187 static inline 1188 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 1189 { 1190 } 1191 1192 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 1193 { 1194 return NULL; 1195 } 1196 1197 static inline bool mm_match_cgroup(struct mm_struct *mm, 1198 struct mem_cgroup *memcg) 1199 { 1200 return true; 1201 } 1202 1203 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 1204 { 1205 return NULL; 1206 } 1207 1208 static inline struct mem_cgroup *get_mem_cgroup_from_current(void) 1209 { 1210 return NULL; 1211 } 1212 1213 static inline struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio) 1214 { 1215 return NULL; 1216 } 1217 1218 static inline 1219 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css) 1220 { 1221 return NULL; 1222 } 1223 1224 static inline void obj_cgroup_get(struct obj_cgroup *objcg) 1225 { 1226 } 1227 1228 static inline void obj_cgroup_put(struct obj_cgroup *objcg) 1229 { 1230 } 1231 1232 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg) 1233 { 1234 return true; 1235 } 1236 1237 static inline bool mem_cgroup_tryget_online(struct mem_cgroup *memcg) 1238 { 1239 return true; 1240 } 1241 1242 static inline void mem_cgroup_put(struct mem_cgroup *memcg) 1243 { 1244 } 1245 1246 static inline struct lruvec *folio_lruvec_lock(struct folio *folio) 1247 { 1248 struct pglist_data *pgdat = folio_pgdat(folio); 1249 1250 spin_lock(&pgdat->__lruvec.lru_lock); 1251 return &pgdat->__lruvec; 1252 } 1253 1254 static inline struct lruvec *folio_lruvec_lock_irq(struct folio *folio) 1255 { 1256 struct pglist_data *pgdat = folio_pgdat(folio); 1257 1258 spin_lock_irq(&pgdat->__lruvec.lru_lock); 1259 return &pgdat->__lruvec; 1260 } 1261 1262 static inline struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 1263 unsigned long *flagsp) 1264 { 1265 struct pglist_data *pgdat = folio_pgdat(folio); 1266 1267 spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp); 1268 return &pgdat->__lruvec; 1269 } 1270 1271 static inline struct mem_cgroup * 1272 mem_cgroup_iter(struct mem_cgroup *root, 1273 struct mem_cgroup *prev, 1274 struct mem_cgroup_reclaim_cookie *reclaim) 1275 { 1276 return NULL; 1277 } 1278 1279 static inline void mem_cgroup_iter_break(struct mem_cgroup *root, 1280 struct mem_cgroup *prev) 1281 { 1282 } 1283 1284 static inline void mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1285 int (*fn)(struct task_struct *, void *), void *arg) 1286 { 1287 } 1288 1289 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 1290 { 1291 return 0; 1292 } 1293 1294 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 1295 { 1296 WARN_ON_ONCE(id); 1297 /* XXX: This should always return root_mem_cgroup */ 1298 return NULL; 1299 } 1300 1301 #ifdef CONFIG_SHRINKER_DEBUG 1302 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg) 1303 { 1304 return 0; 1305 } 1306 1307 static inline struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino) 1308 { 1309 return NULL; 1310 } 1311 #endif 1312 1313 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 1314 { 1315 return NULL; 1316 } 1317 1318 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 1319 { 1320 return NULL; 1321 } 1322 1323 static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 1324 { 1325 return true; 1326 } 1327 1328 static inline 1329 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 1330 enum lru_list lru, int zone_idx) 1331 { 1332 return 0; 1333 } 1334 1335 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1336 { 1337 return 0; 1338 } 1339 1340 static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1341 { 1342 return 0; 1343 } 1344 1345 static inline void 1346 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1347 { 1348 } 1349 1350 static inline void 1351 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1352 { 1353 } 1354 1355 static inline void mem_cgroup_handle_over_high(gfp_t gfp_mask) 1356 { 1357 } 1358 1359 static inline struct mem_cgroup *mem_cgroup_get_oom_group( 1360 struct task_struct *victim, struct mem_cgroup *oom_domain) 1361 { 1362 return NULL; 1363 } 1364 1365 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1366 { 1367 } 1368 1369 static inline void mod_memcg_state(struct mem_cgroup *memcg, 1370 enum memcg_stat_item idx, 1371 int nr) 1372 { 1373 } 1374 1375 static inline void mod_memcg_page_state(struct page *page, 1376 enum memcg_stat_item idx, int val) 1377 { 1378 } 1379 1380 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 1381 { 1382 return 0; 1383 } 1384 1385 static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 1386 enum node_stat_item idx) 1387 { 1388 return node_page_state(lruvec_pgdat(lruvec), idx); 1389 } 1390 1391 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, 1392 enum node_stat_item idx) 1393 { 1394 return node_page_state(lruvec_pgdat(lruvec), idx); 1395 } 1396 1397 static inline void mem_cgroup_flush_stats(struct mem_cgroup *memcg) 1398 { 1399 } 1400 1401 static inline void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg) 1402 { 1403 } 1404 1405 static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, 1406 int val) 1407 { 1408 struct page *page = virt_to_head_page(p); 1409 1410 __mod_node_page_state(page_pgdat(page), idx, val); 1411 } 1412 1413 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx, 1414 int val) 1415 { 1416 struct page *page = virt_to_head_page(p); 1417 1418 mod_node_page_state(page_pgdat(page), idx, val); 1419 } 1420 1421 static inline void count_memcg_events(struct mem_cgroup *memcg, 1422 enum vm_event_item idx, 1423 unsigned long count) 1424 { 1425 } 1426 1427 static inline void count_memcg_folio_events(struct folio *folio, 1428 enum vm_event_item idx, unsigned long nr) 1429 { 1430 } 1431 1432 static inline void count_memcg_events_mm(struct mm_struct *mm, 1433 enum vm_event_item idx, unsigned long count) 1434 { 1435 } 1436 1437 static inline 1438 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx) 1439 { 1440 } 1441 1442 static inline void split_page_memcg(struct page *first, unsigned order) 1443 { 1444 } 1445 1446 static inline void folio_split_memcg_refs(struct folio *folio, 1447 unsigned old_order, unsigned new_order) 1448 { 1449 } 1450 1451 static inline u64 cgroup_id_from_mm(struct mm_struct *mm) 1452 { 1453 return 0; 1454 } 1455 1456 static inline int mem_cgroup_init(void) { return 0; } 1457 #endif /* CONFIG_MEMCG */ 1458 1459 /* 1460 * Extended information for slab objects stored as an array in page->memcg_data 1461 * if MEMCG_DATA_OBJEXTS is set. 1462 */ 1463 struct slabobj_ext { 1464 #ifdef CONFIG_MEMCG 1465 struct obj_cgroup *objcg; 1466 #endif 1467 #ifdef CONFIG_MEM_ALLOC_PROFILING 1468 union codetag_ref ref; 1469 #endif 1470 } __aligned(8); 1471 1472 static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx) 1473 { 1474 __mod_lruvec_kmem_state(p, idx, 1); 1475 } 1476 1477 static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx) 1478 { 1479 __mod_lruvec_kmem_state(p, idx, -1); 1480 } 1481 1482 static inline struct lruvec *parent_lruvec(struct lruvec *lruvec) 1483 { 1484 struct mem_cgroup *memcg; 1485 1486 memcg = lruvec_memcg(lruvec); 1487 if (!memcg) 1488 return NULL; 1489 memcg = parent_mem_cgroup(memcg); 1490 if (!memcg) 1491 return NULL; 1492 return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec)); 1493 } 1494 1495 static inline void unlock_page_lruvec(struct lruvec *lruvec) 1496 { 1497 spin_unlock(&lruvec->lru_lock); 1498 } 1499 1500 static inline void unlock_page_lruvec_irq(struct lruvec *lruvec) 1501 { 1502 spin_unlock_irq(&lruvec->lru_lock); 1503 } 1504 1505 static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec, 1506 unsigned long flags) 1507 { 1508 spin_unlock_irqrestore(&lruvec->lru_lock, flags); 1509 } 1510 1511 /* Test requires a stable folio->memcg binding, see folio_memcg() */ 1512 static inline bool folio_matches_lruvec(struct folio *folio, 1513 struct lruvec *lruvec) 1514 { 1515 return lruvec_pgdat(lruvec) == folio_pgdat(folio) && 1516 lruvec_memcg(lruvec) == folio_memcg(folio); 1517 } 1518 1519 /* Don't lock again iff page's lruvec locked */ 1520 static inline struct lruvec *folio_lruvec_relock_irq(struct folio *folio, 1521 struct lruvec *locked_lruvec) 1522 { 1523 if (locked_lruvec) { 1524 if (folio_matches_lruvec(folio, locked_lruvec)) 1525 return locked_lruvec; 1526 1527 unlock_page_lruvec_irq(locked_lruvec); 1528 } 1529 1530 return folio_lruvec_lock_irq(folio); 1531 } 1532 1533 /* Don't lock again iff folio's lruvec locked */ 1534 static inline void folio_lruvec_relock_irqsave(struct folio *folio, 1535 struct lruvec **lruvecp, unsigned long *flags) 1536 { 1537 if (*lruvecp) { 1538 if (folio_matches_lruvec(folio, *lruvecp)) 1539 return; 1540 1541 unlock_page_lruvec_irqrestore(*lruvecp, *flags); 1542 } 1543 1544 *lruvecp = folio_lruvec_lock_irqsave(folio, flags); 1545 } 1546 1547 #ifdef CONFIG_CGROUP_WRITEBACK 1548 1549 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb); 1550 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 1551 unsigned long *pheadroom, unsigned long *pdirty, 1552 unsigned long *pwriteback); 1553 1554 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio, 1555 struct bdi_writeback *wb); 1556 1557 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio, 1558 struct bdi_writeback *wb) 1559 { 1560 struct mem_cgroup *memcg; 1561 1562 if (mem_cgroup_disabled()) 1563 return; 1564 1565 memcg = folio_memcg(folio); 1566 if (unlikely(memcg && &memcg->css != wb->memcg_css)) 1567 mem_cgroup_track_foreign_dirty_slowpath(folio, wb); 1568 } 1569 1570 void mem_cgroup_flush_foreign(struct bdi_writeback *wb); 1571 1572 #else /* CONFIG_CGROUP_WRITEBACK */ 1573 1574 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 1575 { 1576 return NULL; 1577 } 1578 1579 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb, 1580 unsigned long *pfilepages, 1581 unsigned long *pheadroom, 1582 unsigned long *pdirty, 1583 unsigned long *pwriteback) 1584 { 1585 } 1586 1587 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio, 1588 struct bdi_writeback *wb) 1589 { 1590 } 1591 1592 static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 1593 { 1594 } 1595 1596 #endif /* CONFIG_CGROUP_WRITEBACK */ 1597 1598 struct sock; 1599 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, 1600 gfp_t gfp_mask); 1601 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 1602 #ifdef CONFIG_MEMCG 1603 extern struct static_key_false memcg_sockets_enabled_key; 1604 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key) 1605 void mem_cgroup_sk_alloc(struct sock *sk); 1606 void mem_cgroup_sk_free(struct sock *sk); 1607 1608 #if BITS_PER_LONG < 64 1609 static inline void mem_cgroup_set_socket_pressure(struct mem_cgroup *memcg) 1610 { 1611 u64 val = get_jiffies_64() + HZ; 1612 unsigned long flags; 1613 1614 write_seqlock_irqsave(&memcg->socket_pressure_seqlock, flags); 1615 memcg->socket_pressure = val; 1616 write_sequnlock_irqrestore(&memcg->socket_pressure_seqlock, flags); 1617 } 1618 1619 static inline u64 mem_cgroup_get_socket_pressure(struct mem_cgroup *memcg) 1620 { 1621 unsigned int seq; 1622 u64 val; 1623 1624 do { 1625 seq = read_seqbegin(&memcg->socket_pressure_seqlock); 1626 val = memcg->socket_pressure; 1627 } while (read_seqretry(&memcg->socket_pressure_seqlock, seq)); 1628 1629 return val; 1630 } 1631 #else 1632 static inline void mem_cgroup_set_socket_pressure(struct mem_cgroup *memcg) 1633 { 1634 WRITE_ONCE(memcg->socket_pressure, jiffies + HZ); 1635 } 1636 1637 static inline u64 mem_cgroup_get_socket_pressure(struct mem_cgroup *memcg) 1638 { 1639 return READ_ONCE(memcg->socket_pressure); 1640 } 1641 #endif 1642 1643 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1644 { 1645 #ifdef CONFIG_MEMCG_V1 1646 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1647 return !!memcg->tcpmem_pressure; 1648 #endif /* CONFIG_MEMCG_V1 */ 1649 do { 1650 if (time_before64(get_jiffies_64(), mem_cgroup_get_socket_pressure(memcg))) 1651 return true; 1652 } while ((memcg = parent_mem_cgroup(memcg))); 1653 return false; 1654 } 1655 1656 int alloc_shrinker_info(struct mem_cgroup *memcg); 1657 void free_shrinker_info(struct mem_cgroup *memcg); 1658 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id); 1659 void reparent_shrinker_deferred(struct mem_cgroup *memcg); 1660 #else 1661 #define mem_cgroup_sockets_enabled 0 1662 static inline void mem_cgroup_sk_alloc(struct sock *sk) { }; 1663 static inline void mem_cgroup_sk_free(struct sock *sk) { }; 1664 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1665 { 1666 return false; 1667 } 1668 1669 static inline void set_shrinker_bit(struct mem_cgroup *memcg, 1670 int nid, int shrinker_id) 1671 { 1672 } 1673 #endif 1674 1675 #ifdef CONFIG_MEMCG 1676 bool mem_cgroup_kmem_disabled(void); 1677 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order); 1678 void __memcg_kmem_uncharge_page(struct page *page, int order); 1679 1680 /* 1681 * The returned objcg pointer is safe to use without additional 1682 * protection within a scope. The scope is defined either by 1683 * the current task (similar to the "current" global variable) 1684 * or by set_active_memcg() pair. 1685 * Please, use obj_cgroup_get() to get a reference if the pointer 1686 * needs to be used outside of the local scope. 1687 */ 1688 struct obj_cgroup *current_obj_cgroup(void); 1689 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio); 1690 1691 static inline struct obj_cgroup *get_obj_cgroup_from_current(void) 1692 { 1693 struct obj_cgroup *objcg = current_obj_cgroup(); 1694 1695 if (objcg) 1696 obj_cgroup_get(objcg); 1697 1698 return objcg; 1699 } 1700 1701 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size); 1702 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size); 1703 1704 extern struct static_key_false memcg_bpf_enabled_key; 1705 static inline bool memcg_bpf_enabled(void) 1706 { 1707 return static_branch_likely(&memcg_bpf_enabled_key); 1708 } 1709 1710 extern struct static_key_false memcg_kmem_online_key; 1711 1712 static inline bool memcg_kmem_online(void) 1713 { 1714 return static_branch_likely(&memcg_kmem_online_key); 1715 } 1716 1717 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1718 int order) 1719 { 1720 if (memcg_kmem_online()) 1721 return __memcg_kmem_charge_page(page, gfp, order); 1722 return 0; 1723 } 1724 1725 static inline void memcg_kmem_uncharge_page(struct page *page, int order) 1726 { 1727 if (memcg_kmem_online()) 1728 __memcg_kmem_uncharge_page(page, order); 1729 } 1730 1731 /* 1732 * A helper for accessing memcg's kmem_id, used for getting 1733 * corresponding LRU lists. 1734 */ 1735 static inline int memcg_kmem_id(struct mem_cgroup *memcg) 1736 { 1737 return memcg ? memcg->kmemcg_id : -1; 1738 } 1739 1740 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p); 1741 1742 static inline void count_objcg_events(struct obj_cgroup *objcg, 1743 enum vm_event_item idx, 1744 unsigned long count) 1745 { 1746 struct mem_cgroup *memcg; 1747 1748 if (!memcg_kmem_online()) 1749 return; 1750 1751 rcu_read_lock(); 1752 memcg = obj_cgroup_memcg(objcg); 1753 count_memcg_events(memcg, idx, count); 1754 rcu_read_unlock(); 1755 } 1756 1757 bool mem_cgroup_node_allowed(struct mem_cgroup *memcg, int nid); 1758 1759 #else 1760 static inline bool mem_cgroup_kmem_disabled(void) 1761 { 1762 return true; 1763 } 1764 1765 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1766 int order) 1767 { 1768 return 0; 1769 } 1770 1771 static inline void memcg_kmem_uncharge_page(struct page *page, int order) 1772 { 1773 } 1774 1775 static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1776 int order) 1777 { 1778 return 0; 1779 } 1780 1781 static inline void __memcg_kmem_uncharge_page(struct page *page, int order) 1782 { 1783 } 1784 1785 static inline struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio) 1786 { 1787 return NULL; 1788 } 1789 1790 static inline bool memcg_bpf_enabled(void) 1791 { 1792 return false; 1793 } 1794 1795 static inline bool memcg_kmem_online(void) 1796 { 1797 return false; 1798 } 1799 1800 static inline int memcg_kmem_id(struct mem_cgroup *memcg) 1801 { 1802 return -1; 1803 } 1804 1805 static inline struct mem_cgroup *mem_cgroup_from_slab_obj(void *p) 1806 { 1807 return NULL; 1808 } 1809 1810 static inline void count_objcg_events(struct obj_cgroup *objcg, 1811 enum vm_event_item idx, 1812 unsigned long count) 1813 { 1814 } 1815 1816 static inline ino_t page_cgroup_ino(struct page *page) 1817 { 1818 return 0; 1819 } 1820 1821 static inline bool mem_cgroup_node_allowed(struct mem_cgroup *memcg, int nid) 1822 { 1823 return true; 1824 } 1825 #endif /* CONFIG_MEMCG */ 1826 1827 #if defined(CONFIG_MEMCG) && defined(CONFIG_ZSWAP) 1828 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg); 1829 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size); 1830 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size); 1831 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg); 1832 #else 1833 static inline bool obj_cgroup_may_zswap(struct obj_cgroup *objcg) 1834 { 1835 return true; 1836 } 1837 static inline void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, 1838 size_t size) 1839 { 1840 } 1841 static inline void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, 1842 size_t size) 1843 { 1844 } 1845 static inline bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg) 1846 { 1847 /* if zswap is disabled, do not block pages going to the swapping device */ 1848 return true; 1849 } 1850 #endif 1851 1852 1853 /* Cgroup v1-related declarations */ 1854 1855 #ifdef CONFIG_MEMCG_V1 1856 unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order, 1857 gfp_t gfp_mask, 1858 unsigned long *total_scanned); 1859 1860 bool mem_cgroup_oom_synchronize(bool wait); 1861 1862 static inline bool task_in_memcg_oom(struct task_struct *p) 1863 { 1864 return p->memcg_in_oom; 1865 } 1866 1867 static inline void mem_cgroup_enter_user_fault(void) 1868 { 1869 WARN_ON(current->in_user_fault); 1870 current->in_user_fault = 1; 1871 } 1872 1873 static inline void mem_cgroup_exit_user_fault(void) 1874 { 1875 WARN_ON(!current->in_user_fault); 1876 current->in_user_fault = 0; 1877 } 1878 1879 void memcg1_swapout(struct folio *folio, swp_entry_t entry); 1880 void memcg1_swapin(swp_entry_t entry, unsigned int nr_pages); 1881 1882 #else /* CONFIG_MEMCG_V1 */ 1883 static inline 1884 unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order, 1885 gfp_t gfp_mask, 1886 unsigned long *total_scanned) 1887 { 1888 return 0; 1889 } 1890 1891 static inline bool task_in_memcg_oom(struct task_struct *p) 1892 { 1893 return false; 1894 } 1895 1896 static inline bool mem_cgroup_oom_synchronize(bool wait) 1897 { 1898 return false; 1899 } 1900 1901 static inline void mem_cgroup_enter_user_fault(void) 1902 { 1903 } 1904 1905 static inline void mem_cgroup_exit_user_fault(void) 1906 { 1907 } 1908 1909 static inline void memcg1_swapout(struct folio *folio, swp_entry_t entry) 1910 { 1911 } 1912 1913 static inline void memcg1_swapin(swp_entry_t entry, unsigned int nr_pages) 1914 { 1915 } 1916 1917 #endif /* CONFIG_MEMCG_V1 */ 1918 1919 #endif /* _LINUX_MEMCONTROL_H */ 1920