xref: /linux/include/crypto/aead.h (revision a619fe35ab41fded440d3762d4fbad84ff86a4d4)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * AEAD: Authenticated Encryption with Associated Data
4  *
5  * Copyright (c) 2007-2015 Herbert Xu <herbert@gondor.apana.org.au>
6  */
7 
8 #ifndef _CRYPTO_AEAD_H
9 #define _CRYPTO_AEAD_H
10 
11 #include <linux/atomic.h>
12 #include <linux/container_of.h>
13 #include <linux/crypto.h>
14 #include <linux/slab.h>
15 #include <linux/types.h>
16 
17 /**
18  * DOC: Authenticated Encryption With Associated Data (AEAD) Cipher API
19  *
20  * The AEAD cipher API is used with the ciphers of type CRYPTO_ALG_TYPE_AEAD
21  * (listed as type "aead" in /proc/crypto)
22  *
23  * The most prominent examples for this type of encryption is GCM and CCM.
24  * However, the kernel supports other types of AEAD ciphers which are defined
25  * with the following cipher string:
26  *
27  *	authenc(keyed message digest, block cipher)
28  *
29  * For example: authenc(hmac(sha256), cbc(aes))
30  *
31  * The example code provided for the symmetric key cipher operation applies
32  * here as well. Naturally all *skcipher* symbols must be exchanged the *aead*
33  * pendants discussed in the following. In addition, for the AEAD operation,
34  * the aead_request_set_ad function must be used to set the pointer to the
35  * associated data memory location before performing the encryption or
36  * decryption operation. Another deviation from the asynchronous block cipher
37  * operation is that the caller should explicitly check for -EBADMSG of the
38  * crypto_aead_decrypt. That error indicates an authentication error, i.e.
39  * a breach in the integrity of the message. In essence, that -EBADMSG error
40  * code is the key bonus an AEAD cipher has over "standard" block chaining
41  * modes.
42  *
43  * Memory Structure:
44  *
45  * The source scatterlist must contain the concatenation of
46  * associated data || plaintext or ciphertext.
47  *
48  * The destination scatterlist has the same layout, except that the plaintext
49  * (resp. ciphertext) will grow (resp. shrink) by the authentication tag size
50  * during encryption (resp. decryption). The authentication tag is generated
51  * during the encryption operation and appended to the ciphertext. During
52  * decryption, the authentication tag is consumed along with the ciphertext and
53  * used to verify the integrity of the plaintext and the associated data.
54  *
55  * In-place encryption/decryption is enabled by using the same scatterlist
56  * pointer for both the source and destination.
57  *
58  * Even in the out-of-place case, space must be reserved in the destination for
59  * the associated data, even though it won't be written to.  This makes the
60  * in-place and out-of-place cases more consistent.  It is permissible for the
61  * "destination" associated data to alias the "source" associated data.
62  *
63  * As with the other scatterlist crypto APIs, zero-length scatterlist elements
64  * are not allowed in the used part of the scatterlist.  Thus, if there is no
65  * associated data, the first element must point to the plaintext/ciphertext.
66  *
67  * To meet the needs of IPsec, a special quirk applies to rfc4106, rfc4309,
68  * rfc4543, and rfc7539esp ciphers.  For these ciphers, the final 'ivsize' bytes
69  * of the associated data buffer must contain a second copy of the IV.  This is
70  * in addition to the copy passed to aead_request_set_crypt().  These two IV
71  * copies must not differ; different implementations of the same algorithm may
72  * behave differently in that case.  Note that the algorithm might not actually
73  * treat the IV as associated data; nevertheless the length passed to
74  * aead_request_set_ad() must include it.
75  */
76 
77 struct crypto_aead;
78 struct scatterlist;
79 
80 /**
81  *	struct aead_request - AEAD request
82  *	@base: Common attributes for async crypto requests
83  *	@assoclen: Length in bytes of associated data for authentication
84  *	@cryptlen: Length of data to be encrypted or decrypted
85  *	@iv: Initialisation vector
86  *	@src: Source data
87  *	@dst: Destination data
88  *	@__ctx: Start of private context data
89  */
90 struct aead_request {
91 	struct crypto_async_request base;
92 
93 	unsigned int assoclen;
94 	unsigned int cryptlen;
95 
96 	u8 *iv;
97 
98 	struct scatterlist *src;
99 	struct scatterlist *dst;
100 
101 	void *__ctx[] CRYPTO_MINALIGN_ATTR;
102 };
103 
104 /**
105  * struct aead_alg - AEAD cipher definition
106  * @maxauthsize: Set the maximum authentication tag size supported by the
107  *		 transformation. A transformation may support smaller tag sizes.
108  *		 As the authentication tag is a message digest to ensure the
109  *		 integrity of the encrypted data, a consumer typically wants the
110  *		 largest authentication tag possible as defined by this
111  *		 variable.
112  * @setauthsize: Set authentication size for the AEAD transformation. This
113  *		 function is used to specify the consumer requested size of the
114  * 		 authentication tag to be either generated by the transformation
115  *		 during encryption or the size of the authentication tag to be
116  *		 supplied during the decryption operation. This function is also
117  *		 responsible for checking the authentication tag size for
118  *		 validity.
119  * @setkey: see struct skcipher_alg
120  * @encrypt: see struct skcipher_alg
121  * @decrypt: see struct skcipher_alg
122  * @ivsize: see struct skcipher_alg
123  * @chunksize: see struct skcipher_alg
124  * @init: Initialize the cryptographic transformation object. This function
125  *	  is used to initialize the cryptographic transformation object.
126  *	  This function is called only once at the instantiation time, right
127  *	  after the transformation context was allocated. In case the
128  *	  cryptographic hardware has some special requirements which need to
129  *	  be handled by software, this function shall check for the precise
130  *	  requirement of the transformation and put any software fallbacks
131  *	  in place.
132  * @exit: Deinitialize the cryptographic transformation object. This is a
133  *	  counterpart to @init, used to remove various changes set in
134  *	  @init.
135  * @base: Definition of a generic crypto cipher algorithm.
136  *
137  * All fields except @ivsize is mandatory and must be filled.
138  */
139 struct aead_alg {
140 	int (*setkey)(struct crypto_aead *tfm, const u8 *key,
141 	              unsigned int keylen);
142 	int (*setauthsize)(struct crypto_aead *tfm, unsigned int authsize);
143 	int (*encrypt)(struct aead_request *req);
144 	int (*decrypt)(struct aead_request *req);
145 	int (*init)(struct crypto_aead *tfm);
146 	void (*exit)(struct crypto_aead *tfm);
147 
148 	unsigned int ivsize;
149 	unsigned int maxauthsize;
150 	unsigned int chunksize;
151 
152 	struct crypto_alg base;
153 };
154 
155 struct crypto_aead {
156 	unsigned int authsize;
157 	unsigned int reqsize;
158 
159 	struct crypto_tfm base;
160 };
161 
162 struct crypto_sync_aead {
163 	struct crypto_aead base;
164 };
165 
166 #define MAX_SYNC_AEAD_REQSIZE		384
167 
168 #define SYNC_AEAD_REQUEST_ON_STACK(name, _tfm)		\
169 	char __##name##_desc[sizeof(struct aead_request) +	\
170 			     MAX_SYNC_AEAD_REQSIZE		\
171 			    ] CRYPTO_MINALIGN_ATTR;		\
172 	struct aead_request *name =				\
173 		(((struct aead_request *)__##name##_desc)->base.tfm = \
174 			crypto_sync_aead_tfm((_tfm)),		\
175 		 (void *)__##name##_desc)
176 
__crypto_aead_cast(struct crypto_tfm * tfm)177 static inline struct crypto_aead *__crypto_aead_cast(struct crypto_tfm *tfm)
178 {
179 	return container_of(tfm, struct crypto_aead, base);
180 }
181 
182 /**
183  * crypto_alloc_aead() - allocate AEAD cipher handle
184  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
185  *	     AEAD cipher
186  * @type: specifies the type of the cipher
187  * @mask: specifies the mask for the cipher
188  *
189  * Allocate a cipher handle for an AEAD. The returned struct
190  * crypto_aead is the cipher handle that is required for any subsequent
191  * API invocation for that AEAD.
192  *
193  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
194  *	   of an error, PTR_ERR() returns the error code.
195  */
196 struct crypto_aead *crypto_alloc_aead(const char *alg_name, u32 type, u32 mask);
197 
198 struct crypto_sync_aead *crypto_alloc_sync_aead(const char *alg_name, u32 type, u32 mask);
199 
crypto_aead_tfm(struct crypto_aead * tfm)200 static inline struct crypto_tfm *crypto_aead_tfm(struct crypto_aead *tfm)
201 {
202 	return &tfm->base;
203 }
204 
crypto_sync_aead_tfm(struct crypto_sync_aead * tfm)205 static inline struct crypto_tfm *crypto_sync_aead_tfm(struct crypto_sync_aead *tfm)
206 {
207 	return crypto_aead_tfm(&tfm->base);
208 }
209 
210 /**
211  * crypto_free_aead() - zeroize and free aead handle
212  * @tfm: cipher handle to be freed
213  *
214  * If @tfm is a NULL or error pointer, this function does nothing.
215  */
crypto_free_aead(struct crypto_aead * tfm)216 static inline void crypto_free_aead(struct crypto_aead *tfm)
217 {
218 	crypto_destroy_tfm(tfm, crypto_aead_tfm(tfm));
219 }
220 
crypto_free_sync_aead(struct crypto_sync_aead * tfm)221 static inline void crypto_free_sync_aead(struct crypto_sync_aead *tfm)
222 {
223 	crypto_free_aead(&tfm->base);
224 }
225 
226 /**
227  * crypto_has_aead() - Search for the availability of an aead.
228  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
229  *	      aead
230  * @type: specifies the type of the aead
231  * @mask: specifies the mask for the aead
232  *
233  * Return: true when the aead is known to the kernel crypto API; false
234  *	   otherwise
235  */
236 int crypto_has_aead(const char *alg_name, u32 type, u32 mask);
237 
crypto_aead_driver_name(struct crypto_aead * tfm)238 static inline const char *crypto_aead_driver_name(struct crypto_aead *tfm)
239 {
240 	return crypto_tfm_alg_driver_name(crypto_aead_tfm(tfm));
241 }
242 
crypto_aead_alg(struct crypto_aead * tfm)243 static inline struct aead_alg *crypto_aead_alg(struct crypto_aead *tfm)
244 {
245 	return container_of(crypto_aead_tfm(tfm)->__crt_alg,
246 			    struct aead_alg, base);
247 }
248 
crypto_aead_alg_ivsize(struct aead_alg * alg)249 static inline unsigned int crypto_aead_alg_ivsize(struct aead_alg *alg)
250 {
251 	return alg->ivsize;
252 }
253 
254 /**
255  * crypto_aead_ivsize() - obtain IV size
256  * @tfm: cipher handle
257  *
258  * The size of the IV for the aead referenced by the cipher handle is
259  * returned. This IV size may be zero if the cipher does not need an IV.
260  *
261  * Return: IV size in bytes
262  */
crypto_aead_ivsize(struct crypto_aead * tfm)263 static inline unsigned int crypto_aead_ivsize(struct crypto_aead *tfm)
264 {
265 	return crypto_aead_alg_ivsize(crypto_aead_alg(tfm));
266 }
267 
crypto_sync_aead_ivsize(struct crypto_sync_aead * tfm)268 static inline unsigned int crypto_sync_aead_ivsize(struct crypto_sync_aead *tfm)
269 {
270 	return crypto_aead_ivsize(&tfm->base);
271 }
272 
273 /**
274  * crypto_aead_authsize() - obtain maximum authentication data size
275  * @tfm: cipher handle
276  *
277  * The maximum size of the authentication data for the AEAD cipher referenced
278  * by the AEAD cipher handle is returned. The authentication data size may be
279  * zero if the cipher implements a hard-coded maximum.
280  *
281  * The authentication data may also be known as "tag value".
282  *
283  * Return: authentication data size / tag size in bytes
284  */
crypto_aead_authsize(struct crypto_aead * tfm)285 static inline unsigned int crypto_aead_authsize(struct crypto_aead *tfm)
286 {
287 	return tfm->authsize;
288 }
289 
crypto_sync_aead_authsize(struct crypto_sync_aead * tfm)290 static inline unsigned int crypto_sync_aead_authsize(struct crypto_sync_aead *tfm)
291 {
292 	return crypto_aead_authsize(&tfm->base);
293 }
294 
crypto_aead_alg_maxauthsize(struct aead_alg * alg)295 static inline unsigned int crypto_aead_alg_maxauthsize(struct aead_alg *alg)
296 {
297 	return alg->maxauthsize;
298 }
299 
crypto_aead_maxauthsize(struct crypto_aead * aead)300 static inline unsigned int crypto_aead_maxauthsize(struct crypto_aead *aead)
301 {
302 	return crypto_aead_alg_maxauthsize(crypto_aead_alg(aead));
303 }
304 
crypto_sync_aead_maxauthsize(struct crypto_sync_aead * tfm)305 static inline unsigned int crypto_sync_aead_maxauthsize(struct crypto_sync_aead *tfm)
306 {
307 	return crypto_aead_maxauthsize(&tfm->base);
308 }
309 
310 /**
311  * crypto_aead_blocksize() - obtain block size of cipher
312  * @tfm: cipher handle
313  *
314  * The block size for the AEAD referenced with the cipher handle is returned.
315  * The caller may use that information to allocate appropriate memory for the
316  * data returned by the encryption or decryption operation
317  *
318  * Return: block size of cipher
319  */
crypto_aead_blocksize(struct crypto_aead * tfm)320 static inline unsigned int crypto_aead_blocksize(struct crypto_aead *tfm)
321 {
322 	return crypto_tfm_alg_blocksize(crypto_aead_tfm(tfm));
323 }
324 
crypto_sync_aead_blocksize(struct crypto_sync_aead * tfm)325 static inline unsigned int crypto_sync_aead_blocksize(struct crypto_sync_aead *tfm)
326 {
327 	return crypto_aead_blocksize(&tfm->base);
328 }
329 
crypto_aead_alignmask(struct crypto_aead * tfm)330 static inline unsigned int crypto_aead_alignmask(struct crypto_aead *tfm)
331 {
332 	return crypto_tfm_alg_alignmask(crypto_aead_tfm(tfm));
333 }
334 
crypto_aead_get_flags(struct crypto_aead * tfm)335 static inline u32 crypto_aead_get_flags(struct crypto_aead *tfm)
336 {
337 	return crypto_tfm_get_flags(crypto_aead_tfm(tfm));
338 }
339 
crypto_aead_set_flags(struct crypto_aead * tfm,u32 flags)340 static inline void crypto_aead_set_flags(struct crypto_aead *tfm, u32 flags)
341 {
342 	crypto_tfm_set_flags(crypto_aead_tfm(tfm), flags);
343 }
344 
crypto_aead_clear_flags(struct crypto_aead * tfm,u32 flags)345 static inline void crypto_aead_clear_flags(struct crypto_aead *tfm, u32 flags)
346 {
347 	crypto_tfm_clear_flags(crypto_aead_tfm(tfm), flags);
348 }
349 
crypto_sync_aead_get_flags(struct crypto_sync_aead * tfm)350 static inline u32 crypto_sync_aead_get_flags(struct crypto_sync_aead *tfm)
351 {
352 	return crypto_aead_get_flags(&tfm->base);
353 }
354 
crypto_sync_aead_set_flags(struct crypto_sync_aead * tfm,u32 flags)355 static inline void crypto_sync_aead_set_flags(struct crypto_sync_aead *tfm, u32 flags)
356 {
357 	crypto_aead_set_flags(&tfm->base, flags);
358 }
359 
crypto_sync_aead_clear_flags(struct crypto_sync_aead * tfm,u32 flags)360 static inline void crypto_sync_aead_clear_flags(struct crypto_sync_aead *tfm, u32 flags)
361 {
362 	crypto_aead_clear_flags(&tfm->base, flags);
363 }
364 
365 /**
366  * crypto_aead_setkey() - set key for cipher
367  * @tfm: cipher handle
368  * @key: buffer holding the key
369  * @keylen: length of the key in bytes
370  *
371  * The caller provided key is set for the AEAD referenced by the cipher
372  * handle.
373  *
374  * Note, the key length determines the cipher type. Many block ciphers implement
375  * different cipher modes depending on the key size, such as AES-128 vs AES-192
376  * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
377  * is performed.
378  *
379  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
380  */
381 int crypto_aead_setkey(struct crypto_aead *tfm,
382 		       const u8 *key, unsigned int keylen);
383 
crypto_sync_aead_setkey(struct crypto_sync_aead * tfm,const u8 * key,unsigned int keylen)384 static inline int crypto_sync_aead_setkey(struct crypto_sync_aead *tfm,
385 					 const u8 *key, unsigned int keylen)
386 {
387 	return crypto_aead_setkey(&tfm->base, key, keylen);
388 }
389 
390 /**
391  * crypto_aead_setauthsize() - set authentication data size
392  * @tfm: cipher handle
393  * @authsize: size of the authentication data / tag in bytes
394  *
395  * Set the authentication data size / tag size. AEAD requires an authentication
396  * tag (or MAC) in addition to the associated data.
397  *
398  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
399  */
400 int crypto_aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize);
401 
crypto_sync_aead_setauthsize(struct crypto_sync_aead * tfm,unsigned int authsize)402 static inline int crypto_sync_aead_setauthsize(struct crypto_sync_aead *tfm,
403 					       unsigned int authsize)
404 {
405 	return crypto_aead_setauthsize(&tfm->base, authsize);
406 }
407 
crypto_aead_reqtfm(struct aead_request * req)408 static inline struct crypto_aead *crypto_aead_reqtfm(struct aead_request *req)
409 {
410 	return __crypto_aead_cast(req->base.tfm);
411 }
412 
crypto_sync_aead_reqtfm(struct aead_request * req)413 static inline struct crypto_sync_aead *crypto_sync_aead_reqtfm(struct aead_request *req)
414 {
415 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
416 
417 	return container_of(tfm, struct crypto_sync_aead, base);
418 }
419 
420 /**
421  * crypto_aead_encrypt() - encrypt plaintext
422  * @req: reference to the aead_request handle that holds all information
423  *	 needed to perform the cipher operation
424  *
425  * Encrypt plaintext data using the aead_request handle. That data structure
426  * and how it is filled with data is discussed with the aead_request_*
427  * functions.
428  *
429  * IMPORTANT NOTE The encryption operation creates the authentication data /
430  *		  tag. That data is concatenated with the created ciphertext.
431  *		  The ciphertext memory size is therefore the given number of
432  *		  block cipher blocks + the size defined by the
433  *		  crypto_aead_setauthsize invocation. The caller must ensure
434  *		  that sufficient memory is available for the ciphertext and
435  *		  the authentication tag.
436  *
437  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
438  */
439 int crypto_aead_encrypt(struct aead_request *req);
440 
441 /**
442  * crypto_aead_decrypt() - decrypt ciphertext
443  * @req: reference to the aead_request handle that holds all information
444  *	 needed to perform the cipher operation
445  *
446  * Decrypt ciphertext data using the aead_request handle. That data structure
447  * and how it is filled with data is discussed with the aead_request_*
448  * functions.
449  *
450  * IMPORTANT NOTE The caller must concatenate the ciphertext followed by the
451  *		  authentication data / tag. That authentication data / tag
452  *		  must have the size defined by the crypto_aead_setauthsize
453  *		  invocation.
454  *
455  *
456  * Return: 0 if the cipher operation was successful; -EBADMSG: The AEAD
457  *	   cipher operation performs the authentication of the data during the
458  *	   decryption operation. Therefore, the function returns this error if
459  *	   the authentication of the ciphertext was unsuccessful (i.e. the
460  *	   integrity of the ciphertext or the associated data was violated);
461  *	   < 0 if an error occurred.
462  */
463 int crypto_aead_decrypt(struct aead_request *req);
464 
465 /**
466  * DOC: Asynchronous AEAD Request Handle
467  *
468  * The aead_request data structure contains all pointers to data required for
469  * the AEAD cipher operation. This includes the cipher handle (which can be
470  * used by multiple aead_request instances), pointer to plaintext and
471  * ciphertext, asynchronous callback function, etc. It acts as a handle to the
472  * aead_request_* API calls in a similar way as AEAD handle to the
473  * crypto_aead_* API calls.
474  */
475 
476 /**
477  * crypto_aead_reqsize() - obtain size of the request data structure
478  * @tfm: cipher handle
479  *
480  * Return: number of bytes
481  */
crypto_aead_reqsize(struct crypto_aead * tfm)482 static inline unsigned int crypto_aead_reqsize(struct crypto_aead *tfm)
483 {
484 	return tfm->reqsize;
485 }
486 
487 /**
488  * aead_request_set_tfm() - update cipher handle reference in request
489  * @req: request handle to be modified
490  * @tfm: cipher handle that shall be added to the request handle
491  *
492  * Allow the caller to replace the existing aead handle in the request
493  * data structure with a different one.
494  */
aead_request_set_tfm(struct aead_request * req,struct crypto_aead * tfm)495 static inline void aead_request_set_tfm(struct aead_request *req,
496 					struct crypto_aead *tfm)
497 {
498 	req->base.tfm = crypto_aead_tfm(tfm);
499 }
500 
aead_request_set_sync_tfm(struct aead_request * req,struct crypto_sync_aead * tfm)501 static inline void aead_request_set_sync_tfm(struct aead_request *req,
502 					     struct crypto_sync_aead *tfm)
503 {
504 	aead_request_set_tfm(req, &tfm->base);
505 }
506 
507 /**
508  * aead_request_alloc() - allocate request data structure
509  * @tfm: cipher handle to be registered with the request
510  * @gfp: memory allocation flag that is handed to kmalloc by the API call.
511  *
512  * Allocate the request data structure that must be used with the AEAD
513  * encrypt and decrypt API calls. During the allocation, the provided aead
514  * handle is registered in the request data structure.
515  *
516  * Return: allocated request handle in case of success, or NULL if out of memory
517  */
aead_request_alloc(struct crypto_aead * tfm,gfp_t gfp)518 static inline struct aead_request *aead_request_alloc(struct crypto_aead *tfm,
519 						      gfp_t gfp)
520 {
521 	struct aead_request *req;
522 
523 	req = kmalloc(sizeof(*req) + crypto_aead_reqsize(tfm), gfp);
524 
525 	if (likely(req))
526 		aead_request_set_tfm(req, tfm);
527 
528 	return req;
529 }
530 
531 /**
532  * aead_request_free() - zeroize and free request data structure
533  * @req: request data structure cipher handle to be freed
534  */
aead_request_free(struct aead_request * req)535 static inline void aead_request_free(struct aead_request *req)
536 {
537 	kfree_sensitive(req);
538 }
539 
540 /**
541  * aead_request_set_callback() - set asynchronous callback function
542  * @req: request handle
543  * @flags: specify zero or an ORing of the flags
544  *	   CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
545  *	   increase the wait queue beyond the initial maximum size;
546  *	   CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
547  * @compl: callback function pointer to be registered with the request handle
548  * @data: The data pointer refers to memory that is not used by the kernel
549  *	  crypto API, but provided to the callback function for it to use. Here,
550  *	  the caller can provide a reference to memory the callback function can
551  *	  operate on. As the callback function is invoked asynchronously to the
552  *	  related functionality, it may need to access data structures of the
553  *	  related functionality which can be referenced using this pointer. The
554  *	  callback function can access the memory via the "data" field in the
555  *	  crypto_async_request data structure provided to the callback function.
556  *
557  * Setting the callback function that is triggered once the cipher operation
558  * completes
559  *
560  * The callback function is registered with the aead_request handle and
561  * must comply with the following template::
562  *
563  *	void callback_function(struct crypto_async_request *req, int error)
564  */
aead_request_set_callback(struct aead_request * req,u32 flags,crypto_completion_t compl,void * data)565 static inline void aead_request_set_callback(struct aead_request *req,
566 					     u32 flags,
567 					     crypto_completion_t compl,
568 					     void *data)
569 {
570 	req->base.complete = compl;
571 	req->base.data = data;
572 	req->base.flags = flags;
573 }
574 
575 /**
576  * aead_request_set_crypt - set data buffers
577  * @req: request handle
578  * @src: source scatter / gather list
579  * @dst: destination scatter / gather list
580  * @cryptlen: number of bytes to process from @src
581  * @iv: IV for the cipher operation which must comply with the IV size defined
582  *      by crypto_aead_ivsize()
583  *
584  * Setting the source data and destination data scatter / gather lists which
585  * hold the associated data concatenated with the plaintext or ciphertext. See
586  * below for the authentication tag.
587  *
588  * For encryption, the source is treated as the plaintext and the
589  * destination is the ciphertext. For a decryption operation, the use is
590  * reversed - the source is the ciphertext and the destination is the plaintext.
591  *
592  * The memory structure for cipher operation has the following structure:
593  *
594  * - AEAD encryption input:  assoc data || plaintext
595  * - AEAD encryption output: assoc data || ciphertext || auth tag
596  * - AEAD decryption input:  assoc data || ciphertext || auth tag
597  * - AEAD decryption output: assoc data || plaintext
598  *
599  * Albeit the kernel requires the presence of the AAD buffer, however,
600  * the kernel does not fill the AAD buffer in the output case. If the
601  * caller wants to have that data buffer filled, the caller must either
602  * use an in-place cipher operation (i.e. same memory location for
603  * input/output memory location).
604  */
aead_request_set_crypt(struct aead_request * req,struct scatterlist * src,struct scatterlist * dst,unsigned int cryptlen,u8 * iv)605 static inline void aead_request_set_crypt(struct aead_request *req,
606 					  struct scatterlist *src,
607 					  struct scatterlist *dst,
608 					  unsigned int cryptlen, u8 *iv)
609 {
610 	req->src = src;
611 	req->dst = dst;
612 	req->cryptlen = cryptlen;
613 	req->iv = iv;
614 }
615 
616 /**
617  * aead_request_set_ad - set associated data information
618  * @req: request handle
619  * @assoclen: number of bytes in associated data
620  *
621  * Setting the AD information.  This function sets the length of
622  * the associated data.
623  */
aead_request_set_ad(struct aead_request * req,unsigned int assoclen)624 static inline void aead_request_set_ad(struct aead_request *req,
625 				       unsigned int assoclen)
626 {
627 	req->assoclen = assoclen;
628 }
629 
630 #endif	/* _CRYPTO_AEAD_H */
631