1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * derived from drivers/kvm/kvm_main.c
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright (C) 2008 Qumranet, Inc.
9 * Copyright IBM Corporation, 2008
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Avi Kivity <avi@qumranet.com>
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Amit Shah <amit.shah@qumranet.com>
16 * Ben-Ami Yassour <benami@il.ibm.com>
17 */
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/kvm_host.h>
21 #include "irq.h"
22 #include "ioapic.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "kvm_emulate.h"
28 #include "mmu/page_track.h"
29 #include "x86.h"
30 #include "cpuid.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33 #include "lapic.h"
34 #include "xen.h"
35 #include "smm.h"
36
37 #include <linux/clocksource.h>
38 #include <linux/interrupt.h>
39 #include <linux/kvm.h>
40 #include <linux/fs.h>
41 #include <linux/vmalloc.h>
42 #include <linux/export.h>
43 #include <linux/moduleparam.h>
44 #include <linux/mman.h>
45 #include <linux/highmem.h>
46 #include <linux/iommu.h>
47 #include <linux/cpufreq.h>
48 #include <linux/user-return-notifier.h>
49 #include <linux/srcu.h>
50 #include <linux/slab.h>
51 #include <linux/perf_event.h>
52 #include <linux/uaccess.h>
53 #include <linux/hash.h>
54 #include <linux/pci.h>
55 #include <linux/timekeeper_internal.h>
56 #include <linux/pvclock_gtod.h>
57 #include <linux/kvm_irqfd.h>
58 #include <linux/irqbypass.h>
59 #include <linux/sched/stat.h>
60 #include <linux/sched/isolation.h>
61 #include <linux/mem_encrypt.h>
62 #include <linux/entry-kvm.h>
63 #include <linux/suspend.h>
64 #include <linux/smp.h>
65
66 #include <trace/events/ipi.h>
67 #include <trace/events/kvm.h>
68
69 #include <asm/debugreg.h>
70 #include <asm/msr.h>
71 #include <asm/desc.h>
72 #include <asm/mce.h>
73 #include <asm/pkru.h>
74 #include <linux/kernel_stat.h>
75 #include <asm/fpu/api.h>
76 #include <asm/fpu/xcr.h>
77 #include <asm/fpu/xstate.h>
78 #include <asm/pvclock.h>
79 #include <asm/div64.h>
80 #include <asm/irq_remapping.h>
81 #include <asm/mshyperv.h>
82 #include <asm/hypervisor.h>
83 #include <asm/tlbflush.h>
84 #include <asm/intel_pt.h>
85 #include <asm/emulate_prefix.h>
86 #include <asm/sgx.h>
87 #include <clocksource/hyperv_timer.h>
88
89 #define CREATE_TRACE_POINTS
90 #include "trace.h"
91
92 #define MAX_IO_MSRS 256
93
94 /*
95 * Note, kvm_caps fields should *never* have default values, all fields must be
96 * recomputed from scratch during vendor module load, e.g. to account for a
97 * vendor module being reloaded with different module parameters.
98 */
99 struct kvm_caps kvm_caps __read_mostly;
100 EXPORT_SYMBOL_GPL(kvm_caps);
101
102 struct kvm_host_values kvm_host __read_mostly;
103 EXPORT_SYMBOL_GPL(kvm_host);
104
105 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e))
106
107 #define emul_to_vcpu(ctxt) \
108 ((struct kvm_vcpu *)(ctxt)->vcpu)
109
110 /* EFER defaults:
111 * - enable syscall per default because its emulated by KVM
112 * - enable LME and LMA per default on 64 bit KVM
113 */
114 #ifdef CONFIG_X86_64
115 static
116 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
117 #else
118 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
119 #endif
120
121 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
122
123 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
124
125 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
126 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
127
128 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
129 static void process_nmi(struct kvm_vcpu *vcpu);
130 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
131 static void store_regs(struct kvm_vcpu *vcpu);
132 static int sync_regs(struct kvm_vcpu *vcpu);
133 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
134
135 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
136 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
137
138 static DEFINE_MUTEX(vendor_module_lock);
139 struct kvm_x86_ops kvm_x86_ops __read_mostly;
140
141 #define KVM_X86_OP(func) \
142 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \
143 *(((struct kvm_x86_ops *)0)->func));
144 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
145 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
146 #include <asm/kvm-x86-ops.h>
147 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
148 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
149
150 static bool __read_mostly ignore_msrs = 0;
151 module_param(ignore_msrs, bool, 0644);
152
153 bool __read_mostly report_ignored_msrs = true;
154 module_param(report_ignored_msrs, bool, 0644);
155 EXPORT_SYMBOL_GPL(report_ignored_msrs);
156
157 unsigned int min_timer_period_us = 200;
158 module_param(min_timer_period_us, uint, 0644);
159
160 static bool __read_mostly kvmclock_periodic_sync = true;
161 module_param(kvmclock_periodic_sync, bool, 0444);
162
163 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
164 static u32 __read_mostly tsc_tolerance_ppm = 250;
165 module_param(tsc_tolerance_ppm, uint, 0644);
166
167 static bool __read_mostly vector_hashing = true;
168 module_param(vector_hashing, bool, 0444);
169
170 bool __read_mostly enable_vmware_backdoor = false;
171 module_param(enable_vmware_backdoor, bool, 0444);
172 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
173
174 /*
175 * Flags to manipulate forced emulation behavior (any non-zero value will
176 * enable forced emulation).
177 */
178 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1)
179 static int __read_mostly force_emulation_prefix;
180 module_param(force_emulation_prefix, int, 0644);
181
182 int __read_mostly pi_inject_timer = -1;
183 module_param(pi_inject_timer, bint, 0644);
184
185 /* Enable/disable PMU virtualization */
186 bool __read_mostly enable_pmu = true;
187 EXPORT_SYMBOL_GPL(enable_pmu);
188 module_param(enable_pmu, bool, 0444);
189
190 bool __read_mostly eager_page_split = true;
191 module_param(eager_page_split, bool, 0644);
192
193 /* Enable/disable SMT_RSB bug mitigation */
194 static bool __read_mostly mitigate_smt_rsb;
195 module_param(mitigate_smt_rsb, bool, 0444);
196
197 /*
198 * Restoring the host value for MSRs that are only consumed when running in
199 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
200 * returns to userspace, i.e. the kernel can run with the guest's value.
201 */
202 #define KVM_MAX_NR_USER_RETURN_MSRS 16
203
204 struct kvm_user_return_msrs {
205 struct user_return_notifier urn;
206 bool registered;
207 struct kvm_user_return_msr_values {
208 u64 host;
209 u64 curr;
210 } values[KVM_MAX_NR_USER_RETURN_MSRS];
211 };
212
213 u32 __read_mostly kvm_nr_uret_msrs;
214 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
215 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
216 static struct kvm_user_return_msrs __percpu *user_return_msrs;
217
218 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
219 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
220 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
221 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
222
223 bool __read_mostly allow_smaller_maxphyaddr = 0;
224 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
225
226 bool __read_mostly enable_apicv = true;
227 EXPORT_SYMBOL_GPL(enable_apicv);
228
229 bool __read_mostly enable_device_posted_irqs = true;
230 EXPORT_SYMBOL_GPL(enable_device_posted_irqs);
231
232 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
233 KVM_GENERIC_VM_STATS(),
234 STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
235 STATS_DESC_COUNTER(VM, mmu_pte_write),
236 STATS_DESC_COUNTER(VM, mmu_pde_zapped),
237 STATS_DESC_COUNTER(VM, mmu_flooded),
238 STATS_DESC_COUNTER(VM, mmu_recycled),
239 STATS_DESC_COUNTER(VM, mmu_cache_miss),
240 STATS_DESC_ICOUNTER(VM, mmu_unsync),
241 STATS_DESC_ICOUNTER(VM, pages_4k),
242 STATS_DESC_ICOUNTER(VM, pages_2m),
243 STATS_DESC_ICOUNTER(VM, pages_1g),
244 STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
245 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
246 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
247 };
248
249 const struct kvm_stats_header kvm_vm_stats_header = {
250 .name_size = KVM_STATS_NAME_SIZE,
251 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
252 .id_offset = sizeof(struct kvm_stats_header),
253 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
254 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
255 sizeof(kvm_vm_stats_desc),
256 };
257
258 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
259 KVM_GENERIC_VCPU_STATS(),
260 STATS_DESC_COUNTER(VCPU, pf_taken),
261 STATS_DESC_COUNTER(VCPU, pf_fixed),
262 STATS_DESC_COUNTER(VCPU, pf_emulate),
263 STATS_DESC_COUNTER(VCPU, pf_spurious),
264 STATS_DESC_COUNTER(VCPU, pf_fast),
265 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
266 STATS_DESC_COUNTER(VCPU, pf_guest),
267 STATS_DESC_COUNTER(VCPU, tlb_flush),
268 STATS_DESC_COUNTER(VCPU, invlpg),
269 STATS_DESC_COUNTER(VCPU, exits),
270 STATS_DESC_COUNTER(VCPU, io_exits),
271 STATS_DESC_COUNTER(VCPU, mmio_exits),
272 STATS_DESC_COUNTER(VCPU, signal_exits),
273 STATS_DESC_COUNTER(VCPU, irq_window_exits),
274 STATS_DESC_COUNTER(VCPU, nmi_window_exits),
275 STATS_DESC_COUNTER(VCPU, l1d_flush),
276 STATS_DESC_COUNTER(VCPU, halt_exits),
277 STATS_DESC_COUNTER(VCPU, request_irq_exits),
278 STATS_DESC_COUNTER(VCPU, irq_exits),
279 STATS_DESC_COUNTER(VCPU, host_state_reload),
280 STATS_DESC_COUNTER(VCPU, fpu_reload),
281 STATS_DESC_COUNTER(VCPU, insn_emulation),
282 STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
283 STATS_DESC_COUNTER(VCPU, hypercalls),
284 STATS_DESC_COUNTER(VCPU, irq_injections),
285 STATS_DESC_COUNTER(VCPU, nmi_injections),
286 STATS_DESC_COUNTER(VCPU, req_event),
287 STATS_DESC_COUNTER(VCPU, nested_run),
288 STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
289 STATS_DESC_COUNTER(VCPU, directed_yield_successful),
290 STATS_DESC_COUNTER(VCPU, preemption_reported),
291 STATS_DESC_COUNTER(VCPU, preemption_other),
292 STATS_DESC_IBOOLEAN(VCPU, guest_mode),
293 STATS_DESC_COUNTER(VCPU, notify_window_exits),
294 };
295
296 const struct kvm_stats_header kvm_vcpu_stats_header = {
297 .name_size = KVM_STATS_NAME_SIZE,
298 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
299 .id_offset = sizeof(struct kvm_stats_header),
300 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
301 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
302 sizeof(kvm_vcpu_stats_desc),
303 };
304
305 static struct kmem_cache *x86_emulator_cache;
306
307 /*
308 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track
309 * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS,
310 * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. msrs_to_save holds MSRs that
311 * require host support, i.e. should be probed via RDMSR. emulated_msrs holds
312 * MSRs that KVM emulates without strictly requiring host support.
313 * msr_based_features holds MSRs that enumerate features, i.e. are effectively
314 * CPUID leafs. Note, msr_based_features isn't mutually exclusive with
315 * msrs_to_save and emulated_msrs.
316 */
317
318 static const u32 msrs_to_save_base[] = {
319 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
320 MSR_STAR,
321 #ifdef CONFIG_X86_64
322 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
323 #endif
324 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
325 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
326 MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL,
327 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
328 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
329 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
330 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
331 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
332 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
333 MSR_IA32_UMWAIT_CONTROL,
334
335 MSR_IA32_XFD, MSR_IA32_XFD_ERR,
336 };
337
338 static const u32 msrs_to_save_pmu[] = {
339 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
340 MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
341 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
342 MSR_CORE_PERF_GLOBAL_CTRL,
343 MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
344
345 /* This part of MSRs should match KVM_MAX_NR_INTEL_GP_COUNTERS. */
346 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
347 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
348 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
349 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
350 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
351 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
352 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
353 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
354
355 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
356 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
357
358 /* This part of MSRs should match KVM_MAX_NR_AMD_GP_COUNTERS. */
359 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
360 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
361 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
362 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
363
364 MSR_AMD64_PERF_CNTR_GLOBAL_CTL,
365 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS,
366 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR,
367 };
368
369 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) +
370 ARRAY_SIZE(msrs_to_save_pmu)];
371 static unsigned num_msrs_to_save;
372
373 static const u32 emulated_msrs_all[] = {
374 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
375 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
376
377 #ifdef CONFIG_KVM_HYPERV
378 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
379 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
380 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
381 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
382 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
383 HV_X64_MSR_RESET,
384 HV_X64_MSR_VP_INDEX,
385 HV_X64_MSR_VP_RUNTIME,
386 HV_X64_MSR_SCONTROL,
387 HV_X64_MSR_STIMER0_CONFIG,
388 HV_X64_MSR_VP_ASSIST_PAGE,
389 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
390 HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL,
391 HV_X64_MSR_SYNDBG_OPTIONS,
392 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
393 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
394 HV_X64_MSR_SYNDBG_PENDING_BUFFER,
395 #endif
396
397 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
398 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
399
400 MSR_IA32_TSC_ADJUST,
401 MSR_IA32_TSC_DEADLINE,
402 MSR_IA32_ARCH_CAPABILITIES,
403 MSR_IA32_PERF_CAPABILITIES,
404 MSR_IA32_MISC_ENABLE,
405 MSR_IA32_MCG_STATUS,
406 MSR_IA32_MCG_CTL,
407 MSR_IA32_MCG_EXT_CTL,
408 MSR_IA32_SMBASE,
409 MSR_SMI_COUNT,
410 MSR_PLATFORM_INFO,
411 MSR_MISC_FEATURES_ENABLES,
412 MSR_AMD64_VIRT_SPEC_CTRL,
413 MSR_AMD64_TSC_RATIO,
414 MSR_IA32_POWER_CTL,
415 MSR_IA32_UCODE_REV,
416
417 /*
418 * KVM always supports the "true" VMX control MSRs, even if the host
419 * does not. The VMX MSRs as a whole are considered "emulated" as KVM
420 * doesn't strictly require them to exist in the host (ignoring that
421 * KVM would refuse to load in the first place if the core set of MSRs
422 * aren't supported).
423 */
424 MSR_IA32_VMX_BASIC,
425 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
426 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
427 MSR_IA32_VMX_TRUE_EXIT_CTLS,
428 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
429 MSR_IA32_VMX_MISC,
430 MSR_IA32_VMX_CR0_FIXED0,
431 MSR_IA32_VMX_CR4_FIXED0,
432 MSR_IA32_VMX_VMCS_ENUM,
433 MSR_IA32_VMX_PROCBASED_CTLS2,
434 MSR_IA32_VMX_EPT_VPID_CAP,
435 MSR_IA32_VMX_VMFUNC,
436
437 MSR_K7_HWCR,
438 MSR_KVM_POLL_CONTROL,
439 };
440
441 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
442 static unsigned num_emulated_msrs;
443
444 /*
445 * List of MSRs that control the existence of MSR-based features, i.e. MSRs
446 * that are effectively CPUID leafs. VMX MSRs are also included in the set of
447 * feature MSRs, but are handled separately to allow expedited lookups.
448 */
449 static const u32 msr_based_features_all_except_vmx[] = {
450 MSR_AMD64_DE_CFG,
451 MSR_IA32_UCODE_REV,
452 MSR_IA32_ARCH_CAPABILITIES,
453 MSR_IA32_PERF_CAPABILITIES,
454 MSR_PLATFORM_INFO,
455 };
456
457 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) +
458 (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)];
459 static unsigned int num_msr_based_features;
460
461 /*
462 * All feature MSRs except uCode revID, which tracks the currently loaded uCode
463 * patch, are immutable once the vCPU model is defined.
464 */
kvm_is_immutable_feature_msr(u32 msr)465 static bool kvm_is_immutable_feature_msr(u32 msr)
466 {
467 int i;
468
469 if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR)
470 return true;
471
472 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) {
473 if (msr == msr_based_features_all_except_vmx[i])
474 return msr != MSR_IA32_UCODE_REV;
475 }
476
477 return false;
478 }
479
kvm_is_advertised_msr(u32 msr_index)480 static bool kvm_is_advertised_msr(u32 msr_index)
481 {
482 unsigned int i;
483
484 for (i = 0; i < num_msrs_to_save; i++) {
485 if (msrs_to_save[i] == msr_index)
486 return true;
487 }
488
489 for (i = 0; i < num_emulated_msrs; i++) {
490 if (emulated_msrs[i] == msr_index)
491 return true;
492 }
493
494 return false;
495 }
496
497 typedef int (*msr_access_t)(struct kvm_vcpu *vcpu, u32 index, u64 *data,
498 bool host_initiated);
499
kvm_do_msr_access(struct kvm_vcpu * vcpu,u32 msr,u64 * data,bool host_initiated,enum kvm_msr_access rw,msr_access_t msr_access_fn)500 static __always_inline int kvm_do_msr_access(struct kvm_vcpu *vcpu, u32 msr,
501 u64 *data, bool host_initiated,
502 enum kvm_msr_access rw,
503 msr_access_t msr_access_fn)
504 {
505 const char *op = rw == MSR_TYPE_W ? "wrmsr" : "rdmsr";
506 int ret;
507
508 BUILD_BUG_ON(rw != MSR_TYPE_R && rw != MSR_TYPE_W);
509
510 /*
511 * Zero the data on read failures to avoid leaking stack data to the
512 * guest and/or userspace, e.g. if the failure is ignored below.
513 */
514 ret = msr_access_fn(vcpu, msr, data, host_initiated);
515 if (ret && rw == MSR_TYPE_R)
516 *data = 0;
517
518 if (ret != KVM_MSR_RET_UNSUPPORTED)
519 return ret;
520
521 /*
522 * Userspace is allowed to read MSRs, and write '0' to MSRs, that KVM
523 * advertises to userspace, even if an MSR isn't fully supported.
524 * Simply check that @data is '0', which covers both the write '0' case
525 * and all reads (in which case @data is zeroed on failure; see above).
526 */
527 if (host_initiated && !*data && kvm_is_advertised_msr(msr))
528 return 0;
529
530 if (!ignore_msrs) {
531 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
532 op, msr, *data);
533 return ret;
534 }
535
536 if (report_ignored_msrs)
537 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", op, msr, *data);
538
539 return 0;
540 }
541
kvm_alloc_emulator_cache(void)542 static struct kmem_cache *kvm_alloc_emulator_cache(void)
543 {
544 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
545 unsigned int size = sizeof(struct x86_emulate_ctxt);
546
547 return kmem_cache_create_usercopy("x86_emulator", size,
548 __alignof__(struct x86_emulate_ctxt),
549 SLAB_ACCOUNT, useroffset,
550 size - useroffset, NULL);
551 }
552
553 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
554
kvm_async_pf_hash_reset(struct kvm_vcpu * vcpu)555 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
556 {
557 int i;
558 for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
559 vcpu->arch.apf.gfns[i] = ~0;
560 }
561
kvm_on_user_return(struct user_return_notifier * urn)562 static void kvm_on_user_return(struct user_return_notifier *urn)
563 {
564 unsigned slot;
565 struct kvm_user_return_msrs *msrs
566 = container_of(urn, struct kvm_user_return_msrs, urn);
567 struct kvm_user_return_msr_values *values;
568 unsigned long flags;
569
570 /*
571 * Disabling irqs at this point since the following code could be
572 * interrupted and executed through kvm_arch_disable_virtualization_cpu()
573 */
574 local_irq_save(flags);
575 if (msrs->registered) {
576 msrs->registered = false;
577 user_return_notifier_unregister(urn);
578 }
579 local_irq_restore(flags);
580 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
581 values = &msrs->values[slot];
582 if (values->host != values->curr) {
583 wrmsrq(kvm_uret_msrs_list[slot], values->host);
584 values->curr = values->host;
585 }
586 }
587 }
588
kvm_probe_user_return_msr(u32 msr)589 static int kvm_probe_user_return_msr(u32 msr)
590 {
591 u64 val;
592 int ret;
593
594 preempt_disable();
595 ret = rdmsrq_safe(msr, &val);
596 if (ret)
597 goto out;
598 ret = wrmsrq_safe(msr, val);
599 out:
600 preempt_enable();
601 return ret;
602 }
603
kvm_add_user_return_msr(u32 msr)604 int kvm_add_user_return_msr(u32 msr)
605 {
606 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
607
608 if (kvm_probe_user_return_msr(msr))
609 return -1;
610
611 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
612 return kvm_nr_uret_msrs++;
613 }
614 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
615
kvm_find_user_return_msr(u32 msr)616 int kvm_find_user_return_msr(u32 msr)
617 {
618 int i;
619
620 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
621 if (kvm_uret_msrs_list[i] == msr)
622 return i;
623 }
624 return -1;
625 }
626 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
627
kvm_user_return_msr_cpu_online(void)628 static void kvm_user_return_msr_cpu_online(void)
629 {
630 struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs);
631 u64 value;
632 int i;
633
634 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
635 rdmsrq_safe(kvm_uret_msrs_list[i], &value);
636 msrs->values[i].host = value;
637 msrs->values[i].curr = value;
638 }
639 }
640
kvm_user_return_register_notifier(struct kvm_user_return_msrs * msrs)641 static void kvm_user_return_register_notifier(struct kvm_user_return_msrs *msrs)
642 {
643 if (!msrs->registered) {
644 msrs->urn.on_user_return = kvm_on_user_return;
645 user_return_notifier_register(&msrs->urn);
646 msrs->registered = true;
647 }
648 }
649
kvm_set_user_return_msr(unsigned slot,u64 value,u64 mask)650 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
651 {
652 struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs);
653 int err;
654
655 value = (value & mask) | (msrs->values[slot].host & ~mask);
656 if (value == msrs->values[slot].curr)
657 return 0;
658 err = wrmsrq_safe(kvm_uret_msrs_list[slot], value);
659 if (err)
660 return 1;
661
662 msrs->values[slot].curr = value;
663 kvm_user_return_register_notifier(msrs);
664 return 0;
665 }
666 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
667
kvm_user_return_msr_update_cache(unsigned int slot,u64 value)668 void kvm_user_return_msr_update_cache(unsigned int slot, u64 value)
669 {
670 struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs);
671
672 msrs->values[slot].curr = value;
673 kvm_user_return_register_notifier(msrs);
674 }
675 EXPORT_SYMBOL_GPL(kvm_user_return_msr_update_cache);
676
drop_user_return_notifiers(void)677 static void drop_user_return_notifiers(void)
678 {
679 struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs);
680
681 if (msrs->registered)
682 kvm_on_user_return(&msrs->urn);
683 }
684
685 /*
686 * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
687 *
688 * Hardware virtualization extension instructions may fault if a reboot turns
689 * off virtualization while processes are running. Usually after catching the
690 * fault we just panic; during reboot instead the instruction is ignored.
691 */
kvm_spurious_fault(void)692 noinstr void kvm_spurious_fault(void)
693 {
694 /* Fault while not rebooting. We want the trace. */
695 BUG_ON(!kvm_rebooting);
696 }
697 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
698
699 #define EXCPT_BENIGN 0
700 #define EXCPT_CONTRIBUTORY 1
701 #define EXCPT_PF 2
702
exception_class(int vector)703 static int exception_class(int vector)
704 {
705 switch (vector) {
706 case PF_VECTOR:
707 return EXCPT_PF;
708 case DE_VECTOR:
709 case TS_VECTOR:
710 case NP_VECTOR:
711 case SS_VECTOR:
712 case GP_VECTOR:
713 return EXCPT_CONTRIBUTORY;
714 default:
715 break;
716 }
717 return EXCPT_BENIGN;
718 }
719
720 #define EXCPT_FAULT 0
721 #define EXCPT_TRAP 1
722 #define EXCPT_ABORT 2
723 #define EXCPT_INTERRUPT 3
724 #define EXCPT_DB 4
725
exception_type(int vector)726 static int exception_type(int vector)
727 {
728 unsigned int mask;
729
730 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
731 return EXCPT_INTERRUPT;
732
733 mask = 1 << vector;
734
735 /*
736 * #DBs can be trap-like or fault-like, the caller must check other CPU
737 * state, e.g. DR6, to determine whether a #DB is a trap or fault.
738 */
739 if (mask & (1 << DB_VECTOR))
740 return EXCPT_DB;
741
742 if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
743 return EXCPT_TRAP;
744
745 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
746 return EXCPT_ABORT;
747
748 /* Reserved exceptions will result in fault */
749 return EXCPT_FAULT;
750 }
751
kvm_deliver_exception_payload(struct kvm_vcpu * vcpu,struct kvm_queued_exception * ex)752 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
753 struct kvm_queued_exception *ex)
754 {
755 if (!ex->has_payload)
756 return;
757
758 switch (ex->vector) {
759 case DB_VECTOR:
760 /*
761 * "Certain debug exceptions may clear bit 0-3. The
762 * remaining contents of the DR6 register are never
763 * cleared by the processor".
764 */
765 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
766 /*
767 * In order to reflect the #DB exception payload in guest
768 * dr6, three components need to be considered: active low
769 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
770 * DR6_BS and DR6_BT)
771 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
772 * In the target guest dr6:
773 * FIXED_1 bits should always be set.
774 * Active low bits should be cleared if 1-setting in payload.
775 * Active high bits should be set if 1-setting in payload.
776 *
777 * Note, the payload is compatible with the pending debug
778 * exceptions/exit qualification under VMX, that active_low bits
779 * are active high in payload.
780 * So they need to be flipped for DR6.
781 */
782 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
783 vcpu->arch.dr6 |= ex->payload;
784 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW;
785
786 /*
787 * The #DB payload is defined as compatible with the 'pending
788 * debug exceptions' field under VMX, not DR6. While bit 12 is
789 * defined in the 'pending debug exceptions' field (enabled
790 * breakpoint), it is reserved and must be zero in DR6.
791 */
792 vcpu->arch.dr6 &= ~BIT(12);
793 break;
794 case PF_VECTOR:
795 vcpu->arch.cr2 = ex->payload;
796 break;
797 }
798
799 ex->has_payload = false;
800 ex->payload = 0;
801 }
802 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
803
kvm_queue_exception_vmexit(struct kvm_vcpu * vcpu,unsigned int vector,bool has_error_code,u32 error_code,bool has_payload,unsigned long payload)804 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector,
805 bool has_error_code, u32 error_code,
806 bool has_payload, unsigned long payload)
807 {
808 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
809
810 ex->vector = vector;
811 ex->injected = false;
812 ex->pending = true;
813 ex->has_error_code = has_error_code;
814 ex->error_code = error_code;
815 ex->has_payload = has_payload;
816 ex->payload = payload;
817 }
818
kvm_multiple_exception(struct kvm_vcpu * vcpu,unsigned int nr,bool has_error,u32 error_code,bool has_payload,unsigned long payload)819 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, unsigned int nr,
820 bool has_error, u32 error_code,
821 bool has_payload, unsigned long payload)
822 {
823 u32 prev_nr;
824 int class1, class2;
825
826 kvm_make_request(KVM_REQ_EVENT, vcpu);
827
828 /*
829 * If the exception is destined for L2, morph it to a VM-Exit if L1
830 * wants to intercept the exception.
831 */
832 if (is_guest_mode(vcpu) &&
833 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) {
834 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code,
835 has_payload, payload);
836 return;
837 }
838
839 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
840 queue:
841 vcpu->arch.exception.pending = true;
842 vcpu->arch.exception.injected = false;
843
844 vcpu->arch.exception.has_error_code = has_error;
845 vcpu->arch.exception.vector = nr;
846 vcpu->arch.exception.error_code = error_code;
847 vcpu->arch.exception.has_payload = has_payload;
848 vcpu->arch.exception.payload = payload;
849 if (!is_guest_mode(vcpu))
850 kvm_deliver_exception_payload(vcpu,
851 &vcpu->arch.exception);
852 return;
853 }
854
855 /* to check exception */
856 prev_nr = vcpu->arch.exception.vector;
857 if (prev_nr == DF_VECTOR) {
858 /* triple fault -> shutdown */
859 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
860 return;
861 }
862 class1 = exception_class(prev_nr);
863 class2 = exception_class(nr);
864 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) ||
865 (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
866 /*
867 * Synthesize #DF. Clear the previously injected or pending
868 * exception so as not to incorrectly trigger shutdown.
869 */
870 vcpu->arch.exception.injected = false;
871 vcpu->arch.exception.pending = false;
872
873 kvm_queue_exception_e(vcpu, DF_VECTOR, 0);
874 } else {
875 /* replace previous exception with a new one in a hope
876 that instruction re-execution will regenerate lost
877 exception */
878 goto queue;
879 }
880 }
881
kvm_queue_exception(struct kvm_vcpu * vcpu,unsigned nr)882 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
883 {
884 kvm_multiple_exception(vcpu, nr, false, 0, false, 0);
885 }
886 EXPORT_SYMBOL_GPL(kvm_queue_exception);
887
888
kvm_queue_exception_p(struct kvm_vcpu * vcpu,unsigned nr,unsigned long payload)889 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
890 unsigned long payload)
891 {
892 kvm_multiple_exception(vcpu, nr, false, 0, true, payload);
893 }
894 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
895
kvm_queue_exception_e_p(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code,unsigned long payload)896 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
897 u32 error_code, unsigned long payload)
898 {
899 kvm_multiple_exception(vcpu, nr, true, error_code, true, payload);
900 }
901
kvm_requeue_exception(struct kvm_vcpu * vcpu,unsigned int nr,bool has_error_code,u32 error_code)902 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned int nr,
903 bool has_error_code, u32 error_code)
904 {
905
906 /*
907 * On VM-Entry, an exception can be pending if and only if event
908 * injection was blocked by nested_run_pending. In that case, however,
909 * vcpu_enter_guest() requests an immediate exit, and the guest
910 * shouldn't proceed far enough to need reinjection.
911 */
912 WARN_ON_ONCE(kvm_is_exception_pending(vcpu));
913
914 /*
915 * Do not check for interception when injecting an event for L2, as the
916 * exception was checked for intercept when it was original queued, and
917 * re-checking is incorrect if _L1_ injected the exception, in which
918 * case it's exempt from interception.
919 */
920 kvm_make_request(KVM_REQ_EVENT, vcpu);
921
922 vcpu->arch.exception.injected = true;
923 vcpu->arch.exception.has_error_code = has_error_code;
924 vcpu->arch.exception.vector = nr;
925 vcpu->arch.exception.error_code = error_code;
926 vcpu->arch.exception.has_payload = false;
927 vcpu->arch.exception.payload = 0;
928 }
929 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
930
kvm_complete_insn_gp(struct kvm_vcpu * vcpu,int err)931 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
932 {
933 if (err)
934 kvm_inject_gp(vcpu, 0);
935 else
936 return kvm_skip_emulated_instruction(vcpu);
937
938 return 1;
939 }
940 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
941
complete_emulated_insn_gp(struct kvm_vcpu * vcpu,int err)942 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
943 {
944 if (err) {
945 kvm_inject_gp(vcpu, 0);
946 return 1;
947 }
948
949 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
950 EMULTYPE_COMPLETE_USER_EXIT);
951 }
952
kvm_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)953 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
954 {
955 ++vcpu->stat.pf_guest;
956
957 /*
958 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of
959 * whether or not L1 wants to intercept "regular" #PF.
960 */
961 if (is_guest_mode(vcpu) && fault->async_page_fault)
962 kvm_queue_exception_vmexit(vcpu, PF_VECTOR,
963 true, fault->error_code,
964 true, fault->address);
965 else
966 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
967 fault->address);
968 }
969
kvm_inject_emulated_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)970 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
971 struct x86_exception *fault)
972 {
973 struct kvm_mmu *fault_mmu;
974 WARN_ON_ONCE(fault->vector != PF_VECTOR);
975
976 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
977 vcpu->arch.walk_mmu;
978
979 /*
980 * Invalidate the TLB entry for the faulting address, if it exists,
981 * else the access will fault indefinitely (and to emulate hardware).
982 */
983 if ((fault->error_code & PFERR_PRESENT_MASK) &&
984 !(fault->error_code & PFERR_RSVD_MASK))
985 kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address,
986 KVM_MMU_ROOT_CURRENT);
987
988 fault_mmu->inject_page_fault(vcpu, fault);
989 }
990 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
991
kvm_inject_nmi(struct kvm_vcpu * vcpu)992 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
993 {
994 atomic_inc(&vcpu->arch.nmi_queued);
995 kvm_make_request(KVM_REQ_NMI, vcpu);
996 }
997
kvm_queue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)998 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
999 {
1000 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0);
1001 }
1002 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
1003
1004 /*
1005 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
1006 * a #GP and return false.
1007 */
kvm_require_cpl(struct kvm_vcpu * vcpu,int required_cpl)1008 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
1009 {
1010 if (kvm_x86_call(get_cpl)(vcpu) <= required_cpl)
1011 return true;
1012 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
1013 return false;
1014 }
1015
kvm_require_dr(struct kvm_vcpu * vcpu,int dr)1016 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
1017 {
1018 if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE))
1019 return true;
1020
1021 kvm_queue_exception(vcpu, UD_VECTOR);
1022 return false;
1023 }
1024 EXPORT_SYMBOL_GPL(kvm_require_dr);
1025
pdptr_rsvd_bits(struct kvm_vcpu * vcpu)1026 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
1027 {
1028 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
1029 }
1030
1031 /*
1032 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise.
1033 */
load_pdptrs(struct kvm_vcpu * vcpu,unsigned long cr3)1034 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
1035 {
1036 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
1037 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
1038 gpa_t real_gpa;
1039 int i;
1040 int ret;
1041 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
1042
1043 /*
1044 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
1045 * to an L1 GPA.
1046 */
1047 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
1048 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
1049 if (real_gpa == INVALID_GPA)
1050 return 0;
1051
1052 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
1053 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
1054 cr3 & GENMASK(11, 5), sizeof(pdpte));
1055 if (ret < 0)
1056 return 0;
1057
1058 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
1059 if ((pdpte[i] & PT_PRESENT_MASK) &&
1060 (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
1061 return 0;
1062 }
1063 }
1064
1065 /*
1066 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
1067 * Shadow page roots need to be reconstructed instead.
1068 */
1069 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
1070 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
1071
1072 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
1073 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
1074 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
1075 vcpu->arch.pdptrs_from_userspace = false;
1076
1077 return 1;
1078 }
1079 EXPORT_SYMBOL_GPL(load_pdptrs);
1080
kvm_is_valid_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1081 static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1082 {
1083 #ifdef CONFIG_X86_64
1084 if (cr0 & 0xffffffff00000000UL)
1085 return false;
1086 #endif
1087
1088 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
1089 return false;
1090
1091 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
1092 return false;
1093
1094 return kvm_x86_call(is_valid_cr0)(vcpu, cr0);
1095 }
1096
kvm_post_set_cr0(struct kvm_vcpu * vcpu,unsigned long old_cr0,unsigned long cr0)1097 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
1098 {
1099 /*
1100 * CR0.WP is incorporated into the MMU role, but only for non-nested,
1101 * indirect shadow MMUs. If paging is disabled, no updates are needed
1102 * as there are no permission bits to emulate. If TDP is enabled, the
1103 * MMU's metadata needs to be updated, e.g. so that emulating guest
1104 * translations does the right thing, but there's no need to unload the
1105 * root as CR0.WP doesn't affect SPTEs.
1106 */
1107 if ((cr0 ^ old_cr0) == X86_CR0_WP) {
1108 if (!(cr0 & X86_CR0_PG))
1109 return;
1110
1111 if (tdp_enabled) {
1112 kvm_init_mmu(vcpu);
1113 return;
1114 }
1115 }
1116
1117 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
1118 kvm_clear_async_pf_completion_queue(vcpu);
1119 kvm_async_pf_hash_reset(vcpu);
1120
1121 /*
1122 * Clearing CR0.PG is defined to flush the TLB from the guest's
1123 * perspective.
1124 */
1125 if (!(cr0 & X86_CR0_PG))
1126 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1127 }
1128
1129 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
1130 kvm_mmu_reset_context(vcpu);
1131 }
1132 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
1133
kvm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1134 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1135 {
1136 unsigned long old_cr0 = kvm_read_cr0(vcpu);
1137
1138 if (!kvm_is_valid_cr0(vcpu, cr0))
1139 return 1;
1140
1141 cr0 |= X86_CR0_ET;
1142
1143 /* Write to CR0 reserved bits are ignored, even on Intel. */
1144 cr0 &= ~CR0_RESERVED_BITS;
1145
1146 #ifdef CONFIG_X86_64
1147 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
1148 (cr0 & X86_CR0_PG)) {
1149 int cs_db, cs_l;
1150
1151 if (!is_pae(vcpu))
1152 return 1;
1153 kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
1154 if (cs_l)
1155 return 1;
1156 }
1157 #endif
1158 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
1159 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
1160 !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1161 return 1;
1162
1163 if (!(cr0 & X86_CR0_PG) &&
1164 (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)))
1165 return 1;
1166
1167 kvm_x86_call(set_cr0)(vcpu, cr0);
1168
1169 kvm_post_set_cr0(vcpu, old_cr0, cr0);
1170
1171 return 0;
1172 }
1173 EXPORT_SYMBOL_GPL(kvm_set_cr0);
1174
kvm_lmsw(struct kvm_vcpu * vcpu,unsigned long msw)1175 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
1176 {
1177 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
1178 }
1179 EXPORT_SYMBOL_GPL(kvm_lmsw);
1180
kvm_load_guest_xsave_state(struct kvm_vcpu * vcpu)1181 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
1182 {
1183 if (vcpu->arch.guest_state_protected)
1184 return;
1185
1186 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1187
1188 if (vcpu->arch.xcr0 != kvm_host.xcr0)
1189 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
1190
1191 if (guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVES) &&
1192 vcpu->arch.ia32_xss != kvm_host.xss)
1193 wrmsrq(MSR_IA32_XSS, vcpu->arch.ia32_xss);
1194 }
1195
1196 if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1197 vcpu->arch.pkru != vcpu->arch.host_pkru &&
1198 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1199 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE)))
1200 wrpkru(vcpu->arch.pkru);
1201 }
1202 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
1203
kvm_load_host_xsave_state(struct kvm_vcpu * vcpu)1204 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
1205 {
1206 if (vcpu->arch.guest_state_protected)
1207 return;
1208
1209 if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1210 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1211 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) {
1212 vcpu->arch.pkru = rdpkru();
1213 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1214 wrpkru(vcpu->arch.host_pkru);
1215 }
1216
1217 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1218
1219 if (vcpu->arch.xcr0 != kvm_host.xcr0)
1220 xsetbv(XCR_XFEATURE_ENABLED_MASK, kvm_host.xcr0);
1221
1222 if (guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVES) &&
1223 vcpu->arch.ia32_xss != kvm_host.xss)
1224 wrmsrq(MSR_IA32_XSS, kvm_host.xss);
1225 }
1226
1227 }
1228 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1229
1230 #ifdef CONFIG_X86_64
kvm_guest_supported_xfd(struct kvm_vcpu * vcpu)1231 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1232 {
1233 return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
1234 }
1235 #endif
1236
__kvm_set_xcr(struct kvm_vcpu * vcpu,u32 index,u64 xcr)1237 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1238 {
1239 u64 xcr0 = xcr;
1240 u64 old_xcr0 = vcpu->arch.xcr0;
1241 u64 valid_bits;
1242
1243 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
1244 if (index != XCR_XFEATURE_ENABLED_MASK)
1245 return 1;
1246 if (!(xcr0 & XFEATURE_MASK_FP))
1247 return 1;
1248 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1249 return 1;
1250
1251 /*
1252 * Do not allow the guest to set bits that we do not support
1253 * saving. However, xcr0 bit 0 is always set, even if the
1254 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1255 */
1256 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1257 if (xcr0 & ~valid_bits)
1258 return 1;
1259
1260 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1261 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1262 return 1;
1263
1264 if (xcr0 & XFEATURE_MASK_AVX512) {
1265 if (!(xcr0 & XFEATURE_MASK_YMM))
1266 return 1;
1267 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1268 return 1;
1269 }
1270
1271 if ((xcr0 & XFEATURE_MASK_XTILE) &&
1272 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1273 return 1;
1274
1275 vcpu->arch.xcr0 = xcr0;
1276
1277 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1278 vcpu->arch.cpuid_dynamic_bits_dirty = true;
1279 return 0;
1280 }
1281
kvm_emulate_xsetbv(struct kvm_vcpu * vcpu)1282 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1283 {
1284 /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1285 if (kvm_x86_call(get_cpl)(vcpu) != 0 ||
1286 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1287 kvm_inject_gp(vcpu, 0);
1288 return 1;
1289 }
1290
1291 return kvm_skip_emulated_instruction(vcpu);
1292 }
1293 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1294
kvm_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1295 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1296 {
1297 return __kvm_is_valid_cr4(vcpu, cr4) &&
1298 kvm_x86_call(is_valid_cr4)(vcpu, cr4);
1299 }
1300
kvm_post_set_cr4(struct kvm_vcpu * vcpu,unsigned long old_cr4,unsigned long cr4)1301 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1302 {
1303 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1304 kvm_mmu_reset_context(vcpu);
1305
1306 /*
1307 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1308 * according to the SDM; however, stale prev_roots could be reused
1309 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1310 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1311 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1312 * so fall through.
1313 */
1314 if (!tdp_enabled &&
1315 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1316 kvm_mmu_unload(vcpu);
1317
1318 /*
1319 * The TLB has to be flushed for all PCIDs if any of the following
1320 * (architecturally required) changes happen:
1321 * - CR4.PCIDE is changed from 1 to 0
1322 * - CR4.PGE is toggled
1323 *
1324 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1325 */
1326 if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1327 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1328 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1329
1330 /*
1331 * The TLB has to be flushed for the current PCID if any of the
1332 * following (architecturally required) changes happen:
1333 * - CR4.SMEP is changed from 0 to 1
1334 * - CR4.PAE is toggled
1335 */
1336 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1337 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1338 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1339
1340 }
1341 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1342
kvm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1343 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1344 {
1345 unsigned long old_cr4 = kvm_read_cr4(vcpu);
1346
1347 if (!kvm_is_valid_cr4(vcpu, cr4))
1348 return 1;
1349
1350 if (is_long_mode(vcpu)) {
1351 if (!(cr4 & X86_CR4_PAE))
1352 return 1;
1353 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1354 return 1;
1355 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1356 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1357 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1358 return 1;
1359
1360 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1361 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1362 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1363 return 1;
1364 }
1365
1366 kvm_x86_call(set_cr4)(vcpu, cr4);
1367
1368 kvm_post_set_cr4(vcpu, old_cr4, cr4);
1369
1370 return 0;
1371 }
1372 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1373
kvm_invalidate_pcid(struct kvm_vcpu * vcpu,unsigned long pcid)1374 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1375 {
1376 struct kvm_mmu *mmu = vcpu->arch.mmu;
1377 unsigned long roots_to_free = 0;
1378 int i;
1379
1380 /*
1381 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1382 * this is reachable when running EPT=1 and unrestricted_guest=0, and
1383 * also via the emulator. KVM's TDP page tables are not in the scope of
1384 * the invalidation, but the guest's TLB entries need to be flushed as
1385 * the CPU may have cached entries in its TLB for the target PCID.
1386 */
1387 if (unlikely(tdp_enabled)) {
1388 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1389 return;
1390 }
1391
1392 /*
1393 * If neither the current CR3 nor any of the prev_roots use the given
1394 * PCID, then nothing needs to be done here because a resync will
1395 * happen anyway before switching to any other CR3.
1396 */
1397 if (kvm_get_active_pcid(vcpu) == pcid) {
1398 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1399 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1400 }
1401
1402 /*
1403 * If PCID is disabled, there is no need to free prev_roots even if the
1404 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1405 * with PCIDE=0.
1406 */
1407 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))
1408 return;
1409
1410 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1411 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1412 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1413
1414 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1415 }
1416
kvm_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)1417 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1418 {
1419 bool skip_tlb_flush = false;
1420 unsigned long pcid = 0;
1421 #ifdef CONFIG_X86_64
1422 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) {
1423 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1424 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1425 pcid = cr3 & X86_CR3_PCID_MASK;
1426 }
1427 #endif
1428
1429 /* PDPTRs are always reloaded for PAE paging. */
1430 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1431 goto handle_tlb_flush;
1432
1433 /*
1434 * Do not condition the GPA check on long mode, this helper is used to
1435 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1436 * the current vCPU mode is accurate.
1437 */
1438 if (!kvm_vcpu_is_legal_cr3(vcpu, cr3))
1439 return 1;
1440
1441 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1442 return 1;
1443
1444 if (cr3 != kvm_read_cr3(vcpu))
1445 kvm_mmu_new_pgd(vcpu, cr3);
1446
1447 vcpu->arch.cr3 = cr3;
1448 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1449 /* Do not call post_set_cr3, we do not get here for confidential guests. */
1450
1451 handle_tlb_flush:
1452 /*
1453 * A load of CR3 that flushes the TLB flushes only the current PCID,
1454 * even if PCID is disabled, in which case PCID=0 is flushed. It's a
1455 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1456 * and it's impossible to use a non-zero PCID when PCID is disabled,
1457 * i.e. only PCID=0 can be relevant.
1458 */
1459 if (!skip_tlb_flush)
1460 kvm_invalidate_pcid(vcpu, pcid);
1461
1462 return 0;
1463 }
1464 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1465
kvm_set_cr8(struct kvm_vcpu * vcpu,unsigned long cr8)1466 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1467 {
1468 if (cr8 & CR8_RESERVED_BITS)
1469 return 1;
1470 if (lapic_in_kernel(vcpu))
1471 kvm_lapic_set_tpr(vcpu, cr8);
1472 else
1473 vcpu->arch.cr8 = cr8;
1474 return 0;
1475 }
1476 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1477
kvm_get_cr8(struct kvm_vcpu * vcpu)1478 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1479 {
1480 if (lapic_in_kernel(vcpu))
1481 return kvm_lapic_get_cr8(vcpu);
1482 else
1483 return vcpu->arch.cr8;
1484 }
1485 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1486
kvm_update_dr0123(struct kvm_vcpu * vcpu)1487 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1488 {
1489 int i;
1490
1491 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1492 for (i = 0; i < KVM_NR_DB_REGS; i++)
1493 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1494 }
1495 }
1496
kvm_update_dr7(struct kvm_vcpu * vcpu)1497 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1498 {
1499 unsigned long dr7;
1500
1501 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1502 dr7 = vcpu->arch.guest_debug_dr7;
1503 else
1504 dr7 = vcpu->arch.dr7;
1505 kvm_x86_call(set_dr7)(vcpu, dr7);
1506 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1507 if (dr7 & DR7_BP_EN_MASK)
1508 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1509 }
1510 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1511
kvm_dr6_fixed(struct kvm_vcpu * vcpu)1512 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1513 {
1514 u64 fixed = DR6_FIXED_1;
1515
1516 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_RTM))
1517 fixed |= DR6_RTM;
1518
1519 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1520 fixed |= DR6_BUS_LOCK;
1521 return fixed;
1522 }
1523
kvm_set_dr(struct kvm_vcpu * vcpu,int dr,unsigned long val)1524 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1525 {
1526 size_t size = ARRAY_SIZE(vcpu->arch.db);
1527
1528 switch (dr) {
1529 case 0 ... 3:
1530 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1531 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1532 vcpu->arch.eff_db[dr] = val;
1533 break;
1534 case 4:
1535 case 6:
1536 if (!kvm_dr6_valid(val))
1537 return 1; /* #GP */
1538 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1539 break;
1540 case 5:
1541 default: /* 7 */
1542 if (!kvm_dr7_valid(val))
1543 return 1; /* #GP */
1544 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1545 kvm_update_dr7(vcpu);
1546 break;
1547 }
1548
1549 return 0;
1550 }
1551 EXPORT_SYMBOL_GPL(kvm_set_dr);
1552
kvm_get_dr(struct kvm_vcpu * vcpu,int dr)1553 unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr)
1554 {
1555 size_t size = ARRAY_SIZE(vcpu->arch.db);
1556
1557 switch (dr) {
1558 case 0 ... 3:
1559 return vcpu->arch.db[array_index_nospec(dr, size)];
1560 case 4:
1561 case 6:
1562 return vcpu->arch.dr6;
1563 case 5:
1564 default: /* 7 */
1565 return vcpu->arch.dr7;
1566 }
1567 }
1568 EXPORT_SYMBOL_GPL(kvm_get_dr);
1569
kvm_emulate_rdpmc(struct kvm_vcpu * vcpu)1570 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1571 {
1572 u32 ecx = kvm_rcx_read(vcpu);
1573 u64 data;
1574
1575 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1576 kvm_inject_gp(vcpu, 0);
1577 return 1;
1578 }
1579
1580 kvm_rax_write(vcpu, (u32)data);
1581 kvm_rdx_write(vcpu, data >> 32);
1582 return kvm_skip_emulated_instruction(vcpu);
1583 }
1584 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1585
1586 /*
1587 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1588 * does not yet virtualize. These include:
1589 * 10 - MISC_PACKAGE_CTRLS
1590 * 11 - ENERGY_FILTERING_CTL
1591 * 12 - DOITM
1592 * 18 - FB_CLEAR_CTRL
1593 * 21 - XAPIC_DISABLE_STATUS
1594 * 23 - OVERCLOCKING_STATUS
1595 */
1596
1597 #define KVM_SUPPORTED_ARCH_CAP \
1598 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1599 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1600 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1601 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1602 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO | \
1603 ARCH_CAP_RFDS_NO | ARCH_CAP_RFDS_CLEAR | ARCH_CAP_BHI_NO | ARCH_CAP_ITS_NO)
1604
kvm_get_arch_capabilities(void)1605 static u64 kvm_get_arch_capabilities(void)
1606 {
1607 u64 data = kvm_host.arch_capabilities & KVM_SUPPORTED_ARCH_CAP;
1608
1609 /*
1610 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1611 * the nested hypervisor runs with NX huge pages. If it is not,
1612 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1613 * L1 guests, so it need not worry about its own (L2) guests.
1614 */
1615 data |= ARCH_CAP_PSCHANGE_MC_NO;
1616
1617 /*
1618 * If we're doing cache flushes (either "always" or "cond")
1619 * we will do one whenever the guest does a vmlaunch/vmresume.
1620 * If an outer hypervisor is doing the cache flush for us
1621 * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that
1622 * capability to the guest too, and if EPT is disabled we're not
1623 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1624 * require a nested hypervisor to do a flush of its own.
1625 */
1626 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1627 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1628
1629 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1630 data |= ARCH_CAP_RDCL_NO;
1631 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1632 data |= ARCH_CAP_SSB_NO;
1633 if (!boot_cpu_has_bug(X86_BUG_MDS))
1634 data |= ARCH_CAP_MDS_NO;
1635 if (!boot_cpu_has_bug(X86_BUG_RFDS))
1636 data |= ARCH_CAP_RFDS_NO;
1637 if (!boot_cpu_has_bug(X86_BUG_ITS))
1638 data |= ARCH_CAP_ITS_NO;
1639
1640 if (!boot_cpu_has(X86_FEATURE_RTM)) {
1641 /*
1642 * If RTM=0 because the kernel has disabled TSX, the host might
1643 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0
1644 * and therefore knows that there cannot be TAA) but keep
1645 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1646 * and we want to allow migrating those guests to tsx=off hosts.
1647 */
1648 data &= ~ARCH_CAP_TAA_NO;
1649 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1650 data |= ARCH_CAP_TAA_NO;
1651 } else {
1652 /*
1653 * Nothing to do here; we emulate TSX_CTRL if present on the
1654 * host so the guest can choose between disabling TSX or
1655 * using VERW to clear CPU buffers.
1656 */
1657 }
1658
1659 if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated())
1660 data |= ARCH_CAP_GDS_NO;
1661
1662 return data;
1663 }
1664
kvm_get_feature_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1665 static int kvm_get_feature_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1666 bool host_initiated)
1667 {
1668 WARN_ON_ONCE(!host_initiated);
1669
1670 switch (index) {
1671 case MSR_IA32_ARCH_CAPABILITIES:
1672 *data = kvm_get_arch_capabilities();
1673 break;
1674 case MSR_IA32_PERF_CAPABILITIES:
1675 *data = kvm_caps.supported_perf_cap;
1676 break;
1677 case MSR_PLATFORM_INFO:
1678 *data = MSR_PLATFORM_INFO_CPUID_FAULT;
1679 break;
1680 case MSR_IA32_UCODE_REV:
1681 rdmsrq_safe(index, data);
1682 break;
1683 default:
1684 return kvm_x86_call(get_feature_msr)(index, data);
1685 }
1686 return 0;
1687 }
1688
do_get_feature_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)1689 static int do_get_feature_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1690 {
1691 return kvm_do_msr_access(vcpu, index, data, true, MSR_TYPE_R,
1692 kvm_get_feature_msr);
1693 }
1694
__kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1695 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1696 {
1697 if (efer & EFER_AUTOIBRS && !guest_cpu_cap_has(vcpu, X86_FEATURE_AUTOIBRS))
1698 return false;
1699
1700 if (efer & EFER_FFXSR && !guest_cpu_cap_has(vcpu, X86_FEATURE_FXSR_OPT))
1701 return false;
1702
1703 if (efer & EFER_SVME && !guest_cpu_cap_has(vcpu, X86_FEATURE_SVM))
1704 return false;
1705
1706 if (efer & (EFER_LME | EFER_LMA) &&
1707 !guest_cpu_cap_has(vcpu, X86_FEATURE_LM))
1708 return false;
1709
1710 if (efer & EFER_NX && !guest_cpu_cap_has(vcpu, X86_FEATURE_NX))
1711 return false;
1712
1713 return true;
1714
1715 }
kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1716 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1717 {
1718 if (efer & efer_reserved_bits)
1719 return false;
1720
1721 return __kvm_valid_efer(vcpu, efer);
1722 }
1723 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1724
set_efer(struct kvm_vcpu * vcpu,struct msr_data * msr_info)1725 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1726 {
1727 u64 old_efer = vcpu->arch.efer;
1728 u64 efer = msr_info->data;
1729 int r;
1730
1731 if (efer & efer_reserved_bits)
1732 return 1;
1733
1734 if (!msr_info->host_initiated) {
1735 if (!__kvm_valid_efer(vcpu, efer))
1736 return 1;
1737
1738 if (is_paging(vcpu) &&
1739 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1740 return 1;
1741 }
1742
1743 efer &= ~EFER_LMA;
1744 efer |= vcpu->arch.efer & EFER_LMA;
1745
1746 r = kvm_x86_call(set_efer)(vcpu, efer);
1747 if (r) {
1748 WARN_ON(r > 0);
1749 return r;
1750 }
1751
1752 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1753 kvm_mmu_reset_context(vcpu);
1754
1755 if (!static_cpu_has(X86_FEATURE_XSAVES) &&
1756 (efer & EFER_SVME))
1757 kvm_hv_xsaves_xsavec_maybe_warn(vcpu);
1758
1759 return 0;
1760 }
1761
kvm_enable_efer_bits(u64 mask)1762 void kvm_enable_efer_bits(u64 mask)
1763 {
1764 efer_reserved_bits &= ~mask;
1765 }
1766 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1767
kvm_msr_allowed(struct kvm_vcpu * vcpu,u32 index,u32 type)1768 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1769 {
1770 struct kvm_x86_msr_filter *msr_filter;
1771 struct msr_bitmap_range *ranges;
1772 struct kvm *kvm = vcpu->kvm;
1773 bool allowed;
1774 int idx;
1775 u32 i;
1776
1777 /* x2APIC MSRs do not support filtering. */
1778 if (index >= 0x800 && index <= 0x8ff)
1779 return true;
1780
1781 idx = srcu_read_lock(&kvm->srcu);
1782
1783 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1784 if (!msr_filter) {
1785 allowed = true;
1786 goto out;
1787 }
1788
1789 allowed = msr_filter->default_allow;
1790 ranges = msr_filter->ranges;
1791
1792 for (i = 0; i < msr_filter->count; i++) {
1793 u32 start = ranges[i].base;
1794 u32 end = start + ranges[i].nmsrs;
1795 u32 flags = ranges[i].flags;
1796 unsigned long *bitmap = ranges[i].bitmap;
1797
1798 if ((index >= start) && (index < end) && (flags & type)) {
1799 allowed = test_bit(index - start, bitmap);
1800 break;
1801 }
1802 }
1803
1804 out:
1805 srcu_read_unlock(&kvm->srcu, idx);
1806
1807 return allowed;
1808 }
1809 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1810
1811 /*
1812 * Write @data into the MSR specified by @index. Select MSR specific fault
1813 * checks are bypassed if @host_initiated is %true.
1814 * Returns 0 on success, non-0 otherwise.
1815 * Assumes vcpu_load() was already called.
1816 */
__kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 data,bool host_initiated)1817 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1818 bool host_initiated)
1819 {
1820 struct msr_data msr;
1821
1822 switch (index) {
1823 case MSR_FS_BASE:
1824 case MSR_GS_BASE:
1825 case MSR_KERNEL_GS_BASE:
1826 case MSR_CSTAR:
1827 case MSR_LSTAR:
1828 if (is_noncanonical_msr_address(data, vcpu))
1829 return 1;
1830 break;
1831 case MSR_IA32_SYSENTER_EIP:
1832 case MSR_IA32_SYSENTER_ESP:
1833 /*
1834 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1835 * non-canonical address is written on Intel but not on
1836 * AMD (which ignores the top 32-bits, because it does
1837 * not implement 64-bit SYSENTER).
1838 *
1839 * 64-bit code should hence be able to write a non-canonical
1840 * value on AMD. Making the address canonical ensures that
1841 * vmentry does not fail on Intel after writing a non-canonical
1842 * value, and that something deterministic happens if the guest
1843 * invokes 64-bit SYSENTER.
1844 */
1845 data = __canonical_address(data, max_host_virt_addr_bits());
1846 break;
1847 case MSR_TSC_AUX:
1848 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1849 return 1;
1850
1851 if (!host_initiated &&
1852 !guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) &&
1853 !guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID))
1854 return 1;
1855
1856 /*
1857 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1858 * incomplete and conflicting architectural behavior. Current
1859 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1860 * reserved and always read as zeros. Enforce Intel's reserved
1861 * bits check if the guest CPU is Intel compatible, otherwise
1862 * clear the bits. This ensures cross-vendor migration will
1863 * provide consistent behavior for the guest.
1864 */
1865 if (guest_cpuid_is_intel_compatible(vcpu) && (data >> 32) != 0)
1866 return 1;
1867
1868 data = (u32)data;
1869 break;
1870 }
1871
1872 msr.data = data;
1873 msr.index = index;
1874 msr.host_initiated = host_initiated;
1875
1876 return kvm_x86_call(set_msr)(vcpu, &msr);
1877 }
1878
_kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1879 static int _kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1880 bool host_initiated)
1881 {
1882 return __kvm_set_msr(vcpu, index, *data, host_initiated);
1883 }
1884
kvm_set_msr_ignored_check(struct kvm_vcpu * vcpu,u32 index,u64 data,bool host_initiated)1885 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1886 u32 index, u64 data, bool host_initiated)
1887 {
1888 return kvm_do_msr_access(vcpu, index, &data, host_initiated, MSR_TYPE_W,
1889 _kvm_set_msr);
1890 }
1891
1892 /*
1893 * Read the MSR specified by @index into @data. Select MSR specific fault
1894 * checks are bypassed if @host_initiated is %true.
1895 * Returns 0 on success, non-0 otherwise.
1896 * Assumes vcpu_load() was already called.
1897 */
__kvm_get_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1898 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1899 bool host_initiated)
1900 {
1901 struct msr_data msr;
1902 int ret;
1903
1904 switch (index) {
1905 case MSR_TSC_AUX:
1906 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1907 return 1;
1908
1909 if (!host_initiated &&
1910 !guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) &&
1911 !guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID))
1912 return 1;
1913 break;
1914 }
1915
1916 msr.index = index;
1917 msr.host_initiated = host_initiated;
1918
1919 ret = kvm_x86_call(get_msr)(vcpu, &msr);
1920 if (!ret)
1921 *data = msr.data;
1922 return ret;
1923 }
1924
kvm_get_msr_ignored_check(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1925 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1926 u32 index, u64 *data, bool host_initiated)
1927 {
1928 return kvm_do_msr_access(vcpu, index, data, host_initiated, MSR_TYPE_R,
1929 __kvm_get_msr);
1930 }
1931
kvm_get_msr_with_filter(struct kvm_vcpu * vcpu,u32 index,u64 * data)1932 int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1933 {
1934 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1935 return KVM_MSR_RET_FILTERED;
1936 return kvm_get_msr_ignored_check(vcpu, index, data, false);
1937 }
1938 EXPORT_SYMBOL_GPL(kvm_get_msr_with_filter);
1939
kvm_set_msr_with_filter(struct kvm_vcpu * vcpu,u32 index,u64 data)1940 int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1941 {
1942 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1943 return KVM_MSR_RET_FILTERED;
1944 return kvm_set_msr_ignored_check(vcpu, index, data, false);
1945 }
1946 EXPORT_SYMBOL_GPL(kvm_set_msr_with_filter);
1947
kvm_get_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data)1948 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1949 {
1950 return kvm_get_msr_ignored_check(vcpu, index, data, false);
1951 }
1952 EXPORT_SYMBOL_GPL(kvm_get_msr);
1953
kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 data)1954 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1955 {
1956 return kvm_set_msr_ignored_check(vcpu, index, data, false);
1957 }
1958 EXPORT_SYMBOL_GPL(kvm_set_msr);
1959
complete_userspace_rdmsr(struct kvm_vcpu * vcpu)1960 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1961 {
1962 if (!vcpu->run->msr.error) {
1963 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1964 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1965 }
1966 }
1967
complete_emulated_msr_access(struct kvm_vcpu * vcpu)1968 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1969 {
1970 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
1971 }
1972
complete_emulated_rdmsr(struct kvm_vcpu * vcpu)1973 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1974 {
1975 complete_userspace_rdmsr(vcpu);
1976 return complete_emulated_msr_access(vcpu);
1977 }
1978
complete_fast_msr_access(struct kvm_vcpu * vcpu)1979 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
1980 {
1981 return kvm_x86_call(complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1982 }
1983
complete_fast_rdmsr(struct kvm_vcpu * vcpu)1984 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
1985 {
1986 complete_userspace_rdmsr(vcpu);
1987 return complete_fast_msr_access(vcpu);
1988 }
1989
kvm_msr_reason(int r)1990 static u64 kvm_msr_reason(int r)
1991 {
1992 switch (r) {
1993 case KVM_MSR_RET_UNSUPPORTED:
1994 return KVM_MSR_EXIT_REASON_UNKNOWN;
1995 case KVM_MSR_RET_FILTERED:
1996 return KVM_MSR_EXIT_REASON_FILTER;
1997 default:
1998 return KVM_MSR_EXIT_REASON_INVAL;
1999 }
2000 }
2001
kvm_msr_user_space(struct kvm_vcpu * vcpu,u32 index,u32 exit_reason,u64 data,int (* completion)(struct kvm_vcpu * vcpu),int r)2002 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
2003 u32 exit_reason, u64 data,
2004 int (*completion)(struct kvm_vcpu *vcpu),
2005 int r)
2006 {
2007 u64 msr_reason = kvm_msr_reason(r);
2008
2009 /* Check if the user wanted to know about this MSR fault */
2010 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
2011 return 0;
2012
2013 vcpu->run->exit_reason = exit_reason;
2014 vcpu->run->msr.error = 0;
2015 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
2016 vcpu->run->msr.reason = msr_reason;
2017 vcpu->run->msr.index = index;
2018 vcpu->run->msr.data = data;
2019 vcpu->arch.complete_userspace_io = completion;
2020
2021 return 1;
2022 }
2023
kvm_emulate_rdmsr(struct kvm_vcpu * vcpu)2024 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
2025 {
2026 u32 ecx = kvm_rcx_read(vcpu);
2027 u64 data;
2028 int r;
2029
2030 r = kvm_get_msr_with_filter(vcpu, ecx, &data);
2031
2032 if (!r) {
2033 trace_kvm_msr_read(ecx, data);
2034
2035 kvm_rax_write(vcpu, data & -1u);
2036 kvm_rdx_write(vcpu, (data >> 32) & -1u);
2037 } else {
2038 /* MSR read failed? See if we should ask user space */
2039 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2040 complete_fast_rdmsr, r))
2041 return 0;
2042 trace_kvm_msr_read_ex(ecx);
2043 }
2044
2045 return kvm_x86_call(complete_emulated_msr)(vcpu, r);
2046 }
2047 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2048
kvm_emulate_wrmsr(struct kvm_vcpu * vcpu)2049 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2050 {
2051 u32 ecx = kvm_rcx_read(vcpu);
2052 u64 data = kvm_read_edx_eax(vcpu);
2053 int r;
2054
2055 r = kvm_set_msr_with_filter(vcpu, ecx, data);
2056
2057 if (!r) {
2058 trace_kvm_msr_write(ecx, data);
2059 } else {
2060 /* MSR write failed? See if we should ask user space */
2061 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2062 complete_fast_msr_access, r))
2063 return 0;
2064 /* Signal all other negative errors to userspace */
2065 if (r < 0)
2066 return r;
2067 trace_kvm_msr_write_ex(ecx, data);
2068 }
2069
2070 return kvm_x86_call(complete_emulated_msr)(vcpu, r);
2071 }
2072 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2073
kvm_emulate_as_nop(struct kvm_vcpu * vcpu)2074 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2075 {
2076 return kvm_skip_emulated_instruction(vcpu);
2077 }
2078
kvm_emulate_invd(struct kvm_vcpu * vcpu)2079 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2080 {
2081 /* Treat an INVD instruction as a NOP and just skip it. */
2082 return kvm_emulate_as_nop(vcpu);
2083 }
2084 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2085
kvm_handle_invalid_op(struct kvm_vcpu * vcpu)2086 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2087 {
2088 kvm_queue_exception(vcpu, UD_VECTOR);
2089 return 1;
2090 }
2091 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2092
2093
kvm_emulate_monitor_mwait(struct kvm_vcpu * vcpu,const char * insn)2094 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2095 {
2096 bool enabled;
2097
2098 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS))
2099 goto emulate_as_nop;
2100
2101 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT))
2102 enabled = guest_cpu_cap_has(vcpu, X86_FEATURE_MWAIT);
2103 else
2104 enabled = vcpu->arch.ia32_misc_enable_msr & MSR_IA32_MISC_ENABLE_MWAIT;
2105
2106 if (!enabled)
2107 return kvm_handle_invalid_op(vcpu);
2108
2109 emulate_as_nop:
2110 pr_warn_once("%s instruction emulated as NOP!\n", insn);
2111 return kvm_emulate_as_nop(vcpu);
2112 }
kvm_emulate_mwait(struct kvm_vcpu * vcpu)2113 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2114 {
2115 return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2116 }
2117 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2118
kvm_emulate_monitor(struct kvm_vcpu * vcpu)2119 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2120 {
2121 return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2122 }
2123 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2124
kvm_vcpu_exit_request(struct kvm_vcpu * vcpu)2125 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2126 {
2127 xfer_to_guest_mode_prepare();
2128
2129 return READ_ONCE(vcpu->mode) == EXITING_GUEST_MODE ||
2130 kvm_request_pending(vcpu) || xfer_to_guest_mode_work_pending();
2131 }
2132
2133 /*
2134 * The fast path for frequent and performance sensitive wrmsr emulation,
2135 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2136 * the latency of virtual IPI by avoiding the expensive bits of transitioning
2137 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2138 * other cases which must be called after interrupts are enabled on the host.
2139 */
handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu * vcpu,u64 data)2140 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2141 {
2142 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2143 return 1;
2144
2145 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2146 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2147 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2148 ((u32)(data >> 32) != X2APIC_BROADCAST))
2149 return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2150
2151 return 1;
2152 }
2153
handle_fastpath_set_tscdeadline(struct kvm_vcpu * vcpu,u64 data)2154 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2155 {
2156 if (!kvm_can_use_hv_timer(vcpu))
2157 return 1;
2158
2159 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2160 return 0;
2161 }
2162
handle_fastpath_set_msr_irqoff(struct kvm_vcpu * vcpu)2163 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2164 {
2165 u32 msr = kvm_rcx_read(vcpu);
2166 u64 data;
2167 fastpath_t ret;
2168 bool handled;
2169
2170 kvm_vcpu_srcu_read_lock(vcpu);
2171
2172 switch (msr) {
2173 case APIC_BASE_MSR + (APIC_ICR >> 4):
2174 data = kvm_read_edx_eax(vcpu);
2175 handled = !handle_fastpath_set_x2apic_icr_irqoff(vcpu, data);
2176 break;
2177 case MSR_IA32_TSC_DEADLINE:
2178 data = kvm_read_edx_eax(vcpu);
2179 handled = !handle_fastpath_set_tscdeadline(vcpu, data);
2180 break;
2181 default:
2182 handled = false;
2183 break;
2184 }
2185
2186 if (handled) {
2187 if (!kvm_skip_emulated_instruction(vcpu))
2188 ret = EXIT_FASTPATH_EXIT_USERSPACE;
2189 else
2190 ret = EXIT_FASTPATH_REENTER_GUEST;
2191 trace_kvm_msr_write(msr, data);
2192 } else {
2193 ret = EXIT_FASTPATH_NONE;
2194 }
2195
2196 kvm_vcpu_srcu_read_unlock(vcpu);
2197
2198 return ret;
2199 }
2200 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2201
2202 /*
2203 * Adapt set_msr() to msr_io()'s calling convention
2204 */
do_get_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)2205 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2206 {
2207 return kvm_get_msr_ignored_check(vcpu, index, data, true);
2208 }
2209
do_set_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)2210 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2211 {
2212 u64 val;
2213
2214 /*
2215 * Disallow writes to immutable feature MSRs after KVM_RUN. KVM does
2216 * not support modifying the guest vCPU model on the fly, e.g. changing
2217 * the nVMX capabilities while L2 is running is nonsensical. Allow
2218 * writes of the same value, e.g. to allow userspace to blindly stuff
2219 * all MSRs when emulating RESET.
2220 */
2221 if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index) &&
2222 (do_get_msr(vcpu, index, &val) || *data != val))
2223 return -EINVAL;
2224
2225 return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2226 }
2227
2228 #ifdef CONFIG_X86_64
2229 struct pvclock_clock {
2230 int vclock_mode;
2231 u64 cycle_last;
2232 u64 mask;
2233 u32 mult;
2234 u32 shift;
2235 u64 base_cycles;
2236 u64 offset;
2237 };
2238
2239 struct pvclock_gtod_data {
2240 seqcount_t seq;
2241
2242 struct pvclock_clock clock; /* extract of a clocksource struct */
2243 struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2244
2245 ktime_t offs_boot;
2246 u64 wall_time_sec;
2247 };
2248
2249 static struct pvclock_gtod_data pvclock_gtod_data;
2250
update_pvclock_gtod(struct timekeeper * tk)2251 static void update_pvclock_gtod(struct timekeeper *tk)
2252 {
2253 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2254
2255 write_seqcount_begin(&vdata->seq);
2256
2257 /* copy pvclock gtod data */
2258 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode;
2259 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
2260 vdata->clock.mask = tk->tkr_mono.mask;
2261 vdata->clock.mult = tk->tkr_mono.mult;
2262 vdata->clock.shift = tk->tkr_mono.shift;
2263 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec;
2264 vdata->clock.offset = tk->tkr_mono.base;
2265
2266 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode;
2267 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last;
2268 vdata->raw_clock.mask = tk->tkr_raw.mask;
2269 vdata->raw_clock.mult = tk->tkr_raw.mult;
2270 vdata->raw_clock.shift = tk->tkr_raw.shift;
2271 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec;
2272 vdata->raw_clock.offset = tk->tkr_raw.base;
2273
2274 vdata->wall_time_sec = tk->xtime_sec;
2275
2276 vdata->offs_boot = tk->offs_boot;
2277
2278 write_seqcount_end(&vdata->seq);
2279 }
2280
get_kvmclock_base_ns(void)2281 static s64 get_kvmclock_base_ns(void)
2282 {
2283 /* Count up from boot time, but with the frequency of the raw clock. */
2284 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2285 }
2286 #else
get_kvmclock_base_ns(void)2287 static s64 get_kvmclock_base_ns(void)
2288 {
2289 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */
2290 return ktime_get_boottime_ns();
2291 }
2292 #endif
2293
kvm_write_wall_clock(struct kvm * kvm,gpa_t wall_clock,int sec_hi_ofs)2294 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2295 {
2296 int version;
2297 int r;
2298 struct pvclock_wall_clock wc;
2299 u32 wc_sec_hi;
2300 u64 wall_nsec;
2301
2302 if (!wall_clock)
2303 return;
2304
2305 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2306 if (r)
2307 return;
2308
2309 if (version & 1)
2310 ++version; /* first time write, random junk */
2311
2312 ++version;
2313
2314 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2315 return;
2316
2317 wall_nsec = kvm_get_wall_clock_epoch(kvm);
2318
2319 wc.nsec = do_div(wall_nsec, NSEC_PER_SEC);
2320 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2321 wc.version = version;
2322
2323 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2324
2325 if (sec_hi_ofs) {
2326 wc_sec_hi = wall_nsec >> 32;
2327 kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2328 &wc_sec_hi, sizeof(wc_sec_hi));
2329 }
2330
2331 version++;
2332 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2333 }
2334
kvm_write_system_time(struct kvm_vcpu * vcpu,gpa_t system_time,bool old_msr,bool host_initiated)2335 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2336 bool old_msr, bool host_initiated)
2337 {
2338 struct kvm_arch *ka = &vcpu->kvm->arch;
2339
2340 if (vcpu->vcpu_id == 0 && !host_initiated) {
2341 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2342 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2343
2344 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2345 }
2346
2347 vcpu->arch.time = system_time;
2348 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2349
2350 /* we verify if the enable bit is set... */
2351 if (system_time & 1)
2352 kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL,
2353 sizeof(struct pvclock_vcpu_time_info));
2354 else
2355 kvm_gpc_deactivate(&vcpu->arch.pv_time);
2356
2357 return;
2358 }
2359
div_frac(uint32_t dividend,uint32_t divisor)2360 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2361 {
2362 do_shl32_div32(dividend, divisor);
2363 return dividend;
2364 }
2365
kvm_get_time_scale(uint64_t scaled_hz,uint64_t base_hz,s8 * pshift,u32 * pmultiplier)2366 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2367 s8 *pshift, u32 *pmultiplier)
2368 {
2369 uint64_t scaled64;
2370 int32_t shift = 0;
2371 uint64_t tps64;
2372 uint32_t tps32;
2373
2374 tps64 = base_hz;
2375 scaled64 = scaled_hz;
2376 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2377 tps64 >>= 1;
2378 shift--;
2379 }
2380
2381 tps32 = (uint32_t)tps64;
2382 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2383 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2384 scaled64 >>= 1;
2385 else
2386 tps32 <<= 1;
2387 shift++;
2388 }
2389
2390 *pshift = shift;
2391 *pmultiplier = div_frac(scaled64, tps32);
2392 }
2393
2394 #ifdef CONFIG_X86_64
2395 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2396 #endif
2397
2398 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2399 static unsigned long max_tsc_khz;
2400
adjust_tsc_khz(u32 khz,s32 ppm)2401 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2402 {
2403 u64 v = (u64)khz * (1000000 + ppm);
2404 do_div(v, 1000000);
2405 return v;
2406 }
2407
2408 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2409
set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz,bool scale)2410 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2411 {
2412 u64 ratio;
2413
2414 /* Guest TSC same frequency as host TSC? */
2415 if (!scale) {
2416 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2417 return 0;
2418 }
2419
2420 /* TSC scaling supported? */
2421 if (!kvm_caps.has_tsc_control) {
2422 if (user_tsc_khz > tsc_khz) {
2423 vcpu->arch.tsc_catchup = 1;
2424 vcpu->arch.tsc_always_catchup = 1;
2425 return 0;
2426 } else {
2427 pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2428 return -1;
2429 }
2430 }
2431
2432 /* TSC scaling required - calculate ratio */
2433 ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2434 user_tsc_khz, tsc_khz);
2435
2436 if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2437 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2438 user_tsc_khz);
2439 return -1;
2440 }
2441
2442 kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2443 return 0;
2444 }
2445
kvm_set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz)2446 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2447 {
2448 u32 thresh_lo, thresh_hi;
2449 int use_scaling = 0;
2450
2451 /* tsc_khz can be zero if TSC calibration fails */
2452 if (user_tsc_khz == 0) {
2453 /* set tsc_scaling_ratio to a safe value */
2454 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2455 return -1;
2456 }
2457
2458 /* Compute a scale to convert nanoseconds in TSC cycles */
2459 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2460 &vcpu->arch.virtual_tsc_shift,
2461 &vcpu->arch.virtual_tsc_mult);
2462 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2463
2464 /*
2465 * Compute the variation in TSC rate which is acceptable
2466 * within the range of tolerance and decide if the
2467 * rate being applied is within that bounds of the hardware
2468 * rate. If so, no scaling or compensation need be done.
2469 */
2470 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2471 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2472 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2473 pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n",
2474 user_tsc_khz, thresh_lo, thresh_hi);
2475 use_scaling = 1;
2476 }
2477 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2478 }
2479
compute_guest_tsc(struct kvm_vcpu * vcpu,s64 kernel_ns)2480 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2481 {
2482 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2483 vcpu->arch.virtual_tsc_mult,
2484 vcpu->arch.virtual_tsc_shift);
2485 tsc += vcpu->arch.this_tsc_write;
2486 return tsc;
2487 }
2488
2489 #ifdef CONFIG_X86_64
gtod_is_based_on_tsc(int mode)2490 static inline bool gtod_is_based_on_tsc(int mode)
2491 {
2492 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2493 }
2494 #endif
2495
kvm_track_tsc_matching(struct kvm_vcpu * vcpu,bool new_generation)2496 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu, bool new_generation)
2497 {
2498 #ifdef CONFIG_X86_64
2499 struct kvm_arch *ka = &vcpu->kvm->arch;
2500 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2501
2502 /*
2503 * To use the masterclock, the host clocksource must be based on TSC
2504 * and all vCPUs must have matching TSCs. Note, the count for matching
2505 * vCPUs doesn't include the reference vCPU, hence "+1".
2506 */
2507 bool use_master_clock = (ka->nr_vcpus_matched_tsc + 1 ==
2508 atomic_read(&vcpu->kvm->online_vcpus)) &&
2509 gtod_is_based_on_tsc(gtod->clock.vclock_mode);
2510
2511 /*
2512 * Request a masterclock update if the masterclock needs to be toggled
2513 * on/off, or when starting a new generation and the masterclock is
2514 * enabled (compute_guest_tsc() requires the masterclock snapshot to be
2515 * taken _after_ the new generation is created).
2516 */
2517 if ((ka->use_master_clock && new_generation) ||
2518 (ka->use_master_clock != use_master_clock))
2519 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2520
2521 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2522 atomic_read(&vcpu->kvm->online_vcpus),
2523 ka->use_master_clock, gtod->clock.vclock_mode);
2524 #endif
2525 }
2526
2527 /*
2528 * Multiply tsc by a fixed point number represented by ratio.
2529 *
2530 * The most significant 64-N bits (mult) of ratio represent the
2531 * integral part of the fixed point number; the remaining N bits
2532 * (frac) represent the fractional part, ie. ratio represents a fixed
2533 * point number (mult + frac * 2^(-N)).
2534 *
2535 * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2536 */
__scale_tsc(u64 ratio,u64 tsc)2537 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2538 {
2539 return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2540 }
2541
kvm_scale_tsc(u64 tsc,u64 ratio)2542 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2543 {
2544 u64 _tsc = tsc;
2545
2546 if (ratio != kvm_caps.default_tsc_scaling_ratio)
2547 _tsc = __scale_tsc(ratio, tsc);
2548
2549 return _tsc;
2550 }
2551
kvm_compute_l1_tsc_offset(struct kvm_vcpu * vcpu,u64 target_tsc)2552 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2553 {
2554 u64 tsc;
2555
2556 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2557
2558 return target_tsc - tsc;
2559 }
2560
kvm_read_l1_tsc(struct kvm_vcpu * vcpu,u64 host_tsc)2561 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2562 {
2563 return vcpu->arch.l1_tsc_offset +
2564 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2565 }
2566 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2567
kvm_calc_nested_tsc_offset(u64 l1_offset,u64 l2_offset,u64 l2_multiplier)2568 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2569 {
2570 u64 nested_offset;
2571
2572 if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2573 nested_offset = l1_offset;
2574 else
2575 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2576 kvm_caps.tsc_scaling_ratio_frac_bits);
2577
2578 nested_offset += l2_offset;
2579 return nested_offset;
2580 }
2581 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2582
kvm_calc_nested_tsc_multiplier(u64 l1_multiplier,u64 l2_multiplier)2583 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2584 {
2585 if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2586 return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2587 kvm_caps.tsc_scaling_ratio_frac_bits);
2588
2589 return l1_multiplier;
2590 }
2591 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2592
kvm_vcpu_write_tsc_offset(struct kvm_vcpu * vcpu,u64 l1_offset)2593 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2594 {
2595 if (vcpu->arch.guest_tsc_protected)
2596 return;
2597
2598 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2599 vcpu->arch.l1_tsc_offset,
2600 l1_offset);
2601
2602 vcpu->arch.l1_tsc_offset = l1_offset;
2603
2604 /*
2605 * If we are here because L1 chose not to trap WRMSR to TSC then
2606 * according to the spec this should set L1's TSC (as opposed to
2607 * setting L1's offset for L2).
2608 */
2609 if (is_guest_mode(vcpu))
2610 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2611 l1_offset,
2612 kvm_x86_call(get_l2_tsc_offset)(vcpu),
2613 kvm_x86_call(get_l2_tsc_multiplier)(vcpu));
2614 else
2615 vcpu->arch.tsc_offset = l1_offset;
2616
2617 kvm_x86_call(write_tsc_offset)(vcpu);
2618 }
2619
kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu * vcpu,u64 l1_multiplier)2620 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2621 {
2622 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2623
2624 /* Userspace is changing the multiplier while L2 is active */
2625 if (is_guest_mode(vcpu))
2626 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2627 l1_multiplier,
2628 kvm_x86_call(get_l2_tsc_multiplier)(vcpu));
2629 else
2630 vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2631
2632 if (kvm_caps.has_tsc_control)
2633 kvm_x86_call(write_tsc_multiplier)(vcpu);
2634 }
2635
kvm_check_tsc_unstable(void)2636 static inline bool kvm_check_tsc_unstable(void)
2637 {
2638 #ifdef CONFIG_X86_64
2639 /*
2640 * TSC is marked unstable when we're running on Hyper-V,
2641 * 'TSC page' clocksource is good.
2642 */
2643 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2644 return false;
2645 #endif
2646 return check_tsc_unstable();
2647 }
2648
2649 /*
2650 * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2651 * offset for the vcpu and tracks the TSC matching generation that the vcpu
2652 * participates in.
2653 */
__kvm_synchronize_tsc(struct kvm_vcpu * vcpu,u64 offset,u64 tsc,u64 ns,bool matched,bool user_set_tsc)2654 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2655 u64 ns, bool matched, bool user_set_tsc)
2656 {
2657 struct kvm *kvm = vcpu->kvm;
2658
2659 lockdep_assert_held(&kvm->arch.tsc_write_lock);
2660
2661 if (vcpu->arch.guest_tsc_protected)
2662 return;
2663
2664 if (user_set_tsc)
2665 vcpu->kvm->arch.user_set_tsc = true;
2666
2667 /*
2668 * We also track th most recent recorded KHZ, write and time to
2669 * allow the matching interval to be extended at each write.
2670 */
2671 kvm->arch.last_tsc_nsec = ns;
2672 kvm->arch.last_tsc_write = tsc;
2673 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2674 kvm->arch.last_tsc_offset = offset;
2675
2676 vcpu->arch.last_guest_tsc = tsc;
2677
2678 kvm_vcpu_write_tsc_offset(vcpu, offset);
2679
2680 if (!matched) {
2681 /*
2682 * We split periods of matched TSC writes into generations.
2683 * For each generation, we track the original measured
2684 * nanosecond time, offset, and write, so if TSCs are in
2685 * sync, we can match exact offset, and if not, we can match
2686 * exact software computation in compute_guest_tsc()
2687 *
2688 * These values are tracked in kvm->arch.cur_xxx variables.
2689 */
2690 kvm->arch.cur_tsc_generation++;
2691 kvm->arch.cur_tsc_nsec = ns;
2692 kvm->arch.cur_tsc_write = tsc;
2693 kvm->arch.cur_tsc_offset = offset;
2694 kvm->arch.nr_vcpus_matched_tsc = 0;
2695 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2696 kvm->arch.nr_vcpus_matched_tsc++;
2697 }
2698
2699 /* Keep track of which generation this VCPU has synchronized to */
2700 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2701 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2702 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2703
2704 kvm_track_tsc_matching(vcpu, !matched);
2705 }
2706
kvm_synchronize_tsc(struct kvm_vcpu * vcpu,u64 * user_value)2707 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 *user_value)
2708 {
2709 u64 data = user_value ? *user_value : 0;
2710 struct kvm *kvm = vcpu->kvm;
2711 u64 offset, ns, elapsed;
2712 unsigned long flags;
2713 bool matched = false;
2714 bool synchronizing = false;
2715
2716 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2717 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2718 ns = get_kvmclock_base_ns();
2719 elapsed = ns - kvm->arch.last_tsc_nsec;
2720
2721 if (vcpu->arch.virtual_tsc_khz) {
2722 if (data == 0) {
2723 /*
2724 * Force synchronization when creating a vCPU, or when
2725 * userspace explicitly writes a zero value.
2726 */
2727 synchronizing = true;
2728 } else if (kvm->arch.user_set_tsc) {
2729 u64 tsc_exp = kvm->arch.last_tsc_write +
2730 nsec_to_cycles(vcpu, elapsed);
2731 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2732 /*
2733 * Here lies UAPI baggage: when a user-initiated TSC write has
2734 * a small delta (1 second) of virtual cycle time against the
2735 * previously set vCPU, we assume that they were intended to be
2736 * in sync and the delta was only due to the racy nature of the
2737 * legacy API.
2738 *
2739 * This trick falls down when restoring a guest which genuinely
2740 * has been running for less time than the 1 second of imprecision
2741 * which we allow for in the legacy API. In this case, the first
2742 * value written by userspace (on any vCPU) should not be subject
2743 * to this 'correction' to make it sync up with values that only
2744 * come from the kernel's default vCPU creation. Make the 1-second
2745 * slop hack only trigger if the user_set_tsc flag is already set.
2746 */
2747 synchronizing = data < tsc_exp + tsc_hz &&
2748 data + tsc_hz > tsc_exp;
2749 }
2750 }
2751
2752
2753 /*
2754 * For a reliable TSC, we can match TSC offsets, and for an unstable
2755 * TSC, we add elapsed time in this computation. We could let the
2756 * compensation code attempt to catch up if we fall behind, but
2757 * it's better to try to match offsets from the beginning.
2758 */
2759 if (synchronizing &&
2760 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2761 if (!kvm_check_tsc_unstable()) {
2762 offset = kvm->arch.cur_tsc_offset;
2763 } else {
2764 u64 delta = nsec_to_cycles(vcpu, elapsed);
2765 data += delta;
2766 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2767 }
2768 matched = true;
2769 }
2770
2771 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched, !!user_value);
2772 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2773 }
2774
adjust_tsc_offset_guest(struct kvm_vcpu * vcpu,s64 adjustment)2775 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2776 s64 adjustment)
2777 {
2778 u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2779 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2780 }
2781
adjust_tsc_offset_host(struct kvm_vcpu * vcpu,s64 adjustment)2782 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2783 {
2784 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2785 WARN_ON(adjustment < 0);
2786 adjustment = kvm_scale_tsc((u64) adjustment,
2787 vcpu->arch.l1_tsc_scaling_ratio);
2788 adjust_tsc_offset_guest(vcpu, adjustment);
2789 }
2790
2791 #ifdef CONFIG_X86_64
2792
read_tsc(void)2793 static u64 read_tsc(void)
2794 {
2795 u64 ret = (u64)rdtsc_ordered();
2796 u64 last = pvclock_gtod_data.clock.cycle_last;
2797
2798 if (likely(ret >= last))
2799 return ret;
2800
2801 /*
2802 * GCC likes to generate cmov here, but this branch is extremely
2803 * predictable (it's just a function of time and the likely is
2804 * very likely) and there's a data dependence, so force GCC
2805 * to generate a branch instead. I don't barrier() because
2806 * we don't actually need a barrier, and if this function
2807 * ever gets inlined it will generate worse code.
2808 */
2809 asm volatile ("");
2810 return last;
2811 }
2812
vgettsc(struct pvclock_clock * clock,u64 * tsc_timestamp,int * mode)2813 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2814 int *mode)
2815 {
2816 u64 tsc_pg_val;
2817 long v;
2818
2819 switch (clock->vclock_mode) {
2820 case VDSO_CLOCKMODE_HVCLOCK:
2821 if (hv_read_tsc_page_tsc(hv_get_tsc_page(),
2822 tsc_timestamp, &tsc_pg_val)) {
2823 /* TSC page valid */
2824 *mode = VDSO_CLOCKMODE_HVCLOCK;
2825 v = (tsc_pg_val - clock->cycle_last) &
2826 clock->mask;
2827 } else {
2828 /* TSC page invalid */
2829 *mode = VDSO_CLOCKMODE_NONE;
2830 }
2831 break;
2832 case VDSO_CLOCKMODE_TSC:
2833 *mode = VDSO_CLOCKMODE_TSC;
2834 *tsc_timestamp = read_tsc();
2835 v = (*tsc_timestamp - clock->cycle_last) &
2836 clock->mask;
2837 break;
2838 default:
2839 *mode = VDSO_CLOCKMODE_NONE;
2840 }
2841
2842 if (*mode == VDSO_CLOCKMODE_NONE)
2843 *tsc_timestamp = v = 0;
2844
2845 return v * clock->mult;
2846 }
2847
2848 /*
2849 * As with get_kvmclock_base_ns(), this counts from boot time, at the
2850 * frequency of CLOCK_MONOTONIC_RAW (hence adding gtos->offs_boot).
2851 */
do_kvmclock_base(s64 * t,u64 * tsc_timestamp)2852 static int do_kvmclock_base(s64 *t, u64 *tsc_timestamp)
2853 {
2854 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2855 unsigned long seq;
2856 int mode;
2857 u64 ns;
2858
2859 do {
2860 seq = read_seqcount_begin(>od->seq);
2861 ns = gtod->raw_clock.base_cycles;
2862 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode);
2863 ns >>= gtod->raw_clock.shift;
2864 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2865 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
2866 *t = ns;
2867
2868 return mode;
2869 }
2870
2871 /*
2872 * This calculates CLOCK_MONOTONIC at the time of the TSC snapshot, with
2873 * no boot time offset.
2874 */
do_monotonic(s64 * t,u64 * tsc_timestamp)2875 static int do_monotonic(s64 *t, u64 *tsc_timestamp)
2876 {
2877 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2878 unsigned long seq;
2879 int mode;
2880 u64 ns;
2881
2882 do {
2883 seq = read_seqcount_begin(>od->seq);
2884 ns = gtod->clock.base_cycles;
2885 ns += vgettsc(>od->clock, tsc_timestamp, &mode);
2886 ns >>= gtod->clock.shift;
2887 ns += ktime_to_ns(gtod->clock.offset);
2888 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
2889 *t = ns;
2890
2891 return mode;
2892 }
2893
do_realtime(struct timespec64 * ts,u64 * tsc_timestamp)2894 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2895 {
2896 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2897 unsigned long seq;
2898 int mode;
2899 u64 ns;
2900
2901 do {
2902 seq = read_seqcount_begin(>od->seq);
2903 ts->tv_sec = gtod->wall_time_sec;
2904 ns = gtod->clock.base_cycles;
2905 ns += vgettsc(>od->clock, tsc_timestamp, &mode);
2906 ns >>= gtod->clock.shift;
2907 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
2908
2909 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2910 ts->tv_nsec = ns;
2911
2912 return mode;
2913 }
2914
2915 /*
2916 * Calculates the kvmclock_base_ns (CLOCK_MONOTONIC_RAW + boot time) and
2917 * reports the TSC value from which it do so. Returns true if host is
2918 * using TSC based clocksource.
2919 */
kvm_get_time_and_clockread(s64 * kernel_ns,u64 * tsc_timestamp)2920 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2921 {
2922 /* checked again under seqlock below */
2923 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2924 return false;
2925
2926 return gtod_is_based_on_tsc(do_kvmclock_base(kernel_ns,
2927 tsc_timestamp));
2928 }
2929
2930 /*
2931 * Calculates CLOCK_MONOTONIC and reports the TSC value from which it did
2932 * so. Returns true if host is using TSC based clocksource.
2933 */
kvm_get_monotonic_and_clockread(s64 * kernel_ns,u64 * tsc_timestamp)2934 bool kvm_get_monotonic_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2935 {
2936 /* checked again under seqlock below */
2937 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2938 return false;
2939
2940 return gtod_is_based_on_tsc(do_monotonic(kernel_ns,
2941 tsc_timestamp));
2942 }
2943
2944 /*
2945 * Calculates CLOCK_REALTIME and reports the TSC value from which it did
2946 * so. Returns true if host is using TSC based clocksource.
2947 *
2948 * DO NOT USE this for anything related to migration. You want CLOCK_TAI
2949 * for that.
2950 */
kvm_get_walltime_and_clockread(struct timespec64 * ts,u64 * tsc_timestamp)2951 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2952 u64 *tsc_timestamp)
2953 {
2954 /* checked again under seqlock below */
2955 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2956 return false;
2957
2958 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2959 }
2960 #endif
2961
2962 /*
2963 *
2964 * Assuming a stable TSC across physical CPUS, and a stable TSC
2965 * across virtual CPUs, the following condition is possible.
2966 * Each numbered line represents an event visible to both
2967 * CPUs at the next numbered event.
2968 *
2969 * "timespecX" represents host monotonic time. "tscX" represents
2970 * RDTSC value.
2971 *
2972 * VCPU0 on CPU0 | VCPU1 on CPU1
2973 *
2974 * 1. read timespec0,tsc0
2975 * 2. | timespec1 = timespec0 + N
2976 * | tsc1 = tsc0 + M
2977 * 3. transition to guest | transition to guest
2978 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2979 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
2980 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2981 *
2982 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2983 *
2984 * - ret0 < ret1
2985 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2986 * ...
2987 * - 0 < N - M => M < N
2988 *
2989 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2990 * always the case (the difference between two distinct xtime instances
2991 * might be smaller then the difference between corresponding TSC reads,
2992 * when updating guest vcpus pvclock areas).
2993 *
2994 * To avoid that problem, do not allow visibility of distinct
2995 * system_timestamp/tsc_timestamp values simultaneously: use a master
2996 * copy of host monotonic time values. Update that master copy
2997 * in lockstep.
2998 *
2999 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
3000 *
3001 */
3002
pvclock_update_vm_gtod_copy(struct kvm * kvm)3003 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
3004 {
3005 #ifdef CONFIG_X86_64
3006 struct kvm_arch *ka = &kvm->arch;
3007 int vclock_mode;
3008 bool host_tsc_clocksource, vcpus_matched;
3009
3010 lockdep_assert_held(&kvm->arch.tsc_write_lock);
3011 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
3012 atomic_read(&kvm->online_vcpus));
3013
3014 /*
3015 * If the host uses TSC clock, then passthrough TSC as stable
3016 * to the guest.
3017 */
3018 host_tsc_clocksource = kvm_get_time_and_clockread(
3019 &ka->master_kernel_ns,
3020 &ka->master_cycle_now);
3021
3022 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
3023 && !ka->backwards_tsc_observed
3024 && !ka->boot_vcpu_runs_old_kvmclock;
3025
3026 if (ka->use_master_clock)
3027 atomic_set(&kvm_guest_has_master_clock, 1);
3028
3029 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
3030 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
3031 vcpus_matched);
3032 #endif
3033 }
3034
kvm_make_mclock_inprogress_request(struct kvm * kvm)3035 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
3036 {
3037 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
3038 }
3039
__kvm_start_pvclock_update(struct kvm * kvm)3040 static void __kvm_start_pvclock_update(struct kvm *kvm)
3041 {
3042 raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
3043 write_seqcount_begin(&kvm->arch.pvclock_sc);
3044 }
3045
kvm_start_pvclock_update(struct kvm * kvm)3046 static void kvm_start_pvclock_update(struct kvm *kvm)
3047 {
3048 kvm_make_mclock_inprogress_request(kvm);
3049
3050 /* no guest entries from this point */
3051 __kvm_start_pvclock_update(kvm);
3052 }
3053
kvm_end_pvclock_update(struct kvm * kvm)3054 static void kvm_end_pvclock_update(struct kvm *kvm)
3055 {
3056 struct kvm_arch *ka = &kvm->arch;
3057 struct kvm_vcpu *vcpu;
3058 unsigned long i;
3059
3060 write_seqcount_end(&ka->pvclock_sc);
3061 raw_spin_unlock_irq(&ka->tsc_write_lock);
3062 kvm_for_each_vcpu(i, vcpu, kvm)
3063 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3064
3065 /* guest entries allowed */
3066 kvm_for_each_vcpu(i, vcpu, kvm)
3067 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
3068 }
3069
kvm_update_masterclock(struct kvm * kvm)3070 static void kvm_update_masterclock(struct kvm *kvm)
3071 {
3072 kvm_hv_request_tsc_page_update(kvm);
3073 kvm_start_pvclock_update(kvm);
3074 pvclock_update_vm_gtod_copy(kvm);
3075 kvm_end_pvclock_update(kvm);
3076 }
3077
3078 /*
3079 * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's
3080 * per-CPU value (which may be zero if a CPU is going offline). Note, tsc_khz
3081 * can change during boot even if the TSC is constant, as it's possible for KVM
3082 * to be loaded before TSC calibration completes. Ideally, KVM would get a
3083 * notification when calibration completes, but practically speaking calibration
3084 * will complete before userspace is alive enough to create VMs.
3085 */
get_cpu_tsc_khz(void)3086 static unsigned long get_cpu_tsc_khz(void)
3087 {
3088 if (static_cpu_has(X86_FEATURE_CONSTANT_TSC))
3089 return tsc_khz;
3090 else
3091 return __this_cpu_read(cpu_tsc_khz);
3092 }
3093
3094 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */
__get_kvmclock(struct kvm * kvm,struct kvm_clock_data * data)3095 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3096 {
3097 struct kvm_arch *ka = &kvm->arch;
3098 struct pvclock_vcpu_time_info hv_clock;
3099
3100 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
3101 get_cpu();
3102
3103 data->flags = 0;
3104 if (ka->use_master_clock &&
3105 (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) {
3106 #ifdef CONFIG_X86_64
3107 struct timespec64 ts;
3108
3109 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
3110 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
3111 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
3112 } else
3113 #endif
3114 data->host_tsc = rdtsc();
3115
3116 data->flags |= KVM_CLOCK_TSC_STABLE;
3117 hv_clock.tsc_timestamp = ka->master_cycle_now;
3118 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3119 kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL,
3120 &hv_clock.tsc_shift,
3121 &hv_clock.tsc_to_system_mul);
3122 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
3123 } else {
3124 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
3125 }
3126
3127 put_cpu();
3128 }
3129
get_kvmclock(struct kvm * kvm,struct kvm_clock_data * data)3130 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3131 {
3132 struct kvm_arch *ka = &kvm->arch;
3133 unsigned seq;
3134
3135 do {
3136 seq = read_seqcount_begin(&ka->pvclock_sc);
3137 __get_kvmclock(kvm, data);
3138 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3139 }
3140
get_kvmclock_ns(struct kvm * kvm)3141 u64 get_kvmclock_ns(struct kvm *kvm)
3142 {
3143 struct kvm_clock_data data;
3144
3145 get_kvmclock(kvm, &data);
3146 return data.clock;
3147 }
3148
kvm_setup_guest_pvclock(struct pvclock_vcpu_time_info * ref_hv_clock,struct kvm_vcpu * vcpu,struct gfn_to_pfn_cache * gpc,unsigned int offset)3149 static void kvm_setup_guest_pvclock(struct pvclock_vcpu_time_info *ref_hv_clock,
3150 struct kvm_vcpu *vcpu,
3151 struct gfn_to_pfn_cache *gpc,
3152 unsigned int offset)
3153 {
3154 struct pvclock_vcpu_time_info *guest_hv_clock;
3155 struct pvclock_vcpu_time_info hv_clock;
3156 unsigned long flags;
3157
3158 memcpy(&hv_clock, ref_hv_clock, sizeof(hv_clock));
3159
3160 read_lock_irqsave(&gpc->lock, flags);
3161 while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) {
3162 read_unlock_irqrestore(&gpc->lock, flags);
3163
3164 if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock)))
3165 return;
3166
3167 read_lock_irqsave(&gpc->lock, flags);
3168 }
3169
3170 guest_hv_clock = (void *)(gpc->khva + offset);
3171
3172 /*
3173 * This VCPU is paused, but it's legal for a guest to read another
3174 * VCPU's kvmclock, so we really have to follow the specification where
3175 * it says that version is odd if data is being modified, and even after
3176 * it is consistent.
3177 */
3178
3179 guest_hv_clock->version = hv_clock.version = (guest_hv_clock->version + 1) | 1;
3180 smp_wmb();
3181
3182 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3183 hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3184
3185 memcpy(guest_hv_clock, &hv_clock, sizeof(*guest_hv_clock));
3186
3187 smp_wmb();
3188
3189 guest_hv_clock->version = ++hv_clock.version;
3190
3191 kvm_gpc_mark_dirty_in_slot(gpc);
3192 read_unlock_irqrestore(&gpc->lock, flags);
3193
3194 trace_kvm_pvclock_update(vcpu->vcpu_id, &hv_clock);
3195 }
3196
kvm_guest_time_update(struct kvm_vcpu * v)3197 int kvm_guest_time_update(struct kvm_vcpu *v)
3198 {
3199 struct pvclock_vcpu_time_info hv_clock = {};
3200 unsigned long flags, tgt_tsc_khz;
3201 unsigned seq;
3202 struct kvm_vcpu_arch *vcpu = &v->arch;
3203 struct kvm_arch *ka = &v->kvm->arch;
3204 s64 kernel_ns;
3205 u64 tsc_timestamp, host_tsc;
3206 bool use_master_clock;
3207
3208 kernel_ns = 0;
3209 host_tsc = 0;
3210
3211 /*
3212 * If the host uses TSC clock, then passthrough TSC as stable
3213 * to the guest.
3214 */
3215 do {
3216 seq = read_seqcount_begin(&ka->pvclock_sc);
3217 use_master_clock = ka->use_master_clock;
3218 if (use_master_clock) {
3219 host_tsc = ka->master_cycle_now;
3220 kernel_ns = ka->master_kernel_ns;
3221 }
3222 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3223
3224 /* Keep irq disabled to prevent changes to the clock */
3225 local_irq_save(flags);
3226 tgt_tsc_khz = get_cpu_tsc_khz();
3227 if (unlikely(tgt_tsc_khz == 0)) {
3228 local_irq_restore(flags);
3229 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3230 return 1;
3231 }
3232 if (!use_master_clock) {
3233 host_tsc = rdtsc();
3234 kernel_ns = get_kvmclock_base_ns();
3235 }
3236
3237 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3238
3239 /*
3240 * We may have to catch up the TSC to match elapsed wall clock
3241 * time for two reasons, even if kvmclock is used.
3242 * 1) CPU could have been running below the maximum TSC rate
3243 * 2) Broken TSC compensation resets the base at each VCPU
3244 * entry to avoid unknown leaps of TSC even when running
3245 * again on the same CPU. This may cause apparent elapsed
3246 * time to disappear, and the guest to stand still or run
3247 * very slowly.
3248 */
3249 if (vcpu->tsc_catchup) {
3250 u64 tsc = compute_guest_tsc(v, kernel_ns);
3251 if (tsc > tsc_timestamp) {
3252 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3253 tsc_timestamp = tsc;
3254 }
3255 }
3256
3257 local_irq_restore(flags);
3258
3259 /* With all the info we got, fill in the values */
3260
3261 if (kvm_caps.has_tsc_control) {
3262 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3263 v->arch.l1_tsc_scaling_ratio);
3264 tgt_tsc_khz = tgt_tsc_khz ? : 1;
3265 }
3266
3267 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3268 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3269 &vcpu->pvclock_tsc_shift,
3270 &vcpu->pvclock_tsc_mul);
3271 vcpu->hw_tsc_khz = tgt_tsc_khz;
3272 }
3273
3274 hv_clock.tsc_shift = vcpu->pvclock_tsc_shift;
3275 hv_clock.tsc_to_system_mul = vcpu->pvclock_tsc_mul;
3276 hv_clock.tsc_timestamp = tsc_timestamp;
3277 hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3278 vcpu->last_guest_tsc = tsc_timestamp;
3279
3280 /* If the host uses TSC clocksource, then it is stable */
3281 hv_clock.flags = 0;
3282 if (use_master_clock)
3283 hv_clock.flags |= PVCLOCK_TSC_STABLE_BIT;
3284
3285 if (vcpu->pv_time.active) {
3286 /*
3287 * GUEST_STOPPED is only supported by kvmclock, and KVM's
3288 * historic behavior is to only process the request if kvmclock
3289 * is active/enabled.
3290 */
3291 if (vcpu->pvclock_set_guest_stopped_request) {
3292 hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3293 vcpu->pvclock_set_guest_stopped_request = false;
3294 }
3295 kvm_setup_guest_pvclock(&hv_clock, v, &vcpu->pv_time, 0);
3296
3297 hv_clock.flags &= ~PVCLOCK_GUEST_STOPPED;
3298 }
3299
3300 kvm_hv_setup_tsc_page(v->kvm, &hv_clock);
3301
3302 #ifdef CONFIG_KVM_XEN
3303 /*
3304 * For Xen guests we may need to override PVCLOCK_TSC_STABLE_BIT as unless
3305 * explicitly told to use TSC as its clocksource Xen will not set this bit.
3306 * This default behaviour led to bugs in some guest kernels which cause
3307 * problems if they observe PVCLOCK_TSC_STABLE_BIT in the pvclock flags.
3308 *
3309 * Note! Clear TSC_STABLE only for Xen clocks, i.e. the order matters!
3310 */
3311 if (ka->xen.hvm_config.flags & KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE)
3312 hv_clock.flags &= ~PVCLOCK_TSC_STABLE_BIT;
3313
3314 if (vcpu->xen.vcpu_info_cache.active)
3315 kvm_setup_guest_pvclock(&hv_clock, v, &vcpu->xen.vcpu_info_cache,
3316 offsetof(struct compat_vcpu_info, time));
3317 if (vcpu->xen.vcpu_time_info_cache.active)
3318 kvm_setup_guest_pvclock(&hv_clock, v, &vcpu->xen.vcpu_time_info_cache, 0);
3319 #endif
3320 return 0;
3321 }
3322
3323 /*
3324 * The pvclock_wall_clock ABI tells the guest the wall clock time at
3325 * which it started (i.e. its epoch, when its kvmclock was zero).
3326 *
3327 * In fact those clocks are subtly different; wall clock frequency is
3328 * adjusted by NTP and has leap seconds, while the kvmclock is a
3329 * simple function of the TSC without any such adjustment.
3330 *
3331 * Perhaps the ABI should have exposed CLOCK_TAI and a ratio between
3332 * that and kvmclock, but even that would be subject to change over
3333 * time.
3334 *
3335 * Attempt to calculate the epoch at a given moment using the *same*
3336 * TSC reading via kvm_get_walltime_and_clockread() to obtain both
3337 * wallclock and kvmclock times, and subtracting one from the other.
3338 *
3339 * Fall back to using their values at slightly different moments by
3340 * calling ktime_get_real_ns() and get_kvmclock_ns() separately.
3341 */
kvm_get_wall_clock_epoch(struct kvm * kvm)3342 uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm)
3343 {
3344 #ifdef CONFIG_X86_64
3345 struct pvclock_vcpu_time_info hv_clock;
3346 struct kvm_arch *ka = &kvm->arch;
3347 unsigned long seq, local_tsc_khz;
3348 struct timespec64 ts;
3349 uint64_t host_tsc;
3350
3351 do {
3352 seq = read_seqcount_begin(&ka->pvclock_sc);
3353
3354 local_tsc_khz = 0;
3355 if (!ka->use_master_clock)
3356 break;
3357
3358 /*
3359 * The TSC read and the call to get_cpu_tsc_khz() must happen
3360 * on the same CPU.
3361 */
3362 get_cpu();
3363
3364 local_tsc_khz = get_cpu_tsc_khz();
3365
3366 if (local_tsc_khz &&
3367 !kvm_get_walltime_and_clockread(&ts, &host_tsc))
3368 local_tsc_khz = 0; /* Fall back to old method */
3369
3370 put_cpu();
3371
3372 /*
3373 * These values must be snapshotted within the seqcount loop.
3374 * After that, it's just mathematics which can happen on any
3375 * CPU at any time.
3376 */
3377 hv_clock.tsc_timestamp = ka->master_cycle_now;
3378 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3379
3380 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3381
3382 /*
3383 * If the conditions were right, and obtaining the wallclock+TSC was
3384 * successful, calculate the KVM clock at the corresponding time and
3385 * subtract one from the other to get the guest's epoch in nanoseconds
3386 * since 1970-01-01.
3387 */
3388 if (local_tsc_khz) {
3389 kvm_get_time_scale(NSEC_PER_SEC, local_tsc_khz * NSEC_PER_USEC,
3390 &hv_clock.tsc_shift,
3391 &hv_clock.tsc_to_system_mul);
3392 return ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec -
3393 __pvclock_read_cycles(&hv_clock, host_tsc);
3394 }
3395 #endif
3396 return ktime_get_real_ns() - get_kvmclock_ns(kvm);
3397 }
3398
3399 /*
3400 * kvmclock updates which are isolated to a given vcpu, such as
3401 * vcpu->cpu migration, should not allow system_timestamp from
3402 * the rest of the vcpus to remain static. Otherwise ntp frequency
3403 * correction applies to one vcpu's system_timestamp but not
3404 * the others.
3405 *
3406 * So in those cases, request a kvmclock update for all vcpus.
3407 * We need to rate-limit these requests though, as they can
3408 * considerably slow guests that have a large number of vcpus.
3409 * The time for a remote vcpu to update its kvmclock is bound
3410 * by the delay we use to rate-limit the updates.
3411 */
3412
3413 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3414
kvmclock_update_fn(struct work_struct * work)3415 static void kvmclock_update_fn(struct work_struct *work)
3416 {
3417 unsigned long i;
3418 struct delayed_work *dwork = to_delayed_work(work);
3419 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3420 kvmclock_update_work);
3421 struct kvm *kvm = container_of(ka, struct kvm, arch);
3422 struct kvm_vcpu *vcpu;
3423
3424 kvm_for_each_vcpu(i, vcpu, kvm) {
3425 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3426 kvm_vcpu_kick(vcpu);
3427 }
3428 }
3429
kvm_gen_kvmclock_update(struct kvm_vcpu * v)3430 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3431 {
3432 struct kvm *kvm = v->kvm;
3433
3434 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3435 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3436 KVMCLOCK_UPDATE_DELAY);
3437 }
3438
3439 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3440
kvmclock_sync_fn(struct work_struct * work)3441 static void kvmclock_sync_fn(struct work_struct *work)
3442 {
3443 struct delayed_work *dwork = to_delayed_work(work);
3444 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3445 kvmclock_sync_work);
3446 struct kvm *kvm = container_of(ka, struct kvm, arch);
3447
3448 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3449 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3450 KVMCLOCK_SYNC_PERIOD);
3451 }
3452
3453 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */
is_mci_control_msr(u32 msr)3454 static bool is_mci_control_msr(u32 msr)
3455 {
3456 return (msr & 3) == 0;
3457 }
is_mci_status_msr(u32 msr)3458 static bool is_mci_status_msr(u32 msr)
3459 {
3460 return (msr & 3) == 1;
3461 }
3462
3463 /*
3464 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3465 */
can_set_mci_status(struct kvm_vcpu * vcpu)3466 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3467 {
3468 /* McStatusWrEn enabled? */
3469 if (guest_cpuid_is_amd_compatible(vcpu))
3470 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3471
3472 return false;
3473 }
3474
set_msr_mce(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3475 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3476 {
3477 u64 mcg_cap = vcpu->arch.mcg_cap;
3478 unsigned bank_num = mcg_cap & 0xff;
3479 u32 msr = msr_info->index;
3480 u64 data = msr_info->data;
3481 u32 offset, last_msr;
3482
3483 switch (msr) {
3484 case MSR_IA32_MCG_STATUS:
3485 vcpu->arch.mcg_status = data;
3486 break;
3487 case MSR_IA32_MCG_CTL:
3488 if (!(mcg_cap & MCG_CTL_P) &&
3489 (data || !msr_info->host_initiated))
3490 return 1;
3491 if (data != 0 && data != ~(u64)0)
3492 return 1;
3493 vcpu->arch.mcg_ctl = data;
3494 break;
3495 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3496 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3497 if (msr > last_msr)
3498 return 1;
3499
3500 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3501 return 1;
3502 /* An attempt to write a 1 to a reserved bit raises #GP */
3503 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3504 return 1;
3505 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3506 last_msr + 1 - MSR_IA32_MC0_CTL2);
3507 vcpu->arch.mci_ctl2_banks[offset] = data;
3508 break;
3509 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3510 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3511 if (msr > last_msr)
3512 return 1;
3513
3514 /*
3515 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3516 * values are architecturally undefined. But, some Linux
3517 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3518 * issue on AMD K8s, allow bit 10 to be clear when setting all
3519 * other bits in order to avoid an uncaught #GP in the guest.
3520 *
3521 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3522 * single-bit ECC data errors.
3523 */
3524 if (is_mci_control_msr(msr) &&
3525 data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3526 return 1;
3527
3528 /*
3529 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3530 * AMD-based CPUs allow non-zero values, but if and only if
3531 * HWCR[McStatusWrEn] is set.
3532 */
3533 if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3534 data != 0 && !can_set_mci_status(vcpu))
3535 return 1;
3536
3537 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3538 last_msr + 1 - MSR_IA32_MC0_CTL);
3539 vcpu->arch.mce_banks[offset] = data;
3540 break;
3541 default:
3542 return 1;
3543 }
3544 return 0;
3545 }
3546
kvm_pv_async_pf_enabled(struct kvm_vcpu * vcpu)3547 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3548 {
3549 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3550
3551 return (vcpu->arch.apf.msr_en_val & mask) == mask;
3552 }
3553
kvm_pv_enable_async_pf(struct kvm_vcpu * vcpu,u64 data)3554 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3555 {
3556 gpa_t gpa = data & ~0x3f;
3557
3558 /* Bits 4:5 are reserved, Should be zero */
3559 if (data & 0x30)
3560 return 1;
3561
3562 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3563 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3564 return 1;
3565
3566 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3567 (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3568 return 1;
3569
3570 if (!lapic_in_kernel(vcpu))
3571 return data ? 1 : 0;
3572
3573 vcpu->arch.apf.msr_en_val = data;
3574
3575 if (!kvm_pv_async_pf_enabled(vcpu)) {
3576 kvm_clear_async_pf_completion_queue(vcpu);
3577 kvm_async_pf_hash_reset(vcpu);
3578 return 0;
3579 }
3580
3581 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3582 sizeof(u64)))
3583 return 1;
3584
3585 vcpu->arch.apf.send_always = (data & KVM_ASYNC_PF_SEND_ALWAYS);
3586 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3587
3588 kvm_async_pf_wakeup_all(vcpu);
3589
3590 return 0;
3591 }
3592
kvm_pv_enable_async_pf_int(struct kvm_vcpu * vcpu,u64 data)3593 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3594 {
3595 /* Bits 8-63 are reserved */
3596 if (data >> 8)
3597 return 1;
3598
3599 if (!lapic_in_kernel(vcpu))
3600 return 1;
3601
3602 vcpu->arch.apf.msr_int_val = data;
3603
3604 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3605
3606 return 0;
3607 }
3608
kvmclock_reset(struct kvm_vcpu * vcpu)3609 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3610 {
3611 kvm_gpc_deactivate(&vcpu->arch.pv_time);
3612 vcpu->arch.time = 0;
3613 }
3614
kvm_vcpu_flush_tlb_all(struct kvm_vcpu * vcpu)3615 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3616 {
3617 ++vcpu->stat.tlb_flush;
3618 kvm_x86_call(flush_tlb_all)(vcpu);
3619
3620 /* Flushing all ASIDs flushes the current ASID... */
3621 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3622 }
3623
kvm_vcpu_flush_tlb_guest(struct kvm_vcpu * vcpu)3624 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3625 {
3626 ++vcpu->stat.tlb_flush;
3627
3628 if (!tdp_enabled) {
3629 /*
3630 * A TLB flush on behalf of the guest is equivalent to
3631 * INVPCID(all), toggling CR4.PGE, etc., which requires
3632 * a forced sync of the shadow page tables. Ensure all the
3633 * roots are synced and the guest TLB in hardware is clean.
3634 */
3635 kvm_mmu_sync_roots(vcpu);
3636 kvm_mmu_sync_prev_roots(vcpu);
3637 }
3638
3639 kvm_x86_call(flush_tlb_guest)(vcpu);
3640
3641 /*
3642 * Flushing all "guest" TLB is always a superset of Hyper-V's fine
3643 * grained flushing.
3644 */
3645 kvm_hv_vcpu_purge_flush_tlb(vcpu);
3646 }
3647
3648
kvm_vcpu_flush_tlb_current(struct kvm_vcpu * vcpu)3649 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3650 {
3651 ++vcpu->stat.tlb_flush;
3652 kvm_x86_call(flush_tlb_current)(vcpu);
3653 }
3654
3655 /*
3656 * Service "local" TLB flush requests, which are specific to the current MMU
3657 * context. In addition to the generic event handling in vcpu_enter_guest(),
3658 * TLB flushes that are targeted at an MMU context also need to be serviced
3659 * prior before nested VM-Enter/VM-Exit.
3660 */
kvm_service_local_tlb_flush_requests(struct kvm_vcpu * vcpu)3661 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3662 {
3663 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3664 kvm_vcpu_flush_tlb_current(vcpu);
3665
3666 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3667 kvm_vcpu_flush_tlb_guest(vcpu);
3668 }
3669 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3670
record_steal_time(struct kvm_vcpu * vcpu)3671 static void record_steal_time(struct kvm_vcpu *vcpu)
3672 {
3673 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3674 struct kvm_steal_time __user *st;
3675 struct kvm_memslots *slots;
3676 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3677 u64 steal;
3678 u32 version;
3679
3680 if (kvm_xen_msr_enabled(vcpu->kvm)) {
3681 kvm_xen_runstate_set_running(vcpu);
3682 return;
3683 }
3684
3685 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3686 return;
3687
3688 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3689 return;
3690
3691 slots = kvm_memslots(vcpu->kvm);
3692
3693 if (unlikely(slots->generation != ghc->generation ||
3694 gpa != ghc->gpa ||
3695 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3696 /* We rely on the fact that it fits in a single page. */
3697 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3698
3699 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3700 kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3701 return;
3702 }
3703
3704 st = (struct kvm_steal_time __user *)ghc->hva;
3705 /*
3706 * Doing a TLB flush here, on the guest's behalf, can avoid
3707 * expensive IPIs.
3708 */
3709 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3710 u8 st_preempted = 0;
3711 int err = -EFAULT;
3712
3713 if (!user_access_begin(st, sizeof(*st)))
3714 return;
3715
3716 asm volatile("1: xchgb %0, %2\n"
3717 "xor %1, %1\n"
3718 "2:\n"
3719 _ASM_EXTABLE_UA(1b, 2b)
3720 : "+q" (st_preempted),
3721 "+&r" (err),
3722 "+m" (st->preempted));
3723 if (err)
3724 goto out;
3725
3726 user_access_end();
3727
3728 vcpu->arch.st.preempted = 0;
3729
3730 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3731 st_preempted & KVM_VCPU_FLUSH_TLB);
3732 if (st_preempted & KVM_VCPU_FLUSH_TLB)
3733 kvm_vcpu_flush_tlb_guest(vcpu);
3734
3735 if (!user_access_begin(st, sizeof(*st)))
3736 goto dirty;
3737 } else {
3738 if (!user_access_begin(st, sizeof(*st)))
3739 return;
3740
3741 unsafe_put_user(0, &st->preempted, out);
3742 vcpu->arch.st.preempted = 0;
3743 }
3744
3745 unsafe_get_user(version, &st->version, out);
3746 if (version & 1)
3747 version += 1; /* first time write, random junk */
3748
3749 version += 1;
3750 unsafe_put_user(version, &st->version, out);
3751
3752 smp_wmb();
3753
3754 unsafe_get_user(steal, &st->steal, out);
3755 steal += current->sched_info.run_delay -
3756 vcpu->arch.st.last_steal;
3757 vcpu->arch.st.last_steal = current->sched_info.run_delay;
3758 unsafe_put_user(steal, &st->steal, out);
3759
3760 version += 1;
3761 unsafe_put_user(version, &st->version, out);
3762
3763 out:
3764 user_access_end();
3765 dirty:
3766 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3767 }
3768
kvm_set_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3769 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3770 {
3771 u32 msr = msr_info->index;
3772 u64 data = msr_info->data;
3773
3774 /*
3775 * Do not allow host-initiated writes to trigger the Xen hypercall
3776 * page setup; it could incur locking paths which are not expected
3777 * if userspace sets the MSR in an unusual location.
3778 */
3779 if (kvm_xen_is_hypercall_page_msr(vcpu->kvm, msr) &&
3780 !msr_info->host_initiated)
3781 return kvm_xen_write_hypercall_page(vcpu, data);
3782
3783 switch (msr) {
3784 case MSR_AMD64_NB_CFG:
3785 case MSR_IA32_UCODE_WRITE:
3786 case MSR_VM_HSAVE_PA:
3787 case MSR_AMD64_PATCH_LOADER:
3788 case MSR_AMD64_BU_CFG2:
3789 case MSR_AMD64_DC_CFG:
3790 case MSR_AMD64_TW_CFG:
3791 case MSR_F15H_EX_CFG:
3792 break;
3793
3794 case MSR_IA32_UCODE_REV:
3795 if (msr_info->host_initiated)
3796 vcpu->arch.microcode_version = data;
3797 break;
3798 case MSR_IA32_ARCH_CAPABILITIES:
3799 if (!msr_info->host_initiated ||
3800 !guest_cpu_cap_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3801 return KVM_MSR_RET_UNSUPPORTED;
3802 vcpu->arch.arch_capabilities = data;
3803 break;
3804 case MSR_IA32_PERF_CAPABILITIES:
3805 if (!msr_info->host_initiated ||
3806 !guest_cpu_cap_has(vcpu, X86_FEATURE_PDCM))
3807 return KVM_MSR_RET_UNSUPPORTED;
3808
3809 if (data & ~kvm_caps.supported_perf_cap)
3810 return 1;
3811
3812 /*
3813 * Note, this is not just a performance optimization! KVM
3814 * disallows changing feature MSRs after the vCPU has run; PMU
3815 * refresh will bug the VM if called after the vCPU has run.
3816 */
3817 if (vcpu->arch.perf_capabilities == data)
3818 break;
3819
3820 vcpu->arch.perf_capabilities = data;
3821 kvm_pmu_refresh(vcpu);
3822 break;
3823 case MSR_IA32_PRED_CMD: {
3824 u64 reserved_bits = ~(PRED_CMD_IBPB | PRED_CMD_SBPB);
3825
3826 if (!msr_info->host_initiated) {
3827 if ((!guest_has_pred_cmd_msr(vcpu)))
3828 return 1;
3829
3830 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
3831 !guest_cpu_cap_has(vcpu, X86_FEATURE_AMD_IBPB))
3832 reserved_bits |= PRED_CMD_IBPB;
3833
3834 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SBPB))
3835 reserved_bits |= PRED_CMD_SBPB;
3836 }
3837
3838 if (!boot_cpu_has(X86_FEATURE_IBPB))
3839 reserved_bits |= PRED_CMD_IBPB;
3840
3841 if (!boot_cpu_has(X86_FEATURE_SBPB))
3842 reserved_bits |= PRED_CMD_SBPB;
3843
3844 if (data & reserved_bits)
3845 return 1;
3846
3847 if (!data)
3848 break;
3849
3850 wrmsrq(MSR_IA32_PRED_CMD, data);
3851 break;
3852 }
3853 case MSR_IA32_FLUSH_CMD:
3854 if (!msr_info->host_initiated &&
3855 !guest_cpu_cap_has(vcpu, X86_FEATURE_FLUSH_L1D))
3856 return 1;
3857
3858 if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH))
3859 return 1;
3860 if (!data)
3861 break;
3862
3863 wrmsrq(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
3864 break;
3865 case MSR_EFER:
3866 return set_efer(vcpu, msr_info);
3867 case MSR_K7_HWCR:
3868 data &= ~(u64)0x40; /* ignore flush filter disable */
3869 data &= ~(u64)0x100; /* ignore ignne emulation enable */
3870 data &= ~(u64)0x8; /* ignore TLB cache disable */
3871
3872 /*
3873 * Allow McStatusWrEn and TscFreqSel. (Linux guests from v3.2
3874 * through at least v6.6 whine if TscFreqSel is clear,
3875 * depending on F/M/S.
3876 */
3877 if (data & ~(BIT_ULL(18) | BIT_ULL(24))) {
3878 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3879 return 1;
3880 }
3881 vcpu->arch.msr_hwcr = data;
3882 break;
3883 case MSR_FAM10H_MMIO_CONF_BASE:
3884 if (data != 0) {
3885 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3886 return 1;
3887 }
3888 break;
3889 case MSR_IA32_CR_PAT:
3890 if (!kvm_pat_valid(data))
3891 return 1;
3892
3893 vcpu->arch.pat = data;
3894 break;
3895 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
3896 case MSR_MTRRdefType:
3897 return kvm_mtrr_set_msr(vcpu, msr, data);
3898 case MSR_IA32_APICBASE:
3899 return kvm_apic_set_base(vcpu, data, msr_info->host_initiated);
3900 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3901 return kvm_x2apic_msr_write(vcpu, msr, data);
3902 case MSR_IA32_TSC_DEADLINE:
3903 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3904 break;
3905 case MSR_IA32_TSC_ADJUST:
3906 if (guest_cpu_cap_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3907 if (!msr_info->host_initiated) {
3908 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3909 adjust_tsc_offset_guest(vcpu, adj);
3910 /* Before back to guest, tsc_timestamp must be adjusted
3911 * as well, otherwise guest's percpu pvclock time could jump.
3912 */
3913 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3914 }
3915 vcpu->arch.ia32_tsc_adjust_msr = data;
3916 }
3917 break;
3918 case MSR_IA32_MISC_ENABLE: {
3919 u64 old_val = vcpu->arch.ia32_misc_enable_msr;
3920
3921 if (!msr_info->host_initiated) {
3922 /* RO bits */
3923 if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
3924 return 1;
3925
3926 /* R bits, i.e. writes are ignored, but don't fault. */
3927 data = data & ~MSR_IA32_MISC_ENABLE_EMON;
3928 data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
3929 }
3930
3931 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3932 ((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3933 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_XMM3))
3934 return 1;
3935 vcpu->arch.ia32_misc_enable_msr = data;
3936 vcpu->arch.cpuid_dynamic_bits_dirty = true;
3937 } else {
3938 vcpu->arch.ia32_misc_enable_msr = data;
3939 }
3940 break;
3941 }
3942 case MSR_IA32_SMBASE:
3943 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
3944 return 1;
3945 vcpu->arch.smbase = data;
3946 break;
3947 case MSR_IA32_POWER_CTL:
3948 vcpu->arch.msr_ia32_power_ctl = data;
3949 break;
3950 case MSR_IA32_TSC:
3951 if (msr_info->host_initiated) {
3952 kvm_synchronize_tsc(vcpu, &data);
3953 } else if (!vcpu->arch.guest_tsc_protected) {
3954 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3955 adjust_tsc_offset_guest(vcpu, adj);
3956 vcpu->arch.ia32_tsc_adjust_msr += adj;
3957 }
3958 break;
3959 case MSR_IA32_XSS:
3960 if (!msr_info->host_initiated &&
3961 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3962 return 1;
3963 /*
3964 * KVM supports exposing PT to the guest, but does not support
3965 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3966 * XSAVES/XRSTORS to save/restore PT MSRs.
3967 */
3968 if (data & ~kvm_caps.supported_xss)
3969 return 1;
3970 vcpu->arch.ia32_xss = data;
3971 vcpu->arch.cpuid_dynamic_bits_dirty = true;
3972 break;
3973 case MSR_SMI_COUNT:
3974 if (!msr_info->host_initiated)
3975 return 1;
3976 vcpu->arch.smi_count = data;
3977 break;
3978 case MSR_KVM_WALL_CLOCK_NEW:
3979 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3980 return 1;
3981
3982 vcpu->kvm->arch.wall_clock = data;
3983 kvm_write_wall_clock(vcpu->kvm, data, 0);
3984 break;
3985 case MSR_KVM_WALL_CLOCK:
3986 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3987 return 1;
3988
3989 vcpu->kvm->arch.wall_clock = data;
3990 kvm_write_wall_clock(vcpu->kvm, data, 0);
3991 break;
3992 case MSR_KVM_SYSTEM_TIME_NEW:
3993 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3994 return 1;
3995
3996 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3997 break;
3998 case MSR_KVM_SYSTEM_TIME:
3999 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4000 return 1;
4001
4002 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated);
4003 break;
4004 case MSR_KVM_ASYNC_PF_EN:
4005 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4006 return 1;
4007
4008 if (kvm_pv_enable_async_pf(vcpu, data))
4009 return 1;
4010 break;
4011 case MSR_KVM_ASYNC_PF_INT:
4012 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4013 return 1;
4014
4015 if (kvm_pv_enable_async_pf_int(vcpu, data))
4016 return 1;
4017 break;
4018 case MSR_KVM_ASYNC_PF_ACK:
4019 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4020 return 1;
4021 if (data & 0x1) {
4022 vcpu->arch.apf.pageready_pending = false;
4023 kvm_check_async_pf_completion(vcpu);
4024 }
4025 break;
4026 case MSR_KVM_STEAL_TIME:
4027 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4028 return 1;
4029
4030 if (unlikely(!sched_info_on()))
4031 return 1;
4032
4033 if (data & KVM_STEAL_RESERVED_MASK)
4034 return 1;
4035
4036 vcpu->arch.st.msr_val = data;
4037
4038 if (!(data & KVM_MSR_ENABLED))
4039 break;
4040
4041 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4042
4043 break;
4044 case MSR_KVM_PV_EOI_EN:
4045 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4046 return 1;
4047
4048 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
4049 return 1;
4050 break;
4051
4052 case MSR_KVM_POLL_CONTROL:
4053 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4054 return 1;
4055
4056 /* only enable bit supported */
4057 if (data & (-1ULL << 1))
4058 return 1;
4059
4060 vcpu->arch.msr_kvm_poll_control = data;
4061 break;
4062
4063 case MSR_IA32_MCG_CTL:
4064 case MSR_IA32_MCG_STATUS:
4065 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4066 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4067 return set_msr_mce(vcpu, msr_info);
4068
4069 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4070 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4071 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4072 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4073 if (kvm_pmu_is_valid_msr(vcpu, msr))
4074 return kvm_pmu_set_msr(vcpu, msr_info);
4075
4076 if (data)
4077 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4078 break;
4079 case MSR_K7_CLK_CTL:
4080 /*
4081 * Ignore all writes to this no longer documented MSR.
4082 * Writes are only relevant for old K7 processors,
4083 * all pre-dating SVM, but a recommended workaround from
4084 * AMD for these chips. It is possible to specify the
4085 * affected processor models on the command line, hence
4086 * the need to ignore the workaround.
4087 */
4088 break;
4089 #ifdef CONFIG_KVM_HYPERV
4090 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4091 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4092 case HV_X64_MSR_SYNDBG_OPTIONS:
4093 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4094 case HV_X64_MSR_CRASH_CTL:
4095 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4096 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4097 case HV_X64_MSR_TSC_EMULATION_CONTROL:
4098 case HV_X64_MSR_TSC_EMULATION_STATUS:
4099 case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4100 return kvm_hv_set_msr_common(vcpu, msr, data,
4101 msr_info->host_initiated);
4102 #endif
4103 case MSR_IA32_BBL_CR_CTL3:
4104 /* Drop writes to this legacy MSR -- see rdmsr
4105 * counterpart for further detail.
4106 */
4107 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4108 break;
4109 case MSR_AMD64_OSVW_ID_LENGTH:
4110 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW))
4111 return 1;
4112 vcpu->arch.osvw.length = data;
4113 break;
4114 case MSR_AMD64_OSVW_STATUS:
4115 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW))
4116 return 1;
4117 vcpu->arch.osvw.status = data;
4118 break;
4119 case MSR_PLATFORM_INFO:
4120 if (!msr_info->host_initiated)
4121 return 1;
4122 vcpu->arch.msr_platform_info = data;
4123 break;
4124 case MSR_MISC_FEATURES_ENABLES:
4125 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
4126 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
4127 !supports_cpuid_fault(vcpu)))
4128 return 1;
4129 vcpu->arch.msr_misc_features_enables = data;
4130 break;
4131 #ifdef CONFIG_X86_64
4132 case MSR_IA32_XFD:
4133 if (!msr_info->host_initiated &&
4134 !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD))
4135 return 1;
4136
4137 if (data & ~kvm_guest_supported_xfd(vcpu))
4138 return 1;
4139
4140 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
4141 break;
4142 case MSR_IA32_XFD_ERR:
4143 if (!msr_info->host_initiated &&
4144 !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD))
4145 return 1;
4146
4147 if (data & ~kvm_guest_supported_xfd(vcpu))
4148 return 1;
4149
4150 vcpu->arch.guest_fpu.xfd_err = data;
4151 break;
4152 #endif
4153 default:
4154 if (kvm_pmu_is_valid_msr(vcpu, msr))
4155 return kvm_pmu_set_msr(vcpu, msr_info);
4156
4157 return KVM_MSR_RET_UNSUPPORTED;
4158 }
4159 return 0;
4160 }
4161 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
4162
get_msr_mce(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata,bool host)4163 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
4164 {
4165 u64 data;
4166 u64 mcg_cap = vcpu->arch.mcg_cap;
4167 unsigned bank_num = mcg_cap & 0xff;
4168 u32 offset, last_msr;
4169
4170 switch (msr) {
4171 case MSR_IA32_P5_MC_ADDR:
4172 case MSR_IA32_P5_MC_TYPE:
4173 data = 0;
4174 break;
4175 case MSR_IA32_MCG_CAP:
4176 data = vcpu->arch.mcg_cap;
4177 break;
4178 case MSR_IA32_MCG_CTL:
4179 if (!(mcg_cap & MCG_CTL_P) && !host)
4180 return 1;
4181 data = vcpu->arch.mcg_ctl;
4182 break;
4183 case MSR_IA32_MCG_STATUS:
4184 data = vcpu->arch.mcg_status;
4185 break;
4186 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4187 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
4188 if (msr > last_msr)
4189 return 1;
4190
4191 if (!(mcg_cap & MCG_CMCI_P) && !host)
4192 return 1;
4193 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
4194 last_msr + 1 - MSR_IA32_MC0_CTL2);
4195 data = vcpu->arch.mci_ctl2_banks[offset];
4196 break;
4197 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4198 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
4199 if (msr > last_msr)
4200 return 1;
4201
4202 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
4203 last_msr + 1 - MSR_IA32_MC0_CTL);
4204 data = vcpu->arch.mce_banks[offset];
4205 break;
4206 default:
4207 return 1;
4208 }
4209 *pdata = data;
4210 return 0;
4211 }
4212
kvm_get_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)4213 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4214 {
4215 switch (msr_info->index) {
4216 case MSR_IA32_PLATFORM_ID:
4217 case MSR_IA32_EBL_CR_POWERON:
4218 case MSR_IA32_LASTBRANCHFROMIP:
4219 case MSR_IA32_LASTBRANCHTOIP:
4220 case MSR_IA32_LASTINTFROMIP:
4221 case MSR_IA32_LASTINTTOIP:
4222 case MSR_AMD64_SYSCFG:
4223 case MSR_K8_TSEG_ADDR:
4224 case MSR_K8_TSEG_MASK:
4225 case MSR_VM_HSAVE_PA:
4226 case MSR_K8_INT_PENDING_MSG:
4227 case MSR_AMD64_NB_CFG:
4228 case MSR_FAM10H_MMIO_CONF_BASE:
4229 case MSR_AMD64_BU_CFG2:
4230 case MSR_IA32_PERF_CTL:
4231 case MSR_AMD64_DC_CFG:
4232 case MSR_AMD64_TW_CFG:
4233 case MSR_F15H_EX_CFG:
4234 /*
4235 * Intel Sandy Bridge CPUs must support the RAPL (running average power
4236 * limit) MSRs. Just return 0, as we do not want to expose the host
4237 * data here. Do not conditionalize this on CPUID, as KVM does not do
4238 * so for existing CPU-specific MSRs.
4239 */
4240 case MSR_RAPL_POWER_UNIT:
4241 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */
4242 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */
4243 case MSR_PKG_ENERGY_STATUS: /* Total package */
4244 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */
4245 msr_info->data = 0;
4246 break;
4247 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4248 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4249 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4250 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4251 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4252 return kvm_pmu_get_msr(vcpu, msr_info);
4253 msr_info->data = 0;
4254 break;
4255 case MSR_IA32_UCODE_REV:
4256 msr_info->data = vcpu->arch.microcode_version;
4257 break;
4258 case MSR_IA32_ARCH_CAPABILITIES:
4259 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
4260 return KVM_MSR_RET_UNSUPPORTED;
4261 msr_info->data = vcpu->arch.arch_capabilities;
4262 break;
4263 case MSR_IA32_PERF_CAPABILITIES:
4264 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_PDCM))
4265 return KVM_MSR_RET_UNSUPPORTED;
4266 msr_info->data = vcpu->arch.perf_capabilities;
4267 break;
4268 case MSR_IA32_POWER_CTL:
4269 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
4270 break;
4271 case MSR_IA32_TSC: {
4272 /*
4273 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
4274 * even when not intercepted. AMD manual doesn't explicitly
4275 * state this but appears to behave the same.
4276 *
4277 * On userspace reads and writes, however, we unconditionally
4278 * return L1's TSC value to ensure backwards-compatible
4279 * behavior for migration.
4280 */
4281 u64 offset, ratio;
4282
4283 if (msr_info->host_initiated) {
4284 offset = vcpu->arch.l1_tsc_offset;
4285 ratio = vcpu->arch.l1_tsc_scaling_ratio;
4286 } else {
4287 offset = vcpu->arch.tsc_offset;
4288 ratio = vcpu->arch.tsc_scaling_ratio;
4289 }
4290
4291 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
4292 break;
4293 }
4294 case MSR_IA32_CR_PAT:
4295 msr_info->data = vcpu->arch.pat;
4296 break;
4297 case MSR_MTRRcap:
4298 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
4299 case MSR_MTRRdefType:
4300 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
4301 case 0xcd: /* fsb frequency */
4302 msr_info->data = 3;
4303 break;
4304 /*
4305 * MSR_EBC_FREQUENCY_ID
4306 * Conservative value valid for even the basic CPU models.
4307 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4308 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4309 * and 266MHz for model 3, or 4. Set Core Clock
4310 * Frequency to System Bus Frequency Ratio to 1 (bits
4311 * 31:24) even though these are only valid for CPU
4312 * models > 2, however guests may end up dividing or
4313 * multiplying by zero otherwise.
4314 */
4315 case MSR_EBC_FREQUENCY_ID:
4316 msr_info->data = 1 << 24;
4317 break;
4318 case MSR_IA32_APICBASE:
4319 msr_info->data = vcpu->arch.apic_base;
4320 break;
4321 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4322 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4323 case MSR_IA32_TSC_DEADLINE:
4324 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4325 break;
4326 case MSR_IA32_TSC_ADJUST:
4327 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4328 break;
4329 case MSR_IA32_MISC_ENABLE:
4330 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4331 break;
4332 case MSR_IA32_SMBASE:
4333 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
4334 return 1;
4335 msr_info->data = vcpu->arch.smbase;
4336 break;
4337 case MSR_SMI_COUNT:
4338 msr_info->data = vcpu->arch.smi_count;
4339 break;
4340 case MSR_IA32_PERF_STATUS:
4341 /* TSC increment by tick */
4342 msr_info->data = 1000ULL;
4343 /* CPU multiplier */
4344 msr_info->data |= (((uint64_t)4ULL) << 40);
4345 break;
4346 case MSR_EFER:
4347 msr_info->data = vcpu->arch.efer;
4348 break;
4349 case MSR_KVM_WALL_CLOCK:
4350 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4351 return 1;
4352
4353 msr_info->data = vcpu->kvm->arch.wall_clock;
4354 break;
4355 case MSR_KVM_WALL_CLOCK_NEW:
4356 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4357 return 1;
4358
4359 msr_info->data = vcpu->kvm->arch.wall_clock;
4360 break;
4361 case MSR_KVM_SYSTEM_TIME:
4362 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4363 return 1;
4364
4365 msr_info->data = vcpu->arch.time;
4366 break;
4367 case MSR_KVM_SYSTEM_TIME_NEW:
4368 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4369 return 1;
4370
4371 msr_info->data = vcpu->arch.time;
4372 break;
4373 case MSR_KVM_ASYNC_PF_EN:
4374 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4375 return 1;
4376
4377 msr_info->data = vcpu->arch.apf.msr_en_val;
4378 break;
4379 case MSR_KVM_ASYNC_PF_INT:
4380 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4381 return 1;
4382
4383 msr_info->data = vcpu->arch.apf.msr_int_val;
4384 break;
4385 case MSR_KVM_ASYNC_PF_ACK:
4386 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4387 return 1;
4388
4389 msr_info->data = 0;
4390 break;
4391 case MSR_KVM_STEAL_TIME:
4392 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4393 return 1;
4394
4395 msr_info->data = vcpu->arch.st.msr_val;
4396 break;
4397 case MSR_KVM_PV_EOI_EN:
4398 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4399 return 1;
4400
4401 msr_info->data = vcpu->arch.pv_eoi.msr_val;
4402 break;
4403 case MSR_KVM_POLL_CONTROL:
4404 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4405 return 1;
4406
4407 msr_info->data = vcpu->arch.msr_kvm_poll_control;
4408 break;
4409 case MSR_IA32_P5_MC_ADDR:
4410 case MSR_IA32_P5_MC_TYPE:
4411 case MSR_IA32_MCG_CAP:
4412 case MSR_IA32_MCG_CTL:
4413 case MSR_IA32_MCG_STATUS:
4414 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4415 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4416 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4417 msr_info->host_initiated);
4418 case MSR_IA32_XSS:
4419 if (!msr_info->host_initiated &&
4420 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4421 return 1;
4422 msr_info->data = vcpu->arch.ia32_xss;
4423 break;
4424 case MSR_K7_CLK_CTL:
4425 /*
4426 * Provide expected ramp-up count for K7. All other
4427 * are set to zero, indicating minimum divisors for
4428 * every field.
4429 *
4430 * This prevents guest kernels on AMD host with CPU
4431 * type 6, model 8 and higher from exploding due to
4432 * the rdmsr failing.
4433 */
4434 msr_info->data = 0x20000000;
4435 break;
4436 #ifdef CONFIG_KVM_HYPERV
4437 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4438 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4439 case HV_X64_MSR_SYNDBG_OPTIONS:
4440 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4441 case HV_X64_MSR_CRASH_CTL:
4442 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4443 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4444 case HV_X64_MSR_TSC_EMULATION_CONTROL:
4445 case HV_X64_MSR_TSC_EMULATION_STATUS:
4446 case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4447 return kvm_hv_get_msr_common(vcpu,
4448 msr_info->index, &msr_info->data,
4449 msr_info->host_initiated);
4450 #endif
4451 case MSR_IA32_BBL_CR_CTL3:
4452 /* This legacy MSR exists but isn't fully documented in current
4453 * silicon. It is however accessed by winxp in very narrow
4454 * scenarios where it sets bit #19, itself documented as
4455 * a "reserved" bit. Best effort attempt to source coherent
4456 * read data here should the balance of the register be
4457 * interpreted by the guest:
4458 *
4459 * L2 cache control register 3: 64GB range, 256KB size,
4460 * enabled, latency 0x1, configured
4461 */
4462 msr_info->data = 0xbe702111;
4463 break;
4464 case MSR_AMD64_OSVW_ID_LENGTH:
4465 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW))
4466 return 1;
4467 msr_info->data = vcpu->arch.osvw.length;
4468 break;
4469 case MSR_AMD64_OSVW_STATUS:
4470 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW))
4471 return 1;
4472 msr_info->data = vcpu->arch.osvw.status;
4473 break;
4474 case MSR_PLATFORM_INFO:
4475 if (!msr_info->host_initiated &&
4476 !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4477 return 1;
4478 msr_info->data = vcpu->arch.msr_platform_info;
4479 break;
4480 case MSR_MISC_FEATURES_ENABLES:
4481 msr_info->data = vcpu->arch.msr_misc_features_enables;
4482 break;
4483 case MSR_K7_HWCR:
4484 msr_info->data = vcpu->arch.msr_hwcr;
4485 break;
4486 #ifdef CONFIG_X86_64
4487 case MSR_IA32_XFD:
4488 if (!msr_info->host_initiated &&
4489 !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD))
4490 return 1;
4491
4492 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4493 break;
4494 case MSR_IA32_XFD_ERR:
4495 if (!msr_info->host_initiated &&
4496 !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD))
4497 return 1;
4498
4499 msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4500 break;
4501 #endif
4502 default:
4503 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4504 return kvm_pmu_get_msr(vcpu, msr_info);
4505
4506 return KVM_MSR_RET_UNSUPPORTED;
4507 }
4508 return 0;
4509 }
4510 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4511
4512 /*
4513 * Read or write a bunch of msrs. All parameters are kernel addresses.
4514 *
4515 * @return number of msrs set successfully.
4516 */
__msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs * msrs,struct kvm_msr_entry * entries,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data))4517 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4518 struct kvm_msr_entry *entries,
4519 int (*do_msr)(struct kvm_vcpu *vcpu,
4520 unsigned index, u64 *data))
4521 {
4522 int i;
4523
4524 for (i = 0; i < msrs->nmsrs; ++i)
4525 if (do_msr(vcpu, entries[i].index, &entries[i].data))
4526 break;
4527
4528 return i;
4529 }
4530
4531 /*
4532 * Read or write a bunch of msrs. Parameters are user addresses.
4533 *
4534 * @return number of msrs set successfully.
4535 */
msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs __user * user_msrs,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data),int writeback)4536 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4537 int (*do_msr)(struct kvm_vcpu *vcpu,
4538 unsigned index, u64 *data),
4539 int writeback)
4540 {
4541 struct kvm_msrs msrs;
4542 struct kvm_msr_entry *entries;
4543 unsigned size;
4544 int r;
4545
4546 r = -EFAULT;
4547 if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4548 goto out;
4549
4550 r = -E2BIG;
4551 if (msrs.nmsrs >= MAX_IO_MSRS)
4552 goto out;
4553
4554 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4555 entries = memdup_user(user_msrs->entries, size);
4556 if (IS_ERR(entries)) {
4557 r = PTR_ERR(entries);
4558 goto out;
4559 }
4560
4561 r = __msr_io(vcpu, &msrs, entries, do_msr);
4562
4563 if (writeback && copy_to_user(user_msrs->entries, entries, size))
4564 r = -EFAULT;
4565
4566 kfree(entries);
4567 out:
4568 return r;
4569 }
4570
kvm_can_mwait_in_guest(void)4571 static inline bool kvm_can_mwait_in_guest(void)
4572 {
4573 return boot_cpu_has(X86_FEATURE_MWAIT) &&
4574 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
4575 boot_cpu_has(X86_FEATURE_ARAT);
4576 }
4577
kvm_get_allowed_disable_exits(void)4578 static u64 kvm_get_allowed_disable_exits(void)
4579 {
4580 u64 r = KVM_X86_DISABLE_EXITS_PAUSE;
4581
4582 if (!mitigate_smt_rsb) {
4583 r |= KVM_X86_DISABLE_EXITS_HLT |
4584 KVM_X86_DISABLE_EXITS_CSTATE;
4585
4586 if (kvm_can_mwait_in_guest())
4587 r |= KVM_X86_DISABLE_EXITS_MWAIT;
4588 }
4589 return r;
4590 }
4591
4592 #ifdef CONFIG_KVM_HYPERV
kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu * vcpu,struct kvm_cpuid2 __user * cpuid_arg)4593 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4594 struct kvm_cpuid2 __user *cpuid_arg)
4595 {
4596 struct kvm_cpuid2 cpuid;
4597 int r;
4598
4599 r = -EFAULT;
4600 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4601 return r;
4602
4603 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4604 if (r)
4605 return r;
4606
4607 r = -EFAULT;
4608 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4609 return r;
4610
4611 return 0;
4612 }
4613 #endif
4614
kvm_is_vm_type_supported(unsigned long type)4615 static bool kvm_is_vm_type_supported(unsigned long type)
4616 {
4617 return type < 32 && (kvm_caps.supported_vm_types & BIT(type));
4618 }
4619
kvm_sync_valid_fields(struct kvm * kvm)4620 static inline u64 kvm_sync_valid_fields(struct kvm *kvm)
4621 {
4622 return kvm && kvm->arch.has_protected_state ? 0 : KVM_SYNC_X86_VALID_FIELDS;
4623 }
4624
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)4625 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4626 {
4627 int r = 0;
4628
4629 switch (ext) {
4630 case KVM_CAP_IRQCHIP:
4631 case KVM_CAP_HLT:
4632 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4633 case KVM_CAP_SET_TSS_ADDR:
4634 case KVM_CAP_EXT_CPUID:
4635 case KVM_CAP_EXT_EMUL_CPUID:
4636 case KVM_CAP_CLOCKSOURCE:
4637 case KVM_CAP_PIT:
4638 case KVM_CAP_NOP_IO_DELAY:
4639 case KVM_CAP_MP_STATE:
4640 case KVM_CAP_SYNC_MMU:
4641 case KVM_CAP_USER_NMI:
4642 case KVM_CAP_REINJECT_CONTROL:
4643 case KVM_CAP_IRQ_INJECT_STATUS:
4644 case KVM_CAP_IOEVENTFD:
4645 case KVM_CAP_IOEVENTFD_NO_LENGTH:
4646 case KVM_CAP_PIT2:
4647 case KVM_CAP_PIT_STATE2:
4648 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4649 case KVM_CAP_VCPU_EVENTS:
4650 #ifdef CONFIG_KVM_HYPERV
4651 case KVM_CAP_HYPERV:
4652 case KVM_CAP_HYPERV_VAPIC:
4653 case KVM_CAP_HYPERV_SPIN:
4654 case KVM_CAP_HYPERV_TIME:
4655 case KVM_CAP_HYPERV_SYNIC:
4656 case KVM_CAP_HYPERV_SYNIC2:
4657 case KVM_CAP_HYPERV_VP_INDEX:
4658 case KVM_CAP_HYPERV_EVENTFD:
4659 case KVM_CAP_HYPERV_TLBFLUSH:
4660 case KVM_CAP_HYPERV_SEND_IPI:
4661 case KVM_CAP_HYPERV_CPUID:
4662 case KVM_CAP_HYPERV_ENFORCE_CPUID:
4663 case KVM_CAP_SYS_HYPERV_CPUID:
4664 #endif
4665 case KVM_CAP_PCI_SEGMENT:
4666 case KVM_CAP_DEBUGREGS:
4667 case KVM_CAP_X86_ROBUST_SINGLESTEP:
4668 case KVM_CAP_XSAVE:
4669 case KVM_CAP_ASYNC_PF:
4670 case KVM_CAP_ASYNC_PF_INT:
4671 case KVM_CAP_GET_TSC_KHZ:
4672 case KVM_CAP_KVMCLOCK_CTRL:
4673 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4674 case KVM_CAP_TSC_DEADLINE_TIMER:
4675 case KVM_CAP_DISABLE_QUIRKS:
4676 case KVM_CAP_SET_BOOT_CPU_ID:
4677 case KVM_CAP_SPLIT_IRQCHIP:
4678 case KVM_CAP_IMMEDIATE_EXIT:
4679 case KVM_CAP_PMU_EVENT_FILTER:
4680 case KVM_CAP_PMU_EVENT_MASKED_EVENTS:
4681 case KVM_CAP_GET_MSR_FEATURES:
4682 case KVM_CAP_MSR_PLATFORM_INFO:
4683 case KVM_CAP_EXCEPTION_PAYLOAD:
4684 case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4685 case KVM_CAP_SET_GUEST_DEBUG:
4686 case KVM_CAP_LAST_CPU:
4687 case KVM_CAP_X86_USER_SPACE_MSR:
4688 case KVM_CAP_X86_MSR_FILTER:
4689 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4690 #ifdef CONFIG_X86_SGX_KVM
4691 case KVM_CAP_SGX_ATTRIBUTE:
4692 #endif
4693 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4694 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4695 case KVM_CAP_SREGS2:
4696 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4697 case KVM_CAP_VCPU_ATTRIBUTES:
4698 case KVM_CAP_SYS_ATTRIBUTES:
4699 case KVM_CAP_VAPIC:
4700 case KVM_CAP_ENABLE_CAP:
4701 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4702 case KVM_CAP_IRQFD_RESAMPLE:
4703 case KVM_CAP_MEMORY_FAULT_INFO:
4704 case KVM_CAP_X86_GUEST_MODE:
4705 r = 1;
4706 break;
4707 case KVM_CAP_PRE_FAULT_MEMORY:
4708 r = tdp_enabled;
4709 break;
4710 case KVM_CAP_X86_APIC_BUS_CYCLES_NS:
4711 r = APIC_BUS_CYCLE_NS_DEFAULT;
4712 break;
4713 case KVM_CAP_EXIT_HYPERCALL:
4714 r = KVM_EXIT_HYPERCALL_VALID_MASK;
4715 break;
4716 case KVM_CAP_SET_GUEST_DEBUG2:
4717 return KVM_GUESTDBG_VALID_MASK;
4718 #ifdef CONFIG_KVM_XEN
4719 case KVM_CAP_XEN_HVM:
4720 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4721 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4722 KVM_XEN_HVM_CONFIG_SHARED_INFO |
4723 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4724 KVM_XEN_HVM_CONFIG_EVTCHN_SEND |
4725 KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE |
4726 KVM_XEN_HVM_CONFIG_SHARED_INFO_HVA;
4727 if (sched_info_on())
4728 r |= KVM_XEN_HVM_CONFIG_RUNSTATE |
4729 KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG;
4730 break;
4731 #endif
4732 case KVM_CAP_SYNC_REGS:
4733 r = kvm_sync_valid_fields(kvm);
4734 break;
4735 case KVM_CAP_ADJUST_CLOCK:
4736 r = KVM_CLOCK_VALID_FLAGS;
4737 break;
4738 case KVM_CAP_X86_DISABLE_EXITS:
4739 r = kvm_get_allowed_disable_exits();
4740 break;
4741 case KVM_CAP_X86_SMM:
4742 if (!IS_ENABLED(CONFIG_KVM_SMM))
4743 break;
4744
4745 /* SMBASE is usually relocated above 1M on modern chipsets,
4746 * and SMM handlers might indeed rely on 4G segment limits,
4747 * so do not report SMM to be available if real mode is
4748 * emulated via vm86 mode. Still, do not go to great lengths
4749 * to avoid userspace's usage of the feature, because it is a
4750 * fringe case that is not enabled except via specific settings
4751 * of the module parameters.
4752 */
4753 r = kvm_x86_call(has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4754 break;
4755 case KVM_CAP_NR_VCPUS:
4756 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4757 break;
4758 case KVM_CAP_MAX_VCPUS:
4759 r = KVM_MAX_VCPUS;
4760 if (kvm)
4761 r = kvm->max_vcpus;
4762 break;
4763 case KVM_CAP_MAX_VCPU_ID:
4764 r = KVM_MAX_VCPU_IDS;
4765 break;
4766 case KVM_CAP_PV_MMU: /* obsolete */
4767 r = 0;
4768 break;
4769 case KVM_CAP_MCE:
4770 r = KVM_MAX_MCE_BANKS;
4771 break;
4772 case KVM_CAP_XCRS:
4773 r = boot_cpu_has(X86_FEATURE_XSAVE);
4774 break;
4775 case KVM_CAP_TSC_CONTROL:
4776 case KVM_CAP_VM_TSC_CONTROL:
4777 r = kvm_caps.has_tsc_control;
4778 break;
4779 case KVM_CAP_X2APIC_API:
4780 r = KVM_X2APIC_API_VALID_FLAGS;
4781 break;
4782 case KVM_CAP_NESTED_STATE:
4783 r = kvm_x86_ops.nested_ops->get_state ?
4784 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4785 break;
4786 #ifdef CONFIG_KVM_HYPERV
4787 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4788 r = kvm_x86_ops.enable_l2_tlb_flush != NULL;
4789 break;
4790 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4791 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4792 break;
4793 #endif
4794 case KVM_CAP_SMALLER_MAXPHYADDR:
4795 r = (int) allow_smaller_maxphyaddr;
4796 break;
4797 case KVM_CAP_STEAL_TIME:
4798 r = sched_info_on();
4799 break;
4800 case KVM_CAP_X86_BUS_LOCK_EXIT:
4801 if (kvm_caps.has_bus_lock_exit)
4802 r = KVM_BUS_LOCK_DETECTION_OFF |
4803 KVM_BUS_LOCK_DETECTION_EXIT;
4804 else
4805 r = 0;
4806 break;
4807 case KVM_CAP_XSAVE2: {
4808 r = xstate_required_size(kvm_get_filtered_xcr0(), false);
4809 if (r < sizeof(struct kvm_xsave))
4810 r = sizeof(struct kvm_xsave);
4811 break;
4812 }
4813 case KVM_CAP_PMU_CAPABILITY:
4814 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4815 break;
4816 case KVM_CAP_DISABLE_QUIRKS2:
4817 r = kvm_caps.supported_quirks;
4818 break;
4819 case KVM_CAP_X86_NOTIFY_VMEXIT:
4820 r = kvm_caps.has_notify_vmexit;
4821 break;
4822 case KVM_CAP_VM_TYPES:
4823 r = kvm_caps.supported_vm_types;
4824 break;
4825 case KVM_CAP_READONLY_MEM:
4826 r = kvm ? kvm_arch_has_readonly_mem(kvm) : 1;
4827 break;
4828 default:
4829 break;
4830 }
4831 return r;
4832 }
4833
__kvm_x86_dev_get_attr(struct kvm_device_attr * attr,u64 * val)4834 static int __kvm_x86_dev_get_attr(struct kvm_device_attr *attr, u64 *val)
4835 {
4836 if (attr->group) {
4837 if (kvm_x86_ops.dev_get_attr)
4838 return kvm_x86_call(dev_get_attr)(attr->group, attr->attr, val);
4839 return -ENXIO;
4840 }
4841
4842 switch (attr->attr) {
4843 case KVM_X86_XCOMP_GUEST_SUPP:
4844 *val = kvm_caps.supported_xcr0;
4845 return 0;
4846 default:
4847 return -ENXIO;
4848 }
4849 }
4850
kvm_x86_dev_get_attr(struct kvm_device_attr * attr)4851 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4852 {
4853 u64 __user *uaddr = u64_to_user_ptr(attr->addr);
4854 int r;
4855 u64 val;
4856
4857 r = __kvm_x86_dev_get_attr(attr, &val);
4858 if (r < 0)
4859 return r;
4860
4861 if (put_user(val, uaddr))
4862 return -EFAULT;
4863
4864 return 0;
4865 }
4866
kvm_x86_dev_has_attr(struct kvm_device_attr * attr)4867 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4868 {
4869 u64 val;
4870
4871 return __kvm_x86_dev_get_attr(attr, &val);
4872 }
4873
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4874 long kvm_arch_dev_ioctl(struct file *filp,
4875 unsigned int ioctl, unsigned long arg)
4876 {
4877 void __user *argp = (void __user *)arg;
4878 long r;
4879
4880 switch (ioctl) {
4881 case KVM_GET_MSR_INDEX_LIST: {
4882 struct kvm_msr_list __user *user_msr_list = argp;
4883 struct kvm_msr_list msr_list;
4884 unsigned n;
4885
4886 r = -EFAULT;
4887 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4888 goto out;
4889 n = msr_list.nmsrs;
4890 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4891 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4892 goto out;
4893 r = -E2BIG;
4894 if (n < msr_list.nmsrs)
4895 goto out;
4896 r = -EFAULT;
4897 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4898 num_msrs_to_save * sizeof(u32)))
4899 goto out;
4900 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4901 &emulated_msrs,
4902 num_emulated_msrs * sizeof(u32)))
4903 goto out;
4904 r = 0;
4905 break;
4906 }
4907 case KVM_GET_SUPPORTED_CPUID:
4908 case KVM_GET_EMULATED_CPUID: {
4909 struct kvm_cpuid2 __user *cpuid_arg = argp;
4910 struct kvm_cpuid2 cpuid;
4911
4912 r = -EFAULT;
4913 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4914 goto out;
4915
4916 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4917 ioctl);
4918 if (r)
4919 goto out;
4920
4921 r = -EFAULT;
4922 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4923 goto out;
4924 r = 0;
4925 break;
4926 }
4927 case KVM_X86_GET_MCE_CAP_SUPPORTED:
4928 r = -EFAULT;
4929 if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
4930 sizeof(kvm_caps.supported_mce_cap)))
4931 goto out;
4932 r = 0;
4933 break;
4934 case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4935 struct kvm_msr_list __user *user_msr_list = argp;
4936 struct kvm_msr_list msr_list;
4937 unsigned int n;
4938
4939 r = -EFAULT;
4940 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4941 goto out;
4942 n = msr_list.nmsrs;
4943 msr_list.nmsrs = num_msr_based_features;
4944 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4945 goto out;
4946 r = -E2BIG;
4947 if (n < msr_list.nmsrs)
4948 goto out;
4949 r = -EFAULT;
4950 if (copy_to_user(user_msr_list->indices, &msr_based_features,
4951 num_msr_based_features * sizeof(u32)))
4952 goto out;
4953 r = 0;
4954 break;
4955 }
4956 case KVM_GET_MSRS:
4957 r = msr_io(NULL, argp, do_get_feature_msr, 1);
4958 break;
4959 #ifdef CONFIG_KVM_HYPERV
4960 case KVM_GET_SUPPORTED_HV_CPUID:
4961 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4962 break;
4963 #endif
4964 case KVM_GET_DEVICE_ATTR: {
4965 struct kvm_device_attr attr;
4966 r = -EFAULT;
4967 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4968 break;
4969 r = kvm_x86_dev_get_attr(&attr);
4970 break;
4971 }
4972 case KVM_HAS_DEVICE_ATTR: {
4973 struct kvm_device_attr attr;
4974 r = -EFAULT;
4975 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4976 break;
4977 r = kvm_x86_dev_has_attr(&attr);
4978 break;
4979 }
4980 default:
4981 r = -EINVAL;
4982 break;
4983 }
4984 out:
4985 return r;
4986 }
4987
wbinvd_ipi(void * garbage)4988 static void wbinvd_ipi(void *garbage)
4989 {
4990 wbinvd();
4991 }
4992
need_emulate_wbinvd(struct kvm_vcpu * vcpu)4993 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4994 {
4995 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4996 }
4997
4998 static DEFINE_PER_CPU(struct kvm_vcpu *, last_vcpu);
4999
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)5000 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
5001 {
5002 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
5003
5004 vcpu->arch.l1tf_flush_l1d = true;
5005
5006 if (vcpu->scheduled_out && pmu->version && pmu->event_count) {
5007 pmu->need_cleanup = true;
5008 kvm_make_request(KVM_REQ_PMU, vcpu);
5009 }
5010
5011 /* Address WBINVD may be executed by guest */
5012 if (need_emulate_wbinvd(vcpu)) {
5013 if (kvm_x86_call(has_wbinvd_exit)())
5014 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5015 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
5016 smp_call_function_single(vcpu->cpu,
5017 wbinvd_ipi, NULL, 1);
5018 }
5019
5020 kvm_x86_call(vcpu_load)(vcpu, cpu);
5021
5022 if (vcpu != per_cpu(last_vcpu, cpu)) {
5023 /*
5024 * Flush the branch predictor when switching vCPUs on the same
5025 * physical CPU, as each vCPU needs its own branch prediction
5026 * domain. No IBPB is needed when switching between L1 and L2
5027 * on the same vCPU unless IBRS is advertised to the vCPU; that
5028 * is handled on the nested VM-Exit path.
5029 */
5030 if (static_branch_likely(&switch_vcpu_ibpb))
5031 indirect_branch_prediction_barrier();
5032 per_cpu(last_vcpu, cpu) = vcpu;
5033 }
5034
5035 /* Save host pkru register if supported */
5036 vcpu->arch.host_pkru = read_pkru();
5037
5038 /* Apply any externally detected TSC adjustments (due to suspend) */
5039 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
5040 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
5041 vcpu->arch.tsc_offset_adjustment = 0;
5042 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5043 }
5044
5045 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
5046 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
5047 rdtsc() - vcpu->arch.last_host_tsc;
5048 if (tsc_delta < 0)
5049 mark_tsc_unstable("KVM discovered backwards TSC");
5050
5051 if (kvm_check_tsc_unstable()) {
5052 u64 offset = kvm_compute_l1_tsc_offset(vcpu,
5053 vcpu->arch.last_guest_tsc);
5054 kvm_vcpu_write_tsc_offset(vcpu, offset);
5055 if (!vcpu->arch.guest_tsc_protected)
5056 vcpu->arch.tsc_catchup = 1;
5057 }
5058
5059 if (kvm_lapic_hv_timer_in_use(vcpu))
5060 kvm_lapic_restart_hv_timer(vcpu);
5061
5062 /*
5063 * On a host with synchronized TSC, there is no need to update
5064 * kvmclock on vcpu->cpu migration
5065 */
5066 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
5067 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
5068 if (vcpu->cpu != cpu)
5069 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
5070 vcpu->cpu = cpu;
5071 }
5072
5073 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
5074 }
5075
kvm_steal_time_set_preempted(struct kvm_vcpu * vcpu)5076 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
5077 {
5078 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
5079 struct kvm_steal_time __user *st;
5080 struct kvm_memslots *slots;
5081 static const u8 preempted = KVM_VCPU_PREEMPTED;
5082 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
5083
5084 /*
5085 * The vCPU can be marked preempted if and only if the VM-Exit was on
5086 * an instruction boundary and will not trigger guest emulation of any
5087 * kind (see vcpu_run). Vendor specific code controls (conservatively)
5088 * when this is true, for example allowing the vCPU to be marked
5089 * preempted if and only if the VM-Exit was due to a host interrupt.
5090 */
5091 if (!vcpu->arch.at_instruction_boundary) {
5092 vcpu->stat.preemption_other++;
5093 return;
5094 }
5095
5096 vcpu->stat.preemption_reported++;
5097 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
5098 return;
5099
5100 if (vcpu->arch.st.preempted)
5101 return;
5102
5103 /* This happens on process exit */
5104 if (unlikely(current->mm != vcpu->kvm->mm))
5105 return;
5106
5107 slots = kvm_memslots(vcpu->kvm);
5108
5109 if (unlikely(slots->generation != ghc->generation ||
5110 gpa != ghc->gpa ||
5111 kvm_is_error_hva(ghc->hva) || !ghc->memslot))
5112 return;
5113
5114 st = (struct kvm_steal_time __user *)ghc->hva;
5115 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
5116
5117 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
5118 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
5119
5120 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
5121 }
5122
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)5123 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
5124 {
5125 int idx;
5126
5127 if (vcpu->preempted) {
5128 /*
5129 * Assume protected guests are in-kernel. Inefficient yielding
5130 * due to false positives is preferable to never yielding due
5131 * to false negatives.
5132 */
5133 vcpu->arch.preempted_in_kernel = vcpu->arch.guest_state_protected ||
5134 !kvm_x86_call(get_cpl_no_cache)(vcpu);
5135
5136 /*
5137 * Take the srcu lock as memslots will be accessed to check the gfn
5138 * cache generation against the memslots generation.
5139 */
5140 idx = srcu_read_lock(&vcpu->kvm->srcu);
5141 if (kvm_xen_msr_enabled(vcpu->kvm))
5142 kvm_xen_runstate_set_preempted(vcpu);
5143 else
5144 kvm_steal_time_set_preempted(vcpu);
5145 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5146 }
5147
5148 kvm_x86_call(vcpu_put)(vcpu);
5149 vcpu->arch.last_host_tsc = rdtsc();
5150 }
5151
kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)5152 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
5153 struct kvm_lapic_state *s)
5154 {
5155 if (vcpu->arch.apic->guest_apic_protected)
5156 return -EINVAL;
5157
5158 kvm_x86_call(sync_pir_to_irr)(vcpu);
5159
5160 return kvm_apic_get_state(vcpu, s);
5161 }
5162
kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)5163 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
5164 struct kvm_lapic_state *s)
5165 {
5166 int r;
5167
5168 if (vcpu->arch.apic->guest_apic_protected)
5169 return -EINVAL;
5170
5171 r = kvm_apic_set_state(vcpu, s);
5172 if (r)
5173 return r;
5174 update_cr8_intercept(vcpu);
5175
5176 return 0;
5177 }
5178
kvm_cpu_accept_dm_intr(struct kvm_vcpu * vcpu)5179 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
5180 {
5181 /*
5182 * We can accept userspace's request for interrupt injection
5183 * as long as we have a place to store the interrupt number.
5184 * The actual injection will happen when the CPU is able to
5185 * deliver the interrupt.
5186 */
5187 if (kvm_cpu_has_extint(vcpu))
5188 return false;
5189
5190 /* Acknowledging ExtINT does not happen if LINT0 is masked. */
5191 return (!lapic_in_kernel(vcpu) ||
5192 kvm_apic_accept_pic_intr(vcpu));
5193 }
5194
kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu * vcpu)5195 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
5196 {
5197 /*
5198 * Do not cause an interrupt window exit if an exception
5199 * is pending or an event needs reinjection; userspace
5200 * might want to inject the interrupt manually using KVM_SET_REGS
5201 * or KVM_SET_SREGS. For that to work, we must be at an
5202 * instruction boundary and with no events half-injected.
5203 */
5204 return (kvm_arch_interrupt_allowed(vcpu) &&
5205 kvm_cpu_accept_dm_intr(vcpu) &&
5206 !kvm_event_needs_reinjection(vcpu) &&
5207 !kvm_is_exception_pending(vcpu));
5208 }
5209
kvm_vcpu_ioctl_interrupt(struct kvm_vcpu * vcpu,struct kvm_interrupt * irq)5210 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
5211 struct kvm_interrupt *irq)
5212 {
5213 if (irq->irq >= KVM_NR_INTERRUPTS)
5214 return -EINVAL;
5215
5216 if (!irqchip_in_kernel(vcpu->kvm)) {
5217 kvm_queue_interrupt(vcpu, irq->irq, false);
5218 kvm_make_request(KVM_REQ_EVENT, vcpu);
5219 return 0;
5220 }
5221
5222 /*
5223 * With in-kernel LAPIC, we only use this to inject EXTINT, so
5224 * fail for in-kernel 8259.
5225 */
5226 if (pic_in_kernel(vcpu->kvm))
5227 return -ENXIO;
5228
5229 if (vcpu->arch.pending_external_vector != -1)
5230 return -EEXIST;
5231
5232 vcpu->arch.pending_external_vector = irq->irq;
5233 kvm_make_request(KVM_REQ_EVENT, vcpu);
5234 return 0;
5235 }
5236
kvm_vcpu_ioctl_nmi(struct kvm_vcpu * vcpu)5237 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
5238 {
5239 kvm_inject_nmi(vcpu);
5240
5241 return 0;
5242 }
5243
vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu * vcpu,struct kvm_tpr_access_ctl * tac)5244 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
5245 struct kvm_tpr_access_ctl *tac)
5246 {
5247 if (tac->flags)
5248 return -EINVAL;
5249 vcpu->arch.tpr_access_reporting = !!tac->enabled;
5250 return 0;
5251 }
5252
kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu * vcpu,u64 mcg_cap)5253 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
5254 u64 mcg_cap)
5255 {
5256 int r;
5257 unsigned bank_num = mcg_cap & 0xff, bank;
5258
5259 r = -EINVAL;
5260 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
5261 goto out;
5262 if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
5263 goto out;
5264 r = 0;
5265 vcpu->arch.mcg_cap = mcg_cap;
5266 /* Init IA32_MCG_CTL to all 1s */
5267 if (mcg_cap & MCG_CTL_P)
5268 vcpu->arch.mcg_ctl = ~(u64)0;
5269 /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
5270 for (bank = 0; bank < bank_num; bank++) {
5271 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
5272 if (mcg_cap & MCG_CMCI_P)
5273 vcpu->arch.mci_ctl2_banks[bank] = 0;
5274 }
5275
5276 kvm_apic_after_set_mcg_cap(vcpu);
5277
5278 kvm_x86_call(setup_mce)(vcpu);
5279 out:
5280 return r;
5281 }
5282
5283 /*
5284 * Validate this is an UCNA (uncorrectable no action) error by checking the
5285 * MCG_STATUS and MCi_STATUS registers:
5286 * - none of the bits for Machine Check Exceptions are set
5287 * - both the VAL (valid) and UC (uncorrectable) bits are set
5288 * MCI_STATUS_PCC - Processor Context Corrupted
5289 * MCI_STATUS_S - Signaled as a Machine Check Exception
5290 * MCI_STATUS_AR - Software recoverable Action Required
5291 */
is_ucna(struct kvm_x86_mce * mce)5292 static bool is_ucna(struct kvm_x86_mce *mce)
5293 {
5294 return !mce->mcg_status &&
5295 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
5296 (mce->status & MCI_STATUS_VAL) &&
5297 (mce->status & MCI_STATUS_UC);
5298 }
5299
kvm_vcpu_x86_set_ucna(struct kvm_vcpu * vcpu,struct kvm_x86_mce * mce,u64 * banks)5300 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
5301 {
5302 u64 mcg_cap = vcpu->arch.mcg_cap;
5303
5304 banks[1] = mce->status;
5305 banks[2] = mce->addr;
5306 banks[3] = mce->misc;
5307 vcpu->arch.mcg_status = mce->mcg_status;
5308
5309 if (!(mcg_cap & MCG_CMCI_P) ||
5310 !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
5311 return 0;
5312
5313 if (lapic_in_kernel(vcpu))
5314 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
5315
5316 return 0;
5317 }
5318
kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu * vcpu,struct kvm_x86_mce * mce)5319 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
5320 struct kvm_x86_mce *mce)
5321 {
5322 u64 mcg_cap = vcpu->arch.mcg_cap;
5323 unsigned bank_num = mcg_cap & 0xff;
5324 u64 *banks = vcpu->arch.mce_banks;
5325
5326 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
5327 return -EINVAL;
5328
5329 banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
5330
5331 if (is_ucna(mce))
5332 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
5333
5334 /*
5335 * if IA32_MCG_CTL is not all 1s, the uncorrected error
5336 * reporting is disabled
5337 */
5338 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
5339 vcpu->arch.mcg_ctl != ~(u64)0)
5340 return 0;
5341 /*
5342 * if IA32_MCi_CTL is not all 1s, the uncorrected error
5343 * reporting is disabled for the bank
5344 */
5345 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
5346 return 0;
5347 if (mce->status & MCI_STATUS_UC) {
5348 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
5349 !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) {
5350 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5351 return 0;
5352 }
5353 if (banks[1] & MCI_STATUS_VAL)
5354 mce->status |= MCI_STATUS_OVER;
5355 banks[2] = mce->addr;
5356 banks[3] = mce->misc;
5357 vcpu->arch.mcg_status = mce->mcg_status;
5358 banks[1] = mce->status;
5359 kvm_queue_exception(vcpu, MC_VECTOR);
5360 } else if (!(banks[1] & MCI_STATUS_VAL)
5361 || !(banks[1] & MCI_STATUS_UC)) {
5362 if (banks[1] & MCI_STATUS_VAL)
5363 mce->status |= MCI_STATUS_OVER;
5364 banks[2] = mce->addr;
5365 banks[3] = mce->misc;
5366 banks[1] = mce->status;
5367 } else
5368 banks[1] |= MCI_STATUS_OVER;
5369 return 0;
5370 }
5371
kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)5372 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5373 struct kvm_vcpu_events *events)
5374 {
5375 struct kvm_queued_exception *ex;
5376
5377 process_nmi(vcpu);
5378
5379 #ifdef CONFIG_KVM_SMM
5380 if (kvm_check_request(KVM_REQ_SMI, vcpu))
5381 process_smi(vcpu);
5382 #endif
5383
5384 /*
5385 * KVM's ABI only allows for one exception to be migrated. Luckily,
5386 * the only time there can be two queued exceptions is if there's a
5387 * non-exiting _injected_ exception, and a pending exiting exception.
5388 * In that case, ignore the VM-Exiting exception as it's an extension
5389 * of the injected exception.
5390 */
5391 if (vcpu->arch.exception_vmexit.pending &&
5392 !vcpu->arch.exception.pending &&
5393 !vcpu->arch.exception.injected)
5394 ex = &vcpu->arch.exception_vmexit;
5395 else
5396 ex = &vcpu->arch.exception;
5397
5398 /*
5399 * In guest mode, payload delivery should be deferred if the exception
5400 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1
5401 * intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability,
5402 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not
5403 * propagate the payload and so it cannot be safely deferred. Deliver
5404 * the payload if the capability hasn't been requested.
5405 */
5406 if (!vcpu->kvm->arch.exception_payload_enabled &&
5407 ex->pending && ex->has_payload)
5408 kvm_deliver_exception_payload(vcpu, ex);
5409
5410 memset(events, 0, sizeof(*events));
5411
5412 /*
5413 * The API doesn't provide the instruction length for software
5414 * exceptions, so don't report them. As long as the guest RIP
5415 * isn't advanced, we should expect to encounter the exception
5416 * again.
5417 */
5418 if (!kvm_exception_is_soft(ex->vector)) {
5419 events->exception.injected = ex->injected;
5420 events->exception.pending = ex->pending;
5421 /*
5422 * For ABI compatibility, deliberately conflate
5423 * pending and injected exceptions when
5424 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5425 */
5426 if (!vcpu->kvm->arch.exception_payload_enabled)
5427 events->exception.injected |= ex->pending;
5428 }
5429 events->exception.nr = ex->vector;
5430 events->exception.has_error_code = ex->has_error_code;
5431 events->exception.error_code = ex->error_code;
5432 events->exception_has_payload = ex->has_payload;
5433 events->exception_payload = ex->payload;
5434
5435 events->interrupt.injected =
5436 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5437 events->interrupt.nr = vcpu->arch.interrupt.nr;
5438 events->interrupt.shadow = kvm_x86_call(get_interrupt_shadow)(vcpu);
5439
5440 events->nmi.injected = vcpu->arch.nmi_injected;
5441 events->nmi.pending = kvm_get_nr_pending_nmis(vcpu);
5442 events->nmi.masked = kvm_x86_call(get_nmi_mask)(vcpu);
5443
5444 /* events->sipi_vector is never valid when reporting to user space */
5445
5446 #ifdef CONFIG_KVM_SMM
5447 events->smi.smm = is_smm(vcpu);
5448 events->smi.pending = vcpu->arch.smi_pending;
5449 events->smi.smm_inside_nmi =
5450 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5451 #endif
5452 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5453
5454 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5455 | KVM_VCPUEVENT_VALID_SHADOW
5456 | KVM_VCPUEVENT_VALID_SMM);
5457 if (vcpu->kvm->arch.exception_payload_enabled)
5458 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5459 if (vcpu->kvm->arch.triple_fault_event) {
5460 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5461 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5462 }
5463 }
5464
kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)5465 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5466 struct kvm_vcpu_events *events)
5467 {
5468 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5469 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5470 | KVM_VCPUEVENT_VALID_SHADOW
5471 | KVM_VCPUEVENT_VALID_SMM
5472 | KVM_VCPUEVENT_VALID_PAYLOAD
5473 | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5474 return -EINVAL;
5475
5476 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5477 if (!vcpu->kvm->arch.exception_payload_enabled)
5478 return -EINVAL;
5479 if (events->exception.pending)
5480 events->exception.injected = 0;
5481 else
5482 events->exception_has_payload = 0;
5483 } else {
5484 events->exception.pending = 0;
5485 events->exception_has_payload = 0;
5486 }
5487
5488 if ((events->exception.injected || events->exception.pending) &&
5489 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5490 return -EINVAL;
5491
5492 /* INITs are latched while in SMM */
5493 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
5494 (events->smi.smm || events->smi.pending) &&
5495 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
5496 return -EINVAL;
5497
5498 process_nmi(vcpu);
5499
5500 /*
5501 * Flag that userspace is stuffing an exception, the next KVM_RUN will
5502 * morph the exception to a VM-Exit if appropriate. Do this only for
5503 * pending exceptions, already-injected exceptions are not subject to
5504 * intercpetion. Note, userspace that conflates pending and injected
5505 * is hosed, and will incorrectly convert an injected exception into a
5506 * pending exception, which in turn may cause a spurious VM-Exit.
5507 */
5508 vcpu->arch.exception_from_userspace = events->exception.pending;
5509
5510 vcpu->arch.exception_vmexit.pending = false;
5511
5512 vcpu->arch.exception.injected = events->exception.injected;
5513 vcpu->arch.exception.pending = events->exception.pending;
5514 vcpu->arch.exception.vector = events->exception.nr;
5515 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5516 vcpu->arch.exception.error_code = events->exception.error_code;
5517 vcpu->arch.exception.has_payload = events->exception_has_payload;
5518 vcpu->arch.exception.payload = events->exception_payload;
5519
5520 vcpu->arch.interrupt.injected = events->interrupt.injected;
5521 vcpu->arch.interrupt.nr = events->interrupt.nr;
5522 vcpu->arch.interrupt.soft = events->interrupt.soft;
5523 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5524 kvm_x86_call(set_interrupt_shadow)(vcpu,
5525 events->interrupt.shadow);
5526
5527 vcpu->arch.nmi_injected = events->nmi.injected;
5528 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) {
5529 vcpu->arch.nmi_pending = 0;
5530 atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending);
5531 if (events->nmi.pending)
5532 kvm_make_request(KVM_REQ_NMI, vcpu);
5533 }
5534 kvm_x86_call(set_nmi_mask)(vcpu, events->nmi.masked);
5535
5536 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5537 lapic_in_kernel(vcpu))
5538 vcpu->arch.apic->sipi_vector = events->sipi_vector;
5539
5540 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5541 #ifdef CONFIG_KVM_SMM
5542 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5543 kvm_leave_nested(vcpu);
5544 kvm_smm_changed(vcpu, events->smi.smm);
5545 }
5546
5547 vcpu->arch.smi_pending = events->smi.pending;
5548
5549 if (events->smi.smm) {
5550 if (events->smi.smm_inside_nmi)
5551 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5552 else
5553 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5554 }
5555
5556 #else
5557 if (events->smi.smm || events->smi.pending ||
5558 events->smi.smm_inside_nmi)
5559 return -EINVAL;
5560 #endif
5561
5562 if (lapic_in_kernel(vcpu)) {
5563 if (events->smi.latched_init)
5564 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5565 else
5566 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5567 }
5568 }
5569
5570 if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5571 if (!vcpu->kvm->arch.triple_fault_event)
5572 return -EINVAL;
5573 if (events->triple_fault.pending)
5574 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5575 else
5576 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5577 }
5578
5579 kvm_make_request(KVM_REQ_EVENT, vcpu);
5580
5581 return 0;
5582 }
5583
kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)5584 static int kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5585 struct kvm_debugregs *dbgregs)
5586 {
5587 unsigned int i;
5588
5589 if (vcpu->kvm->arch.has_protected_state &&
5590 vcpu->arch.guest_state_protected)
5591 return -EINVAL;
5592
5593 memset(dbgregs, 0, sizeof(*dbgregs));
5594
5595 BUILD_BUG_ON(ARRAY_SIZE(vcpu->arch.db) != ARRAY_SIZE(dbgregs->db));
5596 for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++)
5597 dbgregs->db[i] = vcpu->arch.db[i];
5598
5599 dbgregs->dr6 = vcpu->arch.dr6;
5600 dbgregs->dr7 = vcpu->arch.dr7;
5601 return 0;
5602 }
5603
kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)5604 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5605 struct kvm_debugregs *dbgregs)
5606 {
5607 unsigned int i;
5608
5609 if (vcpu->kvm->arch.has_protected_state &&
5610 vcpu->arch.guest_state_protected)
5611 return -EINVAL;
5612
5613 if (dbgregs->flags)
5614 return -EINVAL;
5615
5616 if (!kvm_dr6_valid(dbgregs->dr6))
5617 return -EINVAL;
5618 if (!kvm_dr7_valid(dbgregs->dr7))
5619 return -EINVAL;
5620
5621 for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++)
5622 vcpu->arch.db[i] = dbgregs->db[i];
5623
5624 kvm_update_dr0123(vcpu);
5625 vcpu->arch.dr6 = dbgregs->dr6;
5626 vcpu->arch.dr7 = dbgregs->dr7;
5627 kvm_update_dr7(vcpu);
5628
5629 return 0;
5630 }
5631
5632
kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu * vcpu,u8 * state,unsigned int size)5633 static int kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5634 u8 *state, unsigned int size)
5635 {
5636 /*
5637 * Only copy state for features that are enabled for the guest. The
5638 * state itself isn't problematic, but setting bits in the header for
5639 * features that are supported in *this* host but not exposed to the
5640 * guest can result in KVM_SET_XSAVE failing when live migrating to a
5641 * compatible host without the features that are NOT exposed to the
5642 * guest.
5643 *
5644 * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if
5645 * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't
5646 * supported by the host.
5647 */
5648 u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 |
5649 XFEATURE_MASK_FPSSE;
5650
5651 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5652 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
5653
5654 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size,
5655 supported_xcr0, vcpu->arch.pkru);
5656 return 0;
5657 }
5658
kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)5659 static int kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5660 struct kvm_xsave *guest_xsave)
5661 {
5662 return kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region,
5663 sizeof(guest_xsave->region));
5664 }
5665
kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)5666 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5667 struct kvm_xsave *guest_xsave)
5668 {
5669 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5670 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
5671
5672 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5673 guest_xsave->region,
5674 kvm_caps.supported_xcr0,
5675 &vcpu->arch.pkru);
5676 }
5677
kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)5678 static int kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5679 struct kvm_xcrs *guest_xcrs)
5680 {
5681 if (vcpu->kvm->arch.has_protected_state &&
5682 vcpu->arch.guest_state_protected)
5683 return -EINVAL;
5684
5685 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5686 guest_xcrs->nr_xcrs = 0;
5687 return 0;
5688 }
5689
5690 guest_xcrs->nr_xcrs = 1;
5691 guest_xcrs->flags = 0;
5692 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5693 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5694 return 0;
5695 }
5696
kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)5697 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5698 struct kvm_xcrs *guest_xcrs)
5699 {
5700 int i, r = 0;
5701
5702 if (vcpu->kvm->arch.has_protected_state &&
5703 vcpu->arch.guest_state_protected)
5704 return -EINVAL;
5705
5706 if (!boot_cpu_has(X86_FEATURE_XSAVE))
5707 return -EINVAL;
5708
5709 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5710 return -EINVAL;
5711
5712 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5713 /* Only support XCR0 currently */
5714 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5715 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5716 guest_xcrs->xcrs[i].value);
5717 break;
5718 }
5719 if (r)
5720 r = -EINVAL;
5721 return r;
5722 }
5723
5724 /*
5725 * kvm_set_guest_paused() indicates to the guest kernel that it has been
5726 * stopped by the hypervisor. This function will be called from the host only.
5727 * EINVAL is returned when the host attempts to set the flag for a guest that
5728 * does not support pv clocks.
5729 */
kvm_set_guest_paused(struct kvm_vcpu * vcpu)5730 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5731 {
5732 if (!vcpu->arch.pv_time.active)
5733 return -EINVAL;
5734 vcpu->arch.pvclock_set_guest_stopped_request = true;
5735 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5736 return 0;
5737 }
5738
kvm_arch_tsc_has_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5739 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5740 struct kvm_device_attr *attr)
5741 {
5742 int r;
5743
5744 switch (attr->attr) {
5745 case KVM_VCPU_TSC_OFFSET:
5746 r = 0;
5747 break;
5748 default:
5749 r = -ENXIO;
5750 }
5751
5752 return r;
5753 }
5754
kvm_arch_tsc_get_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5755 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5756 struct kvm_device_attr *attr)
5757 {
5758 u64 __user *uaddr = u64_to_user_ptr(attr->addr);
5759 int r;
5760
5761 switch (attr->attr) {
5762 case KVM_VCPU_TSC_OFFSET:
5763 r = -EFAULT;
5764 if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5765 break;
5766 r = 0;
5767 break;
5768 default:
5769 r = -ENXIO;
5770 }
5771
5772 return r;
5773 }
5774
kvm_arch_tsc_set_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5775 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5776 struct kvm_device_attr *attr)
5777 {
5778 u64 __user *uaddr = u64_to_user_ptr(attr->addr);
5779 struct kvm *kvm = vcpu->kvm;
5780 int r;
5781
5782 switch (attr->attr) {
5783 case KVM_VCPU_TSC_OFFSET: {
5784 u64 offset, tsc, ns;
5785 unsigned long flags;
5786 bool matched;
5787
5788 r = -EFAULT;
5789 if (get_user(offset, uaddr))
5790 break;
5791
5792 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5793
5794 matched = (vcpu->arch.virtual_tsc_khz &&
5795 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5796 kvm->arch.last_tsc_offset == offset);
5797
5798 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5799 ns = get_kvmclock_base_ns();
5800
5801 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched, true);
5802 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5803
5804 r = 0;
5805 break;
5806 }
5807 default:
5808 r = -ENXIO;
5809 }
5810
5811 return r;
5812 }
5813
kvm_vcpu_ioctl_device_attr(struct kvm_vcpu * vcpu,unsigned int ioctl,void __user * argp)5814 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5815 unsigned int ioctl,
5816 void __user *argp)
5817 {
5818 struct kvm_device_attr attr;
5819 int r;
5820
5821 if (copy_from_user(&attr, argp, sizeof(attr)))
5822 return -EFAULT;
5823
5824 if (attr.group != KVM_VCPU_TSC_CTRL)
5825 return -ENXIO;
5826
5827 switch (ioctl) {
5828 case KVM_HAS_DEVICE_ATTR:
5829 r = kvm_arch_tsc_has_attr(vcpu, &attr);
5830 break;
5831 case KVM_GET_DEVICE_ATTR:
5832 r = kvm_arch_tsc_get_attr(vcpu, &attr);
5833 break;
5834 case KVM_SET_DEVICE_ATTR:
5835 r = kvm_arch_tsc_set_attr(vcpu, &attr);
5836 break;
5837 }
5838
5839 return r;
5840 }
5841
kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu * vcpu,struct kvm_enable_cap * cap)5842 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5843 struct kvm_enable_cap *cap)
5844 {
5845 if (cap->flags)
5846 return -EINVAL;
5847
5848 switch (cap->cap) {
5849 #ifdef CONFIG_KVM_HYPERV
5850 case KVM_CAP_HYPERV_SYNIC2:
5851 if (cap->args[0])
5852 return -EINVAL;
5853 fallthrough;
5854
5855 case KVM_CAP_HYPERV_SYNIC:
5856 if (!irqchip_in_kernel(vcpu->kvm))
5857 return -EINVAL;
5858 return kvm_hv_activate_synic(vcpu, cap->cap ==
5859 KVM_CAP_HYPERV_SYNIC2);
5860 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5861 {
5862 int r;
5863 uint16_t vmcs_version;
5864 void __user *user_ptr;
5865
5866 if (!kvm_x86_ops.nested_ops->enable_evmcs)
5867 return -ENOTTY;
5868 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5869 if (!r) {
5870 user_ptr = (void __user *)(uintptr_t)cap->args[0];
5871 if (copy_to_user(user_ptr, &vmcs_version,
5872 sizeof(vmcs_version)))
5873 r = -EFAULT;
5874 }
5875 return r;
5876 }
5877 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5878 if (!kvm_x86_ops.enable_l2_tlb_flush)
5879 return -ENOTTY;
5880
5881 return kvm_x86_call(enable_l2_tlb_flush)(vcpu);
5882
5883 case KVM_CAP_HYPERV_ENFORCE_CPUID:
5884 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5885 #endif
5886
5887 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5888 vcpu->arch.pv_cpuid.enforce = cap->args[0];
5889 return 0;
5890 default:
5891 return -EINVAL;
5892 }
5893 }
5894
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5895 long kvm_arch_vcpu_ioctl(struct file *filp,
5896 unsigned int ioctl, unsigned long arg)
5897 {
5898 struct kvm_vcpu *vcpu = filp->private_data;
5899 void __user *argp = (void __user *)arg;
5900 int r;
5901 union {
5902 struct kvm_sregs2 *sregs2;
5903 struct kvm_lapic_state *lapic;
5904 struct kvm_xsave *xsave;
5905 struct kvm_xcrs *xcrs;
5906 void *buffer;
5907 } u;
5908
5909 vcpu_load(vcpu);
5910
5911 u.buffer = NULL;
5912 switch (ioctl) {
5913 case KVM_GET_LAPIC: {
5914 r = -EINVAL;
5915 if (!lapic_in_kernel(vcpu))
5916 goto out;
5917 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
5918
5919 r = -ENOMEM;
5920 if (!u.lapic)
5921 goto out;
5922 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5923 if (r)
5924 goto out;
5925 r = -EFAULT;
5926 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5927 goto out;
5928 r = 0;
5929 break;
5930 }
5931 case KVM_SET_LAPIC: {
5932 r = -EINVAL;
5933 if (!lapic_in_kernel(vcpu))
5934 goto out;
5935 u.lapic = memdup_user(argp, sizeof(*u.lapic));
5936 if (IS_ERR(u.lapic)) {
5937 r = PTR_ERR(u.lapic);
5938 goto out_nofree;
5939 }
5940
5941 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5942 break;
5943 }
5944 case KVM_INTERRUPT: {
5945 struct kvm_interrupt irq;
5946
5947 r = -EFAULT;
5948 if (copy_from_user(&irq, argp, sizeof(irq)))
5949 goto out;
5950 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5951 break;
5952 }
5953 case KVM_NMI: {
5954 r = kvm_vcpu_ioctl_nmi(vcpu);
5955 break;
5956 }
5957 case KVM_SMI: {
5958 r = kvm_inject_smi(vcpu);
5959 break;
5960 }
5961 case KVM_SET_CPUID: {
5962 struct kvm_cpuid __user *cpuid_arg = argp;
5963 struct kvm_cpuid cpuid;
5964
5965 r = -EFAULT;
5966 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5967 goto out;
5968 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5969 break;
5970 }
5971 case KVM_SET_CPUID2: {
5972 struct kvm_cpuid2 __user *cpuid_arg = argp;
5973 struct kvm_cpuid2 cpuid;
5974
5975 r = -EFAULT;
5976 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5977 goto out;
5978 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5979 cpuid_arg->entries);
5980 break;
5981 }
5982 case KVM_GET_CPUID2: {
5983 struct kvm_cpuid2 __user *cpuid_arg = argp;
5984 struct kvm_cpuid2 cpuid;
5985
5986 r = -EFAULT;
5987 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5988 goto out;
5989 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5990 cpuid_arg->entries);
5991 if (r)
5992 goto out;
5993 r = -EFAULT;
5994 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5995 goto out;
5996 r = 0;
5997 break;
5998 }
5999 case KVM_GET_MSRS: {
6000 int idx = srcu_read_lock(&vcpu->kvm->srcu);
6001 r = msr_io(vcpu, argp, do_get_msr, 1);
6002 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6003 break;
6004 }
6005 case KVM_SET_MSRS: {
6006 int idx = srcu_read_lock(&vcpu->kvm->srcu);
6007 r = msr_io(vcpu, argp, do_set_msr, 0);
6008 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6009 break;
6010 }
6011 case KVM_TPR_ACCESS_REPORTING: {
6012 struct kvm_tpr_access_ctl tac;
6013
6014 r = -EFAULT;
6015 if (copy_from_user(&tac, argp, sizeof(tac)))
6016 goto out;
6017 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
6018 if (r)
6019 goto out;
6020 r = -EFAULT;
6021 if (copy_to_user(argp, &tac, sizeof(tac)))
6022 goto out;
6023 r = 0;
6024 break;
6025 };
6026 case KVM_SET_VAPIC_ADDR: {
6027 struct kvm_vapic_addr va;
6028 int idx;
6029
6030 r = -EINVAL;
6031 if (!lapic_in_kernel(vcpu))
6032 goto out;
6033 r = -EFAULT;
6034 if (copy_from_user(&va, argp, sizeof(va)))
6035 goto out;
6036 idx = srcu_read_lock(&vcpu->kvm->srcu);
6037 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
6038 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6039 break;
6040 }
6041 case KVM_X86_SETUP_MCE: {
6042 u64 mcg_cap;
6043
6044 r = -EFAULT;
6045 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
6046 goto out;
6047 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
6048 break;
6049 }
6050 case KVM_X86_SET_MCE: {
6051 struct kvm_x86_mce mce;
6052
6053 r = -EFAULT;
6054 if (copy_from_user(&mce, argp, sizeof(mce)))
6055 goto out;
6056 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
6057 break;
6058 }
6059 case KVM_GET_VCPU_EVENTS: {
6060 struct kvm_vcpu_events events;
6061
6062 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
6063
6064 r = -EFAULT;
6065 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
6066 break;
6067 r = 0;
6068 break;
6069 }
6070 case KVM_SET_VCPU_EVENTS: {
6071 struct kvm_vcpu_events events;
6072
6073 r = -EFAULT;
6074 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
6075 break;
6076
6077 kvm_vcpu_srcu_read_lock(vcpu);
6078 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
6079 kvm_vcpu_srcu_read_unlock(vcpu);
6080 break;
6081 }
6082 case KVM_GET_DEBUGREGS: {
6083 struct kvm_debugregs dbgregs;
6084
6085 r = kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
6086 if (r < 0)
6087 break;
6088
6089 r = -EFAULT;
6090 if (copy_to_user(argp, &dbgregs,
6091 sizeof(struct kvm_debugregs)))
6092 break;
6093 r = 0;
6094 break;
6095 }
6096 case KVM_SET_DEBUGREGS: {
6097 struct kvm_debugregs dbgregs;
6098
6099 r = -EFAULT;
6100 if (copy_from_user(&dbgregs, argp,
6101 sizeof(struct kvm_debugregs)))
6102 break;
6103
6104 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
6105 break;
6106 }
6107 case KVM_GET_XSAVE: {
6108 r = -EINVAL;
6109 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
6110 break;
6111
6112 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
6113 r = -ENOMEM;
6114 if (!u.xsave)
6115 break;
6116
6117 r = kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
6118 if (r < 0)
6119 break;
6120
6121 r = -EFAULT;
6122 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
6123 break;
6124 r = 0;
6125 break;
6126 }
6127 case KVM_SET_XSAVE: {
6128 int size = vcpu->arch.guest_fpu.uabi_size;
6129
6130 u.xsave = memdup_user(argp, size);
6131 if (IS_ERR(u.xsave)) {
6132 r = PTR_ERR(u.xsave);
6133 goto out_nofree;
6134 }
6135
6136 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
6137 break;
6138 }
6139
6140 case KVM_GET_XSAVE2: {
6141 int size = vcpu->arch.guest_fpu.uabi_size;
6142
6143 u.xsave = kzalloc(size, GFP_KERNEL);
6144 r = -ENOMEM;
6145 if (!u.xsave)
6146 break;
6147
6148 r = kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
6149 if (r < 0)
6150 break;
6151
6152 r = -EFAULT;
6153 if (copy_to_user(argp, u.xsave, size))
6154 break;
6155
6156 r = 0;
6157 break;
6158 }
6159
6160 case KVM_GET_XCRS: {
6161 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
6162 r = -ENOMEM;
6163 if (!u.xcrs)
6164 break;
6165
6166 r = kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
6167 if (r < 0)
6168 break;
6169
6170 r = -EFAULT;
6171 if (copy_to_user(argp, u.xcrs,
6172 sizeof(struct kvm_xcrs)))
6173 break;
6174 r = 0;
6175 break;
6176 }
6177 case KVM_SET_XCRS: {
6178 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
6179 if (IS_ERR(u.xcrs)) {
6180 r = PTR_ERR(u.xcrs);
6181 goto out_nofree;
6182 }
6183
6184 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
6185 break;
6186 }
6187 case KVM_SET_TSC_KHZ: {
6188 u32 user_tsc_khz;
6189
6190 r = -EINVAL;
6191 user_tsc_khz = (u32)arg;
6192
6193 if (kvm_caps.has_tsc_control &&
6194 user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
6195 goto out;
6196
6197 if (user_tsc_khz == 0)
6198 user_tsc_khz = tsc_khz;
6199
6200 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
6201 r = 0;
6202
6203 goto out;
6204 }
6205 case KVM_GET_TSC_KHZ: {
6206 r = vcpu->arch.virtual_tsc_khz;
6207 goto out;
6208 }
6209 case KVM_KVMCLOCK_CTRL: {
6210 r = kvm_set_guest_paused(vcpu);
6211 goto out;
6212 }
6213 case KVM_ENABLE_CAP: {
6214 struct kvm_enable_cap cap;
6215
6216 r = -EFAULT;
6217 if (copy_from_user(&cap, argp, sizeof(cap)))
6218 goto out;
6219 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
6220 break;
6221 }
6222 case KVM_GET_NESTED_STATE: {
6223 struct kvm_nested_state __user *user_kvm_nested_state = argp;
6224 u32 user_data_size;
6225
6226 r = -EINVAL;
6227 if (!kvm_x86_ops.nested_ops->get_state)
6228 break;
6229
6230 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
6231 r = -EFAULT;
6232 if (get_user(user_data_size, &user_kvm_nested_state->size))
6233 break;
6234
6235 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
6236 user_data_size);
6237 if (r < 0)
6238 break;
6239
6240 if (r > user_data_size) {
6241 if (put_user(r, &user_kvm_nested_state->size))
6242 r = -EFAULT;
6243 else
6244 r = -E2BIG;
6245 break;
6246 }
6247
6248 r = 0;
6249 break;
6250 }
6251 case KVM_SET_NESTED_STATE: {
6252 struct kvm_nested_state __user *user_kvm_nested_state = argp;
6253 struct kvm_nested_state kvm_state;
6254 int idx;
6255
6256 r = -EINVAL;
6257 if (!kvm_x86_ops.nested_ops->set_state)
6258 break;
6259
6260 r = -EFAULT;
6261 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
6262 break;
6263
6264 r = -EINVAL;
6265 if (kvm_state.size < sizeof(kvm_state))
6266 break;
6267
6268 if (kvm_state.flags &
6269 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
6270 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
6271 | KVM_STATE_NESTED_GIF_SET))
6272 break;
6273
6274 /* nested_run_pending implies guest_mode. */
6275 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
6276 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
6277 break;
6278
6279 idx = srcu_read_lock(&vcpu->kvm->srcu);
6280 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
6281 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6282 break;
6283 }
6284 #ifdef CONFIG_KVM_HYPERV
6285 case KVM_GET_SUPPORTED_HV_CPUID:
6286 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
6287 break;
6288 #endif
6289 #ifdef CONFIG_KVM_XEN
6290 case KVM_XEN_VCPU_GET_ATTR: {
6291 struct kvm_xen_vcpu_attr xva;
6292
6293 r = -EFAULT;
6294 if (copy_from_user(&xva, argp, sizeof(xva)))
6295 goto out;
6296 r = kvm_xen_vcpu_get_attr(vcpu, &xva);
6297 if (!r && copy_to_user(argp, &xva, sizeof(xva)))
6298 r = -EFAULT;
6299 break;
6300 }
6301 case KVM_XEN_VCPU_SET_ATTR: {
6302 struct kvm_xen_vcpu_attr xva;
6303
6304 r = -EFAULT;
6305 if (copy_from_user(&xva, argp, sizeof(xva)))
6306 goto out;
6307 r = kvm_xen_vcpu_set_attr(vcpu, &xva);
6308 break;
6309 }
6310 #endif
6311 case KVM_GET_SREGS2: {
6312 r = -EINVAL;
6313 if (vcpu->kvm->arch.has_protected_state &&
6314 vcpu->arch.guest_state_protected)
6315 goto out;
6316
6317 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
6318 r = -ENOMEM;
6319 if (!u.sregs2)
6320 goto out;
6321 __get_sregs2(vcpu, u.sregs2);
6322 r = -EFAULT;
6323 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
6324 goto out;
6325 r = 0;
6326 break;
6327 }
6328 case KVM_SET_SREGS2: {
6329 r = -EINVAL;
6330 if (vcpu->kvm->arch.has_protected_state &&
6331 vcpu->arch.guest_state_protected)
6332 goto out;
6333
6334 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
6335 if (IS_ERR(u.sregs2)) {
6336 r = PTR_ERR(u.sregs2);
6337 u.sregs2 = NULL;
6338 goto out;
6339 }
6340 r = __set_sregs2(vcpu, u.sregs2);
6341 break;
6342 }
6343 case KVM_HAS_DEVICE_ATTR:
6344 case KVM_GET_DEVICE_ATTR:
6345 case KVM_SET_DEVICE_ATTR:
6346 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
6347 break;
6348 case KVM_MEMORY_ENCRYPT_OP:
6349 r = -ENOTTY;
6350 if (!kvm_x86_ops.vcpu_mem_enc_ioctl)
6351 goto out;
6352 r = kvm_x86_ops.vcpu_mem_enc_ioctl(vcpu, argp);
6353 break;
6354 default:
6355 r = -EINVAL;
6356 }
6357 out:
6358 kfree(u.buffer);
6359 out_nofree:
6360 vcpu_put(vcpu);
6361 return r;
6362 }
6363
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)6364 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
6365 {
6366 return VM_FAULT_SIGBUS;
6367 }
6368
kvm_vm_ioctl_set_tss_addr(struct kvm * kvm,unsigned long addr)6369 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
6370 {
6371 int ret;
6372
6373 if (addr > (unsigned int)(-3 * PAGE_SIZE))
6374 return -EINVAL;
6375 ret = kvm_x86_call(set_tss_addr)(kvm, addr);
6376 return ret;
6377 }
6378
kvm_vm_ioctl_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)6379 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
6380 u64 ident_addr)
6381 {
6382 return kvm_x86_call(set_identity_map_addr)(kvm, ident_addr);
6383 }
6384
kvm_vm_ioctl_set_nr_mmu_pages(struct kvm * kvm,unsigned long kvm_nr_mmu_pages)6385 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
6386 unsigned long kvm_nr_mmu_pages)
6387 {
6388 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
6389 return -EINVAL;
6390
6391 mutex_lock(&kvm->slots_lock);
6392
6393 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
6394 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
6395
6396 mutex_unlock(&kvm->slots_lock);
6397 return 0;
6398 }
6399
kvm_vm_ioctl_get_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)6400 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6401 {
6402 struct kvm_pic *pic = kvm->arch.vpic;
6403 int r;
6404
6405 r = 0;
6406 switch (chip->chip_id) {
6407 case KVM_IRQCHIP_PIC_MASTER:
6408 memcpy(&chip->chip.pic, &pic->pics[0],
6409 sizeof(struct kvm_pic_state));
6410 break;
6411 case KVM_IRQCHIP_PIC_SLAVE:
6412 memcpy(&chip->chip.pic, &pic->pics[1],
6413 sizeof(struct kvm_pic_state));
6414 break;
6415 case KVM_IRQCHIP_IOAPIC:
6416 kvm_get_ioapic(kvm, &chip->chip.ioapic);
6417 break;
6418 default:
6419 r = -EINVAL;
6420 break;
6421 }
6422 return r;
6423 }
6424
kvm_vm_ioctl_set_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)6425 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6426 {
6427 struct kvm_pic *pic = kvm->arch.vpic;
6428 int r;
6429
6430 r = 0;
6431 switch (chip->chip_id) {
6432 case KVM_IRQCHIP_PIC_MASTER:
6433 spin_lock(&pic->lock);
6434 memcpy(&pic->pics[0], &chip->chip.pic,
6435 sizeof(struct kvm_pic_state));
6436 spin_unlock(&pic->lock);
6437 break;
6438 case KVM_IRQCHIP_PIC_SLAVE:
6439 spin_lock(&pic->lock);
6440 memcpy(&pic->pics[1], &chip->chip.pic,
6441 sizeof(struct kvm_pic_state));
6442 spin_unlock(&pic->lock);
6443 break;
6444 case KVM_IRQCHIP_IOAPIC:
6445 kvm_set_ioapic(kvm, &chip->chip.ioapic);
6446 break;
6447 default:
6448 r = -EINVAL;
6449 break;
6450 }
6451 kvm_pic_update_irq(pic);
6452 return r;
6453 }
6454
kvm_vm_ioctl_get_pit(struct kvm * kvm,struct kvm_pit_state * ps)6455 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6456 {
6457 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
6458
6459 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
6460
6461 mutex_lock(&kps->lock);
6462 memcpy(ps, &kps->channels, sizeof(*ps));
6463 mutex_unlock(&kps->lock);
6464 return 0;
6465 }
6466
kvm_vm_ioctl_set_pit(struct kvm * kvm,struct kvm_pit_state * ps)6467 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6468 {
6469 int i;
6470 struct kvm_pit *pit = kvm->arch.vpit;
6471
6472 mutex_lock(&pit->pit_state.lock);
6473 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
6474 for (i = 0; i < 3; i++)
6475 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
6476 mutex_unlock(&pit->pit_state.lock);
6477 return 0;
6478 }
6479
kvm_vm_ioctl_get_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)6480 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6481 {
6482 mutex_lock(&kvm->arch.vpit->pit_state.lock);
6483 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
6484 sizeof(ps->channels));
6485 ps->flags = kvm->arch.vpit->pit_state.flags;
6486 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
6487 memset(&ps->reserved, 0, sizeof(ps->reserved));
6488 return 0;
6489 }
6490
kvm_vm_ioctl_set_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)6491 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6492 {
6493 int start = 0;
6494 int i;
6495 u32 prev_legacy, cur_legacy;
6496 struct kvm_pit *pit = kvm->arch.vpit;
6497
6498 mutex_lock(&pit->pit_state.lock);
6499 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
6500 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
6501 if (!prev_legacy && cur_legacy)
6502 start = 1;
6503 memcpy(&pit->pit_state.channels, &ps->channels,
6504 sizeof(pit->pit_state.channels));
6505 pit->pit_state.flags = ps->flags;
6506 for (i = 0; i < 3; i++)
6507 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
6508 start && i == 0);
6509 mutex_unlock(&pit->pit_state.lock);
6510 return 0;
6511 }
6512
kvm_vm_ioctl_reinject(struct kvm * kvm,struct kvm_reinject_control * control)6513 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
6514 struct kvm_reinject_control *control)
6515 {
6516 struct kvm_pit *pit = kvm->arch.vpit;
6517
6518 /* pit->pit_state.lock was overloaded to prevent userspace from getting
6519 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
6520 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
6521 */
6522 mutex_lock(&pit->pit_state.lock);
6523 kvm_pit_set_reinject(pit, control->pit_reinject);
6524 mutex_unlock(&pit->pit_state.lock);
6525
6526 return 0;
6527 }
6528
kvm_arch_sync_dirty_log(struct kvm * kvm,struct kvm_memory_slot * memslot)6529 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6530 {
6531
6532 /*
6533 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called
6534 * before reporting dirty_bitmap to userspace. KVM flushes the buffers
6535 * on all VM-Exits, thus we only need to kick running vCPUs to force a
6536 * VM-Exit.
6537 */
6538 struct kvm_vcpu *vcpu;
6539 unsigned long i;
6540
6541 if (!kvm->arch.cpu_dirty_log_size)
6542 return;
6543
6544 kvm_for_each_vcpu(i, vcpu, kvm)
6545 kvm_vcpu_kick(vcpu);
6546 }
6547
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_event,bool line_status)6548 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
6549 bool line_status)
6550 {
6551 if (!irqchip_in_kernel(kvm))
6552 return -ENXIO;
6553
6554 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
6555 irq_event->irq, irq_event->level,
6556 line_status);
6557 return 0;
6558 }
6559
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)6560 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6561 struct kvm_enable_cap *cap)
6562 {
6563 int r;
6564
6565 if (cap->flags)
6566 return -EINVAL;
6567
6568 switch (cap->cap) {
6569 case KVM_CAP_DISABLE_QUIRKS2:
6570 r = -EINVAL;
6571 if (cap->args[0] & ~kvm_caps.supported_quirks)
6572 break;
6573 fallthrough;
6574 case KVM_CAP_DISABLE_QUIRKS:
6575 kvm->arch.disabled_quirks |= cap->args[0] & kvm_caps.supported_quirks;
6576 r = 0;
6577 break;
6578 case KVM_CAP_SPLIT_IRQCHIP: {
6579 mutex_lock(&kvm->lock);
6580 r = -EINVAL;
6581 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6582 goto split_irqchip_unlock;
6583 r = -EEXIST;
6584 if (irqchip_in_kernel(kvm))
6585 goto split_irqchip_unlock;
6586 if (kvm->created_vcpus)
6587 goto split_irqchip_unlock;
6588 /* Pairs with irqchip_in_kernel. */
6589 smp_wmb();
6590 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6591 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6592 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6593 r = 0;
6594 split_irqchip_unlock:
6595 mutex_unlock(&kvm->lock);
6596 break;
6597 }
6598 case KVM_CAP_X2APIC_API:
6599 r = -EINVAL;
6600 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6601 break;
6602
6603 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6604 kvm->arch.x2apic_format = true;
6605 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6606 kvm->arch.x2apic_broadcast_quirk_disabled = true;
6607
6608 r = 0;
6609 break;
6610 case KVM_CAP_X86_DISABLE_EXITS:
6611 r = -EINVAL;
6612 if (cap->args[0] & ~kvm_get_allowed_disable_exits())
6613 break;
6614
6615 mutex_lock(&kvm->lock);
6616 if (kvm->created_vcpus)
6617 goto disable_exits_unlock;
6618
6619 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \
6620 "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests."
6621
6622 if (!mitigate_smt_rsb && boot_cpu_has_bug(X86_BUG_SMT_RSB) &&
6623 cpu_smt_possible() &&
6624 (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE))
6625 pr_warn_once(SMT_RSB_MSG);
6626
6627 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6628 kvm->arch.pause_in_guest = true;
6629 if (cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT)
6630 kvm->arch.mwait_in_guest = true;
6631 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6632 kvm->arch.hlt_in_guest = true;
6633 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6634 kvm->arch.cstate_in_guest = true;
6635 r = 0;
6636 disable_exits_unlock:
6637 mutex_unlock(&kvm->lock);
6638 break;
6639 case KVM_CAP_MSR_PLATFORM_INFO:
6640 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6641 r = 0;
6642 break;
6643 case KVM_CAP_EXCEPTION_PAYLOAD:
6644 kvm->arch.exception_payload_enabled = cap->args[0];
6645 r = 0;
6646 break;
6647 case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6648 kvm->arch.triple_fault_event = cap->args[0];
6649 r = 0;
6650 break;
6651 case KVM_CAP_X86_USER_SPACE_MSR:
6652 r = -EINVAL;
6653 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK)
6654 break;
6655 kvm->arch.user_space_msr_mask = cap->args[0];
6656 r = 0;
6657 break;
6658 case KVM_CAP_X86_BUS_LOCK_EXIT:
6659 r = -EINVAL;
6660 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6661 break;
6662
6663 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6664 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6665 break;
6666
6667 if (kvm_caps.has_bus_lock_exit &&
6668 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6669 kvm->arch.bus_lock_detection_enabled = true;
6670 r = 0;
6671 break;
6672 #ifdef CONFIG_X86_SGX_KVM
6673 case KVM_CAP_SGX_ATTRIBUTE: {
6674 unsigned long allowed_attributes = 0;
6675
6676 r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6677 if (r)
6678 break;
6679
6680 /* KVM only supports the PROVISIONKEY privileged attribute. */
6681 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6682 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6683 kvm->arch.sgx_provisioning_allowed = true;
6684 else
6685 r = -EINVAL;
6686 break;
6687 }
6688 #endif
6689 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6690 r = -EINVAL;
6691 if (!kvm_x86_ops.vm_copy_enc_context_from)
6692 break;
6693
6694 r = kvm_x86_call(vm_copy_enc_context_from)(kvm, cap->args[0]);
6695 break;
6696 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6697 r = -EINVAL;
6698 if (!kvm_x86_ops.vm_move_enc_context_from)
6699 break;
6700
6701 r = kvm_x86_call(vm_move_enc_context_from)(kvm, cap->args[0]);
6702 break;
6703 case KVM_CAP_EXIT_HYPERCALL:
6704 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6705 r = -EINVAL;
6706 break;
6707 }
6708 kvm->arch.hypercall_exit_enabled = cap->args[0];
6709 r = 0;
6710 break;
6711 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6712 r = -EINVAL;
6713 if (cap->args[0] & ~1)
6714 break;
6715 kvm->arch.exit_on_emulation_error = cap->args[0];
6716 r = 0;
6717 break;
6718 case KVM_CAP_PMU_CAPABILITY:
6719 r = -EINVAL;
6720 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6721 break;
6722
6723 mutex_lock(&kvm->lock);
6724 if (!kvm->created_vcpus) {
6725 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6726 r = 0;
6727 }
6728 mutex_unlock(&kvm->lock);
6729 break;
6730 case KVM_CAP_MAX_VCPU_ID:
6731 r = -EINVAL;
6732 if (cap->args[0] > KVM_MAX_VCPU_IDS)
6733 break;
6734
6735 mutex_lock(&kvm->lock);
6736 if (kvm->arch.bsp_vcpu_id > cap->args[0]) {
6737 ;
6738 } else if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6739 r = 0;
6740 } else if (!kvm->arch.max_vcpu_ids) {
6741 kvm->arch.max_vcpu_ids = cap->args[0];
6742 r = 0;
6743 }
6744 mutex_unlock(&kvm->lock);
6745 break;
6746 case KVM_CAP_X86_NOTIFY_VMEXIT:
6747 r = -EINVAL;
6748 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6749 break;
6750 if (!kvm_caps.has_notify_vmexit)
6751 break;
6752 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6753 break;
6754 mutex_lock(&kvm->lock);
6755 if (!kvm->created_vcpus) {
6756 kvm->arch.notify_window = cap->args[0] >> 32;
6757 kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6758 r = 0;
6759 }
6760 mutex_unlock(&kvm->lock);
6761 break;
6762 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6763 r = -EINVAL;
6764
6765 /*
6766 * Since the risk of disabling NX hugepages is a guest crashing
6767 * the system, ensure the userspace process has permission to
6768 * reboot the system.
6769 *
6770 * Note that unlike the reboot() syscall, the process must have
6771 * this capability in the root namespace because exposing
6772 * /dev/kvm into a container does not limit the scope of the
6773 * iTLB multihit bug to that container. In other words,
6774 * this must use capable(), not ns_capable().
6775 */
6776 if (!capable(CAP_SYS_BOOT)) {
6777 r = -EPERM;
6778 break;
6779 }
6780
6781 if (cap->args[0])
6782 break;
6783
6784 mutex_lock(&kvm->lock);
6785 if (!kvm->created_vcpus) {
6786 kvm->arch.disable_nx_huge_pages = true;
6787 r = 0;
6788 }
6789 mutex_unlock(&kvm->lock);
6790 break;
6791 case KVM_CAP_X86_APIC_BUS_CYCLES_NS: {
6792 u64 bus_cycle_ns = cap->args[0];
6793 u64 unused;
6794
6795 /*
6796 * Guard against overflow in tmict_to_ns(). 128 is the highest
6797 * divide value that can be programmed in APIC_TDCR.
6798 */
6799 r = -EINVAL;
6800 if (!bus_cycle_ns ||
6801 check_mul_overflow((u64)U32_MAX * 128, bus_cycle_ns, &unused))
6802 break;
6803
6804 r = 0;
6805 mutex_lock(&kvm->lock);
6806 if (!irqchip_in_kernel(kvm))
6807 r = -ENXIO;
6808 else if (kvm->created_vcpus)
6809 r = -EINVAL;
6810 else
6811 kvm->arch.apic_bus_cycle_ns = bus_cycle_ns;
6812 mutex_unlock(&kvm->lock);
6813 break;
6814 }
6815 default:
6816 r = -EINVAL;
6817 break;
6818 }
6819 return r;
6820 }
6821
kvm_alloc_msr_filter(bool default_allow)6822 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6823 {
6824 struct kvm_x86_msr_filter *msr_filter;
6825
6826 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6827 if (!msr_filter)
6828 return NULL;
6829
6830 msr_filter->default_allow = default_allow;
6831 return msr_filter;
6832 }
6833
kvm_free_msr_filter(struct kvm_x86_msr_filter * msr_filter)6834 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6835 {
6836 u32 i;
6837
6838 if (!msr_filter)
6839 return;
6840
6841 for (i = 0; i < msr_filter->count; i++)
6842 kfree(msr_filter->ranges[i].bitmap);
6843
6844 kfree(msr_filter);
6845 }
6846
kvm_add_msr_filter(struct kvm_x86_msr_filter * msr_filter,struct kvm_msr_filter_range * user_range)6847 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6848 struct kvm_msr_filter_range *user_range)
6849 {
6850 unsigned long *bitmap;
6851 size_t bitmap_size;
6852
6853 if (!user_range->nmsrs)
6854 return 0;
6855
6856 if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK)
6857 return -EINVAL;
6858
6859 if (!user_range->flags)
6860 return -EINVAL;
6861
6862 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6863 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6864 return -EINVAL;
6865
6866 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6867 if (IS_ERR(bitmap))
6868 return PTR_ERR(bitmap);
6869
6870 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6871 .flags = user_range->flags,
6872 .base = user_range->base,
6873 .nmsrs = user_range->nmsrs,
6874 .bitmap = bitmap,
6875 };
6876
6877 msr_filter->count++;
6878 return 0;
6879 }
6880
kvm_vm_ioctl_set_msr_filter(struct kvm * kvm,struct kvm_msr_filter * filter)6881 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
6882 struct kvm_msr_filter *filter)
6883 {
6884 struct kvm_x86_msr_filter *new_filter, *old_filter;
6885 bool default_allow;
6886 bool empty = true;
6887 int r;
6888 u32 i;
6889
6890 if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK)
6891 return -EINVAL;
6892
6893 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
6894 empty &= !filter->ranges[i].nmsrs;
6895
6896 default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
6897 if (empty && !default_allow)
6898 return -EINVAL;
6899
6900 new_filter = kvm_alloc_msr_filter(default_allow);
6901 if (!new_filter)
6902 return -ENOMEM;
6903
6904 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
6905 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
6906 if (r) {
6907 kvm_free_msr_filter(new_filter);
6908 return r;
6909 }
6910 }
6911
6912 mutex_lock(&kvm->lock);
6913 old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter,
6914 mutex_is_locked(&kvm->lock));
6915 mutex_unlock(&kvm->lock);
6916 synchronize_srcu(&kvm->srcu);
6917
6918 kvm_free_msr_filter(old_filter);
6919
6920 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6921
6922 return 0;
6923 }
6924
6925 #ifdef CONFIG_KVM_COMPAT
6926 /* for KVM_X86_SET_MSR_FILTER */
6927 struct kvm_msr_filter_range_compat {
6928 __u32 flags;
6929 __u32 nmsrs;
6930 __u32 base;
6931 __u32 bitmap;
6932 };
6933
6934 struct kvm_msr_filter_compat {
6935 __u32 flags;
6936 struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
6937 };
6938
6939 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
6940
kvm_arch_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)6941 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
6942 unsigned long arg)
6943 {
6944 void __user *argp = (void __user *)arg;
6945 struct kvm *kvm = filp->private_data;
6946 long r = -ENOTTY;
6947
6948 switch (ioctl) {
6949 case KVM_X86_SET_MSR_FILTER_COMPAT: {
6950 struct kvm_msr_filter __user *user_msr_filter = argp;
6951 struct kvm_msr_filter_compat filter_compat;
6952 struct kvm_msr_filter filter;
6953 int i;
6954
6955 if (copy_from_user(&filter_compat, user_msr_filter,
6956 sizeof(filter_compat)))
6957 return -EFAULT;
6958
6959 filter.flags = filter_compat.flags;
6960 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6961 struct kvm_msr_filter_range_compat *cr;
6962
6963 cr = &filter_compat.ranges[i];
6964 filter.ranges[i] = (struct kvm_msr_filter_range) {
6965 .flags = cr->flags,
6966 .nmsrs = cr->nmsrs,
6967 .base = cr->base,
6968 .bitmap = (__u8 *)(ulong)cr->bitmap,
6969 };
6970 }
6971
6972 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6973 break;
6974 }
6975 }
6976
6977 return r;
6978 }
6979 #endif
6980
6981 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
kvm_arch_suspend_notifier(struct kvm * kvm)6982 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6983 {
6984 struct kvm_vcpu *vcpu;
6985 unsigned long i;
6986
6987 /*
6988 * Ignore the return, marking the guest paused only "fails" if the vCPU
6989 * isn't using kvmclock; continuing on is correct and desirable.
6990 */
6991 kvm_for_each_vcpu(i, vcpu, kvm)
6992 (void)kvm_set_guest_paused(vcpu);
6993
6994 return NOTIFY_DONE;
6995 }
6996
kvm_arch_pm_notifier(struct kvm * kvm,unsigned long state)6997 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6998 {
6999 switch (state) {
7000 case PM_HIBERNATION_PREPARE:
7001 case PM_SUSPEND_PREPARE:
7002 return kvm_arch_suspend_notifier(kvm);
7003 }
7004
7005 return NOTIFY_DONE;
7006 }
7007 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
7008
kvm_vm_ioctl_get_clock(struct kvm * kvm,void __user * argp)7009 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
7010 {
7011 struct kvm_clock_data data = { 0 };
7012
7013 get_kvmclock(kvm, &data);
7014 if (copy_to_user(argp, &data, sizeof(data)))
7015 return -EFAULT;
7016
7017 return 0;
7018 }
7019
kvm_vm_ioctl_set_clock(struct kvm * kvm,void __user * argp)7020 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
7021 {
7022 struct kvm_arch *ka = &kvm->arch;
7023 struct kvm_clock_data data;
7024 u64 now_raw_ns;
7025
7026 if (copy_from_user(&data, argp, sizeof(data)))
7027 return -EFAULT;
7028
7029 /*
7030 * Only KVM_CLOCK_REALTIME is used, but allow passing the
7031 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
7032 */
7033 if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
7034 return -EINVAL;
7035
7036 kvm_hv_request_tsc_page_update(kvm);
7037 kvm_start_pvclock_update(kvm);
7038 pvclock_update_vm_gtod_copy(kvm);
7039
7040 /*
7041 * This pairs with kvm_guest_time_update(): when masterclock is
7042 * in use, we use master_kernel_ns + kvmclock_offset to set
7043 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
7044 * is slightly ahead) here we risk going negative on unsigned
7045 * 'system_time' when 'data.clock' is very small.
7046 */
7047 if (data.flags & KVM_CLOCK_REALTIME) {
7048 u64 now_real_ns = ktime_get_real_ns();
7049
7050 /*
7051 * Avoid stepping the kvmclock backwards.
7052 */
7053 if (now_real_ns > data.realtime)
7054 data.clock += now_real_ns - data.realtime;
7055 }
7056
7057 if (ka->use_master_clock)
7058 now_raw_ns = ka->master_kernel_ns;
7059 else
7060 now_raw_ns = get_kvmclock_base_ns();
7061 ka->kvmclock_offset = data.clock - now_raw_ns;
7062 kvm_end_pvclock_update(kvm);
7063 return 0;
7064 }
7065
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)7066 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
7067 {
7068 struct kvm *kvm = filp->private_data;
7069 void __user *argp = (void __user *)arg;
7070 int r = -ENOTTY;
7071 /*
7072 * This union makes it completely explicit to gcc-3.x
7073 * that these two variables' stack usage should be
7074 * combined, not added together.
7075 */
7076 union {
7077 struct kvm_pit_state ps;
7078 struct kvm_pit_state2 ps2;
7079 struct kvm_pit_config pit_config;
7080 } u;
7081
7082 switch (ioctl) {
7083 case KVM_SET_TSS_ADDR:
7084 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
7085 break;
7086 case KVM_SET_IDENTITY_MAP_ADDR: {
7087 u64 ident_addr;
7088
7089 mutex_lock(&kvm->lock);
7090 r = -EINVAL;
7091 if (kvm->created_vcpus)
7092 goto set_identity_unlock;
7093 r = -EFAULT;
7094 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
7095 goto set_identity_unlock;
7096 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
7097 set_identity_unlock:
7098 mutex_unlock(&kvm->lock);
7099 break;
7100 }
7101 case KVM_SET_NR_MMU_PAGES:
7102 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
7103 break;
7104 case KVM_CREATE_IRQCHIP: {
7105 mutex_lock(&kvm->lock);
7106
7107 r = -EEXIST;
7108 if (irqchip_in_kernel(kvm))
7109 goto create_irqchip_unlock;
7110
7111 r = -EINVAL;
7112 if (kvm->created_vcpus)
7113 goto create_irqchip_unlock;
7114
7115 r = kvm_pic_init(kvm);
7116 if (r)
7117 goto create_irqchip_unlock;
7118
7119 r = kvm_ioapic_init(kvm);
7120 if (r) {
7121 kvm_pic_destroy(kvm);
7122 goto create_irqchip_unlock;
7123 }
7124
7125 r = kvm_setup_default_irq_routing(kvm);
7126 if (r) {
7127 kvm_ioapic_destroy(kvm);
7128 kvm_pic_destroy(kvm);
7129 goto create_irqchip_unlock;
7130 }
7131 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
7132 smp_wmb();
7133 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
7134 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
7135 create_irqchip_unlock:
7136 mutex_unlock(&kvm->lock);
7137 break;
7138 }
7139 case KVM_CREATE_PIT:
7140 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
7141 goto create_pit;
7142 case KVM_CREATE_PIT2:
7143 r = -EFAULT;
7144 if (copy_from_user(&u.pit_config, argp,
7145 sizeof(struct kvm_pit_config)))
7146 goto out;
7147 create_pit:
7148 mutex_lock(&kvm->lock);
7149 r = -EEXIST;
7150 if (kvm->arch.vpit)
7151 goto create_pit_unlock;
7152 r = -ENOENT;
7153 if (!pic_in_kernel(kvm))
7154 goto create_pit_unlock;
7155 r = -ENOMEM;
7156 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
7157 if (kvm->arch.vpit)
7158 r = 0;
7159 create_pit_unlock:
7160 mutex_unlock(&kvm->lock);
7161 break;
7162 case KVM_GET_IRQCHIP: {
7163 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7164 struct kvm_irqchip *chip;
7165
7166 chip = memdup_user(argp, sizeof(*chip));
7167 if (IS_ERR(chip)) {
7168 r = PTR_ERR(chip);
7169 goto out;
7170 }
7171
7172 r = -ENXIO;
7173 if (!irqchip_kernel(kvm))
7174 goto get_irqchip_out;
7175 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
7176 if (r)
7177 goto get_irqchip_out;
7178 r = -EFAULT;
7179 if (copy_to_user(argp, chip, sizeof(*chip)))
7180 goto get_irqchip_out;
7181 r = 0;
7182 get_irqchip_out:
7183 kfree(chip);
7184 break;
7185 }
7186 case KVM_SET_IRQCHIP: {
7187 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7188 struct kvm_irqchip *chip;
7189
7190 chip = memdup_user(argp, sizeof(*chip));
7191 if (IS_ERR(chip)) {
7192 r = PTR_ERR(chip);
7193 goto out;
7194 }
7195
7196 r = -ENXIO;
7197 if (!irqchip_kernel(kvm))
7198 goto set_irqchip_out;
7199 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
7200 set_irqchip_out:
7201 kfree(chip);
7202 break;
7203 }
7204 case KVM_GET_PIT: {
7205 r = -EFAULT;
7206 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
7207 goto out;
7208 r = -ENXIO;
7209 if (!kvm->arch.vpit)
7210 goto out;
7211 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
7212 if (r)
7213 goto out;
7214 r = -EFAULT;
7215 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
7216 goto out;
7217 r = 0;
7218 break;
7219 }
7220 case KVM_SET_PIT: {
7221 r = -EFAULT;
7222 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
7223 goto out;
7224 mutex_lock(&kvm->lock);
7225 r = -ENXIO;
7226 if (!kvm->arch.vpit)
7227 goto set_pit_out;
7228 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
7229 set_pit_out:
7230 mutex_unlock(&kvm->lock);
7231 break;
7232 }
7233 case KVM_GET_PIT2: {
7234 r = -ENXIO;
7235 if (!kvm->arch.vpit)
7236 goto out;
7237 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
7238 if (r)
7239 goto out;
7240 r = -EFAULT;
7241 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
7242 goto out;
7243 r = 0;
7244 break;
7245 }
7246 case KVM_SET_PIT2: {
7247 r = -EFAULT;
7248 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
7249 goto out;
7250 mutex_lock(&kvm->lock);
7251 r = -ENXIO;
7252 if (!kvm->arch.vpit)
7253 goto set_pit2_out;
7254 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
7255 set_pit2_out:
7256 mutex_unlock(&kvm->lock);
7257 break;
7258 }
7259 case KVM_REINJECT_CONTROL: {
7260 struct kvm_reinject_control control;
7261 r = -EFAULT;
7262 if (copy_from_user(&control, argp, sizeof(control)))
7263 goto out;
7264 r = -ENXIO;
7265 if (!kvm->arch.vpit)
7266 goto out;
7267 r = kvm_vm_ioctl_reinject(kvm, &control);
7268 break;
7269 }
7270 case KVM_SET_BOOT_CPU_ID:
7271 r = 0;
7272 mutex_lock(&kvm->lock);
7273 if (kvm->created_vcpus)
7274 r = -EBUSY;
7275 else if (arg > KVM_MAX_VCPU_IDS ||
7276 (kvm->arch.max_vcpu_ids && arg > kvm->arch.max_vcpu_ids))
7277 r = -EINVAL;
7278 else
7279 kvm->arch.bsp_vcpu_id = arg;
7280 mutex_unlock(&kvm->lock);
7281 break;
7282 #ifdef CONFIG_KVM_XEN
7283 case KVM_XEN_HVM_CONFIG: {
7284 struct kvm_xen_hvm_config xhc;
7285 r = -EFAULT;
7286 if (copy_from_user(&xhc, argp, sizeof(xhc)))
7287 goto out;
7288 r = kvm_xen_hvm_config(kvm, &xhc);
7289 break;
7290 }
7291 case KVM_XEN_HVM_GET_ATTR: {
7292 struct kvm_xen_hvm_attr xha;
7293
7294 r = -EFAULT;
7295 if (copy_from_user(&xha, argp, sizeof(xha)))
7296 goto out;
7297 r = kvm_xen_hvm_get_attr(kvm, &xha);
7298 if (!r && copy_to_user(argp, &xha, sizeof(xha)))
7299 r = -EFAULT;
7300 break;
7301 }
7302 case KVM_XEN_HVM_SET_ATTR: {
7303 struct kvm_xen_hvm_attr xha;
7304
7305 r = -EFAULT;
7306 if (copy_from_user(&xha, argp, sizeof(xha)))
7307 goto out;
7308 r = kvm_xen_hvm_set_attr(kvm, &xha);
7309 break;
7310 }
7311 case KVM_XEN_HVM_EVTCHN_SEND: {
7312 struct kvm_irq_routing_xen_evtchn uxe;
7313
7314 r = -EFAULT;
7315 if (copy_from_user(&uxe, argp, sizeof(uxe)))
7316 goto out;
7317 r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
7318 break;
7319 }
7320 #endif
7321 case KVM_SET_CLOCK:
7322 r = kvm_vm_ioctl_set_clock(kvm, argp);
7323 break;
7324 case KVM_GET_CLOCK:
7325 r = kvm_vm_ioctl_get_clock(kvm, argp);
7326 break;
7327 case KVM_SET_TSC_KHZ: {
7328 u32 user_tsc_khz;
7329
7330 r = -EINVAL;
7331 user_tsc_khz = (u32)arg;
7332
7333 if (kvm_caps.has_tsc_control &&
7334 user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
7335 goto out;
7336
7337 if (user_tsc_khz == 0)
7338 user_tsc_khz = tsc_khz;
7339
7340 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
7341 r = 0;
7342
7343 goto out;
7344 }
7345 case KVM_GET_TSC_KHZ: {
7346 r = READ_ONCE(kvm->arch.default_tsc_khz);
7347 goto out;
7348 }
7349 case KVM_MEMORY_ENCRYPT_OP:
7350 r = -ENOTTY;
7351 if (!kvm_x86_ops.mem_enc_ioctl)
7352 goto out;
7353
7354 r = kvm_x86_call(mem_enc_ioctl)(kvm, argp);
7355 break;
7356 case KVM_MEMORY_ENCRYPT_REG_REGION: {
7357 struct kvm_enc_region region;
7358
7359 r = -EFAULT;
7360 if (copy_from_user(®ion, argp, sizeof(region)))
7361 goto out;
7362
7363 r = -ENOTTY;
7364 if (!kvm_x86_ops.mem_enc_register_region)
7365 goto out;
7366
7367 r = kvm_x86_call(mem_enc_register_region)(kvm, ®ion);
7368 break;
7369 }
7370 case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
7371 struct kvm_enc_region region;
7372
7373 r = -EFAULT;
7374 if (copy_from_user(®ion, argp, sizeof(region)))
7375 goto out;
7376
7377 r = -ENOTTY;
7378 if (!kvm_x86_ops.mem_enc_unregister_region)
7379 goto out;
7380
7381 r = kvm_x86_call(mem_enc_unregister_region)(kvm, ®ion);
7382 break;
7383 }
7384 #ifdef CONFIG_KVM_HYPERV
7385 case KVM_HYPERV_EVENTFD: {
7386 struct kvm_hyperv_eventfd hvevfd;
7387
7388 r = -EFAULT;
7389 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
7390 goto out;
7391 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
7392 break;
7393 }
7394 #endif
7395 case KVM_SET_PMU_EVENT_FILTER:
7396 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
7397 break;
7398 case KVM_X86_SET_MSR_FILTER: {
7399 struct kvm_msr_filter __user *user_msr_filter = argp;
7400 struct kvm_msr_filter filter;
7401
7402 if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
7403 return -EFAULT;
7404
7405 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
7406 break;
7407 }
7408 default:
7409 r = -ENOTTY;
7410 }
7411 out:
7412 return r;
7413 }
7414
kvm_probe_feature_msr(u32 msr_index)7415 static void kvm_probe_feature_msr(u32 msr_index)
7416 {
7417 u64 data;
7418
7419 if (kvm_get_feature_msr(NULL, msr_index, &data, true))
7420 return;
7421
7422 msr_based_features[num_msr_based_features++] = msr_index;
7423 }
7424
kvm_probe_msr_to_save(u32 msr_index)7425 static void kvm_probe_msr_to_save(u32 msr_index)
7426 {
7427 u32 dummy[2];
7428
7429 if (rdmsr_safe(msr_index, &dummy[0], &dummy[1]))
7430 return;
7431
7432 /*
7433 * Even MSRs that are valid in the host may not be exposed to guests in
7434 * some cases.
7435 */
7436 switch (msr_index) {
7437 case MSR_IA32_BNDCFGS:
7438 if (!kvm_mpx_supported())
7439 return;
7440 break;
7441 case MSR_TSC_AUX:
7442 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
7443 !kvm_cpu_cap_has(X86_FEATURE_RDPID))
7444 return;
7445 break;
7446 case MSR_IA32_UMWAIT_CONTROL:
7447 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
7448 return;
7449 break;
7450 case MSR_IA32_RTIT_CTL:
7451 case MSR_IA32_RTIT_STATUS:
7452 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
7453 return;
7454 break;
7455 case MSR_IA32_RTIT_CR3_MATCH:
7456 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7457 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
7458 return;
7459 break;
7460 case MSR_IA32_RTIT_OUTPUT_BASE:
7461 case MSR_IA32_RTIT_OUTPUT_MASK:
7462 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7463 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
7464 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
7465 return;
7466 break;
7467 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
7468 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7469 (msr_index - MSR_IA32_RTIT_ADDR0_A >=
7470 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2))
7471 return;
7472 break;
7473 case MSR_ARCH_PERFMON_PERFCTR0 ...
7474 MSR_ARCH_PERFMON_PERFCTR0 + KVM_MAX_NR_GP_COUNTERS - 1:
7475 if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >=
7476 kvm_pmu_cap.num_counters_gp)
7477 return;
7478 break;
7479 case MSR_ARCH_PERFMON_EVENTSEL0 ...
7480 MSR_ARCH_PERFMON_EVENTSEL0 + KVM_MAX_NR_GP_COUNTERS - 1:
7481 if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >=
7482 kvm_pmu_cap.num_counters_gp)
7483 return;
7484 break;
7485 case MSR_ARCH_PERFMON_FIXED_CTR0 ...
7486 MSR_ARCH_PERFMON_FIXED_CTR0 + KVM_MAX_NR_FIXED_COUNTERS - 1:
7487 if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >=
7488 kvm_pmu_cap.num_counters_fixed)
7489 return;
7490 break;
7491 case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
7492 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
7493 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
7494 if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
7495 return;
7496 break;
7497 case MSR_IA32_XFD:
7498 case MSR_IA32_XFD_ERR:
7499 if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
7500 return;
7501 break;
7502 case MSR_IA32_TSX_CTRL:
7503 if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR))
7504 return;
7505 break;
7506 default:
7507 break;
7508 }
7509
7510 msrs_to_save[num_msrs_to_save++] = msr_index;
7511 }
7512
kvm_init_msr_lists(void)7513 static void kvm_init_msr_lists(void)
7514 {
7515 unsigned i;
7516
7517 BUILD_BUG_ON_MSG(KVM_MAX_NR_FIXED_COUNTERS != 3,
7518 "Please update the fixed PMCs in msrs_to_save_pmu[]");
7519
7520 num_msrs_to_save = 0;
7521 num_emulated_msrs = 0;
7522 num_msr_based_features = 0;
7523
7524 for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++)
7525 kvm_probe_msr_to_save(msrs_to_save_base[i]);
7526
7527 if (enable_pmu) {
7528 for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++)
7529 kvm_probe_msr_to_save(msrs_to_save_pmu[i]);
7530 }
7531
7532 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
7533 if (!kvm_x86_call(has_emulated_msr)(NULL,
7534 emulated_msrs_all[i]))
7535 continue;
7536
7537 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
7538 }
7539
7540 for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++)
7541 kvm_probe_feature_msr(i);
7542
7543 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++)
7544 kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]);
7545 }
7546
vcpu_mmio_write(struct kvm_vcpu * vcpu,gpa_t addr,int len,const void * v)7547 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
7548 const void *v)
7549 {
7550 int handled = 0;
7551 int n;
7552
7553 do {
7554 n = min(len, 8);
7555 if (!(lapic_in_kernel(vcpu) &&
7556 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
7557 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
7558 break;
7559 handled += n;
7560 addr += n;
7561 len -= n;
7562 v += n;
7563 } while (len);
7564
7565 return handled;
7566 }
7567
vcpu_mmio_read(struct kvm_vcpu * vcpu,gpa_t addr,int len,void * v)7568 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
7569 {
7570 int handled = 0;
7571 int n;
7572
7573 do {
7574 n = min(len, 8);
7575 if (!(lapic_in_kernel(vcpu) &&
7576 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
7577 addr, n, v))
7578 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
7579 break;
7580 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
7581 handled += n;
7582 addr += n;
7583 len -= n;
7584 v += n;
7585 } while (len);
7586
7587 return handled;
7588 }
7589
kvm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)7590 void kvm_set_segment(struct kvm_vcpu *vcpu,
7591 struct kvm_segment *var, int seg)
7592 {
7593 kvm_x86_call(set_segment)(vcpu, var, seg);
7594 }
7595
kvm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)7596 void kvm_get_segment(struct kvm_vcpu *vcpu,
7597 struct kvm_segment *var, int seg)
7598 {
7599 kvm_x86_call(get_segment)(vcpu, var, seg);
7600 }
7601
translate_nested_gpa(struct kvm_vcpu * vcpu,gpa_t gpa,u64 access,struct x86_exception * exception)7602 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7603 struct x86_exception *exception)
7604 {
7605 struct kvm_mmu *mmu = vcpu->arch.mmu;
7606 gpa_t t_gpa;
7607
7608 BUG_ON(!mmu_is_nested(vcpu));
7609
7610 /* NPT walks are always user-walks */
7611 access |= PFERR_USER_MASK;
7612 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7613
7614 return t_gpa;
7615 }
7616
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7617 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7618 struct x86_exception *exception)
7619 {
7620 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7621
7622 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7623 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7624 }
7625 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
7626
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7627 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7628 struct x86_exception *exception)
7629 {
7630 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7631
7632 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7633 access |= PFERR_WRITE_MASK;
7634 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7635 }
7636 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
7637
7638 /* uses this to access any guest's mapped memory without checking CPL */
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7639 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7640 struct x86_exception *exception)
7641 {
7642 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7643
7644 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7645 }
7646
kvm_read_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u64 access,struct x86_exception * exception)7647 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7648 struct kvm_vcpu *vcpu, u64 access,
7649 struct x86_exception *exception)
7650 {
7651 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7652 void *data = val;
7653 int r = X86EMUL_CONTINUE;
7654
7655 while (bytes) {
7656 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7657 unsigned offset = addr & (PAGE_SIZE-1);
7658 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7659 int ret;
7660
7661 if (gpa == INVALID_GPA)
7662 return X86EMUL_PROPAGATE_FAULT;
7663 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7664 offset, toread);
7665 if (ret < 0) {
7666 r = X86EMUL_IO_NEEDED;
7667 goto out;
7668 }
7669
7670 bytes -= toread;
7671 data += toread;
7672 addr += toread;
7673 }
7674 out:
7675 return r;
7676 }
7677
7678 /* used for instruction fetching */
kvm_fetch_guest_virt(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7679 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7680 gva_t addr, void *val, unsigned int bytes,
7681 struct x86_exception *exception)
7682 {
7683 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7684 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7685 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7686 unsigned offset;
7687 int ret;
7688
7689 /* Inline kvm_read_guest_virt_helper for speed. */
7690 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7691 exception);
7692 if (unlikely(gpa == INVALID_GPA))
7693 return X86EMUL_PROPAGATE_FAULT;
7694
7695 offset = addr & (PAGE_SIZE-1);
7696 if (WARN_ON(offset + bytes > PAGE_SIZE))
7697 bytes = (unsigned)PAGE_SIZE - offset;
7698 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7699 offset, bytes);
7700 if (unlikely(ret < 0))
7701 return X86EMUL_IO_NEEDED;
7702
7703 return X86EMUL_CONTINUE;
7704 }
7705
kvm_read_guest_virt(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7706 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7707 gva_t addr, void *val, unsigned int bytes,
7708 struct x86_exception *exception)
7709 {
7710 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7711
7712 /*
7713 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7714 * is returned, but our callers are not ready for that and they blindly
7715 * call kvm_inject_page_fault. Ensure that they at least do not leak
7716 * uninitialized kernel stack memory into cr2 and error code.
7717 */
7718 memset(exception, 0, sizeof(*exception));
7719 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7720 exception);
7721 }
7722 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
7723
emulator_read_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)7724 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7725 gva_t addr, void *val, unsigned int bytes,
7726 struct x86_exception *exception, bool system)
7727 {
7728 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7729 u64 access = 0;
7730
7731 if (system)
7732 access |= PFERR_IMPLICIT_ACCESS;
7733 else if (kvm_x86_call(get_cpl)(vcpu) == 3)
7734 access |= PFERR_USER_MASK;
7735
7736 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7737 }
7738
kvm_write_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u64 access,struct x86_exception * exception)7739 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7740 struct kvm_vcpu *vcpu, u64 access,
7741 struct x86_exception *exception)
7742 {
7743 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7744 void *data = val;
7745 int r = X86EMUL_CONTINUE;
7746
7747 while (bytes) {
7748 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7749 unsigned offset = addr & (PAGE_SIZE-1);
7750 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7751 int ret;
7752
7753 if (gpa == INVALID_GPA)
7754 return X86EMUL_PROPAGATE_FAULT;
7755 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7756 if (ret < 0) {
7757 r = X86EMUL_IO_NEEDED;
7758 goto out;
7759 }
7760
7761 bytes -= towrite;
7762 data += towrite;
7763 addr += towrite;
7764 }
7765 out:
7766 return r;
7767 }
7768
emulator_write_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)7769 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7770 unsigned int bytes, struct x86_exception *exception,
7771 bool system)
7772 {
7773 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7774 u64 access = PFERR_WRITE_MASK;
7775
7776 if (system)
7777 access |= PFERR_IMPLICIT_ACCESS;
7778 else if (kvm_x86_call(get_cpl)(vcpu) == 3)
7779 access |= PFERR_USER_MASK;
7780
7781 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7782 access, exception);
7783 }
7784
kvm_write_guest_virt_system(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7785 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7786 unsigned int bytes, struct x86_exception *exception)
7787 {
7788 /* kvm_write_guest_virt_system can pull in tons of pages. */
7789 vcpu->arch.l1tf_flush_l1d = true;
7790
7791 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7792 PFERR_WRITE_MASK, exception);
7793 }
7794 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7795
kvm_check_emulate_insn(struct kvm_vcpu * vcpu,int emul_type,void * insn,int insn_len)7796 static int kvm_check_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7797 void *insn, int insn_len)
7798 {
7799 return kvm_x86_call(check_emulate_instruction)(vcpu, emul_type,
7800 insn, insn_len);
7801 }
7802
handle_ud(struct kvm_vcpu * vcpu)7803 int handle_ud(struct kvm_vcpu *vcpu)
7804 {
7805 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7806 int fep_flags = READ_ONCE(force_emulation_prefix);
7807 int emul_type = EMULTYPE_TRAP_UD;
7808 char sig[5]; /* ud2; .ascii "kvm" */
7809 struct x86_exception e;
7810 int r;
7811
7812 r = kvm_check_emulate_insn(vcpu, emul_type, NULL, 0);
7813 if (r != X86EMUL_CONTINUE)
7814 return 1;
7815
7816 if (fep_flags &&
7817 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7818 sig, sizeof(sig), &e) == 0 &&
7819 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7820 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF)
7821 kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF);
7822 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7823 emul_type = EMULTYPE_TRAP_UD_FORCED;
7824 }
7825
7826 return kvm_emulate_instruction(vcpu, emul_type);
7827 }
7828 EXPORT_SYMBOL_GPL(handle_ud);
7829
vcpu_is_mmio_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t gpa,bool write)7830 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7831 gpa_t gpa, bool write)
7832 {
7833 /* For APIC access vmexit */
7834 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7835 return 1;
7836
7837 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7838 trace_vcpu_match_mmio(gva, gpa, write, true);
7839 return 1;
7840 }
7841
7842 return 0;
7843 }
7844
vcpu_mmio_gva_to_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t * gpa,struct x86_exception * exception,bool write)7845 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7846 gpa_t *gpa, struct x86_exception *exception,
7847 bool write)
7848 {
7849 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7850 u64 access = ((kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7851 | (write ? PFERR_WRITE_MASK : 0);
7852
7853 /*
7854 * currently PKRU is only applied to ept enabled guest so
7855 * there is no pkey in EPT page table for L1 guest or EPT
7856 * shadow page table for L2 guest.
7857 */
7858 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7859 !permission_fault(vcpu, vcpu->arch.walk_mmu,
7860 vcpu->arch.mmio_access, 0, access))) {
7861 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7862 (gva & (PAGE_SIZE - 1));
7863 trace_vcpu_match_mmio(gva, *gpa, write, false);
7864 return 1;
7865 }
7866
7867 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7868
7869 if (*gpa == INVALID_GPA)
7870 return -1;
7871
7872 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7873 }
7874
emulator_write_phys(struct kvm_vcpu * vcpu,gpa_t gpa,const void * val,int bytes)7875 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7876 const void *val, int bytes)
7877 {
7878 int ret;
7879
7880 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7881 if (ret < 0)
7882 return 0;
7883 kvm_page_track_write(vcpu, gpa, val, bytes);
7884 return 1;
7885 }
7886
7887 struct read_write_emulator_ops {
7888 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7889 int bytes);
7890 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7891 void *val, int bytes);
7892 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7893 int bytes, void *val);
7894 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7895 void *val, int bytes);
7896 bool write;
7897 };
7898
read_prepare(struct kvm_vcpu * vcpu,void * val,int bytes)7899 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7900 {
7901 if (vcpu->mmio_read_completed) {
7902 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7903 vcpu->mmio_fragments[0].gpa, val);
7904 vcpu->mmio_read_completed = 0;
7905 return 1;
7906 }
7907
7908 return 0;
7909 }
7910
read_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7911 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7912 void *val, int bytes)
7913 {
7914 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7915 }
7916
write_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7917 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7918 void *val, int bytes)
7919 {
7920 return emulator_write_phys(vcpu, gpa, val, bytes);
7921 }
7922
write_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,int bytes,void * val)7923 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7924 {
7925 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7926 return vcpu_mmio_write(vcpu, gpa, bytes, val);
7927 }
7928
read_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7929 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7930 void *val, int bytes)
7931 {
7932 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7933 return X86EMUL_IO_NEEDED;
7934 }
7935
write_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7936 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7937 void *val, int bytes)
7938 {
7939 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7940
7941 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7942 return X86EMUL_CONTINUE;
7943 }
7944
7945 static const struct read_write_emulator_ops read_emultor = {
7946 .read_write_prepare = read_prepare,
7947 .read_write_emulate = read_emulate,
7948 .read_write_mmio = vcpu_mmio_read,
7949 .read_write_exit_mmio = read_exit_mmio,
7950 };
7951
7952 static const struct read_write_emulator_ops write_emultor = {
7953 .read_write_emulate = write_emulate,
7954 .read_write_mmio = write_mmio,
7955 .read_write_exit_mmio = write_exit_mmio,
7956 .write = true,
7957 };
7958
emulator_read_write_onepage(unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,struct kvm_vcpu * vcpu,const struct read_write_emulator_ops * ops)7959 static int emulator_read_write_onepage(unsigned long addr, void *val,
7960 unsigned int bytes,
7961 struct x86_exception *exception,
7962 struct kvm_vcpu *vcpu,
7963 const struct read_write_emulator_ops *ops)
7964 {
7965 gpa_t gpa;
7966 int handled, ret;
7967 bool write = ops->write;
7968 struct kvm_mmio_fragment *frag;
7969 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7970
7971 /*
7972 * If the exit was due to a NPF we may already have a GPA.
7973 * If the GPA is present, use it to avoid the GVA to GPA table walk.
7974 * Note, this cannot be used on string operations since string
7975 * operation using rep will only have the initial GPA from the NPF
7976 * occurred.
7977 */
7978 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7979 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7980 gpa = ctxt->gpa_val;
7981 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7982 } else {
7983 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7984 if (ret < 0)
7985 return X86EMUL_PROPAGATE_FAULT;
7986 }
7987
7988 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7989 return X86EMUL_CONTINUE;
7990
7991 /*
7992 * Is this MMIO handled locally?
7993 */
7994 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7995 if (handled == bytes)
7996 return X86EMUL_CONTINUE;
7997
7998 gpa += handled;
7999 bytes -= handled;
8000 val += handled;
8001
8002 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
8003 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
8004 frag->gpa = gpa;
8005 frag->data = val;
8006 frag->len = bytes;
8007 return X86EMUL_CONTINUE;
8008 }
8009
emulator_read_write(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,const struct read_write_emulator_ops * ops)8010 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
8011 unsigned long addr,
8012 void *val, unsigned int bytes,
8013 struct x86_exception *exception,
8014 const struct read_write_emulator_ops *ops)
8015 {
8016 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8017 gpa_t gpa;
8018 int rc;
8019
8020 if (ops->read_write_prepare &&
8021 ops->read_write_prepare(vcpu, val, bytes))
8022 return X86EMUL_CONTINUE;
8023
8024 vcpu->mmio_nr_fragments = 0;
8025
8026 /* Crossing a page boundary? */
8027 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
8028 int now;
8029
8030 now = -addr & ~PAGE_MASK;
8031 rc = emulator_read_write_onepage(addr, val, now, exception,
8032 vcpu, ops);
8033
8034 if (rc != X86EMUL_CONTINUE)
8035 return rc;
8036 addr += now;
8037 if (ctxt->mode != X86EMUL_MODE_PROT64)
8038 addr = (u32)addr;
8039 val += now;
8040 bytes -= now;
8041 }
8042
8043 rc = emulator_read_write_onepage(addr, val, bytes, exception,
8044 vcpu, ops);
8045 if (rc != X86EMUL_CONTINUE)
8046 return rc;
8047
8048 if (!vcpu->mmio_nr_fragments)
8049 return X86EMUL_CONTINUE;
8050
8051 gpa = vcpu->mmio_fragments[0].gpa;
8052
8053 vcpu->mmio_needed = 1;
8054 vcpu->mmio_cur_fragment = 0;
8055
8056 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
8057 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
8058 vcpu->run->exit_reason = KVM_EXIT_MMIO;
8059 vcpu->run->mmio.phys_addr = gpa;
8060
8061 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
8062 }
8063
emulator_read_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception)8064 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
8065 unsigned long addr,
8066 void *val,
8067 unsigned int bytes,
8068 struct x86_exception *exception)
8069 {
8070 return emulator_read_write(ctxt, addr, val, bytes,
8071 exception, &read_emultor);
8072 }
8073
emulator_write_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * val,unsigned int bytes,struct x86_exception * exception)8074 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
8075 unsigned long addr,
8076 const void *val,
8077 unsigned int bytes,
8078 struct x86_exception *exception)
8079 {
8080 return emulator_read_write(ctxt, addr, (void *)val, bytes,
8081 exception, &write_emultor);
8082 }
8083
8084 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
8085 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
8086
emulator_cmpxchg_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * old,const void * new,unsigned int bytes,struct x86_exception * exception)8087 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
8088 unsigned long addr,
8089 const void *old,
8090 const void *new,
8091 unsigned int bytes,
8092 struct x86_exception *exception)
8093 {
8094 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8095 u64 page_line_mask;
8096 unsigned long hva;
8097 gpa_t gpa;
8098 int r;
8099
8100 /* guests cmpxchg8b have to be emulated atomically */
8101 if (bytes > 8 || (bytes & (bytes - 1)))
8102 goto emul_write;
8103
8104 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
8105
8106 if (gpa == INVALID_GPA ||
8107 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
8108 goto emul_write;
8109
8110 /*
8111 * Emulate the atomic as a straight write to avoid #AC if SLD is
8112 * enabled in the host and the access splits a cache line.
8113 */
8114 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
8115 page_line_mask = ~(cache_line_size() - 1);
8116 else
8117 page_line_mask = PAGE_MASK;
8118
8119 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
8120 goto emul_write;
8121
8122 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
8123 if (kvm_is_error_hva(hva))
8124 goto emul_write;
8125
8126 hva += offset_in_page(gpa);
8127
8128 switch (bytes) {
8129 case 1:
8130 r = emulator_try_cmpxchg_user(u8, hva, old, new);
8131 break;
8132 case 2:
8133 r = emulator_try_cmpxchg_user(u16, hva, old, new);
8134 break;
8135 case 4:
8136 r = emulator_try_cmpxchg_user(u32, hva, old, new);
8137 break;
8138 case 8:
8139 r = emulator_try_cmpxchg_user(u64, hva, old, new);
8140 break;
8141 default:
8142 BUG();
8143 }
8144
8145 if (r < 0)
8146 return X86EMUL_UNHANDLEABLE;
8147
8148 /*
8149 * Mark the page dirty _before_ checking whether or not the CMPXCHG was
8150 * successful, as the old value is written back on failure. Note, for
8151 * live migration, this is unnecessarily conservative as CMPXCHG writes
8152 * back the original value and the access is atomic, but KVM's ABI is
8153 * that all writes are dirty logged, regardless of the value written.
8154 */
8155 kvm_vcpu_mark_page_dirty(vcpu, gpa_to_gfn(gpa));
8156
8157 if (r)
8158 return X86EMUL_CMPXCHG_FAILED;
8159
8160 kvm_page_track_write(vcpu, gpa, new, bytes);
8161
8162 return X86EMUL_CONTINUE;
8163
8164 emul_write:
8165 pr_warn_once("emulating exchange as write\n");
8166
8167 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
8168 }
8169
emulator_pio_in_out(struct kvm_vcpu * vcpu,int size,unsigned short port,void * data,unsigned int count,bool in)8170 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
8171 unsigned short port, void *data,
8172 unsigned int count, bool in)
8173 {
8174 unsigned i;
8175 int r;
8176
8177 WARN_ON_ONCE(vcpu->arch.pio.count);
8178 for (i = 0; i < count; i++) {
8179 if (in)
8180 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
8181 else
8182 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
8183
8184 if (r) {
8185 if (i == 0)
8186 goto userspace_io;
8187
8188 /*
8189 * Userspace must have unregistered the device while PIO
8190 * was running. Drop writes / read as 0.
8191 */
8192 if (in)
8193 memset(data, 0, size * (count - i));
8194 break;
8195 }
8196
8197 data += size;
8198 }
8199 return 1;
8200
8201 userspace_io:
8202 vcpu->arch.pio.port = port;
8203 vcpu->arch.pio.in = in;
8204 vcpu->arch.pio.count = count;
8205 vcpu->arch.pio.size = size;
8206
8207 if (in)
8208 memset(vcpu->arch.pio_data, 0, size * count);
8209 else
8210 memcpy(vcpu->arch.pio_data, data, size * count);
8211
8212 vcpu->run->exit_reason = KVM_EXIT_IO;
8213 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
8214 vcpu->run->io.size = size;
8215 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
8216 vcpu->run->io.count = count;
8217 vcpu->run->io.port = port;
8218 return 0;
8219 }
8220
emulator_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port,void * val,unsigned int count)8221 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
8222 unsigned short port, void *val, unsigned int count)
8223 {
8224 int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
8225 if (r)
8226 trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
8227
8228 return r;
8229 }
8230
complete_emulator_pio_in(struct kvm_vcpu * vcpu,void * val)8231 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
8232 {
8233 int size = vcpu->arch.pio.size;
8234 unsigned int count = vcpu->arch.pio.count;
8235 memcpy(val, vcpu->arch.pio_data, size * count);
8236 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
8237 vcpu->arch.pio.count = 0;
8238 }
8239
emulator_pio_in_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,void * val,unsigned int count)8240 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
8241 int size, unsigned short port, void *val,
8242 unsigned int count)
8243 {
8244 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8245 if (vcpu->arch.pio.count) {
8246 /*
8247 * Complete a previous iteration that required userspace I/O.
8248 * Note, @count isn't guaranteed to match pio.count as userspace
8249 * can modify ECX before rerunning the vCPU. Ignore any such
8250 * shenanigans as KVM doesn't support modifying the rep count,
8251 * and the emulator ensures @count doesn't overflow the buffer.
8252 */
8253 complete_emulator_pio_in(vcpu, val);
8254 return 1;
8255 }
8256
8257 return emulator_pio_in(vcpu, size, port, val, count);
8258 }
8259
emulator_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port,const void * val,unsigned int count)8260 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
8261 unsigned short port, const void *val,
8262 unsigned int count)
8263 {
8264 trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
8265 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
8266 }
8267
emulator_pio_out_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,const void * val,unsigned int count)8268 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
8269 int size, unsigned short port,
8270 const void *val, unsigned int count)
8271 {
8272 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
8273 }
8274
get_segment_base(struct kvm_vcpu * vcpu,int seg)8275 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
8276 {
8277 return kvm_x86_call(get_segment_base)(vcpu, seg);
8278 }
8279
emulator_invlpg(struct x86_emulate_ctxt * ctxt,ulong address)8280 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
8281 {
8282 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
8283 }
8284
kvm_emulate_wbinvd_noskip(struct kvm_vcpu * vcpu)8285 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
8286 {
8287 if (!need_emulate_wbinvd(vcpu))
8288 return X86EMUL_CONTINUE;
8289
8290 if (kvm_x86_call(has_wbinvd_exit)()) {
8291 int cpu = get_cpu();
8292
8293 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
8294 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
8295 wbinvd_ipi, NULL, 1);
8296 put_cpu();
8297 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
8298 } else
8299 wbinvd();
8300 return X86EMUL_CONTINUE;
8301 }
8302
kvm_emulate_wbinvd(struct kvm_vcpu * vcpu)8303 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
8304 {
8305 kvm_emulate_wbinvd_noskip(vcpu);
8306 return kvm_skip_emulated_instruction(vcpu);
8307 }
8308 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
8309
8310
8311
emulator_wbinvd(struct x86_emulate_ctxt * ctxt)8312 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
8313 {
8314 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
8315 }
8316
emulator_get_dr(struct x86_emulate_ctxt * ctxt,int dr)8317 static unsigned long emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr)
8318 {
8319 return kvm_get_dr(emul_to_vcpu(ctxt), dr);
8320 }
8321
emulator_set_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long value)8322 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
8323 unsigned long value)
8324 {
8325
8326 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
8327 }
8328
mk_cr_64(u64 curr_cr,u32 new_val)8329 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
8330 {
8331 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
8332 }
8333
emulator_get_cr(struct x86_emulate_ctxt * ctxt,int cr)8334 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
8335 {
8336 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8337 unsigned long value;
8338
8339 switch (cr) {
8340 case 0:
8341 value = kvm_read_cr0(vcpu);
8342 break;
8343 case 2:
8344 value = vcpu->arch.cr2;
8345 break;
8346 case 3:
8347 value = kvm_read_cr3(vcpu);
8348 break;
8349 case 4:
8350 value = kvm_read_cr4(vcpu);
8351 break;
8352 case 8:
8353 value = kvm_get_cr8(vcpu);
8354 break;
8355 default:
8356 kvm_err("%s: unexpected cr %u\n", __func__, cr);
8357 return 0;
8358 }
8359
8360 return value;
8361 }
8362
emulator_set_cr(struct x86_emulate_ctxt * ctxt,int cr,ulong val)8363 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
8364 {
8365 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8366 int res = 0;
8367
8368 switch (cr) {
8369 case 0:
8370 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
8371 break;
8372 case 2:
8373 vcpu->arch.cr2 = val;
8374 break;
8375 case 3:
8376 res = kvm_set_cr3(vcpu, val);
8377 break;
8378 case 4:
8379 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
8380 break;
8381 case 8:
8382 res = kvm_set_cr8(vcpu, val);
8383 break;
8384 default:
8385 kvm_err("%s: unexpected cr %u\n", __func__, cr);
8386 res = -1;
8387 }
8388
8389 return res;
8390 }
8391
emulator_get_cpl(struct x86_emulate_ctxt * ctxt)8392 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
8393 {
8394 return kvm_x86_call(get_cpl)(emul_to_vcpu(ctxt));
8395 }
8396
emulator_get_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8397 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8398 {
8399 kvm_x86_call(get_gdt)(emul_to_vcpu(ctxt), dt);
8400 }
8401
emulator_get_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8402 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8403 {
8404 kvm_x86_call(get_idt)(emul_to_vcpu(ctxt), dt);
8405 }
8406
emulator_set_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8407 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8408 {
8409 kvm_x86_call(set_gdt)(emul_to_vcpu(ctxt), dt);
8410 }
8411
emulator_set_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8412 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8413 {
8414 kvm_x86_call(set_idt)(emul_to_vcpu(ctxt), dt);
8415 }
8416
emulator_get_cached_segment_base(struct x86_emulate_ctxt * ctxt,int seg)8417 static unsigned long emulator_get_cached_segment_base(
8418 struct x86_emulate_ctxt *ctxt, int seg)
8419 {
8420 return get_segment_base(emul_to_vcpu(ctxt), seg);
8421 }
8422
emulator_get_segment(struct x86_emulate_ctxt * ctxt,u16 * selector,struct desc_struct * desc,u32 * base3,int seg)8423 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
8424 struct desc_struct *desc, u32 *base3,
8425 int seg)
8426 {
8427 struct kvm_segment var;
8428
8429 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
8430 *selector = var.selector;
8431
8432 if (var.unusable) {
8433 memset(desc, 0, sizeof(*desc));
8434 if (base3)
8435 *base3 = 0;
8436 return false;
8437 }
8438
8439 if (var.g)
8440 var.limit >>= 12;
8441 set_desc_limit(desc, var.limit);
8442 set_desc_base(desc, (unsigned long)var.base);
8443 #ifdef CONFIG_X86_64
8444 if (base3)
8445 *base3 = var.base >> 32;
8446 #endif
8447 desc->type = var.type;
8448 desc->s = var.s;
8449 desc->dpl = var.dpl;
8450 desc->p = var.present;
8451 desc->avl = var.avl;
8452 desc->l = var.l;
8453 desc->d = var.db;
8454 desc->g = var.g;
8455
8456 return true;
8457 }
8458
emulator_set_segment(struct x86_emulate_ctxt * ctxt,u16 selector,struct desc_struct * desc,u32 base3,int seg)8459 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
8460 struct desc_struct *desc, u32 base3,
8461 int seg)
8462 {
8463 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8464 struct kvm_segment var;
8465
8466 var.selector = selector;
8467 var.base = get_desc_base(desc);
8468 #ifdef CONFIG_X86_64
8469 var.base |= ((u64)base3) << 32;
8470 #endif
8471 var.limit = get_desc_limit(desc);
8472 if (desc->g)
8473 var.limit = (var.limit << 12) | 0xfff;
8474 var.type = desc->type;
8475 var.dpl = desc->dpl;
8476 var.db = desc->d;
8477 var.s = desc->s;
8478 var.l = desc->l;
8479 var.g = desc->g;
8480 var.avl = desc->avl;
8481 var.present = desc->p;
8482 var.unusable = !var.present;
8483 var.padding = 0;
8484
8485 kvm_set_segment(vcpu, &var, seg);
8486 return;
8487 }
8488
emulator_get_msr_with_filter(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 * pdata)8489 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8490 u32 msr_index, u64 *pdata)
8491 {
8492 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8493 int r;
8494
8495 r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
8496 if (r < 0)
8497 return X86EMUL_UNHANDLEABLE;
8498
8499 if (r) {
8500 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
8501 complete_emulated_rdmsr, r))
8502 return X86EMUL_IO_NEEDED;
8503
8504 trace_kvm_msr_read_ex(msr_index);
8505 return X86EMUL_PROPAGATE_FAULT;
8506 }
8507
8508 trace_kvm_msr_read(msr_index, *pdata);
8509 return X86EMUL_CONTINUE;
8510 }
8511
emulator_set_msr_with_filter(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 data)8512 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8513 u32 msr_index, u64 data)
8514 {
8515 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8516 int r;
8517
8518 r = kvm_set_msr_with_filter(vcpu, msr_index, data);
8519 if (r < 0)
8520 return X86EMUL_UNHANDLEABLE;
8521
8522 if (r) {
8523 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
8524 complete_emulated_msr_access, r))
8525 return X86EMUL_IO_NEEDED;
8526
8527 trace_kvm_msr_write_ex(msr_index, data);
8528 return X86EMUL_PROPAGATE_FAULT;
8529 }
8530
8531 trace_kvm_msr_write(msr_index, data);
8532 return X86EMUL_CONTINUE;
8533 }
8534
emulator_get_msr(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 * pdata)8535 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
8536 u32 msr_index, u64 *pdata)
8537 {
8538 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
8539 }
8540
emulator_check_rdpmc_early(struct x86_emulate_ctxt * ctxt,u32 pmc)8541 static int emulator_check_rdpmc_early(struct x86_emulate_ctxt *ctxt, u32 pmc)
8542 {
8543 return kvm_pmu_check_rdpmc_early(emul_to_vcpu(ctxt), pmc);
8544 }
8545
emulator_read_pmc(struct x86_emulate_ctxt * ctxt,u32 pmc,u64 * pdata)8546 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
8547 u32 pmc, u64 *pdata)
8548 {
8549 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
8550 }
8551
emulator_halt(struct x86_emulate_ctxt * ctxt)8552 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8553 {
8554 emul_to_vcpu(ctxt)->arch.halt_request = 1;
8555 }
8556
emulator_intercept(struct x86_emulate_ctxt * ctxt,struct x86_instruction_info * info,enum x86_intercept_stage stage)8557 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8558 struct x86_instruction_info *info,
8559 enum x86_intercept_stage stage)
8560 {
8561 return kvm_x86_call(check_intercept)(emul_to_vcpu(ctxt), info, stage,
8562 &ctxt->exception);
8563 }
8564
emulator_get_cpuid(struct x86_emulate_ctxt * ctxt,u32 * eax,u32 * ebx,u32 * ecx,u32 * edx,bool exact_only)8565 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8566 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8567 bool exact_only)
8568 {
8569 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8570 }
8571
emulator_guest_has_movbe(struct x86_emulate_ctxt * ctxt)8572 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8573 {
8574 return guest_cpu_cap_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8575 }
8576
emulator_guest_has_fxsr(struct x86_emulate_ctxt * ctxt)8577 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8578 {
8579 return guest_cpu_cap_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8580 }
8581
emulator_guest_has_rdpid(struct x86_emulate_ctxt * ctxt)8582 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8583 {
8584 return guest_cpu_cap_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8585 }
8586
emulator_guest_cpuid_is_intel_compatible(struct x86_emulate_ctxt * ctxt)8587 static bool emulator_guest_cpuid_is_intel_compatible(struct x86_emulate_ctxt *ctxt)
8588 {
8589 return guest_cpuid_is_intel_compatible(emul_to_vcpu(ctxt));
8590 }
8591
emulator_read_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg)8592 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8593 {
8594 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8595 }
8596
emulator_write_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg,ulong val)8597 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8598 {
8599 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8600 }
8601
emulator_set_nmi_mask(struct x86_emulate_ctxt * ctxt,bool masked)8602 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8603 {
8604 kvm_x86_call(set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8605 }
8606
emulator_is_smm(struct x86_emulate_ctxt * ctxt)8607 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt)
8608 {
8609 return is_smm(emul_to_vcpu(ctxt));
8610 }
8611
emulator_is_guest_mode(struct x86_emulate_ctxt * ctxt)8612 static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt)
8613 {
8614 return is_guest_mode(emul_to_vcpu(ctxt));
8615 }
8616
8617 #ifndef CONFIG_KVM_SMM
emulator_leave_smm(struct x86_emulate_ctxt * ctxt)8618 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt)
8619 {
8620 WARN_ON_ONCE(1);
8621 return X86EMUL_UNHANDLEABLE;
8622 }
8623 #endif
8624
emulator_triple_fault(struct x86_emulate_ctxt * ctxt)8625 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8626 {
8627 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8628 }
8629
emulator_set_xcr(struct x86_emulate_ctxt * ctxt,u32 index,u64 xcr)8630 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8631 {
8632 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8633 }
8634
emulator_vm_bugged(struct x86_emulate_ctxt * ctxt)8635 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8636 {
8637 struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8638
8639 if (!kvm->vm_bugged)
8640 kvm_vm_bugged(kvm);
8641 }
8642
emulator_get_untagged_addr(struct x86_emulate_ctxt * ctxt,gva_t addr,unsigned int flags)8643 static gva_t emulator_get_untagged_addr(struct x86_emulate_ctxt *ctxt,
8644 gva_t addr, unsigned int flags)
8645 {
8646 if (!kvm_x86_ops.get_untagged_addr)
8647 return addr;
8648
8649 return kvm_x86_call(get_untagged_addr)(emul_to_vcpu(ctxt),
8650 addr, flags);
8651 }
8652
emulator_is_canonical_addr(struct x86_emulate_ctxt * ctxt,gva_t addr,unsigned int flags)8653 static bool emulator_is_canonical_addr(struct x86_emulate_ctxt *ctxt,
8654 gva_t addr, unsigned int flags)
8655 {
8656 return !is_noncanonical_address(addr, emul_to_vcpu(ctxt), flags);
8657 }
8658
8659 static const struct x86_emulate_ops emulate_ops = {
8660 .vm_bugged = emulator_vm_bugged,
8661 .read_gpr = emulator_read_gpr,
8662 .write_gpr = emulator_write_gpr,
8663 .read_std = emulator_read_std,
8664 .write_std = emulator_write_std,
8665 .fetch = kvm_fetch_guest_virt,
8666 .read_emulated = emulator_read_emulated,
8667 .write_emulated = emulator_write_emulated,
8668 .cmpxchg_emulated = emulator_cmpxchg_emulated,
8669 .invlpg = emulator_invlpg,
8670 .pio_in_emulated = emulator_pio_in_emulated,
8671 .pio_out_emulated = emulator_pio_out_emulated,
8672 .get_segment = emulator_get_segment,
8673 .set_segment = emulator_set_segment,
8674 .get_cached_segment_base = emulator_get_cached_segment_base,
8675 .get_gdt = emulator_get_gdt,
8676 .get_idt = emulator_get_idt,
8677 .set_gdt = emulator_set_gdt,
8678 .set_idt = emulator_set_idt,
8679 .get_cr = emulator_get_cr,
8680 .set_cr = emulator_set_cr,
8681 .cpl = emulator_get_cpl,
8682 .get_dr = emulator_get_dr,
8683 .set_dr = emulator_set_dr,
8684 .set_msr_with_filter = emulator_set_msr_with_filter,
8685 .get_msr_with_filter = emulator_get_msr_with_filter,
8686 .get_msr = emulator_get_msr,
8687 .check_rdpmc_early = emulator_check_rdpmc_early,
8688 .read_pmc = emulator_read_pmc,
8689 .halt = emulator_halt,
8690 .wbinvd = emulator_wbinvd,
8691 .fix_hypercall = emulator_fix_hypercall,
8692 .intercept = emulator_intercept,
8693 .get_cpuid = emulator_get_cpuid,
8694 .guest_has_movbe = emulator_guest_has_movbe,
8695 .guest_has_fxsr = emulator_guest_has_fxsr,
8696 .guest_has_rdpid = emulator_guest_has_rdpid,
8697 .guest_cpuid_is_intel_compatible = emulator_guest_cpuid_is_intel_compatible,
8698 .set_nmi_mask = emulator_set_nmi_mask,
8699 .is_smm = emulator_is_smm,
8700 .is_guest_mode = emulator_is_guest_mode,
8701 .leave_smm = emulator_leave_smm,
8702 .triple_fault = emulator_triple_fault,
8703 .set_xcr = emulator_set_xcr,
8704 .get_untagged_addr = emulator_get_untagged_addr,
8705 .is_canonical_addr = emulator_is_canonical_addr,
8706 };
8707
toggle_interruptibility(struct kvm_vcpu * vcpu,u32 mask)8708 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8709 {
8710 u32 int_shadow = kvm_x86_call(get_interrupt_shadow)(vcpu);
8711 /*
8712 * an sti; sti; sequence only disable interrupts for the first
8713 * instruction. So, if the last instruction, be it emulated or
8714 * not, left the system with the INT_STI flag enabled, it
8715 * means that the last instruction is an sti. We should not
8716 * leave the flag on in this case. The same goes for mov ss
8717 */
8718 if (int_shadow & mask)
8719 mask = 0;
8720 if (unlikely(int_shadow || mask)) {
8721 kvm_x86_call(set_interrupt_shadow)(vcpu, mask);
8722 if (!mask)
8723 kvm_make_request(KVM_REQ_EVENT, vcpu);
8724 }
8725 }
8726
inject_emulated_exception(struct kvm_vcpu * vcpu)8727 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
8728 {
8729 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8730
8731 if (ctxt->exception.vector == PF_VECTOR)
8732 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8733 else if (ctxt->exception.error_code_valid)
8734 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8735 ctxt->exception.error_code);
8736 else
8737 kvm_queue_exception(vcpu, ctxt->exception.vector);
8738 }
8739
alloc_emulate_ctxt(struct kvm_vcpu * vcpu)8740 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8741 {
8742 struct x86_emulate_ctxt *ctxt;
8743
8744 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8745 if (!ctxt) {
8746 pr_err("failed to allocate vcpu's emulator\n");
8747 return NULL;
8748 }
8749
8750 ctxt->vcpu = vcpu;
8751 ctxt->ops = &emulate_ops;
8752 vcpu->arch.emulate_ctxt = ctxt;
8753
8754 return ctxt;
8755 }
8756
init_emulate_ctxt(struct kvm_vcpu * vcpu)8757 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8758 {
8759 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8760 int cs_db, cs_l;
8761
8762 kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8763
8764 ctxt->gpa_available = false;
8765 ctxt->eflags = kvm_get_rflags(vcpu);
8766 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8767
8768 ctxt->eip = kvm_rip_read(vcpu);
8769 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
8770 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
8771 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
8772 cs_db ? X86EMUL_MODE_PROT32 :
8773 X86EMUL_MODE_PROT16;
8774 ctxt->interruptibility = 0;
8775 ctxt->have_exception = false;
8776 ctxt->exception.vector = -1;
8777 ctxt->perm_ok = false;
8778
8779 init_decode_cache(ctxt);
8780 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8781 }
8782
kvm_inject_realmode_interrupt(struct kvm_vcpu * vcpu,int irq,int inc_eip)8783 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8784 {
8785 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8786 int ret;
8787
8788 init_emulate_ctxt(vcpu);
8789
8790 ctxt->op_bytes = 2;
8791 ctxt->ad_bytes = 2;
8792 ctxt->_eip = ctxt->eip + inc_eip;
8793 ret = emulate_int_real(ctxt, irq);
8794
8795 if (ret != X86EMUL_CONTINUE) {
8796 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8797 } else {
8798 ctxt->eip = ctxt->_eip;
8799 kvm_rip_write(vcpu, ctxt->eip);
8800 kvm_set_rflags(vcpu, ctxt->eflags);
8801 }
8802 }
8803 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8804
prepare_emulation_failure_exit(struct kvm_vcpu * vcpu,u64 * data,u8 ndata,u8 * insn_bytes,u8 insn_size)8805 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8806 u8 ndata, u8 *insn_bytes, u8 insn_size)
8807 {
8808 struct kvm_run *run = vcpu->run;
8809 u64 info[5];
8810 u8 info_start;
8811
8812 /*
8813 * Zero the whole array used to retrieve the exit info, as casting to
8814 * u32 for select entries will leave some chunks uninitialized.
8815 */
8816 memset(&info, 0, sizeof(info));
8817
8818 kvm_x86_call(get_exit_info)(vcpu, (u32 *)&info[0], &info[1], &info[2],
8819 (u32 *)&info[3], (u32 *)&info[4]);
8820
8821 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8822 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8823
8824 /*
8825 * There's currently space for 13 entries, but 5 are used for the exit
8826 * reason and info. Restrict to 4 to reduce the maintenance burden
8827 * when expanding kvm_run.emulation_failure in the future.
8828 */
8829 if (WARN_ON_ONCE(ndata > 4))
8830 ndata = 4;
8831
8832 /* Always include the flags as a 'data' entry. */
8833 info_start = 1;
8834 run->emulation_failure.flags = 0;
8835
8836 if (insn_size) {
8837 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8838 sizeof(run->emulation_failure.insn_bytes) != 16));
8839 info_start += 2;
8840 run->emulation_failure.flags |=
8841 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8842 run->emulation_failure.insn_size = insn_size;
8843 memset(run->emulation_failure.insn_bytes, 0x90,
8844 sizeof(run->emulation_failure.insn_bytes));
8845 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8846 }
8847
8848 memcpy(&run->internal.data[info_start], info, sizeof(info));
8849 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8850 ndata * sizeof(data[0]));
8851
8852 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8853 }
8854
prepare_emulation_ctxt_failure_exit(struct kvm_vcpu * vcpu)8855 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8856 {
8857 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8858
8859 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8860 ctxt->fetch.end - ctxt->fetch.data);
8861 }
8862
__kvm_prepare_emulation_failure_exit(struct kvm_vcpu * vcpu,u64 * data,u8 ndata)8863 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8864 u8 ndata)
8865 {
8866 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8867 }
8868 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8869
kvm_prepare_emulation_failure_exit(struct kvm_vcpu * vcpu)8870 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8871 {
8872 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8873 }
8874 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8875
kvm_prepare_event_vectoring_exit(struct kvm_vcpu * vcpu,gpa_t gpa)8876 void kvm_prepare_event_vectoring_exit(struct kvm_vcpu *vcpu, gpa_t gpa)
8877 {
8878 u32 reason, intr_info, error_code;
8879 struct kvm_run *run = vcpu->run;
8880 u64 info1, info2;
8881 int ndata = 0;
8882
8883 kvm_x86_call(get_exit_info)(vcpu, &reason, &info1, &info2,
8884 &intr_info, &error_code);
8885
8886 run->internal.data[ndata++] = info2;
8887 run->internal.data[ndata++] = reason;
8888 run->internal.data[ndata++] = info1;
8889 run->internal.data[ndata++] = gpa;
8890 run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
8891
8892 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8893 run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
8894 run->internal.ndata = ndata;
8895 }
8896 EXPORT_SYMBOL_GPL(kvm_prepare_event_vectoring_exit);
8897
handle_emulation_failure(struct kvm_vcpu * vcpu,int emulation_type)8898 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8899 {
8900 struct kvm *kvm = vcpu->kvm;
8901
8902 ++vcpu->stat.insn_emulation_fail;
8903 trace_kvm_emulate_insn_failed(vcpu);
8904
8905 if (emulation_type & EMULTYPE_VMWARE_GP) {
8906 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8907 return 1;
8908 }
8909
8910 if (kvm->arch.exit_on_emulation_error ||
8911 (emulation_type & EMULTYPE_SKIP)) {
8912 prepare_emulation_ctxt_failure_exit(vcpu);
8913 return 0;
8914 }
8915
8916 kvm_queue_exception(vcpu, UD_VECTOR);
8917
8918 if (!is_guest_mode(vcpu) && kvm_x86_call(get_cpl)(vcpu) == 0) {
8919 prepare_emulation_ctxt_failure_exit(vcpu);
8920 return 0;
8921 }
8922
8923 return 1;
8924 }
8925
kvm_unprotect_and_retry_on_failure(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,int emulation_type)8926 static bool kvm_unprotect_and_retry_on_failure(struct kvm_vcpu *vcpu,
8927 gpa_t cr2_or_gpa,
8928 int emulation_type)
8929 {
8930 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8931 return false;
8932
8933 /*
8934 * If the failed instruction faulted on an access to page tables that
8935 * are used to translate any part of the instruction, KVM can't resolve
8936 * the issue by unprotecting the gfn, as zapping the shadow page will
8937 * result in the instruction taking a !PRESENT page fault and thus put
8938 * the vCPU into an infinite loop of page faults. E.g. KVM will create
8939 * a SPTE and write-protect the gfn to resolve the !PRESENT fault, and
8940 * then zap the SPTE to unprotect the gfn, and then do it all over
8941 * again. Report the error to userspace.
8942 */
8943 if (emulation_type & EMULTYPE_WRITE_PF_TO_SP)
8944 return false;
8945
8946 /*
8947 * If emulation may have been triggered by a write to a shadowed page
8948 * table, unprotect the gfn (zap any relevant SPTEs) and re-enter the
8949 * guest to let the CPU re-execute the instruction in the hope that the
8950 * CPU can cleanly execute the instruction that KVM failed to emulate.
8951 */
8952 __kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa, true);
8953
8954 /*
8955 * Retry even if _this_ vCPU didn't unprotect the gfn, as it's possible
8956 * all SPTEs were already zapped by a different task. The alternative
8957 * is to report the error to userspace and likely terminate the guest,
8958 * and the last_retry_{eip,addr} checks will prevent retrying the page
8959 * fault indefinitely, i.e. there's nothing to lose by retrying.
8960 */
8961 return true;
8962 }
8963
8964 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8965 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8966
kvm_vcpu_check_hw_bp(unsigned long addr,u32 type,u32 dr7,unsigned long * db)8967 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8968 unsigned long *db)
8969 {
8970 u32 dr6 = 0;
8971 int i;
8972 u32 enable, rwlen;
8973
8974 enable = dr7;
8975 rwlen = dr7 >> 16;
8976 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8977 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8978 dr6 |= (1 << i);
8979 return dr6;
8980 }
8981
kvm_vcpu_do_singlestep(struct kvm_vcpu * vcpu)8982 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8983 {
8984 struct kvm_run *kvm_run = vcpu->run;
8985
8986 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8987 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8988 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8989 kvm_run->debug.arch.exception = DB_VECTOR;
8990 kvm_run->exit_reason = KVM_EXIT_DEBUG;
8991 return 0;
8992 }
8993 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8994 return 1;
8995 }
8996
kvm_skip_emulated_instruction(struct kvm_vcpu * vcpu)8997 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8998 {
8999 unsigned long rflags = kvm_x86_call(get_rflags)(vcpu);
9000 int r;
9001
9002 r = kvm_x86_call(skip_emulated_instruction)(vcpu);
9003 if (unlikely(!r))
9004 return 0;
9005
9006 kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.INSTRUCTIONS_RETIRED);
9007
9008 /*
9009 * rflags is the old, "raw" value of the flags. The new value has
9010 * not been saved yet.
9011 *
9012 * This is correct even for TF set by the guest, because "the
9013 * processor will not generate this exception after the instruction
9014 * that sets the TF flag".
9015 */
9016 if (unlikely(rflags & X86_EFLAGS_TF))
9017 r = kvm_vcpu_do_singlestep(vcpu);
9018 return r;
9019 }
9020 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
9021
kvm_is_code_breakpoint_inhibited(struct kvm_vcpu * vcpu)9022 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu)
9023 {
9024 if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF)
9025 return true;
9026
9027 /*
9028 * Intel compatible CPUs inhibit code #DBs when MOV/POP SS blocking is
9029 * active, but AMD compatible CPUs do not.
9030 */
9031 if (!guest_cpuid_is_intel_compatible(vcpu))
9032 return false;
9033
9034 return kvm_x86_call(get_interrupt_shadow)(vcpu) & KVM_X86_SHADOW_INT_MOV_SS;
9035 }
9036
kvm_vcpu_check_code_breakpoint(struct kvm_vcpu * vcpu,int emulation_type,int * r)9037 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu,
9038 int emulation_type, int *r)
9039 {
9040 WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE);
9041
9042 /*
9043 * Do not check for code breakpoints if hardware has already done the
9044 * checks, as inferred from the emulation type. On NO_DECODE and SKIP,
9045 * the instruction has passed all exception checks, and all intercepted
9046 * exceptions that trigger emulation have lower priority than code
9047 * breakpoints, i.e. the fact that the intercepted exception occurred
9048 * means any code breakpoints have already been serviced.
9049 *
9050 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
9051 * hardware has checked the RIP of the magic prefix, but not the RIP of
9052 * the instruction being emulated. The intent of forced emulation is
9053 * to behave as if KVM intercepted the instruction without an exception
9054 * and without a prefix.
9055 */
9056 if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
9057 EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF))
9058 return false;
9059
9060 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
9061 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
9062 struct kvm_run *kvm_run = vcpu->run;
9063 unsigned long eip = kvm_get_linear_rip(vcpu);
9064 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
9065 vcpu->arch.guest_debug_dr7,
9066 vcpu->arch.eff_db);
9067
9068 if (dr6 != 0) {
9069 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
9070 kvm_run->debug.arch.pc = eip;
9071 kvm_run->debug.arch.exception = DB_VECTOR;
9072 kvm_run->exit_reason = KVM_EXIT_DEBUG;
9073 *r = 0;
9074 return true;
9075 }
9076 }
9077
9078 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
9079 !kvm_is_code_breakpoint_inhibited(vcpu)) {
9080 unsigned long eip = kvm_get_linear_rip(vcpu);
9081 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
9082 vcpu->arch.dr7,
9083 vcpu->arch.db);
9084
9085 if (dr6 != 0) {
9086 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
9087 *r = 1;
9088 return true;
9089 }
9090 }
9091
9092 return false;
9093 }
9094
is_vmware_backdoor_opcode(struct x86_emulate_ctxt * ctxt)9095 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
9096 {
9097 switch (ctxt->opcode_len) {
9098 case 1:
9099 switch (ctxt->b) {
9100 case 0xe4: /* IN */
9101 case 0xe5:
9102 case 0xec:
9103 case 0xed:
9104 case 0xe6: /* OUT */
9105 case 0xe7:
9106 case 0xee:
9107 case 0xef:
9108 case 0x6c: /* INS */
9109 case 0x6d:
9110 case 0x6e: /* OUTS */
9111 case 0x6f:
9112 return true;
9113 }
9114 break;
9115 case 2:
9116 switch (ctxt->b) {
9117 case 0x33: /* RDPMC */
9118 return true;
9119 }
9120 break;
9121 }
9122
9123 return false;
9124 }
9125
9126 /*
9127 * Decode an instruction for emulation. The caller is responsible for handling
9128 * code breakpoints. Note, manually detecting code breakpoints is unnecessary
9129 * (and wrong) when emulating on an intercepted fault-like exception[*], as
9130 * code breakpoints have higher priority and thus have already been done by
9131 * hardware.
9132 *
9133 * [*] Except #MC, which is higher priority, but KVM should never emulate in
9134 * response to a machine check.
9135 */
x86_decode_emulated_instruction(struct kvm_vcpu * vcpu,int emulation_type,void * insn,int insn_len)9136 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
9137 void *insn, int insn_len)
9138 {
9139 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9140 int r;
9141
9142 init_emulate_ctxt(vcpu);
9143
9144 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
9145
9146 trace_kvm_emulate_insn_start(vcpu);
9147 ++vcpu->stat.insn_emulation;
9148
9149 return r;
9150 }
9151 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
9152
x86_emulate_instruction(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,int emulation_type,void * insn,int insn_len)9153 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
9154 int emulation_type, void *insn, int insn_len)
9155 {
9156 int r;
9157 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9158 bool writeback = true;
9159
9160 if ((emulation_type & EMULTYPE_ALLOW_RETRY_PF) &&
9161 (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
9162 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))))
9163 emulation_type &= ~EMULTYPE_ALLOW_RETRY_PF;
9164
9165 r = kvm_check_emulate_insn(vcpu, emulation_type, insn, insn_len);
9166 if (r != X86EMUL_CONTINUE) {
9167 if (r == X86EMUL_RETRY_INSTR || r == X86EMUL_PROPAGATE_FAULT)
9168 return 1;
9169
9170 if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa,
9171 emulation_type))
9172 return 1;
9173
9174 if (r == X86EMUL_UNHANDLEABLE_VECTORING) {
9175 kvm_prepare_event_vectoring_exit(vcpu, cr2_or_gpa);
9176 return 0;
9177 }
9178
9179 WARN_ON_ONCE(r != X86EMUL_UNHANDLEABLE);
9180 return handle_emulation_failure(vcpu, emulation_type);
9181 }
9182
9183 vcpu->arch.l1tf_flush_l1d = true;
9184
9185 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
9186 kvm_clear_exception_queue(vcpu);
9187
9188 /*
9189 * Return immediately if RIP hits a code breakpoint, such #DBs
9190 * are fault-like and are higher priority than any faults on
9191 * the code fetch itself.
9192 */
9193 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r))
9194 return r;
9195
9196 r = x86_decode_emulated_instruction(vcpu, emulation_type,
9197 insn, insn_len);
9198 if (r != EMULATION_OK) {
9199 if ((emulation_type & EMULTYPE_TRAP_UD) ||
9200 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
9201 kvm_queue_exception(vcpu, UD_VECTOR);
9202 return 1;
9203 }
9204 if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa,
9205 emulation_type))
9206 return 1;
9207
9208 if (ctxt->have_exception &&
9209 !(emulation_type & EMULTYPE_SKIP)) {
9210 /*
9211 * #UD should result in just EMULATION_FAILED, and trap-like
9212 * exception should not be encountered during decode.
9213 */
9214 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
9215 exception_type(ctxt->exception.vector) == EXCPT_TRAP);
9216 inject_emulated_exception(vcpu);
9217 return 1;
9218 }
9219 return handle_emulation_failure(vcpu, emulation_type);
9220 }
9221 }
9222
9223 if ((emulation_type & EMULTYPE_VMWARE_GP) &&
9224 !is_vmware_backdoor_opcode(ctxt)) {
9225 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
9226 return 1;
9227 }
9228
9229 /*
9230 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
9231 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
9232 * The caller is responsible for updating interruptibility state and
9233 * injecting single-step #DBs.
9234 */
9235 if (emulation_type & EMULTYPE_SKIP) {
9236 if (ctxt->mode != X86EMUL_MODE_PROT64)
9237 ctxt->eip = (u32)ctxt->_eip;
9238 else
9239 ctxt->eip = ctxt->_eip;
9240
9241 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
9242 r = 1;
9243 goto writeback;
9244 }
9245
9246 kvm_rip_write(vcpu, ctxt->eip);
9247 if (ctxt->eflags & X86_EFLAGS_RF)
9248 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
9249 return 1;
9250 }
9251
9252 /*
9253 * If emulation was caused by a write-protection #PF on a non-page_table
9254 * writing instruction, try to unprotect the gfn, i.e. zap shadow pages,
9255 * and retry the instruction, as the vCPU is likely no longer using the
9256 * gfn as a page table.
9257 */
9258 if ((emulation_type & EMULTYPE_ALLOW_RETRY_PF) &&
9259 !x86_page_table_writing_insn(ctxt) &&
9260 kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa))
9261 return 1;
9262
9263 /* this is needed for vmware backdoor interface to work since it
9264 changes registers values during IO operation */
9265 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
9266 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
9267 emulator_invalidate_register_cache(ctxt);
9268 }
9269
9270 restart:
9271 if (emulation_type & EMULTYPE_PF) {
9272 /* Save the faulting GPA (cr2) in the address field */
9273 ctxt->exception.address = cr2_or_gpa;
9274
9275 /* With shadow page tables, cr2 contains a GVA or nGPA. */
9276 if (vcpu->arch.mmu->root_role.direct) {
9277 ctxt->gpa_available = true;
9278 ctxt->gpa_val = cr2_or_gpa;
9279 }
9280 } else {
9281 /* Sanitize the address out of an abundance of paranoia. */
9282 ctxt->exception.address = 0;
9283 }
9284
9285 r = x86_emulate_insn(ctxt);
9286
9287 if (r == EMULATION_INTERCEPTED)
9288 return 1;
9289
9290 if (r == EMULATION_FAILED) {
9291 if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa,
9292 emulation_type))
9293 return 1;
9294
9295 return handle_emulation_failure(vcpu, emulation_type);
9296 }
9297
9298 if (ctxt->have_exception) {
9299 WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write);
9300 vcpu->mmio_needed = false;
9301 r = 1;
9302 inject_emulated_exception(vcpu);
9303 } else if (vcpu->arch.pio.count) {
9304 if (!vcpu->arch.pio.in) {
9305 /* FIXME: return into emulator if single-stepping. */
9306 vcpu->arch.pio.count = 0;
9307 } else {
9308 writeback = false;
9309 vcpu->arch.complete_userspace_io = complete_emulated_pio;
9310 }
9311 r = 0;
9312 } else if (vcpu->mmio_needed) {
9313 ++vcpu->stat.mmio_exits;
9314
9315 if (!vcpu->mmio_is_write)
9316 writeback = false;
9317 r = 0;
9318 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9319 } else if (vcpu->arch.complete_userspace_io) {
9320 writeback = false;
9321 r = 0;
9322 } else if (r == EMULATION_RESTART)
9323 goto restart;
9324 else
9325 r = 1;
9326
9327 writeback:
9328 if (writeback) {
9329 unsigned long rflags = kvm_x86_call(get_rflags)(vcpu);
9330 toggle_interruptibility(vcpu, ctxt->interruptibility);
9331 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9332
9333 /*
9334 * Note, EXCPT_DB is assumed to be fault-like as the emulator
9335 * only supports code breakpoints and general detect #DB, both
9336 * of which are fault-like.
9337 */
9338 if (!ctxt->have_exception ||
9339 exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
9340 kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.INSTRUCTIONS_RETIRED);
9341 if (ctxt->is_branch)
9342 kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.BRANCH_INSTRUCTIONS_RETIRED);
9343 kvm_rip_write(vcpu, ctxt->eip);
9344 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
9345 r = kvm_vcpu_do_singlestep(vcpu);
9346 kvm_x86_call(update_emulated_instruction)(vcpu);
9347 __kvm_set_rflags(vcpu, ctxt->eflags);
9348 }
9349
9350 /*
9351 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
9352 * do nothing, and it will be requested again as soon as
9353 * the shadow expires. But we still need to check here,
9354 * because POPF has no interrupt shadow.
9355 */
9356 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
9357 kvm_make_request(KVM_REQ_EVENT, vcpu);
9358 } else
9359 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
9360
9361 return r;
9362 }
9363
kvm_emulate_instruction(struct kvm_vcpu * vcpu,int emulation_type)9364 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
9365 {
9366 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
9367 }
9368 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
9369
kvm_emulate_instruction_from_buffer(struct kvm_vcpu * vcpu,void * insn,int insn_len)9370 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
9371 void *insn, int insn_len)
9372 {
9373 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
9374 }
9375 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
9376
complete_fast_pio_out_port_0x7e(struct kvm_vcpu * vcpu)9377 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
9378 {
9379 vcpu->arch.pio.count = 0;
9380 return 1;
9381 }
9382
complete_fast_pio_out(struct kvm_vcpu * vcpu)9383 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
9384 {
9385 vcpu->arch.pio.count = 0;
9386
9387 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.cui_linear_rip)))
9388 return 1;
9389
9390 return kvm_skip_emulated_instruction(vcpu);
9391 }
9392
kvm_fast_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port)9393 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
9394 unsigned short port)
9395 {
9396 unsigned long val = kvm_rax_read(vcpu);
9397 int ret = emulator_pio_out(vcpu, size, port, &val, 1);
9398
9399 if (ret)
9400 return ret;
9401
9402 /*
9403 * Workaround userspace that relies on old KVM behavior of %rip being
9404 * incremented prior to exiting to userspace to handle "OUT 0x7e".
9405 */
9406 if (port == 0x7e &&
9407 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
9408 vcpu->arch.complete_userspace_io =
9409 complete_fast_pio_out_port_0x7e;
9410 kvm_skip_emulated_instruction(vcpu);
9411 } else {
9412 vcpu->arch.cui_linear_rip = kvm_get_linear_rip(vcpu);
9413 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
9414 }
9415 return 0;
9416 }
9417
complete_fast_pio_in(struct kvm_vcpu * vcpu)9418 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
9419 {
9420 unsigned long val;
9421
9422 /* We should only ever be called with arch.pio.count equal to 1 */
9423 BUG_ON(vcpu->arch.pio.count != 1);
9424
9425 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.cui_linear_rip))) {
9426 vcpu->arch.pio.count = 0;
9427 return 1;
9428 }
9429
9430 /* For size less than 4 we merge, else we zero extend */
9431 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
9432
9433 complete_emulator_pio_in(vcpu, &val);
9434 kvm_rax_write(vcpu, val);
9435
9436 return kvm_skip_emulated_instruction(vcpu);
9437 }
9438
kvm_fast_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port)9439 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
9440 unsigned short port)
9441 {
9442 unsigned long val;
9443 int ret;
9444
9445 /* For size less than 4 we merge, else we zero extend */
9446 val = (size < 4) ? kvm_rax_read(vcpu) : 0;
9447
9448 ret = emulator_pio_in(vcpu, size, port, &val, 1);
9449 if (ret) {
9450 kvm_rax_write(vcpu, val);
9451 return ret;
9452 }
9453
9454 vcpu->arch.cui_linear_rip = kvm_get_linear_rip(vcpu);
9455 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
9456
9457 return 0;
9458 }
9459
kvm_fast_pio(struct kvm_vcpu * vcpu,int size,unsigned short port,int in)9460 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
9461 {
9462 int ret;
9463
9464 if (in)
9465 ret = kvm_fast_pio_in(vcpu, size, port);
9466 else
9467 ret = kvm_fast_pio_out(vcpu, size, port);
9468 return ret && kvm_skip_emulated_instruction(vcpu);
9469 }
9470 EXPORT_SYMBOL_GPL(kvm_fast_pio);
9471
kvmclock_cpu_down_prep(unsigned int cpu)9472 static int kvmclock_cpu_down_prep(unsigned int cpu)
9473 {
9474 __this_cpu_write(cpu_tsc_khz, 0);
9475 return 0;
9476 }
9477
tsc_khz_changed(void * data)9478 static void tsc_khz_changed(void *data)
9479 {
9480 struct cpufreq_freqs *freq = data;
9481 unsigned long khz;
9482
9483 WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC));
9484
9485 if (data)
9486 khz = freq->new;
9487 else
9488 khz = cpufreq_quick_get(raw_smp_processor_id());
9489 if (!khz)
9490 khz = tsc_khz;
9491 __this_cpu_write(cpu_tsc_khz, khz);
9492 }
9493
9494 #ifdef CONFIG_X86_64
kvm_hyperv_tsc_notifier(void)9495 static void kvm_hyperv_tsc_notifier(void)
9496 {
9497 struct kvm *kvm;
9498 int cpu;
9499
9500 mutex_lock(&kvm_lock);
9501 list_for_each_entry(kvm, &vm_list, vm_list)
9502 kvm_make_mclock_inprogress_request(kvm);
9503
9504 /* no guest entries from this point */
9505 hyperv_stop_tsc_emulation();
9506
9507 /* TSC frequency always matches when on Hyper-V */
9508 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9509 for_each_present_cpu(cpu)
9510 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
9511 }
9512 kvm_caps.max_guest_tsc_khz = tsc_khz;
9513
9514 list_for_each_entry(kvm, &vm_list, vm_list) {
9515 __kvm_start_pvclock_update(kvm);
9516 pvclock_update_vm_gtod_copy(kvm);
9517 kvm_end_pvclock_update(kvm);
9518 }
9519
9520 mutex_unlock(&kvm_lock);
9521 }
9522 #endif
9523
__kvmclock_cpufreq_notifier(struct cpufreq_freqs * freq,int cpu)9524 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
9525 {
9526 struct kvm *kvm;
9527 struct kvm_vcpu *vcpu;
9528 int send_ipi = 0;
9529 unsigned long i;
9530
9531 /*
9532 * We allow guests to temporarily run on slowing clocks,
9533 * provided we notify them after, or to run on accelerating
9534 * clocks, provided we notify them before. Thus time never
9535 * goes backwards.
9536 *
9537 * However, we have a problem. We can't atomically update
9538 * the frequency of a given CPU from this function; it is
9539 * merely a notifier, which can be called from any CPU.
9540 * Changing the TSC frequency at arbitrary points in time
9541 * requires a recomputation of local variables related to
9542 * the TSC for each VCPU. We must flag these local variables
9543 * to be updated and be sure the update takes place with the
9544 * new frequency before any guests proceed.
9545 *
9546 * Unfortunately, the combination of hotplug CPU and frequency
9547 * change creates an intractable locking scenario; the order
9548 * of when these callouts happen is undefined with respect to
9549 * CPU hotplug, and they can race with each other. As such,
9550 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9551 * undefined; you can actually have a CPU frequency change take
9552 * place in between the computation of X and the setting of the
9553 * variable. To protect against this problem, all updates of
9554 * the per_cpu tsc_khz variable are done in an interrupt
9555 * protected IPI, and all callers wishing to update the value
9556 * must wait for a synchronous IPI to complete (which is trivial
9557 * if the caller is on the CPU already). This establishes the
9558 * necessary total order on variable updates.
9559 *
9560 * Note that because a guest time update may take place
9561 * anytime after the setting of the VCPU's request bit, the
9562 * correct TSC value must be set before the request. However,
9563 * to ensure the update actually makes it to any guest which
9564 * starts running in hardware virtualization between the set
9565 * and the acquisition of the spinlock, we must also ping the
9566 * CPU after setting the request bit.
9567 *
9568 */
9569
9570 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9571
9572 mutex_lock(&kvm_lock);
9573 list_for_each_entry(kvm, &vm_list, vm_list) {
9574 kvm_for_each_vcpu(i, vcpu, kvm) {
9575 if (vcpu->cpu != cpu)
9576 continue;
9577 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9578 if (vcpu->cpu != raw_smp_processor_id())
9579 send_ipi = 1;
9580 }
9581 }
9582 mutex_unlock(&kvm_lock);
9583
9584 if (freq->old < freq->new && send_ipi) {
9585 /*
9586 * We upscale the frequency. Must make the guest
9587 * doesn't see old kvmclock values while running with
9588 * the new frequency, otherwise we risk the guest sees
9589 * time go backwards.
9590 *
9591 * In case we update the frequency for another cpu
9592 * (which might be in guest context) send an interrupt
9593 * to kick the cpu out of guest context. Next time
9594 * guest context is entered kvmclock will be updated,
9595 * so the guest will not see stale values.
9596 */
9597 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9598 }
9599 }
9600
kvmclock_cpufreq_notifier(struct notifier_block * nb,unsigned long val,void * data)9601 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9602 void *data)
9603 {
9604 struct cpufreq_freqs *freq = data;
9605 int cpu;
9606
9607 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9608 return 0;
9609 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9610 return 0;
9611
9612 for_each_cpu(cpu, freq->policy->cpus)
9613 __kvmclock_cpufreq_notifier(freq, cpu);
9614
9615 return 0;
9616 }
9617
9618 static struct notifier_block kvmclock_cpufreq_notifier_block = {
9619 .notifier_call = kvmclock_cpufreq_notifier
9620 };
9621
kvmclock_cpu_online(unsigned int cpu)9622 static int kvmclock_cpu_online(unsigned int cpu)
9623 {
9624 tsc_khz_changed(NULL);
9625 return 0;
9626 }
9627
kvm_timer_init(void)9628 static void kvm_timer_init(void)
9629 {
9630 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9631 max_tsc_khz = tsc_khz;
9632
9633 if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9634 struct cpufreq_policy *policy;
9635 int cpu;
9636
9637 cpu = get_cpu();
9638 policy = cpufreq_cpu_get(cpu);
9639 if (policy) {
9640 if (policy->cpuinfo.max_freq)
9641 max_tsc_khz = policy->cpuinfo.max_freq;
9642 cpufreq_cpu_put(policy);
9643 }
9644 put_cpu();
9645 }
9646 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9647 CPUFREQ_TRANSITION_NOTIFIER);
9648
9649 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9650 kvmclock_cpu_online, kvmclock_cpu_down_prep);
9651 }
9652 }
9653
9654 #ifdef CONFIG_X86_64
pvclock_gtod_update_fn(struct work_struct * work)9655 static void pvclock_gtod_update_fn(struct work_struct *work)
9656 {
9657 struct kvm *kvm;
9658 struct kvm_vcpu *vcpu;
9659 unsigned long i;
9660
9661 mutex_lock(&kvm_lock);
9662 list_for_each_entry(kvm, &vm_list, vm_list)
9663 kvm_for_each_vcpu(i, vcpu, kvm)
9664 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9665 atomic_set(&kvm_guest_has_master_clock, 0);
9666 mutex_unlock(&kvm_lock);
9667 }
9668
9669 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9670
9671 /*
9672 * Indirection to move queue_work() out of the tk_core.seq write held
9673 * region to prevent possible deadlocks against time accessors which
9674 * are invoked with work related locks held.
9675 */
pvclock_irq_work_fn(struct irq_work * w)9676 static void pvclock_irq_work_fn(struct irq_work *w)
9677 {
9678 queue_work(system_long_wq, &pvclock_gtod_work);
9679 }
9680
9681 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9682
9683 /*
9684 * Notification about pvclock gtod data update.
9685 */
pvclock_gtod_notify(struct notifier_block * nb,unsigned long unused,void * priv)9686 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9687 void *priv)
9688 {
9689 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9690 struct timekeeper *tk = priv;
9691
9692 update_pvclock_gtod(tk);
9693
9694 /*
9695 * Disable master clock if host does not trust, or does not use,
9696 * TSC based clocksource. Delegate queue_work() to irq_work as
9697 * this is invoked with tk_core.seq write held.
9698 */
9699 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9700 atomic_read(&kvm_guest_has_master_clock) != 0)
9701 irq_work_queue(&pvclock_irq_work);
9702 return 0;
9703 }
9704
9705 static struct notifier_block pvclock_gtod_notifier = {
9706 .notifier_call = pvclock_gtod_notify,
9707 };
9708 #endif
9709
kvm_ops_update(struct kvm_x86_init_ops * ops)9710 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
9711 {
9712 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9713
9714 #define __KVM_X86_OP(func) \
9715 static_call_update(kvm_x86_##func, kvm_x86_ops.func);
9716 #define KVM_X86_OP(func) \
9717 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
9718 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
9719 #define KVM_X86_OP_OPTIONAL_RET0(func) \
9720 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
9721 (void *)__static_call_return0);
9722 #include <asm/kvm-x86-ops.h>
9723 #undef __KVM_X86_OP
9724
9725 kvm_pmu_ops_update(ops->pmu_ops);
9726 }
9727
kvm_x86_check_processor_compatibility(void)9728 static int kvm_x86_check_processor_compatibility(void)
9729 {
9730 int cpu = smp_processor_id();
9731 struct cpuinfo_x86 *c = &cpu_data(cpu);
9732
9733 /*
9734 * Compatibility checks are done when loading KVM and when enabling
9735 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are
9736 * compatible, i.e. KVM should never perform a compatibility check on
9737 * an offline CPU.
9738 */
9739 WARN_ON(!cpu_online(cpu));
9740
9741 if (__cr4_reserved_bits(cpu_has, c) !=
9742 __cr4_reserved_bits(cpu_has, &boot_cpu_data))
9743 return -EIO;
9744
9745 return kvm_x86_call(check_processor_compatibility)();
9746 }
9747
kvm_x86_check_cpu_compat(void * ret)9748 static void kvm_x86_check_cpu_compat(void *ret)
9749 {
9750 *(int *)ret = kvm_x86_check_processor_compatibility();
9751 }
9752
kvm_x86_vendor_init(struct kvm_x86_init_ops * ops)9753 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9754 {
9755 u64 host_pat;
9756 int r, cpu;
9757
9758 guard(mutex)(&vendor_module_lock);
9759
9760 if (kvm_x86_ops.enable_virtualization_cpu) {
9761 pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name);
9762 return -EEXIST;
9763 }
9764
9765 /*
9766 * KVM explicitly assumes that the guest has an FPU and
9767 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9768 * vCPU's FPU state as a fxregs_state struct.
9769 */
9770 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
9771 pr_err("inadequate fpu\n");
9772 return -EOPNOTSUPP;
9773 }
9774
9775 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9776 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
9777 return -EOPNOTSUPP;
9778 }
9779
9780 /*
9781 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
9782 * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something
9783 * other than WB. Note, EPT doesn't utilize the PAT, but don't bother
9784 * with an exception. PAT[0] is set to WB on RESET and also by the
9785 * kernel, i.e. failure indicates a kernel bug or broken firmware.
9786 */
9787 if (rdmsrq_safe(MSR_IA32_CR_PAT, &host_pat) ||
9788 (host_pat & GENMASK(2, 0)) != 6) {
9789 pr_err("host PAT[0] is not WB\n");
9790 return -EIO;
9791 }
9792
9793 memset(&kvm_caps, 0, sizeof(kvm_caps));
9794
9795 x86_emulator_cache = kvm_alloc_emulator_cache();
9796 if (!x86_emulator_cache) {
9797 pr_err("failed to allocate cache for x86 emulator\n");
9798 return -ENOMEM;
9799 }
9800
9801 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
9802 if (!user_return_msrs) {
9803 pr_err("failed to allocate percpu kvm_user_return_msrs\n");
9804 r = -ENOMEM;
9805 goto out_free_x86_emulator_cache;
9806 }
9807 kvm_nr_uret_msrs = 0;
9808
9809 r = kvm_mmu_vendor_module_init();
9810 if (r)
9811 goto out_free_percpu;
9812
9813 kvm_caps.supported_vm_types = BIT(KVM_X86_DEFAULT_VM);
9814 kvm_caps.supported_mce_cap = MCG_CTL_P | MCG_SER_P;
9815
9816 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9817 kvm_host.xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9818 kvm_caps.supported_xcr0 = kvm_host.xcr0 & KVM_SUPPORTED_XCR0;
9819 }
9820 kvm_caps.supported_quirks = KVM_X86_VALID_QUIRKS;
9821 kvm_caps.inapplicable_quirks = KVM_X86_CONDITIONAL_QUIRKS;
9822
9823 rdmsrq_safe(MSR_EFER, &kvm_host.efer);
9824
9825 if (boot_cpu_has(X86_FEATURE_XSAVES))
9826 rdmsrq(MSR_IA32_XSS, kvm_host.xss);
9827
9828 kvm_init_pmu_capability(ops->pmu_ops);
9829
9830 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
9831 rdmsrq(MSR_IA32_ARCH_CAPABILITIES, kvm_host.arch_capabilities);
9832
9833 r = ops->hardware_setup();
9834 if (r != 0)
9835 goto out_mmu_exit;
9836
9837 enable_device_posted_irqs &= enable_apicv &&
9838 irq_remapping_cap(IRQ_POSTING_CAP);
9839
9840 kvm_ops_update(ops);
9841
9842 for_each_online_cpu(cpu) {
9843 smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1);
9844 if (r < 0)
9845 goto out_unwind_ops;
9846 }
9847
9848 /*
9849 * Point of no return! DO NOT add error paths below this point unless
9850 * absolutely necessary, as most operations from this point forward
9851 * require unwinding.
9852 */
9853 kvm_timer_init();
9854
9855 if (pi_inject_timer == -1)
9856 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9857 #ifdef CONFIG_X86_64
9858 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9859
9860 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9861 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9862 #endif
9863
9864 kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
9865
9866 if (IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) && tdp_mmu_enabled)
9867 kvm_caps.supported_vm_types |= BIT(KVM_X86_SW_PROTECTED_VM);
9868
9869 /* KVM always ignores guest PAT for shadow paging. */
9870 if (!tdp_enabled)
9871 kvm_caps.supported_quirks &= ~KVM_X86_QUIRK_IGNORE_GUEST_PAT;
9872
9873 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
9874 kvm_caps.supported_xss = 0;
9875
9876 if (kvm_caps.has_tsc_control) {
9877 /*
9878 * Make sure the user can only configure tsc_khz values that
9879 * fit into a signed integer.
9880 * A min value is not calculated because it will always
9881 * be 1 on all machines.
9882 */
9883 u64 max = min(0x7fffffffULL,
9884 __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
9885 kvm_caps.max_guest_tsc_khz = max;
9886 }
9887 kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
9888 kvm_init_msr_lists();
9889 return 0;
9890
9891 out_unwind_ops:
9892 kvm_x86_ops.enable_virtualization_cpu = NULL;
9893 kvm_x86_call(hardware_unsetup)();
9894 out_mmu_exit:
9895 kvm_mmu_vendor_module_exit();
9896 out_free_percpu:
9897 free_percpu(user_return_msrs);
9898 out_free_x86_emulator_cache:
9899 kmem_cache_destroy(x86_emulator_cache);
9900 return r;
9901 }
9902 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init);
9903
kvm_x86_vendor_exit(void)9904 void kvm_x86_vendor_exit(void)
9905 {
9906 kvm_unregister_perf_callbacks();
9907
9908 #ifdef CONFIG_X86_64
9909 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9910 clear_hv_tscchange_cb();
9911 #endif
9912 kvm_lapic_exit();
9913
9914 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9915 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9916 CPUFREQ_TRANSITION_NOTIFIER);
9917 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9918 }
9919 #ifdef CONFIG_X86_64
9920 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9921 irq_work_sync(&pvclock_irq_work);
9922 cancel_work_sync(&pvclock_gtod_work);
9923 #endif
9924 kvm_x86_call(hardware_unsetup)();
9925 kvm_mmu_vendor_module_exit();
9926 free_percpu(user_return_msrs);
9927 kmem_cache_destroy(x86_emulator_cache);
9928 #ifdef CONFIG_KVM_XEN
9929 static_key_deferred_flush(&kvm_xen_enabled);
9930 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9931 #endif
9932 mutex_lock(&vendor_module_lock);
9933 kvm_x86_ops.enable_virtualization_cpu = NULL;
9934 mutex_unlock(&vendor_module_lock);
9935 }
9936 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit);
9937
9938 #ifdef CONFIG_X86_64
kvm_pv_clock_pairing(struct kvm_vcpu * vcpu,gpa_t paddr,unsigned long clock_type)9939 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9940 unsigned long clock_type)
9941 {
9942 struct kvm_clock_pairing clock_pairing;
9943 struct timespec64 ts;
9944 u64 cycle;
9945 int ret;
9946
9947 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9948 return -KVM_EOPNOTSUPP;
9949
9950 /*
9951 * When tsc is in permanent catchup mode guests won't be able to use
9952 * pvclock_read_retry loop to get consistent view of pvclock
9953 */
9954 if (vcpu->arch.tsc_always_catchup)
9955 return -KVM_EOPNOTSUPP;
9956
9957 if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9958 return -KVM_EOPNOTSUPP;
9959
9960 clock_pairing.sec = ts.tv_sec;
9961 clock_pairing.nsec = ts.tv_nsec;
9962 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9963 clock_pairing.flags = 0;
9964 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9965
9966 ret = 0;
9967 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9968 sizeof(struct kvm_clock_pairing)))
9969 ret = -KVM_EFAULT;
9970
9971 return ret;
9972 }
9973 #endif
9974
9975 /*
9976 * kvm_pv_kick_cpu_op: Kick a vcpu.
9977 *
9978 * @apicid - apicid of vcpu to be kicked.
9979 */
kvm_pv_kick_cpu_op(struct kvm * kvm,int apicid)9980 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9981 {
9982 /*
9983 * All other fields are unused for APIC_DM_REMRD, but may be consumed by
9984 * common code, e.g. for tracing. Defer initialization to the compiler.
9985 */
9986 struct kvm_lapic_irq lapic_irq = {
9987 .delivery_mode = APIC_DM_REMRD,
9988 .dest_mode = APIC_DEST_PHYSICAL,
9989 .shorthand = APIC_DEST_NOSHORT,
9990 .dest_id = apicid,
9991 };
9992
9993 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9994 }
9995
kvm_apicv_activated(struct kvm * kvm)9996 bool kvm_apicv_activated(struct kvm *kvm)
9997 {
9998 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9999 }
10000 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
10001
kvm_vcpu_apicv_activated(struct kvm_vcpu * vcpu)10002 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
10003 {
10004 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
10005 ulong vcpu_reasons =
10006 kvm_x86_call(vcpu_get_apicv_inhibit_reasons)(vcpu);
10007
10008 return (vm_reasons | vcpu_reasons) == 0;
10009 }
10010 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
10011
set_or_clear_apicv_inhibit(unsigned long * inhibits,enum kvm_apicv_inhibit reason,bool set)10012 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
10013 enum kvm_apicv_inhibit reason, bool set)
10014 {
10015 const struct trace_print_flags apicv_inhibits[] = { APICV_INHIBIT_REASONS };
10016
10017 BUILD_BUG_ON(ARRAY_SIZE(apicv_inhibits) != NR_APICV_INHIBIT_REASONS);
10018
10019 if (set)
10020 __set_bit(reason, inhibits);
10021 else
10022 __clear_bit(reason, inhibits);
10023
10024 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
10025 }
10026
kvm_apicv_init(struct kvm * kvm)10027 static void kvm_apicv_init(struct kvm *kvm)
10028 {
10029 enum kvm_apicv_inhibit reason = enable_apicv ? APICV_INHIBIT_REASON_ABSENT :
10030 APICV_INHIBIT_REASON_DISABLED;
10031
10032 set_or_clear_apicv_inhibit(&kvm->arch.apicv_inhibit_reasons, reason, true);
10033
10034 init_rwsem(&kvm->arch.apicv_update_lock);
10035 }
10036
kvm_sched_yield(struct kvm_vcpu * vcpu,unsigned long dest_id)10037 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
10038 {
10039 struct kvm_vcpu *target = NULL;
10040 struct kvm_apic_map *map;
10041
10042 vcpu->stat.directed_yield_attempted++;
10043
10044 if (single_task_running())
10045 goto no_yield;
10046
10047 rcu_read_lock();
10048 map = rcu_dereference(vcpu->kvm->arch.apic_map);
10049
10050 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
10051 target = map->phys_map[dest_id]->vcpu;
10052
10053 rcu_read_unlock();
10054
10055 if (!target || !READ_ONCE(target->ready))
10056 goto no_yield;
10057
10058 /* Ignore requests to yield to self */
10059 if (vcpu == target)
10060 goto no_yield;
10061
10062 if (kvm_vcpu_yield_to(target) <= 0)
10063 goto no_yield;
10064
10065 vcpu->stat.directed_yield_successful++;
10066
10067 no_yield:
10068 return;
10069 }
10070
complete_hypercall_exit(struct kvm_vcpu * vcpu)10071 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
10072 {
10073 u64 ret = vcpu->run->hypercall.ret;
10074
10075 if (!is_64_bit_hypercall(vcpu))
10076 ret = (u32)ret;
10077 kvm_rax_write(vcpu, ret);
10078 return kvm_skip_emulated_instruction(vcpu);
10079 }
10080
____kvm_emulate_hypercall(struct kvm_vcpu * vcpu,int cpl,int (* complete_hypercall)(struct kvm_vcpu *))10081 int ____kvm_emulate_hypercall(struct kvm_vcpu *vcpu, int cpl,
10082 int (*complete_hypercall)(struct kvm_vcpu *))
10083 {
10084 unsigned long ret;
10085 unsigned long nr = kvm_rax_read(vcpu);
10086 unsigned long a0 = kvm_rbx_read(vcpu);
10087 unsigned long a1 = kvm_rcx_read(vcpu);
10088 unsigned long a2 = kvm_rdx_read(vcpu);
10089 unsigned long a3 = kvm_rsi_read(vcpu);
10090 int op_64_bit = is_64_bit_hypercall(vcpu);
10091
10092 ++vcpu->stat.hypercalls;
10093
10094 trace_kvm_hypercall(nr, a0, a1, a2, a3);
10095
10096 if (!op_64_bit) {
10097 nr &= 0xFFFFFFFF;
10098 a0 &= 0xFFFFFFFF;
10099 a1 &= 0xFFFFFFFF;
10100 a2 &= 0xFFFFFFFF;
10101 a3 &= 0xFFFFFFFF;
10102 }
10103
10104 if (cpl) {
10105 ret = -KVM_EPERM;
10106 goto out;
10107 }
10108
10109 ret = -KVM_ENOSYS;
10110
10111 switch (nr) {
10112 case KVM_HC_VAPIC_POLL_IRQ:
10113 ret = 0;
10114 break;
10115 case KVM_HC_KICK_CPU:
10116 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
10117 break;
10118
10119 kvm_pv_kick_cpu_op(vcpu->kvm, a1);
10120 kvm_sched_yield(vcpu, a1);
10121 ret = 0;
10122 break;
10123 #ifdef CONFIG_X86_64
10124 case KVM_HC_CLOCK_PAIRING:
10125 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
10126 break;
10127 #endif
10128 case KVM_HC_SEND_IPI:
10129 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
10130 break;
10131
10132 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
10133 break;
10134 case KVM_HC_SCHED_YIELD:
10135 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
10136 break;
10137
10138 kvm_sched_yield(vcpu, a0);
10139 ret = 0;
10140 break;
10141 case KVM_HC_MAP_GPA_RANGE: {
10142 u64 gpa = a0, npages = a1, attrs = a2;
10143
10144 ret = -KVM_ENOSYS;
10145 if (!user_exit_on_hypercall(vcpu->kvm, KVM_HC_MAP_GPA_RANGE))
10146 break;
10147
10148 if (!PAGE_ALIGNED(gpa) || !npages ||
10149 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
10150 ret = -KVM_EINVAL;
10151 break;
10152 }
10153
10154 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL;
10155 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
10156 /*
10157 * In principle this should have been -KVM_ENOSYS, but userspace (QEMU <=9.2)
10158 * assumed that vcpu->run->hypercall.ret is never changed by KVM and thus that
10159 * it was always zero on KVM_EXIT_HYPERCALL. Since KVM is now overwriting
10160 * vcpu->run->hypercall.ret, ensuring that it is zero to not break QEMU.
10161 */
10162 vcpu->run->hypercall.ret = 0;
10163 vcpu->run->hypercall.args[0] = gpa;
10164 vcpu->run->hypercall.args[1] = npages;
10165 vcpu->run->hypercall.args[2] = attrs;
10166 vcpu->run->hypercall.flags = 0;
10167 if (op_64_bit)
10168 vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE;
10169
10170 WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ);
10171 vcpu->arch.complete_userspace_io = complete_hypercall;
10172 return 0;
10173 }
10174 default:
10175 ret = -KVM_ENOSYS;
10176 break;
10177 }
10178
10179 out:
10180 vcpu->run->hypercall.ret = ret;
10181 return 1;
10182 }
10183 EXPORT_SYMBOL_GPL(____kvm_emulate_hypercall);
10184
kvm_emulate_hypercall(struct kvm_vcpu * vcpu)10185 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
10186 {
10187 if (kvm_xen_hypercall_enabled(vcpu->kvm))
10188 return kvm_xen_hypercall(vcpu);
10189
10190 if (kvm_hv_hypercall_enabled(vcpu))
10191 return kvm_hv_hypercall(vcpu);
10192
10193 return __kvm_emulate_hypercall(vcpu, kvm_x86_call(get_cpl)(vcpu),
10194 complete_hypercall_exit);
10195 }
10196 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
10197
emulator_fix_hypercall(struct x86_emulate_ctxt * ctxt)10198 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
10199 {
10200 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
10201 char instruction[3];
10202 unsigned long rip = kvm_rip_read(vcpu);
10203
10204 /*
10205 * If the quirk is disabled, synthesize a #UD and let the guest pick up
10206 * the pieces.
10207 */
10208 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
10209 ctxt->exception.error_code_valid = false;
10210 ctxt->exception.vector = UD_VECTOR;
10211 ctxt->have_exception = true;
10212 return X86EMUL_PROPAGATE_FAULT;
10213 }
10214
10215 kvm_x86_call(patch_hypercall)(vcpu, instruction);
10216
10217 return emulator_write_emulated(ctxt, rip, instruction, 3,
10218 &ctxt->exception);
10219 }
10220
dm_request_for_irq_injection(struct kvm_vcpu * vcpu)10221 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
10222 {
10223 return vcpu->run->request_interrupt_window &&
10224 likely(!pic_in_kernel(vcpu->kvm));
10225 }
10226
10227 /* Called within kvm->srcu read side. */
post_kvm_run_save(struct kvm_vcpu * vcpu)10228 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
10229 {
10230 struct kvm_run *kvm_run = vcpu->run;
10231
10232 kvm_run->if_flag = kvm_x86_call(get_if_flag)(vcpu);
10233 kvm_run->cr8 = kvm_get_cr8(vcpu);
10234 kvm_run->apic_base = vcpu->arch.apic_base;
10235
10236 kvm_run->ready_for_interrupt_injection =
10237 pic_in_kernel(vcpu->kvm) ||
10238 kvm_vcpu_ready_for_interrupt_injection(vcpu);
10239
10240 if (is_smm(vcpu))
10241 kvm_run->flags |= KVM_RUN_X86_SMM;
10242 if (is_guest_mode(vcpu))
10243 kvm_run->flags |= KVM_RUN_X86_GUEST_MODE;
10244 }
10245
update_cr8_intercept(struct kvm_vcpu * vcpu)10246 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
10247 {
10248 int max_irr, tpr;
10249
10250 if (!kvm_x86_ops.update_cr8_intercept)
10251 return;
10252
10253 if (!lapic_in_kernel(vcpu))
10254 return;
10255
10256 if (vcpu->arch.apic->apicv_active)
10257 return;
10258
10259 if (!vcpu->arch.apic->vapic_addr)
10260 max_irr = kvm_lapic_find_highest_irr(vcpu);
10261 else
10262 max_irr = -1;
10263
10264 if (max_irr != -1)
10265 max_irr >>= 4;
10266
10267 tpr = kvm_lapic_get_cr8(vcpu);
10268
10269 kvm_x86_call(update_cr8_intercept)(vcpu, tpr, max_irr);
10270 }
10271
10272
kvm_check_nested_events(struct kvm_vcpu * vcpu)10273 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
10274 {
10275 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10276 kvm_x86_ops.nested_ops->triple_fault(vcpu);
10277 return 1;
10278 }
10279
10280 return kvm_x86_ops.nested_ops->check_events(vcpu);
10281 }
10282
kvm_inject_exception(struct kvm_vcpu * vcpu)10283 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
10284 {
10285 /*
10286 * Suppress the error code if the vCPU is in Real Mode, as Real Mode
10287 * exceptions don't report error codes. The presence of an error code
10288 * is carried with the exception and only stripped when the exception
10289 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do
10290 * report an error code despite the CPU being in Real Mode.
10291 */
10292 vcpu->arch.exception.has_error_code &= is_protmode(vcpu);
10293
10294 trace_kvm_inj_exception(vcpu->arch.exception.vector,
10295 vcpu->arch.exception.has_error_code,
10296 vcpu->arch.exception.error_code,
10297 vcpu->arch.exception.injected);
10298
10299 kvm_x86_call(inject_exception)(vcpu);
10300 }
10301
10302 /*
10303 * Check for any event (interrupt or exception) that is ready to be injected,
10304 * and if there is at least one event, inject the event with the highest
10305 * priority. This handles both "pending" events, i.e. events that have never
10306 * been injected into the guest, and "injected" events, i.e. events that were
10307 * injected as part of a previous VM-Enter, but weren't successfully delivered
10308 * and need to be re-injected.
10309 *
10310 * Note, this is not guaranteed to be invoked on a guest instruction boundary,
10311 * i.e. doesn't guarantee that there's an event window in the guest. KVM must
10312 * be able to inject exceptions in the "middle" of an instruction, and so must
10313 * also be able to re-inject NMIs and IRQs in the middle of an instruction.
10314 * I.e. for exceptions and re-injected events, NOT invoking this on instruction
10315 * boundaries is necessary and correct.
10316 *
10317 * For simplicity, KVM uses a single path to inject all events (except events
10318 * that are injected directly from L1 to L2) and doesn't explicitly track
10319 * instruction boundaries for asynchronous events. However, because VM-Exits
10320 * that can occur during instruction execution typically result in KVM skipping
10321 * the instruction or injecting an exception, e.g. instruction and exception
10322 * intercepts, and because pending exceptions have higher priority than pending
10323 * interrupts, KVM still honors instruction boundaries in most scenarios.
10324 *
10325 * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip
10326 * the instruction or inject an exception, then KVM can incorrecty inject a new
10327 * asynchronous event if the event became pending after the CPU fetched the
10328 * instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation)
10329 * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be
10330 * injected on the restarted instruction instead of being deferred until the
10331 * instruction completes.
10332 *
10333 * In practice, this virtualization hole is unlikely to be observed by the
10334 * guest, and even less likely to cause functional problems. To detect the
10335 * hole, the guest would have to trigger an event on a side effect of an early
10336 * phase of instruction execution, e.g. on the instruction fetch from memory.
10337 * And for it to be a functional problem, the guest would need to depend on the
10338 * ordering between that side effect, the instruction completing, _and_ the
10339 * delivery of the asynchronous event.
10340 */
kvm_check_and_inject_events(struct kvm_vcpu * vcpu,bool * req_immediate_exit)10341 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu,
10342 bool *req_immediate_exit)
10343 {
10344 bool can_inject;
10345 int r;
10346
10347 /*
10348 * Process nested events first, as nested VM-Exit supersedes event
10349 * re-injection. If there's an event queued for re-injection, it will
10350 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit.
10351 */
10352 if (is_guest_mode(vcpu))
10353 r = kvm_check_nested_events(vcpu);
10354 else
10355 r = 0;
10356
10357 /*
10358 * Re-inject exceptions and events *especially* if immediate entry+exit
10359 * to/from L2 is needed, as any event that has already been injected
10360 * into L2 needs to complete its lifecycle before injecting a new event.
10361 *
10362 * Don't re-inject an NMI or interrupt if there is a pending exception.
10363 * This collision arises if an exception occurred while vectoring the
10364 * injected event, KVM intercepted said exception, and KVM ultimately
10365 * determined the fault belongs to the guest and queues the exception
10366 * for injection back into the guest.
10367 *
10368 * "Injected" interrupts can also collide with pending exceptions if
10369 * userspace ignores the "ready for injection" flag and blindly queues
10370 * an interrupt. In that case, prioritizing the exception is correct,
10371 * as the exception "occurred" before the exit to userspace. Trap-like
10372 * exceptions, e.g. most #DBs, have higher priority than interrupts.
10373 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest
10374 * priority, they're only generated (pended) during instruction
10375 * execution, and interrupts are recognized at instruction boundaries.
10376 * Thus a pending fault-like exception means the fault occurred on the
10377 * *previous* instruction and must be serviced prior to recognizing any
10378 * new events in order to fully complete the previous instruction.
10379 */
10380 if (vcpu->arch.exception.injected)
10381 kvm_inject_exception(vcpu);
10382 else if (kvm_is_exception_pending(vcpu))
10383 ; /* see above */
10384 else if (vcpu->arch.nmi_injected)
10385 kvm_x86_call(inject_nmi)(vcpu);
10386 else if (vcpu->arch.interrupt.injected)
10387 kvm_x86_call(inject_irq)(vcpu, true);
10388
10389 /*
10390 * Exceptions that morph to VM-Exits are handled above, and pending
10391 * exceptions on top of injected exceptions that do not VM-Exit should
10392 * either morph to #DF or, sadly, override the injected exception.
10393 */
10394 WARN_ON_ONCE(vcpu->arch.exception.injected &&
10395 vcpu->arch.exception.pending);
10396
10397 /*
10398 * Bail if immediate entry+exit to/from the guest is needed to complete
10399 * nested VM-Enter or event re-injection so that a different pending
10400 * event can be serviced (or if KVM needs to exit to userspace).
10401 *
10402 * Otherwise, continue processing events even if VM-Exit occurred. The
10403 * VM-Exit will have cleared exceptions that were meant for L2, but
10404 * there may now be events that can be injected into L1.
10405 */
10406 if (r < 0)
10407 goto out;
10408
10409 /*
10410 * A pending exception VM-Exit should either result in nested VM-Exit
10411 * or force an immediate re-entry and exit to/from L2, and exception
10412 * VM-Exits cannot be injected (flag should _never_ be set).
10413 */
10414 WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected ||
10415 vcpu->arch.exception_vmexit.pending);
10416
10417 /*
10418 * New events, other than exceptions, cannot be injected if KVM needs
10419 * to re-inject a previous event. See above comments on re-injecting
10420 * for why pending exceptions get priority.
10421 */
10422 can_inject = !kvm_event_needs_reinjection(vcpu);
10423
10424 if (vcpu->arch.exception.pending) {
10425 /*
10426 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
10427 * value pushed on the stack. Trap-like exception and all #DBs
10428 * leave RF as-is (KVM follows Intel's behavior in this regard;
10429 * AMD states that code breakpoint #DBs excplitly clear RF=0).
10430 *
10431 * Note, most versions of Intel's SDM and AMD's APM incorrectly
10432 * describe the behavior of General Detect #DBs, which are
10433 * fault-like. They do _not_ set RF, a la code breakpoints.
10434 */
10435 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT)
10436 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
10437 X86_EFLAGS_RF);
10438
10439 if (vcpu->arch.exception.vector == DB_VECTOR) {
10440 kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception);
10441 if (vcpu->arch.dr7 & DR7_GD) {
10442 vcpu->arch.dr7 &= ~DR7_GD;
10443 kvm_update_dr7(vcpu);
10444 }
10445 }
10446
10447 kvm_inject_exception(vcpu);
10448
10449 vcpu->arch.exception.pending = false;
10450 vcpu->arch.exception.injected = true;
10451
10452 can_inject = false;
10453 }
10454
10455 /* Don't inject interrupts if the user asked to avoid doing so */
10456 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
10457 return 0;
10458
10459 /*
10460 * Finally, inject interrupt events. If an event cannot be injected
10461 * due to architectural conditions (e.g. IF=0) a window-open exit
10462 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending
10463 * and can architecturally be injected, but we cannot do it right now:
10464 * an interrupt could have arrived just now and we have to inject it
10465 * as a vmexit, or there could already an event in the queue, which is
10466 * indicated by can_inject. In that case we request an immediate exit
10467 * in order to make progress and get back here for another iteration.
10468 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
10469 */
10470 #ifdef CONFIG_KVM_SMM
10471 if (vcpu->arch.smi_pending) {
10472 r = can_inject ? kvm_x86_call(smi_allowed)(vcpu, true) :
10473 -EBUSY;
10474 if (r < 0)
10475 goto out;
10476 if (r) {
10477 vcpu->arch.smi_pending = false;
10478 ++vcpu->arch.smi_count;
10479 enter_smm(vcpu);
10480 can_inject = false;
10481 } else
10482 kvm_x86_call(enable_smi_window)(vcpu);
10483 }
10484 #endif
10485
10486 if (vcpu->arch.nmi_pending) {
10487 r = can_inject ? kvm_x86_call(nmi_allowed)(vcpu, true) :
10488 -EBUSY;
10489 if (r < 0)
10490 goto out;
10491 if (r) {
10492 --vcpu->arch.nmi_pending;
10493 vcpu->arch.nmi_injected = true;
10494 kvm_x86_call(inject_nmi)(vcpu);
10495 can_inject = false;
10496 WARN_ON(kvm_x86_call(nmi_allowed)(vcpu, true) < 0);
10497 }
10498 if (vcpu->arch.nmi_pending)
10499 kvm_x86_call(enable_nmi_window)(vcpu);
10500 }
10501
10502 if (kvm_cpu_has_injectable_intr(vcpu)) {
10503 r = can_inject ? kvm_x86_call(interrupt_allowed)(vcpu, true) :
10504 -EBUSY;
10505 if (r < 0)
10506 goto out;
10507 if (r) {
10508 int irq = kvm_cpu_get_interrupt(vcpu);
10509
10510 if (!WARN_ON_ONCE(irq == -1)) {
10511 kvm_queue_interrupt(vcpu, irq, false);
10512 kvm_x86_call(inject_irq)(vcpu, false);
10513 WARN_ON(kvm_x86_call(interrupt_allowed)(vcpu, true) < 0);
10514 }
10515 }
10516 if (kvm_cpu_has_injectable_intr(vcpu))
10517 kvm_x86_call(enable_irq_window)(vcpu);
10518 }
10519
10520 if (is_guest_mode(vcpu) &&
10521 kvm_x86_ops.nested_ops->has_events &&
10522 kvm_x86_ops.nested_ops->has_events(vcpu, true))
10523 *req_immediate_exit = true;
10524
10525 /*
10526 * KVM must never queue a new exception while injecting an event; KVM
10527 * is done emulating and should only propagate the to-be-injected event
10528 * to the VMCS/VMCB. Queueing a new exception can put the vCPU into an
10529 * infinite loop as KVM will bail from VM-Enter to inject the pending
10530 * exception and start the cycle all over.
10531 *
10532 * Exempt triple faults as they have special handling and won't put the
10533 * vCPU into an infinite loop. Triple fault can be queued when running
10534 * VMX without unrestricted guest, as that requires KVM to emulate Real
10535 * Mode events (see kvm_inject_realmode_interrupt()).
10536 */
10537 WARN_ON_ONCE(vcpu->arch.exception.pending ||
10538 vcpu->arch.exception_vmexit.pending);
10539 return 0;
10540
10541 out:
10542 if (r == -EBUSY) {
10543 *req_immediate_exit = true;
10544 r = 0;
10545 }
10546 return r;
10547 }
10548
process_nmi(struct kvm_vcpu * vcpu)10549 static void process_nmi(struct kvm_vcpu *vcpu)
10550 {
10551 unsigned int limit;
10552
10553 /*
10554 * x86 is limited to one NMI pending, but because KVM can't react to
10555 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is
10556 * scheduled out, KVM needs to play nice with two queued NMIs showing
10557 * up at the same time. To handle this scenario, allow two NMIs to be
10558 * (temporarily) pending so long as NMIs are not blocked and KVM is not
10559 * waiting for a previous NMI injection to complete (which effectively
10560 * blocks NMIs). KVM will immediately inject one of the two NMIs, and
10561 * will request an NMI window to handle the second NMI.
10562 */
10563 if (kvm_x86_call(get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
10564 limit = 1;
10565 else
10566 limit = 2;
10567
10568 /*
10569 * Adjust the limit to account for pending virtual NMIs, which aren't
10570 * tracked in vcpu->arch.nmi_pending.
10571 */
10572 if (kvm_x86_call(is_vnmi_pending)(vcpu))
10573 limit--;
10574
10575 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
10576 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
10577
10578 if (vcpu->arch.nmi_pending &&
10579 (kvm_x86_call(set_vnmi_pending)(vcpu)))
10580 vcpu->arch.nmi_pending--;
10581
10582 if (vcpu->arch.nmi_pending)
10583 kvm_make_request(KVM_REQ_EVENT, vcpu);
10584 }
10585
10586 /* Return total number of NMIs pending injection to the VM */
kvm_get_nr_pending_nmis(struct kvm_vcpu * vcpu)10587 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu)
10588 {
10589 return vcpu->arch.nmi_pending +
10590 kvm_x86_call(is_vnmi_pending)(vcpu);
10591 }
10592
kvm_make_scan_ioapic_request_mask(struct kvm * kvm,unsigned long * vcpu_bitmap)10593 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10594 unsigned long *vcpu_bitmap)
10595 {
10596 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10597 }
10598
kvm_make_scan_ioapic_request(struct kvm * kvm)10599 void kvm_make_scan_ioapic_request(struct kvm *kvm)
10600 {
10601 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10602 }
10603
__kvm_vcpu_update_apicv(struct kvm_vcpu * vcpu)10604 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10605 {
10606 struct kvm_lapic *apic = vcpu->arch.apic;
10607 bool activate;
10608
10609 if (!lapic_in_kernel(vcpu))
10610 return;
10611
10612 down_read(&vcpu->kvm->arch.apicv_update_lock);
10613 preempt_disable();
10614
10615 /* Do not activate APICV when APIC is disabled */
10616 activate = kvm_vcpu_apicv_activated(vcpu) &&
10617 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10618
10619 if (apic->apicv_active == activate)
10620 goto out;
10621
10622 apic->apicv_active = activate;
10623 kvm_apic_update_apicv(vcpu);
10624 kvm_x86_call(refresh_apicv_exec_ctrl)(vcpu);
10625
10626 /*
10627 * When APICv gets disabled, we may still have injected interrupts
10628 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10629 * still active when the interrupt got accepted. Make sure
10630 * kvm_check_and_inject_events() is called to check for that.
10631 */
10632 if (!apic->apicv_active)
10633 kvm_make_request(KVM_REQ_EVENT, vcpu);
10634
10635 out:
10636 preempt_enable();
10637 up_read(&vcpu->kvm->arch.apicv_update_lock);
10638 }
10639 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv);
10640
kvm_vcpu_update_apicv(struct kvm_vcpu * vcpu)10641 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10642 {
10643 if (!lapic_in_kernel(vcpu))
10644 return;
10645
10646 /*
10647 * Due to sharing page tables across vCPUs, the xAPIC memslot must be
10648 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but
10649 * and hardware doesn't support x2APIC virtualization. E.g. some AMD
10650 * CPUs support AVIC but not x2APIC. KVM still allows enabling AVIC in
10651 * this case so that KVM can use the AVIC doorbell to inject interrupts
10652 * to running vCPUs, but KVM must not create SPTEs for the APIC base as
10653 * the vCPU would incorrectly be able to access the vAPIC page via MMIO
10654 * despite being in x2APIC mode. For simplicity, inhibiting the APIC
10655 * access page is sticky.
10656 */
10657 if (apic_x2apic_mode(vcpu->arch.apic) &&
10658 kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization)
10659 kvm_inhibit_apic_access_page(vcpu);
10660
10661 __kvm_vcpu_update_apicv(vcpu);
10662 }
10663
__kvm_set_or_clear_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason,bool set)10664 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10665 enum kvm_apicv_inhibit reason, bool set)
10666 {
10667 unsigned long old, new;
10668
10669 lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10670
10671 if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason)))
10672 return;
10673
10674 old = new = kvm->arch.apicv_inhibit_reasons;
10675
10676 set_or_clear_apicv_inhibit(&new, reason, set);
10677
10678 if (!!old != !!new) {
10679 /*
10680 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10681 * false positives in the sanity check WARN in vcpu_enter_guest().
10682 * This task will wait for all vCPUs to ack the kick IRQ before
10683 * updating apicv_inhibit_reasons, and all other vCPUs will
10684 * block on acquiring apicv_update_lock so that vCPUs can't
10685 * redo vcpu_enter_guest() without seeing the new inhibit state.
10686 *
10687 * Note, holding apicv_update_lock and taking it in the read
10688 * side (handling the request) also prevents other vCPUs from
10689 * servicing the request with a stale apicv_inhibit_reasons.
10690 */
10691 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10692 kvm->arch.apicv_inhibit_reasons = new;
10693 if (new) {
10694 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10695 int idx = srcu_read_lock(&kvm->srcu);
10696
10697 kvm_zap_gfn_range(kvm, gfn, gfn+1);
10698 srcu_read_unlock(&kvm->srcu, idx);
10699 }
10700 } else {
10701 kvm->arch.apicv_inhibit_reasons = new;
10702 }
10703 }
10704
kvm_set_or_clear_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason,bool set)10705 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10706 enum kvm_apicv_inhibit reason, bool set)
10707 {
10708 if (!enable_apicv)
10709 return;
10710
10711 down_write(&kvm->arch.apicv_update_lock);
10712 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10713 up_write(&kvm->arch.apicv_update_lock);
10714 }
10715 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
10716
vcpu_scan_ioapic(struct kvm_vcpu * vcpu)10717 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10718 {
10719 if (!kvm_apic_present(vcpu))
10720 return;
10721
10722 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
10723 vcpu->arch.highest_stale_pending_ioapic_eoi = -1;
10724
10725 kvm_x86_call(sync_pir_to_irr)(vcpu);
10726
10727 if (irqchip_split(vcpu->kvm))
10728 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
10729 else if (ioapic_in_kernel(vcpu->kvm))
10730 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
10731
10732 if (is_guest_mode(vcpu))
10733 vcpu->arch.load_eoi_exitmap_pending = true;
10734 else
10735 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10736 }
10737
vcpu_load_eoi_exitmap(struct kvm_vcpu * vcpu)10738 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10739 {
10740 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
10741 return;
10742
10743 #ifdef CONFIG_KVM_HYPERV
10744 if (to_hv_vcpu(vcpu)) {
10745 u64 eoi_exit_bitmap[4];
10746
10747 bitmap_or((ulong *)eoi_exit_bitmap,
10748 vcpu->arch.ioapic_handled_vectors,
10749 to_hv_synic(vcpu)->vec_bitmap, 256);
10750 kvm_x86_call(load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
10751 return;
10752 }
10753 #endif
10754 kvm_x86_call(load_eoi_exitmap)(
10755 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
10756 }
10757
kvm_arch_guest_memory_reclaimed(struct kvm * kvm)10758 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
10759 {
10760 kvm_x86_call(guest_memory_reclaimed)(kvm);
10761 }
10762
kvm_vcpu_reload_apic_access_page(struct kvm_vcpu * vcpu)10763 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
10764 {
10765 if (!lapic_in_kernel(vcpu))
10766 return;
10767
10768 kvm_x86_call(set_apic_access_page_addr)(vcpu);
10769 }
10770
10771 /*
10772 * Called within kvm->srcu read side.
10773 * Returns 1 to let vcpu_run() continue the guest execution loop without
10774 * exiting to the userspace. Otherwise, the value will be returned to the
10775 * userspace.
10776 */
vcpu_enter_guest(struct kvm_vcpu * vcpu)10777 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10778 {
10779 int r;
10780 bool req_int_win =
10781 dm_request_for_irq_injection(vcpu) &&
10782 kvm_cpu_accept_dm_intr(vcpu);
10783 fastpath_t exit_fastpath;
10784
10785 bool req_immediate_exit = false;
10786
10787 if (kvm_request_pending(vcpu)) {
10788 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10789 r = -EIO;
10790 goto out;
10791 }
10792
10793 if (kvm_dirty_ring_check_request(vcpu)) {
10794 r = 0;
10795 goto out;
10796 }
10797
10798 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10799 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10800 r = 0;
10801 goto out;
10802 }
10803 }
10804 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10805 kvm_mmu_free_obsolete_roots(vcpu);
10806 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10807 __kvm_migrate_timers(vcpu);
10808 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10809 kvm_update_masterclock(vcpu->kvm);
10810 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10811 kvm_gen_kvmclock_update(vcpu);
10812 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10813 r = kvm_guest_time_update(vcpu);
10814 if (unlikely(r))
10815 goto out;
10816 }
10817 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10818 kvm_mmu_sync_roots(vcpu);
10819 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10820 kvm_mmu_load_pgd(vcpu);
10821
10822 /*
10823 * Note, the order matters here, as flushing "all" TLB entries
10824 * also flushes the "current" TLB entries, i.e. servicing the
10825 * flush "all" will clear any request to flush "current".
10826 */
10827 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
10828 kvm_vcpu_flush_tlb_all(vcpu);
10829
10830 kvm_service_local_tlb_flush_requests(vcpu);
10831
10832 /*
10833 * Fall back to a "full" guest flush if Hyper-V's precise
10834 * flushing fails. Note, Hyper-V's flushing is per-vCPU, but
10835 * the flushes are considered "remote" and not "local" because
10836 * the requests can be initiated from other vCPUs.
10837 */
10838 #ifdef CONFIG_KVM_HYPERV
10839 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) &&
10840 kvm_hv_vcpu_flush_tlb(vcpu))
10841 kvm_vcpu_flush_tlb_guest(vcpu);
10842 #endif
10843
10844 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10845 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10846 r = 0;
10847 goto out;
10848 }
10849 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10850 if (is_guest_mode(vcpu))
10851 kvm_x86_ops.nested_ops->triple_fault(vcpu);
10852
10853 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10854 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10855 vcpu->mmio_needed = 0;
10856 r = 0;
10857 goto out;
10858 }
10859 }
10860 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10861 /* Page is swapped out. Do synthetic halt */
10862 vcpu->arch.apf.halted = true;
10863 r = 1;
10864 goto out;
10865 }
10866 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10867 record_steal_time(vcpu);
10868 if (kvm_check_request(KVM_REQ_PMU, vcpu))
10869 kvm_pmu_handle_event(vcpu);
10870 if (kvm_check_request(KVM_REQ_PMI, vcpu))
10871 kvm_pmu_deliver_pmi(vcpu);
10872 #ifdef CONFIG_KVM_SMM
10873 if (kvm_check_request(KVM_REQ_SMI, vcpu))
10874 process_smi(vcpu);
10875 #endif
10876 if (kvm_check_request(KVM_REQ_NMI, vcpu))
10877 process_nmi(vcpu);
10878 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10879 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10880 if (test_bit(vcpu->arch.pending_ioapic_eoi,
10881 vcpu->arch.ioapic_handled_vectors)) {
10882 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10883 vcpu->run->eoi.vector =
10884 vcpu->arch.pending_ioapic_eoi;
10885 r = 0;
10886 goto out;
10887 }
10888 }
10889 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10890 vcpu_scan_ioapic(vcpu);
10891 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10892 vcpu_load_eoi_exitmap(vcpu);
10893 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10894 kvm_vcpu_reload_apic_access_page(vcpu);
10895 #ifdef CONFIG_KVM_HYPERV
10896 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10897 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10898 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10899 vcpu->run->system_event.ndata = 0;
10900 r = 0;
10901 goto out;
10902 }
10903 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10904 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10905 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10906 vcpu->run->system_event.ndata = 0;
10907 r = 0;
10908 goto out;
10909 }
10910 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10911 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10912
10913 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10914 vcpu->run->hyperv = hv_vcpu->exit;
10915 r = 0;
10916 goto out;
10917 }
10918
10919 /*
10920 * KVM_REQ_HV_STIMER has to be processed after
10921 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10922 * depend on the guest clock being up-to-date
10923 */
10924 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10925 kvm_hv_process_stimers(vcpu);
10926 #endif
10927 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10928 kvm_vcpu_update_apicv(vcpu);
10929 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10930 kvm_check_async_pf_completion(vcpu);
10931 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10932 kvm_x86_call(msr_filter_changed)(vcpu);
10933
10934 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10935 kvm_x86_call(update_cpu_dirty_logging)(vcpu);
10936
10937 if (kvm_check_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, vcpu)) {
10938 kvm_vcpu_reset(vcpu, true);
10939 if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE) {
10940 r = 1;
10941 goto out;
10942 }
10943 }
10944 }
10945
10946 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10947 kvm_xen_has_interrupt(vcpu)) {
10948 ++vcpu->stat.req_event;
10949 r = kvm_apic_accept_events(vcpu);
10950 if (r < 0) {
10951 r = 0;
10952 goto out;
10953 }
10954 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10955 r = 1;
10956 goto out;
10957 }
10958
10959 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit);
10960 if (r < 0) {
10961 r = 0;
10962 goto out;
10963 }
10964 if (req_int_win)
10965 kvm_x86_call(enable_irq_window)(vcpu);
10966
10967 if (kvm_lapic_enabled(vcpu)) {
10968 update_cr8_intercept(vcpu);
10969 kvm_lapic_sync_to_vapic(vcpu);
10970 }
10971 }
10972
10973 r = kvm_mmu_reload(vcpu);
10974 if (unlikely(r)) {
10975 goto cancel_injection;
10976 }
10977
10978 preempt_disable();
10979
10980 kvm_x86_call(prepare_switch_to_guest)(vcpu);
10981
10982 /*
10983 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
10984 * IPI are then delayed after guest entry, which ensures that they
10985 * result in virtual interrupt delivery.
10986 */
10987 local_irq_disable();
10988
10989 /* Store vcpu->apicv_active before vcpu->mode. */
10990 smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10991
10992 kvm_vcpu_srcu_read_unlock(vcpu);
10993
10994 /*
10995 * 1) We should set ->mode before checking ->requests. Please see
10996 * the comment in kvm_vcpu_exiting_guest_mode().
10997 *
10998 * 2) For APICv, we should set ->mode before checking PID.ON. This
10999 * pairs with the memory barrier implicit in pi_test_and_set_on
11000 * (see vmx_deliver_posted_interrupt).
11001 *
11002 * 3) This also orders the write to mode from any reads to the page
11003 * tables done while the VCPU is running. Please see the comment
11004 * in kvm_flush_remote_tlbs.
11005 */
11006 smp_mb__after_srcu_read_unlock();
11007
11008 /*
11009 * Process pending posted interrupts to handle the case where the
11010 * notification IRQ arrived in the host, or was never sent (because the
11011 * target vCPU wasn't running). Do this regardless of the vCPU's APICv
11012 * status, KVM doesn't update assigned devices when APICv is inhibited,
11013 * i.e. they can post interrupts even if APICv is temporarily disabled.
11014 */
11015 if (kvm_lapic_enabled(vcpu))
11016 kvm_x86_call(sync_pir_to_irr)(vcpu);
11017
11018 if (kvm_vcpu_exit_request(vcpu)) {
11019 vcpu->mode = OUTSIDE_GUEST_MODE;
11020 smp_wmb();
11021 local_irq_enable();
11022 preempt_enable();
11023 kvm_vcpu_srcu_read_lock(vcpu);
11024 r = 1;
11025 goto cancel_injection;
11026 }
11027
11028 if (req_immediate_exit)
11029 kvm_make_request(KVM_REQ_EVENT, vcpu);
11030
11031 fpregs_assert_state_consistent();
11032 if (test_thread_flag(TIF_NEED_FPU_LOAD))
11033 switch_fpu_return();
11034
11035 if (vcpu->arch.guest_fpu.xfd_err)
11036 wrmsrq(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
11037
11038 if (unlikely(vcpu->arch.switch_db_regs &&
11039 !(vcpu->arch.switch_db_regs & KVM_DEBUGREG_AUTO_SWITCH))) {
11040 set_debugreg(DR7_FIXED_1, 7);
11041 set_debugreg(vcpu->arch.eff_db[0], 0);
11042 set_debugreg(vcpu->arch.eff_db[1], 1);
11043 set_debugreg(vcpu->arch.eff_db[2], 2);
11044 set_debugreg(vcpu->arch.eff_db[3], 3);
11045 /* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */
11046 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
11047 kvm_x86_call(set_dr6)(vcpu, vcpu->arch.dr6);
11048 } else if (unlikely(hw_breakpoint_active())) {
11049 set_debugreg(DR7_FIXED_1, 7);
11050 }
11051
11052 vcpu->arch.host_debugctl = get_debugctlmsr();
11053
11054 guest_timing_enter_irqoff();
11055
11056 for (;;) {
11057 /*
11058 * Assert that vCPU vs. VM APICv state is consistent. An APICv
11059 * update must kick and wait for all vCPUs before toggling the
11060 * per-VM state, and responding vCPUs must wait for the update
11061 * to complete before servicing KVM_REQ_APICV_UPDATE.
11062 */
11063 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
11064 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
11065
11066 exit_fastpath = kvm_x86_call(vcpu_run)(vcpu,
11067 req_immediate_exit);
11068 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
11069 break;
11070
11071 if (kvm_lapic_enabled(vcpu))
11072 kvm_x86_call(sync_pir_to_irr)(vcpu);
11073
11074 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
11075 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
11076 break;
11077 }
11078
11079 /* Note, VM-Exits that go down the "slow" path are accounted below. */
11080 ++vcpu->stat.exits;
11081 }
11082
11083 /*
11084 * Do this here before restoring debug registers on the host. And
11085 * since we do this before handling the vmexit, a DR access vmexit
11086 * can (a) read the correct value of the debug registers, (b) set
11087 * KVM_DEBUGREG_WONT_EXIT again.
11088 */
11089 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
11090 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
11091 WARN_ON(vcpu->arch.switch_db_regs & KVM_DEBUGREG_AUTO_SWITCH);
11092 kvm_x86_call(sync_dirty_debug_regs)(vcpu);
11093 kvm_update_dr0123(vcpu);
11094 kvm_update_dr7(vcpu);
11095 }
11096
11097 /*
11098 * If the guest has used debug registers, at least dr7
11099 * will be disabled while returning to the host.
11100 * If we don't have active breakpoints in the host, we don't
11101 * care about the messed up debug address registers. But if
11102 * we have some of them active, restore the old state.
11103 */
11104 if (hw_breakpoint_active())
11105 hw_breakpoint_restore();
11106
11107 vcpu->arch.last_vmentry_cpu = vcpu->cpu;
11108 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
11109
11110 vcpu->mode = OUTSIDE_GUEST_MODE;
11111 smp_wmb();
11112
11113 /*
11114 * Sync xfd before calling handle_exit_irqoff() which may
11115 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
11116 * in #NM irqoff handler).
11117 */
11118 if (vcpu->arch.xfd_no_write_intercept)
11119 fpu_sync_guest_vmexit_xfd_state();
11120
11121 kvm_x86_call(handle_exit_irqoff)(vcpu);
11122
11123 if (vcpu->arch.guest_fpu.xfd_err)
11124 wrmsrq(MSR_IA32_XFD_ERR, 0);
11125
11126 /*
11127 * Consume any pending interrupts, including the possible source of
11128 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
11129 * An instruction is required after local_irq_enable() to fully unblock
11130 * interrupts on processors that implement an interrupt shadow, the
11131 * stat.exits increment will do nicely.
11132 */
11133 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
11134 local_irq_enable();
11135 ++vcpu->stat.exits;
11136 local_irq_disable();
11137 kvm_after_interrupt(vcpu);
11138
11139 /*
11140 * Wait until after servicing IRQs to account guest time so that any
11141 * ticks that occurred while running the guest are properly accounted
11142 * to the guest. Waiting until IRQs are enabled degrades the accuracy
11143 * of accounting via context tracking, but the loss of accuracy is
11144 * acceptable for all known use cases.
11145 */
11146 guest_timing_exit_irqoff();
11147
11148 local_irq_enable();
11149 preempt_enable();
11150
11151 kvm_vcpu_srcu_read_lock(vcpu);
11152
11153 /*
11154 * Call this to ensure WC buffers in guest are evicted after each VM
11155 * Exit, so that the evicted WC writes can be snooped across all cpus
11156 */
11157 smp_mb__after_srcu_read_lock();
11158
11159 /*
11160 * Profile KVM exit RIPs:
11161 */
11162 if (unlikely(prof_on == KVM_PROFILING &&
11163 !vcpu->arch.guest_state_protected)) {
11164 unsigned long rip = kvm_rip_read(vcpu);
11165 profile_hit(KVM_PROFILING, (void *)rip);
11166 }
11167
11168 if (unlikely(vcpu->arch.tsc_always_catchup))
11169 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11170
11171 if (vcpu->arch.apic_attention)
11172 kvm_lapic_sync_from_vapic(vcpu);
11173
11174 if (unlikely(exit_fastpath == EXIT_FASTPATH_EXIT_USERSPACE))
11175 return 0;
11176
11177 r = kvm_x86_call(handle_exit)(vcpu, exit_fastpath);
11178 return r;
11179
11180 cancel_injection:
11181 if (req_immediate_exit)
11182 kvm_make_request(KVM_REQ_EVENT, vcpu);
11183 kvm_x86_call(cancel_injection)(vcpu);
11184 if (unlikely(vcpu->arch.apic_attention))
11185 kvm_lapic_sync_from_vapic(vcpu);
11186 out:
11187 return r;
11188 }
11189
kvm_vcpu_running(struct kvm_vcpu * vcpu)11190 static bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
11191 {
11192 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
11193 !vcpu->arch.apf.halted);
11194 }
11195
kvm_vcpu_has_events(struct kvm_vcpu * vcpu)11196 bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
11197 {
11198 if (!list_empty_careful(&vcpu->async_pf.done))
11199 return true;
11200
11201 if (kvm_apic_has_pending_init_or_sipi(vcpu) &&
11202 kvm_apic_init_sipi_allowed(vcpu))
11203 return true;
11204
11205 if (kvm_is_exception_pending(vcpu))
11206 return true;
11207
11208 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11209 (vcpu->arch.nmi_pending &&
11210 kvm_x86_call(nmi_allowed)(vcpu, false)))
11211 return true;
11212
11213 #ifdef CONFIG_KVM_SMM
11214 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
11215 (vcpu->arch.smi_pending &&
11216 kvm_x86_call(smi_allowed)(vcpu, false)))
11217 return true;
11218 #endif
11219
11220 if (kvm_test_request(KVM_REQ_PMI, vcpu))
11221 return true;
11222
11223 if (kvm_test_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, vcpu))
11224 return true;
11225
11226 if (kvm_arch_interrupt_allowed(vcpu) && kvm_cpu_has_interrupt(vcpu))
11227 return true;
11228
11229 if (kvm_hv_has_stimer_pending(vcpu))
11230 return true;
11231
11232 if (is_guest_mode(vcpu) &&
11233 kvm_x86_ops.nested_ops->has_events &&
11234 kvm_x86_ops.nested_ops->has_events(vcpu, false))
11235 return true;
11236
11237 if (kvm_xen_has_pending_events(vcpu))
11238 return true;
11239
11240 return false;
11241 }
11242 EXPORT_SYMBOL_GPL(kvm_vcpu_has_events);
11243
kvm_arch_vcpu_runnable(struct kvm_vcpu * vcpu)11244 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
11245 {
11246 return kvm_vcpu_running(vcpu) || vcpu->arch.pv.pv_unhalted ||
11247 kvm_vcpu_has_events(vcpu);
11248 }
11249
11250 /* Called within kvm->srcu read side. */
vcpu_block(struct kvm_vcpu * vcpu)11251 static inline int vcpu_block(struct kvm_vcpu *vcpu)
11252 {
11253 bool hv_timer;
11254
11255 if (!kvm_arch_vcpu_runnable(vcpu)) {
11256 /*
11257 * Switch to the software timer before halt-polling/blocking as
11258 * the guest's timer may be a break event for the vCPU, and the
11259 * hypervisor timer runs only when the CPU is in guest mode.
11260 * Switch before halt-polling so that KVM recognizes an expired
11261 * timer before blocking.
11262 */
11263 hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
11264 if (hv_timer)
11265 kvm_lapic_switch_to_sw_timer(vcpu);
11266
11267 kvm_vcpu_srcu_read_unlock(vcpu);
11268 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
11269 kvm_vcpu_halt(vcpu);
11270 else
11271 kvm_vcpu_block(vcpu);
11272 kvm_vcpu_srcu_read_lock(vcpu);
11273
11274 if (hv_timer)
11275 kvm_lapic_switch_to_hv_timer(vcpu);
11276
11277 /*
11278 * If the vCPU is not runnable, a signal or another host event
11279 * of some kind is pending; service it without changing the
11280 * vCPU's activity state.
11281 */
11282 if (!kvm_arch_vcpu_runnable(vcpu))
11283 return 1;
11284 }
11285
11286 /*
11287 * Evaluate nested events before exiting the halted state. This allows
11288 * the halt state to be recorded properly in the VMCS12's activity
11289 * state field (AMD does not have a similar field and a VM-Exit always
11290 * causes a spurious wakeup from HLT).
11291 */
11292 if (is_guest_mode(vcpu)) {
11293 int r = kvm_check_nested_events(vcpu);
11294
11295 WARN_ON_ONCE(r == -EBUSY);
11296 if (r < 0)
11297 return 0;
11298 }
11299
11300 if (kvm_apic_accept_events(vcpu) < 0)
11301 return 0;
11302 switch(vcpu->arch.mp_state) {
11303 case KVM_MP_STATE_HALTED:
11304 case KVM_MP_STATE_AP_RESET_HOLD:
11305 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
11306 fallthrough;
11307 case KVM_MP_STATE_RUNNABLE:
11308 vcpu->arch.apf.halted = false;
11309 break;
11310 case KVM_MP_STATE_INIT_RECEIVED:
11311 break;
11312 default:
11313 WARN_ON_ONCE(1);
11314 break;
11315 }
11316 return 1;
11317 }
11318
11319 /* Called within kvm->srcu read side. */
vcpu_run(struct kvm_vcpu * vcpu)11320 static int vcpu_run(struct kvm_vcpu *vcpu)
11321 {
11322 int r;
11323
11324 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
11325
11326 for (;;) {
11327 /*
11328 * If another guest vCPU requests a PV TLB flush in the middle
11329 * of instruction emulation, the rest of the emulation could
11330 * use a stale page translation. Assume that any code after
11331 * this point can start executing an instruction.
11332 */
11333 vcpu->arch.at_instruction_boundary = false;
11334 if (kvm_vcpu_running(vcpu)) {
11335 r = vcpu_enter_guest(vcpu);
11336 } else {
11337 r = vcpu_block(vcpu);
11338 }
11339
11340 if (r <= 0)
11341 break;
11342
11343 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
11344 if (kvm_xen_has_pending_events(vcpu))
11345 kvm_xen_inject_pending_events(vcpu);
11346
11347 if (kvm_cpu_has_pending_timer(vcpu))
11348 kvm_inject_pending_timer_irqs(vcpu);
11349
11350 if (dm_request_for_irq_injection(vcpu) &&
11351 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
11352 r = 0;
11353 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
11354 ++vcpu->stat.request_irq_exits;
11355 break;
11356 }
11357
11358 if (__xfer_to_guest_mode_work_pending()) {
11359 kvm_vcpu_srcu_read_unlock(vcpu);
11360 r = xfer_to_guest_mode_handle_work(vcpu);
11361 kvm_vcpu_srcu_read_lock(vcpu);
11362 if (r)
11363 return r;
11364 }
11365 }
11366
11367 return r;
11368 }
11369
__kvm_emulate_halt(struct kvm_vcpu * vcpu,int state,int reason)11370 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
11371 {
11372 /*
11373 * The vCPU has halted, e.g. executed HLT. Update the run state if the
11374 * local APIC is in-kernel, the run loop will detect the non-runnable
11375 * state and halt the vCPU. Exit to userspace if the local APIC is
11376 * managed by userspace, in which case userspace is responsible for
11377 * handling wake events.
11378 */
11379 ++vcpu->stat.halt_exits;
11380 if (lapic_in_kernel(vcpu)) {
11381 if (kvm_vcpu_has_events(vcpu) || vcpu->arch.pv.pv_unhalted)
11382 state = KVM_MP_STATE_RUNNABLE;
11383 kvm_set_mp_state(vcpu, state);
11384 return 1;
11385 } else {
11386 vcpu->run->exit_reason = reason;
11387 return 0;
11388 }
11389 }
11390
kvm_emulate_halt_noskip(struct kvm_vcpu * vcpu)11391 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
11392 {
11393 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
11394 }
11395 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
11396
kvm_emulate_halt(struct kvm_vcpu * vcpu)11397 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
11398 {
11399 int ret = kvm_skip_emulated_instruction(vcpu);
11400 /*
11401 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
11402 * KVM_EXIT_DEBUG here.
11403 */
11404 return kvm_emulate_halt_noskip(vcpu) && ret;
11405 }
11406 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
11407
handle_fastpath_hlt(struct kvm_vcpu * vcpu)11408 fastpath_t handle_fastpath_hlt(struct kvm_vcpu *vcpu)
11409 {
11410 int ret;
11411
11412 kvm_vcpu_srcu_read_lock(vcpu);
11413 ret = kvm_emulate_halt(vcpu);
11414 kvm_vcpu_srcu_read_unlock(vcpu);
11415
11416 if (!ret)
11417 return EXIT_FASTPATH_EXIT_USERSPACE;
11418
11419 if (kvm_vcpu_running(vcpu))
11420 return EXIT_FASTPATH_REENTER_GUEST;
11421
11422 return EXIT_FASTPATH_EXIT_HANDLED;
11423 }
11424 EXPORT_SYMBOL_GPL(handle_fastpath_hlt);
11425
kvm_emulate_ap_reset_hold(struct kvm_vcpu * vcpu)11426 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
11427 {
11428 int ret = kvm_skip_emulated_instruction(vcpu);
11429
11430 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
11431 KVM_EXIT_AP_RESET_HOLD) && ret;
11432 }
11433 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
11434
kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu * vcpu)11435 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
11436 {
11437 return kvm_vcpu_apicv_active(vcpu) &&
11438 kvm_x86_call(dy_apicv_has_pending_interrupt)(vcpu);
11439 }
11440
kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu * vcpu)11441 bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu)
11442 {
11443 return vcpu->arch.preempted_in_kernel;
11444 }
11445
kvm_arch_dy_runnable(struct kvm_vcpu * vcpu)11446 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
11447 {
11448 if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
11449 return true;
11450
11451 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11452 #ifdef CONFIG_KVM_SMM
11453 kvm_test_request(KVM_REQ_SMI, vcpu) ||
11454 #endif
11455 kvm_test_request(KVM_REQ_EVENT, vcpu))
11456 return true;
11457
11458 return kvm_arch_dy_has_pending_interrupt(vcpu);
11459 }
11460
complete_emulated_io(struct kvm_vcpu * vcpu)11461 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
11462 {
11463 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
11464 }
11465
complete_emulated_pio(struct kvm_vcpu * vcpu)11466 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
11467 {
11468 BUG_ON(!vcpu->arch.pio.count);
11469
11470 return complete_emulated_io(vcpu);
11471 }
11472
11473 /*
11474 * Implements the following, as a state machine:
11475 *
11476 * read:
11477 * for each fragment
11478 * for each mmio piece in the fragment
11479 * write gpa, len
11480 * exit
11481 * copy data
11482 * execute insn
11483 *
11484 * write:
11485 * for each fragment
11486 * for each mmio piece in the fragment
11487 * write gpa, len
11488 * copy data
11489 * exit
11490 */
complete_emulated_mmio(struct kvm_vcpu * vcpu)11491 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
11492 {
11493 struct kvm_run *run = vcpu->run;
11494 struct kvm_mmio_fragment *frag;
11495 unsigned len;
11496
11497 BUG_ON(!vcpu->mmio_needed);
11498
11499 /* Complete previous fragment */
11500 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11501 len = min(8u, frag->len);
11502 if (!vcpu->mmio_is_write)
11503 memcpy(frag->data, run->mmio.data, len);
11504
11505 if (frag->len <= 8) {
11506 /* Switch to the next fragment. */
11507 frag++;
11508 vcpu->mmio_cur_fragment++;
11509 } else {
11510 /* Go forward to the next mmio piece. */
11511 frag->data += len;
11512 frag->gpa += len;
11513 frag->len -= len;
11514 }
11515
11516 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11517 vcpu->mmio_needed = 0;
11518
11519 /* FIXME: return into emulator if single-stepping. */
11520 if (vcpu->mmio_is_write)
11521 return 1;
11522 vcpu->mmio_read_completed = 1;
11523 return complete_emulated_io(vcpu);
11524 }
11525
11526 run->exit_reason = KVM_EXIT_MMIO;
11527 run->mmio.phys_addr = frag->gpa;
11528 if (vcpu->mmio_is_write)
11529 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11530 run->mmio.len = min(8u, frag->len);
11531 run->mmio.is_write = vcpu->mmio_is_write;
11532 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
11533 return 0;
11534 }
11535
11536 /* Swap (qemu) user FPU context for the guest FPU context. */
kvm_load_guest_fpu(struct kvm_vcpu * vcpu)11537 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
11538 {
11539 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */
11540 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
11541 trace_kvm_fpu(1);
11542 }
11543
11544 /* When vcpu_run ends, restore user space FPU context. */
kvm_put_guest_fpu(struct kvm_vcpu * vcpu)11545 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
11546 {
11547 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
11548 ++vcpu->stat.fpu_reload;
11549 trace_kvm_fpu(0);
11550 }
11551
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu)11552 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
11553 {
11554 struct kvm_queued_exception *ex = &vcpu->arch.exception;
11555 struct kvm_run *kvm_run = vcpu->run;
11556 u64 sync_valid_fields;
11557 int r;
11558
11559 r = kvm_mmu_post_init_vm(vcpu->kvm);
11560 if (r)
11561 return r;
11562
11563 vcpu_load(vcpu);
11564 kvm_sigset_activate(vcpu);
11565 kvm_run->flags = 0;
11566 kvm_load_guest_fpu(vcpu);
11567
11568 kvm_vcpu_srcu_read_lock(vcpu);
11569 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
11570 if (!vcpu->wants_to_run) {
11571 r = -EINTR;
11572 goto out;
11573 }
11574
11575 /*
11576 * Don't bother switching APIC timer emulation from the
11577 * hypervisor timer to the software timer, the only way for the
11578 * APIC timer to be active is if userspace stuffed vCPU state,
11579 * i.e. put the vCPU into a nonsensical state. Only an INIT
11580 * will transition the vCPU out of UNINITIALIZED (without more
11581 * state stuffing from userspace), which will reset the local
11582 * APIC and thus cancel the timer or drop the IRQ (if the timer
11583 * already expired).
11584 */
11585 kvm_vcpu_srcu_read_unlock(vcpu);
11586 kvm_vcpu_block(vcpu);
11587 kvm_vcpu_srcu_read_lock(vcpu);
11588
11589 if (kvm_apic_accept_events(vcpu) < 0) {
11590 r = 0;
11591 goto out;
11592 }
11593 r = -EAGAIN;
11594 if (signal_pending(current)) {
11595 r = -EINTR;
11596 kvm_run->exit_reason = KVM_EXIT_INTR;
11597 ++vcpu->stat.signal_exits;
11598 }
11599 goto out;
11600 }
11601
11602 sync_valid_fields = kvm_sync_valid_fields(vcpu->kvm);
11603 if ((kvm_run->kvm_valid_regs & ~sync_valid_fields) ||
11604 (kvm_run->kvm_dirty_regs & ~sync_valid_fields)) {
11605 r = -EINVAL;
11606 goto out;
11607 }
11608
11609 if (kvm_run->kvm_dirty_regs) {
11610 r = sync_regs(vcpu);
11611 if (r != 0)
11612 goto out;
11613 }
11614
11615 /* re-sync apic's tpr */
11616 if (!lapic_in_kernel(vcpu)) {
11617 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
11618 r = -EINVAL;
11619 goto out;
11620 }
11621 }
11622
11623 /*
11624 * If userspace set a pending exception and L2 is active, convert it to
11625 * a pending VM-Exit if L1 wants to intercept the exception.
11626 */
11627 if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) &&
11628 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector,
11629 ex->error_code)) {
11630 kvm_queue_exception_vmexit(vcpu, ex->vector,
11631 ex->has_error_code, ex->error_code,
11632 ex->has_payload, ex->payload);
11633 ex->injected = false;
11634 ex->pending = false;
11635 }
11636 vcpu->arch.exception_from_userspace = false;
11637
11638 if (unlikely(vcpu->arch.complete_userspace_io)) {
11639 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
11640 vcpu->arch.complete_userspace_io = NULL;
11641 r = cui(vcpu);
11642 if (r <= 0)
11643 goto out;
11644 } else {
11645 WARN_ON_ONCE(vcpu->arch.pio.count);
11646 WARN_ON_ONCE(vcpu->mmio_needed);
11647 }
11648
11649 if (!vcpu->wants_to_run) {
11650 r = -EINTR;
11651 goto out;
11652 }
11653
11654 r = kvm_x86_call(vcpu_pre_run)(vcpu);
11655 if (r <= 0)
11656 goto out;
11657
11658 r = vcpu_run(vcpu);
11659
11660 out:
11661 kvm_put_guest_fpu(vcpu);
11662 if (kvm_run->kvm_valid_regs && likely(!vcpu->arch.guest_state_protected))
11663 store_regs(vcpu);
11664 post_kvm_run_save(vcpu);
11665 kvm_vcpu_srcu_read_unlock(vcpu);
11666
11667 kvm_sigset_deactivate(vcpu);
11668 vcpu_put(vcpu);
11669 return r;
11670 }
11671
__get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11672 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11673 {
11674 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
11675 /*
11676 * We are here if userspace calls get_regs() in the middle of
11677 * instruction emulation. Registers state needs to be copied
11678 * back from emulation context to vcpu. Userspace shouldn't do
11679 * that usually, but some bad designed PV devices (vmware
11680 * backdoor interface) need this to work
11681 */
11682 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
11683 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11684 }
11685 regs->rax = kvm_rax_read(vcpu);
11686 regs->rbx = kvm_rbx_read(vcpu);
11687 regs->rcx = kvm_rcx_read(vcpu);
11688 regs->rdx = kvm_rdx_read(vcpu);
11689 regs->rsi = kvm_rsi_read(vcpu);
11690 regs->rdi = kvm_rdi_read(vcpu);
11691 regs->rsp = kvm_rsp_read(vcpu);
11692 regs->rbp = kvm_rbp_read(vcpu);
11693 #ifdef CONFIG_X86_64
11694 regs->r8 = kvm_r8_read(vcpu);
11695 regs->r9 = kvm_r9_read(vcpu);
11696 regs->r10 = kvm_r10_read(vcpu);
11697 regs->r11 = kvm_r11_read(vcpu);
11698 regs->r12 = kvm_r12_read(vcpu);
11699 regs->r13 = kvm_r13_read(vcpu);
11700 regs->r14 = kvm_r14_read(vcpu);
11701 regs->r15 = kvm_r15_read(vcpu);
11702 #endif
11703
11704 regs->rip = kvm_rip_read(vcpu);
11705 regs->rflags = kvm_get_rflags(vcpu);
11706 }
11707
kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11708 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11709 {
11710 if (vcpu->kvm->arch.has_protected_state &&
11711 vcpu->arch.guest_state_protected)
11712 return -EINVAL;
11713
11714 vcpu_load(vcpu);
11715 __get_regs(vcpu, regs);
11716 vcpu_put(vcpu);
11717 return 0;
11718 }
11719
__set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11720 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11721 {
11722 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
11723 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11724
11725 kvm_rax_write(vcpu, regs->rax);
11726 kvm_rbx_write(vcpu, regs->rbx);
11727 kvm_rcx_write(vcpu, regs->rcx);
11728 kvm_rdx_write(vcpu, regs->rdx);
11729 kvm_rsi_write(vcpu, regs->rsi);
11730 kvm_rdi_write(vcpu, regs->rdi);
11731 kvm_rsp_write(vcpu, regs->rsp);
11732 kvm_rbp_write(vcpu, regs->rbp);
11733 #ifdef CONFIG_X86_64
11734 kvm_r8_write(vcpu, regs->r8);
11735 kvm_r9_write(vcpu, regs->r9);
11736 kvm_r10_write(vcpu, regs->r10);
11737 kvm_r11_write(vcpu, regs->r11);
11738 kvm_r12_write(vcpu, regs->r12);
11739 kvm_r13_write(vcpu, regs->r13);
11740 kvm_r14_write(vcpu, regs->r14);
11741 kvm_r15_write(vcpu, regs->r15);
11742 #endif
11743
11744 kvm_rip_write(vcpu, regs->rip);
11745 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
11746
11747 vcpu->arch.exception.pending = false;
11748 vcpu->arch.exception_vmexit.pending = false;
11749
11750 kvm_make_request(KVM_REQ_EVENT, vcpu);
11751 }
11752
kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11753 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11754 {
11755 if (vcpu->kvm->arch.has_protected_state &&
11756 vcpu->arch.guest_state_protected)
11757 return -EINVAL;
11758
11759 vcpu_load(vcpu);
11760 __set_regs(vcpu, regs);
11761 vcpu_put(vcpu);
11762 return 0;
11763 }
11764
__get_sregs_common(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11765 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11766 {
11767 struct desc_ptr dt;
11768
11769 if (vcpu->arch.guest_state_protected)
11770 goto skip_protected_regs;
11771
11772 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11773 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11774 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11775 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11776 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11777 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11778
11779 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11780 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11781
11782 kvm_x86_call(get_idt)(vcpu, &dt);
11783 sregs->idt.limit = dt.size;
11784 sregs->idt.base = dt.address;
11785 kvm_x86_call(get_gdt)(vcpu, &dt);
11786 sregs->gdt.limit = dt.size;
11787 sregs->gdt.base = dt.address;
11788
11789 sregs->cr2 = vcpu->arch.cr2;
11790 sregs->cr3 = kvm_read_cr3(vcpu);
11791
11792 skip_protected_regs:
11793 sregs->cr0 = kvm_read_cr0(vcpu);
11794 sregs->cr4 = kvm_read_cr4(vcpu);
11795 sregs->cr8 = kvm_get_cr8(vcpu);
11796 sregs->efer = vcpu->arch.efer;
11797 sregs->apic_base = vcpu->arch.apic_base;
11798 }
11799
__get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11800 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11801 {
11802 __get_sregs_common(vcpu, sregs);
11803
11804 if (vcpu->arch.guest_state_protected)
11805 return;
11806
11807 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
11808 set_bit(vcpu->arch.interrupt.nr,
11809 (unsigned long *)sregs->interrupt_bitmap);
11810 }
11811
__get_sregs2(struct kvm_vcpu * vcpu,struct kvm_sregs2 * sregs2)11812 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11813 {
11814 int i;
11815
11816 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
11817
11818 if (vcpu->arch.guest_state_protected)
11819 return;
11820
11821 if (is_pae_paging(vcpu)) {
11822 for (i = 0 ; i < 4 ; i++)
11823 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
11824 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
11825 }
11826 }
11827
kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11828 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
11829 struct kvm_sregs *sregs)
11830 {
11831 if (vcpu->kvm->arch.has_protected_state &&
11832 vcpu->arch.guest_state_protected)
11833 return -EINVAL;
11834
11835 vcpu_load(vcpu);
11836 __get_sregs(vcpu, sregs);
11837 vcpu_put(vcpu);
11838 return 0;
11839 }
11840
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)11841 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
11842 struct kvm_mp_state *mp_state)
11843 {
11844 int r;
11845
11846 vcpu_load(vcpu);
11847 if (kvm_mpx_supported())
11848 kvm_load_guest_fpu(vcpu);
11849
11850 kvm_vcpu_srcu_read_lock(vcpu);
11851
11852 r = kvm_apic_accept_events(vcpu);
11853 if (r < 0)
11854 goto out;
11855 r = 0;
11856
11857 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
11858 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
11859 vcpu->arch.pv.pv_unhalted)
11860 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
11861 else
11862 mp_state->mp_state = vcpu->arch.mp_state;
11863
11864 out:
11865 kvm_vcpu_srcu_read_unlock(vcpu);
11866
11867 if (kvm_mpx_supported())
11868 kvm_put_guest_fpu(vcpu);
11869 vcpu_put(vcpu);
11870 return r;
11871 }
11872
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)11873 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
11874 struct kvm_mp_state *mp_state)
11875 {
11876 int ret = -EINVAL;
11877
11878 vcpu_load(vcpu);
11879
11880 switch (mp_state->mp_state) {
11881 case KVM_MP_STATE_UNINITIALIZED:
11882 case KVM_MP_STATE_HALTED:
11883 case KVM_MP_STATE_AP_RESET_HOLD:
11884 case KVM_MP_STATE_INIT_RECEIVED:
11885 case KVM_MP_STATE_SIPI_RECEIVED:
11886 if (!lapic_in_kernel(vcpu))
11887 goto out;
11888 break;
11889
11890 case KVM_MP_STATE_RUNNABLE:
11891 break;
11892
11893 default:
11894 goto out;
11895 }
11896
11897 /*
11898 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow
11899 * forcing the guest into INIT/SIPI if those events are supposed to be
11900 * blocked. KVM prioritizes SMI over INIT, so reject INIT/SIPI state
11901 * if an SMI is pending as well.
11902 */
11903 if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) &&
11904 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
11905 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
11906 goto out;
11907
11908 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
11909 kvm_set_mp_state(vcpu, KVM_MP_STATE_INIT_RECEIVED);
11910 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
11911 } else
11912 kvm_set_mp_state(vcpu, mp_state->mp_state);
11913 kvm_make_request(KVM_REQ_EVENT, vcpu);
11914
11915 ret = 0;
11916 out:
11917 vcpu_put(vcpu);
11918 return ret;
11919 }
11920
kvm_task_switch(struct kvm_vcpu * vcpu,u16 tss_selector,int idt_index,int reason,bool has_error_code,u32 error_code)11921 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
11922 int reason, bool has_error_code, u32 error_code)
11923 {
11924 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
11925 int ret;
11926
11927 init_emulate_ctxt(vcpu);
11928
11929 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
11930 has_error_code, error_code);
11931
11932 /*
11933 * Report an error userspace if MMIO is needed, as KVM doesn't support
11934 * MMIO during a task switch (or any other complex operation).
11935 */
11936 if (ret || vcpu->mmio_needed) {
11937 vcpu->mmio_needed = false;
11938 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11939 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11940 vcpu->run->internal.ndata = 0;
11941 return 0;
11942 }
11943
11944 kvm_rip_write(vcpu, ctxt->eip);
11945 kvm_set_rflags(vcpu, ctxt->eflags);
11946 return 1;
11947 }
11948 EXPORT_SYMBOL_GPL(kvm_task_switch);
11949
kvm_is_valid_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11950 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11951 {
11952 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
11953 /*
11954 * When EFER.LME and CR0.PG are set, the processor is in
11955 * 64-bit mode (though maybe in a 32-bit code segment).
11956 * CR4.PAE and EFER.LMA must be set.
11957 */
11958 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
11959 return false;
11960 if (!kvm_vcpu_is_legal_cr3(vcpu, sregs->cr3))
11961 return false;
11962 } else {
11963 /*
11964 * Not in 64-bit mode: EFER.LMA is clear and the code
11965 * segment cannot be 64-bit.
11966 */
11967 if (sregs->efer & EFER_LMA || sregs->cs.l)
11968 return false;
11969 }
11970
11971 return kvm_is_valid_cr4(vcpu, sregs->cr4) &&
11972 kvm_is_valid_cr0(vcpu, sregs->cr0);
11973 }
11974
__set_sregs_common(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs,int * mmu_reset_needed,bool update_pdptrs)11975 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
11976 int *mmu_reset_needed, bool update_pdptrs)
11977 {
11978 int idx;
11979 struct desc_ptr dt;
11980
11981 if (!kvm_is_valid_sregs(vcpu, sregs))
11982 return -EINVAL;
11983
11984 if (kvm_apic_set_base(vcpu, sregs->apic_base, true))
11985 return -EINVAL;
11986
11987 if (vcpu->arch.guest_state_protected)
11988 return 0;
11989
11990 dt.size = sregs->idt.limit;
11991 dt.address = sregs->idt.base;
11992 kvm_x86_call(set_idt)(vcpu, &dt);
11993 dt.size = sregs->gdt.limit;
11994 dt.address = sregs->gdt.base;
11995 kvm_x86_call(set_gdt)(vcpu, &dt);
11996
11997 vcpu->arch.cr2 = sregs->cr2;
11998 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
11999 vcpu->arch.cr3 = sregs->cr3;
12000 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
12001 kvm_x86_call(post_set_cr3)(vcpu, sregs->cr3);
12002
12003 kvm_set_cr8(vcpu, sregs->cr8);
12004
12005 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
12006 kvm_x86_call(set_efer)(vcpu, sregs->efer);
12007
12008 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
12009 kvm_x86_call(set_cr0)(vcpu, sregs->cr0);
12010
12011 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
12012 kvm_x86_call(set_cr4)(vcpu, sregs->cr4);
12013
12014 if (update_pdptrs) {
12015 idx = srcu_read_lock(&vcpu->kvm->srcu);
12016 if (is_pae_paging(vcpu)) {
12017 load_pdptrs(vcpu, kvm_read_cr3(vcpu));
12018 *mmu_reset_needed = 1;
12019 }
12020 srcu_read_unlock(&vcpu->kvm->srcu, idx);
12021 }
12022
12023 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
12024 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
12025 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
12026 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
12027 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
12028 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
12029
12030 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
12031 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
12032
12033 update_cr8_intercept(vcpu);
12034
12035 /* Older userspace won't unhalt the vcpu on reset. */
12036 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
12037 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
12038 !is_protmode(vcpu))
12039 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
12040
12041 return 0;
12042 }
12043
__set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)12044 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
12045 {
12046 int pending_vec, max_bits;
12047 int mmu_reset_needed = 0;
12048 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
12049
12050 if (ret)
12051 return ret;
12052
12053 if (mmu_reset_needed) {
12054 kvm_mmu_reset_context(vcpu);
12055 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12056 }
12057
12058 max_bits = KVM_NR_INTERRUPTS;
12059 pending_vec = find_first_bit(
12060 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
12061
12062 if (pending_vec < max_bits) {
12063 kvm_queue_interrupt(vcpu, pending_vec, false);
12064 pr_debug("Set back pending irq %d\n", pending_vec);
12065 kvm_make_request(KVM_REQ_EVENT, vcpu);
12066 }
12067 return 0;
12068 }
12069
__set_sregs2(struct kvm_vcpu * vcpu,struct kvm_sregs2 * sregs2)12070 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
12071 {
12072 int mmu_reset_needed = 0;
12073 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
12074 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
12075 !(sregs2->efer & EFER_LMA);
12076 int i, ret;
12077
12078 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
12079 return -EINVAL;
12080
12081 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
12082 return -EINVAL;
12083
12084 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
12085 &mmu_reset_needed, !valid_pdptrs);
12086 if (ret)
12087 return ret;
12088
12089 if (valid_pdptrs) {
12090 for (i = 0; i < 4 ; i++)
12091 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
12092
12093 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
12094 mmu_reset_needed = 1;
12095 vcpu->arch.pdptrs_from_userspace = true;
12096 }
12097 if (mmu_reset_needed) {
12098 kvm_mmu_reset_context(vcpu);
12099 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12100 }
12101 return 0;
12102 }
12103
kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)12104 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
12105 struct kvm_sregs *sregs)
12106 {
12107 int ret;
12108
12109 if (vcpu->kvm->arch.has_protected_state &&
12110 vcpu->arch.guest_state_protected)
12111 return -EINVAL;
12112
12113 vcpu_load(vcpu);
12114 ret = __set_sregs(vcpu, sregs);
12115 vcpu_put(vcpu);
12116 return ret;
12117 }
12118
kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm * kvm)12119 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
12120 {
12121 bool set = false;
12122 struct kvm_vcpu *vcpu;
12123 unsigned long i;
12124
12125 if (!enable_apicv)
12126 return;
12127
12128 down_write(&kvm->arch.apicv_update_lock);
12129
12130 kvm_for_each_vcpu(i, vcpu, kvm) {
12131 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
12132 set = true;
12133 break;
12134 }
12135 }
12136 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
12137 up_write(&kvm->arch.apicv_update_lock);
12138 }
12139
kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu * vcpu,struct kvm_guest_debug * dbg)12140 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
12141 struct kvm_guest_debug *dbg)
12142 {
12143 unsigned long rflags;
12144 int i, r;
12145
12146 if (vcpu->arch.guest_state_protected)
12147 return -EINVAL;
12148
12149 vcpu_load(vcpu);
12150
12151 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
12152 r = -EBUSY;
12153 if (kvm_is_exception_pending(vcpu))
12154 goto out;
12155 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
12156 kvm_queue_exception(vcpu, DB_VECTOR);
12157 else
12158 kvm_queue_exception(vcpu, BP_VECTOR);
12159 }
12160
12161 /*
12162 * Read rflags as long as potentially injected trace flags are still
12163 * filtered out.
12164 */
12165 rflags = kvm_get_rflags(vcpu);
12166
12167 vcpu->guest_debug = dbg->control;
12168 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
12169 vcpu->guest_debug = 0;
12170
12171 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
12172 for (i = 0; i < KVM_NR_DB_REGS; ++i)
12173 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
12174 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
12175 } else {
12176 for (i = 0; i < KVM_NR_DB_REGS; i++)
12177 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
12178 }
12179 kvm_update_dr7(vcpu);
12180
12181 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12182 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
12183
12184 /*
12185 * Trigger an rflags update that will inject or remove the trace
12186 * flags.
12187 */
12188 kvm_set_rflags(vcpu, rflags);
12189
12190 kvm_x86_call(update_exception_bitmap)(vcpu);
12191
12192 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
12193
12194 r = 0;
12195
12196 out:
12197 vcpu_put(vcpu);
12198 return r;
12199 }
12200
12201 /*
12202 * Translate a guest virtual address to a guest physical address.
12203 */
kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu * vcpu,struct kvm_translation * tr)12204 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
12205 struct kvm_translation *tr)
12206 {
12207 unsigned long vaddr = tr->linear_address;
12208 gpa_t gpa;
12209 int idx;
12210
12211 vcpu_load(vcpu);
12212
12213 idx = srcu_read_lock(&vcpu->kvm->srcu);
12214 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
12215 srcu_read_unlock(&vcpu->kvm->srcu, idx);
12216 tr->physical_address = gpa;
12217 tr->valid = gpa != INVALID_GPA;
12218 tr->writeable = 1;
12219 tr->usermode = 0;
12220
12221 vcpu_put(vcpu);
12222 return 0;
12223 }
12224
kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)12225 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
12226 {
12227 struct fxregs_state *fxsave;
12228
12229 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
12230 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
12231
12232 vcpu_load(vcpu);
12233
12234 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
12235 memcpy(fpu->fpr, fxsave->st_space, 128);
12236 fpu->fcw = fxsave->cwd;
12237 fpu->fsw = fxsave->swd;
12238 fpu->ftwx = fxsave->twd;
12239 fpu->last_opcode = fxsave->fop;
12240 fpu->last_ip = fxsave->rip;
12241 fpu->last_dp = fxsave->rdp;
12242 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
12243
12244 vcpu_put(vcpu);
12245 return 0;
12246 }
12247
kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)12248 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
12249 {
12250 struct fxregs_state *fxsave;
12251
12252 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
12253 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
12254
12255 vcpu_load(vcpu);
12256
12257 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
12258
12259 memcpy(fxsave->st_space, fpu->fpr, 128);
12260 fxsave->cwd = fpu->fcw;
12261 fxsave->swd = fpu->fsw;
12262 fxsave->twd = fpu->ftwx;
12263 fxsave->fop = fpu->last_opcode;
12264 fxsave->rip = fpu->last_ip;
12265 fxsave->rdp = fpu->last_dp;
12266 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
12267
12268 vcpu_put(vcpu);
12269 return 0;
12270 }
12271
store_regs(struct kvm_vcpu * vcpu)12272 static void store_regs(struct kvm_vcpu *vcpu)
12273 {
12274 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
12275
12276 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
12277 __get_regs(vcpu, &vcpu->run->s.regs.regs);
12278
12279 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
12280 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
12281
12282 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
12283 kvm_vcpu_ioctl_x86_get_vcpu_events(
12284 vcpu, &vcpu->run->s.regs.events);
12285 }
12286
sync_regs(struct kvm_vcpu * vcpu)12287 static int sync_regs(struct kvm_vcpu *vcpu)
12288 {
12289 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
12290 __set_regs(vcpu, &vcpu->run->s.regs.regs);
12291 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
12292 }
12293
12294 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
12295 struct kvm_sregs sregs = vcpu->run->s.regs.sregs;
12296
12297 if (__set_sregs(vcpu, &sregs))
12298 return -EINVAL;
12299
12300 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
12301 }
12302
12303 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
12304 struct kvm_vcpu_events events = vcpu->run->s.regs.events;
12305
12306 if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events))
12307 return -EINVAL;
12308
12309 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
12310 }
12311
12312 return 0;
12313 }
12314
kvm_arch_vcpu_precreate(struct kvm * kvm,unsigned int id)12315 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
12316 {
12317 if (kvm_check_tsc_unstable() && kvm->created_vcpus)
12318 pr_warn_once("SMP vm created on host with unstable TSC; "
12319 "guest TSC will not be reliable\n");
12320
12321 if (!kvm->arch.max_vcpu_ids)
12322 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
12323
12324 if (id >= kvm->arch.max_vcpu_ids)
12325 return -EINVAL;
12326
12327 return kvm_x86_call(vcpu_precreate)(kvm);
12328 }
12329
kvm_arch_vcpu_create(struct kvm_vcpu * vcpu)12330 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
12331 {
12332 struct page *page;
12333 int r;
12334
12335 vcpu->arch.last_vmentry_cpu = -1;
12336 vcpu->arch.regs_avail = ~0;
12337 vcpu->arch.regs_dirty = ~0;
12338
12339 kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm);
12340
12341 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
12342 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
12343 else
12344 kvm_set_mp_state(vcpu, KVM_MP_STATE_UNINITIALIZED);
12345
12346 r = kvm_mmu_create(vcpu);
12347 if (r < 0)
12348 return r;
12349
12350 r = kvm_create_lapic(vcpu);
12351 if (r < 0)
12352 goto fail_mmu_destroy;
12353
12354 r = -ENOMEM;
12355
12356 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
12357 if (!page)
12358 goto fail_free_lapic;
12359 vcpu->arch.pio_data = page_address(page);
12360
12361 vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
12362 GFP_KERNEL_ACCOUNT);
12363 vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
12364 GFP_KERNEL_ACCOUNT);
12365 if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
12366 goto fail_free_mce_banks;
12367 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
12368
12369 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
12370 GFP_KERNEL_ACCOUNT))
12371 goto fail_free_mce_banks;
12372
12373 if (!alloc_emulate_ctxt(vcpu))
12374 goto free_wbinvd_dirty_mask;
12375
12376 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
12377 pr_err("failed to allocate vcpu's fpu\n");
12378 goto free_emulate_ctxt;
12379 }
12380
12381 kvm_async_pf_hash_reset(vcpu);
12382
12383 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS)) {
12384 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
12385 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
12386 vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap;
12387 }
12388 kvm_pmu_init(vcpu);
12389
12390 vcpu->arch.pending_external_vector = -1;
12391 vcpu->arch.preempted_in_kernel = false;
12392
12393 #if IS_ENABLED(CONFIG_HYPERV)
12394 vcpu->arch.hv_root_tdp = INVALID_PAGE;
12395 #endif
12396
12397 r = kvm_x86_call(vcpu_create)(vcpu);
12398 if (r)
12399 goto free_guest_fpu;
12400
12401 kvm_xen_init_vcpu(vcpu);
12402 vcpu_load(vcpu);
12403 kvm_vcpu_after_set_cpuid(vcpu);
12404 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
12405 kvm_vcpu_reset(vcpu, false);
12406 kvm_init_mmu(vcpu);
12407 vcpu_put(vcpu);
12408 return 0;
12409
12410 free_guest_fpu:
12411 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12412 free_emulate_ctxt:
12413 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12414 free_wbinvd_dirty_mask:
12415 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12416 fail_free_mce_banks:
12417 kfree(vcpu->arch.mce_banks);
12418 kfree(vcpu->arch.mci_ctl2_banks);
12419 free_page((unsigned long)vcpu->arch.pio_data);
12420 fail_free_lapic:
12421 kvm_free_lapic(vcpu);
12422 fail_mmu_destroy:
12423 kvm_mmu_destroy(vcpu);
12424 return r;
12425 }
12426
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)12427 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
12428 {
12429 struct kvm *kvm = vcpu->kvm;
12430
12431 if (mutex_lock_killable(&vcpu->mutex))
12432 return;
12433 vcpu_load(vcpu);
12434 kvm_synchronize_tsc(vcpu, NULL);
12435 vcpu_put(vcpu);
12436
12437 /* poll control enabled by default */
12438 vcpu->arch.msr_kvm_poll_control = 1;
12439
12440 mutex_unlock(&vcpu->mutex);
12441
12442 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
12443 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
12444 KVMCLOCK_SYNC_PERIOD);
12445 }
12446
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)12447 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
12448 {
12449 int idx, cpu;
12450
12451 kvm_clear_async_pf_completion_queue(vcpu);
12452 kvm_mmu_unload(vcpu);
12453
12454 kvmclock_reset(vcpu);
12455
12456 for_each_possible_cpu(cpu)
12457 cmpxchg(per_cpu_ptr(&last_vcpu, cpu), vcpu, NULL);
12458
12459 kvm_x86_call(vcpu_free)(vcpu);
12460
12461 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12462 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12463 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12464
12465 kvm_xen_destroy_vcpu(vcpu);
12466 kvm_hv_vcpu_uninit(vcpu);
12467 kvm_pmu_destroy(vcpu);
12468 kfree(vcpu->arch.mce_banks);
12469 kfree(vcpu->arch.mci_ctl2_banks);
12470 kvm_free_lapic(vcpu);
12471 idx = srcu_read_lock(&vcpu->kvm->srcu);
12472 kvm_mmu_destroy(vcpu);
12473 srcu_read_unlock(&vcpu->kvm->srcu, idx);
12474 free_page((unsigned long)vcpu->arch.pio_data);
12475 kvfree(vcpu->arch.cpuid_entries);
12476 }
12477
kvm_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)12478 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
12479 {
12480 struct kvm_cpuid_entry2 *cpuid_0x1;
12481 unsigned long old_cr0 = kvm_read_cr0(vcpu);
12482 unsigned long new_cr0;
12483
12484 /*
12485 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
12486 * to handle side effects. RESET emulation hits those flows and relies
12487 * on emulated/virtualized registers, including those that are loaded
12488 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel
12489 * to detect improper or missing initialization.
12490 */
12491 WARN_ON_ONCE(!init_event &&
12492 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
12493
12494 /*
12495 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's
12496 * possible to INIT the vCPU while L2 is active. Force the vCPU back
12497 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER
12498 * bits), i.e. virtualization is disabled.
12499 */
12500 if (is_guest_mode(vcpu))
12501 kvm_leave_nested(vcpu);
12502
12503 kvm_lapic_reset(vcpu, init_event);
12504
12505 WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu));
12506 vcpu->arch.hflags = 0;
12507
12508 vcpu->arch.smi_pending = 0;
12509 vcpu->arch.smi_count = 0;
12510 atomic_set(&vcpu->arch.nmi_queued, 0);
12511 vcpu->arch.nmi_pending = 0;
12512 vcpu->arch.nmi_injected = false;
12513 kvm_clear_interrupt_queue(vcpu);
12514 kvm_clear_exception_queue(vcpu);
12515
12516 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
12517 kvm_update_dr0123(vcpu);
12518 vcpu->arch.dr6 = DR6_ACTIVE_LOW;
12519 vcpu->arch.dr7 = DR7_FIXED_1;
12520 kvm_update_dr7(vcpu);
12521
12522 vcpu->arch.cr2 = 0;
12523
12524 kvm_make_request(KVM_REQ_EVENT, vcpu);
12525 vcpu->arch.apf.msr_en_val = 0;
12526 vcpu->arch.apf.msr_int_val = 0;
12527 vcpu->arch.st.msr_val = 0;
12528
12529 kvmclock_reset(vcpu);
12530
12531 kvm_clear_async_pf_completion_queue(vcpu);
12532 kvm_async_pf_hash_reset(vcpu);
12533 vcpu->arch.apf.halted = false;
12534
12535 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
12536 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
12537
12538 /*
12539 * All paths that lead to INIT are required to load the guest's
12540 * FPU state (because most paths are buried in KVM_RUN).
12541 */
12542 if (init_event)
12543 kvm_put_guest_fpu(vcpu);
12544
12545 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
12546 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
12547
12548 if (init_event)
12549 kvm_load_guest_fpu(vcpu);
12550 }
12551
12552 if (!init_event) {
12553 vcpu->arch.smbase = 0x30000;
12554
12555 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
12556
12557 vcpu->arch.msr_misc_features_enables = 0;
12558 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
12559 MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
12560
12561 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
12562 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
12563 }
12564
12565 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
12566 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
12567 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
12568
12569 /*
12570 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
12571 * if no CPUID match is found. Note, it's impossible to get a match at
12572 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
12573 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
12574 * on RESET. But, go through the motions in case that's ever remedied.
12575 */
12576 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
12577 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
12578
12579 kvm_x86_call(vcpu_reset)(vcpu, init_event);
12580
12581 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
12582 kvm_rip_write(vcpu, 0xfff0);
12583
12584 vcpu->arch.cr3 = 0;
12585 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
12586
12587 /*
12588 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions
12589 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
12590 * (or qualify) that with a footnote stating that CD/NW are preserved.
12591 */
12592 new_cr0 = X86_CR0_ET;
12593 if (init_event)
12594 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
12595 else
12596 new_cr0 |= X86_CR0_NW | X86_CR0_CD;
12597
12598 kvm_x86_call(set_cr0)(vcpu, new_cr0);
12599 kvm_x86_call(set_cr4)(vcpu, 0);
12600 kvm_x86_call(set_efer)(vcpu, 0);
12601 kvm_x86_call(update_exception_bitmap)(vcpu);
12602
12603 /*
12604 * On the standard CR0/CR4/EFER modification paths, there are several
12605 * complex conditions determining whether the MMU has to be reset and/or
12606 * which PCIDs have to be flushed. However, CR0.WP and the paging-related
12607 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
12608 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
12609 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here.
12610 */
12611 if (old_cr0 & X86_CR0_PG) {
12612 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12613 kvm_mmu_reset_context(vcpu);
12614 }
12615
12616 /*
12617 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's
12618 * APM states the TLBs are untouched by INIT, but it also states that
12619 * the TLBs are flushed on "External initialization of the processor."
12620 * Flush the guest TLB regardless of vendor, there is no meaningful
12621 * benefit in relying on the guest to flush the TLB immediately after
12622 * INIT. A spurious TLB flush is benign and likely negligible from a
12623 * performance perspective.
12624 */
12625 if (init_event)
12626 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12627 }
12628 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
12629
kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu * vcpu,u8 vector)12630 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
12631 {
12632 struct kvm_segment cs;
12633
12634 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
12635 cs.selector = vector << 8;
12636 cs.base = vector << 12;
12637 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
12638 kvm_rip_write(vcpu, 0);
12639 }
12640 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
12641
kvm_arch_enable_virtualization(void)12642 void kvm_arch_enable_virtualization(void)
12643 {
12644 cpu_emergency_register_virt_callback(kvm_x86_ops.emergency_disable_virtualization_cpu);
12645 }
12646
kvm_arch_disable_virtualization(void)12647 void kvm_arch_disable_virtualization(void)
12648 {
12649 cpu_emergency_unregister_virt_callback(kvm_x86_ops.emergency_disable_virtualization_cpu);
12650 }
12651
kvm_arch_enable_virtualization_cpu(void)12652 int kvm_arch_enable_virtualization_cpu(void)
12653 {
12654 struct kvm *kvm;
12655 struct kvm_vcpu *vcpu;
12656 unsigned long i;
12657 int ret;
12658 u64 local_tsc;
12659 u64 max_tsc = 0;
12660 bool stable, backwards_tsc = false;
12661
12662 kvm_user_return_msr_cpu_online();
12663
12664 ret = kvm_x86_check_processor_compatibility();
12665 if (ret)
12666 return ret;
12667
12668 ret = kvm_x86_call(enable_virtualization_cpu)();
12669 if (ret != 0)
12670 return ret;
12671
12672 local_tsc = rdtsc();
12673 stable = !kvm_check_tsc_unstable();
12674 list_for_each_entry(kvm, &vm_list, vm_list) {
12675 kvm_for_each_vcpu(i, vcpu, kvm) {
12676 if (!stable && vcpu->cpu == smp_processor_id())
12677 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
12678 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
12679 backwards_tsc = true;
12680 if (vcpu->arch.last_host_tsc > max_tsc)
12681 max_tsc = vcpu->arch.last_host_tsc;
12682 }
12683 }
12684 }
12685
12686 /*
12687 * Sometimes, even reliable TSCs go backwards. This happens on
12688 * platforms that reset TSC during suspend or hibernate actions, but
12689 * maintain synchronization. We must compensate. Fortunately, we can
12690 * detect that condition here, which happens early in CPU bringup,
12691 * before any KVM threads can be running. Unfortunately, we can't
12692 * bring the TSCs fully up to date with real time, as we aren't yet far
12693 * enough into CPU bringup that we know how much real time has actually
12694 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
12695 * variables that haven't been updated yet.
12696 *
12697 * So we simply find the maximum observed TSC above, then record the
12698 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
12699 * the adjustment will be applied. Note that we accumulate
12700 * adjustments, in case multiple suspend cycles happen before some VCPU
12701 * gets a chance to run again. In the event that no KVM threads get a
12702 * chance to run, we will miss the entire elapsed period, as we'll have
12703 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
12704 * loose cycle time. This isn't too big a deal, since the loss will be
12705 * uniform across all VCPUs (not to mention the scenario is extremely
12706 * unlikely). It is possible that a second hibernate recovery happens
12707 * much faster than a first, causing the observed TSC here to be
12708 * smaller; this would require additional padding adjustment, which is
12709 * why we set last_host_tsc to the local tsc observed here.
12710 *
12711 * N.B. - this code below runs only on platforms with reliable TSC,
12712 * as that is the only way backwards_tsc is set above. Also note
12713 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
12714 * have the same delta_cyc adjustment applied if backwards_tsc
12715 * is detected. Note further, this adjustment is only done once,
12716 * as we reset last_host_tsc on all VCPUs to stop this from being
12717 * called multiple times (one for each physical CPU bringup).
12718 *
12719 * Platforms with unreliable TSCs don't have to deal with this, they
12720 * will be compensated by the logic in vcpu_load, which sets the TSC to
12721 * catchup mode. This will catchup all VCPUs to real time, but cannot
12722 * guarantee that they stay in perfect synchronization.
12723 */
12724 if (backwards_tsc) {
12725 u64 delta_cyc = max_tsc - local_tsc;
12726 list_for_each_entry(kvm, &vm_list, vm_list) {
12727 kvm->arch.backwards_tsc_observed = true;
12728 kvm_for_each_vcpu(i, vcpu, kvm) {
12729 vcpu->arch.tsc_offset_adjustment += delta_cyc;
12730 vcpu->arch.last_host_tsc = local_tsc;
12731 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
12732 }
12733
12734 /*
12735 * We have to disable TSC offset matching.. if you were
12736 * booting a VM while issuing an S4 host suspend....
12737 * you may have some problem. Solving this issue is
12738 * left as an exercise to the reader.
12739 */
12740 kvm->arch.last_tsc_nsec = 0;
12741 kvm->arch.last_tsc_write = 0;
12742 }
12743
12744 }
12745 return 0;
12746 }
12747
kvm_arch_disable_virtualization_cpu(void)12748 void kvm_arch_disable_virtualization_cpu(void)
12749 {
12750 kvm_x86_call(disable_virtualization_cpu)();
12751 drop_user_return_notifiers();
12752 }
12753
kvm_vcpu_is_reset_bsp(struct kvm_vcpu * vcpu)12754 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
12755 {
12756 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
12757 }
12758 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
12759
kvm_vcpu_is_bsp(struct kvm_vcpu * vcpu)12760 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
12761 {
12762 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
12763 }
12764
kvm_arch_free_vm(struct kvm * kvm)12765 void kvm_arch_free_vm(struct kvm *kvm)
12766 {
12767 #if IS_ENABLED(CONFIG_HYPERV)
12768 kfree(kvm->arch.hv_pa_pg);
12769 #endif
12770 __kvm_arch_free_vm(kvm);
12771 }
12772
12773
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)12774 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
12775 {
12776 int ret;
12777 unsigned long flags;
12778
12779 if (!kvm_is_vm_type_supported(type))
12780 return -EINVAL;
12781
12782 kvm->arch.vm_type = type;
12783 kvm->arch.has_private_mem =
12784 (type == KVM_X86_SW_PROTECTED_VM);
12785 /* Decided by the vendor code for other VM types. */
12786 kvm->arch.pre_fault_allowed =
12787 type == KVM_X86_DEFAULT_VM || type == KVM_X86_SW_PROTECTED_VM;
12788 kvm->arch.disabled_quirks = kvm_caps.inapplicable_quirks & kvm_caps.supported_quirks;
12789
12790 ret = kvm_page_track_init(kvm);
12791 if (ret)
12792 goto out;
12793
12794 kvm_mmu_init_vm(kvm);
12795
12796 ret = kvm_x86_call(vm_init)(kvm);
12797 if (ret)
12798 goto out_uninit_mmu;
12799
12800 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
12801 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
12802
12803 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
12804 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
12805 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
12806 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
12807 &kvm->arch.irq_sources_bitmap);
12808
12809 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
12810 mutex_init(&kvm->arch.apic_map_lock);
12811 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
12812 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
12813
12814 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
12815 pvclock_update_vm_gtod_copy(kvm);
12816 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
12817
12818 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
12819 kvm->arch.apic_bus_cycle_ns = APIC_BUS_CYCLE_NS_DEFAULT;
12820 kvm->arch.guest_can_read_msr_platform_info = true;
12821 kvm->arch.enable_pmu = enable_pmu;
12822
12823 #if IS_ENABLED(CONFIG_HYPERV)
12824 spin_lock_init(&kvm->arch.hv_root_tdp_lock);
12825 kvm->arch.hv_root_tdp = INVALID_PAGE;
12826 #endif
12827
12828 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
12829 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
12830
12831 kvm_apicv_init(kvm);
12832 kvm_hv_init_vm(kvm);
12833 kvm_xen_init_vm(kvm);
12834
12835 if (ignore_msrs && !report_ignored_msrs) {
12836 pr_warn_once("Running KVM with ignore_msrs=1 and report_ignored_msrs=0 is not a\n"
12837 "a supported configuration. Lying to the guest about the existence of MSRs\n"
12838 "may cause the guest operating system to hang or produce errors. If a guest\n"
12839 "does not run without ignore_msrs=1, please report it to kvm@vger.kernel.org.\n");
12840 }
12841
12842 once_init(&kvm->arch.nx_once);
12843 return 0;
12844
12845 out_uninit_mmu:
12846 kvm_mmu_uninit_vm(kvm);
12847 kvm_page_track_cleanup(kvm);
12848 out:
12849 return ret;
12850 }
12851
12852 /**
12853 * __x86_set_memory_region: Setup KVM internal memory slot
12854 *
12855 * @kvm: the kvm pointer to the VM.
12856 * @id: the slot ID to setup.
12857 * @gpa: the GPA to install the slot (unused when @size == 0).
12858 * @size: the size of the slot. Set to zero to uninstall a slot.
12859 *
12860 * This function helps to setup a KVM internal memory slot. Specify
12861 * @size > 0 to install a new slot, while @size == 0 to uninstall a
12862 * slot. The return code can be one of the following:
12863 *
12864 * HVA: on success (uninstall will return a bogus HVA)
12865 * -errno: on error
12866 *
12867 * The caller should always use IS_ERR() to check the return value
12868 * before use. Note, the KVM internal memory slots are guaranteed to
12869 * remain valid and unchanged until the VM is destroyed, i.e., the
12870 * GPA->HVA translation will not change. However, the HVA is a user
12871 * address, i.e. its accessibility is not guaranteed, and must be
12872 * accessed via __copy_{to,from}_user().
12873 */
__x86_set_memory_region(struct kvm * kvm,int id,gpa_t gpa,u32 size)12874 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
12875 u32 size)
12876 {
12877 int i, r;
12878 unsigned long hva, old_npages;
12879 struct kvm_memslots *slots = kvm_memslots(kvm);
12880 struct kvm_memory_slot *slot;
12881
12882 lockdep_assert_held(&kvm->slots_lock);
12883
12884 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
12885 return ERR_PTR_USR(-EINVAL);
12886
12887 slot = id_to_memslot(slots, id);
12888 if (size) {
12889 if (slot && slot->npages)
12890 return ERR_PTR_USR(-EEXIST);
12891
12892 /*
12893 * MAP_SHARED to prevent internal slot pages from being moved
12894 * by fork()/COW.
12895 */
12896 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
12897 MAP_SHARED | MAP_ANONYMOUS, 0);
12898 if (IS_ERR_VALUE(hva))
12899 return (void __user *)hva;
12900 } else {
12901 if (!slot || !slot->npages)
12902 return NULL;
12903
12904 old_npages = slot->npages;
12905 hva = slot->userspace_addr;
12906 }
12907
12908 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
12909 struct kvm_userspace_memory_region2 m;
12910
12911 m.slot = id | (i << 16);
12912 m.flags = 0;
12913 m.guest_phys_addr = gpa;
12914 m.userspace_addr = hva;
12915 m.memory_size = size;
12916 r = kvm_set_internal_memslot(kvm, &m);
12917 if (r < 0)
12918 return ERR_PTR_USR(r);
12919 }
12920
12921 if (!size)
12922 vm_munmap(hva, old_npages * PAGE_SIZE);
12923
12924 return (void __user *)hva;
12925 }
12926 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
12927
kvm_arch_pre_destroy_vm(struct kvm * kvm)12928 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
12929 {
12930 /*
12931 * Stop all background workers and kthreads before destroying vCPUs, as
12932 * iterating over vCPUs in a different task while vCPUs are being freed
12933 * is unsafe, i.e. will lead to use-after-free. The PIT also needs to
12934 * be stopped before IRQ routing is freed.
12935 */
12936 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
12937 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
12938
12939 kvm_free_pit(kvm);
12940
12941 kvm_mmu_pre_destroy_vm(kvm);
12942 static_call_cond(kvm_x86_vm_pre_destroy)(kvm);
12943 }
12944
kvm_arch_destroy_vm(struct kvm * kvm)12945 void kvm_arch_destroy_vm(struct kvm *kvm)
12946 {
12947 if (current->mm == kvm->mm) {
12948 /*
12949 * Free memory regions allocated on behalf of userspace,
12950 * unless the memory map has changed due to process exit
12951 * or fd copying.
12952 */
12953 mutex_lock(&kvm->slots_lock);
12954 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
12955 0, 0);
12956 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
12957 0, 0);
12958 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
12959 mutex_unlock(&kvm->slots_lock);
12960 }
12961 kvm_destroy_vcpus(kvm);
12962 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
12963 kvm_pic_destroy(kvm);
12964 kvm_ioapic_destroy(kvm);
12965 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
12966 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
12967 kvm_mmu_uninit_vm(kvm);
12968 kvm_page_track_cleanup(kvm);
12969 kvm_xen_destroy_vm(kvm);
12970 kvm_hv_destroy_vm(kvm);
12971 kvm_x86_call(vm_destroy)(kvm);
12972 }
12973
memslot_rmap_free(struct kvm_memory_slot * slot)12974 static void memslot_rmap_free(struct kvm_memory_slot *slot)
12975 {
12976 int i;
12977
12978 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12979 vfree(slot->arch.rmap[i]);
12980 slot->arch.rmap[i] = NULL;
12981 }
12982 }
12983
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)12984 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12985 {
12986 int i;
12987
12988 memslot_rmap_free(slot);
12989
12990 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12991 vfree(slot->arch.lpage_info[i - 1]);
12992 slot->arch.lpage_info[i - 1] = NULL;
12993 }
12994
12995 kvm_page_track_free_memslot(slot);
12996 }
12997
memslot_rmap_alloc(struct kvm_memory_slot * slot,unsigned long npages)12998 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12999 {
13000 const int sz = sizeof(*slot->arch.rmap[0]);
13001 int i;
13002
13003 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
13004 int level = i + 1;
13005 int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
13006
13007 if (slot->arch.rmap[i])
13008 continue;
13009
13010 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
13011 if (!slot->arch.rmap[i]) {
13012 memslot_rmap_free(slot);
13013 return -ENOMEM;
13014 }
13015 }
13016
13017 return 0;
13018 }
13019
kvm_alloc_memslot_metadata(struct kvm * kvm,struct kvm_memory_slot * slot)13020 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
13021 struct kvm_memory_slot *slot)
13022 {
13023 unsigned long npages = slot->npages;
13024 int i, r;
13025
13026 /*
13027 * Clear out the previous array pointers for the KVM_MR_MOVE case. The
13028 * old arrays will be freed by kvm_set_memory_region() if installing
13029 * the new memslot is successful.
13030 */
13031 memset(&slot->arch, 0, sizeof(slot->arch));
13032
13033 if (kvm_memslots_have_rmaps(kvm)) {
13034 r = memslot_rmap_alloc(slot, npages);
13035 if (r)
13036 return r;
13037 }
13038
13039 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
13040 struct kvm_lpage_info *linfo;
13041 unsigned long ugfn;
13042 int lpages;
13043 int level = i + 1;
13044
13045 lpages = __kvm_mmu_slot_lpages(slot, npages, level);
13046
13047 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
13048 if (!linfo)
13049 goto out_free;
13050
13051 slot->arch.lpage_info[i - 1] = linfo;
13052
13053 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
13054 linfo[0].disallow_lpage = 1;
13055 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
13056 linfo[lpages - 1].disallow_lpage = 1;
13057 ugfn = slot->userspace_addr >> PAGE_SHIFT;
13058 /*
13059 * If the gfn and userspace address are not aligned wrt each
13060 * other, disable large page support for this slot.
13061 */
13062 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
13063 unsigned long j;
13064
13065 for (j = 0; j < lpages; ++j)
13066 linfo[j].disallow_lpage = 1;
13067 }
13068 }
13069
13070 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
13071 kvm_mmu_init_memslot_memory_attributes(kvm, slot);
13072 #endif
13073
13074 if (kvm_page_track_create_memslot(kvm, slot, npages))
13075 goto out_free;
13076
13077 return 0;
13078
13079 out_free:
13080 memslot_rmap_free(slot);
13081
13082 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
13083 vfree(slot->arch.lpage_info[i - 1]);
13084 slot->arch.lpage_info[i - 1] = NULL;
13085 }
13086 return -ENOMEM;
13087 }
13088
kvm_arch_memslots_updated(struct kvm * kvm,u64 gen)13089 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
13090 {
13091 struct kvm_vcpu *vcpu;
13092 unsigned long i;
13093
13094 /*
13095 * memslots->generation has been incremented.
13096 * mmio generation may have reached its maximum value.
13097 */
13098 kvm_mmu_invalidate_mmio_sptes(kvm, gen);
13099
13100 /* Force re-initialization of steal_time cache */
13101 kvm_for_each_vcpu(i, vcpu, kvm)
13102 kvm_vcpu_kick(vcpu);
13103 }
13104
kvm_arch_prepare_memory_region(struct kvm * kvm,const struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)13105 int kvm_arch_prepare_memory_region(struct kvm *kvm,
13106 const struct kvm_memory_slot *old,
13107 struct kvm_memory_slot *new,
13108 enum kvm_mr_change change)
13109 {
13110 /*
13111 * KVM doesn't support moving memslots when there are external page
13112 * trackers attached to the VM, i.e. if KVMGT is in use.
13113 */
13114 if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm))
13115 return -EINVAL;
13116
13117 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
13118 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
13119 return -EINVAL;
13120
13121 if (kvm_is_gfn_alias(kvm, new->base_gfn + new->npages - 1))
13122 return -EINVAL;
13123
13124 return kvm_alloc_memslot_metadata(kvm, new);
13125 }
13126
13127 if (change == KVM_MR_FLAGS_ONLY)
13128 memcpy(&new->arch, &old->arch, sizeof(old->arch));
13129 else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
13130 return -EIO;
13131
13132 return 0;
13133 }
13134
13135
kvm_mmu_update_cpu_dirty_logging(struct kvm * kvm,bool enable)13136 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
13137 {
13138 int nr_slots;
13139
13140 if (!kvm->arch.cpu_dirty_log_size)
13141 return;
13142
13143 nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging);
13144 if ((enable && nr_slots == 1) || !nr_slots)
13145 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
13146 }
13147
kvm_mmu_slot_apply_flags(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)13148 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
13149 struct kvm_memory_slot *old,
13150 const struct kvm_memory_slot *new,
13151 enum kvm_mr_change change)
13152 {
13153 u32 old_flags = old ? old->flags : 0;
13154 u32 new_flags = new ? new->flags : 0;
13155 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
13156
13157 /*
13158 * Update CPU dirty logging if dirty logging is being toggled. This
13159 * applies to all operations.
13160 */
13161 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
13162 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
13163
13164 /*
13165 * Nothing more to do for RO slots (which can't be dirtied and can't be
13166 * made writable) or CREATE/MOVE/DELETE of a slot.
13167 *
13168 * For a memslot with dirty logging disabled:
13169 * CREATE: No dirty mappings will already exist.
13170 * MOVE/DELETE: The old mappings will already have been cleaned up by
13171 * kvm_arch_flush_shadow_memslot()
13172 *
13173 * For a memslot with dirty logging enabled:
13174 * CREATE: No shadow pages exist, thus nothing to write-protect
13175 * and no dirty bits to clear.
13176 * MOVE/DELETE: The old mappings will already have been cleaned up by
13177 * kvm_arch_flush_shadow_memslot().
13178 */
13179 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
13180 return;
13181
13182 /*
13183 * READONLY and non-flags changes were filtered out above, and the only
13184 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
13185 * logging isn't being toggled on or off.
13186 */
13187 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
13188 return;
13189
13190 if (!log_dirty_pages) {
13191 /*
13192 * Recover huge page mappings in the slot now that dirty logging
13193 * is disabled, i.e. now that KVM does not have to track guest
13194 * writes at 4KiB granularity.
13195 *
13196 * Dirty logging might be disabled by userspace if an ongoing VM
13197 * live migration is cancelled and the VM must continue running
13198 * on the source.
13199 */
13200 kvm_mmu_recover_huge_pages(kvm, new);
13201 } else {
13202 /*
13203 * Initially-all-set does not require write protecting any page,
13204 * because they're all assumed to be dirty.
13205 */
13206 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
13207 return;
13208
13209 if (READ_ONCE(eager_page_split))
13210 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
13211
13212 if (kvm->arch.cpu_dirty_log_size) {
13213 kvm_mmu_slot_leaf_clear_dirty(kvm, new);
13214 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
13215 } else {
13216 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
13217 }
13218
13219 /*
13220 * Unconditionally flush the TLBs after enabling dirty logging.
13221 * A flush is almost always going to be necessary (see below),
13222 * and unconditionally flushing allows the helpers to omit
13223 * the subtly complex checks when removing write access.
13224 *
13225 * Do the flush outside of mmu_lock to reduce the amount of
13226 * time mmu_lock is held. Flushing after dropping mmu_lock is
13227 * safe as KVM only needs to guarantee the slot is fully
13228 * write-protected before returning to userspace, i.e. before
13229 * userspace can consume the dirty status.
13230 *
13231 * Flushing outside of mmu_lock requires KVM to be careful when
13232 * making decisions based on writable status of an SPTE, e.g. a
13233 * !writable SPTE doesn't guarantee a CPU can't perform writes.
13234 *
13235 * Specifically, KVM also write-protects guest page tables to
13236 * monitor changes when using shadow paging, and must guarantee
13237 * no CPUs can write to those page before mmu_lock is dropped.
13238 * Because CPUs may have stale TLB entries at this point, a
13239 * !writable SPTE doesn't guarantee CPUs can't perform writes.
13240 *
13241 * KVM also allows making SPTES writable outside of mmu_lock,
13242 * e.g. to allow dirty logging without taking mmu_lock.
13243 *
13244 * To handle these scenarios, KVM uses a separate software-only
13245 * bit (MMU-writable) to track if a SPTE is !writable due to
13246 * a guest page table being write-protected (KVM clears the
13247 * MMU-writable flag when write-protecting for shadow paging).
13248 *
13249 * The use of MMU-writable is also the primary motivation for
13250 * the unconditional flush. Because KVM must guarantee that a
13251 * CPU doesn't contain stale, writable TLB entries for a
13252 * !MMU-writable SPTE, KVM must flush if it encounters any
13253 * MMU-writable SPTE regardless of whether the actual hardware
13254 * writable bit was set. I.e. KVM is almost guaranteed to need
13255 * to flush, while unconditionally flushing allows the "remove
13256 * write access" helpers to ignore MMU-writable entirely.
13257 *
13258 * See is_writable_pte() for more details (the case involving
13259 * access-tracked SPTEs is particularly relevant).
13260 */
13261 kvm_flush_remote_tlbs_memslot(kvm, new);
13262 }
13263 }
13264
kvm_arch_commit_memory_region(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)13265 void kvm_arch_commit_memory_region(struct kvm *kvm,
13266 struct kvm_memory_slot *old,
13267 const struct kvm_memory_slot *new,
13268 enum kvm_mr_change change)
13269 {
13270 if (change == KVM_MR_DELETE)
13271 kvm_page_track_delete_slot(kvm, old);
13272
13273 if (!kvm->arch.n_requested_mmu_pages &&
13274 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
13275 unsigned long nr_mmu_pages;
13276
13277 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
13278 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
13279 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
13280 }
13281
13282 kvm_mmu_slot_apply_flags(kvm, old, new, change);
13283
13284 /* Free the arrays associated with the old memslot. */
13285 if (change == KVM_MR_MOVE)
13286 kvm_arch_free_memslot(kvm, old);
13287 }
13288
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)13289 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
13290 {
13291 WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu));
13292
13293 if (vcpu->arch.guest_state_protected)
13294 return true;
13295
13296 return kvm_x86_call(get_cpl)(vcpu) == 0;
13297 }
13298
kvm_arch_vcpu_get_ip(struct kvm_vcpu * vcpu)13299 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
13300 {
13301 WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu));
13302
13303 if (vcpu->arch.guest_state_protected)
13304 return 0;
13305
13306 return kvm_rip_read(vcpu);
13307 }
13308
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)13309 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
13310 {
13311 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
13312 }
13313
kvm_arch_interrupt_allowed(struct kvm_vcpu * vcpu)13314 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
13315 {
13316 return kvm_x86_call(interrupt_allowed)(vcpu, false);
13317 }
13318
kvm_get_linear_rip(struct kvm_vcpu * vcpu)13319 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
13320 {
13321 /* Can't read the RIP when guest state is protected, just return 0 */
13322 if (vcpu->arch.guest_state_protected)
13323 return 0;
13324
13325 if (is_64_bit_mode(vcpu))
13326 return kvm_rip_read(vcpu);
13327 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
13328 kvm_rip_read(vcpu));
13329 }
13330 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
13331
kvm_is_linear_rip(struct kvm_vcpu * vcpu,unsigned long linear_rip)13332 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
13333 {
13334 return kvm_get_linear_rip(vcpu) == linear_rip;
13335 }
13336 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
13337
kvm_get_rflags(struct kvm_vcpu * vcpu)13338 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
13339 {
13340 unsigned long rflags;
13341
13342 rflags = kvm_x86_call(get_rflags)(vcpu);
13343 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
13344 rflags &= ~X86_EFLAGS_TF;
13345 return rflags;
13346 }
13347 EXPORT_SYMBOL_GPL(kvm_get_rflags);
13348
__kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)13349 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13350 {
13351 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
13352 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
13353 rflags |= X86_EFLAGS_TF;
13354 kvm_x86_call(set_rflags)(vcpu, rflags);
13355 }
13356
kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)13357 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13358 {
13359 __kvm_set_rflags(vcpu, rflags);
13360 kvm_make_request(KVM_REQ_EVENT, vcpu);
13361 }
13362 EXPORT_SYMBOL_GPL(kvm_set_rflags);
13363
kvm_async_pf_hash_fn(gfn_t gfn)13364 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
13365 {
13366 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
13367
13368 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
13369 }
13370
kvm_async_pf_next_probe(u32 key)13371 static inline u32 kvm_async_pf_next_probe(u32 key)
13372 {
13373 return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
13374 }
13375
kvm_add_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)13376 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13377 {
13378 u32 key = kvm_async_pf_hash_fn(gfn);
13379
13380 while (vcpu->arch.apf.gfns[key] != ~0)
13381 key = kvm_async_pf_next_probe(key);
13382
13383 vcpu->arch.apf.gfns[key] = gfn;
13384 }
13385
kvm_async_pf_gfn_slot(struct kvm_vcpu * vcpu,gfn_t gfn)13386 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
13387 {
13388 int i;
13389 u32 key = kvm_async_pf_hash_fn(gfn);
13390
13391 for (i = 0; i < ASYNC_PF_PER_VCPU &&
13392 (vcpu->arch.apf.gfns[key] != gfn &&
13393 vcpu->arch.apf.gfns[key] != ~0); i++)
13394 key = kvm_async_pf_next_probe(key);
13395
13396 return key;
13397 }
13398
kvm_find_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)13399 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13400 {
13401 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
13402 }
13403
kvm_del_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)13404 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13405 {
13406 u32 i, j, k;
13407
13408 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
13409
13410 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
13411 return;
13412
13413 while (true) {
13414 vcpu->arch.apf.gfns[i] = ~0;
13415 do {
13416 j = kvm_async_pf_next_probe(j);
13417 if (vcpu->arch.apf.gfns[j] == ~0)
13418 return;
13419 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
13420 /*
13421 * k lies cyclically in ]i,j]
13422 * | i.k.j |
13423 * |....j i.k.| or |.k..j i...|
13424 */
13425 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
13426 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
13427 i = j;
13428 }
13429 }
13430
apf_put_user_notpresent(struct kvm_vcpu * vcpu)13431 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
13432 {
13433 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
13434
13435 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
13436 sizeof(reason));
13437 }
13438
apf_put_user_ready(struct kvm_vcpu * vcpu,u32 token)13439 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
13440 {
13441 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13442
13443 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13444 &token, offset, sizeof(token));
13445 }
13446
apf_pageready_slot_free(struct kvm_vcpu * vcpu)13447 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
13448 {
13449 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13450 u32 val;
13451
13452 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13453 &val, offset, sizeof(val)))
13454 return false;
13455
13456 return !val;
13457 }
13458
kvm_can_deliver_async_pf(struct kvm_vcpu * vcpu)13459 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
13460 {
13461
13462 if (!kvm_pv_async_pf_enabled(vcpu))
13463 return false;
13464
13465 if (!vcpu->arch.apf.send_always &&
13466 (vcpu->arch.guest_state_protected || !kvm_x86_call(get_cpl)(vcpu)))
13467 return false;
13468
13469 if (is_guest_mode(vcpu)) {
13470 /*
13471 * L1 needs to opt into the special #PF vmexits that are
13472 * used to deliver async page faults.
13473 */
13474 return vcpu->arch.apf.delivery_as_pf_vmexit;
13475 } else {
13476 /*
13477 * Play it safe in case the guest temporarily disables paging.
13478 * The real mode IDT in particular is unlikely to have a #PF
13479 * exception setup.
13480 */
13481 return is_paging(vcpu);
13482 }
13483 }
13484
kvm_can_do_async_pf(struct kvm_vcpu * vcpu)13485 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
13486 {
13487 if (unlikely(!lapic_in_kernel(vcpu) ||
13488 kvm_event_needs_reinjection(vcpu) ||
13489 kvm_is_exception_pending(vcpu)))
13490 return false;
13491
13492 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
13493 return false;
13494
13495 /*
13496 * If interrupts are off we cannot even use an artificial
13497 * halt state.
13498 */
13499 return kvm_arch_interrupt_allowed(vcpu);
13500 }
13501
kvm_arch_async_page_not_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)13502 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
13503 struct kvm_async_pf *work)
13504 {
13505 struct x86_exception fault;
13506
13507 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
13508 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
13509
13510 if (kvm_can_deliver_async_pf(vcpu) &&
13511 !apf_put_user_notpresent(vcpu)) {
13512 fault.vector = PF_VECTOR;
13513 fault.error_code_valid = true;
13514 fault.error_code = 0;
13515 fault.nested_page_fault = false;
13516 fault.address = work->arch.token;
13517 fault.async_page_fault = true;
13518 kvm_inject_page_fault(vcpu, &fault);
13519 return true;
13520 } else {
13521 /*
13522 * It is not possible to deliver a paravirtualized asynchronous
13523 * page fault, but putting the guest in an artificial halt state
13524 * can be beneficial nevertheless: if an interrupt arrives, we
13525 * can deliver it timely and perhaps the guest will schedule
13526 * another process. When the instruction that triggered a page
13527 * fault is retried, hopefully the page will be ready in the host.
13528 */
13529 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
13530 return false;
13531 }
13532 }
13533
kvm_arch_async_page_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)13534 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
13535 struct kvm_async_pf *work)
13536 {
13537 struct kvm_lapic_irq irq = {
13538 .delivery_mode = APIC_DM_FIXED,
13539 .vector = vcpu->arch.apf.vec
13540 };
13541
13542 if (work->wakeup_all)
13543 work->arch.token = ~0; /* broadcast wakeup */
13544 else
13545 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
13546 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
13547
13548 if ((work->wakeup_all || work->notpresent_injected) &&
13549 kvm_pv_async_pf_enabled(vcpu) &&
13550 !apf_put_user_ready(vcpu, work->arch.token)) {
13551 vcpu->arch.apf.pageready_pending = true;
13552 kvm_apic_set_irq(vcpu, &irq, NULL);
13553 }
13554
13555 vcpu->arch.apf.halted = false;
13556 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
13557 }
13558
kvm_arch_async_page_present_queued(struct kvm_vcpu * vcpu)13559 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
13560 {
13561 kvm_make_request(KVM_REQ_APF_READY, vcpu);
13562 if (!vcpu->arch.apf.pageready_pending)
13563 kvm_vcpu_kick(vcpu);
13564 }
13565
kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu * vcpu)13566 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
13567 {
13568 if (!kvm_pv_async_pf_enabled(vcpu))
13569 return true;
13570 else
13571 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
13572 }
13573
kvm_arch_start_assignment(struct kvm * kvm)13574 void kvm_arch_start_assignment(struct kvm *kvm)
13575 {
13576 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
13577 kvm_x86_call(pi_start_assignment)(kvm);
13578 }
13579 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
13580
kvm_arch_end_assignment(struct kvm * kvm)13581 void kvm_arch_end_assignment(struct kvm *kvm)
13582 {
13583 atomic_dec(&kvm->arch.assigned_device_count);
13584 }
13585 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
13586
kvm_arch_has_assigned_device(struct kvm * kvm)13587 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
13588 {
13589 return raw_atomic_read(&kvm->arch.assigned_device_count);
13590 }
13591 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
13592
kvm_noncoherent_dma_assignment_start_or_stop(struct kvm * kvm)13593 static void kvm_noncoherent_dma_assignment_start_or_stop(struct kvm *kvm)
13594 {
13595 /*
13596 * Non-coherent DMA assignment and de-assignment may affect whether or
13597 * not KVM honors guest PAT, and thus may cause changes in EPT SPTEs
13598 * due to toggling the "ignore PAT" bit. Zap all SPTEs when the first
13599 * (or last) non-coherent device is (un)registered to so that new SPTEs
13600 * with the correct "ignore guest PAT" setting are created.
13601 *
13602 * If KVM always honors guest PAT, however, there is nothing to do.
13603 */
13604 if (kvm_check_has_quirk(kvm, KVM_X86_QUIRK_IGNORE_GUEST_PAT))
13605 kvm_zap_gfn_range(kvm, gpa_to_gfn(0), gpa_to_gfn(~0ULL));
13606 }
13607
kvm_arch_register_noncoherent_dma(struct kvm * kvm)13608 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
13609 {
13610 if (atomic_inc_return(&kvm->arch.noncoherent_dma_count) == 1)
13611 kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13612 }
13613 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
13614
kvm_arch_unregister_noncoherent_dma(struct kvm * kvm)13615 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
13616 {
13617 if (!atomic_dec_return(&kvm->arch.noncoherent_dma_count))
13618 kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13619 }
13620 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
13621
kvm_arch_has_noncoherent_dma(struct kvm * kvm)13622 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
13623 {
13624 return atomic_read(&kvm->arch.noncoherent_dma_count);
13625 }
13626 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
13627
kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)13628 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
13629 struct irq_bypass_producer *prod)
13630 {
13631 struct kvm_kernel_irqfd *irqfd =
13632 container_of(cons, struct kvm_kernel_irqfd, consumer);
13633 struct kvm *kvm = irqfd->kvm;
13634 int ret;
13635
13636 kvm_arch_start_assignment(irqfd->kvm);
13637
13638 spin_lock_irq(&kvm->irqfds.lock);
13639 irqfd->producer = prod;
13640
13641 ret = kvm_x86_call(pi_update_irte)(irqfd->kvm,
13642 prod->irq, irqfd->gsi, 1);
13643 if (ret)
13644 kvm_arch_end_assignment(irqfd->kvm);
13645
13646 spin_unlock_irq(&kvm->irqfds.lock);
13647
13648
13649 return ret;
13650 }
13651
kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)13652 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
13653 struct irq_bypass_producer *prod)
13654 {
13655 int ret;
13656 struct kvm_kernel_irqfd *irqfd =
13657 container_of(cons, struct kvm_kernel_irqfd, consumer);
13658 struct kvm *kvm = irqfd->kvm;
13659
13660 WARN_ON(irqfd->producer != prod);
13661
13662 /*
13663 * When producer of consumer is unregistered, we change back to
13664 * remapped mode, so we can re-use the current implementation
13665 * when the irq is masked/disabled or the consumer side (KVM
13666 * int this case doesn't want to receive the interrupts.
13667 */
13668 spin_lock_irq(&kvm->irqfds.lock);
13669 irqfd->producer = NULL;
13670
13671 ret = kvm_x86_call(pi_update_irte)(irqfd->kvm,
13672 prod->irq, irqfd->gsi, 0);
13673 if (ret)
13674 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
13675 " fails: %d\n", irqfd->consumer.token, ret);
13676
13677 spin_unlock_irq(&kvm->irqfds.lock);
13678
13679
13680 kvm_arch_end_assignment(irqfd->kvm);
13681 }
13682
kvm_arch_update_irqfd_routing(struct kvm * kvm,unsigned int host_irq,uint32_t guest_irq,bool set)13683 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
13684 uint32_t guest_irq, bool set)
13685 {
13686 return kvm_x86_call(pi_update_irte)(kvm, host_irq, guest_irq, set);
13687 }
13688
kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry * old,struct kvm_kernel_irq_routing_entry * new)13689 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
13690 struct kvm_kernel_irq_routing_entry *new)
13691 {
13692 if (old->type != KVM_IRQ_ROUTING_MSI ||
13693 new->type != KVM_IRQ_ROUTING_MSI)
13694 return true;
13695
13696 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
13697 }
13698
kvm_vector_hashing_enabled(void)13699 bool kvm_vector_hashing_enabled(void)
13700 {
13701 return vector_hashing;
13702 }
13703
kvm_arch_no_poll(struct kvm_vcpu * vcpu)13704 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13705 {
13706 return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13707 }
13708 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
13709
13710 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE
kvm_arch_gmem_prepare(struct kvm * kvm,gfn_t gfn,kvm_pfn_t pfn,int max_order)13711 int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order)
13712 {
13713 return kvm_x86_call(gmem_prepare)(kvm, pfn, gfn, max_order);
13714 }
13715 #endif
13716
13717 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE
kvm_arch_gmem_invalidate(kvm_pfn_t start,kvm_pfn_t end)13718 void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end)
13719 {
13720 kvm_x86_call(gmem_invalidate)(start, end);
13721 }
13722 #endif
13723
kvm_spec_ctrl_test_value(u64 value)13724 int kvm_spec_ctrl_test_value(u64 value)
13725 {
13726 /*
13727 * test that setting IA32_SPEC_CTRL to given value
13728 * is allowed by the host processor
13729 */
13730
13731 u64 saved_value;
13732 unsigned long flags;
13733 int ret = 0;
13734
13735 local_irq_save(flags);
13736
13737 if (rdmsrq_safe(MSR_IA32_SPEC_CTRL, &saved_value))
13738 ret = 1;
13739 else if (wrmsrq_safe(MSR_IA32_SPEC_CTRL, value))
13740 ret = 1;
13741 else
13742 wrmsrq(MSR_IA32_SPEC_CTRL, saved_value);
13743
13744 local_irq_restore(flags);
13745
13746 return ret;
13747 }
13748 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
13749
kvm_fixup_and_inject_pf_error(struct kvm_vcpu * vcpu,gva_t gva,u16 error_code)13750 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
13751 {
13752 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
13753 struct x86_exception fault;
13754 u64 access = error_code &
13755 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
13756
13757 if (!(error_code & PFERR_PRESENT_MASK) ||
13758 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
13759 /*
13760 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
13761 * tables probably do not match the TLB. Just proceed
13762 * with the error code that the processor gave.
13763 */
13764 fault.vector = PF_VECTOR;
13765 fault.error_code_valid = true;
13766 fault.error_code = error_code;
13767 fault.nested_page_fault = false;
13768 fault.address = gva;
13769 fault.async_page_fault = false;
13770 }
13771 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
13772 }
13773 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
13774
13775 /*
13776 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
13777 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
13778 * indicates whether exit to userspace is needed.
13779 */
kvm_handle_memory_failure(struct kvm_vcpu * vcpu,int r,struct x86_exception * e)13780 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
13781 struct x86_exception *e)
13782 {
13783 if (r == X86EMUL_PROPAGATE_FAULT) {
13784 if (KVM_BUG_ON(!e, vcpu->kvm))
13785 return -EIO;
13786
13787 kvm_inject_emulated_page_fault(vcpu, e);
13788 return 1;
13789 }
13790
13791 /*
13792 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
13793 * while handling a VMX instruction KVM could've handled the request
13794 * correctly by exiting to userspace and performing I/O but there
13795 * doesn't seem to be a real use-case behind such requests, just return
13796 * KVM_EXIT_INTERNAL_ERROR for now.
13797 */
13798 kvm_prepare_emulation_failure_exit(vcpu);
13799
13800 return 0;
13801 }
13802 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
13803
kvm_handle_invpcid(struct kvm_vcpu * vcpu,unsigned long type,gva_t gva)13804 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
13805 {
13806 bool pcid_enabled;
13807 struct x86_exception e;
13808 struct {
13809 u64 pcid;
13810 u64 gla;
13811 } operand;
13812 int r;
13813
13814 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
13815 if (r != X86EMUL_CONTINUE)
13816 return kvm_handle_memory_failure(vcpu, r, &e);
13817
13818 if (operand.pcid >> 12 != 0) {
13819 kvm_inject_gp(vcpu, 0);
13820 return 1;
13821 }
13822
13823 pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE);
13824
13825 switch (type) {
13826 case INVPCID_TYPE_INDIV_ADDR:
13827 /*
13828 * LAM doesn't apply to addresses that are inputs to TLB
13829 * invalidation.
13830 */
13831 if ((!pcid_enabled && (operand.pcid != 0)) ||
13832 is_noncanonical_invlpg_address(operand.gla, vcpu)) {
13833 kvm_inject_gp(vcpu, 0);
13834 return 1;
13835 }
13836 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
13837 return kvm_skip_emulated_instruction(vcpu);
13838
13839 case INVPCID_TYPE_SINGLE_CTXT:
13840 if (!pcid_enabled && (operand.pcid != 0)) {
13841 kvm_inject_gp(vcpu, 0);
13842 return 1;
13843 }
13844
13845 kvm_invalidate_pcid(vcpu, operand.pcid);
13846 return kvm_skip_emulated_instruction(vcpu);
13847
13848 case INVPCID_TYPE_ALL_NON_GLOBAL:
13849 /*
13850 * Currently, KVM doesn't mark global entries in the shadow
13851 * page tables, so a non-global flush just degenerates to a
13852 * global flush. If needed, we could optimize this later by
13853 * keeping track of global entries in shadow page tables.
13854 */
13855
13856 fallthrough;
13857 case INVPCID_TYPE_ALL_INCL_GLOBAL:
13858 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
13859 return kvm_skip_emulated_instruction(vcpu);
13860
13861 default:
13862 kvm_inject_gp(vcpu, 0);
13863 return 1;
13864 }
13865 }
13866 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
13867
complete_sev_es_emulated_mmio(struct kvm_vcpu * vcpu)13868 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
13869 {
13870 struct kvm_run *run = vcpu->run;
13871 struct kvm_mmio_fragment *frag;
13872 unsigned int len;
13873
13874 BUG_ON(!vcpu->mmio_needed);
13875
13876 /* Complete previous fragment */
13877 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
13878 len = min(8u, frag->len);
13879 if (!vcpu->mmio_is_write)
13880 memcpy(frag->data, run->mmio.data, len);
13881
13882 if (frag->len <= 8) {
13883 /* Switch to the next fragment. */
13884 frag++;
13885 vcpu->mmio_cur_fragment++;
13886 } else {
13887 /* Go forward to the next mmio piece. */
13888 frag->data += len;
13889 frag->gpa += len;
13890 frag->len -= len;
13891 }
13892
13893 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
13894 vcpu->mmio_needed = 0;
13895
13896 // VMG change, at this point, we're always done
13897 // RIP has already been advanced
13898 return 1;
13899 }
13900
13901 // More MMIO is needed
13902 run->mmio.phys_addr = frag->gpa;
13903 run->mmio.len = min(8u, frag->len);
13904 run->mmio.is_write = vcpu->mmio_is_write;
13905 if (run->mmio.is_write)
13906 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
13907 run->exit_reason = KVM_EXIT_MMIO;
13908
13909 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13910
13911 return 0;
13912 }
13913
kvm_sev_es_mmio_write(struct kvm_vcpu * vcpu,gpa_t gpa,unsigned int bytes,void * data)13914 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13915 void *data)
13916 {
13917 int handled;
13918 struct kvm_mmio_fragment *frag;
13919
13920 if (!data)
13921 return -EINVAL;
13922
13923 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13924 if (handled == bytes)
13925 return 1;
13926
13927 bytes -= handled;
13928 gpa += handled;
13929 data += handled;
13930
13931 /*TODO: Check if need to increment number of frags */
13932 frag = vcpu->mmio_fragments;
13933 vcpu->mmio_nr_fragments = 1;
13934 frag->len = bytes;
13935 frag->gpa = gpa;
13936 frag->data = data;
13937
13938 vcpu->mmio_needed = 1;
13939 vcpu->mmio_cur_fragment = 0;
13940
13941 vcpu->run->mmio.phys_addr = gpa;
13942 vcpu->run->mmio.len = min(8u, frag->len);
13943 vcpu->run->mmio.is_write = 1;
13944 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
13945 vcpu->run->exit_reason = KVM_EXIT_MMIO;
13946
13947 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13948
13949 return 0;
13950 }
13951 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
13952
kvm_sev_es_mmio_read(struct kvm_vcpu * vcpu,gpa_t gpa,unsigned int bytes,void * data)13953 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13954 void *data)
13955 {
13956 int handled;
13957 struct kvm_mmio_fragment *frag;
13958
13959 if (!data)
13960 return -EINVAL;
13961
13962 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13963 if (handled == bytes)
13964 return 1;
13965
13966 bytes -= handled;
13967 gpa += handled;
13968 data += handled;
13969
13970 /*TODO: Check if need to increment number of frags */
13971 frag = vcpu->mmio_fragments;
13972 vcpu->mmio_nr_fragments = 1;
13973 frag->len = bytes;
13974 frag->gpa = gpa;
13975 frag->data = data;
13976
13977 vcpu->mmio_needed = 1;
13978 vcpu->mmio_cur_fragment = 0;
13979
13980 vcpu->run->mmio.phys_addr = gpa;
13981 vcpu->run->mmio.len = min(8u, frag->len);
13982 vcpu->run->mmio.is_write = 0;
13983 vcpu->run->exit_reason = KVM_EXIT_MMIO;
13984
13985 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13986
13987 return 0;
13988 }
13989 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
13990
advance_sev_es_emulated_pio(struct kvm_vcpu * vcpu,unsigned count,int size)13991 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
13992 {
13993 vcpu->arch.sev_pio_count -= count;
13994 vcpu->arch.sev_pio_data += count * size;
13995 }
13996
13997 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13998 unsigned int port);
13999
complete_sev_es_emulated_outs(struct kvm_vcpu * vcpu)14000 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
14001 {
14002 int size = vcpu->arch.pio.size;
14003 int port = vcpu->arch.pio.port;
14004
14005 vcpu->arch.pio.count = 0;
14006 if (vcpu->arch.sev_pio_count)
14007 return kvm_sev_es_outs(vcpu, size, port);
14008 return 1;
14009 }
14010
kvm_sev_es_outs(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port)14011 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
14012 unsigned int port)
14013 {
14014 for (;;) {
14015 unsigned int count =
14016 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
14017 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
14018
14019 /* memcpy done already by emulator_pio_out. */
14020 advance_sev_es_emulated_pio(vcpu, count, size);
14021 if (!ret)
14022 break;
14023
14024 /* Emulation done by the kernel. */
14025 if (!vcpu->arch.sev_pio_count)
14026 return 1;
14027 }
14028
14029 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
14030 return 0;
14031 }
14032
14033 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
14034 unsigned int port);
14035
complete_sev_es_emulated_ins(struct kvm_vcpu * vcpu)14036 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
14037 {
14038 unsigned count = vcpu->arch.pio.count;
14039 int size = vcpu->arch.pio.size;
14040 int port = vcpu->arch.pio.port;
14041
14042 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
14043 advance_sev_es_emulated_pio(vcpu, count, size);
14044 if (vcpu->arch.sev_pio_count)
14045 return kvm_sev_es_ins(vcpu, size, port);
14046 return 1;
14047 }
14048
kvm_sev_es_ins(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port)14049 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
14050 unsigned int port)
14051 {
14052 for (;;) {
14053 unsigned int count =
14054 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
14055 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
14056 break;
14057
14058 /* Emulation done by the kernel. */
14059 advance_sev_es_emulated_pio(vcpu, count, size);
14060 if (!vcpu->arch.sev_pio_count)
14061 return 1;
14062 }
14063
14064 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
14065 return 0;
14066 }
14067
kvm_sev_es_string_io(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port,void * data,unsigned int count,int in)14068 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
14069 unsigned int port, void *data, unsigned int count,
14070 int in)
14071 {
14072 vcpu->arch.sev_pio_data = data;
14073 vcpu->arch.sev_pio_count = count;
14074 return in ? kvm_sev_es_ins(vcpu, size, port)
14075 : kvm_sev_es_outs(vcpu, size, port);
14076 }
14077 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
14078
14079 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
14080 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
14081 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_mmio);
14082 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
14083 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
14084 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
14085 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
14086 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
14087 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter);
14088 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
14089 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
14090 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
14091 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
14092 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
14093 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
14094 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
14095 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
14096 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
14097 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
14098 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
14099 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
14100 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
14101 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
14102 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
14103 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
14104 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
14105 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
14106 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
14107 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
14108 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
14109 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_rmp_fault);
14110
kvm_x86_init(void)14111 static int __init kvm_x86_init(void)
14112 {
14113 kvm_init_xstate_sizes();
14114
14115 kvm_mmu_x86_module_init();
14116 mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible();
14117 return 0;
14118 }
14119 module_init(kvm_x86_init);
14120
kvm_x86_exit(void)14121 static void __exit kvm_x86_exit(void)
14122 {
14123 WARN_ON_ONCE(static_branch_unlikely(&kvm_has_noapic_vcpu));
14124 }
14125 module_exit(kvm_x86_exit);
14126