xref: /linux/include/linux/filter.h (revision cbba5d1b53fb82209feacb459edecb1ef8427119)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Linux Socket Filter Data Structures
4  */
5 #ifndef __LINUX_FILTER_H__
6 #define __LINUX_FILTER_H__
7 
8 #include <linux/atomic.h>
9 #include <linux/bpf.h>
10 #include <linux/refcount.h>
11 #include <linux/compat.h>
12 #include <linux/skbuff.h>
13 #include <linux/linkage.h>
14 #include <linux/printk.h>
15 #include <linux/workqueue.h>
16 #include <linux/sched.h>
17 #include <linux/sched/clock.h>
18 #include <linux/capability.h>
19 #include <linux/set_memory.h>
20 #include <linux/kallsyms.h>
21 #include <linux/if_vlan.h>
22 #include <linux/vmalloc.h>
23 #include <linux/sockptr.h>
24 #include <crypto/sha1.h>
25 #include <linux/u64_stats_sync.h>
26 
27 #include <net/sch_generic.h>
28 
29 #include <asm/byteorder.h>
30 #include <uapi/linux/filter.h>
31 
32 struct sk_buff;
33 struct sock;
34 struct seccomp_data;
35 struct bpf_prog_aux;
36 struct xdp_rxq_info;
37 struct xdp_buff;
38 struct sock_reuseport;
39 struct ctl_table;
40 struct ctl_table_header;
41 
42 /* ArgX, context and stack frame pointer register positions. Note,
43  * Arg1, Arg2, Arg3, etc are used as argument mappings of function
44  * calls in BPF_CALL instruction.
45  */
46 #define BPF_REG_ARG1	BPF_REG_1
47 #define BPF_REG_ARG2	BPF_REG_2
48 #define BPF_REG_ARG3	BPF_REG_3
49 #define BPF_REG_ARG4	BPF_REG_4
50 #define BPF_REG_ARG5	BPF_REG_5
51 #define BPF_REG_CTX	BPF_REG_6
52 #define BPF_REG_FP	BPF_REG_10
53 
54 /* Additional register mappings for converted user programs. */
55 #define BPF_REG_A	BPF_REG_0
56 #define BPF_REG_X	BPF_REG_7
57 #define BPF_REG_TMP	BPF_REG_2	/* scratch reg */
58 #define BPF_REG_D	BPF_REG_8	/* data, callee-saved */
59 #define BPF_REG_H	BPF_REG_9	/* hlen, callee-saved */
60 
61 /* Kernel hidden auxiliary/helper register. */
62 #define BPF_REG_AX		MAX_BPF_REG
63 #define MAX_BPF_EXT_REG		(MAX_BPF_REG + 1)
64 #define MAX_BPF_JIT_REG		MAX_BPF_EXT_REG
65 
66 /* unused opcode to mark special call to bpf_tail_call() helper */
67 #define BPF_TAIL_CALL	0xf0
68 
69 /* unused opcode to mark special load instruction. Same as BPF_ABS */
70 #define BPF_PROBE_MEM	0x20
71 
72 /* unused opcode to mark special ldsx instruction. Same as BPF_IND */
73 #define BPF_PROBE_MEMSX	0x40
74 
75 /* unused opcode to mark special load instruction. Same as BPF_MSH */
76 #define BPF_PROBE_MEM32	0xa0
77 
78 /* unused opcode to mark special atomic instruction */
79 #define BPF_PROBE_ATOMIC 0xe0
80 
81 /* unused opcode to mark special ldsx instruction. Same as BPF_NOSPEC */
82 #define BPF_PROBE_MEM32SX 0xc0
83 
84 /* unused opcode to mark call to interpreter with arguments */
85 #define BPF_CALL_ARGS	0xe0
86 
87 /* unused opcode to mark speculation barrier for mitigating
88  * Spectre v1 and v4
89  */
90 #define BPF_NOSPEC	0xc0
91 
92 /* As per nm, we expose JITed images as text (code) section for
93  * kallsyms. That way, tools like perf can find it to match
94  * addresses.
95  */
96 #define BPF_SYM_ELF_TYPE	't'
97 
98 /* BPF program can access up to 512 bytes of stack space. */
99 #define MAX_BPF_STACK	512
100 
101 /* Helper macros for filter block array initializers. */
102 
103 /* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */
104 
105 #define BPF_ALU64_REG_OFF(OP, DST, SRC, OFF)			\
106 	((struct bpf_insn) {					\
107 		.code  = BPF_ALU64 | BPF_OP(OP) | BPF_X,	\
108 		.dst_reg = DST,					\
109 		.src_reg = SRC,					\
110 		.off   = OFF,					\
111 		.imm   = 0 })
112 
113 #define BPF_ALU64_REG(OP, DST, SRC)				\
114 	BPF_ALU64_REG_OFF(OP, DST, SRC, 0)
115 
116 #define BPF_ALU32_REG_OFF(OP, DST, SRC, OFF)			\
117 	((struct bpf_insn) {					\
118 		.code  = BPF_ALU | BPF_OP(OP) | BPF_X,		\
119 		.dst_reg = DST,					\
120 		.src_reg = SRC,					\
121 		.off   = OFF,					\
122 		.imm   = 0 })
123 
124 #define BPF_ALU32_REG(OP, DST, SRC)				\
125 	BPF_ALU32_REG_OFF(OP, DST, SRC, 0)
126 
127 /* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */
128 
129 #define BPF_ALU64_IMM_OFF(OP, DST, IMM, OFF)			\
130 	((struct bpf_insn) {					\
131 		.code  = BPF_ALU64 | BPF_OP(OP) | BPF_K,	\
132 		.dst_reg = DST,					\
133 		.src_reg = 0,					\
134 		.off   = OFF,					\
135 		.imm   = IMM })
136 #define BPF_ALU64_IMM(OP, DST, IMM)				\
137 	BPF_ALU64_IMM_OFF(OP, DST, IMM, 0)
138 
139 #define BPF_ALU32_IMM_OFF(OP, DST, IMM, OFF)			\
140 	((struct bpf_insn) {					\
141 		.code  = BPF_ALU | BPF_OP(OP) | BPF_K,		\
142 		.dst_reg = DST,					\
143 		.src_reg = 0,					\
144 		.off   = OFF,					\
145 		.imm   = IMM })
146 #define BPF_ALU32_IMM(OP, DST, IMM)				\
147 	BPF_ALU32_IMM_OFF(OP, DST, IMM, 0)
148 
149 /* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */
150 
151 #define BPF_ENDIAN(TYPE, DST, LEN)				\
152 	((struct bpf_insn) {					\
153 		.code  = BPF_ALU | BPF_END | BPF_SRC(TYPE),	\
154 		.dst_reg = DST,					\
155 		.src_reg = 0,					\
156 		.off   = 0,					\
157 		.imm   = LEN })
158 
159 /* Byte Swap, bswap16/32/64 */
160 
161 #define BPF_BSWAP(DST, LEN)					\
162 	((struct bpf_insn) {					\
163 		.code  = BPF_ALU64 | BPF_END | BPF_SRC(BPF_TO_LE),	\
164 		.dst_reg = DST,					\
165 		.src_reg = 0,					\
166 		.off   = 0,					\
167 		.imm   = LEN })
168 
169 /* Short form of mov, dst_reg = src_reg */
170 
171 #define BPF_MOV64_REG(DST, SRC)					\
172 	((struct bpf_insn) {					\
173 		.code  = BPF_ALU64 | BPF_MOV | BPF_X,		\
174 		.dst_reg = DST,					\
175 		.src_reg = SRC,					\
176 		.off   = 0,					\
177 		.imm   = 0 })
178 
179 #define BPF_MOV32_REG(DST, SRC)					\
180 	((struct bpf_insn) {					\
181 		.code  = BPF_ALU | BPF_MOV | BPF_X,		\
182 		.dst_reg = DST,					\
183 		.src_reg = SRC,					\
184 		.off   = 0,					\
185 		.imm   = 0 })
186 
187 /* Special (internal-only) form of mov, used to resolve per-CPU addrs:
188  * dst_reg = src_reg + <percpu_base_off>
189  * BPF_ADDR_PERCPU is used as a special insn->off value.
190  */
191 #define BPF_ADDR_PERCPU	(-1)
192 
193 #define BPF_MOV64_PERCPU_REG(DST, SRC)				\
194 	((struct bpf_insn) {					\
195 		.code  = BPF_ALU64 | BPF_MOV | BPF_X,		\
196 		.dst_reg = DST,					\
197 		.src_reg = SRC,					\
198 		.off   = BPF_ADDR_PERCPU,			\
199 		.imm   = 0 })
200 
insn_is_mov_percpu_addr(const struct bpf_insn * insn)201 static inline bool insn_is_mov_percpu_addr(const struct bpf_insn *insn)
202 {
203 	return insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) && insn->off == BPF_ADDR_PERCPU;
204 }
205 
206 /* Short form of mov, dst_reg = imm32 */
207 
208 #define BPF_MOV64_IMM(DST, IMM)					\
209 	((struct bpf_insn) {					\
210 		.code  = BPF_ALU64 | BPF_MOV | BPF_K,		\
211 		.dst_reg = DST,					\
212 		.src_reg = 0,					\
213 		.off   = 0,					\
214 		.imm   = IMM })
215 
216 #define BPF_MOV32_IMM(DST, IMM)					\
217 	((struct bpf_insn) {					\
218 		.code  = BPF_ALU | BPF_MOV | BPF_K,		\
219 		.dst_reg = DST,					\
220 		.src_reg = 0,					\
221 		.off   = 0,					\
222 		.imm   = IMM })
223 
224 /* Short form of movsx, dst_reg = (s8,s16,s32)src_reg */
225 
226 #define BPF_MOVSX64_REG(DST, SRC, OFF)				\
227 	((struct bpf_insn) {					\
228 		.code  = BPF_ALU64 | BPF_MOV | BPF_X,		\
229 		.dst_reg = DST,					\
230 		.src_reg = SRC,					\
231 		.off   = OFF,					\
232 		.imm   = 0 })
233 
234 #define BPF_MOVSX32_REG(DST, SRC, OFF)				\
235 	((struct bpf_insn) {					\
236 		.code  = BPF_ALU | BPF_MOV | BPF_X,		\
237 		.dst_reg = DST,					\
238 		.src_reg = SRC,					\
239 		.off   = OFF,					\
240 		.imm   = 0 })
241 
242 /* Special form of mov32, used for doing explicit zero extension on dst. */
243 #define BPF_ZEXT_REG(DST)					\
244 	((struct bpf_insn) {					\
245 		.code  = BPF_ALU | BPF_MOV | BPF_X,		\
246 		.dst_reg = DST,					\
247 		.src_reg = DST,					\
248 		.off   = 0,					\
249 		.imm   = 1 })
250 
insn_is_zext(const struct bpf_insn * insn)251 static inline bool insn_is_zext(const struct bpf_insn *insn)
252 {
253 	return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1;
254 }
255 
256 /* addr_space_cast from as(0) to as(1) is for converting bpf arena pointers
257  * to pointers in user vma.
258  */
insn_is_cast_user(const struct bpf_insn * insn)259 static inline bool insn_is_cast_user(const struct bpf_insn *insn)
260 {
261 	return insn->code == (BPF_ALU64 | BPF_MOV | BPF_X) &&
262 			      insn->off == BPF_ADDR_SPACE_CAST &&
263 			      insn->imm == 1U << 16;
264 }
265 
266 /* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */
267 #define BPF_LD_IMM64(DST, IMM)					\
268 	BPF_LD_IMM64_RAW(DST, 0, IMM)
269 
270 #define BPF_LD_IMM64_RAW(DST, SRC, IMM)				\
271 	((struct bpf_insn) {					\
272 		.code  = BPF_LD | BPF_DW | BPF_IMM,		\
273 		.dst_reg = DST,					\
274 		.src_reg = SRC,					\
275 		.off   = 0,					\
276 		.imm   = (__u32) (IMM) }),			\
277 	((struct bpf_insn) {					\
278 		.code  = 0, /* zero is reserved opcode */	\
279 		.dst_reg = 0,					\
280 		.src_reg = 0,					\
281 		.off   = 0,					\
282 		.imm   = ((__u64) (IMM)) >> 32 })
283 
284 /* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */
285 #define BPF_LD_MAP_FD(DST, MAP_FD)				\
286 	BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD)
287 
288 /* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */
289 
290 #define BPF_MOV64_RAW(TYPE, DST, SRC, IMM)			\
291 	((struct bpf_insn) {					\
292 		.code  = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE),	\
293 		.dst_reg = DST,					\
294 		.src_reg = SRC,					\
295 		.off   = 0,					\
296 		.imm   = IMM })
297 
298 #define BPF_MOV32_RAW(TYPE, DST, SRC, IMM)			\
299 	((struct bpf_insn) {					\
300 		.code  = BPF_ALU | BPF_MOV | BPF_SRC(TYPE),	\
301 		.dst_reg = DST,					\
302 		.src_reg = SRC,					\
303 		.off   = 0,					\
304 		.imm   = IMM })
305 
306 /* Direct packet access, R0 = *(uint *) (skb->data + imm32) */
307 
308 #define BPF_LD_ABS(SIZE, IMM)					\
309 	((struct bpf_insn) {					\
310 		.code  = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS,	\
311 		.dst_reg = 0,					\
312 		.src_reg = 0,					\
313 		.off   = 0,					\
314 		.imm   = IMM })
315 
316 /* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */
317 
318 #define BPF_LD_IND(SIZE, SRC, IMM)				\
319 	((struct bpf_insn) {					\
320 		.code  = BPF_LD | BPF_SIZE(SIZE) | BPF_IND,	\
321 		.dst_reg = 0,					\
322 		.src_reg = SRC,					\
323 		.off   = 0,					\
324 		.imm   = IMM })
325 
326 /* Memory load, dst_reg = *(uint *) (src_reg + off16) */
327 
328 #define BPF_LDX_MEM(SIZE, DST, SRC, OFF)			\
329 	((struct bpf_insn) {					\
330 		.code  = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM,	\
331 		.dst_reg = DST,					\
332 		.src_reg = SRC,					\
333 		.off   = OFF,					\
334 		.imm   = 0 })
335 
336 /* Memory load, dst_reg = *(signed size *) (src_reg + off16) */
337 
338 #define BPF_LDX_MEMSX(SIZE, DST, SRC, OFF)			\
339 	((struct bpf_insn) {					\
340 		.code  = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEMSX,	\
341 		.dst_reg = DST,					\
342 		.src_reg = SRC,					\
343 		.off   = OFF,					\
344 		.imm   = 0 })
345 
346 /* Memory store, *(uint *) (dst_reg + off16) = src_reg */
347 
348 #define BPF_STX_MEM(SIZE, DST, SRC, OFF)			\
349 	((struct bpf_insn) {					\
350 		.code  = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM,	\
351 		.dst_reg = DST,					\
352 		.src_reg = SRC,					\
353 		.off   = OFF,					\
354 		.imm   = 0 })
355 
356 
357 /*
358  * Atomic operations:
359  *
360  *   BPF_ADD                  *(uint *) (dst_reg + off16) += src_reg
361  *   BPF_AND                  *(uint *) (dst_reg + off16) &= src_reg
362  *   BPF_OR                   *(uint *) (dst_reg + off16) |= src_reg
363  *   BPF_XOR                  *(uint *) (dst_reg + off16) ^= src_reg
364  *   BPF_ADD | BPF_FETCH      src_reg = atomic_fetch_add(dst_reg + off16, src_reg);
365  *   BPF_AND | BPF_FETCH      src_reg = atomic_fetch_and(dst_reg + off16, src_reg);
366  *   BPF_OR | BPF_FETCH       src_reg = atomic_fetch_or(dst_reg + off16, src_reg);
367  *   BPF_XOR | BPF_FETCH      src_reg = atomic_fetch_xor(dst_reg + off16, src_reg);
368  *   BPF_XCHG                 src_reg = atomic_xchg(dst_reg + off16, src_reg)
369  *   BPF_CMPXCHG              r0 = atomic_cmpxchg(dst_reg + off16, r0, src_reg)
370  *   BPF_LOAD_ACQ             dst_reg = smp_load_acquire(src_reg + off16)
371  *   BPF_STORE_REL            smp_store_release(dst_reg + off16, src_reg)
372  */
373 
374 #define BPF_ATOMIC_OP(SIZE, OP, DST, SRC, OFF)			\
375 	((struct bpf_insn) {					\
376 		.code  = BPF_STX | BPF_SIZE(SIZE) | BPF_ATOMIC,	\
377 		.dst_reg = DST,					\
378 		.src_reg = SRC,					\
379 		.off   = OFF,					\
380 		.imm   = OP })
381 
382 /* Legacy alias */
383 #define BPF_STX_XADD(SIZE, DST, SRC, OFF) BPF_ATOMIC_OP(SIZE, BPF_ADD, DST, SRC, OFF)
384 
385 /* Memory store, *(uint *) (dst_reg + off16) = imm32 */
386 
387 #define BPF_ST_MEM(SIZE, DST, OFF, IMM)				\
388 	((struct bpf_insn) {					\
389 		.code  = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM,	\
390 		.dst_reg = DST,					\
391 		.src_reg = 0,					\
392 		.off   = OFF,					\
393 		.imm   = IMM })
394 
395 /* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */
396 
397 #define BPF_JMP_REG(OP, DST, SRC, OFF)				\
398 	((struct bpf_insn) {					\
399 		.code  = BPF_JMP | BPF_OP(OP) | BPF_X,		\
400 		.dst_reg = DST,					\
401 		.src_reg = SRC,					\
402 		.off   = OFF,					\
403 		.imm   = 0 })
404 
405 /* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */
406 
407 #define BPF_JMP_IMM(OP, DST, IMM, OFF)				\
408 	((struct bpf_insn) {					\
409 		.code  = BPF_JMP | BPF_OP(OP) | BPF_K,		\
410 		.dst_reg = DST,					\
411 		.src_reg = 0,					\
412 		.off   = OFF,					\
413 		.imm   = IMM })
414 
415 /* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */
416 
417 #define BPF_JMP32_REG(OP, DST, SRC, OFF)			\
418 	((struct bpf_insn) {					\
419 		.code  = BPF_JMP32 | BPF_OP(OP) | BPF_X,	\
420 		.dst_reg = DST,					\
421 		.src_reg = SRC,					\
422 		.off   = OFF,					\
423 		.imm   = 0 })
424 
425 /* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */
426 
427 #define BPF_JMP32_IMM(OP, DST, IMM, OFF)			\
428 	((struct bpf_insn) {					\
429 		.code  = BPF_JMP32 | BPF_OP(OP) | BPF_K,	\
430 		.dst_reg = DST,					\
431 		.src_reg = 0,					\
432 		.off   = OFF,					\
433 		.imm   = IMM })
434 
435 /* Unconditional jumps, goto pc + off16 */
436 
437 #define BPF_JMP_A(OFF)						\
438 	((struct bpf_insn) {					\
439 		.code  = BPF_JMP | BPF_JA,			\
440 		.dst_reg = 0,					\
441 		.src_reg = 0,					\
442 		.off   = OFF,					\
443 		.imm   = 0 })
444 
445 /* Unconditional jumps, gotol pc + imm32 */
446 
447 #define BPF_JMP32_A(IMM)					\
448 	((struct bpf_insn) {					\
449 		.code  = BPF_JMP32 | BPF_JA,			\
450 		.dst_reg = 0,					\
451 		.src_reg = 0,					\
452 		.off   = 0,					\
453 		.imm   = IMM })
454 
455 /* Relative call */
456 
457 #define BPF_CALL_REL(TGT)					\
458 	((struct bpf_insn) {					\
459 		.code  = BPF_JMP | BPF_CALL,			\
460 		.dst_reg = 0,					\
461 		.src_reg = BPF_PSEUDO_CALL,			\
462 		.off   = 0,					\
463 		.imm   = TGT })
464 
465 /* Convert function address to BPF immediate */
466 
467 #define BPF_CALL_IMM(x)	((void *)(x) - (void *)__bpf_call_base)
468 
469 #define BPF_EMIT_CALL(FUNC)					\
470 	((struct bpf_insn) {					\
471 		.code  = BPF_JMP | BPF_CALL,			\
472 		.dst_reg = 0,					\
473 		.src_reg = 0,					\
474 		.off   = 0,					\
475 		.imm   = BPF_CALL_IMM(FUNC) })
476 
477 /* Kfunc call */
478 
479 #define BPF_CALL_KFUNC(OFF, IMM)				\
480 	((struct bpf_insn) {					\
481 		.code  = BPF_JMP | BPF_CALL,			\
482 		.dst_reg = 0,					\
483 		.src_reg = BPF_PSEUDO_KFUNC_CALL,		\
484 		.off   = OFF,					\
485 		.imm   = IMM })
486 
487 /* Raw code statement block */
488 
489 #define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM)			\
490 	((struct bpf_insn) {					\
491 		.code  = CODE,					\
492 		.dst_reg = DST,					\
493 		.src_reg = SRC,					\
494 		.off   = OFF,					\
495 		.imm   = IMM })
496 
497 /* Program exit */
498 
499 #define BPF_EXIT_INSN()						\
500 	((struct bpf_insn) {					\
501 		.code  = BPF_JMP | BPF_EXIT,			\
502 		.dst_reg = 0,					\
503 		.src_reg = 0,					\
504 		.off   = 0,					\
505 		.imm   = 0 })
506 
507 /* Speculation barrier */
508 
509 #define BPF_ST_NOSPEC()						\
510 	((struct bpf_insn) {					\
511 		.code  = BPF_ST | BPF_NOSPEC,			\
512 		.dst_reg = 0,					\
513 		.src_reg = 0,					\
514 		.off   = 0,					\
515 		.imm   = 0 })
516 
517 /* Internal classic blocks for direct assignment */
518 
519 #define __BPF_STMT(CODE, K)					\
520 	((struct sock_filter) BPF_STMT(CODE, K))
521 
522 #define __BPF_JUMP(CODE, K, JT, JF)				\
523 	((struct sock_filter) BPF_JUMP(CODE, K, JT, JF))
524 
525 #define bytes_to_bpf_size(bytes)				\
526 ({								\
527 	int bpf_size = -EINVAL;					\
528 								\
529 	if (bytes == sizeof(u8))				\
530 		bpf_size = BPF_B;				\
531 	else if (bytes == sizeof(u16))				\
532 		bpf_size = BPF_H;				\
533 	else if (bytes == sizeof(u32))				\
534 		bpf_size = BPF_W;				\
535 	else if (bytes == sizeof(u64))				\
536 		bpf_size = BPF_DW;				\
537 								\
538 	bpf_size;						\
539 })
540 
541 #define bpf_size_to_bytes(bpf_size)				\
542 ({								\
543 	int bytes = -EINVAL;					\
544 								\
545 	if (bpf_size == BPF_B)					\
546 		bytes = sizeof(u8);				\
547 	else if (bpf_size == BPF_H)				\
548 		bytes = sizeof(u16);				\
549 	else if (bpf_size == BPF_W)				\
550 		bytes = sizeof(u32);				\
551 	else if (bpf_size == BPF_DW)				\
552 		bytes = sizeof(u64);				\
553 								\
554 	bytes;							\
555 })
556 
557 #define BPF_SIZEOF(type)					\
558 	({							\
559 		const int __size = bytes_to_bpf_size(sizeof(type)); \
560 		BUILD_BUG_ON(__size < 0);			\
561 		__size;						\
562 	})
563 
564 #define BPF_FIELD_SIZEOF(type, field)				\
565 	({							\
566 		const int __size = bytes_to_bpf_size(sizeof_field(type, field)); \
567 		BUILD_BUG_ON(__size < 0);			\
568 		__size;						\
569 	})
570 
571 #define BPF_LDST_BYTES(insn)					\
572 	({							\
573 		const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \
574 		WARN_ON(__size < 0);				\
575 		__size;						\
576 	})
577 
578 #define __BPF_MAP_0(m, v, ...) v
579 #define __BPF_MAP_1(m, v, t, a, ...) m(t, a)
580 #define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__)
581 #define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__)
582 #define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__)
583 #define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__)
584 
585 #define __BPF_REG_0(...) __BPF_PAD(5)
586 #define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4)
587 #define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3)
588 #define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2)
589 #define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1)
590 #define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__)
591 
592 #define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__)
593 #define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__)
594 
595 #define __BPF_CAST(t, a)						       \
596 	(__force t)							       \
597 	(__force							       \
598 	 typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long),      \
599 				      (unsigned long)0, (t)0))) a
600 #define __BPF_V void
601 #define __BPF_N
602 
603 #define __BPF_DECL_ARGS(t, a) t   a
604 #define __BPF_DECL_REGS(t, a) u64 a
605 
606 #define __BPF_PAD(n)							       \
607 	__BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2,       \
608 		  u64, __ur_3, u64, __ur_4, u64, __ur_5)
609 
610 #define BPF_CALL_x(x, attr, name, ...)					       \
611 	static __always_inline						       \
612 	u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__));   \
613 	typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
614 	attr u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__));    \
615 	attr u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__))     \
616 	{								       \
617 		return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\
618 	}								       \
619 	static __always_inline						       \
620 	u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__))
621 
622 #define __NOATTR
623 #define BPF_CALL_0(name, ...)	BPF_CALL_x(0, __NOATTR, name, __VA_ARGS__)
624 #define BPF_CALL_1(name, ...)	BPF_CALL_x(1, __NOATTR, name, __VA_ARGS__)
625 #define BPF_CALL_2(name, ...)	BPF_CALL_x(2, __NOATTR, name, __VA_ARGS__)
626 #define BPF_CALL_3(name, ...)	BPF_CALL_x(3, __NOATTR, name, __VA_ARGS__)
627 #define BPF_CALL_4(name, ...)	BPF_CALL_x(4, __NOATTR, name, __VA_ARGS__)
628 #define BPF_CALL_5(name, ...)	BPF_CALL_x(5, __NOATTR, name, __VA_ARGS__)
629 
630 #define NOTRACE_BPF_CALL_1(name, ...)	BPF_CALL_x(1, notrace, name, __VA_ARGS__)
631 
632 #define bpf_ctx_range(TYPE, MEMBER)						\
633 	offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
634 #define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2)				\
635 	offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1
636 #if BITS_PER_LONG == 64
637 # define bpf_ctx_range_ptr(TYPE, MEMBER)					\
638 	offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
639 #else
640 # define bpf_ctx_range_ptr(TYPE, MEMBER)					\
641 	offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1
642 #endif /* BITS_PER_LONG == 64 */
643 
644 #define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE)				\
645 	({									\
646 		BUILD_BUG_ON(sizeof_field(TYPE, MEMBER) != (SIZE));		\
647 		*(PTR_SIZE) = (SIZE);						\
648 		offsetof(TYPE, MEMBER);						\
649 	})
650 
651 /* A struct sock_filter is architecture independent. */
652 struct compat_sock_fprog {
653 	u16		len;
654 	compat_uptr_t	filter;	/* struct sock_filter * */
655 };
656 
657 struct sock_fprog_kern {
658 	u16			len;
659 	struct sock_filter	*filter;
660 };
661 
662 /* Some arches need doubleword alignment for their instructions and/or data */
663 #define BPF_IMAGE_ALIGNMENT 8
664 
665 struct bpf_binary_header {
666 	u32 size;
667 	u8 image[] __aligned(BPF_IMAGE_ALIGNMENT);
668 };
669 
670 struct bpf_prog_stats {
671 	u64_stats_t cnt;
672 	u64_stats_t nsecs;
673 	u64_stats_t misses;
674 	struct u64_stats_sync syncp;
675 } __aligned(2 * sizeof(u64));
676 
677 struct bpf_timed_may_goto {
678 	u64 count;
679 	u64 timestamp;
680 };
681 
682 struct sk_filter {
683 	refcount_t	refcnt;
684 	struct rcu_head	rcu;
685 	struct bpf_prog	*prog;
686 };
687 
688 DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
689 
690 extern struct mutex nf_conn_btf_access_lock;
691 extern int (*nfct_btf_struct_access)(struct bpf_verifier_log *log,
692 				     const struct bpf_reg_state *reg,
693 				     int off, int size);
694 
695 typedef unsigned int (*bpf_dispatcher_fn)(const void *ctx,
696 					  const struct bpf_insn *insnsi,
697 					  unsigned int (*bpf_func)(const void *,
698 								   const struct bpf_insn *));
699 
__bpf_prog_run(const struct bpf_prog * prog,const void * ctx,bpf_dispatcher_fn dfunc)700 static __always_inline u32 __bpf_prog_run(const struct bpf_prog *prog,
701 					  const void *ctx,
702 					  bpf_dispatcher_fn dfunc)
703 {
704 	u32 ret;
705 
706 	cant_migrate();
707 	if (static_branch_unlikely(&bpf_stats_enabled_key)) {
708 		struct bpf_prog_stats *stats;
709 		u64 duration, start = sched_clock();
710 		unsigned long flags;
711 
712 		ret = dfunc(ctx, prog->insnsi, prog->bpf_func);
713 
714 		duration = sched_clock() - start;
715 		stats = this_cpu_ptr(prog->stats);
716 		flags = u64_stats_update_begin_irqsave(&stats->syncp);
717 		u64_stats_inc(&stats->cnt);
718 		u64_stats_add(&stats->nsecs, duration);
719 		u64_stats_update_end_irqrestore(&stats->syncp, flags);
720 	} else {
721 		ret = dfunc(ctx, prog->insnsi, prog->bpf_func);
722 	}
723 	return ret;
724 }
725 
bpf_prog_run(const struct bpf_prog * prog,const void * ctx)726 static __always_inline u32 bpf_prog_run(const struct bpf_prog *prog, const void *ctx)
727 {
728 	return __bpf_prog_run(prog, ctx, bpf_dispatcher_nop_func);
729 }
730 
731 /*
732  * Use in preemptible and therefore migratable context to make sure that
733  * the execution of the BPF program runs on one CPU.
734  *
735  * This uses migrate_disable/enable() explicitly to document that the
736  * invocation of a BPF program does not require reentrancy protection
737  * against a BPF program which is invoked from a preempting task.
738  */
bpf_prog_run_pin_on_cpu(const struct bpf_prog * prog,const void * ctx)739 static inline u32 bpf_prog_run_pin_on_cpu(const struct bpf_prog *prog,
740 					  const void *ctx)
741 {
742 	u32 ret;
743 
744 	migrate_disable();
745 	ret = bpf_prog_run(prog, ctx);
746 	migrate_enable();
747 	return ret;
748 }
749 
750 #define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN
751 
752 struct bpf_skb_data_end {
753 	struct qdisc_skb_cb qdisc_cb;
754 	void *data_meta;
755 	void *data_end;
756 };
757 
758 struct bpf_nh_params {
759 	u32 nh_family;
760 	union {
761 		u32 ipv4_nh;
762 		struct in6_addr ipv6_nh;
763 	};
764 };
765 
766 /* flags for bpf_redirect_info kern_flags */
767 #define BPF_RI_F_RF_NO_DIRECT	BIT(0)	/* no napi_direct on return_frame */
768 #define BPF_RI_F_RI_INIT	BIT(1)
769 #define BPF_RI_F_CPU_MAP_INIT	BIT(2)
770 #define BPF_RI_F_DEV_MAP_INIT	BIT(3)
771 #define BPF_RI_F_XSK_MAP_INIT	BIT(4)
772 
773 struct bpf_redirect_info {
774 	u64 tgt_index;
775 	void *tgt_value;
776 	struct bpf_map *map;
777 	u32 flags;
778 	u32 map_id;
779 	enum bpf_map_type map_type;
780 	struct bpf_nh_params nh;
781 	u32 kern_flags;
782 };
783 
784 struct bpf_net_context {
785 	struct bpf_redirect_info ri;
786 	struct list_head cpu_map_flush_list;
787 	struct list_head dev_map_flush_list;
788 	struct list_head xskmap_map_flush_list;
789 };
790 
bpf_net_ctx_set(struct bpf_net_context * bpf_net_ctx)791 static inline struct bpf_net_context *bpf_net_ctx_set(struct bpf_net_context *bpf_net_ctx)
792 {
793 	struct task_struct *tsk = current;
794 
795 	if (tsk->bpf_net_context != NULL)
796 		return NULL;
797 	bpf_net_ctx->ri.kern_flags = 0;
798 
799 	tsk->bpf_net_context = bpf_net_ctx;
800 	return bpf_net_ctx;
801 }
802 
bpf_net_ctx_clear(struct bpf_net_context * bpf_net_ctx)803 static inline void bpf_net_ctx_clear(struct bpf_net_context *bpf_net_ctx)
804 {
805 	if (bpf_net_ctx)
806 		current->bpf_net_context = NULL;
807 }
808 
bpf_net_ctx_get(void)809 static inline struct bpf_net_context *bpf_net_ctx_get(void)
810 {
811 	return current->bpf_net_context;
812 }
813 
bpf_net_ctx_get_ri(void)814 static inline struct bpf_redirect_info *bpf_net_ctx_get_ri(void)
815 {
816 	struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get();
817 
818 	if (!(bpf_net_ctx->ri.kern_flags & BPF_RI_F_RI_INIT)) {
819 		memset(&bpf_net_ctx->ri, 0, offsetof(struct bpf_net_context, ri.nh));
820 		bpf_net_ctx->ri.kern_flags |= BPF_RI_F_RI_INIT;
821 	}
822 
823 	return &bpf_net_ctx->ri;
824 }
825 
bpf_net_ctx_get_cpu_map_flush_list(void)826 static inline struct list_head *bpf_net_ctx_get_cpu_map_flush_list(void)
827 {
828 	struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get();
829 
830 	if (!(bpf_net_ctx->ri.kern_flags & BPF_RI_F_CPU_MAP_INIT)) {
831 		INIT_LIST_HEAD(&bpf_net_ctx->cpu_map_flush_list);
832 		bpf_net_ctx->ri.kern_flags |= BPF_RI_F_CPU_MAP_INIT;
833 	}
834 
835 	return &bpf_net_ctx->cpu_map_flush_list;
836 }
837 
bpf_net_ctx_get_dev_flush_list(void)838 static inline struct list_head *bpf_net_ctx_get_dev_flush_list(void)
839 {
840 	struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get();
841 
842 	if (!(bpf_net_ctx->ri.kern_flags & BPF_RI_F_DEV_MAP_INIT)) {
843 		INIT_LIST_HEAD(&bpf_net_ctx->dev_map_flush_list);
844 		bpf_net_ctx->ri.kern_flags |= BPF_RI_F_DEV_MAP_INIT;
845 	}
846 
847 	return &bpf_net_ctx->dev_map_flush_list;
848 }
849 
bpf_net_ctx_get_xskmap_flush_list(void)850 static inline struct list_head *bpf_net_ctx_get_xskmap_flush_list(void)
851 {
852 	struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get();
853 
854 	if (!(bpf_net_ctx->ri.kern_flags & BPF_RI_F_XSK_MAP_INIT)) {
855 		INIT_LIST_HEAD(&bpf_net_ctx->xskmap_map_flush_list);
856 		bpf_net_ctx->ri.kern_flags |= BPF_RI_F_XSK_MAP_INIT;
857 	}
858 
859 	return &bpf_net_ctx->xskmap_map_flush_list;
860 }
861 
bpf_net_ctx_get_all_used_flush_lists(struct list_head ** lh_map,struct list_head ** lh_dev,struct list_head ** lh_xsk)862 static inline void bpf_net_ctx_get_all_used_flush_lists(struct list_head **lh_map,
863 							struct list_head **lh_dev,
864 							struct list_head **lh_xsk)
865 {
866 	struct bpf_net_context *bpf_net_ctx = bpf_net_ctx_get();
867 	u32 kern_flags = bpf_net_ctx->ri.kern_flags;
868 	struct list_head *lh;
869 
870 	*lh_map = *lh_dev = *lh_xsk = NULL;
871 
872 	if (!IS_ENABLED(CONFIG_BPF_SYSCALL))
873 		return;
874 
875 	lh = &bpf_net_ctx->dev_map_flush_list;
876 	if (kern_flags & BPF_RI_F_DEV_MAP_INIT && !list_empty(lh))
877 		*lh_dev = lh;
878 
879 	lh = &bpf_net_ctx->cpu_map_flush_list;
880 	if (kern_flags & BPF_RI_F_CPU_MAP_INIT && !list_empty(lh))
881 		*lh_map = lh;
882 
883 	lh = &bpf_net_ctx->xskmap_map_flush_list;
884 	if (IS_ENABLED(CONFIG_XDP_SOCKETS) &&
885 	    kern_flags & BPF_RI_F_XSK_MAP_INIT && !list_empty(lh))
886 		*lh_xsk = lh;
887 }
888 
889 /* Compute the linear packet data range [data, data_end) which
890  * will be accessed by various program types (cls_bpf, act_bpf,
891  * lwt, ...). Subsystems allowing direct data access must (!)
892  * ensure that cb[] area can be written to when BPF program is
893  * invoked (otherwise cb[] save/restore is necessary).
894  */
bpf_compute_data_pointers(struct sk_buff * skb)895 static inline void bpf_compute_data_pointers(struct sk_buff *skb)
896 {
897 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
898 
899 	BUILD_BUG_ON(sizeof(*cb) > sizeof_field(struct sk_buff, cb));
900 	cb->data_meta = skb->data - skb_metadata_len(skb);
901 	cb->data_end  = skb->data + skb_headlen(skb);
902 }
903 
bpf_prog_run_data_pointers(const struct bpf_prog * prog,struct sk_buff * skb)904 static inline int bpf_prog_run_data_pointers(
905 	const struct bpf_prog *prog,
906 	struct sk_buff *skb)
907 {
908 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
909 	void *save_data_meta, *save_data_end;
910 	int res;
911 
912 	save_data_meta = cb->data_meta;
913 	save_data_end = cb->data_end;
914 
915 	bpf_compute_data_pointers(skb);
916 	res = bpf_prog_run(prog, skb);
917 
918 	cb->data_meta = save_data_meta;
919 	cb->data_end = save_data_end;
920 
921 	return res;
922 }
923 
924 /* Similar to bpf_compute_data_pointers(), except that save orginal
925  * data in cb->data and cb->meta_data for restore.
926  */
bpf_compute_and_save_data_end(struct sk_buff * skb,void ** saved_data_end)927 static inline void bpf_compute_and_save_data_end(
928 	struct sk_buff *skb, void **saved_data_end)
929 {
930 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
931 
932 	*saved_data_end = cb->data_end;
933 	cb->data_end  = skb->data + skb_headlen(skb);
934 }
935 
936 /* Restore data saved by bpf_compute_and_save_data_end(). */
bpf_restore_data_end(struct sk_buff * skb,void * saved_data_end)937 static inline void bpf_restore_data_end(
938 	struct sk_buff *skb, void *saved_data_end)
939 {
940 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
941 
942 	cb->data_end = saved_data_end;
943 }
944 
bpf_skb_cb(const struct sk_buff * skb)945 static inline u8 *bpf_skb_cb(const struct sk_buff *skb)
946 {
947 	/* eBPF programs may read/write skb->cb[] area to transfer meta
948 	 * data between tail calls. Since this also needs to work with
949 	 * tc, that scratch memory is mapped to qdisc_skb_cb's data area.
950 	 *
951 	 * In some socket filter cases, the cb unfortunately needs to be
952 	 * saved/restored so that protocol specific skb->cb[] data won't
953 	 * be lost. In any case, due to unpriviledged eBPF programs
954 	 * attached to sockets, we need to clear the bpf_skb_cb() area
955 	 * to not leak previous contents to user space.
956 	 */
957 	BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != BPF_SKB_CB_LEN);
958 	BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) !=
959 		     sizeof_field(struct qdisc_skb_cb, data));
960 
961 	return qdisc_skb_cb(skb)->data;
962 }
963 
964 /* Must be invoked with migration disabled */
__bpf_prog_run_save_cb(const struct bpf_prog * prog,const void * ctx)965 static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog,
966 					 const void *ctx)
967 {
968 	const struct sk_buff *skb = ctx;
969 	u8 *cb_data = bpf_skb_cb(skb);
970 	u8 cb_saved[BPF_SKB_CB_LEN];
971 	u32 res;
972 
973 	if (unlikely(prog->cb_access)) {
974 		memcpy(cb_saved, cb_data, sizeof(cb_saved));
975 		memset(cb_data, 0, sizeof(cb_saved));
976 	}
977 
978 	res = bpf_prog_run(prog, skb);
979 
980 	if (unlikely(prog->cb_access))
981 		memcpy(cb_data, cb_saved, sizeof(cb_saved));
982 
983 	return res;
984 }
985 
bpf_prog_run_save_cb(const struct bpf_prog * prog,struct sk_buff * skb)986 static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog,
987 				       struct sk_buff *skb)
988 {
989 	u32 res;
990 
991 	migrate_disable();
992 	res = __bpf_prog_run_save_cb(prog, skb);
993 	migrate_enable();
994 	return res;
995 }
996 
bpf_prog_run_clear_cb(const struct bpf_prog * prog,struct sk_buff * skb)997 static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog,
998 					struct sk_buff *skb)
999 {
1000 	u8 *cb_data = bpf_skb_cb(skb);
1001 	u32 res;
1002 
1003 	if (unlikely(prog->cb_access))
1004 		memset(cb_data, 0, BPF_SKB_CB_LEN);
1005 
1006 	res = bpf_prog_run_pin_on_cpu(prog, skb);
1007 	return res;
1008 }
1009 
1010 DECLARE_BPF_DISPATCHER(xdp)
1011 
1012 DECLARE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
1013 
1014 u32 xdp_master_redirect(struct xdp_buff *xdp);
1015 
1016 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog);
1017 
bpf_prog_insn_size(const struct bpf_prog * prog)1018 static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog)
1019 {
1020 	return prog->len * sizeof(struct bpf_insn);
1021 }
1022 
bpf_prog_size(unsigned int proglen)1023 static inline unsigned int bpf_prog_size(unsigned int proglen)
1024 {
1025 	return max(sizeof(struct bpf_prog),
1026 		   offsetof(struct bpf_prog, insns[proglen]));
1027 }
1028 
bpf_prog_was_classic(const struct bpf_prog * prog)1029 static inline bool bpf_prog_was_classic(const struct bpf_prog *prog)
1030 {
1031 	/* When classic BPF programs have been loaded and the arch
1032 	 * does not have a classic BPF JIT (anymore), they have been
1033 	 * converted via bpf_migrate_filter() to eBPF and thus always
1034 	 * have an unspec program type.
1035 	 */
1036 	return prog->type == BPF_PROG_TYPE_UNSPEC;
1037 }
1038 
bpf_ctx_off_adjust_machine(u32 size)1039 static inline u32 bpf_ctx_off_adjust_machine(u32 size)
1040 {
1041 	const u32 size_machine = sizeof(unsigned long);
1042 
1043 	if (size > size_machine && size % size_machine == 0)
1044 		size = size_machine;
1045 
1046 	return size;
1047 }
1048 
1049 static inline bool
bpf_ctx_narrow_access_ok(u32 off,u32 size,u32 size_default)1050 bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default)
1051 {
1052 	return size <= size_default && (size & (size - 1)) == 0;
1053 }
1054 
1055 static inline u8
bpf_ctx_narrow_access_offset(u32 off,u32 size,u32 size_default)1056 bpf_ctx_narrow_access_offset(u32 off, u32 size, u32 size_default)
1057 {
1058 	u8 access_off = off & (size_default - 1);
1059 
1060 #ifdef __LITTLE_ENDIAN
1061 	return access_off;
1062 #else
1063 	return size_default - (access_off + size);
1064 #endif
1065 }
1066 
1067 #define bpf_ctx_wide_access_ok(off, size, type, field)			\
1068 	(size == sizeof(__u64) &&					\
1069 	off >= offsetof(type, field) &&					\
1070 	off + sizeof(__u64) <= offsetofend(type, field) &&		\
1071 	off % sizeof(__u64) == 0)
1072 
1073 #define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0]))
1074 
bpf_prog_lock_ro(struct bpf_prog * fp)1075 static inline int __must_check bpf_prog_lock_ro(struct bpf_prog *fp)
1076 {
1077 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1078 	if (!fp->jited) {
1079 		set_vm_flush_reset_perms(fp);
1080 		return set_memory_ro((unsigned long)fp, fp->pages);
1081 	}
1082 #endif
1083 	return 0;
1084 }
1085 
1086 static inline int __must_check
bpf_jit_binary_lock_ro(struct bpf_binary_header * hdr)1087 bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr)
1088 {
1089 	set_vm_flush_reset_perms(hdr);
1090 	return set_memory_rox((unsigned long)hdr, hdr->size >> PAGE_SHIFT);
1091 }
1092 
1093 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap,
1094 		       enum skb_drop_reason *reason);
1095 
sk_filter(struct sock * sk,struct sk_buff * skb)1096 static inline int sk_filter(struct sock *sk, struct sk_buff *skb)
1097 {
1098 	enum skb_drop_reason ignore_reason;
1099 
1100 	return sk_filter_trim_cap(sk, skb, 1, &ignore_reason);
1101 }
1102 
sk_filter_reason(struct sock * sk,struct sk_buff * skb,enum skb_drop_reason * reason)1103 static inline int sk_filter_reason(struct sock *sk, struct sk_buff *skb,
1104 				   enum skb_drop_reason *reason)
1105 {
1106 	return sk_filter_trim_cap(sk, skb, 1, reason);
1107 }
1108 
1109 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err);
1110 void bpf_prog_free(struct bpf_prog *fp);
1111 
1112 bool bpf_opcode_in_insntable(u8 code);
1113 
1114 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
1115 			       const u32 *insn_to_jit_off);
1116 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog);
1117 void bpf_prog_jit_attempt_done(struct bpf_prog *prog);
1118 
1119 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags);
1120 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags);
1121 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
1122 				  gfp_t gfp_extra_flags);
1123 void __bpf_prog_free(struct bpf_prog *fp);
1124 
bpf_prog_unlock_free(struct bpf_prog * fp)1125 static inline void bpf_prog_unlock_free(struct bpf_prog *fp)
1126 {
1127 	__bpf_prog_free(fp);
1128 }
1129 
1130 typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter,
1131 				       unsigned int flen);
1132 
1133 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog);
1134 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1135 			      bpf_aux_classic_check_t trans, bool save_orig);
1136 void bpf_prog_destroy(struct bpf_prog *fp);
1137 
1138 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk);
1139 int sk_attach_bpf(u32 ufd, struct sock *sk);
1140 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk);
1141 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk);
1142 void sk_reuseport_prog_free(struct bpf_prog *prog);
1143 int sk_detach_filter(struct sock *sk);
1144 int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len);
1145 
1146 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp);
1147 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp);
1148 
1149 u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
1150 #define __bpf_call_base_args \
1151 	((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \
1152 	 (void *)__bpf_call_base)
1153 
1154 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog);
1155 void bpf_jit_compile(struct bpf_prog *prog);
1156 bool bpf_jit_needs_zext(void);
1157 bool bpf_jit_inlines_helper_call(s32 imm);
1158 bool bpf_jit_supports_subprog_tailcalls(void);
1159 bool bpf_jit_supports_percpu_insn(void);
1160 bool bpf_jit_supports_kfunc_call(void);
1161 bool bpf_jit_supports_far_kfunc_call(void);
1162 bool bpf_jit_supports_exceptions(void);
1163 bool bpf_jit_supports_ptr_xchg(void);
1164 bool bpf_jit_supports_arena(void);
1165 bool bpf_jit_supports_insn(struct bpf_insn *insn, bool in_arena);
1166 bool bpf_jit_supports_private_stack(void);
1167 bool bpf_jit_supports_timed_may_goto(void);
1168 u64 bpf_arch_uaddress_limit(void);
1169 void arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie);
1170 u64 arch_bpf_timed_may_goto(void);
1171 u64 bpf_check_timed_may_goto(struct bpf_timed_may_goto *);
1172 bool bpf_helper_changes_pkt_data(enum bpf_func_id func_id);
1173 
bpf_dump_raw_ok(const struct cred * cred)1174 static inline bool bpf_dump_raw_ok(const struct cred *cred)
1175 {
1176 	/* Reconstruction of call-sites is dependent on kallsyms,
1177 	 * thus make dump the same restriction.
1178 	 */
1179 	return kallsyms_show_value(cred);
1180 }
1181 
1182 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
1183 				       const struct bpf_insn *patch, u32 len);
1184 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt);
1185 
xdp_return_frame_no_direct(void)1186 static inline bool xdp_return_frame_no_direct(void)
1187 {
1188 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
1189 
1190 	return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT;
1191 }
1192 
xdp_set_return_frame_no_direct(void)1193 static inline void xdp_set_return_frame_no_direct(void)
1194 {
1195 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
1196 
1197 	ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT;
1198 }
1199 
xdp_clear_return_frame_no_direct(void)1200 static inline void xdp_clear_return_frame_no_direct(void)
1201 {
1202 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
1203 
1204 	ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT;
1205 }
1206 
xdp_ok_fwd_dev(const struct net_device * fwd,unsigned int pktlen)1207 static inline int xdp_ok_fwd_dev(const struct net_device *fwd,
1208 				 unsigned int pktlen)
1209 {
1210 	unsigned int len;
1211 
1212 	if (unlikely(!(fwd->flags & IFF_UP)))
1213 		return -ENETDOWN;
1214 
1215 	len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN;
1216 	if (pktlen > len)
1217 		return -EMSGSIZE;
1218 
1219 	return 0;
1220 }
1221 
1222 /* The pair of xdp_do_redirect and xdp_do_flush MUST be called in the
1223  * same cpu context. Further for best results no more than a single map
1224  * for the do_redirect/do_flush pair should be used. This limitation is
1225  * because we only track one map and force a flush when the map changes.
1226  * This does not appear to be a real limitation for existing software.
1227  */
1228 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
1229 			    struct xdp_buff *xdp, const struct bpf_prog *prog);
1230 int xdp_do_redirect(struct net_device *dev,
1231 		    struct xdp_buff *xdp,
1232 		    const struct bpf_prog *prog);
1233 int xdp_do_redirect_frame(struct net_device *dev,
1234 			  struct xdp_buff *xdp,
1235 			  struct xdp_frame *xdpf,
1236 			  const struct bpf_prog *prog);
1237 void xdp_do_flush(void);
1238 
1239 void bpf_warn_invalid_xdp_action(const struct net_device *dev,
1240 				 const struct bpf_prog *prog, u32 act);
1241 
1242 #ifdef CONFIG_INET
1243 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
1244 				  struct bpf_prog *prog, struct sk_buff *skb,
1245 				  struct sock *migrating_sk,
1246 				  u32 hash);
1247 #else
1248 static inline struct sock *
bpf_run_sk_reuseport(struct sock_reuseport * reuse,struct sock * sk,struct bpf_prog * prog,struct sk_buff * skb,struct sock * migrating_sk,u32 hash)1249 bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
1250 		     struct bpf_prog *prog, struct sk_buff *skb,
1251 		     struct sock *migrating_sk,
1252 		     u32 hash)
1253 {
1254 	return NULL;
1255 }
1256 #endif
1257 
1258 #ifdef CONFIG_BPF_JIT
1259 extern int bpf_jit_enable;
1260 extern int bpf_jit_harden;
1261 extern int bpf_jit_kallsyms;
1262 extern long bpf_jit_limit;
1263 extern long bpf_jit_limit_max;
1264 
1265 typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size);
1266 
1267 void bpf_jit_fill_hole_with_zero(void *area, unsigned int size);
1268 
1269 struct bpf_binary_header *
1270 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1271 		     unsigned int alignment,
1272 		     bpf_jit_fill_hole_t bpf_fill_ill_insns);
1273 void bpf_jit_binary_free(struct bpf_binary_header *hdr);
1274 u64 bpf_jit_alloc_exec_limit(void);
1275 void *bpf_jit_alloc_exec(unsigned long size);
1276 void bpf_jit_free_exec(void *addr);
1277 void bpf_jit_free(struct bpf_prog *fp);
1278 struct bpf_binary_header *
1279 bpf_jit_binary_pack_hdr(const struct bpf_prog *fp);
1280 
1281 void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns);
1282 void bpf_prog_pack_free(void *ptr, u32 size);
1283 
bpf_prog_kallsyms_verify_off(const struct bpf_prog * fp)1284 static inline bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
1285 {
1286 	return list_empty(&fp->aux->ksym.lnode) ||
1287 	       fp->aux->ksym.lnode.prev == LIST_POISON2;
1288 }
1289 
1290 struct bpf_binary_header *
1291 bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **ro_image,
1292 			  unsigned int alignment,
1293 			  struct bpf_binary_header **rw_hdr,
1294 			  u8 **rw_image,
1295 			  bpf_jit_fill_hole_t bpf_fill_ill_insns);
1296 int bpf_jit_binary_pack_finalize(struct bpf_binary_header *ro_header,
1297 				 struct bpf_binary_header *rw_header);
1298 void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header,
1299 			      struct bpf_binary_header *rw_header);
1300 
1301 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1302 				struct bpf_jit_poke_descriptor *poke);
1303 
1304 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1305 			  const struct bpf_insn *insn, bool extra_pass,
1306 			  u64 *func_addr, bool *func_addr_fixed);
1307 
1308 const char *bpf_jit_get_prog_name(struct bpf_prog *prog);
1309 
1310 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp);
1311 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other);
1312 
bpf_jit_dump(unsigned int flen,unsigned int proglen,u32 pass,void * image)1313 static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen,
1314 				u32 pass, void *image)
1315 {
1316 	pr_err("flen=%u proglen=%u pass=%u image=%p from=%s pid=%d\n", flen,
1317 	       proglen, pass, image, current->comm, task_pid_nr(current));
1318 
1319 	if (image)
1320 		print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET,
1321 			       16, 1, image, proglen, false);
1322 }
1323 
bpf_jit_is_ebpf(void)1324 static inline bool bpf_jit_is_ebpf(void)
1325 {
1326 # ifdef CONFIG_HAVE_EBPF_JIT
1327 	return true;
1328 # else
1329 	return false;
1330 # endif
1331 }
1332 
ebpf_jit_enabled(void)1333 static inline bool ebpf_jit_enabled(void)
1334 {
1335 	return bpf_jit_enable && bpf_jit_is_ebpf();
1336 }
1337 
bpf_prog_ebpf_jited(const struct bpf_prog * fp)1338 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1339 {
1340 	return fp->jited && bpf_jit_is_ebpf();
1341 }
1342 
bpf_jit_blinding_enabled(struct bpf_prog * prog)1343 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1344 {
1345 	/* These are the prerequisites, should someone ever have the
1346 	 * idea to call blinding outside of them, we make sure to
1347 	 * bail out.
1348 	 */
1349 	if (!bpf_jit_is_ebpf())
1350 		return false;
1351 	if (!prog->jit_requested)
1352 		return false;
1353 	if (!bpf_jit_harden)
1354 		return false;
1355 	if (bpf_jit_harden == 1 && bpf_token_capable(prog->aux->token, CAP_BPF))
1356 		return false;
1357 
1358 	return true;
1359 }
1360 
bpf_jit_kallsyms_enabled(void)1361 static inline bool bpf_jit_kallsyms_enabled(void)
1362 {
1363 	/* There are a couple of corner cases where kallsyms should
1364 	 * not be enabled f.e. on hardening.
1365 	 */
1366 	if (bpf_jit_harden)
1367 		return false;
1368 	if (!bpf_jit_kallsyms)
1369 		return false;
1370 	if (bpf_jit_kallsyms == 1)
1371 		return true;
1372 
1373 	return false;
1374 }
1375 
1376 int __bpf_address_lookup(unsigned long addr, unsigned long *size,
1377 				 unsigned long *off, char *sym);
1378 bool is_bpf_text_address(unsigned long addr);
1379 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
1380 		    char *sym);
1381 struct bpf_prog *bpf_prog_ksym_find(unsigned long addr);
1382 
1383 static inline int
bpf_address_lookup(unsigned long addr,unsigned long * size,unsigned long * off,char ** modname,char * sym)1384 bpf_address_lookup(unsigned long addr, unsigned long *size,
1385 		   unsigned long *off, char **modname, char *sym)
1386 {
1387 	int ret = __bpf_address_lookup(addr, size, off, sym);
1388 
1389 	if (ret && modname)
1390 		*modname = NULL;
1391 	return ret;
1392 }
1393 
1394 void bpf_prog_kallsyms_add(struct bpf_prog *fp);
1395 void bpf_prog_kallsyms_del(struct bpf_prog *fp);
1396 
1397 #else /* CONFIG_BPF_JIT */
1398 
ebpf_jit_enabled(void)1399 static inline bool ebpf_jit_enabled(void)
1400 {
1401 	return false;
1402 }
1403 
bpf_jit_blinding_enabled(struct bpf_prog * prog)1404 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1405 {
1406 	return false;
1407 }
1408 
bpf_prog_ebpf_jited(const struct bpf_prog * fp)1409 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1410 {
1411 	return false;
1412 }
1413 
1414 static inline int
bpf_jit_add_poke_descriptor(struct bpf_prog * prog,struct bpf_jit_poke_descriptor * poke)1415 bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1416 			    struct bpf_jit_poke_descriptor *poke)
1417 {
1418 	return -ENOTSUPP;
1419 }
1420 
bpf_jit_free(struct bpf_prog * fp)1421 static inline void bpf_jit_free(struct bpf_prog *fp)
1422 {
1423 	bpf_prog_unlock_free(fp);
1424 }
1425 
bpf_jit_kallsyms_enabled(void)1426 static inline bool bpf_jit_kallsyms_enabled(void)
1427 {
1428 	return false;
1429 }
1430 
1431 static inline int
__bpf_address_lookup(unsigned long addr,unsigned long * size,unsigned long * off,char * sym)1432 __bpf_address_lookup(unsigned long addr, unsigned long *size,
1433 		     unsigned long *off, char *sym)
1434 {
1435 	return 0;
1436 }
1437 
is_bpf_text_address(unsigned long addr)1438 static inline bool is_bpf_text_address(unsigned long addr)
1439 {
1440 	return false;
1441 }
1442 
bpf_get_kallsym(unsigned int symnum,unsigned long * value,char * type,char * sym)1443 static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value,
1444 				  char *type, char *sym)
1445 {
1446 	return -ERANGE;
1447 }
1448 
bpf_prog_ksym_find(unsigned long addr)1449 static inline struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
1450 {
1451 	return NULL;
1452 }
1453 
1454 static inline int
bpf_address_lookup(unsigned long addr,unsigned long * size,unsigned long * off,char ** modname,char * sym)1455 bpf_address_lookup(unsigned long addr, unsigned long *size,
1456 		   unsigned long *off, char **modname, char *sym)
1457 {
1458 	return 0;
1459 }
1460 
bpf_prog_kallsyms_add(struct bpf_prog * fp)1461 static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp)
1462 {
1463 }
1464 
bpf_prog_kallsyms_del(struct bpf_prog * fp)1465 static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp)
1466 {
1467 }
1468 
1469 #endif /* CONFIG_BPF_JIT */
1470 
1471 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp);
1472 
1473 #define BPF_ANC		BIT(15)
1474 
bpf_needs_clear_a(const struct sock_filter * first)1475 static inline bool bpf_needs_clear_a(const struct sock_filter *first)
1476 {
1477 	switch (first->code) {
1478 	case BPF_RET | BPF_K:
1479 	case BPF_LD | BPF_W | BPF_LEN:
1480 		return false;
1481 
1482 	case BPF_LD | BPF_W | BPF_ABS:
1483 	case BPF_LD | BPF_H | BPF_ABS:
1484 	case BPF_LD | BPF_B | BPF_ABS:
1485 		if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X)
1486 			return true;
1487 		return false;
1488 
1489 	default:
1490 		return true;
1491 	}
1492 }
1493 
bpf_anc_helper(const struct sock_filter * ftest)1494 static inline u16 bpf_anc_helper(const struct sock_filter *ftest)
1495 {
1496 	BUG_ON(ftest->code & BPF_ANC);
1497 
1498 	switch (ftest->code) {
1499 	case BPF_LD | BPF_W | BPF_ABS:
1500 	case BPF_LD | BPF_H | BPF_ABS:
1501 	case BPF_LD | BPF_B | BPF_ABS:
1502 #define BPF_ANCILLARY(CODE)	case SKF_AD_OFF + SKF_AD_##CODE:	\
1503 				return BPF_ANC | SKF_AD_##CODE
1504 		switch (ftest->k) {
1505 		BPF_ANCILLARY(PROTOCOL);
1506 		BPF_ANCILLARY(PKTTYPE);
1507 		BPF_ANCILLARY(IFINDEX);
1508 		BPF_ANCILLARY(NLATTR);
1509 		BPF_ANCILLARY(NLATTR_NEST);
1510 		BPF_ANCILLARY(MARK);
1511 		BPF_ANCILLARY(QUEUE);
1512 		BPF_ANCILLARY(HATYPE);
1513 		BPF_ANCILLARY(RXHASH);
1514 		BPF_ANCILLARY(CPU);
1515 		BPF_ANCILLARY(ALU_XOR_X);
1516 		BPF_ANCILLARY(VLAN_TAG);
1517 		BPF_ANCILLARY(VLAN_TAG_PRESENT);
1518 		BPF_ANCILLARY(PAY_OFFSET);
1519 		BPF_ANCILLARY(RANDOM);
1520 		BPF_ANCILLARY(VLAN_TPID);
1521 		}
1522 		fallthrough;
1523 	default:
1524 		return ftest->code;
1525 	}
1526 }
1527 
1528 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb,
1529 					   int k, unsigned int size);
1530 
bpf_tell_extensions(void)1531 static inline int bpf_tell_extensions(void)
1532 {
1533 	return SKF_AD_MAX;
1534 }
1535 
1536 struct bpf_sock_addr_kern {
1537 	struct sock *sk;
1538 	struct sockaddr *uaddr;
1539 	/* Temporary "register" to make indirect stores to nested structures
1540 	 * defined above. We need three registers to make such a store, but
1541 	 * only two (src and dst) are available at convert_ctx_access time
1542 	 */
1543 	u64 tmp_reg;
1544 	void *t_ctx;	/* Attach type specific context. */
1545 	u32 uaddrlen;
1546 };
1547 
1548 struct bpf_sock_ops_kern {
1549 	struct	sock *sk;
1550 	union {
1551 		u32 args[4];
1552 		u32 reply;
1553 		u32 replylong[4];
1554 	};
1555 	struct sk_buff	*syn_skb;
1556 	struct sk_buff	*skb;
1557 	void	*skb_data_end;
1558 	u8	op;
1559 	u8	is_fullsock;
1560 	u8	is_locked_tcp_sock;
1561 	u8	remaining_opt_len;
1562 	u64	temp;			/* temp and everything after is not
1563 					 * initialized to 0 before calling
1564 					 * the BPF program. New fields that
1565 					 * should be initialized to 0 should
1566 					 * be inserted before temp.
1567 					 * temp is scratch storage used by
1568 					 * sock_ops_convert_ctx_access
1569 					 * as temporary storage of a register.
1570 					 */
1571 };
1572 
1573 struct bpf_sysctl_kern {
1574 	struct ctl_table_header *head;
1575 	const struct ctl_table *table;
1576 	void *cur_val;
1577 	size_t cur_len;
1578 	void *new_val;
1579 	size_t new_len;
1580 	int new_updated;
1581 	int write;
1582 	loff_t *ppos;
1583 	/* Temporary "register" for indirect stores to ppos. */
1584 	u64 tmp_reg;
1585 };
1586 
1587 #define BPF_SOCKOPT_KERN_BUF_SIZE	32
1588 struct bpf_sockopt_buf {
1589 	u8		data[BPF_SOCKOPT_KERN_BUF_SIZE];
1590 };
1591 
1592 struct bpf_sockopt_kern {
1593 	struct sock	*sk;
1594 	u8		*optval;
1595 	u8		*optval_end;
1596 	s32		level;
1597 	s32		optname;
1598 	s32		optlen;
1599 	/* for retval in struct bpf_cg_run_ctx */
1600 	struct task_struct *current_task;
1601 	/* Temporary "register" for indirect stores to ppos. */
1602 	u64		tmp_reg;
1603 };
1604 
1605 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len);
1606 
1607 struct bpf_sk_lookup_kern {
1608 	u16		family;
1609 	u16		protocol;
1610 	__be16		sport;
1611 	u16		dport;
1612 	struct {
1613 		__be32 saddr;
1614 		__be32 daddr;
1615 	} v4;
1616 	struct {
1617 		const struct in6_addr *saddr;
1618 		const struct in6_addr *daddr;
1619 	} v6;
1620 	struct sock	*selected_sk;
1621 	u32		ingress_ifindex;
1622 	bool		no_reuseport;
1623 };
1624 
1625 extern struct static_key_false bpf_sk_lookup_enabled;
1626 
1627 /* Runners for BPF_SK_LOOKUP programs to invoke on socket lookup.
1628  *
1629  * Allowed return values for a BPF SK_LOOKUP program are SK_PASS and
1630  * SK_DROP. Their meaning is as follows:
1631  *
1632  *  SK_PASS && ctx.selected_sk != NULL: use selected_sk as lookup result
1633  *  SK_PASS && ctx.selected_sk == NULL: continue to htable-based socket lookup
1634  *  SK_DROP                           : terminate lookup with -ECONNREFUSED
1635  *
1636  * This macro aggregates return values and selected sockets from
1637  * multiple BPF programs according to following rules in order:
1638  *
1639  *  1. If any program returned SK_PASS and a non-NULL ctx.selected_sk,
1640  *     macro result is SK_PASS and last ctx.selected_sk is used.
1641  *  2. If any program returned SK_DROP return value,
1642  *     macro result is SK_DROP.
1643  *  3. Otherwise result is SK_PASS and ctx.selected_sk is NULL.
1644  *
1645  * Caller must ensure that the prog array is non-NULL, and that the
1646  * array as well as the programs it contains remain valid.
1647  */
1648 #define BPF_PROG_SK_LOOKUP_RUN_ARRAY(array, ctx, func)			\
1649 	({								\
1650 		struct bpf_sk_lookup_kern *_ctx = &(ctx);		\
1651 		struct bpf_prog_array_item *_item;			\
1652 		struct sock *_selected_sk = NULL;			\
1653 		bool _no_reuseport = false;				\
1654 		struct bpf_prog *_prog;					\
1655 		bool _all_pass = true;					\
1656 		u32 _ret;						\
1657 									\
1658 		migrate_disable();					\
1659 		_item = &(array)->items[0];				\
1660 		while ((_prog = READ_ONCE(_item->prog))) {		\
1661 			/* restore most recent selection */		\
1662 			_ctx->selected_sk = _selected_sk;		\
1663 			_ctx->no_reuseport = _no_reuseport;		\
1664 									\
1665 			_ret = func(_prog, _ctx);			\
1666 			if (_ret == SK_PASS && _ctx->selected_sk) {	\
1667 				/* remember last non-NULL socket */	\
1668 				_selected_sk = _ctx->selected_sk;	\
1669 				_no_reuseport = _ctx->no_reuseport;	\
1670 			} else if (_ret == SK_DROP && _all_pass) {	\
1671 				_all_pass = false;			\
1672 			}						\
1673 			_item++;					\
1674 		}							\
1675 		_ctx->selected_sk = _selected_sk;			\
1676 		_ctx->no_reuseport = _no_reuseport;			\
1677 		migrate_enable();					\
1678 		_all_pass || _selected_sk ? SK_PASS : SK_DROP;		\
1679 	 })
1680 
bpf_sk_lookup_run_v4(const struct net * net,int protocol,const __be32 saddr,const __be16 sport,const __be32 daddr,const u16 dport,const int ifindex,struct sock ** psk)1681 static inline bool bpf_sk_lookup_run_v4(const struct net *net, int protocol,
1682 					const __be32 saddr, const __be16 sport,
1683 					const __be32 daddr, const u16 dport,
1684 					const int ifindex, struct sock **psk)
1685 {
1686 	struct bpf_prog_array *run_array;
1687 	struct sock *selected_sk = NULL;
1688 	bool no_reuseport = false;
1689 
1690 	rcu_read_lock();
1691 	run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1692 	if (run_array) {
1693 		struct bpf_sk_lookup_kern ctx = {
1694 			.family		= AF_INET,
1695 			.protocol	= protocol,
1696 			.v4.saddr	= saddr,
1697 			.v4.daddr	= daddr,
1698 			.sport		= sport,
1699 			.dport		= dport,
1700 			.ingress_ifindex	= ifindex,
1701 		};
1702 		u32 act;
1703 
1704 		act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run);
1705 		if (act == SK_PASS) {
1706 			selected_sk = ctx.selected_sk;
1707 			no_reuseport = ctx.no_reuseport;
1708 		} else {
1709 			selected_sk = ERR_PTR(-ECONNREFUSED);
1710 		}
1711 	}
1712 	rcu_read_unlock();
1713 	*psk = selected_sk;
1714 	return no_reuseport;
1715 }
1716 
1717 #if IS_ENABLED(CONFIG_IPV6)
bpf_sk_lookup_run_v6(const struct net * net,int protocol,const struct in6_addr * saddr,const __be16 sport,const struct in6_addr * daddr,const u16 dport,const int ifindex,struct sock ** psk)1718 static inline bool bpf_sk_lookup_run_v6(const struct net *net, int protocol,
1719 					const struct in6_addr *saddr,
1720 					const __be16 sport,
1721 					const struct in6_addr *daddr,
1722 					const u16 dport,
1723 					const int ifindex, struct sock **psk)
1724 {
1725 	struct bpf_prog_array *run_array;
1726 	struct sock *selected_sk = NULL;
1727 	bool no_reuseport = false;
1728 
1729 	rcu_read_lock();
1730 	run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1731 	if (run_array) {
1732 		struct bpf_sk_lookup_kern ctx = {
1733 			.family		= AF_INET6,
1734 			.protocol	= protocol,
1735 			.v6.saddr	= saddr,
1736 			.v6.daddr	= daddr,
1737 			.sport		= sport,
1738 			.dport		= dport,
1739 			.ingress_ifindex	= ifindex,
1740 		};
1741 		u32 act;
1742 
1743 		act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run);
1744 		if (act == SK_PASS) {
1745 			selected_sk = ctx.selected_sk;
1746 			no_reuseport = ctx.no_reuseport;
1747 		} else {
1748 			selected_sk = ERR_PTR(-ECONNREFUSED);
1749 		}
1750 	}
1751 	rcu_read_unlock();
1752 	*psk = selected_sk;
1753 	return no_reuseport;
1754 }
1755 #endif /* IS_ENABLED(CONFIG_IPV6) */
1756 
__bpf_xdp_redirect_map(struct bpf_map * map,u64 index,u64 flags,const u64 flag_mask,void * lookup_elem (struct bpf_map * map,u32 key))1757 static __always_inline long __bpf_xdp_redirect_map(struct bpf_map *map, u64 index,
1758 						   u64 flags, const u64 flag_mask,
1759 						   void *lookup_elem(struct bpf_map *map, u32 key))
1760 {
1761 	struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
1762 	const u64 action_mask = XDP_ABORTED | XDP_DROP | XDP_PASS | XDP_TX;
1763 
1764 	/* Lower bits of the flags are used as return code on lookup failure */
1765 	if (unlikely(flags & ~(action_mask | flag_mask)))
1766 		return XDP_ABORTED;
1767 
1768 	ri->tgt_value = lookup_elem(map, index);
1769 	if (unlikely(!ri->tgt_value) && !(flags & BPF_F_BROADCAST)) {
1770 		/* If the lookup fails we want to clear out the state in the
1771 		 * redirect_info struct completely, so that if an eBPF program
1772 		 * performs multiple lookups, the last one always takes
1773 		 * precedence.
1774 		 */
1775 		ri->map_id = INT_MAX; /* Valid map id idr range: [1,INT_MAX[ */
1776 		ri->map_type = BPF_MAP_TYPE_UNSPEC;
1777 		return flags & action_mask;
1778 	}
1779 
1780 	ri->tgt_index = index;
1781 	ri->map_id = map->id;
1782 	ri->map_type = map->map_type;
1783 
1784 	if (flags & BPF_F_BROADCAST) {
1785 		WRITE_ONCE(ri->map, map);
1786 		ri->flags = flags;
1787 	} else {
1788 		WRITE_ONCE(ri->map, NULL);
1789 		ri->flags = 0;
1790 	}
1791 
1792 	return XDP_REDIRECT;
1793 }
1794 
1795 #ifdef CONFIG_NET
1796 int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len);
1797 int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from,
1798 			  u32 len, u64 flags);
1799 int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len);
1800 int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len);
1801 void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len);
1802 void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
1803 		      void *buf, unsigned long len, bool flush);
1804 void *bpf_skb_meta_pointer(struct sk_buff *skb, u32 offset);
1805 #else /* CONFIG_NET */
__bpf_skb_load_bytes(const struct sk_buff * skb,u32 offset,void * to,u32 len)1806 static inline int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset,
1807 				       void *to, u32 len)
1808 {
1809 	return -EOPNOTSUPP;
1810 }
1811 
__bpf_skb_store_bytes(struct sk_buff * skb,u32 offset,const void * from,u32 len,u64 flags)1812 static inline int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset,
1813 					const void *from, u32 len, u64 flags)
1814 {
1815 	return -EOPNOTSUPP;
1816 }
1817 
__bpf_xdp_load_bytes(struct xdp_buff * xdp,u32 offset,void * buf,u32 len)1818 static inline int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset,
1819 				       void *buf, u32 len)
1820 {
1821 	return -EOPNOTSUPP;
1822 }
1823 
__bpf_xdp_store_bytes(struct xdp_buff * xdp,u32 offset,void * buf,u32 len)1824 static inline int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset,
1825 					void *buf, u32 len)
1826 {
1827 	return -EOPNOTSUPP;
1828 }
1829 
bpf_xdp_pointer(struct xdp_buff * xdp,u32 offset,u32 len)1830 static inline void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len)
1831 {
1832 	return NULL;
1833 }
1834 
bpf_xdp_copy_buf(struct xdp_buff * xdp,unsigned long off,void * buf,unsigned long len,bool flush)1835 static inline void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off, void *buf,
1836 				    unsigned long len, bool flush)
1837 {
1838 }
1839 
bpf_skb_meta_pointer(struct sk_buff * skb,u32 offset)1840 static inline void *bpf_skb_meta_pointer(struct sk_buff *skb, u32 offset)
1841 {
1842 	return ERR_PTR(-EOPNOTSUPP);
1843 }
1844 #endif /* CONFIG_NET */
1845 
1846 #endif /* __LINUX_FILTER_H__ */
1847