1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/arch/x86_64/mm/init.c
4 *
5 * Copyright (C) 1995 Linus Torvalds
6 * Copyright (C) 2000 Pavel Machek <pavel@ucw.cz>
7 * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
8 */
9
10 #include <linux/signal.h>
11 #include <linux/sched.h>
12 #include <linux/kernel.h>
13 #include <linux/errno.h>
14 #include <linux/string.h>
15 #include <linux/types.h>
16 #include <linux/ptrace.h>
17 #include <linux/mman.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/smp.h>
21 #include <linux/init.h>
22 #include <linux/initrd.h>
23 #include <linux/pagemap.h>
24 #include <linux/memblock.h>
25 #include <linux/proc_fs.h>
26 #include <linux/pci.h>
27 #include <linux/pfn.h>
28 #include <linux/poison.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/memory.h>
31 #include <linux/memory_hotplug.h>
32 #include <linux/memremap.h>
33 #include <linux/nmi.h>
34 #include <linux/gfp.h>
35 #include <linux/kcore.h>
36 #include <linux/bootmem_info.h>
37
38 #include <asm/processor.h>
39 #include <asm/bios_ebda.h>
40 #include <linux/uaccess.h>
41 #include <asm/pgalloc.h>
42 #include <asm/dma.h>
43 #include <asm/fixmap.h>
44 #include <asm/e820/api.h>
45 #include <asm/apic.h>
46 #include <asm/tlb.h>
47 #include <asm/mmu_context.h>
48 #include <asm/proto.h>
49 #include <asm/smp.h>
50 #include <asm/sections.h>
51 #include <asm/kdebug.h>
52 #include <asm/numa.h>
53 #include <asm/set_memory.h>
54 #include <asm/init.h>
55 #include <asm/uv/uv.h>
56 #include <asm/setup.h>
57 #include <asm/ftrace.h>
58
59 #include "mm_internal.h"
60
61 #include "ident_map.c"
62
63 #define DEFINE_POPULATE(fname, type1, type2, init) \
64 static inline void fname##_init(struct mm_struct *mm, \
65 type1##_t *arg1, type2##_t *arg2, bool init) \
66 { \
67 if (init) \
68 fname##_safe(mm, arg1, arg2); \
69 else \
70 fname(mm, arg1, arg2); \
71 }
72
DEFINE_POPULATE(p4d_populate,p4d,pud,init)73 DEFINE_POPULATE(p4d_populate, p4d, pud, init)
74 DEFINE_POPULATE(pgd_populate, pgd, p4d, init)
75 DEFINE_POPULATE(pud_populate, pud, pmd, init)
76 DEFINE_POPULATE(pmd_populate_kernel, pmd, pte, init)
77
78 #define DEFINE_ENTRY(type1, type2, init) \
79 static inline void set_##type1##_init(type1##_t *arg1, \
80 type2##_t arg2, bool init) \
81 { \
82 if (init) \
83 set_##type1##_safe(arg1, arg2); \
84 else \
85 set_##type1(arg1, arg2); \
86 }
87
88 DEFINE_ENTRY(p4d, p4d, init)
89 DEFINE_ENTRY(pud, pud, init)
90 DEFINE_ENTRY(pmd, pmd, init)
91 DEFINE_ENTRY(pte, pte, init)
92
93 static inline pgprot_t prot_sethuge(pgprot_t prot)
94 {
95 WARN_ON_ONCE(pgprot_val(prot) & _PAGE_PAT);
96
97 return __pgprot(pgprot_val(prot) | _PAGE_PSE);
98 }
99
100 /*
101 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
102 * physical space so we can cache the place of the first one and move
103 * around without checking the pgd every time.
104 */
105
106 /* Bits supported by the hardware: */
107 pteval_t __supported_pte_mask __read_mostly = ~0;
108 /* Bits allowed in normal kernel mappings: */
109 pteval_t __default_kernel_pte_mask __read_mostly = ~0;
110 EXPORT_SYMBOL_GPL(__supported_pte_mask);
111 /* Used in PAGE_KERNEL_* macros which are reasonably used out-of-tree: */
112 EXPORT_SYMBOL(__default_kernel_pte_mask);
113
114 int force_personality32;
115
116 /*
117 * noexec32=on|off
118 * Control non executable heap for 32bit processes.
119 *
120 * on PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
121 * off PROT_READ implies PROT_EXEC
122 */
nonx32_setup(char * str)123 static int __init nonx32_setup(char *str)
124 {
125 if (!strcmp(str, "on"))
126 force_personality32 &= ~READ_IMPLIES_EXEC;
127 else if (!strcmp(str, "off"))
128 force_personality32 |= READ_IMPLIES_EXEC;
129 return 1;
130 }
131 __setup("noexec32=", nonx32_setup);
132
sync_global_pgds_l5(unsigned long start,unsigned long end)133 static void sync_global_pgds_l5(unsigned long start, unsigned long end)
134 {
135 unsigned long addr;
136
137 for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
138 const pgd_t *pgd_ref = pgd_offset_k(addr);
139 struct page *page;
140
141 /* Check for overflow */
142 if (addr < start)
143 break;
144
145 if (pgd_none(*pgd_ref))
146 continue;
147
148 spin_lock(&pgd_lock);
149 list_for_each_entry(page, &pgd_list, lru) {
150 pgd_t *pgd;
151 spinlock_t *pgt_lock;
152
153 pgd = (pgd_t *)page_address(page) + pgd_index(addr);
154 /* the pgt_lock only for Xen */
155 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
156 spin_lock(pgt_lock);
157
158 if (!pgd_none(*pgd_ref) && !pgd_none(*pgd))
159 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
160
161 if (pgd_none(*pgd))
162 set_pgd(pgd, *pgd_ref);
163
164 spin_unlock(pgt_lock);
165 }
166 spin_unlock(&pgd_lock);
167 }
168 }
169
sync_global_pgds_l4(unsigned long start,unsigned long end)170 static void sync_global_pgds_l4(unsigned long start, unsigned long end)
171 {
172 unsigned long addr;
173
174 for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
175 pgd_t *pgd_ref = pgd_offset_k(addr);
176 const p4d_t *p4d_ref;
177 struct page *page;
178
179 /*
180 * With folded p4d, pgd_none() is always false, we need to
181 * handle synchronization on p4d level.
182 */
183 MAYBE_BUILD_BUG_ON(pgd_none(*pgd_ref));
184 p4d_ref = p4d_offset(pgd_ref, addr);
185
186 if (p4d_none(*p4d_ref))
187 continue;
188
189 spin_lock(&pgd_lock);
190 list_for_each_entry(page, &pgd_list, lru) {
191 pgd_t *pgd;
192 p4d_t *p4d;
193 spinlock_t *pgt_lock;
194
195 pgd = (pgd_t *)page_address(page) + pgd_index(addr);
196 p4d = p4d_offset(pgd, addr);
197 /* the pgt_lock only for Xen */
198 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
199 spin_lock(pgt_lock);
200
201 if (!p4d_none(*p4d_ref) && !p4d_none(*p4d))
202 BUG_ON(p4d_pgtable(*p4d)
203 != p4d_pgtable(*p4d_ref));
204
205 if (p4d_none(*p4d))
206 set_p4d(p4d, *p4d_ref);
207
208 spin_unlock(pgt_lock);
209 }
210 spin_unlock(&pgd_lock);
211 }
212 }
213
214 /*
215 * When memory was added make sure all the processes MM have
216 * suitable PGD entries in the local PGD level page.
217 */
sync_global_pgds(unsigned long start,unsigned long end)218 static void sync_global_pgds(unsigned long start, unsigned long end)
219 {
220 if (pgtable_l5_enabled())
221 sync_global_pgds_l5(start, end);
222 else
223 sync_global_pgds_l4(start, end);
224 }
225
226 /*
227 * Make kernel mappings visible in all page tables in the system.
228 * This is necessary except when the init task populates kernel mappings
229 * during the boot process. In that case, all processes originating from
230 * the init task copies the kernel mappings, so there is no issue.
231 * Otherwise, missing synchronization could lead to kernel crashes due
232 * to missing page table entries for certain kernel mappings.
233 *
234 * Synchronization is performed at the top level, which is the PGD in
235 * 5-level paging systems. But in 4-level paging systems, however,
236 * pgd_populate() is a no-op, so synchronization is done at the P4D level.
237 * sync_global_pgds() handles this difference between paging levels.
238 */
arch_sync_kernel_mappings(unsigned long start,unsigned long end)239 void arch_sync_kernel_mappings(unsigned long start, unsigned long end)
240 {
241 sync_global_pgds(start, end);
242 }
243
244 /*
245 * NOTE: This function is marked __ref because it calls __init function
246 * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
247 */
spp_getpage(void)248 static __ref void *spp_getpage(void)
249 {
250 void *ptr;
251
252 if (after_bootmem)
253 ptr = (void *) get_zeroed_page(GFP_ATOMIC);
254 else
255 ptr = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
256
257 if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
258 panic("set_pte_phys: cannot allocate page data %s\n",
259 after_bootmem ? "after bootmem" : "");
260 }
261
262 pr_debug("spp_getpage %p\n", ptr);
263
264 return ptr;
265 }
266
fill_p4d(pgd_t * pgd,unsigned long vaddr)267 static p4d_t *fill_p4d(pgd_t *pgd, unsigned long vaddr)
268 {
269 if (pgd_none(*pgd)) {
270 p4d_t *p4d = (p4d_t *)spp_getpage();
271 pgd_populate(&init_mm, pgd, p4d);
272 if (p4d != p4d_offset(pgd, 0))
273 printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
274 p4d, p4d_offset(pgd, 0));
275 }
276 return p4d_offset(pgd, vaddr);
277 }
278
fill_pud(p4d_t * p4d,unsigned long vaddr)279 static pud_t *fill_pud(p4d_t *p4d, unsigned long vaddr)
280 {
281 if (p4d_none(*p4d)) {
282 pud_t *pud = (pud_t *)spp_getpage();
283 p4d_populate(&init_mm, p4d, pud);
284 if (pud != pud_offset(p4d, 0))
285 printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
286 pud, pud_offset(p4d, 0));
287 }
288 return pud_offset(p4d, vaddr);
289 }
290
fill_pmd(pud_t * pud,unsigned long vaddr)291 static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
292 {
293 if (pud_none(*pud)) {
294 pmd_t *pmd = (pmd_t *) spp_getpage();
295 pud_populate(&init_mm, pud, pmd);
296 if (pmd != pmd_offset(pud, 0))
297 printk(KERN_ERR "PAGETABLE BUG #02! %p <-> %p\n",
298 pmd, pmd_offset(pud, 0));
299 }
300 return pmd_offset(pud, vaddr);
301 }
302
fill_pte(pmd_t * pmd,unsigned long vaddr)303 static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
304 {
305 if (pmd_none(*pmd)) {
306 pte_t *pte = (pte_t *) spp_getpage();
307 pmd_populate_kernel(&init_mm, pmd, pte);
308 if (pte != pte_offset_kernel(pmd, 0))
309 printk(KERN_ERR "PAGETABLE BUG #03!\n");
310 }
311 return pte_offset_kernel(pmd, vaddr);
312 }
313
__set_pte_vaddr(pud_t * pud,unsigned long vaddr,pte_t new_pte)314 static void __set_pte_vaddr(pud_t *pud, unsigned long vaddr, pte_t new_pte)
315 {
316 pmd_t *pmd = fill_pmd(pud, vaddr);
317 pte_t *pte = fill_pte(pmd, vaddr);
318
319 set_pte(pte, new_pte);
320
321 /*
322 * It's enough to flush this one mapping.
323 * (PGE mappings get flushed as well)
324 */
325 flush_tlb_one_kernel(vaddr);
326 }
327
set_pte_vaddr_p4d(p4d_t * p4d_page,unsigned long vaddr,pte_t new_pte)328 void set_pte_vaddr_p4d(p4d_t *p4d_page, unsigned long vaddr, pte_t new_pte)
329 {
330 p4d_t *p4d = p4d_page + p4d_index(vaddr);
331 pud_t *pud = fill_pud(p4d, vaddr);
332
333 __set_pte_vaddr(pud, vaddr, new_pte);
334 }
335
set_pte_vaddr_pud(pud_t * pud_page,unsigned long vaddr,pte_t new_pte)336 void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
337 {
338 pud_t *pud = pud_page + pud_index(vaddr);
339
340 __set_pte_vaddr(pud, vaddr, new_pte);
341 }
342
set_pte_vaddr(unsigned long vaddr,pte_t pteval)343 void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
344 {
345 pgd_t *pgd;
346 p4d_t *p4d_page;
347
348 pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
349
350 pgd = pgd_offset_k(vaddr);
351 if (pgd_none(*pgd)) {
352 printk(KERN_ERR
353 "PGD FIXMAP MISSING, it should be setup in head.S!\n");
354 return;
355 }
356
357 p4d_page = p4d_offset(pgd, 0);
358 set_pte_vaddr_p4d(p4d_page, vaddr, pteval);
359 }
360
populate_extra_pmd(unsigned long vaddr)361 pmd_t * __init populate_extra_pmd(unsigned long vaddr)
362 {
363 pgd_t *pgd;
364 p4d_t *p4d;
365 pud_t *pud;
366
367 pgd = pgd_offset_k(vaddr);
368 p4d = fill_p4d(pgd, vaddr);
369 pud = fill_pud(p4d, vaddr);
370 return fill_pmd(pud, vaddr);
371 }
372
populate_extra_pte(unsigned long vaddr)373 pte_t * __init populate_extra_pte(unsigned long vaddr)
374 {
375 pmd_t *pmd;
376
377 pmd = populate_extra_pmd(vaddr);
378 return fill_pte(pmd, vaddr);
379 }
380
381 /*
382 * Create large page table mappings for a range of physical addresses.
383 */
__init_extra_mapping(unsigned long phys,unsigned long size,enum page_cache_mode cache)384 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
385 enum page_cache_mode cache)
386 {
387 pgd_t *pgd;
388 p4d_t *p4d;
389 pud_t *pud;
390 pmd_t *pmd;
391 pgprot_t prot;
392
393 pgprot_val(prot) = pgprot_val(PAGE_KERNEL_LARGE) |
394 protval_4k_2_large(cachemode2protval(cache));
395 BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
396 for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
397 pgd = pgd_offset_k((unsigned long)__va(phys));
398 if (pgd_none(*pgd)) {
399 p4d = (p4d_t *) spp_getpage();
400 set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE |
401 _PAGE_USER));
402 }
403 p4d = p4d_offset(pgd, (unsigned long)__va(phys));
404 if (p4d_none(*p4d)) {
405 pud = (pud_t *) spp_getpage();
406 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE |
407 _PAGE_USER));
408 }
409 pud = pud_offset(p4d, (unsigned long)__va(phys));
410 if (pud_none(*pud)) {
411 pmd = (pmd_t *) spp_getpage();
412 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
413 _PAGE_USER));
414 }
415 pmd = pmd_offset(pud, phys);
416 BUG_ON(!pmd_none(*pmd));
417 set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
418 }
419 }
420
init_extra_mapping_wb(unsigned long phys,unsigned long size)421 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
422 {
423 __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_WB);
424 }
425
init_extra_mapping_uc(unsigned long phys,unsigned long size)426 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
427 {
428 __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_UC);
429 }
430
431 /*
432 * The head.S code sets up the kernel high mapping:
433 *
434 * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
435 *
436 * phys_base holds the negative offset to the kernel, which is added
437 * to the compile time generated pmds. This results in invalid pmds up
438 * to the point where we hit the physaddr 0 mapping.
439 *
440 * We limit the mappings to the region from _text to _brk_end. _brk_end
441 * is rounded up to the 2MB boundary. This catches the invalid pmds as
442 * well, as they are located before _text:
443 */
cleanup_highmap(void)444 void __init cleanup_highmap(void)
445 {
446 unsigned long vaddr = __START_KERNEL_map;
447 unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE;
448 unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
449 pmd_t *pmd = level2_kernel_pgt;
450
451 /*
452 * Native path, max_pfn_mapped is not set yet.
453 * Xen has valid max_pfn_mapped set in
454 * arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
455 */
456 if (max_pfn_mapped)
457 vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
458
459 for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
460 if (pmd_none(*pmd))
461 continue;
462 if (vaddr < (unsigned long) _text || vaddr > end)
463 set_pmd(pmd, __pmd(0));
464 }
465 }
466
467 /*
468 * Create PTE level page table mapping for physical addresses.
469 * It returns the last physical address mapped.
470 */
471 static unsigned long __meminit
phys_pte_init(pte_t * pte_page,unsigned long paddr,unsigned long paddr_end,pgprot_t prot,bool init)472 phys_pte_init(pte_t *pte_page, unsigned long paddr, unsigned long paddr_end,
473 pgprot_t prot, bool init)
474 {
475 unsigned long pages = 0, paddr_next;
476 unsigned long paddr_last = paddr_end;
477 pte_t *pte;
478 int i;
479
480 pte = pte_page + pte_index(paddr);
481 i = pte_index(paddr);
482
483 for (; i < PTRS_PER_PTE; i++, paddr = paddr_next, pte++) {
484 paddr_next = (paddr & PAGE_MASK) + PAGE_SIZE;
485 if (paddr >= paddr_end) {
486 if (!after_bootmem &&
487 !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
488 E820_TYPE_RAM) &&
489 !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
490 E820_TYPE_ACPI))
491 set_pte_init(pte, __pte(0), init);
492 continue;
493 }
494
495 /*
496 * We will re-use the existing mapping.
497 * Xen for example has some special requirements, like mapping
498 * pagetable pages as RO. So assume someone who pre-setup
499 * these mappings are more intelligent.
500 */
501 if (!pte_none(*pte)) {
502 if (!after_bootmem)
503 pages++;
504 continue;
505 }
506
507 if (0)
508 pr_info(" pte=%p addr=%lx pte=%016lx\n", pte, paddr,
509 pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL).pte);
510 pages++;
511 set_pte_init(pte, pfn_pte(paddr >> PAGE_SHIFT, prot), init);
512 paddr_last = (paddr & PAGE_MASK) + PAGE_SIZE;
513 }
514
515 update_page_count(PG_LEVEL_4K, pages);
516
517 return paddr_last;
518 }
519
520 /*
521 * Create PMD level page table mapping for physical addresses. The virtual
522 * and physical address have to be aligned at this level.
523 * It returns the last physical address mapped.
524 */
525 static unsigned long __meminit
phys_pmd_init(pmd_t * pmd_page,unsigned long paddr,unsigned long paddr_end,unsigned long page_size_mask,pgprot_t prot,bool init)526 phys_pmd_init(pmd_t *pmd_page, unsigned long paddr, unsigned long paddr_end,
527 unsigned long page_size_mask, pgprot_t prot, bool init)
528 {
529 unsigned long pages = 0, paddr_next;
530 unsigned long paddr_last = paddr_end;
531
532 int i = pmd_index(paddr);
533
534 for (; i < PTRS_PER_PMD; i++, paddr = paddr_next) {
535 pmd_t *pmd = pmd_page + pmd_index(paddr);
536 pte_t *pte;
537 pgprot_t new_prot = prot;
538
539 paddr_next = (paddr & PMD_MASK) + PMD_SIZE;
540 if (paddr >= paddr_end) {
541 if (!after_bootmem &&
542 !e820__mapped_any(paddr & PMD_MASK, paddr_next,
543 E820_TYPE_RAM) &&
544 !e820__mapped_any(paddr & PMD_MASK, paddr_next,
545 E820_TYPE_ACPI))
546 set_pmd_init(pmd, __pmd(0), init);
547 continue;
548 }
549
550 if (!pmd_none(*pmd)) {
551 if (!pmd_leaf(*pmd)) {
552 spin_lock(&init_mm.page_table_lock);
553 pte = (pte_t *)pmd_page_vaddr(*pmd);
554 paddr_last = phys_pte_init(pte, paddr,
555 paddr_end, prot,
556 init);
557 spin_unlock(&init_mm.page_table_lock);
558 continue;
559 }
560 /*
561 * If we are ok with PG_LEVEL_2M mapping, then we will
562 * use the existing mapping,
563 *
564 * Otherwise, we will split the large page mapping but
565 * use the same existing protection bits except for
566 * large page, so that we don't violate Intel's TLB
567 * Application note (317080) which says, while changing
568 * the page sizes, new and old translations should
569 * not differ with respect to page frame and
570 * attributes.
571 */
572 if (page_size_mask & (1 << PG_LEVEL_2M)) {
573 if (!after_bootmem)
574 pages++;
575 paddr_last = paddr_next;
576 continue;
577 }
578 new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
579 }
580
581 if (page_size_mask & (1<<PG_LEVEL_2M)) {
582 pages++;
583 spin_lock(&init_mm.page_table_lock);
584 set_pmd_init(pmd,
585 pfn_pmd(paddr >> PAGE_SHIFT, prot_sethuge(prot)),
586 init);
587 spin_unlock(&init_mm.page_table_lock);
588 paddr_last = paddr_next;
589 continue;
590 }
591
592 pte = alloc_low_page();
593 paddr_last = phys_pte_init(pte, paddr, paddr_end, new_prot, init);
594
595 spin_lock(&init_mm.page_table_lock);
596 pmd_populate_kernel_init(&init_mm, pmd, pte, init);
597 spin_unlock(&init_mm.page_table_lock);
598 }
599 update_page_count(PG_LEVEL_2M, pages);
600 return paddr_last;
601 }
602
603 /*
604 * Create PUD level page table mapping for physical addresses. The virtual
605 * and physical address do not have to be aligned at this level. KASLR can
606 * randomize virtual addresses up to this level.
607 * It returns the last physical address mapped.
608 */
609 static unsigned long __meminit
phys_pud_init(pud_t * pud_page,unsigned long paddr,unsigned long paddr_end,unsigned long page_size_mask,pgprot_t _prot,bool init)610 phys_pud_init(pud_t *pud_page, unsigned long paddr, unsigned long paddr_end,
611 unsigned long page_size_mask, pgprot_t _prot, bool init)
612 {
613 unsigned long pages = 0, paddr_next;
614 unsigned long paddr_last = paddr_end;
615 unsigned long vaddr = (unsigned long)__va(paddr);
616 int i = pud_index(vaddr);
617
618 for (; i < PTRS_PER_PUD; i++, paddr = paddr_next) {
619 pud_t *pud;
620 pmd_t *pmd;
621 pgprot_t prot = _prot;
622
623 vaddr = (unsigned long)__va(paddr);
624 pud = pud_page + pud_index(vaddr);
625 paddr_next = (paddr & PUD_MASK) + PUD_SIZE;
626
627 if (paddr >= paddr_end) {
628 if (!after_bootmem &&
629 !e820__mapped_any(paddr & PUD_MASK, paddr_next,
630 E820_TYPE_RAM) &&
631 !e820__mapped_any(paddr & PUD_MASK, paddr_next,
632 E820_TYPE_ACPI))
633 set_pud_init(pud, __pud(0), init);
634 continue;
635 }
636
637 if (!pud_none(*pud)) {
638 if (!pud_leaf(*pud)) {
639 pmd = pmd_offset(pud, 0);
640 paddr_last = phys_pmd_init(pmd, paddr,
641 paddr_end,
642 page_size_mask,
643 prot, init);
644 continue;
645 }
646 /*
647 * If we are ok with PG_LEVEL_1G mapping, then we will
648 * use the existing mapping.
649 *
650 * Otherwise, we will split the gbpage mapping but use
651 * the same existing protection bits except for large
652 * page, so that we don't violate Intel's TLB
653 * Application note (317080) which says, while changing
654 * the page sizes, new and old translations should
655 * not differ with respect to page frame and
656 * attributes.
657 */
658 if (page_size_mask & (1 << PG_LEVEL_1G)) {
659 if (!after_bootmem)
660 pages++;
661 paddr_last = paddr_next;
662 continue;
663 }
664 prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
665 }
666
667 if (page_size_mask & (1<<PG_LEVEL_1G)) {
668 pages++;
669 spin_lock(&init_mm.page_table_lock);
670 set_pud_init(pud,
671 pfn_pud(paddr >> PAGE_SHIFT, prot_sethuge(prot)),
672 init);
673 spin_unlock(&init_mm.page_table_lock);
674 paddr_last = paddr_next;
675 continue;
676 }
677
678 pmd = alloc_low_page();
679 paddr_last = phys_pmd_init(pmd, paddr, paddr_end,
680 page_size_mask, prot, init);
681
682 spin_lock(&init_mm.page_table_lock);
683 pud_populate_init(&init_mm, pud, pmd, init);
684 spin_unlock(&init_mm.page_table_lock);
685 }
686
687 update_page_count(PG_LEVEL_1G, pages);
688
689 return paddr_last;
690 }
691
692 static unsigned long __meminit
phys_p4d_init(p4d_t * p4d_page,unsigned long paddr,unsigned long paddr_end,unsigned long page_size_mask,pgprot_t prot,bool init)693 phys_p4d_init(p4d_t *p4d_page, unsigned long paddr, unsigned long paddr_end,
694 unsigned long page_size_mask, pgprot_t prot, bool init)
695 {
696 unsigned long vaddr, vaddr_end, vaddr_next, paddr_next, paddr_last;
697
698 paddr_last = paddr_end;
699 vaddr = (unsigned long)__va(paddr);
700 vaddr_end = (unsigned long)__va(paddr_end);
701
702 if (!pgtable_l5_enabled())
703 return phys_pud_init((pud_t *) p4d_page, paddr, paddr_end,
704 page_size_mask, prot, init);
705
706 for (; vaddr < vaddr_end; vaddr = vaddr_next) {
707 p4d_t *p4d = p4d_page + p4d_index(vaddr);
708 pud_t *pud;
709
710 vaddr_next = (vaddr & P4D_MASK) + P4D_SIZE;
711 paddr = __pa(vaddr);
712
713 if (paddr >= paddr_end) {
714 paddr_next = __pa(vaddr_next);
715 if (!after_bootmem &&
716 !e820__mapped_any(paddr & P4D_MASK, paddr_next,
717 E820_TYPE_RAM) &&
718 !e820__mapped_any(paddr & P4D_MASK, paddr_next,
719 E820_TYPE_ACPI))
720 set_p4d_init(p4d, __p4d(0), init);
721 continue;
722 }
723
724 if (!p4d_none(*p4d)) {
725 pud = pud_offset(p4d, 0);
726 paddr_last = phys_pud_init(pud, paddr, __pa(vaddr_end),
727 page_size_mask, prot, init);
728 continue;
729 }
730
731 pud = alloc_low_page();
732 paddr_last = phys_pud_init(pud, paddr, __pa(vaddr_end),
733 page_size_mask, prot, init);
734
735 spin_lock(&init_mm.page_table_lock);
736 p4d_populate_init(&init_mm, p4d, pud, init);
737 spin_unlock(&init_mm.page_table_lock);
738 }
739
740 return paddr_last;
741 }
742
743 static unsigned long __meminit
__kernel_physical_mapping_init(unsigned long paddr_start,unsigned long paddr_end,unsigned long page_size_mask,pgprot_t prot,bool init)744 __kernel_physical_mapping_init(unsigned long paddr_start,
745 unsigned long paddr_end,
746 unsigned long page_size_mask,
747 pgprot_t prot, bool init)
748 {
749 bool pgd_changed = false;
750 unsigned long vaddr, vaddr_start, vaddr_end, vaddr_next, paddr_last;
751
752 paddr_last = paddr_end;
753 vaddr = (unsigned long)__va(paddr_start);
754 vaddr_end = (unsigned long)__va(paddr_end);
755 vaddr_start = vaddr;
756
757 for (; vaddr < vaddr_end; vaddr = vaddr_next) {
758 pgd_t *pgd = pgd_offset_k(vaddr);
759 p4d_t *p4d;
760
761 vaddr_next = (vaddr & PGDIR_MASK) + PGDIR_SIZE;
762
763 if (pgd_val(*pgd)) {
764 p4d = (p4d_t *)pgd_page_vaddr(*pgd);
765 paddr_last = phys_p4d_init(p4d, __pa(vaddr),
766 __pa(vaddr_end),
767 page_size_mask,
768 prot, init);
769 continue;
770 }
771
772 p4d = alloc_low_page();
773 paddr_last = phys_p4d_init(p4d, __pa(vaddr), __pa(vaddr_end),
774 page_size_mask, prot, init);
775
776 spin_lock(&init_mm.page_table_lock);
777 if (pgtable_l5_enabled())
778 pgd_populate_init(&init_mm, pgd, p4d, init);
779 else
780 p4d_populate_init(&init_mm, p4d_offset(pgd, vaddr),
781 (pud_t *) p4d, init);
782
783 spin_unlock(&init_mm.page_table_lock);
784 pgd_changed = true;
785 }
786
787 if (pgd_changed)
788 sync_global_pgds(vaddr_start, vaddr_end - 1);
789
790 return paddr_last;
791 }
792
793
794 /*
795 * Create page table mapping for the physical memory for specific physical
796 * addresses. Note that it can only be used to populate non-present entries.
797 * The virtual and physical addresses have to be aligned on PMD level
798 * down. It returns the last physical address mapped.
799 */
800 unsigned long __meminit
kernel_physical_mapping_init(unsigned long paddr_start,unsigned long paddr_end,unsigned long page_size_mask,pgprot_t prot)801 kernel_physical_mapping_init(unsigned long paddr_start,
802 unsigned long paddr_end,
803 unsigned long page_size_mask, pgprot_t prot)
804 {
805 return __kernel_physical_mapping_init(paddr_start, paddr_end,
806 page_size_mask, prot, true);
807 }
808
809 /*
810 * This function is similar to kernel_physical_mapping_init() above with the
811 * exception that it uses set_{pud,pmd}() instead of the set_{pud,pte}_safe()
812 * when updating the mapping. The caller is responsible to flush the TLBs after
813 * the function returns.
814 */
815 unsigned long __meminit
kernel_physical_mapping_change(unsigned long paddr_start,unsigned long paddr_end,unsigned long page_size_mask)816 kernel_physical_mapping_change(unsigned long paddr_start,
817 unsigned long paddr_end,
818 unsigned long page_size_mask)
819 {
820 return __kernel_physical_mapping_init(paddr_start, paddr_end,
821 page_size_mask, PAGE_KERNEL,
822 false);
823 }
824
825 #ifndef CONFIG_NUMA
x86_numa_init(void)826 static __always_inline void x86_numa_init(void)
827 {
828 memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
829 }
830 #endif
831
initmem_init(void)832 void __init initmem_init(void)
833 {
834 x86_numa_init();
835 }
836
paging_init(void)837 void __init paging_init(void)
838 {
839 sparse_init();
840
841 /*
842 * clear the default setting with node 0
843 * note: don't use nodes_clear here, that is really clearing when
844 * numa support is not compiled in, and later node_set_state
845 * will not set it back.
846 */
847 node_clear_state(0, N_MEMORY);
848 node_clear_state(0, N_NORMAL_MEMORY);
849
850 zone_sizes_init();
851 }
852
853 #define PAGE_UNUSED 0xFD
854
855 /*
856 * The unused vmemmap range, which was not yet memset(PAGE_UNUSED), ranges
857 * from unused_pmd_start to next PMD_SIZE boundary.
858 */
859 static unsigned long unused_pmd_start __meminitdata;
860
vmemmap_flush_unused_pmd(void)861 static void __meminit vmemmap_flush_unused_pmd(void)
862 {
863 if (!unused_pmd_start)
864 return;
865 /*
866 * Clears (unused_pmd_start, PMD_END]
867 */
868 memset((void *)unused_pmd_start, PAGE_UNUSED,
869 ALIGN(unused_pmd_start, PMD_SIZE) - unused_pmd_start);
870 unused_pmd_start = 0;
871 }
872
873 #ifdef CONFIG_MEMORY_HOTPLUG
874 /* Returns true if the PMD is completely unused and thus it can be freed */
vmemmap_pmd_is_unused(unsigned long addr,unsigned long end)875 static bool __meminit vmemmap_pmd_is_unused(unsigned long addr, unsigned long end)
876 {
877 unsigned long start = ALIGN_DOWN(addr, PMD_SIZE);
878
879 /*
880 * Flush the unused range cache to ensure that memchr_inv() will work
881 * for the whole range.
882 */
883 vmemmap_flush_unused_pmd();
884 memset((void *)addr, PAGE_UNUSED, end - addr);
885
886 return !memchr_inv((void *)start, PAGE_UNUSED, PMD_SIZE);
887 }
888 #endif
889
__vmemmap_use_sub_pmd(unsigned long start)890 static void __meminit __vmemmap_use_sub_pmd(unsigned long start)
891 {
892 /*
893 * As we expect to add in the same granularity as we remove, it's
894 * sufficient to mark only some piece used to block the memmap page from
895 * getting removed when removing some other adjacent memmap (just in
896 * case the first memmap never gets initialized e.g., because the memory
897 * block never gets onlined).
898 */
899 memset((void *)start, 0, sizeof(struct page));
900 }
901
vmemmap_use_sub_pmd(unsigned long start,unsigned long end)902 static void __meminit vmemmap_use_sub_pmd(unsigned long start, unsigned long end)
903 {
904 /*
905 * We only optimize if the new used range directly follows the
906 * previously unused range (esp., when populating consecutive sections).
907 */
908 if (unused_pmd_start == start) {
909 if (likely(IS_ALIGNED(end, PMD_SIZE)))
910 unused_pmd_start = 0;
911 else
912 unused_pmd_start = end;
913 return;
914 }
915
916 /*
917 * If the range does not contiguously follows previous one, make sure
918 * to mark the unused range of the previous one so it can be removed.
919 */
920 vmemmap_flush_unused_pmd();
921 __vmemmap_use_sub_pmd(start);
922 }
923
924
vmemmap_use_new_sub_pmd(unsigned long start,unsigned long end)925 static void __meminit vmemmap_use_new_sub_pmd(unsigned long start, unsigned long end)
926 {
927 const unsigned long page = ALIGN_DOWN(start, PMD_SIZE);
928
929 vmemmap_flush_unused_pmd();
930
931 /*
932 * Could be our memmap page is filled with PAGE_UNUSED already from a
933 * previous remove. Make sure to reset it.
934 */
935 __vmemmap_use_sub_pmd(start);
936
937 /*
938 * Mark with PAGE_UNUSED the unused parts of the new memmap range
939 */
940 if (!IS_ALIGNED(start, PMD_SIZE))
941 memset((void *)page, PAGE_UNUSED, start - page);
942
943 /*
944 * We want to avoid memset(PAGE_UNUSED) when populating the vmemmap of
945 * consecutive sections. Remember for the last added PMD where the
946 * unused range begins.
947 */
948 if (!IS_ALIGNED(end, PMD_SIZE))
949 unused_pmd_start = end;
950 }
951
952 /*
953 * Memory hotplug specific functions
954 */
955 #ifdef CONFIG_MEMORY_HOTPLUG
956 /*
957 * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
958 * updating.
959 */
update_end_of_memory_vars(u64 start,u64 size)960 static void update_end_of_memory_vars(u64 start, u64 size)
961 {
962 unsigned long end_pfn = PFN_UP(start + size);
963
964 if (end_pfn > max_pfn) {
965 max_pfn = end_pfn;
966 max_low_pfn = end_pfn;
967 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
968 }
969 }
970
add_pages(int nid,unsigned long start_pfn,unsigned long nr_pages,struct mhp_params * params)971 int add_pages(int nid, unsigned long start_pfn, unsigned long nr_pages,
972 struct mhp_params *params)
973 {
974 unsigned long end = ((start_pfn + nr_pages) << PAGE_SHIFT) - 1;
975 int ret;
976
977 if (WARN_ON_ONCE(end > DIRECT_MAP_PHYSMEM_END))
978 return -ERANGE;
979
980 ret = __add_pages(nid, start_pfn, nr_pages, params);
981 WARN_ON_ONCE(ret);
982
983 /*
984 * Special case: add_pages() is called by memremap_pages() for adding device
985 * private pages. Do not bump up max_pfn in the device private path,
986 * because max_pfn changes affect dma_addressing_limited().
987 *
988 * dma_addressing_limited() returning true when max_pfn is the device's
989 * addressable memory can force device drivers to use bounce buffers
990 * and impact their performance negatively:
991 */
992 if (!params->pgmap)
993 /* update max_pfn, max_low_pfn and high_memory */
994 update_end_of_memory_vars(start_pfn << PAGE_SHIFT, nr_pages << PAGE_SHIFT);
995
996 return ret;
997 }
998
arch_add_memory(int nid,u64 start,u64 size,struct mhp_params * params)999 int arch_add_memory(int nid, u64 start, u64 size,
1000 struct mhp_params *params)
1001 {
1002 unsigned long start_pfn = start >> PAGE_SHIFT;
1003 unsigned long nr_pages = size >> PAGE_SHIFT;
1004
1005 init_memory_mapping(start, start + size, params->pgprot);
1006
1007 return add_pages(nid, start_pfn, nr_pages, params);
1008 }
1009
free_reserved_pages(struct page * page,unsigned long nr_pages)1010 static void free_reserved_pages(struct page *page, unsigned long nr_pages)
1011 {
1012 while (nr_pages--)
1013 free_reserved_page(page++);
1014 }
1015
free_pagetable(struct page * page,int order)1016 static void __meminit free_pagetable(struct page *page, int order)
1017 {
1018 /* bootmem page has reserved flag */
1019 if (PageReserved(page)) {
1020 unsigned long nr_pages = 1 << order;
1021 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
1022 enum bootmem_type type = bootmem_type(page);
1023
1024 if (type == SECTION_INFO || type == MIX_SECTION_INFO) {
1025 while (nr_pages--)
1026 put_page_bootmem(page++);
1027 } else {
1028 free_reserved_pages(page, nr_pages);
1029 }
1030 #else
1031 free_reserved_pages(page, nr_pages);
1032 #endif
1033 } else {
1034 free_pages((unsigned long)page_address(page), order);
1035 }
1036 }
1037
free_hugepage_table(struct page * page,struct vmem_altmap * altmap)1038 static void __meminit free_hugepage_table(struct page *page,
1039 struct vmem_altmap *altmap)
1040 {
1041 if (altmap)
1042 vmem_altmap_free(altmap, PMD_SIZE / PAGE_SIZE);
1043 else
1044 free_pagetable(page, get_order(PMD_SIZE));
1045 }
1046
free_pte_table(pte_t * pte_start,pmd_t * pmd)1047 static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
1048 {
1049 pte_t *pte;
1050 int i;
1051
1052 for (i = 0; i < PTRS_PER_PTE; i++) {
1053 pte = pte_start + i;
1054 if (!pte_none(*pte))
1055 return;
1056 }
1057
1058 /* free a pte table */
1059 free_pagetable(pmd_page(*pmd), 0);
1060 spin_lock(&init_mm.page_table_lock);
1061 pmd_clear(pmd);
1062 spin_unlock(&init_mm.page_table_lock);
1063 }
1064
free_pmd_table(pmd_t * pmd_start,pud_t * pud)1065 static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
1066 {
1067 pmd_t *pmd;
1068 int i;
1069
1070 for (i = 0; i < PTRS_PER_PMD; i++) {
1071 pmd = pmd_start + i;
1072 if (!pmd_none(*pmd))
1073 return;
1074 }
1075
1076 /* free a pmd table */
1077 free_pagetable(pud_page(*pud), 0);
1078 spin_lock(&init_mm.page_table_lock);
1079 pud_clear(pud);
1080 spin_unlock(&init_mm.page_table_lock);
1081 }
1082
free_pud_table(pud_t * pud_start,p4d_t * p4d)1083 static void __meminit free_pud_table(pud_t *pud_start, p4d_t *p4d)
1084 {
1085 pud_t *pud;
1086 int i;
1087
1088 for (i = 0; i < PTRS_PER_PUD; i++) {
1089 pud = pud_start + i;
1090 if (!pud_none(*pud))
1091 return;
1092 }
1093
1094 /* free a pud table */
1095 free_pagetable(p4d_page(*p4d), 0);
1096 spin_lock(&init_mm.page_table_lock);
1097 p4d_clear(p4d);
1098 spin_unlock(&init_mm.page_table_lock);
1099 }
1100
1101 static void __meminit
remove_pte_table(pte_t * pte_start,unsigned long addr,unsigned long end,bool direct)1102 remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end,
1103 bool direct)
1104 {
1105 unsigned long next, pages = 0;
1106 pte_t *pte;
1107 phys_addr_t phys_addr;
1108
1109 pte = pte_start + pte_index(addr);
1110 for (; addr < end; addr = next, pte++) {
1111 next = (addr + PAGE_SIZE) & PAGE_MASK;
1112 if (next > end)
1113 next = end;
1114
1115 if (!pte_present(*pte))
1116 continue;
1117
1118 /*
1119 * We mapped [0,1G) memory as identity mapping when
1120 * initializing, in arch/x86/kernel/head_64.S. These
1121 * pagetables cannot be removed.
1122 */
1123 phys_addr = pte_val(*pte) + (addr & PAGE_MASK);
1124 if (phys_addr < (phys_addr_t)0x40000000)
1125 return;
1126
1127 if (!direct)
1128 free_pagetable(pte_page(*pte), 0);
1129
1130 spin_lock(&init_mm.page_table_lock);
1131 pte_clear(&init_mm, addr, pte);
1132 spin_unlock(&init_mm.page_table_lock);
1133
1134 /* For non-direct mapping, pages means nothing. */
1135 pages++;
1136 }
1137
1138 /* Call free_pte_table() in remove_pmd_table(). */
1139 flush_tlb_all();
1140 if (direct)
1141 update_page_count(PG_LEVEL_4K, -pages);
1142 }
1143
1144 static void __meminit
remove_pmd_table(pmd_t * pmd_start,unsigned long addr,unsigned long end,bool direct,struct vmem_altmap * altmap)1145 remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
1146 bool direct, struct vmem_altmap *altmap)
1147 {
1148 unsigned long next, pages = 0;
1149 pte_t *pte_base;
1150 pmd_t *pmd;
1151
1152 pmd = pmd_start + pmd_index(addr);
1153 for (; addr < end; addr = next, pmd++) {
1154 next = pmd_addr_end(addr, end);
1155
1156 if (!pmd_present(*pmd))
1157 continue;
1158
1159 if (pmd_leaf(*pmd)) {
1160 if (IS_ALIGNED(addr, PMD_SIZE) &&
1161 IS_ALIGNED(next, PMD_SIZE)) {
1162 if (!direct)
1163 free_hugepage_table(pmd_page(*pmd),
1164 altmap);
1165
1166 spin_lock(&init_mm.page_table_lock);
1167 pmd_clear(pmd);
1168 spin_unlock(&init_mm.page_table_lock);
1169 pages++;
1170 } else if (vmemmap_pmd_is_unused(addr, next)) {
1171 free_hugepage_table(pmd_page(*pmd),
1172 altmap);
1173 spin_lock(&init_mm.page_table_lock);
1174 pmd_clear(pmd);
1175 spin_unlock(&init_mm.page_table_lock);
1176 }
1177 continue;
1178 }
1179
1180 pte_base = (pte_t *)pmd_page_vaddr(*pmd);
1181 remove_pte_table(pte_base, addr, next, direct);
1182 free_pte_table(pte_base, pmd);
1183 }
1184
1185 /* Call free_pmd_table() in remove_pud_table(). */
1186 if (direct)
1187 update_page_count(PG_LEVEL_2M, -pages);
1188 }
1189
1190 static void __meminit
remove_pud_table(pud_t * pud_start,unsigned long addr,unsigned long end,struct vmem_altmap * altmap,bool direct)1191 remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end,
1192 struct vmem_altmap *altmap, bool direct)
1193 {
1194 unsigned long next, pages = 0;
1195 pmd_t *pmd_base;
1196 pud_t *pud;
1197
1198 pud = pud_start + pud_index(addr);
1199 for (; addr < end; addr = next, pud++) {
1200 next = pud_addr_end(addr, end);
1201
1202 if (!pud_present(*pud))
1203 continue;
1204
1205 if (pud_leaf(*pud) &&
1206 IS_ALIGNED(addr, PUD_SIZE) &&
1207 IS_ALIGNED(next, PUD_SIZE)) {
1208 spin_lock(&init_mm.page_table_lock);
1209 pud_clear(pud);
1210 spin_unlock(&init_mm.page_table_lock);
1211 pages++;
1212 continue;
1213 }
1214
1215 pmd_base = pmd_offset(pud, 0);
1216 remove_pmd_table(pmd_base, addr, next, direct, altmap);
1217 free_pmd_table(pmd_base, pud);
1218 }
1219
1220 if (direct)
1221 update_page_count(PG_LEVEL_1G, -pages);
1222 }
1223
1224 static void __meminit
remove_p4d_table(p4d_t * p4d_start,unsigned long addr,unsigned long end,struct vmem_altmap * altmap,bool direct)1225 remove_p4d_table(p4d_t *p4d_start, unsigned long addr, unsigned long end,
1226 struct vmem_altmap *altmap, bool direct)
1227 {
1228 unsigned long next, pages = 0;
1229 pud_t *pud_base;
1230 p4d_t *p4d;
1231
1232 p4d = p4d_start + p4d_index(addr);
1233 for (; addr < end; addr = next, p4d++) {
1234 next = p4d_addr_end(addr, end);
1235
1236 if (!p4d_present(*p4d))
1237 continue;
1238
1239 BUILD_BUG_ON(p4d_leaf(*p4d));
1240
1241 pud_base = pud_offset(p4d, 0);
1242 remove_pud_table(pud_base, addr, next, altmap, direct);
1243 /*
1244 * For 4-level page tables we do not want to free PUDs, but in the
1245 * 5-level case we should free them. This code will have to change
1246 * to adapt for boot-time switching between 4 and 5 level page tables.
1247 */
1248 if (pgtable_l5_enabled())
1249 free_pud_table(pud_base, p4d);
1250 }
1251
1252 if (direct)
1253 update_page_count(PG_LEVEL_512G, -pages);
1254 }
1255
1256 /* start and end are both virtual address. */
1257 static void __meminit
remove_pagetable(unsigned long start,unsigned long end,bool direct,struct vmem_altmap * altmap)1258 remove_pagetable(unsigned long start, unsigned long end, bool direct,
1259 struct vmem_altmap *altmap)
1260 {
1261 unsigned long next;
1262 unsigned long addr;
1263 pgd_t *pgd;
1264 p4d_t *p4d;
1265
1266 for (addr = start; addr < end; addr = next) {
1267 next = pgd_addr_end(addr, end);
1268
1269 pgd = pgd_offset_k(addr);
1270 if (!pgd_present(*pgd))
1271 continue;
1272
1273 p4d = p4d_offset(pgd, 0);
1274 remove_p4d_table(p4d, addr, next, altmap, direct);
1275 }
1276
1277 flush_tlb_all();
1278 }
1279
vmemmap_free(unsigned long start,unsigned long end,struct vmem_altmap * altmap)1280 void __ref vmemmap_free(unsigned long start, unsigned long end,
1281 struct vmem_altmap *altmap)
1282 {
1283 VM_BUG_ON(!PAGE_ALIGNED(start));
1284 VM_BUG_ON(!PAGE_ALIGNED(end));
1285
1286 remove_pagetable(start, end, false, altmap);
1287 }
1288
1289 static void __meminit
kernel_physical_mapping_remove(unsigned long start,unsigned long end)1290 kernel_physical_mapping_remove(unsigned long start, unsigned long end)
1291 {
1292 start = (unsigned long)__va(start);
1293 end = (unsigned long)__va(end);
1294
1295 remove_pagetable(start, end, true, NULL);
1296 }
1297
arch_remove_memory(u64 start,u64 size,struct vmem_altmap * altmap)1298 void __ref arch_remove_memory(u64 start, u64 size, struct vmem_altmap *altmap)
1299 {
1300 unsigned long start_pfn = start >> PAGE_SHIFT;
1301 unsigned long nr_pages = size >> PAGE_SHIFT;
1302
1303 __remove_pages(start_pfn, nr_pages, altmap);
1304 kernel_physical_mapping_remove(start, start + size);
1305 }
1306 #endif /* CONFIG_MEMORY_HOTPLUG */
1307
1308 static struct kcore_list kcore_vsyscall;
1309
register_page_bootmem_info(void)1310 static void __init register_page_bootmem_info(void)
1311 {
1312 #if defined(CONFIG_NUMA) || defined(CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP)
1313 int i;
1314
1315 for_each_online_node(i)
1316 register_page_bootmem_info_node(NODE_DATA(i));
1317 #endif
1318 }
1319
1320 /*
1321 * Pre-allocates page-table pages for the vmalloc area in the kernel page-table.
1322 * Only the level which needs to be synchronized between all page-tables is
1323 * allocated because the synchronization can be expensive.
1324 */
preallocate_vmalloc_pages(void)1325 static void __init preallocate_vmalloc_pages(void)
1326 {
1327 unsigned long addr;
1328 const char *lvl;
1329
1330 for (addr = VMALLOC_START; addr <= VMEMORY_END; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
1331 pgd_t *pgd = pgd_offset_k(addr);
1332 p4d_t *p4d;
1333 pud_t *pud;
1334
1335 lvl = "p4d";
1336 p4d = p4d_alloc(&init_mm, pgd, addr);
1337 if (!p4d)
1338 goto failed;
1339
1340 if (pgtable_l5_enabled())
1341 continue;
1342
1343 /*
1344 * The goal here is to allocate all possibly required
1345 * hardware page tables pointed to by the top hardware
1346 * level.
1347 *
1348 * On 4-level systems, the P4D layer is folded away and
1349 * the above code does no preallocation. Below, go down
1350 * to the pud _software_ level to ensure the second
1351 * hardware level is allocated on 4-level systems too.
1352 */
1353 lvl = "pud";
1354 pud = pud_alloc(&init_mm, p4d, addr);
1355 if (!pud)
1356 goto failed;
1357 }
1358
1359 return;
1360
1361 failed:
1362
1363 /*
1364 * The pages have to be there now or they will be missing in
1365 * process page-tables later.
1366 */
1367 panic("Failed to pre-allocate %s pages for vmalloc area\n", lvl);
1368 }
1369
arch_mm_preinit(void)1370 void __init arch_mm_preinit(void)
1371 {
1372 pci_iommu_alloc();
1373 }
1374
mem_init(void)1375 void __init mem_init(void)
1376 {
1377 /* clear_bss() already clear the empty_zero_page */
1378
1379 after_bootmem = 1;
1380 x86_init.hyper.init_after_bootmem();
1381
1382 /*
1383 * Must be done after boot memory is put on freelist, because here we
1384 * might set fields in deferred struct pages that have not yet been
1385 * initialized, and memblock_free_all() initializes all the reserved
1386 * deferred pages for us.
1387 */
1388 register_page_bootmem_info();
1389
1390 /* Register memory areas for /proc/kcore */
1391 if (get_gate_vma(&init_mm))
1392 kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR, PAGE_SIZE, KCORE_USER);
1393
1394 preallocate_vmalloc_pages();
1395 }
1396
1397 int kernel_set_to_readonly;
1398
mark_rodata_ro(void)1399 void mark_rodata_ro(void)
1400 {
1401 unsigned long start = PFN_ALIGN(_text);
1402 unsigned long rodata_start = PFN_ALIGN(__start_rodata);
1403 unsigned long end = (unsigned long)__end_rodata_hpage_align;
1404 unsigned long text_end = PFN_ALIGN(_etext);
1405 unsigned long rodata_end = PFN_ALIGN(__end_rodata);
1406 unsigned long all_end;
1407
1408 printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
1409 (end - start) >> 10);
1410 set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1411
1412 kernel_set_to_readonly = 1;
1413
1414 /*
1415 * The rodata/data/bss/brk section (but not the kernel text!)
1416 * should also be not-executable.
1417 *
1418 * We align all_end to PMD_SIZE because the existing mapping
1419 * is a full PMD. If we would align _brk_end to PAGE_SIZE we
1420 * split the PMD and the reminder between _brk_end and the end
1421 * of the PMD will remain mapped executable.
1422 *
1423 * Any PMD which was setup after the one which covers _brk_end
1424 * has been zapped already via cleanup_highmem().
1425 */
1426 all_end = roundup((unsigned long)_brk_end, PMD_SIZE);
1427 set_memory_nx(text_end, (all_end - text_end) >> PAGE_SHIFT);
1428
1429 set_ftrace_ops_ro();
1430
1431 #ifdef CONFIG_CPA_DEBUG
1432 printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
1433 set_memory_rw(start, (end-start) >> PAGE_SHIFT);
1434
1435 printk(KERN_INFO "Testing CPA: again\n");
1436 set_memory_ro(start, (end-start) >> PAGE_SHIFT);
1437 #endif
1438
1439 free_kernel_image_pages("unused kernel image (text/rodata gap)",
1440 (void *)text_end, (void *)rodata_start);
1441 free_kernel_image_pages("unused kernel image (rodata/data gap)",
1442 (void *)rodata_end, (void *)_sdata);
1443 }
1444
1445 /*
1446 * Block size is the minimum amount of memory which can be hotplugged or
1447 * hotremoved. It must be power of two and must be equal or larger than
1448 * MIN_MEMORY_BLOCK_SIZE.
1449 */
1450 #define MAX_BLOCK_SIZE (2UL << 30)
1451
1452 /* Amount of ram needed to start using large blocks */
1453 #define MEM_SIZE_FOR_LARGE_BLOCK (64UL << 30)
1454
1455 /* Adjustable memory block size */
1456 static unsigned long set_memory_block_size;
set_memory_block_size_order(unsigned int order)1457 int __init set_memory_block_size_order(unsigned int order)
1458 {
1459 unsigned long size = 1UL << order;
1460
1461 if (size > MEM_SIZE_FOR_LARGE_BLOCK || size < MIN_MEMORY_BLOCK_SIZE)
1462 return -EINVAL;
1463
1464 set_memory_block_size = size;
1465 return 0;
1466 }
1467
probe_memory_block_size(void)1468 static unsigned long probe_memory_block_size(void)
1469 {
1470 unsigned long boot_mem_end = max_pfn << PAGE_SHIFT;
1471 unsigned long bz;
1472
1473 /* If memory block size has been set, then use it */
1474 bz = set_memory_block_size;
1475 if (bz)
1476 goto done;
1477
1478 /* Use regular block if RAM is smaller than MEM_SIZE_FOR_LARGE_BLOCK */
1479 if (boot_mem_end < MEM_SIZE_FOR_LARGE_BLOCK) {
1480 bz = MIN_MEMORY_BLOCK_SIZE;
1481 goto done;
1482 }
1483
1484 /*
1485 * When hotplug alignment is not a concern, maximize blocksize
1486 * to minimize overhead. Otherwise, align to the lesser of advice
1487 * alignment and end of memory alignment.
1488 */
1489 bz = memory_block_advised_max_size();
1490 if (!bz) {
1491 bz = MAX_BLOCK_SIZE;
1492 if (!cpu_feature_enabled(X86_FEATURE_HYPERVISOR))
1493 goto done;
1494 } else {
1495 bz = max(min(bz, MAX_BLOCK_SIZE), MIN_MEMORY_BLOCK_SIZE);
1496 }
1497
1498 /* Find the largest allowed block size that aligns to memory end */
1499 for (; bz > MIN_MEMORY_BLOCK_SIZE; bz >>= 1) {
1500 if (IS_ALIGNED(boot_mem_end, bz))
1501 break;
1502 }
1503 done:
1504 pr_info("x86/mm: Memory block size: %ldMB\n", bz >> 20);
1505
1506 return bz;
1507 }
1508
1509 static unsigned long memory_block_size_probed;
memory_block_size_bytes(void)1510 unsigned long memory_block_size_bytes(void)
1511 {
1512 if (!memory_block_size_probed)
1513 memory_block_size_probed = probe_memory_block_size();
1514
1515 return memory_block_size_probed;
1516 }
1517
1518 /*
1519 * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1520 */
1521 static long __meminitdata addr_start, addr_end;
1522 static void __meminitdata *p_start, *p_end;
1523 static int __meminitdata node_start;
1524
vmemmap_set_pmd(pmd_t * pmd,void * p,int node,unsigned long addr,unsigned long next)1525 void __meminit vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
1526 unsigned long addr, unsigned long next)
1527 {
1528 pte_t entry;
1529
1530 entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1531 PAGE_KERNEL_LARGE);
1532 set_pmd(pmd, __pmd(pte_val(entry)));
1533
1534 /* check to see if we have contiguous blocks */
1535 if (p_end != p || node_start != node) {
1536 if (p_start)
1537 pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1538 addr_start, addr_end-1, p_start, p_end-1, node_start);
1539 addr_start = addr;
1540 node_start = node;
1541 p_start = p;
1542 }
1543
1544 addr_end = addr + PMD_SIZE;
1545 p_end = p + PMD_SIZE;
1546
1547 if (!IS_ALIGNED(addr, PMD_SIZE) ||
1548 !IS_ALIGNED(next, PMD_SIZE))
1549 vmemmap_use_new_sub_pmd(addr, next);
1550 }
1551
vmemmap_check_pmd(pmd_t * pmd,int node,unsigned long addr,unsigned long next)1552 int __meminit vmemmap_check_pmd(pmd_t *pmd, int node,
1553 unsigned long addr, unsigned long next)
1554 {
1555 int large = pmd_leaf(*pmd);
1556
1557 if (pmd_leaf(*pmd)) {
1558 vmemmap_verify((pte_t *)pmd, node, addr, next);
1559 vmemmap_use_sub_pmd(addr, next);
1560 }
1561
1562 return large;
1563 }
1564
vmemmap_populate(unsigned long start,unsigned long end,int node,struct vmem_altmap * altmap)1565 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
1566 struct vmem_altmap *altmap)
1567 {
1568 int err;
1569
1570 VM_BUG_ON(!PAGE_ALIGNED(start));
1571 VM_BUG_ON(!PAGE_ALIGNED(end));
1572
1573 if (end - start < PAGES_PER_SECTION * sizeof(struct page))
1574 err = vmemmap_populate_basepages(start, end, node, NULL);
1575 else if (boot_cpu_has(X86_FEATURE_PSE))
1576 err = vmemmap_populate_hugepages(start, end, node, altmap);
1577 else if (altmap) {
1578 pr_err_once("%s: no cpu support for altmap allocations\n",
1579 __func__);
1580 err = -ENOMEM;
1581 } else
1582 err = vmemmap_populate_basepages(start, end, node, NULL);
1583 if (!err)
1584 sync_global_pgds(start, end - 1);
1585 return err;
1586 }
1587
1588 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
register_page_bootmem_memmap(unsigned long section_nr,struct page * start_page,unsigned long nr_pages)1589 void register_page_bootmem_memmap(unsigned long section_nr,
1590 struct page *start_page, unsigned long nr_pages)
1591 {
1592 unsigned long addr = (unsigned long)start_page;
1593 unsigned long end = (unsigned long)(start_page + nr_pages);
1594 unsigned long next;
1595 pgd_t *pgd;
1596 p4d_t *p4d;
1597 pud_t *pud;
1598 pmd_t *pmd;
1599 unsigned int nr_pmd_pages;
1600 struct page *page;
1601
1602 for (; addr < end; addr = next) {
1603 pte_t *pte = NULL;
1604
1605 pgd = pgd_offset_k(addr);
1606 if (pgd_none(*pgd)) {
1607 next = (addr + PAGE_SIZE) & PAGE_MASK;
1608 continue;
1609 }
1610 get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO);
1611
1612 p4d = p4d_offset(pgd, addr);
1613 if (p4d_none(*p4d)) {
1614 next = (addr + PAGE_SIZE) & PAGE_MASK;
1615 continue;
1616 }
1617 get_page_bootmem(section_nr, p4d_page(*p4d), MIX_SECTION_INFO);
1618
1619 pud = pud_offset(p4d, addr);
1620 if (pud_none(*pud)) {
1621 next = (addr + PAGE_SIZE) & PAGE_MASK;
1622 continue;
1623 }
1624 get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
1625
1626 pmd = pmd_offset(pud, addr);
1627 if (pmd_none(*pmd)) {
1628 next = (addr + PAGE_SIZE) & PAGE_MASK;
1629 continue;
1630 }
1631
1632 if (!boot_cpu_has(X86_FEATURE_PSE) || !pmd_leaf(*pmd)) {
1633 next = (addr + PAGE_SIZE) & PAGE_MASK;
1634 get_page_bootmem(section_nr, pmd_page(*pmd),
1635 MIX_SECTION_INFO);
1636
1637 pte = pte_offset_kernel(pmd, addr);
1638 if (pte_none(*pte))
1639 continue;
1640 get_page_bootmem(section_nr, pte_page(*pte),
1641 SECTION_INFO);
1642 } else {
1643 next = pmd_addr_end(addr, end);
1644 nr_pmd_pages = (next - addr) >> PAGE_SHIFT;
1645 page = pmd_page(*pmd);
1646 while (nr_pmd_pages--)
1647 get_page_bootmem(section_nr, page++,
1648 SECTION_INFO);
1649 }
1650 }
1651 }
1652 #endif
1653
vmemmap_populate_print_last(void)1654 void __meminit vmemmap_populate_print_last(void)
1655 {
1656 if (p_start) {
1657 pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1658 addr_start, addr_end-1, p_start, p_end-1, node_start);
1659 p_start = NULL;
1660 p_end = NULL;
1661 node_start = 0;
1662 }
1663 }
1664