1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2009, Microsoft Corporation. 4 * 5 * Authors: 6 * Haiyang Zhang <haiyangz@microsoft.com> 7 * Hank Janssen <hjanssen@microsoft.com> 8 * K. Y. Srinivasan <kys@microsoft.com> 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/wait.h> 13 #include <linux/sched.h> 14 #include <linux/completion.h> 15 #include <linux/string.h> 16 #include <linux/mm.h> 17 #include <linux/delay.h> 18 #include <linux/init.h> 19 #include <linux/slab.h> 20 #include <linux/module.h> 21 #include <linux/device.h> 22 #include <linux/hyperv.h> 23 #include <linux/blkdev.h> 24 #include <linux/dma-mapping.h> 25 26 #include <scsi/scsi.h> 27 #include <scsi/scsi_cmnd.h> 28 #include <scsi/scsi_host.h> 29 #include <scsi/scsi_device.h> 30 #include <scsi/scsi_tcq.h> 31 #include <scsi/scsi_eh.h> 32 #include <scsi/scsi_devinfo.h> 33 #include <scsi/scsi_dbg.h> 34 #include <scsi/scsi_transport_fc.h> 35 #include <scsi/scsi_transport.h> 36 37 /* 38 * All wire protocol details (storage protocol between the guest and the host) 39 * are consolidated here. 40 * 41 * Begin protocol definitions. 42 */ 43 44 /* 45 * Version history: 46 * V1 Beta: 0.1 47 * V1 RC < 2008/1/31: 1.0 48 * V1 RC > 2008/1/31: 2.0 49 * Win7: 4.2 50 * Win8: 5.1 51 * Win8.1: 6.0 52 * Win10: 6.2 53 */ 54 55 #define VMSTOR_PROTO_VERSION(MAJOR_, MINOR_) ((((MAJOR_) & 0xff) << 8) | \ 56 (((MINOR_) & 0xff))) 57 #define VMSTOR_PROTO_VERSION_WIN6 VMSTOR_PROTO_VERSION(2, 0) 58 #define VMSTOR_PROTO_VERSION_WIN7 VMSTOR_PROTO_VERSION(4, 2) 59 #define VMSTOR_PROTO_VERSION_WIN8 VMSTOR_PROTO_VERSION(5, 1) 60 #define VMSTOR_PROTO_VERSION_WIN8_1 VMSTOR_PROTO_VERSION(6, 0) 61 #define VMSTOR_PROTO_VERSION_WIN10 VMSTOR_PROTO_VERSION(6, 2) 62 63 /* channel callback timeout in ms */ 64 #define CALLBACK_TIMEOUT 2 65 66 /* Packet structure describing virtual storage requests. */ 67 enum vstor_packet_operation { 68 VSTOR_OPERATION_COMPLETE_IO = 1, 69 VSTOR_OPERATION_REMOVE_DEVICE = 2, 70 VSTOR_OPERATION_EXECUTE_SRB = 3, 71 VSTOR_OPERATION_RESET_LUN = 4, 72 VSTOR_OPERATION_RESET_ADAPTER = 5, 73 VSTOR_OPERATION_RESET_BUS = 6, 74 VSTOR_OPERATION_BEGIN_INITIALIZATION = 7, 75 VSTOR_OPERATION_END_INITIALIZATION = 8, 76 VSTOR_OPERATION_QUERY_PROTOCOL_VERSION = 9, 77 VSTOR_OPERATION_QUERY_PROPERTIES = 10, 78 VSTOR_OPERATION_ENUMERATE_BUS = 11, 79 VSTOR_OPERATION_FCHBA_DATA = 12, 80 VSTOR_OPERATION_CREATE_SUB_CHANNELS = 13, 81 VSTOR_OPERATION_MAXIMUM = 13 82 }; 83 84 /* 85 * WWN packet for Fibre Channel HBA 86 */ 87 88 struct hv_fc_wwn_packet { 89 u8 primary_active; 90 u8 reserved1[3]; 91 u8 primary_port_wwn[8]; 92 u8 primary_node_wwn[8]; 93 u8 secondary_port_wwn[8]; 94 u8 secondary_node_wwn[8]; 95 }; 96 97 98 99 /* 100 * SRB Flag Bits 101 */ 102 103 #define SRB_FLAGS_QUEUE_ACTION_ENABLE 0x00000002 104 #define SRB_FLAGS_DISABLE_DISCONNECT 0x00000004 105 #define SRB_FLAGS_DISABLE_SYNCH_TRANSFER 0x00000008 106 #define SRB_FLAGS_BYPASS_FROZEN_QUEUE 0x00000010 107 #define SRB_FLAGS_DISABLE_AUTOSENSE 0x00000020 108 #define SRB_FLAGS_DATA_IN 0x00000040 109 #define SRB_FLAGS_DATA_OUT 0x00000080 110 #define SRB_FLAGS_NO_DATA_TRANSFER 0x00000000 111 #define SRB_FLAGS_UNSPECIFIED_DIRECTION (SRB_FLAGS_DATA_IN | SRB_FLAGS_DATA_OUT) 112 #define SRB_FLAGS_NO_QUEUE_FREEZE 0x00000100 113 #define SRB_FLAGS_ADAPTER_CACHE_ENABLE 0x00000200 114 #define SRB_FLAGS_FREE_SENSE_BUFFER 0x00000400 115 116 /* 117 * This flag indicates the request is part of the workflow for processing a D3. 118 */ 119 #define SRB_FLAGS_D3_PROCESSING 0x00000800 120 #define SRB_FLAGS_IS_ACTIVE 0x00010000 121 #define SRB_FLAGS_ALLOCATED_FROM_ZONE 0x00020000 122 #define SRB_FLAGS_SGLIST_FROM_POOL 0x00040000 123 #define SRB_FLAGS_BYPASS_LOCKED_QUEUE 0x00080000 124 #define SRB_FLAGS_NO_KEEP_AWAKE 0x00100000 125 #define SRB_FLAGS_PORT_DRIVER_ALLOCSENSE 0x00200000 126 #define SRB_FLAGS_PORT_DRIVER_SENSEHASPORT 0x00400000 127 #define SRB_FLAGS_DONT_START_NEXT_PACKET 0x00800000 128 #define SRB_FLAGS_PORT_DRIVER_RESERVED 0x0F000000 129 #define SRB_FLAGS_CLASS_DRIVER_RESERVED 0xF0000000 130 131 #define SP_UNTAGGED ((unsigned char) ~0) 132 #define SRB_SIMPLE_TAG_REQUEST 0x20 133 134 /* 135 * Platform neutral description of a scsi request - 136 * this remains the same across the write regardless of 32/64 bit 137 * note: it's patterned off the SCSI_PASS_THROUGH structure 138 */ 139 #define STORVSC_MAX_CMD_LEN 0x10 140 141 /* Sense buffer size is the same for all versions since Windows 8 */ 142 #define STORVSC_SENSE_BUFFER_SIZE 0x14 143 #define STORVSC_MAX_BUF_LEN_WITH_PADDING 0x14 144 145 /* 146 * The storage protocol version is determined during the 147 * initial exchange with the host. It will indicate which 148 * storage functionality is available in the host. 149 */ 150 static int vmstor_proto_version; 151 152 static bool hv_dev_is_fc(struct hv_device *hv_dev); 153 154 #define STORVSC_LOGGING_NONE 0 155 #define STORVSC_LOGGING_ERROR 1 156 #define STORVSC_LOGGING_WARN 2 157 158 static int logging_level = STORVSC_LOGGING_ERROR; 159 module_param(logging_level, int, S_IRUGO|S_IWUSR); 160 MODULE_PARM_DESC(logging_level, 161 "Logging level, 0 - None, 1 - Error (default), 2 - Warning."); 162 163 static inline bool do_logging(int level) 164 { 165 return logging_level >= level; 166 } 167 168 #define storvsc_log(dev, level, fmt, ...) \ 169 do { \ 170 if (do_logging(level)) \ 171 dev_warn(&(dev)->device, fmt, ##__VA_ARGS__); \ 172 } while (0) 173 174 #define storvsc_log_ratelimited(dev, level, fmt, ...) \ 175 do { \ 176 if (do_logging(level)) \ 177 dev_warn_ratelimited(&(dev)->device, fmt, ##__VA_ARGS__); \ 178 } while (0) 179 180 struct vmscsi_request { 181 u16 length; 182 u8 srb_status; 183 u8 scsi_status; 184 185 u8 port_number; 186 u8 path_id; 187 u8 target_id; 188 u8 lun; 189 190 u8 cdb_length; 191 u8 sense_info_length; 192 u8 data_in; 193 u8 reserved; 194 195 u32 data_transfer_length; 196 197 union { 198 u8 cdb[STORVSC_MAX_CMD_LEN]; 199 u8 sense_data[STORVSC_SENSE_BUFFER_SIZE]; 200 u8 reserved_array[STORVSC_MAX_BUF_LEN_WITH_PADDING]; 201 }; 202 /* 203 * The following was added in win8. 204 */ 205 u16 reserve; 206 u8 queue_tag; 207 u8 queue_action; 208 u32 srb_flags; 209 u32 time_out_value; 210 u32 queue_sort_ey; 211 212 } __attribute((packed)); 213 214 /* 215 * The list of windows version in order of preference. 216 */ 217 218 static const int protocol_version[] = { 219 VMSTOR_PROTO_VERSION_WIN10, 220 VMSTOR_PROTO_VERSION_WIN8_1, 221 VMSTOR_PROTO_VERSION_WIN8, 222 }; 223 224 225 /* 226 * This structure is sent during the initialization phase to get the different 227 * properties of the channel. 228 */ 229 230 #define STORAGE_CHANNEL_SUPPORTS_MULTI_CHANNEL 0x1 231 232 struct vmstorage_channel_properties { 233 u32 reserved; 234 u16 max_channel_cnt; 235 u16 reserved1; 236 237 u32 flags; 238 u32 max_transfer_bytes; 239 240 u64 reserved2; 241 } __packed; 242 243 /* This structure is sent during the storage protocol negotiations. */ 244 struct vmstorage_protocol_version { 245 /* Major (MSW) and minor (LSW) version numbers. */ 246 u16 major_minor; 247 248 /* 249 * Revision number is auto-incremented whenever this file is changed 250 * (See FILL_VMSTOR_REVISION macro above). Mismatch does not 251 * definitely indicate incompatibility--but it does indicate mismatched 252 * builds. 253 * This is only used on the windows side. Just set it to 0. 254 */ 255 u16 revision; 256 } __packed; 257 258 /* Channel Property Flags */ 259 #define STORAGE_CHANNEL_REMOVABLE_FLAG 0x1 260 #define STORAGE_CHANNEL_EMULATED_IDE_FLAG 0x2 261 262 struct vstor_packet { 263 /* Requested operation type */ 264 enum vstor_packet_operation operation; 265 266 /* Flags - see below for values */ 267 u32 flags; 268 269 /* Status of the request returned from the server side. */ 270 u32 status; 271 272 /* Data payload area */ 273 union { 274 /* 275 * Structure used to forward SCSI commands from the 276 * client to the server. 277 */ 278 struct vmscsi_request vm_srb; 279 280 /* Structure used to query channel properties. */ 281 struct vmstorage_channel_properties storage_channel_properties; 282 283 /* Used during version negotiations. */ 284 struct vmstorage_protocol_version version; 285 286 /* Fibre channel address packet */ 287 struct hv_fc_wwn_packet wwn_packet; 288 289 /* Number of sub-channels to create */ 290 u16 sub_channel_count; 291 292 /* This will be the maximum of the union members */ 293 u8 buffer[0x34]; 294 }; 295 } __packed; 296 297 /* 298 * Packet Flags: 299 * 300 * This flag indicates that the server should send back a completion for this 301 * packet. 302 */ 303 304 #define REQUEST_COMPLETION_FLAG 0x1 305 306 /* Matches Windows-end */ 307 enum storvsc_request_type { 308 WRITE_TYPE = 0, 309 READ_TYPE, 310 UNKNOWN_TYPE, 311 }; 312 313 /* 314 * SRB status codes and masks. In the 8-bit field, the two high order bits 315 * are flags, while the remaining 6 bits are an integer status code. The 316 * definitions here include only the subset of the integer status codes that 317 * are tested for in this driver. 318 */ 319 #define SRB_STATUS_AUTOSENSE_VALID 0x80 320 #define SRB_STATUS_QUEUE_FROZEN 0x40 321 322 /* SRB status integer codes */ 323 #define SRB_STATUS_SUCCESS 0x01 324 #define SRB_STATUS_ABORTED 0x02 325 #define SRB_STATUS_ERROR 0x04 326 #define SRB_STATUS_INVALID_REQUEST 0x06 327 #define SRB_STATUS_TIMEOUT 0x09 328 #define SRB_STATUS_SELECTION_TIMEOUT 0x0A 329 #define SRB_STATUS_BUS_RESET 0x0E 330 #define SRB_STATUS_DATA_OVERRUN 0x12 331 #define SRB_STATUS_INVALID_LUN 0x20 332 #define SRB_STATUS_INTERNAL_ERROR 0x30 333 334 #define SRB_STATUS(status) \ 335 (status & ~(SRB_STATUS_AUTOSENSE_VALID | SRB_STATUS_QUEUE_FROZEN)) 336 /* 337 * This is the end of Protocol specific defines. 338 */ 339 340 static int storvsc_ringbuffer_size = (128 * 1024); 341 static int aligned_ringbuffer_size; 342 static u32 max_outstanding_req_per_channel; 343 static int storvsc_change_queue_depth(struct scsi_device *sdev, int queue_depth); 344 345 static int storvsc_vcpus_per_sub_channel = 4; 346 static unsigned int storvsc_max_hw_queues; 347 348 module_param(storvsc_ringbuffer_size, int, S_IRUGO); 349 MODULE_PARM_DESC(storvsc_ringbuffer_size, "Ring buffer size (bytes)"); 350 351 module_param(storvsc_max_hw_queues, uint, 0644); 352 MODULE_PARM_DESC(storvsc_max_hw_queues, "Maximum number of hardware queues"); 353 354 module_param(storvsc_vcpus_per_sub_channel, int, S_IRUGO); 355 MODULE_PARM_DESC(storvsc_vcpus_per_sub_channel, "Ratio of VCPUs to subchannels"); 356 357 static int ring_avail_percent_lowater = 10; 358 module_param(ring_avail_percent_lowater, int, S_IRUGO); 359 MODULE_PARM_DESC(ring_avail_percent_lowater, 360 "Select a channel if available ring size > this in percent"); 361 362 /* 363 * Timeout in seconds for all devices managed by this driver. 364 */ 365 static const int storvsc_timeout = 180; 366 367 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 368 static struct scsi_transport_template *fc_transport_template; 369 #endif 370 371 static struct scsi_host_template scsi_driver; 372 static void storvsc_on_channel_callback(void *context); 373 374 #define STORVSC_MAX_LUNS_PER_TARGET 255 375 #define STORVSC_MAX_TARGETS 2 376 #define STORVSC_MAX_CHANNELS 8 377 378 #define STORVSC_FC_MAX_LUNS_PER_TARGET 255 379 #define STORVSC_FC_MAX_TARGETS 128 380 #define STORVSC_FC_MAX_CHANNELS 8 381 #define STORVSC_FC_MAX_XFER_SIZE ((u32)(512 * 1024)) 382 383 #define STORVSC_IDE_MAX_LUNS_PER_TARGET 64 384 #define STORVSC_IDE_MAX_TARGETS 1 385 #define STORVSC_IDE_MAX_CHANNELS 1 386 387 /* 388 * Upper bound on the size of a storvsc packet. 389 */ 390 #define STORVSC_MAX_PKT_SIZE (sizeof(struct vmpacket_descriptor) +\ 391 sizeof(struct vstor_packet)) 392 393 struct storvsc_cmd_request { 394 struct scsi_cmnd *cmd; 395 396 struct hv_device *device; 397 398 /* Synchronize the request/response if needed */ 399 struct completion wait_event; 400 401 struct vmbus_channel_packet_multipage_buffer mpb; 402 struct vmbus_packet_mpb_array *payload; 403 u32 payload_sz; 404 405 struct vstor_packet vstor_packet; 406 }; 407 408 409 /* A storvsc device is a device object that contains a vmbus channel */ 410 struct storvsc_device { 411 struct hv_device *device; 412 413 bool destroy; 414 bool drain_notify; 415 atomic_t num_outstanding_req; 416 struct Scsi_Host *host; 417 418 wait_queue_head_t waiting_to_drain; 419 420 /* 421 * Each unique Port/Path/Target represents 1 channel ie scsi 422 * controller. In reality, the pathid, targetid is always 0 423 * and the port is set by us 424 */ 425 unsigned int port_number; 426 unsigned char path_id; 427 unsigned char target_id; 428 429 /* 430 * Max I/O, the device can support. 431 */ 432 u32 max_transfer_bytes; 433 /* 434 * Number of sub-channels we will open. 435 */ 436 u16 num_sc; 437 struct vmbus_channel **stor_chns; 438 /* 439 * Mask of CPUs bound to subchannels. 440 */ 441 struct cpumask alloced_cpus; 442 /* 443 * Serializes modifications of stor_chns[] from storvsc_do_io() 444 * and storvsc_change_target_cpu(). 445 */ 446 spinlock_t lock; 447 /* Used for vsc/vsp channel reset process */ 448 struct storvsc_cmd_request init_request; 449 struct storvsc_cmd_request reset_request; 450 /* 451 * Currently active port and node names for FC devices. 452 */ 453 u64 node_name; 454 u64 port_name; 455 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 456 struct fc_rport *rport; 457 #endif 458 }; 459 460 struct hv_host_device { 461 struct hv_device *dev; 462 unsigned int port; 463 unsigned char path; 464 unsigned char target; 465 struct workqueue_struct *handle_error_wq; 466 struct work_struct host_scan_work; 467 struct Scsi_Host *host; 468 }; 469 470 struct storvsc_scan_work { 471 struct work_struct work; 472 struct Scsi_Host *host; 473 u8 lun; 474 u8 tgt_id; 475 }; 476 477 static void storvsc_device_scan(struct work_struct *work) 478 { 479 struct storvsc_scan_work *wrk; 480 struct scsi_device *sdev; 481 482 wrk = container_of(work, struct storvsc_scan_work, work); 483 484 sdev = scsi_device_lookup(wrk->host, 0, wrk->tgt_id, wrk->lun); 485 if (!sdev) 486 goto done; 487 scsi_rescan_device(sdev); 488 scsi_device_put(sdev); 489 490 done: 491 kfree(wrk); 492 } 493 494 static void storvsc_host_scan(struct work_struct *work) 495 { 496 struct Scsi_Host *host; 497 struct scsi_device *sdev; 498 struct hv_host_device *host_device = 499 container_of(work, struct hv_host_device, host_scan_work); 500 501 host = host_device->host; 502 /* 503 * Before scanning the host, first check to see if any of the 504 * currently known devices have been hot removed. We issue a 505 * "unit ready" command against all currently known devices. 506 * This I/O will result in an error for devices that have been 507 * removed. As part of handling the I/O error, we remove the device. 508 * 509 * When a LUN is added or removed, the host sends us a signal to 510 * scan the host. Thus we are forced to discover the LUNs that 511 * may have been removed this way. 512 */ 513 mutex_lock(&host->scan_mutex); 514 shost_for_each_device(sdev, host) 515 scsi_test_unit_ready(sdev, 1, 1, NULL); 516 mutex_unlock(&host->scan_mutex); 517 /* 518 * Now scan the host to discover LUNs that may have been added. 519 */ 520 scsi_scan_host(host); 521 } 522 523 static void storvsc_remove_lun(struct work_struct *work) 524 { 525 struct storvsc_scan_work *wrk; 526 struct scsi_device *sdev; 527 528 wrk = container_of(work, struct storvsc_scan_work, work); 529 if (!scsi_host_get(wrk->host)) 530 goto done; 531 532 sdev = scsi_device_lookup(wrk->host, 0, wrk->tgt_id, wrk->lun); 533 534 if (sdev) { 535 scsi_remove_device(sdev); 536 scsi_device_put(sdev); 537 } 538 scsi_host_put(wrk->host); 539 540 done: 541 kfree(wrk); 542 } 543 544 545 /* 546 * We can get incoming messages from the host that are not in response to 547 * messages that we have sent out. An example of this would be messages 548 * received by the guest to notify dynamic addition/removal of LUNs. To 549 * deal with potential race conditions where the driver may be in the 550 * midst of being unloaded when we might receive an unsolicited message 551 * from the host, we have implemented a mechanism to gurantee sequential 552 * consistency: 553 * 554 * 1) Once the device is marked as being destroyed, we will fail all 555 * outgoing messages. 556 * 2) We permit incoming messages when the device is being destroyed, 557 * only to properly account for messages already sent out. 558 */ 559 560 static inline struct storvsc_device *get_out_stor_device( 561 struct hv_device *device) 562 { 563 struct storvsc_device *stor_device; 564 565 stor_device = hv_get_drvdata(device); 566 567 if (stor_device && stor_device->destroy) 568 stor_device = NULL; 569 570 return stor_device; 571 } 572 573 574 static inline void storvsc_wait_to_drain(struct storvsc_device *dev) 575 { 576 dev->drain_notify = true; 577 wait_event(dev->waiting_to_drain, 578 atomic_read(&dev->num_outstanding_req) == 0); 579 dev->drain_notify = false; 580 } 581 582 static inline struct storvsc_device *get_in_stor_device( 583 struct hv_device *device) 584 { 585 struct storvsc_device *stor_device; 586 587 stor_device = hv_get_drvdata(device); 588 589 if (!stor_device) 590 goto get_in_err; 591 592 /* 593 * If the device is being destroyed; allow incoming 594 * traffic only to cleanup outstanding requests. 595 */ 596 597 if (stor_device->destroy && 598 (atomic_read(&stor_device->num_outstanding_req) == 0)) 599 stor_device = NULL; 600 601 get_in_err: 602 return stor_device; 603 604 } 605 606 static void storvsc_change_target_cpu(struct vmbus_channel *channel, u32 old, 607 u32 new) 608 { 609 struct storvsc_device *stor_device; 610 struct vmbus_channel *cur_chn; 611 bool old_is_alloced = false; 612 struct hv_device *device; 613 unsigned long flags; 614 int cpu; 615 616 device = channel->primary_channel ? 617 channel->primary_channel->device_obj 618 : channel->device_obj; 619 stor_device = get_out_stor_device(device); 620 if (!stor_device) 621 return; 622 623 /* See storvsc_do_io() -> get_og_chn(). */ 624 spin_lock_irqsave(&stor_device->lock, flags); 625 626 /* 627 * Determines if the storvsc device has other channels assigned to 628 * the "old" CPU to update the alloced_cpus mask and the stor_chns 629 * array. 630 */ 631 if (device->channel != channel && device->channel->target_cpu == old) { 632 cur_chn = device->channel; 633 old_is_alloced = true; 634 goto old_is_alloced; 635 } 636 list_for_each_entry(cur_chn, &device->channel->sc_list, sc_list) { 637 if (cur_chn == channel) 638 continue; 639 if (cur_chn->target_cpu == old) { 640 old_is_alloced = true; 641 goto old_is_alloced; 642 } 643 } 644 645 old_is_alloced: 646 if (old_is_alloced) 647 WRITE_ONCE(stor_device->stor_chns[old], cur_chn); 648 else 649 cpumask_clear_cpu(old, &stor_device->alloced_cpus); 650 651 /* "Flush" the stor_chns array. */ 652 for_each_possible_cpu(cpu) { 653 if (stor_device->stor_chns[cpu] && !cpumask_test_cpu( 654 cpu, &stor_device->alloced_cpus)) 655 WRITE_ONCE(stor_device->stor_chns[cpu], NULL); 656 } 657 658 WRITE_ONCE(stor_device->stor_chns[new], channel); 659 cpumask_set_cpu(new, &stor_device->alloced_cpus); 660 661 spin_unlock_irqrestore(&stor_device->lock, flags); 662 } 663 664 static u64 storvsc_next_request_id(struct vmbus_channel *channel, u64 rqst_addr) 665 { 666 struct storvsc_cmd_request *request = 667 (struct storvsc_cmd_request *)(unsigned long)rqst_addr; 668 669 if (rqst_addr == VMBUS_RQST_INIT) 670 return VMBUS_RQST_INIT; 671 if (rqst_addr == VMBUS_RQST_RESET) 672 return VMBUS_RQST_RESET; 673 674 /* 675 * Cannot return an ID of 0, which is reserved for an unsolicited 676 * message from Hyper-V. 677 */ 678 return (u64)blk_mq_unique_tag(scsi_cmd_to_rq(request->cmd)) + 1; 679 } 680 681 static void handle_sc_creation(struct vmbus_channel *new_sc) 682 { 683 struct hv_device *device = new_sc->primary_channel->device_obj; 684 struct device *dev = &device->device; 685 struct storvsc_device *stor_device; 686 struct vmstorage_channel_properties props; 687 int ret; 688 689 stor_device = get_out_stor_device(device); 690 if (!stor_device) 691 return; 692 693 memset(&props, 0, sizeof(struct vmstorage_channel_properties)); 694 new_sc->max_pkt_size = STORVSC_MAX_PKT_SIZE; 695 696 new_sc->next_request_id_callback = storvsc_next_request_id; 697 698 ret = vmbus_open(new_sc, 699 aligned_ringbuffer_size, 700 aligned_ringbuffer_size, 701 (void *)&props, 702 sizeof(struct vmstorage_channel_properties), 703 storvsc_on_channel_callback, new_sc); 704 705 /* In case vmbus_open() fails, we don't use the sub-channel. */ 706 if (ret != 0) { 707 dev_err(dev, "Failed to open sub-channel: err=%d\n", ret); 708 return; 709 } 710 711 new_sc->change_target_cpu_callback = storvsc_change_target_cpu; 712 713 /* Add the sub-channel to the array of available channels. */ 714 stor_device->stor_chns[new_sc->target_cpu] = new_sc; 715 cpumask_set_cpu(new_sc->target_cpu, &stor_device->alloced_cpus); 716 } 717 718 static void handle_multichannel_storage(struct hv_device *device, int max_chns) 719 { 720 struct device *dev = &device->device; 721 struct storvsc_device *stor_device; 722 int num_sc; 723 struct storvsc_cmd_request *request; 724 struct vstor_packet *vstor_packet; 725 int ret, t; 726 727 /* 728 * If the number of CPUs is artificially restricted, such as 729 * with maxcpus=1 on the kernel boot line, Hyper-V could offer 730 * sub-channels >= the number of CPUs. These sub-channels 731 * should not be created. The primary channel is already created 732 * and assigned to one CPU, so check against # CPUs - 1. 733 */ 734 num_sc = min((int)(num_online_cpus() - 1), max_chns); 735 if (!num_sc) 736 return; 737 738 stor_device = get_out_stor_device(device); 739 if (!stor_device) 740 return; 741 742 stor_device->num_sc = num_sc; 743 request = &stor_device->init_request; 744 vstor_packet = &request->vstor_packet; 745 746 /* 747 * Establish a handler for dealing with subchannels. 748 */ 749 vmbus_set_sc_create_callback(device->channel, handle_sc_creation); 750 751 /* 752 * Request the host to create sub-channels. 753 */ 754 memset(request, 0, sizeof(struct storvsc_cmd_request)); 755 init_completion(&request->wait_event); 756 vstor_packet->operation = VSTOR_OPERATION_CREATE_SUB_CHANNELS; 757 vstor_packet->flags = REQUEST_COMPLETION_FLAG; 758 vstor_packet->sub_channel_count = num_sc; 759 760 ret = vmbus_sendpacket(device->channel, vstor_packet, 761 sizeof(struct vstor_packet), 762 VMBUS_RQST_INIT, 763 VM_PKT_DATA_INBAND, 764 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 765 766 if (ret != 0) { 767 dev_err(dev, "Failed to create sub-channel: err=%d\n", ret); 768 return; 769 } 770 771 t = wait_for_completion_timeout(&request->wait_event, storvsc_timeout * HZ); 772 if (t == 0) { 773 dev_err(dev, "Failed to create sub-channel: timed out\n"); 774 return; 775 } 776 777 if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO || 778 vstor_packet->status != 0) { 779 dev_err(dev, "Failed to create sub-channel: op=%d, host=0x%x\n", 780 vstor_packet->operation, vstor_packet->status); 781 return; 782 } 783 784 /* 785 * We need to do nothing here, because vmbus_process_offer() 786 * invokes channel->sc_creation_callback, which will open and use 787 * the sub-channel(s). 788 */ 789 } 790 791 static void cache_wwn(struct storvsc_device *stor_device, 792 struct vstor_packet *vstor_packet) 793 { 794 /* 795 * Cache the currently active port and node ww names. 796 */ 797 if (vstor_packet->wwn_packet.primary_active) { 798 stor_device->node_name = 799 wwn_to_u64(vstor_packet->wwn_packet.primary_node_wwn); 800 stor_device->port_name = 801 wwn_to_u64(vstor_packet->wwn_packet.primary_port_wwn); 802 } else { 803 stor_device->node_name = 804 wwn_to_u64(vstor_packet->wwn_packet.secondary_node_wwn); 805 stor_device->port_name = 806 wwn_to_u64(vstor_packet->wwn_packet.secondary_port_wwn); 807 } 808 } 809 810 811 static int storvsc_execute_vstor_op(struct hv_device *device, 812 struct storvsc_cmd_request *request, 813 bool status_check) 814 { 815 struct storvsc_device *stor_device; 816 struct vstor_packet *vstor_packet; 817 int ret, t; 818 819 stor_device = get_out_stor_device(device); 820 if (!stor_device) 821 return -ENODEV; 822 823 vstor_packet = &request->vstor_packet; 824 825 init_completion(&request->wait_event); 826 vstor_packet->flags = REQUEST_COMPLETION_FLAG; 827 828 ret = vmbus_sendpacket(device->channel, vstor_packet, 829 sizeof(struct vstor_packet), 830 VMBUS_RQST_INIT, 831 VM_PKT_DATA_INBAND, 832 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 833 if (ret != 0) 834 return ret; 835 836 t = wait_for_completion_timeout(&request->wait_event, storvsc_timeout * HZ); 837 if (t == 0) 838 return -ETIMEDOUT; 839 840 if (!status_check) 841 return ret; 842 843 if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO || 844 vstor_packet->status != 0) 845 return -EINVAL; 846 847 return ret; 848 } 849 850 static int storvsc_channel_init(struct hv_device *device, bool is_fc) 851 { 852 struct storvsc_device *stor_device; 853 struct storvsc_cmd_request *request; 854 struct vstor_packet *vstor_packet; 855 int ret, i; 856 int max_chns; 857 bool process_sub_channels = false; 858 859 stor_device = get_out_stor_device(device); 860 if (!stor_device) 861 return -ENODEV; 862 863 request = &stor_device->init_request; 864 vstor_packet = &request->vstor_packet; 865 866 /* 867 * Now, initiate the vsc/vsp initialization protocol on the open 868 * channel 869 */ 870 memset(request, 0, sizeof(struct storvsc_cmd_request)); 871 vstor_packet->operation = VSTOR_OPERATION_BEGIN_INITIALIZATION; 872 ret = storvsc_execute_vstor_op(device, request, true); 873 if (ret) 874 return ret; 875 /* 876 * Query host supported protocol version. 877 */ 878 879 for (i = 0; i < ARRAY_SIZE(protocol_version); i++) { 880 /* reuse the packet for version range supported */ 881 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 882 vstor_packet->operation = 883 VSTOR_OPERATION_QUERY_PROTOCOL_VERSION; 884 885 vstor_packet->version.major_minor = protocol_version[i]; 886 887 /* 888 * The revision number is only used in Windows; set it to 0. 889 */ 890 vstor_packet->version.revision = 0; 891 ret = storvsc_execute_vstor_op(device, request, false); 892 if (ret != 0) 893 return ret; 894 895 if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO) 896 return -EINVAL; 897 898 if (vstor_packet->status == 0) { 899 vmstor_proto_version = protocol_version[i]; 900 901 break; 902 } 903 } 904 905 if (vstor_packet->status != 0) { 906 dev_err(&device->device, "Obsolete Hyper-V version\n"); 907 return -EINVAL; 908 } 909 910 911 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 912 vstor_packet->operation = VSTOR_OPERATION_QUERY_PROPERTIES; 913 ret = storvsc_execute_vstor_op(device, request, true); 914 if (ret != 0) 915 return ret; 916 917 /* 918 * Check to see if multi-channel support is there. 919 * Hosts that implement protocol version of 5.1 and above 920 * support multi-channel. 921 */ 922 max_chns = vstor_packet->storage_channel_properties.max_channel_cnt; 923 924 /* 925 * Allocate state to manage the sub-channels. 926 * We allocate an array based on the number of CPU ids. This array 927 * is initially sparsely populated for the CPUs assigned to channels: 928 * primary + sub-channels. As I/Os are initiated by different CPUs, 929 * the slots for all online CPUs are populated to evenly distribute 930 * the load across all channels. 931 */ 932 stor_device->stor_chns = kcalloc(nr_cpu_ids, sizeof(void *), 933 GFP_KERNEL); 934 if (stor_device->stor_chns == NULL) 935 return -ENOMEM; 936 937 device->channel->change_target_cpu_callback = storvsc_change_target_cpu; 938 939 stor_device->stor_chns[device->channel->target_cpu] = device->channel; 940 cpumask_set_cpu(device->channel->target_cpu, 941 &stor_device->alloced_cpus); 942 943 if (vstor_packet->storage_channel_properties.flags & 944 STORAGE_CHANNEL_SUPPORTS_MULTI_CHANNEL) 945 process_sub_channels = true; 946 947 stor_device->max_transfer_bytes = 948 vstor_packet->storage_channel_properties.max_transfer_bytes; 949 950 if (!is_fc) 951 goto done; 952 953 /* 954 * For FC devices retrieve FC HBA data. 955 */ 956 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 957 vstor_packet->operation = VSTOR_OPERATION_FCHBA_DATA; 958 ret = storvsc_execute_vstor_op(device, request, true); 959 if (ret != 0) 960 return ret; 961 962 /* 963 * Cache the currently active port and node ww names. 964 */ 965 cache_wwn(stor_device, vstor_packet); 966 967 done: 968 969 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 970 vstor_packet->operation = VSTOR_OPERATION_END_INITIALIZATION; 971 ret = storvsc_execute_vstor_op(device, request, true); 972 if (ret != 0) 973 return ret; 974 975 if (process_sub_channels) 976 handle_multichannel_storage(device, max_chns); 977 978 return ret; 979 } 980 981 static void storvsc_handle_error(struct vmscsi_request *vm_srb, 982 struct scsi_cmnd *scmnd, 983 struct Scsi_Host *host, 984 u8 asc, u8 ascq) 985 { 986 struct storvsc_scan_work *wrk; 987 void (*process_err_fn)(struct work_struct *work); 988 struct hv_host_device *host_dev = shost_priv(host); 989 990 switch (SRB_STATUS(vm_srb->srb_status)) { 991 case SRB_STATUS_ERROR: 992 case SRB_STATUS_ABORTED: 993 case SRB_STATUS_INVALID_REQUEST: 994 case SRB_STATUS_INTERNAL_ERROR: 995 case SRB_STATUS_TIMEOUT: 996 case SRB_STATUS_SELECTION_TIMEOUT: 997 case SRB_STATUS_BUS_RESET: 998 case SRB_STATUS_DATA_OVERRUN: 999 if (vm_srb->srb_status & SRB_STATUS_AUTOSENSE_VALID) { 1000 /* Check for capacity change */ 1001 if ((asc == 0x2a) && (ascq == 0x9)) { 1002 process_err_fn = storvsc_device_scan; 1003 /* Retry the I/O that triggered this. */ 1004 set_host_byte(scmnd, DID_REQUEUE); 1005 goto do_work; 1006 } 1007 1008 /* 1009 * Check for "Operating parameters have changed" 1010 * due to Hyper-V changing the VHD/VHDX BlockSize 1011 * when adding/removing a differencing disk. This 1012 * causes discard_granularity to change, so do a 1013 * rescan to pick up the new granularity. We don't 1014 * want scsi_report_sense() to output a message 1015 * that a sysadmin wouldn't know what to do with. 1016 */ 1017 if ((asc == 0x3f) && (ascq != 0x03) && 1018 (ascq != 0x0e)) { 1019 process_err_fn = storvsc_device_scan; 1020 set_host_byte(scmnd, DID_REQUEUE); 1021 goto do_work; 1022 } 1023 1024 /* 1025 * Otherwise, let upper layer deal with the 1026 * error when sense message is present 1027 */ 1028 return; 1029 } 1030 1031 /* 1032 * If there is an error; offline the device since all 1033 * error recovery strategies would have already been 1034 * deployed on the host side. However, if the command 1035 * were a pass-through command deal with it appropriately. 1036 */ 1037 switch (scmnd->cmnd[0]) { 1038 case ATA_16: 1039 case ATA_12: 1040 set_host_byte(scmnd, DID_PASSTHROUGH); 1041 break; 1042 /* 1043 * On some Hyper-V hosts TEST_UNIT_READY command can 1044 * return SRB_STATUS_ERROR. Let the upper level code 1045 * deal with it based on the sense information. 1046 */ 1047 case TEST_UNIT_READY: 1048 break; 1049 default: 1050 set_host_byte(scmnd, DID_ERROR); 1051 } 1052 return; 1053 1054 case SRB_STATUS_INVALID_LUN: 1055 set_host_byte(scmnd, DID_NO_CONNECT); 1056 process_err_fn = storvsc_remove_lun; 1057 goto do_work; 1058 1059 } 1060 return; 1061 1062 do_work: 1063 /* 1064 * We need to schedule work to process this error; schedule it. 1065 */ 1066 wrk = kmalloc(sizeof(struct storvsc_scan_work), GFP_ATOMIC); 1067 if (!wrk) { 1068 set_host_byte(scmnd, DID_BAD_TARGET); 1069 return; 1070 } 1071 1072 wrk->host = host; 1073 wrk->lun = vm_srb->lun; 1074 wrk->tgt_id = vm_srb->target_id; 1075 INIT_WORK(&wrk->work, process_err_fn); 1076 queue_work(host_dev->handle_error_wq, &wrk->work); 1077 } 1078 1079 1080 static void storvsc_command_completion(struct storvsc_cmd_request *cmd_request, 1081 struct storvsc_device *stor_dev) 1082 { 1083 struct scsi_cmnd *scmnd = cmd_request->cmd; 1084 struct scsi_sense_hdr sense_hdr; 1085 struct vmscsi_request *vm_srb; 1086 u32 data_transfer_length; 1087 struct Scsi_Host *host; 1088 u32 payload_sz = cmd_request->payload_sz; 1089 void *payload = cmd_request->payload; 1090 bool sense_ok; 1091 1092 host = stor_dev->host; 1093 1094 vm_srb = &cmd_request->vstor_packet.vm_srb; 1095 data_transfer_length = vm_srb->data_transfer_length; 1096 1097 scmnd->result = vm_srb->scsi_status; 1098 1099 if (scmnd->result) { 1100 sense_ok = scsi_normalize_sense(scmnd->sense_buffer, 1101 SCSI_SENSE_BUFFERSIZE, &sense_hdr); 1102 1103 if (sense_ok && do_logging(STORVSC_LOGGING_WARN)) 1104 scsi_print_sense_hdr(scmnd->device, "storvsc", 1105 &sense_hdr); 1106 } 1107 1108 if (vm_srb->srb_status != SRB_STATUS_SUCCESS) { 1109 storvsc_handle_error(vm_srb, scmnd, host, sense_hdr.asc, 1110 sense_hdr.ascq); 1111 /* 1112 * The Windows driver set data_transfer_length on 1113 * SRB_STATUS_DATA_OVERRUN. On other errors, this value 1114 * is untouched. In these cases we set it to 0. 1115 */ 1116 if (vm_srb->srb_status != SRB_STATUS_DATA_OVERRUN) 1117 data_transfer_length = 0; 1118 } 1119 1120 /* Validate data_transfer_length (from Hyper-V) */ 1121 if (data_transfer_length > cmd_request->payload->range.len) 1122 data_transfer_length = cmd_request->payload->range.len; 1123 1124 scsi_set_resid(scmnd, 1125 cmd_request->payload->range.len - data_transfer_length); 1126 1127 scsi_done(scmnd); 1128 1129 if (payload_sz > 1130 sizeof(struct vmbus_channel_packet_multipage_buffer)) 1131 kfree(payload); 1132 } 1133 1134 static void storvsc_on_io_completion(struct storvsc_device *stor_device, 1135 struct vstor_packet *vstor_packet, 1136 struct storvsc_cmd_request *request) 1137 { 1138 struct vstor_packet *stor_pkt; 1139 struct hv_device *device = stor_device->device; 1140 1141 stor_pkt = &request->vstor_packet; 1142 1143 /* 1144 * The current SCSI handling on the host side does 1145 * not correctly handle: 1146 * INQUIRY command with page code parameter set to 0x80 1147 * MODE_SENSE and MODE_SENSE_10 command with cmd[2] == 0x1c 1148 * MAINTENANCE_IN is not supported by HyperV FC passthrough 1149 * 1150 * Setup srb and scsi status so this won't be fatal. 1151 * We do this so we can distinguish truly fatal failues 1152 * (srb status == 0x4) and off-line the device in that case. 1153 */ 1154 1155 if ((stor_pkt->vm_srb.cdb[0] == INQUIRY) || 1156 (stor_pkt->vm_srb.cdb[0] == MODE_SENSE) || 1157 (stor_pkt->vm_srb.cdb[0] == MODE_SENSE_10) || 1158 (stor_pkt->vm_srb.cdb[0] == MAINTENANCE_IN && 1159 hv_dev_is_fc(device))) { 1160 vstor_packet->vm_srb.scsi_status = 0; 1161 vstor_packet->vm_srb.srb_status = SRB_STATUS_SUCCESS; 1162 } 1163 1164 /* Copy over the status...etc */ 1165 stor_pkt->vm_srb.scsi_status = vstor_packet->vm_srb.scsi_status; 1166 stor_pkt->vm_srb.srb_status = vstor_packet->vm_srb.srb_status; 1167 1168 /* 1169 * Copy over the sense_info_length, but limit to the known max 1170 * size if Hyper-V returns a bad value. 1171 */ 1172 stor_pkt->vm_srb.sense_info_length = min_t(u8, STORVSC_SENSE_BUFFER_SIZE, 1173 vstor_packet->vm_srb.sense_info_length); 1174 1175 if (vstor_packet->vm_srb.scsi_status != 0 || 1176 vstor_packet->vm_srb.srb_status != SRB_STATUS_SUCCESS) { 1177 1178 /* 1179 * Log TEST_UNIT_READY errors only as warnings. Hyper-V can 1180 * return errors when detecting devices using TEST_UNIT_READY, 1181 * and logging these as errors produces unhelpful noise. 1182 */ 1183 int loglevel = (stor_pkt->vm_srb.cdb[0] == TEST_UNIT_READY) ? 1184 STORVSC_LOGGING_WARN : STORVSC_LOGGING_ERROR; 1185 1186 storvsc_log_ratelimited(device, loglevel, 1187 "tag#%d cmd 0x%x status: scsi 0x%x srb 0x%x host 0x%x\n", 1188 scsi_cmd_to_rq(request->cmd)->tag, 1189 stor_pkt->vm_srb.cdb[0], 1190 vstor_packet->vm_srb.scsi_status, 1191 vstor_packet->vm_srb.srb_status, 1192 vstor_packet->status); 1193 } 1194 1195 if (vstor_packet->vm_srb.scsi_status == SAM_STAT_CHECK_CONDITION && 1196 (vstor_packet->vm_srb.srb_status & SRB_STATUS_AUTOSENSE_VALID)) 1197 memcpy(request->cmd->sense_buffer, 1198 vstor_packet->vm_srb.sense_data, 1199 stor_pkt->vm_srb.sense_info_length); 1200 1201 stor_pkt->vm_srb.data_transfer_length = 1202 vstor_packet->vm_srb.data_transfer_length; 1203 1204 storvsc_command_completion(request, stor_device); 1205 1206 if (atomic_dec_and_test(&stor_device->num_outstanding_req) && 1207 stor_device->drain_notify) 1208 wake_up(&stor_device->waiting_to_drain); 1209 } 1210 1211 static void storvsc_on_receive(struct storvsc_device *stor_device, 1212 struct vstor_packet *vstor_packet, 1213 struct storvsc_cmd_request *request) 1214 { 1215 struct hv_host_device *host_dev; 1216 switch (vstor_packet->operation) { 1217 case VSTOR_OPERATION_COMPLETE_IO: 1218 storvsc_on_io_completion(stor_device, vstor_packet, request); 1219 break; 1220 1221 case VSTOR_OPERATION_REMOVE_DEVICE: 1222 case VSTOR_OPERATION_ENUMERATE_BUS: 1223 host_dev = shost_priv(stor_device->host); 1224 queue_work( 1225 host_dev->handle_error_wq, &host_dev->host_scan_work); 1226 break; 1227 1228 case VSTOR_OPERATION_FCHBA_DATA: 1229 cache_wwn(stor_device, vstor_packet); 1230 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 1231 fc_host_node_name(stor_device->host) = stor_device->node_name; 1232 fc_host_port_name(stor_device->host) = stor_device->port_name; 1233 #endif 1234 break; 1235 default: 1236 break; 1237 } 1238 } 1239 1240 static void storvsc_on_channel_callback(void *context) 1241 { 1242 struct vmbus_channel *channel = (struct vmbus_channel *)context; 1243 const struct vmpacket_descriptor *desc; 1244 struct hv_device *device; 1245 struct storvsc_device *stor_device; 1246 struct Scsi_Host *shost; 1247 unsigned long time_limit = jiffies + msecs_to_jiffies(CALLBACK_TIMEOUT); 1248 1249 if (channel->primary_channel != NULL) 1250 device = channel->primary_channel->device_obj; 1251 else 1252 device = channel->device_obj; 1253 1254 stor_device = get_in_stor_device(device); 1255 if (!stor_device) 1256 return; 1257 1258 shost = stor_device->host; 1259 1260 foreach_vmbus_pkt(desc, channel) { 1261 struct vstor_packet *packet = hv_pkt_data(desc); 1262 struct storvsc_cmd_request *request = NULL; 1263 u32 pktlen = hv_pkt_datalen(desc); 1264 u64 rqst_id = desc->trans_id; 1265 u32 minlen = rqst_id ? sizeof(struct vstor_packet) : 1266 sizeof(enum vstor_packet_operation); 1267 1268 if (unlikely(time_after(jiffies, time_limit))) { 1269 hv_pkt_iter_close(channel); 1270 return; 1271 } 1272 1273 if (pktlen < minlen) { 1274 dev_err(&device->device, 1275 "Invalid pkt: id=%llu, len=%u, minlen=%u\n", 1276 rqst_id, pktlen, minlen); 1277 continue; 1278 } 1279 1280 if (rqst_id == VMBUS_RQST_INIT) { 1281 request = &stor_device->init_request; 1282 } else if (rqst_id == VMBUS_RQST_RESET) { 1283 request = &stor_device->reset_request; 1284 } else { 1285 /* Hyper-V can send an unsolicited message with ID of 0 */ 1286 if (rqst_id == 0) { 1287 /* 1288 * storvsc_on_receive() looks at the vstor_packet in the message 1289 * from the ring buffer. 1290 * 1291 * - If the operation in the vstor_packet is COMPLETE_IO, then 1292 * we call storvsc_on_io_completion(), and dereference the 1293 * guest memory address. Make sure we don't call 1294 * storvsc_on_io_completion() with a guest memory address 1295 * that is zero if Hyper-V were to construct and send such 1296 * a bogus packet. 1297 * 1298 * - If the operation in the vstor_packet is FCHBA_DATA, then 1299 * we call cache_wwn(), and access the data payload area of 1300 * the packet (wwn_packet); however, there is no guarantee 1301 * that the packet is big enough to contain such area. 1302 * Future-proof the code by rejecting such a bogus packet. 1303 */ 1304 if (packet->operation == VSTOR_OPERATION_COMPLETE_IO || 1305 packet->operation == VSTOR_OPERATION_FCHBA_DATA) { 1306 dev_err(&device->device, "Invalid packet with ID of 0\n"); 1307 continue; 1308 } 1309 } else { 1310 struct scsi_cmnd *scmnd; 1311 1312 /* Transaction 'rqst_id' corresponds to tag 'rqst_id - 1' */ 1313 scmnd = scsi_host_find_tag(shost, rqst_id - 1); 1314 if (scmnd == NULL) { 1315 dev_err(&device->device, "Incorrect transaction ID\n"); 1316 continue; 1317 } 1318 request = (struct storvsc_cmd_request *)scsi_cmd_priv(scmnd); 1319 scsi_dma_unmap(scmnd); 1320 } 1321 1322 storvsc_on_receive(stor_device, packet, request); 1323 continue; 1324 } 1325 1326 memcpy(&request->vstor_packet, packet, 1327 sizeof(struct vstor_packet)); 1328 complete(&request->wait_event); 1329 } 1330 } 1331 1332 static int storvsc_connect_to_vsp(struct hv_device *device, u32 ring_size, 1333 bool is_fc) 1334 { 1335 struct vmstorage_channel_properties props; 1336 int ret; 1337 1338 memset(&props, 0, sizeof(struct vmstorage_channel_properties)); 1339 1340 device->channel->max_pkt_size = STORVSC_MAX_PKT_SIZE; 1341 device->channel->next_request_id_callback = storvsc_next_request_id; 1342 1343 ret = vmbus_open(device->channel, 1344 ring_size, 1345 ring_size, 1346 (void *)&props, 1347 sizeof(struct vmstorage_channel_properties), 1348 storvsc_on_channel_callback, device->channel); 1349 1350 if (ret != 0) 1351 return ret; 1352 1353 ret = storvsc_channel_init(device, is_fc); 1354 if (ret) 1355 vmbus_close(device->channel); 1356 1357 return ret; 1358 } 1359 1360 static int storvsc_dev_remove(struct hv_device *device) 1361 { 1362 struct storvsc_device *stor_device; 1363 1364 stor_device = hv_get_drvdata(device); 1365 1366 stor_device->destroy = true; 1367 1368 /* Make sure flag is set before waiting */ 1369 wmb(); 1370 1371 /* 1372 * At this point, all outbound traffic should be disable. We 1373 * only allow inbound traffic (responses) to proceed so that 1374 * outstanding requests can be completed. 1375 */ 1376 1377 storvsc_wait_to_drain(stor_device); 1378 1379 /* 1380 * Since we have already drained, we don't need to busy wait 1381 * as was done in final_release_stor_device() 1382 * Note that we cannot set the ext pointer to NULL until 1383 * we have drained - to drain the outgoing packets, we need to 1384 * allow incoming packets. 1385 */ 1386 hv_set_drvdata(device, NULL); 1387 1388 /* Close the channel */ 1389 vmbus_close(device->channel); 1390 1391 kfree(stor_device->stor_chns); 1392 kfree(stor_device); 1393 return 0; 1394 } 1395 1396 static struct vmbus_channel *get_og_chn(struct storvsc_device *stor_device, 1397 u16 q_num) 1398 { 1399 u16 slot = 0; 1400 u16 hash_qnum; 1401 const struct cpumask *node_mask; 1402 int num_channels, tgt_cpu; 1403 1404 if (stor_device->num_sc == 0) { 1405 stor_device->stor_chns[q_num] = stor_device->device->channel; 1406 return stor_device->device->channel; 1407 } 1408 1409 /* 1410 * Our channel array could be sparsley populated and we 1411 * initiated I/O on a processor/hw-q that does not 1412 * currently have a designated channel. Fix this. 1413 * The strategy is simple: 1414 * I. Prefer the channel associated with the current CPU 1415 * II. Ensure NUMA locality 1416 * III. Distribute evenly (best effort) 1417 */ 1418 1419 /* Prefer the channel on the I/O issuing processor/hw-q */ 1420 if (cpumask_test_cpu(q_num, &stor_device->alloced_cpus)) 1421 return stor_device->stor_chns[q_num]; 1422 1423 node_mask = cpumask_of_node(cpu_to_node(q_num)); 1424 1425 num_channels = 0; 1426 for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) { 1427 if (cpumask_test_cpu(tgt_cpu, node_mask)) 1428 num_channels++; 1429 } 1430 if (num_channels == 0) { 1431 stor_device->stor_chns[q_num] = stor_device->device->channel; 1432 return stor_device->device->channel; 1433 } 1434 1435 hash_qnum = q_num; 1436 while (hash_qnum >= num_channels) 1437 hash_qnum -= num_channels; 1438 1439 for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) { 1440 if (!cpumask_test_cpu(tgt_cpu, node_mask)) 1441 continue; 1442 if (slot == hash_qnum) 1443 break; 1444 slot++; 1445 } 1446 1447 stor_device->stor_chns[q_num] = stor_device->stor_chns[tgt_cpu]; 1448 1449 return stor_device->stor_chns[q_num]; 1450 } 1451 1452 1453 static int storvsc_do_io(struct hv_device *device, 1454 struct storvsc_cmd_request *request, u16 q_num) 1455 { 1456 struct storvsc_device *stor_device; 1457 struct vstor_packet *vstor_packet; 1458 struct vmbus_channel *outgoing_channel, *channel; 1459 unsigned long flags; 1460 int ret = 0; 1461 const struct cpumask *node_mask; 1462 int tgt_cpu; 1463 1464 vstor_packet = &request->vstor_packet; 1465 stor_device = get_out_stor_device(device); 1466 1467 if (!stor_device) 1468 return -ENODEV; 1469 1470 1471 request->device = device; 1472 /* 1473 * Select an appropriate channel to send the request out. 1474 */ 1475 /* See storvsc_change_target_cpu(). */ 1476 outgoing_channel = READ_ONCE(stor_device->stor_chns[q_num]); 1477 if (outgoing_channel != NULL) { 1478 if (hv_get_avail_to_write_percent(&outgoing_channel->outbound) 1479 > ring_avail_percent_lowater) 1480 goto found_channel; 1481 1482 /* 1483 * Channel is busy, try to find a channel on the same NUMA node 1484 */ 1485 node_mask = cpumask_of_node(cpu_to_node(q_num)); 1486 for_each_cpu_wrap(tgt_cpu, &stor_device->alloced_cpus, 1487 q_num + 1) { 1488 if (!cpumask_test_cpu(tgt_cpu, node_mask)) 1489 continue; 1490 channel = READ_ONCE(stor_device->stor_chns[tgt_cpu]); 1491 if (!channel) 1492 continue; 1493 if (hv_get_avail_to_write_percent(&channel->outbound) 1494 > ring_avail_percent_lowater) { 1495 outgoing_channel = channel; 1496 goto found_channel; 1497 } 1498 } 1499 1500 /* 1501 * If we reach here, all the channels on the current 1502 * NUMA node are busy. Try to find a channel in 1503 * all NUMA nodes 1504 */ 1505 for_each_cpu_wrap(tgt_cpu, &stor_device->alloced_cpus, 1506 q_num + 1) { 1507 channel = READ_ONCE(stor_device->stor_chns[tgt_cpu]); 1508 if (!channel) 1509 continue; 1510 if (hv_get_avail_to_write_percent(&channel->outbound) 1511 > ring_avail_percent_lowater) { 1512 outgoing_channel = channel; 1513 goto found_channel; 1514 } 1515 } 1516 /* 1517 * If we reach here, all the channels are busy. Use the 1518 * original channel found. 1519 */ 1520 } else { 1521 spin_lock_irqsave(&stor_device->lock, flags); 1522 outgoing_channel = stor_device->stor_chns[q_num]; 1523 if (outgoing_channel != NULL) { 1524 spin_unlock_irqrestore(&stor_device->lock, flags); 1525 goto found_channel; 1526 } 1527 outgoing_channel = get_og_chn(stor_device, q_num); 1528 spin_unlock_irqrestore(&stor_device->lock, flags); 1529 } 1530 1531 found_channel: 1532 vstor_packet->flags |= REQUEST_COMPLETION_FLAG; 1533 1534 vstor_packet->vm_srb.length = sizeof(struct vmscsi_request); 1535 1536 1537 vstor_packet->vm_srb.sense_info_length = STORVSC_SENSE_BUFFER_SIZE; 1538 1539 1540 vstor_packet->vm_srb.data_transfer_length = 1541 request->payload->range.len; 1542 1543 vstor_packet->operation = VSTOR_OPERATION_EXECUTE_SRB; 1544 1545 if (request->payload->range.len) { 1546 1547 ret = vmbus_sendpacket_mpb_desc(outgoing_channel, 1548 request->payload, request->payload_sz, 1549 vstor_packet, 1550 sizeof(struct vstor_packet), 1551 (unsigned long)request); 1552 } else { 1553 ret = vmbus_sendpacket(outgoing_channel, vstor_packet, 1554 sizeof(struct vstor_packet), 1555 (unsigned long)request, 1556 VM_PKT_DATA_INBAND, 1557 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1558 } 1559 1560 if (ret != 0) 1561 return ret; 1562 1563 atomic_inc(&stor_device->num_outstanding_req); 1564 1565 return ret; 1566 } 1567 1568 static int storvsc_device_alloc(struct scsi_device *sdevice) 1569 { 1570 /* 1571 * Set blist flag to permit the reading of the VPD pages even when 1572 * the target may claim SPC-2 compliance. MSFT targets currently 1573 * claim SPC-2 compliance while they implement post SPC-2 features. 1574 * With this flag we can correctly handle WRITE_SAME_16 issues. 1575 * 1576 * Hypervisor reports SCSI_UNKNOWN type for DVD ROM device but 1577 * still supports REPORT LUN. 1578 */ 1579 sdevice->sdev_bflags = BLIST_REPORTLUN2 | BLIST_TRY_VPD_PAGES; 1580 1581 return 0; 1582 } 1583 1584 static int storvsc_sdev_configure(struct scsi_device *sdevice, 1585 struct queue_limits *lim) 1586 { 1587 blk_queue_rq_timeout(sdevice->request_queue, (storvsc_timeout * HZ)); 1588 1589 /* storvsc devices don't support MAINTENANCE_IN SCSI cmd */ 1590 sdevice->no_report_opcodes = 1; 1591 sdevice->no_write_same = 1; 1592 1593 /* 1594 * If the host is WIN8 or WIN8 R2, claim conformance to SPC-3 1595 * if the device is a MSFT virtual device. If the host is 1596 * WIN10 or newer, allow write_same. 1597 */ 1598 if (!strncmp(sdevice->vendor, "Msft", 4)) { 1599 switch (vmstor_proto_version) { 1600 case VMSTOR_PROTO_VERSION_WIN8: 1601 case VMSTOR_PROTO_VERSION_WIN8_1: 1602 sdevice->scsi_level = SCSI_SPC_3; 1603 break; 1604 } 1605 1606 if (vmstor_proto_version >= VMSTOR_PROTO_VERSION_WIN10) 1607 sdevice->no_write_same = 0; 1608 } 1609 1610 return 0; 1611 } 1612 1613 static int storvsc_get_chs(struct scsi_device *sdev, struct gendisk *unused, 1614 sector_t capacity, int *info) 1615 { 1616 sector_t nsect = capacity; 1617 sector_t cylinders = nsect; 1618 int heads, sectors_pt; 1619 1620 /* 1621 * We are making up these values; let us keep it simple. 1622 */ 1623 heads = 0xff; 1624 sectors_pt = 0x3f; /* Sectors per track */ 1625 sector_div(cylinders, heads * sectors_pt); 1626 if ((sector_t)(cylinders + 1) * heads * sectors_pt < nsect) 1627 cylinders = 0xffff; 1628 1629 info[0] = heads; 1630 info[1] = sectors_pt; 1631 info[2] = (int)cylinders; 1632 1633 return 0; 1634 } 1635 1636 static int storvsc_host_reset_handler(struct scsi_cmnd *scmnd) 1637 { 1638 struct hv_host_device *host_dev = shost_priv(scmnd->device->host); 1639 struct hv_device *device = host_dev->dev; 1640 1641 struct storvsc_device *stor_device; 1642 struct storvsc_cmd_request *request; 1643 struct vstor_packet *vstor_packet; 1644 int ret, t; 1645 1646 stor_device = get_out_stor_device(device); 1647 if (!stor_device) 1648 return FAILED; 1649 1650 request = &stor_device->reset_request; 1651 vstor_packet = &request->vstor_packet; 1652 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 1653 1654 init_completion(&request->wait_event); 1655 1656 vstor_packet->operation = VSTOR_OPERATION_RESET_BUS; 1657 vstor_packet->flags = REQUEST_COMPLETION_FLAG; 1658 vstor_packet->vm_srb.path_id = stor_device->path_id; 1659 1660 ret = vmbus_sendpacket(device->channel, vstor_packet, 1661 sizeof(struct vstor_packet), 1662 VMBUS_RQST_RESET, 1663 VM_PKT_DATA_INBAND, 1664 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1665 if (ret != 0) 1666 return FAILED; 1667 1668 t = wait_for_completion_timeout(&request->wait_event, storvsc_timeout * HZ); 1669 if (t == 0) 1670 return TIMEOUT_ERROR; 1671 1672 1673 /* 1674 * At this point, all outstanding requests in the adapter 1675 * should have been flushed out and return to us 1676 * There is a potential race here where the host may be in 1677 * the process of responding when we return from here. 1678 * Just wait for all in-transit packets to be accounted for 1679 * before we return from here. 1680 */ 1681 storvsc_wait_to_drain(stor_device); 1682 1683 return SUCCESS; 1684 } 1685 1686 /* 1687 * The host guarantees to respond to each command, although I/O latencies might 1688 * be unbounded on Azure. Reset the timer unconditionally to give the host a 1689 * chance to perform EH. 1690 */ 1691 static enum scsi_timeout_action storvsc_eh_timed_out(struct scsi_cmnd *scmnd) 1692 { 1693 return SCSI_EH_RESET_TIMER; 1694 } 1695 1696 static bool storvsc_scsi_cmd_ok(struct scsi_cmnd *scmnd) 1697 { 1698 bool allowed = true; 1699 u8 scsi_op = scmnd->cmnd[0]; 1700 1701 switch (scsi_op) { 1702 /* the host does not handle WRITE_SAME, log accident usage */ 1703 case WRITE_SAME: 1704 /* 1705 * smartd sends this command and the host does not handle 1706 * this. So, don't send it. 1707 */ 1708 case SET_WINDOW: 1709 set_host_byte(scmnd, DID_ERROR); 1710 allowed = false; 1711 break; 1712 default: 1713 break; 1714 } 1715 return allowed; 1716 } 1717 1718 static int storvsc_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scmnd) 1719 { 1720 int ret; 1721 struct hv_host_device *host_dev = shost_priv(host); 1722 struct hv_device *dev = host_dev->dev; 1723 struct storvsc_cmd_request *cmd_request = scsi_cmd_priv(scmnd); 1724 struct scatterlist *sgl; 1725 struct vmscsi_request *vm_srb; 1726 struct vmbus_packet_mpb_array *payload; 1727 u32 payload_sz; 1728 u32 length; 1729 1730 if (vmstor_proto_version <= VMSTOR_PROTO_VERSION_WIN8) { 1731 /* 1732 * On legacy hosts filter unimplemented commands. 1733 * Future hosts are expected to correctly handle 1734 * unsupported commands. Furthermore, it is 1735 * possible that some of the currently 1736 * unsupported commands maybe supported in 1737 * future versions of the host. 1738 */ 1739 if (!storvsc_scsi_cmd_ok(scmnd)) { 1740 scsi_done(scmnd); 1741 return 0; 1742 } 1743 } 1744 1745 /* Setup the cmd request */ 1746 cmd_request->cmd = scmnd; 1747 1748 memset(&cmd_request->vstor_packet, 0, sizeof(struct vstor_packet)); 1749 vm_srb = &cmd_request->vstor_packet.vm_srb; 1750 vm_srb->time_out_value = 60; 1751 1752 vm_srb->srb_flags |= 1753 SRB_FLAGS_DISABLE_SYNCH_TRANSFER; 1754 1755 if (scmnd->device->tagged_supported) { 1756 vm_srb->srb_flags |= 1757 (SRB_FLAGS_QUEUE_ACTION_ENABLE | SRB_FLAGS_NO_QUEUE_FREEZE); 1758 vm_srb->queue_tag = SP_UNTAGGED; 1759 vm_srb->queue_action = SRB_SIMPLE_TAG_REQUEST; 1760 } 1761 1762 /* Build the SRB */ 1763 switch (scmnd->sc_data_direction) { 1764 case DMA_TO_DEVICE: 1765 vm_srb->data_in = WRITE_TYPE; 1766 vm_srb->srb_flags |= SRB_FLAGS_DATA_OUT; 1767 break; 1768 case DMA_FROM_DEVICE: 1769 vm_srb->data_in = READ_TYPE; 1770 vm_srb->srb_flags |= SRB_FLAGS_DATA_IN; 1771 break; 1772 case DMA_NONE: 1773 vm_srb->data_in = UNKNOWN_TYPE; 1774 vm_srb->srb_flags |= SRB_FLAGS_NO_DATA_TRANSFER; 1775 break; 1776 default: 1777 /* 1778 * This is DMA_BIDIRECTIONAL or something else we are never 1779 * supposed to see here. 1780 */ 1781 WARN(1, "Unexpected data direction: %d\n", 1782 scmnd->sc_data_direction); 1783 return -EINVAL; 1784 } 1785 1786 1787 vm_srb->port_number = host_dev->port; 1788 vm_srb->path_id = scmnd->device->channel; 1789 vm_srb->target_id = scmnd->device->id; 1790 vm_srb->lun = scmnd->device->lun; 1791 1792 vm_srb->cdb_length = scmnd->cmd_len; 1793 1794 memcpy(vm_srb->cdb, scmnd->cmnd, vm_srb->cdb_length); 1795 1796 sgl = (struct scatterlist *)scsi_sglist(scmnd); 1797 1798 length = scsi_bufflen(scmnd); 1799 payload = (struct vmbus_packet_mpb_array *)&cmd_request->mpb; 1800 payload->range.len = 0; 1801 payload_sz = 0; 1802 1803 if (scsi_sg_count(scmnd)) { 1804 unsigned long offset_in_hvpg = offset_in_hvpage(sgl->offset); 1805 unsigned int hvpg_count = HVPFN_UP(offset_in_hvpg + length); 1806 struct scatterlist *sg; 1807 unsigned long hvpfn, hvpfns_to_add; 1808 int j, i = 0, sg_count; 1809 1810 payload_sz = (hvpg_count * sizeof(u64) + 1811 sizeof(struct vmbus_packet_mpb_array)); 1812 1813 if (hvpg_count > MAX_PAGE_BUFFER_COUNT) { 1814 payload = kzalloc(payload_sz, GFP_ATOMIC); 1815 if (!payload) 1816 return SCSI_MLQUEUE_DEVICE_BUSY; 1817 } 1818 1819 payload->rangecount = 1; 1820 payload->range.len = length; 1821 payload->range.offset = offset_in_hvpg; 1822 1823 sg_count = scsi_dma_map(scmnd); 1824 if (sg_count < 0) { 1825 ret = SCSI_MLQUEUE_DEVICE_BUSY; 1826 goto err_free_payload; 1827 } 1828 1829 for_each_sg(sgl, sg, sg_count, j) { 1830 /* 1831 * Init values for the current sgl entry. hvpfns_to_add 1832 * is in units of Hyper-V size pages. Handling the 1833 * PAGE_SIZE != HV_HYP_PAGE_SIZE case also handles 1834 * values of sgl->offset that are larger than PAGE_SIZE. 1835 * Such offsets are handled even on other than the first 1836 * sgl entry, provided they are a multiple of PAGE_SIZE. 1837 */ 1838 hvpfn = HVPFN_DOWN(sg_dma_address(sg)); 1839 hvpfns_to_add = HVPFN_UP(sg_dma_address(sg) + 1840 sg_dma_len(sg)) - hvpfn; 1841 1842 /* 1843 * Fill the next portion of the PFN array with 1844 * sequential Hyper-V PFNs for the continguous physical 1845 * memory described by the sgl entry. The end of the 1846 * last sgl should be reached at the same time that 1847 * the PFN array is filled. 1848 */ 1849 while (hvpfns_to_add--) 1850 payload->range.pfn_array[i++] = hvpfn++; 1851 } 1852 } 1853 1854 cmd_request->payload = payload; 1855 cmd_request->payload_sz = payload_sz; 1856 1857 /* Invokes the vsc to start an IO */ 1858 ret = storvsc_do_io(dev, cmd_request, get_cpu()); 1859 put_cpu(); 1860 1861 if (ret) 1862 scsi_dma_unmap(scmnd); 1863 1864 if (ret == -EAGAIN) { 1865 /* no more space */ 1866 ret = SCSI_MLQUEUE_DEVICE_BUSY; 1867 goto err_free_payload; 1868 } 1869 1870 return 0; 1871 1872 err_free_payload: 1873 if (payload_sz > sizeof(cmd_request->mpb)) 1874 kfree(payload); 1875 1876 return ret; 1877 } 1878 1879 static struct scsi_host_template scsi_driver = { 1880 .module = THIS_MODULE, 1881 .name = "storvsc_host_t", 1882 .cmd_size = sizeof(struct storvsc_cmd_request), 1883 .bios_param = storvsc_get_chs, 1884 .queuecommand = storvsc_queuecommand, 1885 .eh_host_reset_handler = storvsc_host_reset_handler, 1886 .proc_name = "storvsc_host", 1887 .eh_timed_out = storvsc_eh_timed_out, 1888 .sdev_init = storvsc_device_alloc, 1889 .sdev_configure = storvsc_sdev_configure, 1890 .cmd_per_lun = 2048, 1891 .this_id = -1, 1892 /* Ensure there are no gaps in presented sgls */ 1893 .virt_boundary_mask = HV_HYP_PAGE_SIZE - 1, 1894 .no_write_same = 1, 1895 .track_queue_depth = 1, 1896 .change_queue_depth = storvsc_change_queue_depth, 1897 }; 1898 1899 enum { 1900 SCSI_GUID, 1901 IDE_GUID, 1902 SFC_GUID, 1903 }; 1904 1905 static const struct hv_vmbus_device_id id_table[] = { 1906 /* SCSI guid */ 1907 { HV_SCSI_GUID, 1908 .driver_data = SCSI_GUID 1909 }, 1910 /* IDE guid */ 1911 { HV_IDE_GUID, 1912 .driver_data = IDE_GUID 1913 }, 1914 /* Fibre Channel GUID */ 1915 { 1916 HV_SYNTHFC_GUID, 1917 .driver_data = SFC_GUID 1918 }, 1919 { }, 1920 }; 1921 1922 MODULE_DEVICE_TABLE(vmbus, id_table); 1923 1924 static const struct { guid_t guid; } fc_guid = { HV_SYNTHFC_GUID }; 1925 1926 static bool hv_dev_is_fc(struct hv_device *hv_dev) 1927 { 1928 return guid_equal(&fc_guid.guid, &hv_dev->dev_type); 1929 } 1930 1931 static int storvsc_probe(struct hv_device *device, 1932 const struct hv_vmbus_device_id *dev_id) 1933 { 1934 int ret; 1935 int num_cpus = num_online_cpus(); 1936 int num_present_cpus = num_present_cpus(); 1937 struct Scsi_Host *host; 1938 struct hv_host_device *host_dev; 1939 bool dev_is_ide = dev_id->driver_data == IDE_GUID; 1940 bool is_fc = dev_id->driver_data == SFC_GUID; 1941 int target = 0; 1942 struct storvsc_device *stor_device; 1943 int max_sub_channels = 0; 1944 u32 max_xfer_bytes; 1945 1946 /* 1947 * We support sub-channels for storage on SCSI and FC controllers. 1948 * The number of sub-channels offerred is based on the number of 1949 * VCPUs in the guest. 1950 */ 1951 if (!dev_is_ide) 1952 max_sub_channels = 1953 (num_cpus - 1) / storvsc_vcpus_per_sub_channel; 1954 1955 scsi_driver.can_queue = max_outstanding_req_per_channel * 1956 (max_sub_channels + 1) * 1957 (100 - ring_avail_percent_lowater) / 100; 1958 1959 host = scsi_host_alloc(&scsi_driver, 1960 sizeof(struct hv_host_device)); 1961 if (!host) 1962 return -ENOMEM; 1963 1964 host_dev = shost_priv(host); 1965 memset(host_dev, 0, sizeof(struct hv_host_device)); 1966 1967 host_dev->port = host->host_no; 1968 host_dev->dev = device; 1969 host_dev->host = host; 1970 1971 1972 stor_device = kzalloc(sizeof(struct storvsc_device), GFP_KERNEL); 1973 if (!stor_device) { 1974 ret = -ENOMEM; 1975 goto err_out0; 1976 } 1977 1978 stor_device->destroy = false; 1979 init_waitqueue_head(&stor_device->waiting_to_drain); 1980 stor_device->device = device; 1981 stor_device->host = host; 1982 spin_lock_init(&stor_device->lock); 1983 hv_set_drvdata(device, stor_device); 1984 dma_set_min_align_mask(&device->device, HV_HYP_PAGE_SIZE - 1); 1985 1986 stor_device->port_number = host->host_no; 1987 ret = storvsc_connect_to_vsp(device, aligned_ringbuffer_size, is_fc); 1988 if (ret) 1989 goto err_out1; 1990 1991 host_dev->path = stor_device->path_id; 1992 host_dev->target = stor_device->target_id; 1993 1994 switch (dev_id->driver_data) { 1995 case SFC_GUID: 1996 host->max_lun = STORVSC_FC_MAX_LUNS_PER_TARGET; 1997 host->max_id = STORVSC_FC_MAX_TARGETS; 1998 host->max_channel = STORVSC_FC_MAX_CHANNELS - 1; 1999 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2000 host->transportt = fc_transport_template; 2001 #endif 2002 break; 2003 2004 case SCSI_GUID: 2005 host->max_lun = STORVSC_MAX_LUNS_PER_TARGET; 2006 host->max_id = STORVSC_MAX_TARGETS; 2007 host->max_channel = STORVSC_MAX_CHANNELS - 1; 2008 break; 2009 2010 default: 2011 host->max_lun = STORVSC_IDE_MAX_LUNS_PER_TARGET; 2012 host->max_id = STORVSC_IDE_MAX_TARGETS; 2013 host->max_channel = STORVSC_IDE_MAX_CHANNELS - 1; 2014 break; 2015 } 2016 /* max cmd length */ 2017 host->max_cmd_len = STORVSC_MAX_CMD_LEN; 2018 /* 2019 * Any reasonable Hyper-V configuration should provide 2020 * max_transfer_bytes value aligning to HV_HYP_PAGE_SIZE, 2021 * protecting it from any weird value. 2022 */ 2023 max_xfer_bytes = round_down(stor_device->max_transfer_bytes, HV_HYP_PAGE_SIZE); 2024 if (is_fc) 2025 max_xfer_bytes = min(max_xfer_bytes, STORVSC_FC_MAX_XFER_SIZE); 2026 2027 /* max_hw_sectors_kb */ 2028 host->max_sectors = max_xfer_bytes >> 9; 2029 /* 2030 * There are 2 requirements for Hyper-V storvsc sgl segments, 2031 * based on which the below calculation for max segments is 2032 * done: 2033 * 2034 * 1. Except for the first and last sgl segment, all sgl segments 2035 * should be align to HV_HYP_PAGE_SIZE, that also means the 2036 * maximum number of segments in a sgl can be calculated by 2037 * dividing the total max transfer length by HV_HYP_PAGE_SIZE. 2038 * 2039 * 2. Except for the first and last, each entry in the SGL must 2040 * have an offset that is a multiple of HV_HYP_PAGE_SIZE. 2041 */ 2042 host->sg_tablesize = (max_xfer_bytes >> HV_HYP_PAGE_SHIFT) + 1; 2043 /* 2044 * For non-IDE disks, the host supports multiple channels. 2045 * Set the number of HW queues we are supporting. 2046 */ 2047 if (!dev_is_ide) { 2048 if (storvsc_max_hw_queues > num_present_cpus) { 2049 storvsc_max_hw_queues = 0; 2050 storvsc_log(device, STORVSC_LOGGING_WARN, 2051 "Resetting invalid storvsc_max_hw_queues value to default.\n"); 2052 } 2053 if (storvsc_max_hw_queues) 2054 host->nr_hw_queues = storvsc_max_hw_queues; 2055 else 2056 host->nr_hw_queues = num_present_cpus; 2057 } 2058 2059 /* 2060 * Set the error handler work queue. 2061 */ 2062 host_dev->handle_error_wq = 2063 alloc_ordered_workqueue("storvsc_error_wq_%d", 2064 0, 2065 host->host_no); 2066 if (!host_dev->handle_error_wq) { 2067 ret = -ENOMEM; 2068 goto err_out2; 2069 } 2070 INIT_WORK(&host_dev->host_scan_work, storvsc_host_scan); 2071 /* Register the HBA and start the scsi bus scan */ 2072 ret = scsi_add_host(host, &device->device); 2073 if (ret != 0) 2074 goto err_out3; 2075 2076 if (!dev_is_ide) { 2077 scsi_scan_host(host); 2078 } else { 2079 target = (device->dev_instance.b[5] << 8 | 2080 device->dev_instance.b[4]); 2081 ret = scsi_add_device(host, 0, target, 0); 2082 if (ret) 2083 goto err_out4; 2084 } 2085 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2086 if (host->transportt == fc_transport_template) { 2087 struct fc_rport_identifiers ids = { 2088 .roles = FC_PORT_ROLE_FCP_DUMMY_INITIATOR, 2089 }; 2090 2091 fc_host_node_name(host) = stor_device->node_name; 2092 fc_host_port_name(host) = stor_device->port_name; 2093 stor_device->rport = fc_remote_port_add(host, 0, &ids); 2094 if (!stor_device->rport) { 2095 ret = -ENOMEM; 2096 goto err_out4; 2097 } 2098 } 2099 #endif 2100 return 0; 2101 2102 err_out4: 2103 scsi_remove_host(host); 2104 2105 err_out3: 2106 destroy_workqueue(host_dev->handle_error_wq); 2107 2108 err_out2: 2109 /* 2110 * Once we have connected with the host, we would need to 2111 * invoke storvsc_dev_remove() to rollback this state and 2112 * this call also frees up the stor_device; hence the jump around 2113 * err_out1 label. 2114 */ 2115 storvsc_dev_remove(device); 2116 goto err_out0; 2117 2118 err_out1: 2119 kfree(stor_device->stor_chns); 2120 kfree(stor_device); 2121 2122 err_out0: 2123 scsi_host_put(host); 2124 return ret; 2125 } 2126 2127 /* Change a scsi target's queue depth */ 2128 static int storvsc_change_queue_depth(struct scsi_device *sdev, int queue_depth) 2129 { 2130 if (queue_depth > scsi_driver.can_queue) 2131 queue_depth = scsi_driver.can_queue; 2132 2133 return scsi_change_queue_depth(sdev, queue_depth); 2134 } 2135 2136 static void storvsc_remove(struct hv_device *dev) 2137 { 2138 struct storvsc_device *stor_device = hv_get_drvdata(dev); 2139 struct Scsi_Host *host = stor_device->host; 2140 struct hv_host_device *host_dev = shost_priv(host); 2141 2142 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2143 if (host->transportt == fc_transport_template) { 2144 fc_remote_port_delete(stor_device->rport); 2145 fc_remove_host(host); 2146 } 2147 #endif 2148 destroy_workqueue(host_dev->handle_error_wq); 2149 scsi_remove_host(host); 2150 storvsc_dev_remove(dev); 2151 scsi_host_put(host); 2152 } 2153 2154 static int storvsc_suspend(struct hv_device *hv_dev) 2155 { 2156 struct storvsc_device *stor_device = hv_get_drvdata(hv_dev); 2157 struct Scsi_Host *host = stor_device->host; 2158 struct hv_host_device *host_dev = shost_priv(host); 2159 2160 storvsc_wait_to_drain(stor_device); 2161 2162 drain_workqueue(host_dev->handle_error_wq); 2163 2164 vmbus_close(hv_dev->channel); 2165 2166 kfree(stor_device->stor_chns); 2167 stor_device->stor_chns = NULL; 2168 2169 cpumask_clear(&stor_device->alloced_cpus); 2170 2171 return 0; 2172 } 2173 2174 static int storvsc_resume(struct hv_device *hv_dev) 2175 { 2176 int ret; 2177 2178 ret = storvsc_connect_to_vsp(hv_dev, aligned_ringbuffer_size, 2179 hv_dev_is_fc(hv_dev)); 2180 return ret; 2181 } 2182 2183 static struct hv_driver storvsc_drv = { 2184 .name = KBUILD_MODNAME, 2185 .id_table = id_table, 2186 .probe = storvsc_probe, 2187 .remove = storvsc_remove, 2188 .suspend = storvsc_suspend, 2189 .resume = storvsc_resume, 2190 .driver = { 2191 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 2192 }, 2193 }; 2194 2195 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2196 static struct fc_function_template fc_transport_functions = { 2197 .show_host_node_name = 1, 2198 .show_host_port_name = 1, 2199 }; 2200 #endif 2201 2202 static int __init storvsc_drv_init(void) 2203 { 2204 int ret; 2205 2206 /* 2207 * Divide the ring buffer data size (which is 1 page less 2208 * than the ring buffer size since that page is reserved for 2209 * the ring buffer indices) by the max request size (which is 2210 * vmbus_channel_packet_multipage_buffer + struct vstor_packet + u64) 2211 */ 2212 aligned_ringbuffer_size = VMBUS_RING_SIZE(storvsc_ringbuffer_size); 2213 max_outstanding_req_per_channel = 2214 ((aligned_ringbuffer_size - PAGE_SIZE) / 2215 ALIGN(MAX_MULTIPAGE_BUFFER_PACKET + 2216 sizeof(struct vstor_packet) + sizeof(u64), 2217 sizeof(u64))); 2218 2219 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2220 fc_transport_template = fc_attach_transport(&fc_transport_functions); 2221 if (!fc_transport_template) 2222 return -ENODEV; 2223 #endif 2224 2225 ret = vmbus_driver_register(&storvsc_drv); 2226 2227 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2228 if (ret) 2229 fc_release_transport(fc_transport_template); 2230 #endif 2231 2232 return ret; 2233 } 2234 2235 static void __exit storvsc_drv_exit(void) 2236 { 2237 vmbus_driver_unregister(&storvsc_drv); 2238 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2239 fc_release_transport(fc_transport_template); 2240 #endif 2241 } 2242 2243 MODULE_LICENSE("GPL"); 2244 MODULE_DESCRIPTION("Microsoft Hyper-V virtual storage driver"); 2245 module_init(storvsc_drv_init); 2246 module_exit(storvsc_drv_exit); 2247