xref: /linux/arch/x86/crypto/aes-gcm-aesni-x86_64.S (revision a1ff5a7d78a036d6c2178ee5acd6ba4946243800)
1/* SPDX-License-Identifier: Apache-2.0 OR BSD-2-Clause */
2//
3// AES-NI optimized AES-GCM for x86_64
4//
5// Copyright 2024 Google LLC
6//
7// Author: Eric Biggers <ebiggers@google.com>
8//
9//------------------------------------------------------------------------------
10//
11// This file is dual-licensed, meaning that you can use it under your choice of
12// either of the following two licenses:
13//
14// Licensed under the Apache License 2.0 (the "License").  You may obtain a copy
15// of the License at
16//
17//	http://www.apache.org/licenses/LICENSE-2.0
18//
19// Unless required by applicable law or agreed to in writing, software
20// distributed under the License is distributed on an "AS IS" BASIS,
21// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
22// See the License for the specific language governing permissions and
23// limitations under the License.
24//
25// or
26//
27// Redistribution and use in source and binary forms, with or without
28// modification, are permitted provided that the following conditions are met:
29//
30// 1. Redistributions of source code must retain the above copyright notice,
31//    this list of conditions and the following disclaimer.
32//
33// 2. Redistributions in binary form must reproduce the above copyright
34//    notice, this list of conditions and the following disclaimer in the
35//    documentation and/or other materials provided with the distribution.
36//
37// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
38// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
39// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
40// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
41// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
42// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
43// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
44// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
45// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
47// POSSIBILITY OF SUCH DAMAGE.
48//
49//------------------------------------------------------------------------------
50//
51// This file implements AES-GCM (Galois/Counter Mode) for x86_64 CPUs that
52// support the original set of AES instructions, i.e. AES-NI.  Two
53// implementations are provided, one that uses AVX and one that doesn't.  They
54// are very similar, being generated by the same macros.  The only difference is
55// that the AVX implementation takes advantage of VEX-coded instructions in some
56// places to avoid some 'movdqu' and 'movdqa' instructions.  The AVX
57// implementation does *not* use 256-bit vectors, as AES is not supported on
58// 256-bit vectors until the VAES feature (which this file doesn't target).
59//
60// The specific CPU feature prerequisites are AES-NI and PCLMULQDQ, plus SSE4.1
61// for the *_aesni functions or AVX for the *_aesni_avx ones.  (But it seems
62// there are no CPUs that support AES-NI without also PCLMULQDQ and SSE4.1.)
63//
64// The design generally follows that of aes-gcm-avx10-x86_64.S, and that file is
65// more thoroughly commented.  This file has the following notable changes:
66//
67//    - The vector length is fixed at 128-bit, i.e. xmm registers.  This means
68//      there is only one AES block (and GHASH block) per register.
69//
70//    - Without AVX512 / AVX10, only 16 SIMD registers are available instead of
71//      32.  We work around this by being much more careful about using
72//      registers, relying heavily on loads to load values as they are needed.
73//
74//    - Masking is not available either.  We work around this by implementing
75//      partial block loads and stores using overlapping scalar loads and stores
76//      combined with shifts and SSE4.1 insertion and extraction instructions.
77//
78//    - The main loop is organized differently due to the different design
79//      constraints.  First, with just one AES block per SIMD register, on some
80//      CPUs 4 registers don't saturate the 'aesenc' throughput.  We therefore
81//      do an 8-register wide loop.  Considering that and the fact that we have
82//      just 16 SIMD registers to work with, it's not feasible to cache AES
83//      round keys and GHASH key powers in registers across loop iterations.
84//      That's not ideal, but also not actually that bad, since loads can run in
85//      parallel with other instructions.  Significantly, this also makes it
86//      possible to roll up the inner loops, relying on hardware loop unrolling
87//      instead of software loop unrolling, greatly reducing code size.
88//
89//    - We implement the GHASH multiplications in the main loop using Karatsuba
90//      multiplication instead of schoolbook multiplication.  This saves one
91//      pclmulqdq instruction per block, at the cost of one 64-bit load, one
92//      pshufd, and 0.25 pxors per block.  (This is without the three-argument
93//      XOR support that would be provided by AVX512 / AVX10, which would be
94//      more beneficial to schoolbook than Karatsuba.)
95//
96//      As a rough approximation, we can assume that Karatsuba multiplication is
97//      faster than schoolbook multiplication in this context if one pshufd and
98//      0.25 pxors are cheaper than a pclmulqdq.  (We assume that the 64-bit
99//      load is "free" due to running in parallel with arithmetic instructions.)
100//      This is true on AMD CPUs, including all that support pclmulqdq up to at
101//      least Zen 3.  It's also true on older Intel CPUs: Westmere through
102//      Haswell on the Core side, and Silvermont through Goldmont Plus on the
103//      low-power side.  On some of these CPUs, pclmulqdq is quite slow, and the
104//      benefit of Karatsuba should be substantial.  On newer Intel CPUs,
105//      schoolbook multiplication should be faster, but only marginally.
106//
107//      Not all these CPUs were available to be tested.  However, benchmarks on
108//      available CPUs suggest that this approximation is plausible.  Switching
109//      to Karatsuba showed negligible change (< 1%) on Intel Broadwell,
110//      Skylake, and Cascade Lake, but it improved AMD Zen 1-3 by 6-7%.
111//      Considering that and the fact that Karatsuba should be even more
112//      beneficial on older Intel CPUs, it seems like the right choice here.
113//
114//      An additional 0.25 pclmulqdq per block (2 per 8 blocks) could be
115//      saved by using a multiplication-less reduction method.  We don't do that
116//      because it would require a large number of shift and xor instructions,
117//      making it less worthwhile and likely harmful on newer CPUs.
118//
119//      It does make sense to sometimes use a different reduction optimization
120//      that saves a pclmulqdq, though: precompute the hash key times x^64, and
121//      multiply the low half of the data block by the hash key with the extra
122//      factor of x^64.  This eliminates one step of the reduction.  However,
123//      this is incompatible with Karatsuba multiplication.  Therefore, for
124//      multi-block processing we use Karatsuba multiplication with a regular
125//      reduction.  For single-block processing, we use the x^64 optimization.
126
127#include <linux/linkage.h>
128
129.section .rodata
130.p2align 4
131.Lbswap_mask:
132	.octa   0x000102030405060708090a0b0c0d0e0f
133.Lgfpoly:
134	.quad	0xc200000000000000
135.Lone:
136	.quad	1
137.Lgfpoly_and_internal_carrybit:
138	.octa	0xc2000000000000010000000000000001
139	// Loading 16 bytes from '.Lzeropad_mask + 16 - len' produces a mask of
140	// 'len' 0xff bytes and the rest zeroes.
141.Lzeropad_mask:
142	.octa	0xffffffffffffffffffffffffffffffff
143	.octa	0
144
145// Offsets in struct aes_gcm_key_aesni
146#define OFFSETOF_AESKEYLEN	480
147#define OFFSETOF_H_POWERS	496
148#define OFFSETOF_H_POWERS_XORED	624
149#define OFFSETOF_H_TIMES_X64	688
150
151.text
152
153// Do a vpclmulqdq, or fall back to a movdqa and a pclmulqdq.  The fallback
154// assumes that all operands are distinct and that any mem operand is aligned.
155.macro	_vpclmulqdq	imm, src1, src2, dst
156.if USE_AVX
157	vpclmulqdq	\imm, \src1, \src2, \dst
158.else
159	movdqa		\src2, \dst
160	pclmulqdq	\imm, \src1, \dst
161.endif
162.endm
163
164// Do a vpshufb, or fall back to a movdqa and a pshufb.  The fallback assumes
165// that all operands are distinct and that any mem operand is aligned.
166.macro	_vpshufb	src1, src2, dst
167.if USE_AVX
168	vpshufb		\src1, \src2, \dst
169.else
170	movdqa		\src2, \dst
171	pshufb		\src1, \dst
172.endif
173.endm
174
175// Do a vpand, or fall back to a movdqu and a pand.  The fallback assumes that
176// all operands are distinct.
177.macro	_vpand		src1, src2, dst
178.if USE_AVX
179	vpand		\src1, \src2, \dst
180.else
181	movdqu		\src1, \dst
182	pand		\src2, \dst
183.endif
184.endm
185
186// XOR the unaligned memory operand \mem into the xmm register \reg.  \tmp must
187// be a temporary xmm register.
188.macro	_xor_mem_to_reg	mem, reg, tmp
189.if USE_AVX
190	vpxor		\mem, \reg, \reg
191.else
192	movdqu		\mem, \tmp
193	pxor		\tmp, \reg
194.endif
195.endm
196
197// Test the unaligned memory operand \mem against the xmm register \reg.  \tmp
198// must be a temporary xmm register.
199.macro	_test_mem	mem, reg, tmp
200.if USE_AVX
201	vptest		\mem, \reg
202.else
203	movdqu		\mem, \tmp
204	ptest		\tmp, \reg
205.endif
206.endm
207
208// Load 1 <= %ecx <= 15 bytes from the pointer \src into the xmm register \dst
209// and zeroize any remaining bytes.  Clobbers %rax, %rcx, and \tmp{64,32}.
210.macro	_load_partial_block	src, dst, tmp64, tmp32
211	sub		$8, %ecx		// LEN - 8
212	jle		.Lle8\@
213
214	// Load 9 <= LEN <= 15 bytes.
215	movq		(\src), \dst		// Load first 8 bytes
216	mov		(\src, %rcx), %rax	// Load last 8 bytes
217	neg		%ecx
218	shl		$3, %ecx
219	shr		%cl, %rax		// Discard overlapping bytes
220	pinsrq		$1, %rax, \dst
221	jmp		.Ldone\@
222
223.Lle8\@:
224	add		$4, %ecx		// LEN - 4
225	jl		.Llt4\@
226
227	// Load 4 <= LEN <= 8 bytes.
228	mov		(\src), %eax		// Load first 4 bytes
229	mov		(\src, %rcx), \tmp32	// Load last 4 bytes
230	jmp		.Lcombine\@
231
232.Llt4\@:
233	// Load 1 <= LEN <= 3 bytes.
234	add		$2, %ecx		// LEN - 2
235	movzbl		(\src), %eax		// Load first byte
236	jl		.Lmovq\@
237	movzwl		(\src, %rcx), \tmp32	// Load last 2 bytes
238.Lcombine\@:
239	shl		$3, %ecx
240	shl		%cl, \tmp64
241	or		\tmp64, %rax		// Combine the two parts
242.Lmovq\@:
243	movq		%rax, \dst
244.Ldone\@:
245.endm
246
247// Store 1 <= %ecx <= 15 bytes from the xmm register \src to the pointer \dst.
248// Clobbers %rax, %rcx, and %rsi.
249.macro	_store_partial_block	src, dst
250	sub		$8, %ecx		// LEN - 8
251	jl		.Llt8\@
252
253	// Store 8 <= LEN <= 15 bytes.
254	pextrq		$1, \src, %rax
255	mov		%ecx, %esi
256	shl		$3, %ecx
257	ror		%cl, %rax
258	mov		%rax, (\dst, %rsi)	// Store last LEN - 8 bytes
259	movq		\src, (\dst)		// Store first 8 bytes
260	jmp		.Ldone\@
261
262.Llt8\@:
263	add		$4, %ecx		// LEN - 4
264	jl		.Llt4\@
265
266	// Store 4 <= LEN <= 7 bytes.
267	pextrd		$1, \src, %eax
268	mov		%ecx, %esi
269	shl		$3, %ecx
270	ror		%cl, %eax
271	mov		%eax, (\dst, %rsi)	// Store last LEN - 4 bytes
272	movd		\src, (\dst)		// Store first 4 bytes
273	jmp		.Ldone\@
274
275.Llt4\@:
276	// Store 1 <= LEN <= 3 bytes.
277	pextrb		$0, \src, 0(\dst)
278	cmp		$-2, %ecx		// LEN - 4 == -2, i.e. LEN == 2?
279	jl		.Ldone\@
280	pextrb		$1, \src, 1(\dst)
281	je		.Ldone\@
282	pextrb		$2, \src, 2(\dst)
283.Ldone\@:
284.endm
285
286// Do one step of GHASH-multiplying \a by \b and storing the reduced product in
287// \b.  To complete all steps, this must be invoked with \i=0 through \i=9.
288// \a_times_x64 must contain \a * x^64 in reduced form, \gfpoly must contain the
289// .Lgfpoly constant, and \t0-\t1 must be temporary registers.
290.macro	_ghash_mul_step	i, a, a_times_x64, b, gfpoly, t0, t1
291
292	// MI = (a_L * b_H) + ((a*x^64)_L * b_L)
293.if \i == 0
294	_vpclmulqdq	$0x01, \a, \b, \t0
295.elseif \i == 1
296	_vpclmulqdq	$0x00, \a_times_x64, \b, \t1
297.elseif \i == 2
298	pxor		\t1, \t0
299
300	// HI = (a_H * b_H) + ((a*x^64)_H * b_L)
301.elseif \i == 3
302	_vpclmulqdq	$0x11, \a, \b, \t1
303.elseif \i == 4
304	pclmulqdq	$0x10, \a_times_x64, \b
305.elseif \i == 5
306	pxor		\t1, \b
307.elseif \i == 6
308
309	// Fold MI into HI.
310	pshufd		$0x4e, \t0, \t1		// Swap halves of MI
311.elseif \i == 7
312	pclmulqdq	$0x00, \gfpoly, \t0	// MI_L*(x^63 + x^62 + x^57)
313.elseif \i == 8
314	pxor		\t1, \b
315.elseif \i == 9
316	pxor		\t0, \b
317.endif
318.endm
319
320// GHASH-multiply \a by \b and store the reduced product in \b.
321// See _ghash_mul_step for details.
322.macro	_ghash_mul	a, a_times_x64, b, gfpoly, t0, t1
323.irp i, 0,1,2,3,4,5,6,7,8,9
324	_ghash_mul_step	\i, \a, \a_times_x64, \b, \gfpoly, \t0, \t1
325.endr
326.endm
327
328// GHASH-multiply \a by \b and add the unreduced product to \lo, \mi, and \hi.
329// This does Karatsuba multiplication and must be paired with _ghash_reduce.  On
330// the first call, \lo, \mi, and \hi must be zero.  \a_xored must contain the
331// two halves of \a XOR'd together, i.e. a_L + a_H.  \b is clobbered.
332.macro	_ghash_mul_noreduce	a, a_xored, b, lo, mi, hi, t0
333
334	// LO += a_L * b_L
335	_vpclmulqdq	$0x00, \a, \b, \t0
336	pxor		\t0, \lo
337
338	// b_L + b_H
339	pshufd		$0x4e, \b, \t0
340	pxor		\b, \t0
341
342	// HI += a_H * b_H
343	pclmulqdq	$0x11, \a, \b
344	pxor		\b, \hi
345
346	// MI += (a_L + a_H) * (b_L + b_H)
347	pclmulqdq	$0x00, \a_xored, \t0
348	pxor		\t0, \mi
349.endm
350
351// Reduce the product from \lo, \mi, and \hi, and store the result in \dst.
352// This assumes that _ghash_mul_noreduce was used.
353.macro	_ghash_reduce	lo, mi, hi, dst, t0
354
355	movq		.Lgfpoly(%rip), \t0
356
357	// MI += LO + HI (needed because we used Karatsuba multiplication)
358	pxor		\lo, \mi
359	pxor		\hi, \mi
360
361	// Fold LO into MI.
362	pshufd		$0x4e, \lo, \dst
363	pclmulqdq	$0x00, \t0, \lo
364	pxor		\dst, \mi
365	pxor		\lo, \mi
366
367	// Fold MI into HI.
368	pshufd		$0x4e, \mi, \dst
369	pclmulqdq	$0x00, \t0, \mi
370	pxor		\hi, \dst
371	pxor		\mi, \dst
372.endm
373
374// Do the first step of the GHASH update of a set of 8 ciphertext blocks.
375//
376// The whole GHASH update does:
377//
378//	GHASH_ACC = (blk0+GHASH_ACC)*H^8 + blk1*H^7 + blk2*H^6 + blk3*H^5 +
379//				blk4*H^4 + blk5*H^3 + blk6*H^2 + blk7*H^1
380//
381// This macro just does the first step: it does the unreduced multiplication
382// (blk0+GHASH_ACC)*H^8 and starts gathering the unreduced product in the xmm
383// registers LO, MI, and GHASH_ACC a.k.a. HI.  It also zero-initializes the
384// inner block counter in %rax, which is a value that counts up by 8 for each
385// block in the set of 8 and is used later to index by 8*blknum and 16*blknum.
386//
387// To reduce the number of pclmulqdq instructions required, both this macro and
388// _ghash_update_continue_8x use Karatsuba multiplication instead of schoolbook
389// multiplication.  See the file comment for more details about this choice.
390//
391// Both macros expect the ciphertext blocks blk[0-7] to be available at DST if
392// encrypting, or SRC if decrypting.  They also expect the precomputed hash key
393// powers H^i and their XOR'd-together halves to be available in the struct
394// pointed to by KEY.  Both macros clobber TMP[0-2].
395.macro	_ghash_update_begin_8x	enc
396
397	// Initialize the inner block counter.
398	xor		%eax, %eax
399
400	// Load the highest hash key power, H^8.
401	movdqa		OFFSETOF_H_POWERS(KEY), TMP0
402
403	// Load the first ciphertext block and byte-reflect it.
404.if \enc
405	movdqu		(DST), TMP1
406.else
407	movdqu		(SRC), TMP1
408.endif
409	pshufb		BSWAP_MASK, TMP1
410
411	// Add the GHASH accumulator to the ciphertext block to get the block
412	// 'b' that needs to be multiplied with the hash key power 'a'.
413	pxor		TMP1, GHASH_ACC
414
415	// b_L + b_H
416	pshufd		$0x4e, GHASH_ACC, MI
417	pxor		GHASH_ACC, MI
418
419	// LO = a_L * b_L
420	_vpclmulqdq	$0x00, TMP0, GHASH_ACC, LO
421
422	// HI = a_H * b_H
423	pclmulqdq	$0x11, TMP0, GHASH_ACC
424
425	// MI = (a_L + a_H) * (b_L + b_H)
426	pclmulqdq	$0x00, OFFSETOF_H_POWERS_XORED(KEY), MI
427.endm
428
429// Continue the GHASH update of 8 ciphertext blocks as described above by doing
430// an unreduced multiplication of the next ciphertext block by the next lowest
431// key power and accumulating the result into LO, MI, and GHASH_ACC a.k.a. HI.
432.macro	_ghash_update_continue_8x enc
433	add		$8, %eax
434
435	// Load the next lowest key power.
436	movdqa		OFFSETOF_H_POWERS(KEY,%rax,2), TMP0
437
438	// Load the next ciphertext block and byte-reflect it.
439.if \enc
440	movdqu		(DST,%rax,2), TMP1
441.else
442	movdqu		(SRC,%rax,2), TMP1
443.endif
444	pshufb		BSWAP_MASK, TMP1
445
446	// LO += a_L * b_L
447	_vpclmulqdq	$0x00, TMP0, TMP1, TMP2
448	pxor		TMP2, LO
449
450	// b_L + b_H
451	pshufd		$0x4e, TMP1, TMP2
452	pxor		TMP1, TMP2
453
454	// HI += a_H * b_H
455	pclmulqdq	$0x11, TMP0, TMP1
456	pxor		TMP1, GHASH_ACC
457
458	// MI += (a_L + a_H) * (b_L + b_H)
459	movq		OFFSETOF_H_POWERS_XORED(KEY,%rax), TMP1
460	pclmulqdq	$0x00, TMP1, TMP2
461	pxor		TMP2, MI
462.endm
463
464// Reduce LO, MI, and GHASH_ACC a.k.a. HI into GHASH_ACC.  This is similar to
465// _ghash_reduce, but it's hardcoded to use the registers of the main loop and
466// it uses the same register for HI and the destination.  It's also divided into
467// two steps.  TMP1 must be preserved across steps.
468//
469// One pshufd could be saved by shuffling MI and XOR'ing LO into it, instead of
470// shuffling LO, XOR'ing LO into MI, and shuffling MI.  However, this would
471// increase the critical path length, and it seems to slightly hurt performance.
472.macro	_ghash_update_end_8x_step	i
473.if \i == 0
474	movq		.Lgfpoly(%rip), TMP1
475	pxor		LO, MI
476	pxor		GHASH_ACC, MI
477	pshufd		$0x4e, LO, TMP2
478	pclmulqdq	$0x00, TMP1, LO
479	pxor		TMP2, MI
480	pxor		LO, MI
481.elseif \i == 1
482	pshufd		$0x4e, MI, TMP2
483	pclmulqdq	$0x00, TMP1, MI
484	pxor		TMP2, GHASH_ACC
485	pxor		MI, GHASH_ACC
486.endif
487.endm
488
489// void aes_gcm_precompute_##suffix(struct aes_gcm_key_aesni *key);
490//
491// Given the expanded AES key, derive the GHASH subkey and initialize the GHASH
492// related fields in the key struct.
493.macro	_aes_gcm_precompute
494
495	// Function arguments
496	.set	KEY,		%rdi
497
498	// Additional local variables.
499	// %xmm0-%xmm1 and %rax are used as temporaries.
500	.set	RNDKEYLAST_PTR,	%rsi
501	.set	H_CUR,		%xmm2
502	.set	H_POW1,		%xmm3	// H^1
503	.set	H_POW1_X64,	%xmm4	// H^1 * x^64
504	.set	GFPOLY,		%xmm5
505
506	// Encrypt an all-zeroes block to get the raw hash subkey.
507	movl		OFFSETOF_AESKEYLEN(KEY), %eax
508	lea		6*16(KEY,%rax,4), RNDKEYLAST_PTR
509	movdqa		(KEY), H_POW1  // Zero-th round key XOR all-zeroes block
510	lea		16(KEY), %rax
5111:
512	aesenc		(%rax), H_POW1
513	add		$16, %rax
514	cmp		%rax, RNDKEYLAST_PTR
515	jne		1b
516	aesenclast	(RNDKEYLAST_PTR), H_POW1
517
518	// Preprocess the raw hash subkey as needed to operate on GHASH's
519	// bit-reflected values directly: reflect its bytes, then multiply it by
520	// x^-1 (using the backwards interpretation of polynomial coefficients
521	// from the GCM spec) or equivalently x^1 (using the alternative,
522	// natural interpretation of polynomial coefficients).
523	pshufb		.Lbswap_mask(%rip), H_POW1
524	movdqa		H_POW1, %xmm0
525	pshufd		$0xd3, %xmm0, %xmm0
526	psrad		$31, %xmm0
527	paddq		H_POW1, H_POW1
528	pand		.Lgfpoly_and_internal_carrybit(%rip), %xmm0
529	pxor		%xmm0, H_POW1
530
531	// Store H^1.
532	movdqa		H_POW1, OFFSETOF_H_POWERS+7*16(KEY)
533
534	// Compute and store H^1 * x^64.
535	movq		.Lgfpoly(%rip), GFPOLY
536	pshufd		$0x4e, H_POW1, %xmm0
537	_vpclmulqdq	$0x00, H_POW1, GFPOLY, H_POW1_X64
538	pxor		%xmm0, H_POW1_X64
539	movdqa		H_POW1_X64, OFFSETOF_H_TIMES_X64(KEY)
540
541	// Compute and store the halves of H^1 XOR'd together.
542	pxor		H_POW1, %xmm0
543	movq		%xmm0, OFFSETOF_H_POWERS_XORED+7*8(KEY)
544
545	// Compute and store the remaining key powers H^2 through H^8.
546	movdqa		H_POW1, H_CUR
547	mov		$6*8, %eax
548.Lprecompute_next\@:
549	// Compute H^i = H^{i-1} * H^1.
550	_ghash_mul	H_POW1, H_POW1_X64, H_CUR, GFPOLY, %xmm0, %xmm1
551	// Store H^i.
552	movdqa		H_CUR, OFFSETOF_H_POWERS(KEY,%rax,2)
553	// Compute and store the halves of H^i XOR'd together.
554	pshufd		$0x4e, H_CUR, %xmm0
555	pxor		H_CUR, %xmm0
556	movq		%xmm0, OFFSETOF_H_POWERS_XORED(KEY,%rax)
557	sub		$8, %eax
558	jge		.Lprecompute_next\@
559
560	RET
561.endm
562
563// void aes_gcm_aad_update_aesni(const struct aes_gcm_key_aesni *key,
564//				 u8 ghash_acc[16], const u8 *aad, int aadlen);
565//
566// This function processes the AAD (Additional Authenticated Data) in GCM.
567// Using the key |key|, it updates the GHASH accumulator |ghash_acc| with the
568// data given by |aad| and |aadlen|.  On the first call, |ghash_acc| must be all
569// zeroes.  |aadlen| must be a multiple of 16, except on the last call where it
570// can be any length.  The caller must do any buffering needed to ensure this.
571.macro	_aes_gcm_aad_update
572
573	// Function arguments
574	.set	KEY,		%rdi
575	.set	GHASH_ACC_PTR,	%rsi
576	.set	AAD,		%rdx
577	.set	AADLEN,		%ecx
578	// Note: _load_partial_block relies on AADLEN being in %ecx.
579
580	// Additional local variables.
581	// %rax, %r10, and %xmm0-%xmm1 are used as temporary registers.
582	.set	BSWAP_MASK,	%xmm2
583	.set	GHASH_ACC,	%xmm3
584	.set	H_POW1,		%xmm4	// H^1
585	.set	H_POW1_X64,	%xmm5	// H^1 * x^64
586	.set	GFPOLY,		%xmm6
587
588	movdqa		.Lbswap_mask(%rip), BSWAP_MASK
589	movdqu		(GHASH_ACC_PTR), GHASH_ACC
590	movdqa		OFFSETOF_H_POWERS+7*16(KEY), H_POW1
591	movdqa		OFFSETOF_H_TIMES_X64(KEY), H_POW1_X64
592	movq		.Lgfpoly(%rip), GFPOLY
593
594	// Process the AAD one full block at a time.
595	sub		$16, AADLEN
596	jl		.Laad_loop_1x_done\@
597.Laad_loop_1x\@:
598	movdqu		(AAD), %xmm0
599	pshufb		BSWAP_MASK, %xmm0
600	pxor		%xmm0, GHASH_ACC
601	_ghash_mul	H_POW1, H_POW1_X64, GHASH_ACC, GFPOLY, %xmm0, %xmm1
602	add		$16, AAD
603	sub		$16, AADLEN
604	jge		.Laad_loop_1x\@
605.Laad_loop_1x_done\@:
606	// Check whether there is a partial block at the end.
607	add		$16, AADLEN
608	jz		.Laad_done\@
609
610	// Process a partial block of length 1 <= AADLEN <= 15.
611	// _load_partial_block assumes that %ecx contains AADLEN.
612	_load_partial_block	AAD, %xmm0, %r10, %r10d
613	pshufb		BSWAP_MASK, %xmm0
614	pxor		%xmm0, GHASH_ACC
615	_ghash_mul	H_POW1, H_POW1_X64, GHASH_ACC, GFPOLY, %xmm0, %xmm1
616
617.Laad_done\@:
618	movdqu		GHASH_ACC, (GHASH_ACC_PTR)
619	RET
620.endm
621
622// Increment LE_CTR eight times to generate eight little-endian counter blocks,
623// swap each to big-endian, and store them in AESDATA[0-7].  Also XOR them with
624// the zero-th AES round key.  Clobbers TMP0 and TMP1.
625.macro	_ctr_begin_8x
626	movq		.Lone(%rip), TMP0
627	movdqa		(KEY), TMP1		// zero-th round key
628.irp i, 0,1,2,3,4,5,6,7
629	_vpshufb	BSWAP_MASK, LE_CTR, AESDATA\i
630	pxor		TMP1, AESDATA\i
631	paddd		TMP0, LE_CTR
632.endr
633.endm
634
635// Do a non-last round of AES on AESDATA[0-7] using \round_key.
636.macro	_aesenc_8x	round_key
637.irp i, 0,1,2,3,4,5,6,7
638	aesenc		\round_key, AESDATA\i
639.endr
640.endm
641
642// Do the last round of AES on AESDATA[0-7] using \round_key.
643.macro	_aesenclast_8x	round_key
644.irp i, 0,1,2,3,4,5,6,7
645	aesenclast	\round_key, AESDATA\i
646.endr
647.endm
648
649// XOR eight blocks from SRC with the keystream blocks in AESDATA[0-7], and
650// store the result to DST.  Clobbers TMP0.
651.macro	_xor_data_8x
652.irp i, 0,1,2,3,4,5,6,7
653	_xor_mem_to_reg	\i*16(SRC), AESDATA\i, tmp=TMP0
654.endr
655.irp i, 0,1,2,3,4,5,6,7
656	movdqu		AESDATA\i, \i*16(DST)
657.endr
658.endm
659
660// void aes_gcm_{enc,dec}_update_##suffix(const struct aes_gcm_key_aesni *key,
661//					  const u32 le_ctr[4], u8 ghash_acc[16],
662//					  const u8 *src, u8 *dst, int datalen);
663//
664// This macro generates a GCM encryption or decryption update function with the
665// above prototype (with \enc selecting which one).
666//
667// This function computes the next portion of the CTR keystream, XOR's it with
668// |datalen| bytes from |src|, and writes the resulting encrypted or decrypted
669// data to |dst|.  It also updates the GHASH accumulator |ghash_acc| using the
670// next |datalen| ciphertext bytes.
671//
672// |datalen| must be a multiple of 16, except on the last call where it can be
673// any length.  The caller must do any buffering needed to ensure this.  Both
674// in-place and out-of-place en/decryption are supported.
675//
676// |le_ctr| must give the current counter in little-endian format.  For a new
677// message, the low word of the counter must be 2.  This function loads the
678// counter from |le_ctr| and increments the loaded counter as needed, but it
679// does *not* store the updated counter back to |le_ctr|.  The caller must
680// update |le_ctr| if any more data segments follow.  Internally, only the low
681// 32-bit word of the counter is incremented, following the GCM standard.
682.macro	_aes_gcm_update	enc
683
684	// Function arguments
685	.set	KEY,		%rdi
686	.set	LE_CTR_PTR,	%rsi	// Note: overlaps with usage as temp reg
687	.set	GHASH_ACC_PTR,	%rdx
688	.set	SRC,		%rcx
689	.set	DST,		%r8
690	.set	DATALEN,	%r9d
691	.set	DATALEN64,	%r9	// Zero-extend DATALEN before using!
692	// Note: the code setting up for _load_partial_block assumes that SRC is
693	// in %rcx (and that DATALEN is *not* in %rcx).
694
695	// Additional local variables
696
697	// %rax and %rsi are used as temporary registers.  Note: %rsi overlaps
698	// with LE_CTR_PTR, which is used only at the beginning.
699
700	.set	AESKEYLEN,	%r10d	// AES key length in bytes
701	.set	AESKEYLEN64,	%r10
702	.set	RNDKEYLAST_PTR,	%r11	// Pointer to last AES round key
703
704	// Put the most frequently used values in %xmm0-%xmm7 to reduce code
705	// size.  (%xmm0-%xmm7 take fewer bytes to encode than %xmm8-%xmm15.)
706	.set	TMP0,		%xmm0
707	.set	TMP1,		%xmm1
708	.set	TMP2,		%xmm2
709	.set	LO,		%xmm3	// Low part of unreduced product
710	.set	MI,		%xmm4	// Middle part of unreduced product
711	.set	GHASH_ACC,	%xmm5	// GHASH accumulator; in main loop also
712					// the high part of unreduced product
713	.set	BSWAP_MASK,	%xmm6	// Shuffle mask for reflecting bytes
714	.set	LE_CTR,		%xmm7	// Little-endian counter value
715	.set	AESDATA0,	%xmm8
716	.set	AESDATA1,	%xmm9
717	.set	AESDATA2,	%xmm10
718	.set	AESDATA3,	%xmm11
719	.set	AESDATA4,	%xmm12
720	.set	AESDATA5,	%xmm13
721	.set	AESDATA6,	%xmm14
722	.set	AESDATA7,	%xmm15
723
724	movdqa		.Lbswap_mask(%rip), BSWAP_MASK
725	movdqu		(GHASH_ACC_PTR), GHASH_ACC
726	movdqu		(LE_CTR_PTR), LE_CTR
727
728	movl		OFFSETOF_AESKEYLEN(KEY), AESKEYLEN
729	lea		6*16(KEY,AESKEYLEN64,4), RNDKEYLAST_PTR
730
731	// If there are at least 8*16 bytes of data, then continue into the main
732	// loop, which processes 8*16 bytes of data per iteration.
733	//
734	// The main loop interleaves AES and GHASH to improve performance on
735	// CPUs that can execute these instructions in parallel.  When
736	// decrypting, the GHASH input (the ciphertext) is immediately
737	// available.  When encrypting, we instead encrypt a set of 8 blocks
738	// first and then GHASH those blocks while encrypting the next set of 8,
739	// repeat that as needed, and finally GHASH the last set of 8 blocks.
740	//
741	// Code size optimization: Prefer adding or subtracting -8*16 over 8*16,
742	// as this makes the immediate fit in a signed byte, saving 3 bytes.
743	add		$-8*16, DATALEN
744	jl		.Lcrypt_loop_8x_done\@
745.if \enc
746	// Encrypt the first 8 plaintext blocks.
747	_ctr_begin_8x
748	lea		16(KEY), %rsi
749	.p2align 4
7501:
751	movdqa		(%rsi), TMP0
752	_aesenc_8x	TMP0
753	add		$16, %rsi
754	cmp		%rsi, RNDKEYLAST_PTR
755	jne		1b
756	movdqa		(%rsi), TMP0
757	_aesenclast_8x	TMP0
758	_xor_data_8x
759	// Don't increment DST until the ciphertext blocks have been hashed.
760	sub		$-8*16, SRC
761	add		$-8*16, DATALEN
762	jl		.Lghash_last_ciphertext_8x\@
763.endif
764
765	.p2align 4
766.Lcrypt_loop_8x\@:
767
768	// Generate the next set of 8 counter blocks and start encrypting them.
769	_ctr_begin_8x
770	lea		16(KEY), %rsi
771
772	// Do a round of AES, and start the GHASH update of 8 ciphertext blocks
773	// by doing the unreduced multiplication for the first ciphertext block.
774	movdqa		(%rsi), TMP0
775	add		$16, %rsi
776	_aesenc_8x	TMP0
777	_ghash_update_begin_8x \enc
778
779	// Do 7 more rounds of AES, and continue the GHASH update by doing the
780	// unreduced multiplication for the remaining ciphertext blocks.
781	.p2align 4
7821:
783	movdqa		(%rsi), TMP0
784	add		$16, %rsi
785	_aesenc_8x	TMP0
786	_ghash_update_continue_8x \enc
787	cmp		$7*8, %eax
788	jne		1b
789
790	// Do the remaining AES rounds.
791	.p2align 4
7921:
793	movdqa		(%rsi), TMP0
794	add		$16, %rsi
795	_aesenc_8x	TMP0
796	cmp		%rsi, RNDKEYLAST_PTR
797	jne		1b
798
799	// Do the GHASH reduction and the last round of AES.
800	movdqa		(RNDKEYLAST_PTR), TMP0
801	_ghash_update_end_8x_step	0
802	_aesenclast_8x	TMP0
803	_ghash_update_end_8x_step	1
804
805	// XOR the data with the AES-CTR keystream blocks.
806.if \enc
807	sub		$-8*16, DST
808.endif
809	_xor_data_8x
810	sub		$-8*16, SRC
811.if !\enc
812	sub		$-8*16, DST
813.endif
814	add		$-8*16, DATALEN
815	jge		.Lcrypt_loop_8x\@
816
817.if \enc
818.Lghash_last_ciphertext_8x\@:
819	// Update GHASH with the last set of 8 ciphertext blocks.
820	_ghash_update_begin_8x		\enc
821	.p2align 4
8221:
823	_ghash_update_continue_8x	\enc
824	cmp		$7*8, %eax
825	jne		1b
826	_ghash_update_end_8x_step	0
827	_ghash_update_end_8x_step	1
828	sub		$-8*16, DST
829.endif
830
831.Lcrypt_loop_8x_done\@:
832
833	sub		$-8*16, DATALEN
834	jz		.Ldone\@
835
836	// Handle the remainder of length 1 <= DATALEN < 8*16 bytes.  We keep
837	// things simple and keep the code size down by just going one block at
838	// a time, again taking advantage of hardware loop unrolling.  Since
839	// there are enough key powers available for all remaining data, we do
840	// the GHASH multiplications unreduced, and only reduce at the very end.
841
842	.set	HI,		TMP2
843	.set	H_POW,		AESDATA0
844	.set	H_POW_XORED,	AESDATA1
845	.set	ONE,		AESDATA2
846
847	movq		.Lone(%rip), ONE
848
849	// Start collecting the unreduced GHASH intermediate value LO, MI, HI.
850	pxor		LO, LO
851	pxor		MI, MI
852	pxor		HI, HI
853
854	// Set up a block counter %rax to contain 8*(8-n), where n is the number
855	// of blocks that remain, counting any partial block.  This will be used
856	// to access the key powers H^n through H^1.
857	mov		DATALEN, %eax
858	neg		%eax
859	and		$~15, %eax
860	sar		$1, %eax
861	add		$64, %eax
862
863	sub		$16, DATALEN
864	jl		.Lcrypt_loop_1x_done\@
865
866	// Process the data one full block at a time.
867.Lcrypt_loop_1x\@:
868
869	// Encrypt the next counter block.
870	_vpshufb	BSWAP_MASK, LE_CTR, TMP0
871	paddd		ONE, LE_CTR
872	pxor		(KEY), TMP0
873	lea		-6*16(RNDKEYLAST_PTR), %rsi	// Reduce code size
874	cmp		$24, AESKEYLEN
875	jl		128f	// AES-128?
876	je		192f	// AES-192?
877	// AES-256
878	aesenc		-7*16(%rsi), TMP0
879	aesenc		-6*16(%rsi), TMP0
880192:
881	aesenc		-5*16(%rsi), TMP0
882	aesenc		-4*16(%rsi), TMP0
883128:
884.irp i, -3,-2,-1,0,1,2,3,4,5
885	aesenc		\i*16(%rsi), TMP0
886.endr
887	aesenclast	(RNDKEYLAST_PTR), TMP0
888
889	// Load the next key power H^i.
890	movdqa		OFFSETOF_H_POWERS(KEY,%rax,2), H_POW
891	movq		OFFSETOF_H_POWERS_XORED(KEY,%rax), H_POW_XORED
892
893	// XOR the keystream block that was just generated in TMP0 with the next
894	// source data block and store the resulting en/decrypted data to DST.
895.if \enc
896	_xor_mem_to_reg	(SRC), TMP0, tmp=TMP1
897	movdqu		TMP0, (DST)
898.else
899	movdqu		(SRC), TMP1
900	pxor		TMP1, TMP0
901	movdqu		TMP0, (DST)
902.endif
903
904	// Update GHASH with the ciphertext block.
905.if \enc
906	pshufb		BSWAP_MASK, TMP0
907	pxor		TMP0, GHASH_ACC
908.else
909	pshufb		BSWAP_MASK, TMP1
910	pxor		TMP1, GHASH_ACC
911.endif
912	_ghash_mul_noreduce	H_POW, H_POW_XORED, GHASH_ACC, LO, MI, HI, TMP0
913	pxor		GHASH_ACC, GHASH_ACC
914
915	add		$8, %eax
916	add		$16, SRC
917	add		$16, DST
918	sub		$16, DATALEN
919	jge		.Lcrypt_loop_1x\@
920.Lcrypt_loop_1x_done\@:
921	// Check whether there is a partial block at the end.
922	add		$16, DATALEN
923	jz		.Lghash_reduce\@
924
925	// Process a partial block of length 1 <= DATALEN <= 15.
926
927	// Encrypt a counter block for the last time.
928	pshufb		BSWAP_MASK, LE_CTR
929	pxor		(KEY), LE_CTR
930	lea		16(KEY), %rsi
9311:
932	aesenc		(%rsi), LE_CTR
933	add		$16, %rsi
934	cmp		%rsi, RNDKEYLAST_PTR
935	jne		1b
936	aesenclast	(RNDKEYLAST_PTR), LE_CTR
937
938	// Load the lowest key power, H^1.
939	movdqa		OFFSETOF_H_POWERS(KEY,%rax,2), H_POW
940	movq		OFFSETOF_H_POWERS_XORED(KEY,%rax), H_POW_XORED
941
942	// Load and zero-pad 1 <= DATALEN <= 15 bytes of data from SRC.  SRC is
943	// in %rcx, but _load_partial_block needs DATALEN in %rcx instead.
944	// RNDKEYLAST_PTR is no longer needed, so reuse it for SRC.
945	mov		SRC, RNDKEYLAST_PTR
946	mov		DATALEN, %ecx
947	_load_partial_block	RNDKEYLAST_PTR, TMP0, %rsi, %esi
948
949	// XOR the keystream block that was just generated in LE_CTR with the
950	// source data block and store the resulting en/decrypted data to DST.
951	pxor		TMP0, LE_CTR
952	mov		DATALEN, %ecx
953	_store_partial_block	LE_CTR, DST
954
955	// If encrypting, zero-pad the final ciphertext block for GHASH.  (If
956	// decrypting, this was already done by _load_partial_block.)
957.if \enc
958	lea		.Lzeropad_mask+16(%rip), %rax
959	sub		DATALEN64, %rax
960	_vpand		(%rax), LE_CTR, TMP0
961.endif
962
963	// Update GHASH with the final ciphertext block.
964	pshufb		BSWAP_MASK, TMP0
965	pxor		TMP0, GHASH_ACC
966	_ghash_mul_noreduce	H_POW, H_POW_XORED, GHASH_ACC, LO, MI, HI, TMP0
967
968.Lghash_reduce\@:
969	// Finally, do the GHASH reduction.
970	_ghash_reduce	LO, MI, HI, GHASH_ACC, TMP0
971
972.Ldone\@:
973	// Store the updated GHASH accumulator back to memory.
974	movdqu		GHASH_ACC, (GHASH_ACC_PTR)
975
976	RET
977.endm
978
979// void aes_gcm_enc_final_##suffix(const struct aes_gcm_key_aesni *key,
980//				   const u32 le_ctr[4], u8 ghash_acc[16],
981//				   u64 total_aadlen, u64 total_datalen);
982// bool aes_gcm_dec_final_##suffix(const struct aes_gcm_key_aesni *key,
983//				   const u32 le_ctr[4], const u8 ghash_acc[16],
984//				   u64 total_aadlen, u64 total_datalen,
985//				   const u8 tag[16], int taglen);
986//
987// This macro generates one of the above two functions (with \enc selecting
988// which one).  Both functions finish computing the GCM authentication tag by
989// updating GHASH with the lengths block and encrypting the GHASH accumulator.
990// |total_aadlen| and |total_datalen| must be the total length of the additional
991// authenticated data and the en/decrypted data in bytes, respectively.
992//
993// The encryption function then stores the full-length (16-byte) computed
994// authentication tag to |ghash_acc|.  The decryption function instead loads the
995// expected authentication tag (the one that was transmitted) from the 16-byte
996// buffer |tag|, compares the first 4 <= |taglen| <= 16 bytes of it to the
997// computed tag in constant time, and returns true if and only if they match.
998.macro	_aes_gcm_final	enc
999
1000	// Function arguments
1001	.set	KEY,		%rdi
1002	.set	LE_CTR_PTR,	%rsi
1003	.set	GHASH_ACC_PTR,	%rdx
1004	.set	TOTAL_AADLEN,	%rcx
1005	.set	TOTAL_DATALEN,	%r8
1006	.set	TAG,		%r9
1007	.set	TAGLEN,		%r10d	// Originally at 8(%rsp)
1008	.set	TAGLEN64,	%r10
1009
1010	// Additional local variables.
1011	// %rax and %xmm0-%xmm2 are used as temporary registers.
1012	.set	AESKEYLEN,	%r11d
1013	.set	AESKEYLEN64,	%r11
1014	.set	BSWAP_MASK,	%xmm3
1015	.set	GHASH_ACC,	%xmm4
1016	.set	H_POW1,		%xmm5	// H^1
1017	.set	H_POW1_X64,	%xmm6	// H^1 * x^64
1018	.set	GFPOLY,		%xmm7
1019
1020	movdqa		.Lbswap_mask(%rip), BSWAP_MASK
1021	movl		OFFSETOF_AESKEYLEN(KEY), AESKEYLEN
1022
1023	// Set up a counter block with 1 in the low 32-bit word.  This is the
1024	// counter that produces the ciphertext needed to encrypt the auth tag.
1025	movdqu		(LE_CTR_PTR), %xmm0
1026	mov		$1, %eax
1027	pinsrd		$0, %eax, %xmm0
1028
1029	// Build the lengths block and XOR it into the GHASH accumulator.
1030	movq		TOTAL_DATALEN, GHASH_ACC
1031	pinsrq		$1, TOTAL_AADLEN, GHASH_ACC
1032	psllq		$3, GHASH_ACC	// Bytes to bits
1033	_xor_mem_to_reg	(GHASH_ACC_PTR), GHASH_ACC, %xmm1
1034
1035	movdqa		OFFSETOF_H_POWERS+7*16(KEY), H_POW1
1036	movdqa		OFFSETOF_H_TIMES_X64(KEY), H_POW1_X64
1037	movq		.Lgfpoly(%rip), GFPOLY
1038
1039	// Make %rax point to the 6th from last AES round key.  (Using signed
1040	// byte offsets -7*16 through 6*16 decreases code size.)
1041	lea		(KEY,AESKEYLEN64,4), %rax
1042
1043	// AES-encrypt the counter block and also multiply GHASH_ACC by H^1.
1044	// Interleave the AES and GHASH instructions to improve performance.
1045	pshufb		BSWAP_MASK, %xmm0
1046	pxor		(KEY), %xmm0
1047	cmp		$24, AESKEYLEN
1048	jl		128f	// AES-128?
1049	je		192f	// AES-192?
1050	// AES-256
1051	aesenc		-7*16(%rax), %xmm0
1052	aesenc		-6*16(%rax), %xmm0
1053192:
1054	aesenc		-5*16(%rax), %xmm0
1055	aesenc		-4*16(%rax), %xmm0
1056128:
1057.irp i, 0,1,2,3,4,5,6,7,8
1058	aesenc		(\i-3)*16(%rax), %xmm0
1059	_ghash_mul_step	\i, H_POW1, H_POW1_X64, GHASH_ACC, GFPOLY, %xmm1, %xmm2
1060.endr
1061	aesenclast	6*16(%rax), %xmm0
1062	_ghash_mul_step	9, H_POW1, H_POW1_X64, GHASH_ACC, GFPOLY, %xmm1, %xmm2
1063
1064	// Undo the byte reflection of the GHASH accumulator.
1065	pshufb		BSWAP_MASK, GHASH_ACC
1066
1067	// Encrypt the GHASH accumulator.
1068	pxor		%xmm0, GHASH_ACC
1069
1070.if \enc
1071	// Return the computed auth tag.
1072	movdqu		GHASH_ACC, (GHASH_ACC_PTR)
1073.else
1074	.set		ZEROPAD_MASK_PTR, TOTAL_AADLEN // Reusing TOTAL_AADLEN!
1075
1076	// Verify the auth tag in constant time by XOR'ing the transmitted and
1077	// computed auth tags together and using the ptest instruction to check
1078	// whether the first TAGLEN bytes of the result are zero.
1079	_xor_mem_to_reg	(TAG), GHASH_ACC, tmp=%xmm0
1080	movl		8(%rsp), TAGLEN
1081	lea		.Lzeropad_mask+16(%rip), ZEROPAD_MASK_PTR
1082	sub		TAGLEN64, ZEROPAD_MASK_PTR
1083	xor		%eax, %eax
1084	_test_mem	(ZEROPAD_MASK_PTR), GHASH_ACC, tmp=%xmm0
1085	sete		%al
1086.endif
1087	RET
1088.endm
1089
1090.set	USE_AVX, 0
1091SYM_FUNC_START(aes_gcm_precompute_aesni)
1092	_aes_gcm_precompute
1093SYM_FUNC_END(aes_gcm_precompute_aesni)
1094SYM_FUNC_START(aes_gcm_aad_update_aesni)
1095	_aes_gcm_aad_update
1096SYM_FUNC_END(aes_gcm_aad_update_aesni)
1097SYM_FUNC_START(aes_gcm_enc_update_aesni)
1098	_aes_gcm_update	1
1099SYM_FUNC_END(aes_gcm_enc_update_aesni)
1100SYM_FUNC_START(aes_gcm_dec_update_aesni)
1101	_aes_gcm_update	0
1102SYM_FUNC_END(aes_gcm_dec_update_aesni)
1103SYM_FUNC_START(aes_gcm_enc_final_aesni)
1104	_aes_gcm_final	1
1105SYM_FUNC_END(aes_gcm_enc_final_aesni)
1106SYM_FUNC_START(aes_gcm_dec_final_aesni)
1107	_aes_gcm_final	0
1108SYM_FUNC_END(aes_gcm_dec_final_aesni)
1109
1110.set	USE_AVX, 1
1111SYM_FUNC_START(aes_gcm_precompute_aesni_avx)
1112	_aes_gcm_precompute
1113SYM_FUNC_END(aes_gcm_precompute_aesni_avx)
1114SYM_FUNC_START(aes_gcm_aad_update_aesni_avx)
1115	_aes_gcm_aad_update
1116SYM_FUNC_END(aes_gcm_aad_update_aesni_avx)
1117SYM_FUNC_START(aes_gcm_enc_update_aesni_avx)
1118	_aes_gcm_update	1
1119SYM_FUNC_END(aes_gcm_enc_update_aesni_avx)
1120SYM_FUNC_START(aes_gcm_dec_update_aesni_avx)
1121	_aes_gcm_update	0
1122SYM_FUNC_END(aes_gcm_dec_update_aesni_avx)
1123SYM_FUNC_START(aes_gcm_enc_final_aesni_avx)
1124	_aes_gcm_final	1
1125SYM_FUNC_END(aes_gcm_enc_final_aesni_avx)
1126SYM_FUNC_START(aes_gcm_dec_final_aesni_avx)
1127	_aes_gcm_final	0
1128SYM_FUNC_END(aes_gcm_dec_final_aesni_avx)
1129