xref: /linux/include/linux/mmzone.h (revision c03e9c42ae8f9be76a0cf55ef3f88663f0f6a63a)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMZONE_H
3 #define _LINUX_MMZONE_H
4 
5 #ifndef __ASSEMBLY__
6 #ifndef __GENERATING_BOUNDS_H
7 
8 #include <linux/spinlock.h>
9 #include <linux/list.h>
10 #include <linux/list_nulls.h>
11 #include <linux/wait.h>
12 #include <linux/bitops.h>
13 #include <linux/cache.h>
14 #include <linux/threads.h>
15 #include <linux/numa.h>
16 #include <linux/init.h>
17 #include <linux/seqlock.h>
18 #include <linux/nodemask.h>
19 #include <linux/pageblock-flags.h>
20 #include <linux/page-flags-layout.h>
21 #include <linux/atomic.h>
22 #include <linux/mm_types.h>
23 #include <linux/page-flags.h>
24 #include <linux/local_lock.h>
25 #include <linux/zswap.h>
26 #include <asm/page.h>
27 
28 /* Free memory management - zoned buddy allocator.  */
29 #ifndef CONFIG_ARCH_FORCE_MAX_ORDER
30 #define MAX_PAGE_ORDER 10
31 #else
32 #define MAX_PAGE_ORDER CONFIG_ARCH_FORCE_MAX_ORDER
33 #endif
34 #define MAX_ORDER_NR_PAGES (1 << MAX_PAGE_ORDER)
35 
36 #define IS_MAX_ORDER_ALIGNED(pfn) IS_ALIGNED(pfn, MAX_ORDER_NR_PAGES)
37 
38 #define NR_PAGE_ORDERS (MAX_PAGE_ORDER + 1)
39 
40 /* Defines the order for the number of pages that have a migrate type. */
41 #ifndef CONFIG_PAGE_BLOCK_MAX_ORDER
42 #define PAGE_BLOCK_MAX_ORDER MAX_PAGE_ORDER
43 #else
44 #define PAGE_BLOCK_MAX_ORDER CONFIG_PAGE_BLOCK_MAX_ORDER
45 #endif /* CONFIG_PAGE_BLOCK_MAX_ORDER */
46 
47 /*
48  * The MAX_PAGE_ORDER, which defines the max order of pages to be allocated
49  * by the buddy allocator, has to be larger or equal to the PAGE_BLOCK_MAX_ORDER,
50  * which defines the order for the number of pages that can have a migrate type
51  */
52 #if (PAGE_BLOCK_MAX_ORDER > MAX_PAGE_ORDER)
53 #error MAX_PAGE_ORDER must be >= PAGE_BLOCK_MAX_ORDER
54 #endif
55 
56 /*
57  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
58  * costly to service.  That is between allocation orders which should
59  * coalesce naturally under reasonable reclaim pressure and those which
60  * will not.
61  */
62 #define PAGE_ALLOC_COSTLY_ORDER 3
63 
64 enum migratetype {
65 	MIGRATE_UNMOVABLE,
66 	MIGRATE_MOVABLE,
67 	MIGRATE_RECLAIMABLE,
68 	MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */
69 	MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
70 #ifdef CONFIG_CMA
71 	/*
72 	 * MIGRATE_CMA migration type is designed to mimic the way
73 	 * ZONE_MOVABLE works.  Only movable pages can be allocated
74 	 * from MIGRATE_CMA pageblocks and page allocator never
75 	 * implicitly change migration type of MIGRATE_CMA pageblock.
76 	 *
77 	 * The way to use it is to change migratetype of a range of
78 	 * pageblocks to MIGRATE_CMA which can be done by
79 	 * __free_pageblock_cma() function.
80 	 */
81 	MIGRATE_CMA,
82 	__MIGRATE_TYPE_END = MIGRATE_CMA,
83 #else
84 	__MIGRATE_TYPE_END = MIGRATE_HIGHATOMIC,
85 #endif
86 #ifdef CONFIG_MEMORY_ISOLATION
87 	MIGRATE_ISOLATE,	/* can't allocate from here */
88 #endif
89 	MIGRATE_TYPES
90 };
91 
92 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
93 extern const char * const migratetype_names[MIGRATE_TYPES];
94 
95 #ifdef CONFIG_CMA
96 #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
97 #  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
98 /*
99  * __dump_folio() in mm/debug.c passes a folio pointer to on-stack struct folio,
100  * so folio_pfn() cannot be used and pfn is needed.
101  */
102 #  define is_migrate_cma_folio(folio, pfn) \
103 	(get_pfnblock_migratetype(&folio->page, pfn) == MIGRATE_CMA)
104 #else
105 #  define is_migrate_cma(migratetype) false
106 #  define is_migrate_cma_page(_page) false
107 #  define is_migrate_cma_folio(folio, pfn) false
108 #endif
109 
is_migrate_movable(int mt)110 static inline bool is_migrate_movable(int mt)
111 {
112 	return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
113 }
114 
115 /*
116  * Check whether a migratetype can be merged with another migratetype.
117  *
118  * It is only mergeable when it can fall back to other migratetypes for
119  * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c.
120  */
migratetype_is_mergeable(int mt)121 static inline bool migratetype_is_mergeable(int mt)
122 {
123 	return mt < MIGRATE_PCPTYPES;
124 }
125 
126 #define for_each_migratetype_order(order, type) \
127 	for (order = 0; order < NR_PAGE_ORDERS; order++) \
128 		for (type = 0; type < MIGRATE_TYPES; type++)
129 
130 extern int page_group_by_mobility_disabled;
131 
132 #define get_pageblock_migratetype(page) \
133 	get_pfnblock_migratetype(page, page_to_pfn(page))
134 
135 #define folio_migratetype(folio) \
136 	get_pageblock_migratetype(&folio->page)
137 
138 struct free_area {
139 	struct list_head	free_list[MIGRATE_TYPES];
140 	unsigned long		nr_free;
141 };
142 
143 struct pglist_data;
144 
145 #ifdef CONFIG_NUMA
146 enum numa_stat_item {
147 	NUMA_HIT,		/* allocated in intended node */
148 	NUMA_MISS,		/* allocated in non intended node */
149 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
150 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
151 	NUMA_LOCAL,		/* allocation from local node */
152 	NUMA_OTHER,		/* allocation from other node */
153 	NR_VM_NUMA_EVENT_ITEMS
154 };
155 #else
156 #define NR_VM_NUMA_EVENT_ITEMS 0
157 #endif
158 
159 enum zone_stat_item {
160 	/* First 128 byte cacheline (assuming 64 bit words) */
161 	NR_FREE_PAGES,
162 	NR_FREE_PAGES_BLOCKS,
163 	NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
164 	NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
165 	NR_ZONE_ACTIVE_ANON,
166 	NR_ZONE_INACTIVE_FILE,
167 	NR_ZONE_ACTIVE_FILE,
168 	NR_ZONE_UNEVICTABLE,
169 	NR_ZONE_WRITE_PENDING,	/* Count of dirty, writeback and unstable pages */
170 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
171 	/* Second 128 byte cacheline */
172 #if IS_ENABLED(CONFIG_ZSMALLOC)
173 	NR_ZSPAGES,		/* allocated in zsmalloc */
174 #endif
175 	NR_FREE_CMA_PAGES,
176 #ifdef CONFIG_UNACCEPTED_MEMORY
177 	NR_UNACCEPTED,
178 #endif
179 	NR_VM_ZONE_STAT_ITEMS };
180 
181 enum node_stat_item {
182 	NR_LRU_BASE,
183 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
184 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
185 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
186 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
187 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
188 	NR_SLAB_RECLAIMABLE_B,
189 	NR_SLAB_UNRECLAIMABLE_B,
190 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
191 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
192 	WORKINGSET_NODES,
193 	WORKINGSET_REFAULT_BASE,
194 	WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
195 	WORKINGSET_REFAULT_FILE,
196 	WORKINGSET_ACTIVATE_BASE,
197 	WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
198 	WORKINGSET_ACTIVATE_FILE,
199 	WORKINGSET_RESTORE_BASE,
200 	WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
201 	WORKINGSET_RESTORE_FILE,
202 	WORKINGSET_NODERECLAIM,
203 	NR_ANON_MAPPED,	/* Mapped anonymous pages */
204 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
205 			   only modified from process context */
206 	NR_FILE_PAGES,
207 	NR_FILE_DIRTY,
208 	NR_WRITEBACK,
209 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
210 	NR_SHMEM_THPS,
211 	NR_SHMEM_PMDMAPPED,
212 	NR_FILE_THPS,
213 	NR_FILE_PMDMAPPED,
214 	NR_ANON_THPS,
215 	NR_VMSCAN_WRITE,
216 	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
217 	NR_DIRTIED,		/* page dirtyings since bootup */
218 	NR_WRITTEN,		/* page writings since bootup */
219 	NR_THROTTLED_WRITTEN,	/* NR_WRITTEN while reclaim throttled */
220 	NR_KERNEL_MISC_RECLAIMABLE,	/* reclaimable non-slab kernel pages */
221 	NR_FOLL_PIN_ACQUIRED,	/* via: pin_user_page(), gup flag: FOLL_PIN */
222 	NR_FOLL_PIN_RELEASED,	/* pages returned via unpin_user_page() */
223 	NR_KERNEL_STACK_KB,	/* measured in KiB */
224 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
225 	NR_KERNEL_SCS_KB,	/* measured in KiB */
226 #endif
227 	NR_PAGETABLE,		/* used for pagetables */
228 	NR_SECONDARY_PAGETABLE, /* secondary pagetables, KVM & IOMMU */
229 #ifdef CONFIG_IOMMU_SUPPORT
230 	NR_IOMMU_PAGES,		/* # of pages allocated by IOMMU */
231 #endif
232 #ifdef CONFIG_SWAP
233 	NR_SWAPCACHE,
234 #endif
235 #ifdef CONFIG_NUMA_BALANCING
236 	PGPROMOTE_SUCCESS,	/* promote successfully */
237 	/**
238 	 * Candidate pages for promotion based on hint fault latency.  This
239 	 * counter is used to control the promotion rate and adjust the hot
240 	 * threshold.
241 	 */
242 	PGPROMOTE_CANDIDATE,
243 	/**
244 	 * Not rate-limited (NRL) candidate pages for those can be promoted
245 	 * without considering hot threshold because of enough free pages in
246 	 * fast-tier node.  These promotions bypass the regular hotness checks
247 	 * and do NOT influence the promotion rate-limiter or
248 	 * threshold-adjustment logic.
249 	 * This is for statistics/monitoring purposes.
250 	 */
251 	PGPROMOTE_CANDIDATE_NRL,
252 #endif
253 	/* PGDEMOTE_*: pages demoted */
254 	PGDEMOTE_KSWAPD,
255 	PGDEMOTE_DIRECT,
256 	PGDEMOTE_KHUGEPAGED,
257 	PGDEMOTE_PROACTIVE,
258 #ifdef CONFIG_HUGETLB_PAGE
259 	NR_HUGETLB,
260 #endif
261 	NR_BALLOON_PAGES,
262 	NR_KERNEL_FILE_PAGES,
263 	NR_VM_NODE_STAT_ITEMS
264 };
265 
266 /*
267  * Returns true if the item should be printed in THPs (/proc/vmstat
268  * currently prints number of anon, file and shmem THPs. But the item
269  * is charged in pages).
270  */
vmstat_item_print_in_thp(enum node_stat_item item)271 static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item)
272 {
273 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
274 		return false;
275 
276 	return item == NR_ANON_THPS ||
277 	       item == NR_FILE_THPS ||
278 	       item == NR_SHMEM_THPS ||
279 	       item == NR_SHMEM_PMDMAPPED ||
280 	       item == NR_FILE_PMDMAPPED;
281 }
282 
283 /*
284  * Returns true if the value is measured in bytes (most vmstat values are
285  * measured in pages). This defines the API part, the internal representation
286  * might be different.
287  */
vmstat_item_in_bytes(int idx)288 static __always_inline bool vmstat_item_in_bytes(int idx)
289 {
290 	/*
291 	 * Global and per-node slab counters track slab pages.
292 	 * It's expected that changes are multiples of PAGE_SIZE.
293 	 * Internally values are stored in pages.
294 	 *
295 	 * Per-memcg and per-lruvec counters track memory, consumed
296 	 * by individual slab objects. These counters are actually
297 	 * byte-precise.
298 	 */
299 	return (idx == NR_SLAB_RECLAIMABLE_B ||
300 		idx == NR_SLAB_UNRECLAIMABLE_B);
301 }
302 
303 /*
304  * We do arithmetic on the LRU lists in various places in the code,
305  * so it is important to keep the active lists LRU_ACTIVE higher in
306  * the array than the corresponding inactive lists, and to keep
307  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
308  *
309  * This has to be kept in sync with the statistics in zone_stat_item
310  * above and the descriptions in vmstat_text in mm/vmstat.c
311  */
312 #define LRU_BASE 0
313 #define LRU_ACTIVE 1
314 #define LRU_FILE 2
315 
316 enum lru_list {
317 	LRU_INACTIVE_ANON = LRU_BASE,
318 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
319 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
320 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
321 	LRU_UNEVICTABLE,
322 	NR_LRU_LISTS
323 };
324 
325 enum vmscan_throttle_state {
326 	VMSCAN_THROTTLE_WRITEBACK,
327 	VMSCAN_THROTTLE_ISOLATED,
328 	VMSCAN_THROTTLE_NOPROGRESS,
329 	VMSCAN_THROTTLE_CONGESTED,
330 	NR_VMSCAN_THROTTLE,
331 };
332 
333 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
334 
335 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
336 
is_file_lru(enum lru_list lru)337 static inline bool is_file_lru(enum lru_list lru)
338 {
339 	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
340 }
341 
is_active_lru(enum lru_list lru)342 static inline bool is_active_lru(enum lru_list lru)
343 {
344 	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
345 }
346 
347 #define WORKINGSET_ANON 0
348 #define WORKINGSET_FILE 1
349 #define ANON_AND_FILE 2
350 
351 enum lruvec_flags {
352 	/*
353 	 * An lruvec has many dirty pages backed by a congested BDI:
354 	 * 1. LRUVEC_CGROUP_CONGESTED is set by cgroup-level reclaim.
355 	 *    It can be cleared by cgroup reclaim or kswapd.
356 	 * 2. LRUVEC_NODE_CONGESTED is set by kswapd node-level reclaim.
357 	 *    It can only be cleared by kswapd.
358 	 *
359 	 * Essentially, kswapd can unthrottle an lruvec throttled by cgroup
360 	 * reclaim, but not vice versa. This only applies to the root cgroup.
361 	 * The goal is to prevent cgroup reclaim on the root cgroup (e.g.
362 	 * memory.reclaim) to unthrottle an unbalanced node (that was throttled
363 	 * by kswapd).
364 	 */
365 	LRUVEC_CGROUP_CONGESTED,
366 	LRUVEC_NODE_CONGESTED,
367 };
368 
369 #endif /* !__GENERATING_BOUNDS_H */
370 
371 /*
372  * Evictable folios are divided into multiple generations. The youngest and the
373  * oldest generation numbers, max_seq and min_seq, are monotonically increasing.
374  * They form a sliding window of a variable size [MIN_NR_GENS, MAX_NR_GENS]. An
375  * offset within MAX_NR_GENS, i.e., gen, indexes the LRU list of the
376  * corresponding generation. The gen counter in folio->flags stores gen+1 while
377  * a folio is on one of lrugen->folios[]. Otherwise it stores 0.
378  *
379  * After a folio is faulted in, the aging needs to check the accessed bit at
380  * least twice before handing this folio over to the eviction. The first check
381  * clears the accessed bit from the initial fault; the second check makes sure
382  * this folio hasn't been used since then. This process, AKA second chance,
383  * requires a minimum of two generations, hence MIN_NR_GENS. And to maintain ABI
384  * compatibility with the active/inactive LRU, e.g., /proc/vmstat, these two
385  * generations are considered active; the rest of generations, if they exist,
386  * are considered inactive. See lru_gen_is_active().
387  *
388  * PG_active is always cleared while a folio is on one of lrugen->folios[] so
389  * that the sliding window needs not to worry about it. And it's set again when
390  * a folio considered active is isolated for non-reclaiming purposes, e.g.,
391  * migration. See lru_gen_add_folio() and lru_gen_del_folio().
392  *
393  * MAX_NR_GENS is set to 4 so that the multi-gen LRU can support twice the
394  * number of categories of the active/inactive LRU when keeping track of
395  * accesses through page tables. This requires order_base_2(MAX_NR_GENS+1) bits
396  * in folio->flags, masked by LRU_GEN_MASK.
397  */
398 #define MIN_NR_GENS		2U
399 #define MAX_NR_GENS		4U
400 
401 /*
402  * Each generation is divided into multiple tiers. A folio accessed N times
403  * through file descriptors is in tier order_base_2(N). A folio in the first
404  * tier (N=0,1) is marked by PG_referenced unless it was faulted in through page
405  * tables or read ahead. A folio in the last tier (MAX_NR_TIERS-1) is marked by
406  * PG_workingset. A folio in any other tier (1<N<5) between the first and last
407  * is marked by additional bits of LRU_REFS_WIDTH in folio->flags.
408  *
409  * In contrast to moving across generations which requires the LRU lock, moving
410  * across tiers only involves atomic operations on folio->flags and therefore
411  * has a negligible cost in the buffered access path. In the eviction path,
412  * comparisons of refaulted/(evicted+protected) from the first tier and the rest
413  * infer whether folios accessed multiple times through file descriptors are
414  * statistically hot and thus worth protecting.
415  *
416  * MAX_NR_TIERS is set to 4 so that the multi-gen LRU can support twice the
417  * number of categories of the active/inactive LRU when keeping track of
418  * accesses through file descriptors. This uses MAX_NR_TIERS-2 spare bits in
419  * folio->flags, masked by LRU_REFS_MASK.
420  */
421 #define MAX_NR_TIERS		4U
422 
423 #ifndef __GENERATING_BOUNDS_H
424 
425 #define LRU_GEN_MASK		((BIT(LRU_GEN_WIDTH) - 1) << LRU_GEN_PGOFF)
426 #define LRU_REFS_MASK		((BIT(LRU_REFS_WIDTH) - 1) << LRU_REFS_PGOFF)
427 
428 /*
429  * For folios accessed multiple times through file descriptors,
430  * lru_gen_inc_refs() sets additional bits of LRU_REFS_WIDTH in folio->flags
431  * after PG_referenced, then PG_workingset after LRU_REFS_WIDTH. After all its
432  * bits are set, i.e., LRU_REFS_FLAGS|BIT(PG_workingset), a folio is lazily
433  * promoted into the second oldest generation in the eviction path. And when
434  * folio_inc_gen() does that, it clears LRU_REFS_FLAGS so that
435  * lru_gen_inc_refs() can start over. Note that for this case, LRU_REFS_MASK is
436  * only valid when PG_referenced is set.
437  *
438  * For folios accessed multiple times through page tables, folio_update_gen()
439  * from a page table walk or lru_gen_set_refs() from a rmap walk sets
440  * PG_referenced after the accessed bit is cleared for the first time.
441  * Thereafter, those two paths set PG_workingset and promote folios to the
442  * youngest generation. Like folio_inc_gen(), folio_update_gen() also clears
443  * PG_referenced. Note that for this case, LRU_REFS_MASK is not used.
444  *
445  * For both cases above, after PG_workingset is set on a folio, it remains until
446  * this folio is either reclaimed, or "deactivated" by lru_gen_clear_refs(). It
447  * can be set again if lru_gen_test_recent() returns true upon a refault.
448  */
449 #define LRU_REFS_FLAGS		(LRU_REFS_MASK | BIT(PG_referenced))
450 
451 struct lruvec;
452 struct page_vma_mapped_walk;
453 
454 #ifdef CONFIG_LRU_GEN
455 
456 enum {
457 	LRU_GEN_ANON,
458 	LRU_GEN_FILE,
459 };
460 
461 enum {
462 	LRU_GEN_CORE,
463 	LRU_GEN_MM_WALK,
464 	LRU_GEN_NONLEAF_YOUNG,
465 	NR_LRU_GEN_CAPS
466 };
467 
468 #define MIN_LRU_BATCH		BITS_PER_LONG
469 #define MAX_LRU_BATCH		(MIN_LRU_BATCH * 64)
470 
471 /* whether to keep historical stats from evicted generations */
472 #ifdef CONFIG_LRU_GEN_STATS
473 #define NR_HIST_GENS		MAX_NR_GENS
474 #else
475 #define NR_HIST_GENS		1U
476 #endif
477 
478 /*
479  * The youngest generation number is stored in max_seq for both anon and file
480  * types as they are aged on an equal footing. The oldest generation numbers are
481  * stored in min_seq[] separately for anon and file types so that they can be
482  * incremented independently. Ideally min_seq[] are kept in sync when both anon
483  * and file types are evictable. However, to adapt to situations like extreme
484  * swappiness, they are allowed to be out of sync by at most
485  * MAX_NR_GENS-MIN_NR_GENS-1.
486  *
487  * The number of pages in each generation is eventually consistent and therefore
488  * can be transiently negative when reset_batch_size() is pending.
489  */
490 struct lru_gen_folio {
491 	/* the aging increments the youngest generation number */
492 	unsigned long max_seq;
493 	/* the eviction increments the oldest generation numbers */
494 	unsigned long min_seq[ANON_AND_FILE];
495 	/* the birth time of each generation in jiffies */
496 	unsigned long timestamps[MAX_NR_GENS];
497 	/* the multi-gen LRU lists, lazily sorted on eviction */
498 	struct list_head folios[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
499 	/* the multi-gen LRU sizes, eventually consistent */
500 	long nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
501 	/* the exponential moving average of refaulted */
502 	unsigned long avg_refaulted[ANON_AND_FILE][MAX_NR_TIERS];
503 	/* the exponential moving average of evicted+protected */
504 	unsigned long avg_total[ANON_AND_FILE][MAX_NR_TIERS];
505 	/* can only be modified under the LRU lock */
506 	unsigned long protected[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
507 	/* can be modified without holding the LRU lock */
508 	atomic_long_t evicted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
509 	atomic_long_t refaulted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
510 	/* whether the multi-gen LRU is enabled */
511 	bool enabled;
512 	/* the memcg generation this lru_gen_folio belongs to */
513 	u8 gen;
514 	/* the list segment this lru_gen_folio belongs to */
515 	u8 seg;
516 	/* per-node lru_gen_folio list for global reclaim */
517 	struct hlist_nulls_node list;
518 };
519 
520 enum {
521 	MM_LEAF_TOTAL,		/* total leaf entries */
522 	MM_LEAF_YOUNG,		/* young leaf entries */
523 	MM_NONLEAF_FOUND,	/* non-leaf entries found in Bloom filters */
524 	MM_NONLEAF_ADDED,	/* non-leaf entries added to Bloom filters */
525 	NR_MM_STATS
526 };
527 
528 /* double-buffering Bloom filters */
529 #define NR_BLOOM_FILTERS	2
530 
531 struct lru_gen_mm_state {
532 	/* synced with max_seq after each iteration */
533 	unsigned long seq;
534 	/* where the current iteration continues after */
535 	struct list_head *head;
536 	/* where the last iteration ended before */
537 	struct list_head *tail;
538 	/* Bloom filters flip after each iteration */
539 	unsigned long *filters[NR_BLOOM_FILTERS];
540 	/* the mm stats for debugging */
541 	unsigned long stats[NR_HIST_GENS][NR_MM_STATS];
542 };
543 
544 struct lru_gen_mm_walk {
545 	/* the lruvec under reclaim */
546 	struct lruvec *lruvec;
547 	/* max_seq from lru_gen_folio: can be out of date */
548 	unsigned long seq;
549 	/* the next address within an mm to scan */
550 	unsigned long next_addr;
551 	/* to batch promoted pages */
552 	int nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
553 	/* to batch the mm stats */
554 	int mm_stats[NR_MM_STATS];
555 	/* total batched items */
556 	int batched;
557 	int swappiness;
558 	bool force_scan;
559 };
560 
561 /*
562  * For each node, memcgs are divided into two generations: the old and the
563  * young. For each generation, memcgs are randomly sharded into multiple bins
564  * to improve scalability. For each bin, the hlist_nulls is virtually divided
565  * into three segments: the head, the tail and the default.
566  *
567  * An onlining memcg is added to the tail of a random bin in the old generation.
568  * The eviction starts at the head of a random bin in the old generation. The
569  * per-node memcg generation counter, whose reminder (mod MEMCG_NR_GENS) indexes
570  * the old generation, is incremented when all its bins become empty.
571  *
572  * There are four operations:
573  * 1. MEMCG_LRU_HEAD, which moves a memcg to the head of a random bin in its
574  *    current generation (old or young) and updates its "seg" to "head";
575  * 2. MEMCG_LRU_TAIL, which moves a memcg to the tail of a random bin in its
576  *    current generation (old or young) and updates its "seg" to "tail";
577  * 3. MEMCG_LRU_OLD, which moves a memcg to the head of a random bin in the old
578  *    generation, updates its "gen" to "old" and resets its "seg" to "default";
579  * 4. MEMCG_LRU_YOUNG, which moves a memcg to the tail of a random bin in the
580  *    young generation, updates its "gen" to "young" and resets its "seg" to
581  *    "default".
582  *
583  * The events that trigger the above operations are:
584  * 1. Exceeding the soft limit, which triggers MEMCG_LRU_HEAD;
585  * 2. The first attempt to reclaim a memcg below low, which triggers
586  *    MEMCG_LRU_TAIL;
587  * 3. The first attempt to reclaim a memcg offlined or below reclaimable size
588  *    threshold, which triggers MEMCG_LRU_TAIL;
589  * 4. The second attempt to reclaim a memcg offlined or below reclaimable size
590  *    threshold, which triggers MEMCG_LRU_YOUNG;
591  * 5. Attempting to reclaim a memcg below min, which triggers MEMCG_LRU_YOUNG;
592  * 6. Finishing the aging on the eviction path, which triggers MEMCG_LRU_YOUNG;
593  * 7. Offlining a memcg, which triggers MEMCG_LRU_OLD.
594  *
595  * Notes:
596  * 1. Memcg LRU only applies to global reclaim, and the round-robin incrementing
597  *    of their max_seq counters ensures the eventual fairness to all eligible
598  *    memcgs. For memcg reclaim, it still relies on mem_cgroup_iter().
599  * 2. There are only two valid generations: old (seq) and young (seq+1).
600  *    MEMCG_NR_GENS is set to three so that when reading the generation counter
601  *    locklessly, a stale value (seq-1) does not wraparound to young.
602  */
603 #define MEMCG_NR_GENS	3
604 #define MEMCG_NR_BINS	8
605 
606 struct lru_gen_memcg {
607 	/* the per-node memcg generation counter */
608 	unsigned long seq;
609 	/* each memcg has one lru_gen_folio per node */
610 	unsigned long nr_memcgs[MEMCG_NR_GENS];
611 	/* per-node lru_gen_folio list for global reclaim */
612 	struct hlist_nulls_head	fifo[MEMCG_NR_GENS][MEMCG_NR_BINS];
613 	/* protects the above */
614 	spinlock_t lock;
615 };
616 
617 void lru_gen_init_pgdat(struct pglist_data *pgdat);
618 void lru_gen_init_lruvec(struct lruvec *lruvec);
619 bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw);
620 
621 void lru_gen_init_memcg(struct mem_cgroup *memcg);
622 void lru_gen_exit_memcg(struct mem_cgroup *memcg);
623 void lru_gen_online_memcg(struct mem_cgroup *memcg);
624 void lru_gen_offline_memcg(struct mem_cgroup *memcg);
625 void lru_gen_release_memcg(struct mem_cgroup *memcg);
626 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid);
627 
628 #else /* !CONFIG_LRU_GEN */
629 
lru_gen_init_pgdat(struct pglist_data * pgdat)630 static inline void lru_gen_init_pgdat(struct pglist_data *pgdat)
631 {
632 }
633 
lru_gen_init_lruvec(struct lruvec * lruvec)634 static inline void lru_gen_init_lruvec(struct lruvec *lruvec)
635 {
636 }
637 
lru_gen_look_around(struct page_vma_mapped_walk * pvmw)638 static inline bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
639 {
640 	return false;
641 }
642 
lru_gen_init_memcg(struct mem_cgroup * memcg)643 static inline void lru_gen_init_memcg(struct mem_cgroup *memcg)
644 {
645 }
646 
lru_gen_exit_memcg(struct mem_cgroup * memcg)647 static inline void lru_gen_exit_memcg(struct mem_cgroup *memcg)
648 {
649 }
650 
lru_gen_online_memcg(struct mem_cgroup * memcg)651 static inline void lru_gen_online_memcg(struct mem_cgroup *memcg)
652 {
653 }
654 
lru_gen_offline_memcg(struct mem_cgroup * memcg)655 static inline void lru_gen_offline_memcg(struct mem_cgroup *memcg)
656 {
657 }
658 
lru_gen_release_memcg(struct mem_cgroup * memcg)659 static inline void lru_gen_release_memcg(struct mem_cgroup *memcg)
660 {
661 }
662 
lru_gen_soft_reclaim(struct mem_cgroup * memcg,int nid)663 static inline void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
664 {
665 }
666 
667 #endif /* CONFIG_LRU_GEN */
668 
669 struct lruvec {
670 	struct list_head		lists[NR_LRU_LISTS];
671 	/* per lruvec lru_lock for memcg */
672 	spinlock_t			lru_lock;
673 	/*
674 	 * These track the cost of reclaiming one LRU - file or anon -
675 	 * over the other. As the observed cost of reclaiming one LRU
676 	 * increases, the reclaim scan balance tips toward the other.
677 	 */
678 	unsigned long			anon_cost;
679 	unsigned long			file_cost;
680 	/* Non-resident age, driven by LRU movement */
681 	atomic_long_t			nonresident_age;
682 	/* Refaults at the time of last reclaim cycle */
683 	unsigned long			refaults[ANON_AND_FILE];
684 	/* Various lruvec state flags (enum lruvec_flags) */
685 	unsigned long			flags;
686 #ifdef CONFIG_LRU_GEN
687 	/* evictable pages divided into generations */
688 	struct lru_gen_folio		lrugen;
689 #ifdef CONFIG_LRU_GEN_WALKS_MMU
690 	/* to concurrently iterate lru_gen_mm_list */
691 	struct lru_gen_mm_state		mm_state;
692 #endif
693 #endif /* CONFIG_LRU_GEN */
694 #ifdef CONFIG_MEMCG
695 	struct pglist_data *pgdat;
696 #endif
697 	struct zswap_lruvec_state zswap_lruvec_state;
698 };
699 
700 /* Isolate for asynchronous migration */
701 #define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4)
702 /* Isolate unevictable pages */
703 #define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8)
704 
705 /* LRU Isolation modes. */
706 typedef unsigned __bitwise isolate_mode_t;
707 
708 enum zone_watermarks {
709 	WMARK_MIN,
710 	WMARK_LOW,
711 	WMARK_HIGH,
712 	WMARK_PROMO,
713 	NR_WMARK
714 };
715 
716 /*
717  * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER. Two additional lists
718  * are added for THP. One PCP list is used by GPF_MOVABLE, and the other PCP list
719  * is used by GFP_UNMOVABLE and GFP_RECLAIMABLE.
720  */
721 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
722 #define NR_PCP_THP 2
723 #else
724 #define NR_PCP_THP 0
725 #endif
726 #define NR_LOWORDER_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1))
727 #define NR_PCP_LISTS (NR_LOWORDER_PCP_LISTS + NR_PCP_THP)
728 
729 /*
730  * Flags used in pcp->flags field.
731  *
732  * PCPF_PREV_FREE_HIGH_ORDER: a high-order page is freed in the
733  * previous page freeing.  To avoid to drain PCP for an accident
734  * high-order page freeing.
735  *
736  * PCPF_FREE_HIGH_BATCH: preserve "pcp->batch" pages in PCP before
737  * draining PCP for consecutive high-order pages freeing without
738  * allocation if data cache slice of CPU is large enough.  To reduce
739  * zone lock contention and keep cache-hot pages reusing.
740  */
741 #define	PCPF_PREV_FREE_HIGH_ORDER	BIT(0)
742 #define	PCPF_FREE_HIGH_BATCH		BIT(1)
743 
744 struct per_cpu_pages {
745 	spinlock_t lock;	/* Protects lists field */
746 	int count;		/* number of pages in the list */
747 	int high;		/* high watermark, emptying needed */
748 	int high_min;		/* min high watermark */
749 	int high_max;		/* max high watermark */
750 	int batch;		/* chunk size for buddy add/remove */
751 	u8 flags;		/* protected by pcp->lock */
752 	u8 alloc_factor;	/* batch scaling factor during allocate */
753 #ifdef CONFIG_NUMA
754 	u8 expire;		/* When 0, remote pagesets are drained */
755 #endif
756 	short free_count;	/* consecutive free count */
757 
758 	/* Lists of pages, one per migrate type stored on the pcp-lists */
759 	struct list_head lists[NR_PCP_LISTS];
760 } ____cacheline_aligned_in_smp;
761 
762 struct per_cpu_zonestat {
763 #ifdef CONFIG_SMP
764 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
765 	s8 stat_threshold;
766 #endif
767 #ifdef CONFIG_NUMA
768 	/*
769 	 * Low priority inaccurate counters that are only folded
770 	 * on demand. Use a large type to avoid the overhead of
771 	 * folding during refresh_cpu_vm_stats.
772 	 */
773 	unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
774 #endif
775 };
776 
777 struct per_cpu_nodestat {
778 	s8 stat_threshold;
779 	s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
780 };
781 
782 #endif /* !__GENERATING_BOUNDS.H */
783 
784 enum zone_type {
785 	/*
786 	 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
787 	 * to DMA to all of the addressable memory (ZONE_NORMAL).
788 	 * On architectures where this area covers the whole 32 bit address
789 	 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
790 	 * DMA addressing constraints. This distinction is important as a 32bit
791 	 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
792 	 * platforms may need both zones as they support peripherals with
793 	 * different DMA addressing limitations.
794 	 */
795 #ifdef CONFIG_ZONE_DMA
796 	ZONE_DMA,
797 #endif
798 #ifdef CONFIG_ZONE_DMA32
799 	ZONE_DMA32,
800 #endif
801 	/*
802 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
803 	 * performed on pages in ZONE_NORMAL if the DMA devices support
804 	 * transfers to all addressable memory.
805 	 */
806 	ZONE_NORMAL,
807 #ifdef CONFIG_HIGHMEM
808 	/*
809 	 * A memory area that is only addressable by the kernel through
810 	 * mapping portions into its own address space. This is for example
811 	 * used by i386 to allow the kernel to address the memory beyond
812 	 * 900MB. The kernel will set up special mappings (page
813 	 * table entries on i386) for each page that the kernel needs to
814 	 * access.
815 	 */
816 	ZONE_HIGHMEM,
817 #endif
818 	/*
819 	 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains
820 	 * movable pages with few exceptional cases described below. Main use
821 	 * cases for ZONE_MOVABLE are to make memory offlining/unplug more
822 	 * likely to succeed, and to locally limit unmovable allocations - e.g.,
823 	 * to increase the number of THP/huge pages. Notable special cases are:
824 	 *
825 	 * 1. Pinned pages: (long-term) pinning of movable pages might
826 	 *    essentially turn such pages unmovable. Therefore, we do not allow
827 	 *    pinning long-term pages in ZONE_MOVABLE. When pages are pinned and
828 	 *    faulted, they come from the right zone right away. However, it is
829 	 *    still possible that address space already has pages in
830 	 *    ZONE_MOVABLE at the time when pages are pinned (i.e. user has
831 	 *    touches that memory before pinning). In such case we migrate them
832 	 *    to a different zone. When migration fails - pinning fails.
833 	 * 2. memblock allocations: kernelcore/movablecore setups might create
834 	 *    situations where ZONE_MOVABLE contains unmovable allocations
835 	 *    after boot. Memory offlining and allocations fail early.
836 	 * 3. Memory holes: kernelcore/movablecore setups might create very rare
837 	 *    situations where ZONE_MOVABLE contains memory holes after boot,
838 	 *    for example, if we have sections that are only partially
839 	 *    populated. Memory offlining and allocations fail early.
840 	 * 4. PG_hwpoison pages: while poisoned pages can be skipped during
841 	 *    memory offlining, such pages cannot be allocated.
842 	 * 5. Unmovable PG_offline pages: in paravirtualized environments,
843 	 *    hotplugged memory blocks might only partially be managed by the
844 	 *    buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The
845 	 *    parts not manged by the buddy are unmovable PG_offline pages. In
846 	 *    some cases (virtio-mem), such pages can be skipped during
847 	 *    memory offlining, however, cannot be moved/allocated. These
848 	 *    techniques might use alloc_contig_range() to hide previously
849 	 *    exposed pages from the buddy again (e.g., to implement some sort
850 	 *    of memory unplug in virtio-mem).
851 	 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create
852 	 *    situations where ZERO_PAGE(0) which is allocated differently
853 	 *    on different platforms may end up in a movable zone. ZERO_PAGE(0)
854 	 *    cannot be migrated.
855 	 * 7. Memory-hotplug: when using memmap_on_memory and onlining the
856 	 *    memory to the MOVABLE zone, the vmemmap pages are also placed in
857 	 *    such zone. Such pages cannot be really moved around as they are
858 	 *    self-stored in the range, but they are treated as movable when
859 	 *    the range they describe is about to be offlined.
860 	 *
861 	 * In general, no unmovable allocations that degrade memory offlining
862 	 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range())
863 	 * have to expect that migrating pages in ZONE_MOVABLE can fail (even
864 	 * if has_unmovable_pages() states that there are no unmovable pages,
865 	 * there can be false negatives).
866 	 */
867 	ZONE_MOVABLE,
868 #ifdef CONFIG_ZONE_DEVICE
869 	ZONE_DEVICE,
870 #endif
871 	__MAX_NR_ZONES
872 
873 };
874 
875 #ifndef __GENERATING_BOUNDS_H
876 
877 #define ASYNC_AND_SYNC 2
878 
879 struct zone {
880 	/* Read-mostly fields */
881 
882 	/* zone watermarks, access with *_wmark_pages(zone) macros */
883 	unsigned long _watermark[NR_WMARK];
884 	unsigned long watermark_boost;
885 
886 	unsigned long nr_reserved_highatomic;
887 	unsigned long nr_free_highatomic;
888 
889 	/*
890 	 * We don't know if the memory that we're going to allocate will be
891 	 * freeable or/and it will be released eventually, so to avoid totally
892 	 * wasting several GB of ram we must reserve some of the lower zone
893 	 * memory (otherwise we risk to run OOM on the lower zones despite
894 	 * there being tons of freeable ram on the higher zones).  This array is
895 	 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
896 	 * changes.
897 	 */
898 	long lowmem_reserve[MAX_NR_ZONES];
899 
900 #ifdef CONFIG_NUMA
901 	int node;
902 #endif
903 	struct pglist_data	*zone_pgdat;
904 	struct per_cpu_pages	__percpu *per_cpu_pageset;
905 	struct per_cpu_zonestat	__percpu *per_cpu_zonestats;
906 	/*
907 	 * the high and batch values are copied to individual pagesets for
908 	 * faster access
909 	 */
910 	int pageset_high_min;
911 	int pageset_high_max;
912 	int pageset_batch;
913 
914 #ifndef CONFIG_SPARSEMEM
915 	/*
916 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
917 	 * In SPARSEMEM, this map is stored in struct mem_section
918 	 */
919 	unsigned long		*pageblock_flags;
920 #endif /* CONFIG_SPARSEMEM */
921 
922 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
923 	unsigned long		zone_start_pfn;
924 
925 	/*
926 	 * spanned_pages is the total pages spanned by the zone, including
927 	 * holes, which is calculated as:
928 	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
929 	 *
930 	 * present_pages is physical pages existing within the zone, which
931 	 * is calculated as:
932 	 *	present_pages = spanned_pages - absent_pages(pages in holes);
933 	 *
934 	 * present_early_pages is present pages existing within the zone
935 	 * located on memory available since early boot, excluding hotplugged
936 	 * memory.
937 	 *
938 	 * managed_pages is present pages managed by the buddy system, which
939 	 * is calculated as (reserved_pages includes pages allocated by the
940 	 * bootmem allocator):
941 	 *	managed_pages = present_pages - reserved_pages;
942 	 *
943 	 * cma pages is present pages that are assigned for CMA use
944 	 * (MIGRATE_CMA).
945 	 *
946 	 * So present_pages may be used by memory hotplug or memory power
947 	 * management logic to figure out unmanaged pages by checking
948 	 * (present_pages - managed_pages). And managed_pages should be used
949 	 * by page allocator and vm scanner to calculate all kinds of watermarks
950 	 * and thresholds.
951 	 *
952 	 * Locking rules:
953 	 *
954 	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
955 	 * It is a seqlock because it has to be read outside of zone->lock,
956 	 * and it is done in the main allocator path.  But, it is written
957 	 * quite infrequently.
958 	 *
959 	 * The span_seq lock is declared along with zone->lock because it is
960 	 * frequently read in proximity to zone->lock.  It's good to
961 	 * give them a chance of being in the same cacheline.
962 	 *
963 	 * Write access to present_pages at runtime should be protected by
964 	 * mem_hotplug_begin/done(). Any reader who can't tolerant drift of
965 	 * present_pages should use get_online_mems() to get a stable value.
966 	 */
967 	atomic_long_t		managed_pages;
968 	unsigned long		spanned_pages;
969 	unsigned long		present_pages;
970 #if defined(CONFIG_MEMORY_HOTPLUG)
971 	unsigned long		present_early_pages;
972 #endif
973 #ifdef CONFIG_CMA
974 	unsigned long		cma_pages;
975 #endif
976 
977 	const char		*name;
978 
979 #ifdef CONFIG_MEMORY_ISOLATION
980 	/*
981 	 * Number of isolated pageblock. It is used to solve incorrect
982 	 * freepage counting problem due to racy retrieving migratetype
983 	 * of pageblock. Protected by zone->lock.
984 	 */
985 	unsigned long		nr_isolate_pageblock;
986 #endif
987 
988 #ifdef CONFIG_MEMORY_HOTPLUG
989 	/* see spanned/present_pages for more description */
990 	seqlock_t		span_seqlock;
991 #endif
992 
993 	int initialized;
994 
995 	/* Write-intensive fields used from the page allocator */
996 	CACHELINE_PADDING(_pad1_);
997 
998 	/* free areas of different sizes */
999 	struct free_area	free_area[NR_PAGE_ORDERS];
1000 
1001 #ifdef CONFIG_UNACCEPTED_MEMORY
1002 	/* Pages to be accepted. All pages on the list are MAX_PAGE_ORDER */
1003 	struct list_head	unaccepted_pages;
1004 
1005 	/* To be called once the last page in the zone is accepted */
1006 	struct work_struct	unaccepted_cleanup;
1007 #endif
1008 
1009 	/* zone flags, see below */
1010 	unsigned long		flags;
1011 
1012 	/* Primarily protects free_area */
1013 	spinlock_t		lock;
1014 
1015 	/* Pages to be freed when next trylock succeeds */
1016 	struct llist_head	trylock_free_pages;
1017 
1018 	/* Write-intensive fields used by compaction and vmstats. */
1019 	CACHELINE_PADDING(_pad2_);
1020 
1021 	/*
1022 	 * When free pages are below this point, additional steps are taken
1023 	 * when reading the number of free pages to avoid per-cpu counter
1024 	 * drift allowing watermarks to be breached
1025 	 */
1026 	unsigned long percpu_drift_mark;
1027 
1028 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
1029 	/* pfn where compaction free scanner should start */
1030 	unsigned long		compact_cached_free_pfn;
1031 	/* pfn where compaction migration scanner should start */
1032 	unsigned long		compact_cached_migrate_pfn[ASYNC_AND_SYNC];
1033 	unsigned long		compact_init_migrate_pfn;
1034 	unsigned long		compact_init_free_pfn;
1035 #endif
1036 
1037 #ifdef CONFIG_COMPACTION
1038 	/*
1039 	 * On compaction failure, 1<<compact_defer_shift compactions
1040 	 * are skipped before trying again. The number attempted since
1041 	 * last failure is tracked with compact_considered.
1042 	 * compact_order_failed is the minimum compaction failed order.
1043 	 */
1044 	unsigned int		compact_considered;
1045 	unsigned int		compact_defer_shift;
1046 	int			compact_order_failed;
1047 #endif
1048 
1049 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
1050 	/* Set to true when the PG_migrate_skip bits should be cleared */
1051 	bool			compact_blockskip_flush;
1052 #endif
1053 
1054 	bool			contiguous;
1055 
1056 	CACHELINE_PADDING(_pad3_);
1057 	/* Zone statistics */
1058 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
1059 	atomic_long_t		vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
1060 } ____cacheline_internodealigned_in_smp;
1061 
1062 enum pgdat_flags {
1063 	PGDAT_WRITEBACK,		/* reclaim scanning has recently found
1064 					 * many pages under writeback
1065 					 */
1066 	PGDAT_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
1067 };
1068 
1069 enum zone_flags {
1070 	ZONE_BOOSTED_WATERMARK,		/* zone recently boosted watermarks.
1071 					 * Cleared when kswapd is woken.
1072 					 */
1073 	ZONE_RECLAIM_ACTIVE,		/* kswapd may be scanning the zone. */
1074 	ZONE_BELOW_HIGH,		/* zone is below high watermark. */
1075 };
1076 
wmark_pages(const struct zone * z,enum zone_watermarks w)1077 static inline unsigned long wmark_pages(const struct zone *z,
1078 					enum zone_watermarks w)
1079 {
1080 	return z->_watermark[w] + z->watermark_boost;
1081 }
1082 
min_wmark_pages(const struct zone * z)1083 static inline unsigned long min_wmark_pages(const struct zone *z)
1084 {
1085 	return wmark_pages(z, WMARK_MIN);
1086 }
1087 
low_wmark_pages(const struct zone * z)1088 static inline unsigned long low_wmark_pages(const struct zone *z)
1089 {
1090 	return wmark_pages(z, WMARK_LOW);
1091 }
1092 
high_wmark_pages(const struct zone * z)1093 static inline unsigned long high_wmark_pages(const struct zone *z)
1094 {
1095 	return wmark_pages(z, WMARK_HIGH);
1096 }
1097 
promo_wmark_pages(const struct zone * z)1098 static inline unsigned long promo_wmark_pages(const struct zone *z)
1099 {
1100 	return wmark_pages(z, WMARK_PROMO);
1101 }
1102 
zone_managed_pages(const struct zone * zone)1103 static inline unsigned long zone_managed_pages(const struct zone *zone)
1104 {
1105 	return (unsigned long)atomic_long_read(&zone->managed_pages);
1106 }
1107 
zone_cma_pages(struct zone * zone)1108 static inline unsigned long zone_cma_pages(struct zone *zone)
1109 {
1110 #ifdef CONFIG_CMA
1111 	return zone->cma_pages;
1112 #else
1113 	return 0;
1114 #endif
1115 }
1116 
zone_end_pfn(const struct zone * zone)1117 static inline unsigned long zone_end_pfn(const struct zone *zone)
1118 {
1119 	return zone->zone_start_pfn + zone->spanned_pages;
1120 }
1121 
zone_spans_pfn(const struct zone * zone,unsigned long pfn)1122 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
1123 {
1124 	return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
1125 }
1126 
zone_is_initialized(const struct zone * zone)1127 static inline bool zone_is_initialized(const struct zone *zone)
1128 {
1129 	return zone->initialized;
1130 }
1131 
zone_is_empty(const struct zone * zone)1132 static inline bool zone_is_empty(const struct zone *zone)
1133 {
1134 	return zone->spanned_pages == 0;
1135 }
1136 
1137 #ifndef BUILD_VDSO32_64
1138 /*
1139  * The zone field is never updated after free_area_init_core()
1140  * sets it, so none of the operations on it need to be atomic.
1141  */
1142 
1143 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1144 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1145 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
1146 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
1147 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
1148 #define KASAN_TAG_PGOFF		(LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1149 #define LRU_GEN_PGOFF		(KASAN_TAG_PGOFF - LRU_GEN_WIDTH)
1150 #define LRU_REFS_PGOFF		(LRU_GEN_PGOFF - LRU_REFS_WIDTH)
1151 
1152 /*
1153  * Define the bit shifts to access each section.  For non-existent
1154  * sections we define the shift as 0; that plus a 0 mask ensures
1155  * the compiler will optimise away reference to them.
1156  */
1157 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1158 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
1159 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
1160 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1161 #define KASAN_TAG_PGSHIFT	(KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1162 
1163 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1164 #ifdef NODE_NOT_IN_PAGE_FLAGS
1165 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
1166 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF) ? \
1167 						SECTIONS_PGOFF : ZONES_PGOFF)
1168 #else
1169 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
1170 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF) ? \
1171 						NODES_PGOFF : ZONES_PGOFF)
1172 #endif
1173 
1174 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1175 
1176 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
1177 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
1178 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
1179 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
1180 #define KASAN_TAG_MASK		((1UL << KASAN_TAG_WIDTH) - 1)
1181 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
1182 
memdesc_zonenum(memdesc_flags_t flags)1183 static inline enum zone_type memdesc_zonenum(memdesc_flags_t flags)
1184 {
1185 	ASSERT_EXCLUSIVE_BITS(flags.f, ZONES_MASK << ZONES_PGSHIFT);
1186 	return (flags.f >> ZONES_PGSHIFT) & ZONES_MASK;
1187 }
1188 
page_zonenum(const struct page * page)1189 static inline enum zone_type page_zonenum(const struct page *page)
1190 {
1191 	return memdesc_zonenum(page->flags);
1192 }
1193 
folio_zonenum(const struct folio * folio)1194 static inline enum zone_type folio_zonenum(const struct folio *folio)
1195 {
1196 	return memdesc_zonenum(folio->flags);
1197 }
1198 
1199 #ifdef CONFIG_ZONE_DEVICE
memdesc_is_zone_device(memdesc_flags_t mdf)1200 static inline bool memdesc_is_zone_device(memdesc_flags_t mdf)
1201 {
1202 	return memdesc_zonenum(mdf) == ZONE_DEVICE;
1203 }
1204 
page_pgmap(const struct page * page)1205 static inline struct dev_pagemap *page_pgmap(const struct page *page)
1206 {
1207 	VM_WARN_ON_ONCE_PAGE(!memdesc_is_zone_device(page->flags), page);
1208 	return page_folio(page)->pgmap;
1209 }
1210 
1211 /*
1212  * Consecutive zone device pages should not be merged into the same sgl
1213  * or bvec segment with other types of pages or if they belong to different
1214  * pgmaps. Otherwise getting the pgmap of a given segment is not possible
1215  * without scanning the entire segment. This helper returns true either if
1216  * both pages are not zone device pages or both pages are zone device pages
1217  * with the same pgmap.
1218  */
zone_device_pages_have_same_pgmap(const struct page * a,const struct page * b)1219 static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
1220 						     const struct page *b)
1221 {
1222 	if (memdesc_is_zone_device(a->flags) != memdesc_is_zone_device(b->flags))
1223 		return false;
1224 	if (!memdesc_is_zone_device(a->flags))
1225 		return true;
1226 	return page_pgmap(a) == page_pgmap(b);
1227 }
1228 
1229 extern void memmap_init_zone_device(struct zone *, unsigned long,
1230 				    unsigned long, struct dev_pagemap *);
1231 #else
memdesc_is_zone_device(memdesc_flags_t mdf)1232 static inline bool memdesc_is_zone_device(memdesc_flags_t mdf)
1233 {
1234 	return false;
1235 }
zone_device_pages_have_same_pgmap(const struct page * a,const struct page * b)1236 static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
1237 						     const struct page *b)
1238 {
1239 	return true;
1240 }
page_pgmap(const struct page * page)1241 static inline struct dev_pagemap *page_pgmap(const struct page *page)
1242 {
1243 	return NULL;
1244 }
1245 #endif
1246 
is_zone_device_page(const struct page * page)1247 static inline bool is_zone_device_page(const struct page *page)
1248 {
1249 	return memdesc_is_zone_device(page->flags);
1250 }
1251 
folio_is_zone_device(const struct folio * folio)1252 static inline bool folio_is_zone_device(const struct folio *folio)
1253 {
1254 	return memdesc_is_zone_device(folio->flags);
1255 }
1256 
is_zone_movable_page(const struct page * page)1257 static inline bool is_zone_movable_page(const struct page *page)
1258 {
1259 	return page_zonenum(page) == ZONE_MOVABLE;
1260 }
1261 
folio_is_zone_movable(const struct folio * folio)1262 static inline bool folio_is_zone_movable(const struct folio *folio)
1263 {
1264 	return folio_zonenum(folio) == ZONE_MOVABLE;
1265 }
1266 #endif
1267 
1268 /*
1269  * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
1270  * intersection with the given zone
1271  */
zone_intersects(const struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)1272 static inline bool zone_intersects(const struct zone *zone,
1273 		unsigned long start_pfn, unsigned long nr_pages)
1274 {
1275 	if (zone_is_empty(zone))
1276 		return false;
1277 	if (start_pfn >= zone_end_pfn(zone) ||
1278 	    start_pfn + nr_pages <= zone->zone_start_pfn)
1279 		return false;
1280 
1281 	return true;
1282 }
1283 
1284 /*
1285  * The "priority" of VM scanning is how much of the queues we will scan in one
1286  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
1287  * queues ("queue_length >> 12") during an aging round.
1288  */
1289 #define DEF_PRIORITY 12
1290 
1291 /* Maximum number of zones on a zonelist */
1292 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
1293 
1294 enum {
1295 	ZONELIST_FALLBACK,	/* zonelist with fallback */
1296 #ifdef CONFIG_NUMA
1297 	/*
1298 	 * The NUMA zonelists are doubled because we need zonelists that
1299 	 * restrict the allocations to a single node for __GFP_THISNODE.
1300 	 */
1301 	ZONELIST_NOFALLBACK,	/* zonelist without fallback (__GFP_THISNODE) */
1302 #endif
1303 	MAX_ZONELISTS
1304 };
1305 
1306 /*
1307  * This struct contains information about a zone in a zonelist. It is stored
1308  * here to avoid dereferences into large structures and lookups of tables
1309  */
1310 struct zoneref {
1311 	struct zone *zone;	/* Pointer to actual zone */
1312 	int zone_idx;		/* zone_idx(zoneref->zone) */
1313 };
1314 
1315 /*
1316  * One allocation request operates on a zonelist. A zonelist
1317  * is a list of zones, the first one is the 'goal' of the
1318  * allocation, the other zones are fallback zones, in decreasing
1319  * priority.
1320  *
1321  * To speed the reading of the zonelist, the zonerefs contain the zone index
1322  * of the entry being read. Helper functions to access information given
1323  * a struct zoneref are
1324  *
1325  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
1326  * zonelist_zone_idx()	- Return the index of the zone for an entry
1327  * zonelist_node_idx()	- Return the index of the node for an entry
1328  */
1329 struct zonelist {
1330 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
1331 };
1332 
1333 /*
1334  * The array of struct pages for flatmem.
1335  * It must be declared for SPARSEMEM as well because there are configurations
1336  * that rely on that.
1337  */
1338 extern struct page *mem_map;
1339 
1340 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1341 struct deferred_split {
1342 	spinlock_t split_queue_lock;
1343 	struct list_head split_queue;
1344 	unsigned long split_queue_len;
1345 };
1346 #endif
1347 
1348 #ifdef CONFIG_MEMORY_FAILURE
1349 /*
1350  * Per NUMA node memory failure handling statistics.
1351  */
1352 struct memory_failure_stats {
1353 	/*
1354 	 * Number of raw pages poisoned.
1355 	 * Cases not accounted: memory outside kernel control, offline page,
1356 	 * arch-specific memory_failure (SGX), hwpoison_filter() filtered
1357 	 * error events, and unpoison actions from hwpoison_unpoison.
1358 	 */
1359 	unsigned long total;
1360 	/*
1361 	 * Recovery results of poisoned raw pages handled by memory_failure,
1362 	 * in sync with mf_result.
1363 	 * total = ignored + failed + delayed + recovered.
1364 	 * total * PAGE_SIZE * #nodes = /proc/meminfo/HardwareCorrupted.
1365 	 */
1366 	unsigned long ignored;
1367 	unsigned long failed;
1368 	unsigned long delayed;
1369 	unsigned long recovered;
1370 };
1371 #endif
1372 
1373 /*
1374  * On NUMA machines, each NUMA node would have a pg_data_t to describe
1375  * it's memory layout. On UMA machines there is a single pglist_data which
1376  * describes the whole memory.
1377  *
1378  * Memory statistics and page replacement data structures are maintained on a
1379  * per-zone basis.
1380  */
1381 typedef struct pglist_data {
1382 	/*
1383 	 * node_zones contains just the zones for THIS node. Not all of the
1384 	 * zones may be populated, but it is the full list. It is referenced by
1385 	 * this node's node_zonelists as well as other node's node_zonelists.
1386 	 */
1387 	struct zone node_zones[MAX_NR_ZONES];
1388 
1389 	/*
1390 	 * node_zonelists contains references to all zones in all nodes.
1391 	 * Generally the first zones will be references to this node's
1392 	 * node_zones.
1393 	 */
1394 	struct zonelist node_zonelists[MAX_ZONELISTS];
1395 
1396 	int nr_zones; /* number of populated zones in this node */
1397 #ifdef CONFIG_FLATMEM	/* means !SPARSEMEM */
1398 	struct page *node_mem_map;
1399 #ifdef CONFIG_PAGE_EXTENSION
1400 	struct page_ext *node_page_ext;
1401 #endif
1402 #endif
1403 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
1404 	/*
1405 	 * Must be held any time you expect node_start_pfn,
1406 	 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
1407 	 * Also synchronizes pgdat->first_deferred_pfn during deferred page
1408 	 * init.
1409 	 *
1410 	 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
1411 	 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
1412 	 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
1413 	 *
1414 	 * Nests above zone->lock and zone->span_seqlock
1415 	 */
1416 	spinlock_t node_size_lock;
1417 #endif
1418 	unsigned long node_start_pfn;
1419 	unsigned long node_present_pages; /* total number of physical pages */
1420 	unsigned long node_spanned_pages; /* total size of physical page
1421 					     range, including holes */
1422 	int node_id;
1423 	wait_queue_head_t kswapd_wait;
1424 	wait_queue_head_t pfmemalloc_wait;
1425 
1426 	/* workqueues for throttling reclaim for different reasons. */
1427 	wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE];
1428 
1429 	atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */
1430 	unsigned long nr_reclaim_start;	/* nr pages written while throttled
1431 					 * when throttling started. */
1432 #ifdef CONFIG_MEMORY_HOTPLUG
1433 	struct mutex kswapd_lock;
1434 #endif
1435 	struct task_struct *kswapd;	/* Protected by kswapd_lock */
1436 	int kswapd_order;
1437 	enum zone_type kswapd_highest_zoneidx;
1438 
1439 	atomic_t kswapd_failures;	/* Number of 'reclaimed == 0' runs */
1440 
1441 #ifdef CONFIG_COMPACTION
1442 	int kcompactd_max_order;
1443 	enum zone_type kcompactd_highest_zoneidx;
1444 	wait_queue_head_t kcompactd_wait;
1445 	struct task_struct *kcompactd;
1446 	bool proactive_compact_trigger;
1447 #endif
1448 	/*
1449 	 * This is a per-node reserve of pages that are not available
1450 	 * to userspace allocations.
1451 	 */
1452 	unsigned long		totalreserve_pages;
1453 
1454 #ifdef CONFIG_NUMA
1455 	/*
1456 	 * node reclaim becomes active if more unmapped pages exist.
1457 	 */
1458 	unsigned long		min_unmapped_pages;
1459 	unsigned long		min_slab_pages;
1460 #endif /* CONFIG_NUMA */
1461 
1462 	/* Write-intensive fields used by page reclaim */
1463 	CACHELINE_PADDING(_pad1_);
1464 
1465 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1466 	/*
1467 	 * If memory initialisation on large machines is deferred then this
1468 	 * is the first PFN that needs to be initialised.
1469 	 */
1470 	unsigned long first_deferred_pfn;
1471 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1472 
1473 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1474 	struct deferred_split deferred_split_queue;
1475 #endif
1476 
1477 #ifdef CONFIG_NUMA_BALANCING
1478 	/* start time in ms of current promote rate limit period */
1479 	unsigned int nbp_rl_start;
1480 	/* number of promote candidate pages at start time of current rate limit period */
1481 	unsigned long nbp_rl_nr_cand;
1482 	/* promote threshold in ms */
1483 	unsigned int nbp_threshold;
1484 	/* start time in ms of current promote threshold adjustment period */
1485 	unsigned int nbp_th_start;
1486 	/*
1487 	 * number of promote candidate pages at start time of current promote
1488 	 * threshold adjustment period
1489 	 */
1490 	unsigned long nbp_th_nr_cand;
1491 #endif
1492 	/* Fields commonly accessed by the page reclaim scanner */
1493 
1494 	/*
1495 	 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
1496 	 *
1497 	 * Use mem_cgroup_lruvec() to look up lruvecs.
1498 	 */
1499 	struct lruvec		__lruvec;
1500 
1501 	unsigned long		flags;
1502 
1503 #ifdef CONFIG_LRU_GEN
1504 	/* kswap mm walk data */
1505 	struct lru_gen_mm_walk mm_walk;
1506 	/* lru_gen_folio list */
1507 	struct lru_gen_memcg memcg_lru;
1508 #endif
1509 
1510 	CACHELINE_PADDING(_pad2_);
1511 
1512 	/* Per-node vmstats */
1513 	struct per_cpu_nodestat __percpu *per_cpu_nodestats;
1514 	atomic_long_t		vm_stat[NR_VM_NODE_STAT_ITEMS];
1515 #ifdef CONFIG_NUMA
1516 	struct memory_tier __rcu *memtier;
1517 #endif
1518 #ifdef CONFIG_MEMORY_FAILURE
1519 	struct memory_failure_stats mf_stats;
1520 #endif
1521 } pg_data_t;
1522 
1523 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
1524 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
1525 
1526 #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
1527 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
1528 
pgdat_end_pfn(pg_data_t * pgdat)1529 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
1530 {
1531 	return pgdat->node_start_pfn + pgdat->node_spanned_pages;
1532 }
1533 
1534 #include <linux/memory_hotplug.h>
1535 
1536 void build_all_zonelists(pg_data_t *pgdat);
1537 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
1538 		   enum zone_type highest_zoneidx);
1539 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1540 			 int highest_zoneidx, unsigned int alloc_flags,
1541 			 long free_pages);
1542 bool zone_watermark_ok(struct zone *z, unsigned int order,
1543 		unsigned long mark, int highest_zoneidx,
1544 		unsigned int alloc_flags);
1545 /*
1546  * Memory initialization context, use to differentiate memory added by
1547  * the platform statically or via memory hotplug interface.
1548  */
1549 enum meminit_context {
1550 	MEMINIT_EARLY,
1551 	MEMINIT_HOTPLUG,
1552 };
1553 
1554 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
1555 				     unsigned long size);
1556 
1557 extern void lruvec_init(struct lruvec *lruvec);
1558 
lruvec_pgdat(struct lruvec * lruvec)1559 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
1560 {
1561 #ifdef CONFIG_MEMCG
1562 	return lruvec->pgdat;
1563 #else
1564 	return container_of(lruvec, struct pglist_data, __lruvec);
1565 #endif
1566 }
1567 
1568 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
1569 int local_memory_node(int node_id);
1570 #else
local_memory_node(int node_id)1571 static inline int local_memory_node(int node_id) { return node_id; };
1572 #endif
1573 
1574 /*
1575  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
1576  */
1577 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
1578 
1579 #ifdef CONFIG_ZONE_DEVICE
zone_is_zone_device(const struct zone * zone)1580 static inline bool zone_is_zone_device(const struct zone *zone)
1581 {
1582 	return zone_idx(zone) == ZONE_DEVICE;
1583 }
1584 #else
zone_is_zone_device(const struct zone * zone)1585 static inline bool zone_is_zone_device(const struct zone *zone)
1586 {
1587 	return false;
1588 }
1589 #endif
1590 
1591 /*
1592  * Returns true if a zone has pages managed by the buddy allocator.
1593  * All the reclaim decisions have to use this function rather than
1594  * populated_zone(). If the whole zone is reserved then we can easily
1595  * end up with populated_zone() && !managed_zone().
1596  */
managed_zone(const struct zone * zone)1597 static inline bool managed_zone(const struct zone *zone)
1598 {
1599 	return zone_managed_pages(zone);
1600 }
1601 
1602 /* Returns true if a zone has memory */
populated_zone(const struct zone * zone)1603 static inline bool populated_zone(const struct zone *zone)
1604 {
1605 	return zone->present_pages;
1606 }
1607 
1608 #ifdef CONFIG_NUMA
zone_to_nid(const struct zone * zone)1609 static inline int zone_to_nid(const struct zone *zone)
1610 {
1611 	return zone->node;
1612 }
1613 
zone_set_nid(struct zone * zone,int nid)1614 static inline void zone_set_nid(struct zone *zone, int nid)
1615 {
1616 	zone->node = nid;
1617 }
1618 #else
zone_to_nid(const struct zone * zone)1619 static inline int zone_to_nid(const struct zone *zone)
1620 {
1621 	return 0;
1622 }
1623 
zone_set_nid(struct zone * zone,int nid)1624 static inline void zone_set_nid(struct zone *zone, int nid) {}
1625 #endif
1626 
1627 extern int movable_zone;
1628 
is_highmem_idx(enum zone_type idx)1629 static inline int is_highmem_idx(enum zone_type idx)
1630 {
1631 #ifdef CONFIG_HIGHMEM
1632 	return (idx == ZONE_HIGHMEM ||
1633 		(idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM));
1634 #else
1635 	return 0;
1636 #endif
1637 }
1638 
1639 /**
1640  * is_highmem - helper function to quickly check if a struct zone is a
1641  *              highmem zone or not.  This is an attempt to keep references
1642  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
1643  * @zone: pointer to struct zone variable
1644  * Return: 1 for a highmem zone, 0 otherwise
1645  */
is_highmem(const struct zone * zone)1646 static inline int is_highmem(const struct zone *zone)
1647 {
1648 	return is_highmem_idx(zone_idx(zone));
1649 }
1650 
1651 bool has_managed_zone(enum zone_type zone);
has_managed_dma(void)1652 static inline bool has_managed_dma(void)
1653 {
1654 #ifdef CONFIG_ZONE_DMA
1655 	return has_managed_zone(ZONE_DMA);
1656 #else
1657 	return false;
1658 #endif
1659 }
1660 
1661 
1662 #ifndef CONFIG_NUMA
1663 
1664 extern struct pglist_data contig_page_data;
NODE_DATA(int nid)1665 static inline struct pglist_data *NODE_DATA(int nid)
1666 {
1667 	return &contig_page_data;
1668 }
1669 
1670 #else /* CONFIG_NUMA */
1671 
1672 #include <asm/mmzone.h>
1673 
1674 #endif /* !CONFIG_NUMA */
1675 
1676 extern struct pglist_data *first_online_pgdat(void);
1677 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
1678 extern struct zone *next_zone(struct zone *zone);
1679 
1680 /**
1681  * for_each_online_pgdat - helper macro to iterate over all online nodes
1682  * @pgdat: pointer to a pg_data_t variable
1683  */
1684 #define for_each_online_pgdat(pgdat)			\
1685 	for (pgdat = first_online_pgdat();		\
1686 	     pgdat;					\
1687 	     pgdat = next_online_pgdat(pgdat))
1688 /**
1689  * for_each_zone - helper macro to iterate over all memory zones
1690  * @zone: pointer to struct zone variable
1691  *
1692  * The user only needs to declare the zone variable, for_each_zone
1693  * fills it in.
1694  */
1695 #define for_each_zone(zone)			        \
1696 	for (zone = (first_online_pgdat())->node_zones; \
1697 	     zone;					\
1698 	     zone = next_zone(zone))
1699 
1700 #define for_each_populated_zone(zone)		        \
1701 	for (zone = (first_online_pgdat())->node_zones; \
1702 	     zone;					\
1703 	     zone = next_zone(zone))			\
1704 		if (!populated_zone(zone))		\
1705 			; /* do nothing */		\
1706 		else
1707 
zonelist_zone(struct zoneref * zoneref)1708 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1709 {
1710 	return zoneref->zone;
1711 }
1712 
zonelist_zone_idx(const struct zoneref * zoneref)1713 static inline int zonelist_zone_idx(const struct zoneref *zoneref)
1714 {
1715 	return zoneref->zone_idx;
1716 }
1717 
zonelist_node_idx(const struct zoneref * zoneref)1718 static inline int zonelist_node_idx(const struct zoneref *zoneref)
1719 {
1720 	return zone_to_nid(zoneref->zone);
1721 }
1722 
1723 struct zoneref *__next_zones_zonelist(struct zoneref *z,
1724 					enum zone_type highest_zoneidx,
1725 					nodemask_t *nodes);
1726 
1727 /**
1728  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1729  * @z: The cursor used as a starting point for the search
1730  * @highest_zoneidx: The zone index of the highest zone to return
1731  * @nodes: An optional nodemask to filter the zonelist with
1732  *
1733  * This function returns the next zone at or below a given zone index that is
1734  * within the allowed nodemask using a cursor as the starting point for the
1735  * search. The zoneref returned is a cursor that represents the current zone
1736  * being examined. It should be advanced by one before calling
1737  * next_zones_zonelist again.
1738  *
1739  * Return: the next zone at or below highest_zoneidx within the allowed
1740  * nodemask using a cursor within a zonelist as a starting point
1741  */
next_zones_zonelist(struct zoneref * z,enum zone_type highest_zoneidx,nodemask_t * nodes)1742 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1743 					enum zone_type highest_zoneidx,
1744 					nodemask_t *nodes)
1745 {
1746 	if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1747 		return z;
1748 	return __next_zones_zonelist(z, highest_zoneidx, nodes);
1749 }
1750 
1751 /**
1752  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1753  * @zonelist: The zonelist to search for a suitable zone
1754  * @highest_zoneidx: The zone index of the highest zone to return
1755  * @nodes: An optional nodemask to filter the zonelist with
1756  *
1757  * This function returns the first zone at or below a given zone index that is
1758  * within the allowed nodemask. The zoneref returned is a cursor that can be
1759  * used to iterate the zonelist with next_zones_zonelist by advancing it by
1760  * one before calling.
1761  *
1762  * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1763  * never NULL). This may happen either genuinely, or due to concurrent nodemask
1764  * update due to cpuset modification.
1765  *
1766  * Return: Zoneref pointer for the first suitable zone found
1767  */
first_zones_zonelist(struct zonelist * zonelist,enum zone_type highest_zoneidx,nodemask_t * nodes)1768 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1769 					enum zone_type highest_zoneidx,
1770 					nodemask_t *nodes)
1771 {
1772 	return next_zones_zonelist(zonelist->_zonerefs,
1773 							highest_zoneidx, nodes);
1774 }
1775 
1776 /**
1777  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1778  * @zone: The current zone in the iterator
1779  * @z: The current pointer within zonelist->_zonerefs being iterated
1780  * @zlist: The zonelist being iterated
1781  * @highidx: The zone index of the highest zone to return
1782  * @nodemask: Nodemask allowed by the allocator
1783  *
1784  * This iterator iterates though all zones at or below a given zone index and
1785  * within a given nodemask
1786  */
1787 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1788 	for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);	\
1789 		zone;							\
1790 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1791 			zone = zonelist_zone(z))
1792 
1793 #define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \
1794 	for (zone = zonelist_zone(z);	\
1795 		zone;							\
1796 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1797 			zone = zonelist_zone(z))
1798 
1799 
1800 /**
1801  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1802  * @zone: The current zone in the iterator
1803  * @z: The current pointer within zonelist->zones being iterated
1804  * @zlist: The zonelist being iterated
1805  * @highidx: The zone index of the highest zone to return
1806  *
1807  * This iterator iterates though all zones at or below a given zone index.
1808  */
1809 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1810 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1811 
1812 /* Whether the 'nodes' are all movable nodes */
movable_only_nodes(nodemask_t * nodes)1813 static inline bool movable_only_nodes(nodemask_t *nodes)
1814 {
1815 	struct zonelist *zonelist;
1816 	struct zoneref *z;
1817 	int nid;
1818 
1819 	if (nodes_empty(*nodes))
1820 		return false;
1821 
1822 	/*
1823 	 * We can chose arbitrary node from the nodemask to get a
1824 	 * zonelist as they are interlinked. We just need to find
1825 	 * at least one zone that can satisfy kernel allocations.
1826 	 */
1827 	nid = first_node(*nodes);
1828 	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
1829 	z = first_zones_zonelist(zonelist, ZONE_NORMAL,	nodes);
1830 	return (!zonelist_zone(z)) ? true : false;
1831 }
1832 
1833 
1834 #ifdef CONFIG_SPARSEMEM
1835 #include <asm/sparsemem.h>
1836 #endif
1837 
1838 #ifdef CONFIG_FLATMEM
1839 #define pfn_to_nid(pfn)		(0)
1840 #endif
1841 
1842 #ifdef CONFIG_SPARSEMEM
1843 
1844 /*
1845  * PA_SECTION_SHIFT		physical address to/from section number
1846  * PFN_SECTION_SHIFT		pfn to/from section number
1847  */
1848 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
1849 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
1850 
1851 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
1852 
1853 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1854 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
1855 
1856 #define SECTION_BLOCKFLAGS_BITS \
1857 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1858 
1859 #if (MAX_PAGE_ORDER + PAGE_SHIFT) > SECTION_SIZE_BITS
1860 #error Allocator MAX_PAGE_ORDER exceeds SECTION_SIZE
1861 #endif
1862 
pfn_to_section_nr(unsigned long pfn)1863 static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1864 {
1865 	return pfn >> PFN_SECTION_SHIFT;
1866 }
section_nr_to_pfn(unsigned long sec)1867 static inline unsigned long section_nr_to_pfn(unsigned long sec)
1868 {
1869 	return sec << PFN_SECTION_SHIFT;
1870 }
1871 
1872 #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1873 #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
1874 
1875 #define SUBSECTION_SHIFT 21
1876 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
1877 
1878 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1879 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1880 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1881 
1882 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1883 #error Subsection size exceeds section size
1884 #else
1885 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1886 #endif
1887 
1888 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1889 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1890 
1891 struct mem_section_usage {
1892 	struct rcu_head rcu;
1893 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1894 	DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1895 #endif
1896 	/* See declaration of similar field in struct zone */
1897 	unsigned long pageblock_flags[0];
1898 };
1899 
1900 void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1901 
1902 struct page;
1903 struct page_ext;
1904 struct mem_section {
1905 	/*
1906 	 * This is, logically, a pointer to an array of struct
1907 	 * pages.  However, it is stored with some other magic.
1908 	 * (see sparse.c::sparse_init_one_section())
1909 	 *
1910 	 * Additionally during early boot we encode node id of
1911 	 * the location of the section here to guide allocation.
1912 	 * (see sparse.c::memory_present())
1913 	 *
1914 	 * Making it a UL at least makes someone do a cast
1915 	 * before using it wrong.
1916 	 */
1917 	unsigned long section_mem_map;
1918 
1919 	struct mem_section_usage *usage;
1920 #ifdef CONFIG_PAGE_EXTENSION
1921 	/*
1922 	 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1923 	 * section. (see page_ext.h about this.)
1924 	 */
1925 	struct page_ext *page_ext;
1926 	unsigned long pad;
1927 #endif
1928 	/*
1929 	 * WARNING: mem_section must be a power-of-2 in size for the
1930 	 * calculation and use of SECTION_ROOT_MASK to make sense.
1931 	 */
1932 };
1933 
1934 #ifdef CONFIG_SPARSEMEM_EXTREME
1935 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1936 #else
1937 #define SECTIONS_PER_ROOT	1
1938 #endif
1939 
1940 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1941 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1942 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1943 
1944 #ifdef CONFIG_SPARSEMEM_EXTREME
1945 extern struct mem_section **mem_section;
1946 #else
1947 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1948 #endif
1949 
section_to_usemap(struct mem_section * ms)1950 static inline unsigned long *section_to_usemap(struct mem_section *ms)
1951 {
1952 	return ms->usage->pageblock_flags;
1953 }
1954 
__nr_to_section(unsigned long nr)1955 static inline struct mem_section *__nr_to_section(unsigned long nr)
1956 {
1957 	unsigned long root = SECTION_NR_TO_ROOT(nr);
1958 
1959 	if (unlikely(root >= NR_SECTION_ROOTS))
1960 		return NULL;
1961 
1962 #ifdef CONFIG_SPARSEMEM_EXTREME
1963 	if (!mem_section || !mem_section[root])
1964 		return NULL;
1965 #endif
1966 	return &mem_section[root][nr & SECTION_ROOT_MASK];
1967 }
1968 extern size_t mem_section_usage_size(void);
1969 
1970 /*
1971  * We use the lower bits of the mem_map pointer to store
1972  * a little bit of information.  The pointer is calculated
1973  * as mem_map - section_nr_to_pfn(pnum).  The result is
1974  * aligned to the minimum alignment of the two values:
1975  *   1. All mem_map arrays are page-aligned.
1976  *   2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1977  *      lowest bits.  PFN_SECTION_SHIFT is arch-specific
1978  *      (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1979  *      worst combination is powerpc with 256k pages,
1980  *      which results in PFN_SECTION_SHIFT equal 6.
1981  * To sum it up, at least 6 bits are available on all architectures.
1982  * However, we can exceed 6 bits on some other architectures except
1983  * powerpc (e.g. 15 bits are available on x86_64, 13 bits are available
1984  * with the worst case of 64K pages on arm64) if we make sure the
1985  * exceeded bit is not applicable to powerpc.
1986  */
1987 enum {
1988 	SECTION_MARKED_PRESENT_BIT,
1989 	SECTION_HAS_MEM_MAP_BIT,
1990 	SECTION_IS_ONLINE_BIT,
1991 	SECTION_IS_EARLY_BIT,
1992 #ifdef CONFIG_ZONE_DEVICE
1993 	SECTION_TAINT_ZONE_DEVICE_BIT,
1994 #endif
1995 #ifdef CONFIG_SPARSEMEM_VMEMMAP_PREINIT
1996 	SECTION_IS_VMEMMAP_PREINIT_BIT,
1997 #endif
1998 	SECTION_MAP_LAST_BIT,
1999 };
2000 
2001 #define SECTION_MARKED_PRESENT		BIT(SECTION_MARKED_PRESENT_BIT)
2002 #define SECTION_HAS_MEM_MAP		BIT(SECTION_HAS_MEM_MAP_BIT)
2003 #define SECTION_IS_ONLINE		BIT(SECTION_IS_ONLINE_BIT)
2004 #define SECTION_IS_EARLY		BIT(SECTION_IS_EARLY_BIT)
2005 #ifdef CONFIG_ZONE_DEVICE
2006 #define SECTION_TAINT_ZONE_DEVICE	BIT(SECTION_TAINT_ZONE_DEVICE_BIT)
2007 #endif
2008 #ifdef CONFIG_SPARSEMEM_VMEMMAP_PREINIT
2009 #define SECTION_IS_VMEMMAP_PREINIT	BIT(SECTION_IS_VMEMMAP_PREINIT_BIT)
2010 #endif
2011 #define SECTION_MAP_MASK		(~(BIT(SECTION_MAP_LAST_BIT) - 1))
2012 #define SECTION_NID_SHIFT		SECTION_MAP_LAST_BIT
2013 
__section_mem_map_addr(struct mem_section * section)2014 static inline struct page *__section_mem_map_addr(struct mem_section *section)
2015 {
2016 	unsigned long map = section->section_mem_map;
2017 	map &= SECTION_MAP_MASK;
2018 	return (struct page *)map;
2019 }
2020 
present_section(const struct mem_section * section)2021 static inline int present_section(const struct mem_section *section)
2022 {
2023 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
2024 }
2025 
present_section_nr(unsigned long nr)2026 static inline int present_section_nr(unsigned long nr)
2027 {
2028 	return present_section(__nr_to_section(nr));
2029 }
2030 
valid_section(const struct mem_section * section)2031 static inline int valid_section(const struct mem_section *section)
2032 {
2033 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
2034 }
2035 
early_section(const struct mem_section * section)2036 static inline int early_section(const struct mem_section *section)
2037 {
2038 	return (section && (section->section_mem_map & SECTION_IS_EARLY));
2039 }
2040 
valid_section_nr(unsigned long nr)2041 static inline int valid_section_nr(unsigned long nr)
2042 {
2043 	return valid_section(__nr_to_section(nr));
2044 }
2045 
online_section(const struct mem_section * section)2046 static inline int online_section(const struct mem_section *section)
2047 {
2048 	return (section && (section->section_mem_map & SECTION_IS_ONLINE));
2049 }
2050 
2051 #ifdef CONFIG_ZONE_DEVICE
online_device_section(const struct mem_section * section)2052 static inline int online_device_section(const struct mem_section *section)
2053 {
2054 	unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE;
2055 
2056 	return section && ((section->section_mem_map & flags) == flags);
2057 }
2058 #else
online_device_section(const struct mem_section * section)2059 static inline int online_device_section(const struct mem_section *section)
2060 {
2061 	return 0;
2062 }
2063 #endif
2064 
2065 #ifdef CONFIG_SPARSEMEM_VMEMMAP_PREINIT
preinited_vmemmap_section(const struct mem_section * section)2066 static inline int preinited_vmemmap_section(const struct mem_section *section)
2067 {
2068 	return (section &&
2069 		(section->section_mem_map & SECTION_IS_VMEMMAP_PREINIT));
2070 }
2071 
2072 void sparse_vmemmap_init_nid_early(int nid);
2073 void sparse_vmemmap_init_nid_late(int nid);
2074 
2075 #else
preinited_vmemmap_section(const struct mem_section * section)2076 static inline int preinited_vmemmap_section(const struct mem_section *section)
2077 {
2078 	return 0;
2079 }
sparse_vmemmap_init_nid_early(int nid)2080 static inline void sparse_vmemmap_init_nid_early(int nid)
2081 {
2082 }
2083 
sparse_vmemmap_init_nid_late(int nid)2084 static inline void sparse_vmemmap_init_nid_late(int nid)
2085 {
2086 }
2087 #endif
2088 
online_section_nr(unsigned long nr)2089 static inline int online_section_nr(unsigned long nr)
2090 {
2091 	return online_section(__nr_to_section(nr));
2092 }
2093 
2094 #ifdef CONFIG_MEMORY_HOTPLUG
2095 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
2096 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
2097 #endif
2098 
__pfn_to_section(unsigned long pfn)2099 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
2100 {
2101 	return __nr_to_section(pfn_to_section_nr(pfn));
2102 }
2103 
2104 extern unsigned long __highest_present_section_nr;
2105 
subsection_map_index(unsigned long pfn)2106 static inline int subsection_map_index(unsigned long pfn)
2107 {
2108 	return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
2109 }
2110 
2111 #ifdef CONFIG_SPARSEMEM_VMEMMAP
pfn_section_valid(struct mem_section * ms,unsigned long pfn)2112 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
2113 {
2114 	int idx = subsection_map_index(pfn);
2115 	struct mem_section_usage *usage = READ_ONCE(ms->usage);
2116 
2117 	return usage ? test_bit(idx, usage->subsection_map) : 0;
2118 }
2119 
pfn_section_first_valid(struct mem_section * ms,unsigned long * pfn)2120 static inline bool pfn_section_first_valid(struct mem_section *ms, unsigned long *pfn)
2121 {
2122 	struct mem_section_usage *usage = READ_ONCE(ms->usage);
2123 	int idx = subsection_map_index(*pfn);
2124 	unsigned long bit;
2125 
2126 	if (!usage)
2127 		return false;
2128 
2129 	if (test_bit(idx, usage->subsection_map))
2130 		return true;
2131 
2132 	/* Find the next subsection that exists */
2133 	bit = find_next_bit(usage->subsection_map, SUBSECTIONS_PER_SECTION, idx);
2134 	if (bit == SUBSECTIONS_PER_SECTION)
2135 		return false;
2136 
2137 	*pfn = (*pfn & PAGE_SECTION_MASK) + (bit * PAGES_PER_SUBSECTION);
2138 	return true;
2139 }
2140 #else
pfn_section_valid(struct mem_section * ms,unsigned long pfn)2141 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
2142 {
2143 	return 1;
2144 }
2145 
pfn_section_first_valid(struct mem_section * ms,unsigned long * pfn)2146 static inline bool pfn_section_first_valid(struct mem_section *ms, unsigned long *pfn)
2147 {
2148 	return true;
2149 }
2150 #endif
2151 
2152 void sparse_init_early_section(int nid, struct page *map, unsigned long pnum,
2153 			       unsigned long flags);
2154 
2155 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
2156 /**
2157  * pfn_valid - check if there is a valid memory map entry for a PFN
2158  * @pfn: the page frame number to check
2159  *
2160  * Check if there is a valid memory map entry aka struct page for the @pfn.
2161  * Note, that availability of the memory map entry does not imply that
2162  * there is actual usable memory at that @pfn. The struct page may
2163  * represent a hole or an unusable page frame.
2164  *
2165  * Return: 1 for PFNs that have memory map entries and 0 otherwise
2166  */
pfn_valid(unsigned long pfn)2167 static inline int pfn_valid(unsigned long pfn)
2168 {
2169 	struct mem_section *ms;
2170 	int ret;
2171 
2172 	/*
2173 	 * Ensure the upper PAGE_SHIFT bits are clear in the
2174 	 * pfn. Else it might lead to false positives when
2175 	 * some of the upper bits are set, but the lower bits
2176 	 * match a valid pfn.
2177 	 */
2178 	if (PHYS_PFN(PFN_PHYS(pfn)) != pfn)
2179 		return 0;
2180 
2181 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
2182 		return 0;
2183 	ms = __pfn_to_section(pfn);
2184 	rcu_read_lock_sched();
2185 	if (!valid_section(ms)) {
2186 		rcu_read_unlock_sched();
2187 		return 0;
2188 	}
2189 	/*
2190 	 * Traditionally early sections always returned pfn_valid() for
2191 	 * the entire section-sized span.
2192 	 */
2193 	ret = early_section(ms) || pfn_section_valid(ms, pfn);
2194 	rcu_read_unlock_sched();
2195 
2196 	return ret;
2197 }
2198 
2199 /* Returns end_pfn or higher if no valid PFN remaining in range */
first_valid_pfn(unsigned long pfn,unsigned long end_pfn)2200 static inline unsigned long first_valid_pfn(unsigned long pfn, unsigned long end_pfn)
2201 {
2202 	unsigned long nr = pfn_to_section_nr(pfn);
2203 
2204 	rcu_read_lock_sched();
2205 
2206 	while (nr <= __highest_present_section_nr && pfn < end_pfn) {
2207 		struct mem_section *ms = __pfn_to_section(pfn);
2208 
2209 		if (valid_section(ms) &&
2210 		    (early_section(ms) || pfn_section_first_valid(ms, &pfn))) {
2211 			rcu_read_unlock_sched();
2212 			return pfn;
2213 		}
2214 
2215 		/* Nothing left in this section? Skip to next section */
2216 		nr++;
2217 		pfn = section_nr_to_pfn(nr);
2218 	}
2219 
2220 	rcu_read_unlock_sched();
2221 	return end_pfn;
2222 }
2223 
next_valid_pfn(unsigned long pfn,unsigned long end_pfn)2224 static inline unsigned long next_valid_pfn(unsigned long pfn, unsigned long end_pfn)
2225 {
2226 	pfn++;
2227 
2228 	if (pfn >= end_pfn)
2229 		return end_pfn;
2230 
2231 	/*
2232 	 * Either every PFN within the section (or subsection for VMEMMAP) is
2233 	 * valid, or none of them are. So there's no point repeating the check
2234 	 * for every PFN; only call first_valid_pfn() again when crossing a
2235 	 * (sub)section boundary (i.e. !(pfn & ~PAGE_{SUB,}SECTION_MASK)).
2236 	 */
2237 	if (pfn & ~(IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP) ?
2238 		   PAGE_SUBSECTION_MASK : PAGE_SECTION_MASK))
2239 		return pfn;
2240 
2241 	return first_valid_pfn(pfn, end_pfn);
2242 }
2243 
2244 
2245 #define for_each_valid_pfn(_pfn, _start_pfn, _end_pfn)			\
2246 	for ((_pfn) = first_valid_pfn((_start_pfn), (_end_pfn));	\
2247 	     (_pfn) < (_end_pfn);					\
2248 	     (_pfn) = next_valid_pfn((_pfn), (_end_pfn)))
2249 
2250 #endif
2251 
pfn_in_present_section(unsigned long pfn)2252 static inline int pfn_in_present_section(unsigned long pfn)
2253 {
2254 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
2255 		return 0;
2256 	return present_section(__pfn_to_section(pfn));
2257 }
2258 
next_present_section_nr(unsigned long section_nr)2259 static inline unsigned long next_present_section_nr(unsigned long section_nr)
2260 {
2261 	while (++section_nr <= __highest_present_section_nr) {
2262 		if (present_section_nr(section_nr))
2263 			return section_nr;
2264 	}
2265 
2266 	return -1;
2267 }
2268 
2269 #define for_each_present_section_nr(start, section_nr)		\
2270 	for (section_nr = next_present_section_nr(start - 1);	\
2271 	     section_nr != -1;					\
2272 	     section_nr = next_present_section_nr(section_nr))
2273 
2274 /*
2275  * These are _only_ used during initialisation, therefore they
2276  * can use __initdata ...  They could have names to indicate
2277  * this restriction.
2278  */
2279 #ifdef CONFIG_NUMA
2280 #define pfn_to_nid(pfn)							\
2281 ({									\
2282 	unsigned long __pfn_to_nid_pfn = (pfn);				\
2283 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
2284 })
2285 #else
2286 #define pfn_to_nid(pfn)		(0)
2287 #endif
2288 
2289 void sparse_init(void);
2290 #else
2291 #define sparse_init()	do {} while (0)
2292 #define sparse_index_init(_sec, _nid)  do {} while (0)
2293 #define sparse_vmemmap_init_nid_early(_nid) do {} while (0)
2294 #define sparse_vmemmap_init_nid_late(_nid) do {} while (0)
2295 #define pfn_in_present_section pfn_valid
2296 #define subsection_map_init(_pfn, _nr_pages) do {} while (0)
2297 #endif /* CONFIG_SPARSEMEM */
2298 
2299 /*
2300  * Fallback case for when the architecture provides its own pfn_valid() but
2301  * not a corresponding for_each_valid_pfn().
2302  */
2303 #ifndef for_each_valid_pfn
2304 #define for_each_valid_pfn(_pfn, _start_pfn, _end_pfn)			\
2305 	for ((_pfn) = (_start_pfn); (_pfn) < (_end_pfn); (_pfn)++)	\
2306 		if (pfn_valid(_pfn))
2307 #endif
2308 
2309 #endif /* !__GENERATING_BOUNDS.H */
2310 #endif /* !__ASSEMBLY__ */
2311 #endif /* _LINUX_MMZONE_H */
2312