xref: /linux/drivers/acpi/x86/lpss.c (revision 9bbf8e17d8521211c5c5516ed5ec78d7581aacff)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * ACPI support for Intel Lynxpoint LPSS.
4  *
5  * Copyright (C) 2013, Intel Corporation
6  * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
7  *          Rafael J. Wysocki <rafael.j.wysocki@intel.com>
8  */
9 
10 #include <linux/acpi.h>
11 #include <linux/clkdev.h>
12 #include <linux/clk-provider.h>
13 #include <linux/dmi.h>
14 #include <linux/err.h>
15 #include <linux/io.h>
16 #include <linux/mutex.h>
17 #include <linux/pci.h>
18 #include <linux/platform_device.h>
19 #include <linux/platform_data/x86/clk-lpss.h>
20 #include <linux/platform_data/x86/pmc_atom.h>
21 #include <linux/pm_domain.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/pwm.h>
24 #include <linux/pxa2xx_ssp.h>
25 #include <linux/suspend.h>
26 #include <linux/delay.h>
27 
28 #include "../internal.h"
29 
30 #ifdef CONFIG_X86_INTEL_LPSS
31 
32 #include <asm/cpu_device_id.h>
33 #include <asm/intel-family.h>
34 #include <asm/iosf_mbi.h>
35 
36 #define LPSS_ADDR(desc) ((unsigned long)&desc)
37 
38 #define LPSS_CLK_SIZE	0x04
39 #define LPSS_LTR_SIZE	0x18
40 
41 /* Offsets relative to LPSS_PRIVATE_OFFSET */
42 #define LPSS_CLK_DIVIDER_DEF_MASK	(BIT(1) | BIT(16))
43 #define LPSS_RESETS			0x04
44 #define LPSS_RESETS_RESET_FUNC		BIT(0)
45 #define LPSS_RESETS_RESET_APB		BIT(1)
46 #define LPSS_GENERAL			0x08
47 #define LPSS_GENERAL_LTR_MODE_SW	BIT(2)
48 #define LPSS_GENERAL_UART_RTS_OVRD	BIT(3)
49 #define LPSS_SW_LTR			0x10
50 #define LPSS_AUTO_LTR			0x14
51 #define LPSS_LTR_SNOOP_REQ		BIT(15)
52 #define LPSS_LTR_SNOOP_MASK		0x0000FFFF
53 #define LPSS_LTR_SNOOP_LAT_1US		0x800
54 #define LPSS_LTR_SNOOP_LAT_32US		0xC00
55 #define LPSS_LTR_SNOOP_LAT_SHIFT	5
56 #define LPSS_LTR_SNOOP_LAT_CUTOFF	3000
57 #define LPSS_LTR_MAX_VAL		0x3FF
58 #define LPSS_TX_INT			0x20
59 #define LPSS_TX_INT_MASK		BIT(1)
60 
61 #define LPSS_PRV_REG_COUNT		9
62 
63 /* LPSS Flags */
64 #define LPSS_CLK			BIT(0)
65 #define LPSS_CLK_GATE			BIT(1)
66 #define LPSS_CLK_DIVIDER		BIT(2)
67 #define LPSS_LTR			BIT(3)
68 #define LPSS_SAVE_CTX			BIT(4)
69 /*
70  * For some devices the DSDT AML code for another device turns off the device
71  * before our suspend handler runs, causing us to read/save all 1-s (0xffffffff)
72  * as ctx register values.
73  * Luckily these devices always use the same ctx register values, so we can
74  * work around this by saving the ctx registers once on activation.
75  */
76 #define LPSS_SAVE_CTX_ONCE		BIT(5)
77 #define LPSS_NO_D3_DELAY		BIT(6)
78 
79 struct lpss_private_data;
80 
81 struct lpss_device_desc {
82 	unsigned int flags;
83 	const char *clk_con_id;
84 	unsigned int prv_offset;
85 	size_t prv_size_override;
86 	const struct property_entry *properties;
87 	void (*setup)(struct lpss_private_data *pdata);
88 	bool resume_from_noirq;
89 };
90 
91 static const struct lpss_device_desc lpss_dma_desc = {
92 	.flags = LPSS_CLK,
93 };
94 
95 struct lpss_private_data {
96 	struct acpi_device *adev;
97 	void __iomem *mmio_base;
98 	resource_size_t mmio_size;
99 	unsigned int fixed_clk_rate;
100 	struct clk *clk;
101 	const struct lpss_device_desc *dev_desc;
102 	u32 prv_reg_ctx[LPSS_PRV_REG_COUNT];
103 };
104 
105 /* Devices which need to be in D3 before lpss_iosf_enter_d3_state() proceeds */
106 static u32 pmc_atom_d3_mask = 0xfe000ffe;
107 
108 /* LPSS run time quirks */
109 static unsigned int lpss_quirks;
110 
111 /*
112  * LPSS_QUIRK_ALWAYS_POWER_ON: override power state for LPSS DMA device.
113  *
114  * The LPSS DMA controller has neither _PS0 nor _PS3 method. Moreover
115  * it can be powered off automatically whenever the last LPSS device goes down.
116  * In case of no power any access to the DMA controller will hang the system.
117  * The behaviour is reproduced on some HP laptops based on Intel BayTrail as
118  * well as on ASuS T100TA transformer.
119  *
120  * This quirk overrides power state of entire LPSS island to keep DMA powered
121  * on whenever we have at least one other device in use.
122  */
123 #define LPSS_QUIRK_ALWAYS_POWER_ON	BIT(0)
124 
125 /* UART Component Parameter Register */
126 #define LPSS_UART_CPR			0xF4
127 #define LPSS_UART_CPR_AFCE		BIT(4)
128 
lpss_uart_setup(struct lpss_private_data * pdata)129 static void lpss_uart_setup(struct lpss_private_data *pdata)
130 {
131 	unsigned int offset;
132 	u32 val;
133 
134 	offset = pdata->dev_desc->prv_offset + LPSS_TX_INT;
135 	val = readl(pdata->mmio_base + offset);
136 	writel(val | LPSS_TX_INT_MASK, pdata->mmio_base + offset);
137 
138 	val = readl(pdata->mmio_base + LPSS_UART_CPR);
139 	if (!(val & LPSS_UART_CPR_AFCE)) {
140 		offset = pdata->dev_desc->prv_offset + LPSS_GENERAL;
141 		val = readl(pdata->mmio_base + offset);
142 		val |= LPSS_GENERAL_UART_RTS_OVRD;
143 		writel(val, pdata->mmio_base + offset);
144 	}
145 }
146 
lpss_deassert_reset(struct lpss_private_data * pdata)147 static void lpss_deassert_reset(struct lpss_private_data *pdata)
148 {
149 	unsigned int offset;
150 	u32 val;
151 
152 	offset = pdata->dev_desc->prv_offset + LPSS_RESETS;
153 	val = readl(pdata->mmio_base + offset);
154 	val |= LPSS_RESETS_RESET_APB | LPSS_RESETS_RESET_FUNC;
155 	writel(val, pdata->mmio_base + offset);
156 }
157 
158 /*
159  * BYT PWM used for backlight control by the i915 driver on systems without
160  * the Crystal Cove PMIC.
161  */
162 static struct pwm_lookup byt_pwm_lookup[] = {
163 	PWM_LOOKUP_WITH_MODULE("80860F09:00", 0, "0000:00:02.0",
164 			       "pwm_soc_backlight", 0, PWM_POLARITY_NORMAL,
165 			       "pwm-lpss-platform"),
166 };
167 
byt_pwm_setup(struct lpss_private_data * pdata)168 static void byt_pwm_setup(struct lpss_private_data *pdata)
169 {
170 	/* Only call pwm_add_table for the first PWM controller */
171 	if (acpi_dev_uid_match(pdata->adev, 1))
172 		pwm_add_table(byt_pwm_lookup, ARRAY_SIZE(byt_pwm_lookup));
173 }
174 
175 #define LPSS_I2C_ENABLE			0x6c
176 
byt_i2c_setup(struct lpss_private_data * pdata)177 static void byt_i2c_setup(struct lpss_private_data *pdata)
178 {
179 	acpi_handle handle = pdata->adev->handle;
180 	unsigned long long shared_host = 0;
181 	acpi_status status;
182 	u64 uid;
183 
184 	/* Expected to always be successfull, but better safe then sorry */
185 	if (!acpi_dev_uid_to_integer(pdata->adev, &uid) && uid) {
186 		/* Detect I2C bus shared with PUNIT and ignore its d3 status */
187 		status = acpi_evaluate_integer(handle, "_SEM", NULL, &shared_host);
188 		if (ACPI_SUCCESS(status) && shared_host)
189 			pmc_atom_d3_mask &= ~(BIT_LPSS2_F1_I2C1 << (uid - 1));
190 	}
191 
192 	lpss_deassert_reset(pdata);
193 
194 	if (readl(pdata->mmio_base + pdata->dev_desc->prv_offset))
195 		pdata->fixed_clk_rate = 133000000;
196 
197 	writel(0, pdata->mmio_base + LPSS_I2C_ENABLE);
198 }
199 
200 /*
201  * BSW PWM1 is used for backlight control by the i915 driver
202  * BSW PWM2 is used for backlight control for fixed (etched into the glass)
203  * touch controls on some models. These touch-controls have specialized
204  * drivers which know they need the "pwm_soc_lpss_2" con-id.
205  */
206 static struct pwm_lookup bsw_pwm_lookup[] = {
207 	PWM_LOOKUP_WITH_MODULE("80862288:00", 0, "0000:00:02.0",
208 			       "pwm_soc_backlight", 0, PWM_POLARITY_NORMAL,
209 			       "pwm-lpss-platform"),
210 	PWM_LOOKUP_WITH_MODULE("80862289:00", 0, NULL,
211 			       "pwm_soc_lpss_2", 0, PWM_POLARITY_NORMAL,
212 			       "pwm-lpss-platform"),
213 };
214 
bsw_pwm_setup(struct lpss_private_data * pdata)215 static void bsw_pwm_setup(struct lpss_private_data *pdata)
216 {
217 	/* Only call pwm_add_table for the first PWM controller */
218 	if (acpi_dev_uid_match(pdata->adev, 1))
219 		pwm_add_table(bsw_pwm_lookup, ARRAY_SIZE(bsw_pwm_lookup));
220 }
221 
222 static const struct property_entry lpt_spi_properties[] = {
223 	PROPERTY_ENTRY_U32("intel,spi-pxa2xx-type", LPSS_LPT_SSP),
224 	{ }
225 };
226 
227 static const struct lpss_device_desc lpt_spi_dev_desc = {
228 	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR
229 			| LPSS_SAVE_CTX,
230 	.prv_offset = 0x800,
231 	.properties = lpt_spi_properties,
232 };
233 
234 static const struct lpss_device_desc lpt_i2c_dev_desc = {
235 	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_LTR | LPSS_SAVE_CTX,
236 	.prv_offset = 0x800,
237 };
238 
239 static struct property_entry uart_properties[] = {
240 	PROPERTY_ENTRY_U32("reg-io-width", 4),
241 	PROPERTY_ENTRY_U32("reg-shift", 2),
242 	PROPERTY_ENTRY_BOOL("snps,uart-16550-compatible"),
243 	{ },
244 };
245 
246 static const struct lpss_device_desc lpt_uart_dev_desc = {
247 	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR
248 			| LPSS_SAVE_CTX,
249 	.clk_con_id = "baudclk",
250 	.prv_offset = 0x800,
251 	.setup = lpss_uart_setup,
252 	.properties = uart_properties,
253 };
254 
255 static const struct lpss_device_desc lpt_sdio_dev_desc = {
256 	.flags = LPSS_LTR,
257 	.prv_offset = 0x1000,
258 	.prv_size_override = 0x1018,
259 };
260 
261 static const struct lpss_device_desc byt_pwm_dev_desc = {
262 	.flags = LPSS_SAVE_CTX,
263 	.prv_offset = 0x800,
264 	.setup = byt_pwm_setup,
265 };
266 
267 static const struct lpss_device_desc bsw_pwm_dev_desc = {
268 	.flags = LPSS_SAVE_CTX_ONCE | LPSS_NO_D3_DELAY,
269 	.prv_offset = 0x800,
270 	.setup = bsw_pwm_setup,
271 	.resume_from_noirq = true,
272 };
273 
274 static const struct lpss_device_desc bsw_pwm2_dev_desc = {
275 	.flags = LPSS_SAVE_CTX_ONCE | LPSS_NO_D3_DELAY,
276 	.prv_offset = 0x800,
277 	.resume_from_noirq = true,
278 };
279 
280 static const struct lpss_device_desc byt_uart_dev_desc = {
281 	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
282 	.clk_con_id = "baudclk",
283 	.prv_offset = 0x800,
284 	.setup = lpss_uart_setup,
285 	.properties = uart_properties,
286 };
287 
288 static const struct lpss_device_desc bsw_uart_dev_desc = {
289 	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
290 			| LPSS_NO_D3_DELAY,
291 	.clk_con_id = "baudclk",
292 	.prv_offset = 0x800,
293 	.setup = lpss_uart_setup,
294 	.properties = uart_properties,
295 };
296 
297 static const struct property_entry byt_spi_properties[] = {
298 	PROPERTY_ENTRY_U32("intel,spi-pxa2xx-type", LPSS_BYT_SSP),
299 	{ }
300 };
301 
302 static const struct lpss_device_desc byt_spi_dev_desc = {
303 	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
304 	.prv_offset = 0x400,
305 	.properties = byt_spi_properties,
306 };
307 
308 static const struct lpss_device_desc byt_sdio_dev_desc = {
309 	.flags = LPSS_CLK,
310 };
311 
312 static const struct lpss_device_desc byt_i2c_dev_desc = {
313 	.flags = LPSS_CLK | LPSS_SAVE_CTX,
314 	.prv_offset = 0x800,
315 	.setup = byt_i2c_setup,
316 	.resume_from_noirq = true,
317 };
318 
319 static const struct lpss_device_desc bsw_i2c_dev_desc = {
320 	.flags = LPSS_CLK | LPSS_SAVE_CTX | LPSS_NO_D3_DELAY,
321 	.prv_offset = 0x800,
322 	.setup = byt_i2c_setup,
323 	.resume_from_noirq = true,
324 };
325 
326 static const struct property_entry bsw_spi_properties[] = {
327 	PROPERTY_ENTRY_U32("intel,spi-pxa2xx-type", LPSS_BSW_SSP),
328 	PROPERTY_ENTRY_U32("num-cs", 2),
329 	{ }
330 };
331 
332 static const struct lpss_device_desc bsw_spi_dev_desc = {
333 	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
334 			| LPSS_NO_D3_DELAY,
335 	.prv_offset = 0x400,
336 	.setup = lpss_deassert_reset,
337 	.properties = bsw_spi_properties,
338 };
339 
340 static const struct x86_cpu_id lpss_cpu_ids[] = {
341 	X86_MATCH_VFM(INTEL_ATOM_SILVERMONT,	NULL),
342 	X86_MATCH_VFM(INTEL_ATOM_AIRMONT,	NULL),
343 	{}
344 };
345 
346 #else
347 
348 #define LPSS_ADDR(desc) (0UL)
349 
350 #endif /* CONFIG_X86_INTEL_LPSS */
351 
352 static const struct acpi_device_id acpi_lpss_device_ids[] = {
353 	/* Generic LPSS devices */
354 	{ "INTL9C60", LPSS_ADDR(lpss_dma_desc) },
355 
356 	/* Lynxpoint LPSS devices */
357 	{ "INT33C0", LPSS_ADDR(lpt_spi_dev_desc) },
358 	{ "INT33C1", LPSS_ADDR(lpt_spi_dev_desc) },
359 	{ "INT33C2", LPSS_ADDR(lpt_i2c_dev_desc) },
360 	{ "INT33C3", LPSS_ADDR(lpt_i2c_dev_desc) },
361 	{ "INT33C4", LPSS_ADDR(lpt_uart_dev_desc) },
362 	{ "INT33C5", LPSS_ADDR(lpt_uart_dev_desc) },
363 	{ "INT33C6", LPSS_ADDR(lpt_sdio_dev_desc) },
364 
365 	/* BayTrail LPSS devices */
366 	{ "80860F09", LPSS_ADDR(byt_pwm_dev_desc) },
367 	{ "80860F0A", LPSS_ADDR(byt_uart_dev_desc) },
368 	{ "80860F0E", LPSS_ADDR(byt_spi_dev_desc) },
369 	{ "80860F14", LPSS_ADDR(byt_sdio_dev_desc) },
370 	{ "80860F41", LPSS_ADDR(byt_i2c_dev_desc) },
371 
372 	/* Braswell LPSS devices */
373 	{ "80862286", LPSS_ADDR(lpss_dma_desc) },
374 	{ "80862288", LPSS_ADDR(bsw_pwm_dev_desc) },
375 	{ "80862289", LPSS_ADDR(bsw_pwm2_dev_desc) },
376 	{ "8086228A", LPSS_ADDR(bsw_uart_dev_desc) },
377 	{ "8086228E", LPSS_ADDR(bsw_spi_dev_desc) },
378 	{ "808622C0", LPSS_ADDR(lpss_dma_desc) },
379 	{ "808622C1", LPSS_ADDR(bsw_i2c_dev_desc) },
380 
381 	/* Broadwell LPSS devices */
382 	{ "INT3430", LPSS_ADDR(lpt_spi_dev_desc) },
383 	{ "INT3431", LPSS_ADDR(lpt_spi_dev_desc) },
384 	{ "INT3432", LPSS_ADDR(lpt_i2c_dev_desc) },
385 	{ "INT3433", LPSS_ADDR(lpt_i2c_dev_desc) },
386 	{ "INT3434", LPSS_ADDR(lpt_uart_dev_desc) },
387 	{ "INT3435", LPSS_ADDR(lpt_uart_dev_desc) },
388 	{ "INT3436", LPSS_ADDR(lpt_sdio_dev_desc) },
389 
390 	{ }
391 };
392 
393 #ifdef CONFIG_X86_INTEL_LPSS
394 
395 /* LPSS main clock device. */
396 static struct platform_device *lpss_clk_dev;
397 
lpt_register_clock_device(void)398 static inline void lpt_register_clock_device(void)
399 {
400 	lpss_clk_dev = platform_device_register_simple("clk-lpss-atom",
401 						       PLATFORM_DEVID_NONE,
402 						       NULL, 0);
403 }
404 
register_device_clock(struct acpi_device * adev,struct lpss_private_data * pdata)405 static int register_device_clock(struct acpi_device *adev,
406 				 struct lpss_private_data *pdata)
407 {
408 	const struct lpss_device_desc *dev_desc = pdata->dev_desc;
409 	const char *devname = dev_name(&adev->dev);
410 	struct clk *clk;
411 	struct lpss_clk_data *clk_data;
412 	const char *parent, *clk_name;
413 	void __iomem *prv_base;
414 
415 	if (!lpss_clk_dev)
416 		lpt_register_clock_device();
417 
418 	if (IS_ERR(lpss_clk_dev))
419 		return PTR_ERR(lpss_clk_dev);
420 
421 	clk_data = platform_get_drvdata(lpss_clk_dev);
422 	if (!clk_data)
423 		return -ENODEV;
424 	clk = clk_data->clk;
425 
426 	if (!pdata->mmio_base
427 	    || pdata->mmio_size < dev_desc->prv_offset + LPSS_CLK_SIZE)
428 		return -ENODATA;
429 
430 	parent = clk_data->name;
431 	prv_base = pdata->mmio_base + dev_desc->prv_offset;
432 
433 	if (pdata->fixed_clk_rate) {
434 		clk = clk_register_fixed_rate(NULL, devname, parent, 0,
435 					      pdata->fixed_clk_rate);
436 		goto out;
437 	}
438 
439 	if (dev_desc->flags & LPSS_CLK_GATE) {
440 		clk = clk_register_gate(NULL, devname, parent, 0,
441 					prv_base, 0, 0, NULL);
442 		parent = devname;
443 	}
444 
445 	if (dev_desc->flags & LPSS_CLK_DIVIDER) {
446 		/* Prevent division by zero */
447 		if (!readl(prv_base))
448 			writel(LPSS_CLK_DIVIDER_DEF_MASK, prv_base);
449 
450 		clk_name = kasprintf(GFP_KERNEL, "%s-div", devname);
451 		if (!clk_name)
452 			return -ENOMEM;
453 		clk = clk_register_fractional_divider(NULL, clk_name, parent,
454 						      0, prv_base, 1, 15, 16, 15,
455 						      CLK_FRAC_DIVIDER_POWER_OF_TWO_PS,
456 						      NULL);
457 		parent = clk_name;
458 
459 		clk_name = kasprintf(GFP_KERNEL, "%s-update", devname);
460 		if (!clk_name) {
461 			kfree(parent);
462 			return -ENOMEM;
463 		}
464 		clk = clk_register_gate(NULL, clk_name, parent,
465 					CLK_SET_RATE_PARENT | CLK_SET_RATE_GATE,
466 					prv_base, 31, 0, NULL);
467 		kfree(parent);
468 		kfree(clk_name);
469 	}
470 out:
471 	if (IS_ERR(clk))
472 		return PTR_ERR(clk);
473 
474 	pdata->clk = clk;
475 	clk_register_clkdev(clk, dev_desc->clk_con_id, devname);
476 	return 0;
477 }
478 
479 struct lpss_device_links {
480 	const char *supplier_hid;
481 	const char *supplier_uid;
482 	const char *consumer_hid;
483 	const char *consumer_uid;
484 	u32 flags;
485 	const struct dmi_system_id *dep_missing_ids;
486 };
487 
488 /* Please keep this list sorted alphabetically by vendor and model */
489 static const struct dmi_system_id i2c1_dep_missing_dmi_ids[] = {
490 	{
491 		.matches = {
492 			DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
493 			DMI_MATCH(DMI_PRODUCT_NAME, "T200TA"),
494 		},
495 	},
496 	{}
497 };
498 
499 /*
500  * The _DEP method is used to identify dependencies but instead of creating
501  * device links for every handle in _DEP, only links in the following list are
502  * created. That is necessary because, in the general case, _DEP can refer to
503  * devices that might not have drivers, or that are on different buses, or where
504  * the supplier is not enumerated until after the consumer is probed.
505  */
506 static const struct lpss_device_links lpss_device_links[] = {
507 	/* CHT External sdcard slot controller depends on PMIC I2C ctrl */
508 	{"808622C1", "7", "80860F14", "3", DL_FLAG_PM_RUNTIME},
509 	/* CHT iGPU depends on PMIC I2C controller */
510 	{"808622C1", "7", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
511 	/* BYT iGPU depends on the Embedded Controller I2C controller (UID 1) */
512 	{"80860F41", "1", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME,
513 	 i2c1_dep_missing_dmi_ids},
514 	/* BYT CR iGPU depends on PMIC I2C controller (UID 5 on CR) */
515 	{"80860F41", "5", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
516 	/* BYT iGPU depends on PMIC I2C controller (UID 7 on non CR) */
517 	{"80860F41", "7", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
518 };
519 
acpi_lpss_is_supplier(struct acpi_device * adev,const struct lpss_device_links * link)520 static bool acpi_lpss_is_supplier(struct acpi_device *adev,
521 				  const struct lpss_device_links *link)
522 {
523 	return acpi_dev_hid_uid_match(adev, link->supplier_hid, link->supplier_uid);
524 }
525 
acpi_lpss_is_consumer(struct acpi_device * adev,const struct lpss_device_links * link)526 static bool acpi_lpss_is_consumer(struct acpi_device *adev,
527 				  const struct lpss_device_links *link)
528 {
529 	return acpi_dev_hid_uid_match(adev, link->consumer_hid, link->consumer_uid);
530 }
531 
532 struct hid_uid {
533 	const char *hid;
534 	const char *uid;
535 };
536 
match_hid_uid(struct device * dev,const void * data)537 static int match_hid_uid(struct device *dev, const void *data)
538 {
539 	struct acpi_device *adev = ACPI_COMPANION(dev);
540 	const struct hid_uid *id = data;
541 
542 	if (!adev)
543 		return 0;
544 
545 	return acpi_dev_hid_uid_match(adev, id->hid, id->uid);
546 }
547 
acpi_lpss_find_device(const char * hid,const char * uid)548 static struct device *acpi_lpss_find_device(const char *hid, const char *uid)
549 {
550 	struct device *dev;
551 
552 	struct hid_uid data = {
553 		.hid = hid,
554 		.uid = uid,
555 	};
556 
557 	dev = bus_find_device(&platform_bus_type, NULL, &data, match_hid_uid);
558 	if (dev)
559 		return dev;
560 
561 	return bus_find_device(&pci_bus_type, NULL, &data, match_hid_uid);
562 }
563 
acpi_lpss_link_consumer(struct device * dev1,const struct lpss_device_links * link)564 static void acpi_lpss_link_consumer(struct device *dev1,
565 				    const struct lpss_device_links *link)
566 {
567 	struct device *dev2;
568 
569 	dev2 = acpi_lpss_find_device(link->consumer_hid, link->consumer_uid);
570 	if (!dev2)
571 		return;
572 
573 	if ((link->dep_missing_ids && dmi_check_system(link->dep_missing_ids))
574 	    || acpi_device_dep(ACPI_HANDLE(dev2), ACPI_HANDLE(dev1)))
575 		device_link_add(dev2, dev1, link->flags);
576 
577 	put_device(dev2);
578 }
579 
acpi_lpss_link_supplier(struct device * dev1,const struct lpss_device_links * link)580 static void acpi_lpss_link_supplier(struct device *dev1,
581 				    const struct lpss_device_links *link)
582 {
583 	struct device *dev2;
584 
585 	dev2 = acpi_lpss_find_device(link->supplier_hid, link->supplier_uid);
586 	if (!dev2)
587 		return;
588 
589 	if ((link->dep_missing_ids && dmi_check_system(link->dep_missing_ids))
590 	    || acpi_device_dep(ACPI_HANDLE(dev1), ACPI_HANDLE(dev2)))
591 		device_link_add(dev1, dev2, link->flags);
592 
593 	put_device(dev2);
594 }
595 
acpi_lpss_create_device_links(struct acpi_device * adev,struct platform_device * pdev)596 static void acpi_lpss_create_device_links(struct acpi_device *adev,
597 					  struct platform_device *pdev)
598 {
599 	int i;
600 
601 	for (i = 0; i < ARRAY_SIZE(lpss_device_links); i++) {
602 		const struct lpss_device_links *link = &lpss_device_links[i];
603 
604 		if (acpi_lpss_is_supplier(adev, link))
605 			acpi_lpss_link_consumer(&pdev->dev, link);
606 
607 		if (acpi_lpss_is_consumer(adev, link))
608 			acpi_lpss_link_supplier(&pdev->dev, link);
609 	}
610 }
611 
acpi_lpss_create_device(struct acpi_device * adev,const struct acpi_device_id * id)612 static int acpi_lpss_create_device(struct acpi_device *adev,
613 				   const struct acpi_device_id *id)
614 {
615 	const struct lpss_device_desc *dev_desc;
616 	struct lpss_private_data *pdata;
617 	struct resource_entry *rentry;
618 	struct list_head resource_list;
619 	struct platform_device *pdev;
620 	int ret;
621 
622 	dev_desc = (const struct lpss_device_desc *)id->driver_data;
623 	if (!dev_desc)
624 		return -EINVAL;
625 
626 	pdata = kzalloc(sizeof(*pdata), GFP_KERNEL);
627 	if (!pdata)
628 		return -ENOMEM;
629 
630 	INIT_LIST_HEAD(&resource_list);
631 	ret = acpi_dev_get_memory_resources(adev, &resource_list);
632 	if (ret < 0)
633 		goto err_out;
634 
635 	rentry = list_first_entry_or_null(&resource_list, struct resource_entry, node);
636 	if (rentry) {
637 		if (dev_desc->prv_size_override)
638 			pdata->mmio_size = dev_desc->prv_size_override;
639 		else
640 			pdata->mmio_size = resource_size(rentry->res);
641 		pdata->mmio_base = ioremap(rentry->res->start, pdata->mmio_size);
642 	}
643 
644 	acpi_dev_free_resource_list(&resource_list);
645 
646 	if (!pdata->mmio_base) {
647 		/* Avoid acpi_bus_attach() instantiating a pdev for this dev. */
648 		adev->pnp.type.platform_id = 0;
649 		goto out_free;
650 	}
651 
652 	pdata->adev = adev;
653 	pdata->dev_desc = dev_desc;
654 
655 	if (dev_desc->setup)
656 		dev_desc->setup(pdata);
657 
658 	if (dev_desc->flags & LPSS_CLK) {
659 		ret = register_device_clock(adev, pdata);
660 		if (ret)
661 			goto out_free;
662 	}
663 
664 	/*
665 	 * This works around a known issue in ACPI tables where LPSS devices
666 	 * have _PS0 and _PS3 without _PSC (and no power resources), so
667 	 * acpi_bus_init_power() will assume that the BIOS has put them into D0.
668 	 */
669 	acpi_device_fix_up_power(adev);
670 
671 	adev->driver_data = pdata;
672 	pdev = acpi_create_platform_device(adev, dev_desc->properties);
673 	if (IS_ERR_OR_NULL(pdev)) {
674 		adev->driver_data = NULL;
675 		ret = PTR_ERR(pdev);
676 		goto err_out;
677 	}
678 
679 	acpi_lpss_create_device_links(adev, pdev);
680 	return 1;
681 
682 out_free:
683 	/* Skip the device, but continue the namespace scan */
684 	ret = 0;
685 err_out:
686 	kfree(pdata);
687 	return ret;
688 }
689 
__lpss_reg_read(struct lpss_private_data * pdata,unsigned int reg)690 static u32 __lpss_reg_read(struct lpss_private_data *pdata, unsigned int reg)
691 {
692 	return readl(pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
693 }
694 
__lpss_reg_write(u32 val,struct lpss_private_data * pdata,unsigned int reg)695 static void __lpss_reg_write(u32 val, struct lpss_private_data *pdata,
696 			     unsigned int reg)
697 {
698 	writel(val, pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
699 }
700 
lpss_reg_read(struct device * dev,unsigned int reg,u32 * val)701 static int lpss_reg_read(struct device *dev, unsigned int reg, u32 *val)
702 {
703 	struct acpi_device *adev = ACPI_COMPANION(dev);
704 	struct lpss_private_data *pdata;
705 	unsigned long flags;
706 	int ret;
707 
708 	if (WARN_ON(!adev))
709 		return -ENODEV;
710 
711 	spin_lock_irqsave(&dev->power.lock, flags);
712 	if (pm_runtime_suspended(dev)) {
713 		ret = -EAGAIN;
714 		goto out;
715 	}
716 	pdata = acpi_driver_data(adev);
717 	if (WARN_ON(!pdata || !pdata->mmio_base)) {
718 		ret = -ENODEV;
719 		goto out;
720 	}
721 	*val = __lpss_reg_read(pdata, reg);
722 	ret = 0;
723 
724  out:
725 	spin_unlock_irqrestore(&dev->power.lock, flags);
726 	return ret;
727 }
728 
lpss_ltr_show(struct device * dev,struct device_attribute * attr,char * buf)729 static ssize_t lpss_ltr_show(struct device *dev, struct device_attribute *attr,
730 			     char *buf)
731 {
732 	u32 ltr_value = 0;
733 	unsigned int reg;
734 	int ret;
735 
736 	reg = strcmp(attr->attr.name, "auto_ltr") ? LPSS_SW_LTR : LPSS_AUTO_LTR;
737 	ret = lpss_reg_read(dev, reg, &ltr_value);
738 	if (ret)
739 		return ret;
740 
741 	return sysfs_emit(buf, "%08x\n", ltr_value);
742 }
743 
lpss_ltr_mode_show(struct device * dev,struct device_attribute * attr,char * buf)744 static ssize_t lpss_ltr_mode_show(struct device *dev,
745 				  struct device_attribute *attr, char *buf)
746 {
747 	u32 ltr_mode = 0;
748 	char *outstr;
749 	int ret;
750 
751 	ret = lpss_reg_read(dev, LPSS_GENERAL, &ltr_mode);
752 	if (ret)
753 		return ret;
754 
755 	outstr = (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) ? "sw" : "auto";
756 	return sprintf(buf, "%s\n", outstr);
757 }
758 
759 static DEVICE_ATTR(auto_ltr, S_IRUSR, lpss_ltr_show, NULL);
760 static DEVICE_ATTR(sw_ltr, S_IRUSR, lpss_ltr_show, NULL);
761 static DEVICE_ATTR(ltr_mode, S_IRUSR, lpss_ltr_mode_show, NULL);
762 
763 static struct attribute *lpss_attrs[] = {
764 	&dev_attr_auto_ltr.attr,
765 	&dev_attr_sw_ltr.attr,
766 	&dev_attr_ltr_mode.attr,
767 	NULL,
768 };
769 
770 static const struct attribute_group lpss_attr_group = {
771 	.attrs = lpss_attrs,
772 	.name = "lpss_ltr",
773 };
774 
acpi_lpss_set_ltr(struct device * dev,s32 val)775 static void acpi_lpss_set_ltr(struct device *dev, s32 val)
776 {
777 	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
778 	u32 ltr_mode, ltr_val;
779 
780 	ltr_mode = __lpss_reg_read(pdata, LPSS_GENERAL);
781 	if (val < 0) {
782 		if (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) {
783 			ltr_mode &= ~LPSS_GENERAL_LTR_MODE_SW;
784 			__lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
785 		}
786 		return;
787 	}
788 	ltr_val = __lpss_reg_read(pdata, LPSS_SW_LTR) & ~LPSS_LTR_SNOOP_MASK;
789 	if (val >= LPSS_LTR_SNOOP_LAT_CUTOFF) {
790 		ltr_val |= LPSS_LTR_SNOOP_LAT_32US;
791 		val = LPSS_LTR_MAX_VAL;
792 	} else if (val > LPSS_LTR_MAX_VAL) {
793 		ltr_val |= LPSS_LTR_SNOOP_LAT_32US | LPSS_LTR_SNOOP_REQ;
794 		val >>= LPSS_LTR_SNOOP_LAT_SHIFT;
795 	} else {
796 		ltr_val |= LPSS_LTR_SNOOP_LAT_1US | LPSS_LTR_SNOOP_REQ;
797 	}
798 	ltr_val |= val;
799 	__lpss_reg_write(ltr_val, pdata, LPSS_SW_LTR);
800 	if (!(ltr_mode & LPSS_GENERAL_LTR_MODE_SW)) {
801 		ltr_mode |= LPSS_GENERAL_LTR_MODE_SW;
802 		__lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
803 	}
804 }
805 
806 #ifdef CONFIG_PM
807 /**
808  * acpi_lpss_save_ctx() - Save the private registers of LPSS device
809  * @dev: LPSS device
810  * @pdata: pointer to the private data of the LPSS device
811  *
812  * Most LPSS devices have private registers which may loose their context when
813  * the device is powered down. acpi_lpss_save_ctx() saves those registers into
814  * prv_reg_ctx array.
815  */
acpi_lpss_save_ctx(struct device * dev,struct lpss_private_data * pdata)816 static void acpi_lpss_save_ctx(struct device *dev,
817 			       struct lpss_private_data *pdata)
818 {
819 	unsigned int i;
820 
821 	for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
822 		unsigned long offset = i * sizeof(u32);
823 
824 		pdata->prv_reg_ctx[i] = __lpss_reg_read(pdata, offset);
825 		dev_dbg(dev, "saving 0x%08x from LPSS reg at offset 0x%02lx\n",
826 			pdata->prv_reg_ctx[i], offset);
827 	}
828 }
829 
830 /**
831  * acpi_lpss_restore_ctx() - Restore the private registers of LPSS device
832  * @dev: LPSS device
833  * @pdata: pointer to the private data of the LPSS device
834  *
835  * Restores the registers that were previously stored with acpi_lpss_save_ctx().
836  */
acpi_lpss_restore_ctx(struct device * dev,struct lpss_private_data * pdata)837 static void acpi_lpss_restore_ctx(struct device *dev,
838 				  struct lpss_private_data *pdata)
839 {
840 	unsigned int i;
841 
842 	for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
843 		unsigned long offset = i * sizeof(u32);
844 
845 		__lpss_reg_write(pdata->prv_reg_ctx[i], pdata, offset);
846 		dev_dbg(dev, "restoring 0x%08x to LPSS reg at offset 0x%02lx\n",
847 			pdata->prv_reg_ctx[i], offset);
848 	}
849 }
850 
acpi_lpss_d3_to_d0_delay(struct lpss_private_data * pdata)851 static void acpi_lpss_d3_to_d0_delay(struct lpss_private_data *pdata)
852 {
853 	/*
854 	 * The following delay is needed or the subsequent write operations may
855 	 * fail. The LPSS devices are actually PCI devices and the PCI spec
856 	 * expects 10ms delay before the device can be accessed after D3 to D0
857 	 * transition. However some platforms like BSW does not need this delay.
858 	 */
859 	unsigned int delay = 10;	/* default 10ms delay */
860 
861 	if (pdata->dev_desc->flags & LPSS_NO_D3_DELAY)
862 		delay = 0;
863 
864 	msleep(delay);
865 }
866 
acpi_lpss_activate(struct device * dev)867 static int acpi_lpss_activate(struct device *dev)
868 {
869 	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
870 	int ret;
871 
872 	ret = acpi_dev_resume(dev);
873 	if (ret)
874 		return ret;
875 
876 	acpi_lpss_d3_to_d0_delay(pdata);
877 
878 	/*
879 	 * This is called only on ->probe() stage where a device is either in
880 	 * known state defined by BIOS or most likely powered off. Due to this
881 	 * we have to deassert reset line to be sure that ->probe() will
882 	 * recognize the device.
883 	 */
884 	if (pdata->dev_desc->flags & (LPSS_SAVE_CTX | LPSS_SAVE_CTX_ONCE))
885 		lpss_deassert_reset(pdata);
886 
887 	if (pdata->dev_desc->flags & LPSS_SAVE_CTX_ONCE)
888 		acpi_lpss_save_ctx(dev, pdata);
889 
890 	return 0;
891 }
892 
acpi_lpss_dismiss(struct device * dev)893 static void acpi_lpss_dismiss(struct device *dev)
894 {
895 	acpi_dev_suspend(dev, false);
896 }
897 
898 /* IOSF SB for LPSS island */
899 #define LPSS_IOSF_UNIT_LPIOEP		0xA0
900 #define LPSS_IOSF_UNIT_LPIO1		0xAB
901 #define LPSS_IOSF_UNIT_LPIO2		0xAC
902 
903 #define LPSS_IOSF_PMCSR			0x84
904 #define LPSS_PMCSR_D0			0
905 #define LPSS_PMCSR_D3hot		3
906 #define LPSS_PMCSR_Dx_MASK		GENMASK(1, 0)
907 
908 #define LPSS_IOSF_GPIODEF0		0x154
909 #define LPSS_GPIODEF0_DMA1_D3		BIT(2)
910 #define LPSS_GPIODEF0_DMA2_D3		BIT(3)
911 #define LPSS_GPIODEF0_DMA_D3_MASK	GENMASK(3, 2)
912 #define LPSS_GPIODEF0_DMA_LLP		BIT(13)
913 
914 static DEFINE_MUTEX(lpss_iosf_mutex);
915 static bool lpss_iosf_d3_entered = true;
916 
lpss_iosf_enter_d3_state(void)917 static void lpss_iosf_enter_d3_state(void)
918 {
919 	u32 value1 = 0;
920 	u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
921 	u32 value2 = LPSS_PMCSR_D3hot;
922 	u32 mask2 = LPSS_PMCSR_Dx_MASK;
923 	/*
924 	 * PMC provides an information about actual status of the LPSS devices.
925 	 * Here we read the values related to LPSS power island, i.e. LPSS
926 	 * devices, excluding both LPSS DMA controllers, along with SCC domain.
927 	 */
928 	u32 func_dis, d3_sts_0, pmc_status;
929 	int ret;
930 
931 	ret = pmc_atom_read(PMC_FUNC_DIS, &func_dis);
932 	if (ret)
933 		return;
934 
935 	mutex_lock(&lpss_iosf_mutex);
936 
937 	ret = pmc_atom_read(PMC_D3_STS_0, &d3_sts_0);
938 	if (ret)
939 		goto exit;
940 
941 	/*
942 	 * Get the status of entire LPSS power island per device basis.
943 	 * Shutdown both LPSS DMA controllers if and only if all other devices
944 	 * are already in D3hot.
945 	 */
946 	pmc_status = (~(d3_sts_0 | func_dis)) & pmc_atom_d3_mask;
947 	if (pmc_status)
948 		goto exit;
949 
950 	iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
951 			LPSS_IOSF_PMCSR, value2, mask2);
952 
953 	iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
954 			LPSS_IOSF_PMCSR, value2, mask2);
955 
956 	iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
957 			LPSS_IOSF_GPIODEF0, value1, mask1);
958 
959 	lpss_iosf_d3_entered = true;
960 
961 exit:
962 	mutex_unlock(&lpss_iosf_mutex);
963 }
964 
lpss_iosf_exit_d3_state(void)965 static void lpss_iosf_exit_d3_state(void)
966 {
967 	u32 value1 = LPSS_GPIODEF0_DMA1_D3 | LPSS_GPIODEF0_DMA2_D3 |
968 		     LPSS_GPIODEF0_DMA_LLP;
969 	u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
970 	u32 value2 = LPSS_PMCSR_D0;
971 	u32 mask2 = LPSS_PMCSR_Dx_MASK;
972 
973 	mutex_lock(&lpss_iosf_mutex);
974 
975 	if (!lpss_iosf_d3_entered)
976 		goto exit;
977 
978 	lpss_iosf_d3_entered = false;
979 
980 	iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
981 			LPSS_IOSF_GPIODEF0, value1, mask1);
982 
983 	iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
984 			LPSS_IOSF_PMCSR, value2, mask2);
985 
986 	iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
987 			LPSS_IOSF_PMCSR, value2, mask2);
988 
989 exit:
990 	mutex_unlock(&lpss_iosf_mutex);
991 }
992 
acpi_lpss_suspend(struct device * dev,bool wakeup)993 static int acpi_lpss_suspend(struct device *dev, bool wakeup)
994 {
995 	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
996 	int ret;
997 
998 	if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
999 		acpi_lpss_save_ctx(dev, pdata);
1000 
1001 	ret = acpi_dev_suspend(dev, wakeup);
1002 
1003 	/*
1004 	 * This call must be last in the sequence, otherwise PMC will return
1005 	 * wrong status for devices being about to be powered off. See
1006 	 * lpss_iosf_enter_d3_state() for further information.
1007 	 */
1008 	if (acpi_target_system_state() == ACPI_STATE_S0 &&
1009 	    lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1010 		lpss_iosf_enter_d3_state();
1011 
1012 	return ret;
1013 }
1014 
acpi_lpss_resume(struct device * dev)1015 static int acpi_lpss_resume(struct device *dev)
1016 {
1017 	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1018 	int ret;
1019 
1020 	/*
1021 	 * This call is kept first to be in symmetry with
1022 	 * acpi_lpss_runtime_suspend() one.
1023 	 */
1024 	if (lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1025 		lpss_iosf_exit_d3_state();
1026 
1027 	ret = acpi_dev_resume(dev);
1028 	if (ret)
1029 		return ret;
1030 
1031 	acpi_lpss_d3_to_d0_delay(pdata);
1032 
1033 	if (pdata->dev_desc->flags & (LPSS_SAVE_CTX | LPSS_SAVE_CTX_ONCE))
1034 		acpi_lpss_restore_ctx(dev, pdata);
1035 
1036 	return 0;
1037 }
1038 
1039 #ifdef CONFIG_PM_SLEEP
acpi_lpss_do_suspend_late(struct device * dev)1040 static int acpi_lpss_do_suspend_late(struct device *dev)
1041 {
1042 	int ret;
1043 
1044 	if (dev_pm_skip_suspend(dev))
1045 		return 0;
1046 
1047 	ret = pm_generic_suspend_late(dev);
1048 	return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1049 }
1050 
acpi_lpss_suspend_late(struct device * dev)1051 static int acpi_lpss_suspend_late(struct device *dev)
1052 {
1053 	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1054 
1055 	if (pdata->dev_desc->resume_from_noirq)
1056 		return 0;
1057 
1058 	return acpi_lpss_do_suspend_late(dev);
1059 }
1060 
acpi_lpss_suspend_noirq(struct device * dev)1061 static int acpi_lpss_suspend_noirq(struct device *dev)
1062 {
1063 	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1064 	int ret;
1065 
1066 	if (pdata->dev_desc->resume_from_noirq) {
1067 		/*
1068 		 * The driver's ->suspend_late callback will be invoked by
1069 		 * acpi_lpss_do_suspend_late(), with the assumption that the
1070 		 * driver really wanted to run that code in ->suspend_noirq, but
1071 		 * it could not run after acpi_dev_suspend() and the driver
1072 		 * expected the latter to be called in the "late" phase.
1073 		 */
1074 		ret = acpi_lpss_do_suspend_late(dev);
1075 		if (ret)
1076 			return ret;
1077 	}
1078 
1079 	return acpi_subsys_suspend_noirq(dev);
1080 }
1081 
acpi_lpss_do_resume_early(struct device * dev)1082 static int acpi_lpss_do_resume_early(struct device *dev)
1083 {
1084 	int ret = acpi_lpss_resume(dev);
1085 
1086 	return ret ? ret : pm_generic_resume_early(dev);
1087 }
1088 
acpi_lpss_resume_early(struct device * dev)1089 static int acpi_lpss_resume_early(struct device *dev)
1090 {
1091 	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1092 
1093 	if (pdata->dev_desc->resume_from_noirq)
1094 		return 0;
1095 
1096 	if (dev_pm_skip_resume(dev))
1097 		return 0;
1098 
1099 	return acpi_lpss_do_resume_early(dev);
1100 }
1101 
acpi_lpss_resume_noirq(struct device * dev)1102 static int acpi_lpss_resume_noirq(struct device *dev)
1103 {
1104 	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1105 	int ret;
1106 
1107 	/* Follow acpi_subsys_resume_noirq(). */
1108 	if (dev_pm_skip_resume(dev))
1109 		return 0;
1110 
1111 	ret = pm_generic_resume_noirq(dev);
1112 	if (ret)
1113 		return ret;
1114 
1115 	if (!pdata->dev_desc->resume_from_noirq)
1116 		return 0;
1117 
1118 	/*
1119 	 * The driver's ->resume_early callback will be invoked by
1120 	 * acpi_lpss_do_resume_early(), with the assumption that the driver
1121 	 * really wanted to run that code in ->resume_noirq, but it could not
1122 	 * run before acpi_dev_resume() and the driver expected the latter to be
1123 	 * called in the "early" phase.
1124 	 */
1125 	return acpi_lpss_do_resume_early(dev);
1126 }
1127 
acpi_lpss_do_restore_early(struct device * dev)1128 static int acpi_lpss_do_restore_early(struct device *dev)
1129 {
1130 	int ret = acpi_lpss_resume(dev);
1131 
1132 	return ret ? ret : pm_generic_restore_early(dev);
1133 }
1134 
acpi_lpss_restore_early(struct device * dev)1135 static int acpi_lpss_restore_early(struct device *dev)
1136 {
1137 	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1138 
1139 	if (pdata->dev_desc->resume_from_noirq)
1140 		return 0;
1141 
1142 	return acpi_lpss_do_restore_early(dev);
1143 }
1144 
acpi_lpss_restore_noirq(struct device * dev)1145 static int acpi_lpss_restore_noirq(struct device *dev)
1146 {
1147 	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1148 	int ret;
1149 
1150 	ret = pm_generic_restore_noirq(dev);
1151 	if (ret)
1152 		return ret;
1153 
1154 	if (!pdata->dev_desc->resume_from_noirq)
1155 		return 0;
1156 
1157 	/* This is analogous to what happens in acpi_lpss_resume_noirq(). */
1158 	return acpi_lpss_do_restore_early(dev);
1159 }
1160 
acpi_lpss_do_poweroff_late(struct device * dev)1161 static int acpi_lpss_do_poweroff_late(struct device *dev)
1162 {
1163 	int ret = pm_generic_poweroff_late(dev);
1164 
1165 	return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1166 }
1167 
acpi_lpss_poweroff_late(struct device * dev)1168 static int acpi_lpss_poweroff_late(struct device *dev)
1169 {
1170 	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1171 
1172 	if (dev_pm_skip_suspend(dev))
1173 		return 0;
1174 
1175 	if (pdata->dev_desc->resume_from_noirq)
1176 		return 0;
1177 
1178 	return acpi_lpss_do_poweroff_late(dev);
1179 }
1180 
acpi_lpss_poweroff_noirq(struct device * dev)1181 static int acpi_lpss_poweroff_noirq(struct device *dev)
1182 {
1183 	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1184 
1185 	if (dev_pm_skip_suspend(dev))
1186 		return 0;
1187 
1188 	if (pdata->dev_desc->resume_from_noirq) {
1189 		/* This is analogous to the acpi_lpss_suspend_noirq() case. */
1190 		int ret = acpi_lpss_do_poweroff_late(dev);
1191 
1192 		if (ret)
1193 			return ret;
1194 	}
1195 
1196 	return pm_generic_poweroff_noirq(dev);
1197 }
1198 #endif /* CONFIG_PM_SLEEP */
1199 
acpi_lpss_runtime_suspend(struct device * dev)1200 static int acpi_lpss_runtime_suspend(struct device *dev)
1201 {
1202 	int ret = pm_generic_runtime_suspend(dev);
1203 
1204 	return ret ? ret : acpi_lpss_suspend(dev, true);
1205 }
1206 
acpi_lpss_runtime_resume(struct device * dev)1207 static int acpi_lpss_runtime_resume(struct device *dev)
1208 {
1209 	int ret = acpi_lpss_resume(dev);
1210 
1211 	return ret ? ret : pm_generic_runtime_resume(dev);
1212 }
1213 #endif /* CONFIG_PM */
1214 
1215 static struct dev_pm_domain acpi_lpss_pm_domain = {
1216 #ifdef CONFIG_PM
1217 	.activate = acpi_lpss_activate,
1218 	.dismiss = acpi_lpss_dismiss,
1219 #endif
1220 	.ops = {
1221 #ifdef CONFIG_PM
1222 #ifdef CONFIG_PM_SLEEP
1223 		.prepare = acpi_subsys_prepare,
1224 		.complete = acpi_subsys_complete,
1225 		.suspend = acpi_subsys_suspend,
1226 		.suspend_late = acpi_lpss_suspend_late,
1227 		.suspend_noirq = acpi_lpss_suspend_noirq,
1228 		.resume_noirq = acpi_lpss_resume_noirq,
1229 		.resume_early = acpi_lpss_resume_early,
1230 		.freeze = acpi_subsys_freeze,
1231 		.poweroff = acpi_subsys_poweroff,
1232 		.poweroff_late = acpi_lpss_poweroff_late,
1233 		.poweroff_noirq = acpi_lpss_poweroff_noirq,
1234 		.restore_noirq = acpi_lpss_restore_noirq,
1235 		.restore_early = acpi_lpss_restore_early,
1236 #endif
1237 		.runtime_suspend = acpi_lpss_runtime_suspend,
1238 		.runtime_resume = acpi_lpss_runtime_resume,
1239 #endif
1240 	},
1241 };
1242 
acpi_lpss_platform_notify(struct notifier_block * nb,unsigned long action,void * data)1243 static int acpi_lpss_platform_notify(struct notifier_block *nb,
1244 				     unsigned long action, void *data)
1245 {
1246 	struct platform_device *pdev = to_platform_device(data);
1247 	struct lpss_private_data *pdata;
1248 	struct acpi_device *adev;
1249 	const struct acpi_device_id *id;
1250 
1251 	id = acpi_match_device(acpi_lpss_device_ids, &pdev->dev);
1252 	if (!id || !id->driver_data)
1253 		return 0;
1254 
1255 	adev = ACPI_COMPANION(&pdev->dev);
1256 	if (!adev)
1257 		return 0;
1258 
1259 	pdata = acpi_driver_data(adev);
1260 	if (!pdata)
1261 		return 0;
1262 
1263 	if (pdata->mmio_base &&
1264 	    pdata->mmio_size < pdata->dev_desc->prv_offset + LPSS_LTR_SIZE) {
1265 		dev_err(&pdev->dev, "MMIO size insufficient to access LTR\n");
1266 		return 0;
1267 	}
1268 
1269 	switch (action) {
1270 	case BUS_NOTIFY_BIND_DRIVER:
1271 		dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1272 		break;
1273 	case BUS_NOTIFY_DRIVER_NOT_BOUND:
1274 	case BUS_NOTIFY_UNBOUND_DRIVER:
1275 		dev_pm_domain_set(&pdev->dev, NULL);
1276 		break;
1277 	case BUS_NOTIFY_ADD_DEVICE:
1278 		dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1279 		if (pdata->dev_desc->flags & LPSS_LTR)
1280 			return sysfs_create_group(&pdev->dev.kobj,
1281 						  &lpss_attr_group);
1282 		break;
1283 	case BUS_NOTIFY_DEL_DEVICE:
1284 		if (pdata->dev_desc->flags & LPSS_LTR)
1285 			sysfs_remove_group(&pdev->dev.kobj, &lpss_attr_group);
1286 		dev_pm_domain_set(&pdev->dev, NULL);
1287 		break;
1288 	default:
1289 		break;
1290 	}
1291 
1292 	return 0;
1293 }
1294 
1295 static struct notifier_block acpi_lpss_nb = {
1296 	.notifier_call = acpi_lpss_platform_notify,
1297 };
1298 
acpi_lpss_bind(struct device * dev)1299 static void acpi_lpss_bind(struct device *dev)
1300 {
1301 	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1302 
1303 	if (!pdata || !pdata->mmio_base || !(pdata->dev_desc->flags & LPSS_LTR))
1304 		return;
1305 
1306 	if (pdata->mmio_size >= pdata->dev_desc->prv_offset + LPSS_LTR_SIZE)
1307 		dev->power.set_latency_tolerance = acpi_lpss_set_ltr;
1308 	else
1309 		dev_err(dev, "MMIO size insufficient to access LTR\n");
1310 }
1311 
acpi_lpss_unbind(struct device * dev)1312 static void acpi_lpss_unbind(struct device *dev)
1313 {
1314 	dev->power.set_latency_tolerance = NULL;
1315 }
1316 
1317 static struct acpi_scan_handler lpss_handler = {
1318 	.ids = acpi_lpss_device_ids,
1319 	.attach = acpi_lpss_create_device,
1320 	.bind = acpi_lpss_bind,
1321 	.unbind = acpi_lpss_unbind,
1322 };
1323 
acpi_lpss_init(void)1324 void __init acpi_lpss_init(void)
1325 {
1326 	const struct x86_cpu_id *id;
1327 	int ret;
1328 
1329 	ret = lpss_atom_clk_init();
1330 	if (ret)
1331 		return;
1332 
1333 	id = x86_match_cpu(lpss_cpu_ids);
1334 	if (id)
1335 		lpss_quirks |= LPSS_QUIRK_ALWAYS_POWER_ON;
1336 
1337 	bus_register_notifier(&platform_bus_type, &acpi_lpss_nb);
1338 	acpi_scan_add_handler(&lpss_handler);
1339 }
1340 
1341 #else
1342 
1343 static struct acpi_scan_handler lpss_handler = {
1344 	.ids = acpi_lpss_device_ids,
1345 };
1346 
acpi_lpss_init(void)1347 void __init acpi_lpss_init(void)
1348 {
1349 	acpi_scan_add_handler(&lpss_handler);
1350 }
1351 
1352 #endif /* CONFIG_X86_INTEL_LPSS */
1353