1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * ACPI support for Intel Lynxpoint LPSS.
4 *
5 * Copyright (C) 2013, Intel Corporation
6 * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
7 * Rafael J. Wysocki <rafael.j.wysocki@intel.com>
8 */
9
10 #include <linux/acpi.h>
11 #include <linux/clkdev.h>
12 #include <linux/clk-provider.h>
13 #include <linux/dmi.h>
14 #include <linux/err.h>
15 #include <linux/io.h>
16 #include <linux/mutex.h>
17 #include <linux/pci.h>
18 #include <linux/platform_device.h>
19 #include <linux/platform_data/x86/clk-lpss.h>
20 #include <linux/platform_data/x86/pmc_atom.h>
21 #include <linux/pm_domain.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/pwm.h>
24 #include <linux/pxa2xx_ssp.h>
25 #include <linux/suspend.h>
26 #include <linux/delay.h>
27
28 #include "../internal.h"
29
30 #ifdef CONFIG_X86_INTEL_LPSS
31
32 #include <asm/cpu_device_id.h>
33 #include <asm/intel-family.h>
34 #include <asm/iosf_mbi.h>
35
36 #define LPSS_ADDR(desc) ((unsigned long)&desc)
37
38 #define LPSS_CLK_SIZE 0x04
39 #define LPSS_LTR_SIZE 0x18
40
41 /* Offsets relative to LPSS_PRIVATE_OFFSET */
42 #define LPSS_CLK_DIVIDER_DEF_MASK (BIT(1) | BIT(16))
43 #define LPSS_RESETS 0x04
44 #define LPSS_RESETS_RESET_FUNC BIT(0)
45 #define LPSS_RESETS_RESET_APB BIT(1)
46 #define LPSS_GENERAL 0x08
47 #define LPSS_GENERAL_LTR_MODE_SW BIT(2)
48 #define LPSS_GENERAL_UART_RTS_OVRD BIT(3)
49 #define LPSS_SW_LTR 0x10
50 #define LPSS_AUTO_LTR 0x14
51 #define LPSS_LTR_SNOOP_REQ BIT(15)
52 #define LPSS_LTR_SNOOP_MASK 0x0000FFFF
53 #define LPSS_LTR_SNOOP_LAT_1US 0x800
54 #define LPSS_LTR_SNOOP_LAT_32US 0xC00
55 #define LPSS_LTR_SNOOP_LAT_SHIFT 5
56 #define LPSS_LTR_SNOOP_LAT_CUTOFF 3000
57 #define LPSS_LTR_MAX_VAL 0x3FF
58 #define LPSS_TX_INT 0x20
59 #define LPSS_TX_INT_MASK BIT(1)
60
61 #define LPSS_PRV_REG_COUNT 9
62
63 /* LPSS Flags */
64 #define LPSS_CLK BIT(0)
65 #define LPSS_CLK_GATE BIT(1)
66 #define LPSS_CLK_DIVIDER BIT(2)
67 #define LPSS_LTR BIT(3)
68 #define LPSS_SAVE_CTX BIT(4)
69 /*
70 * For some devices the DSDT AML code for another device turns off the device
71 * before our suspend handler runs, causing us to read/save all 1-s (0xffffffff)
72 * as ctx register values.
73 * Luckily these devices always use the same ctx register values, so we can
74 * work around this by saving the ctx registers once on activation.
75 */
76 #define LPSS_SAVE_CTX_ONCE BIT(5)
77 #define LPSS_NO_D3_DELAY BIT(6)
78
79 struct lpss_private_data;
80
81 struct lpss_device_desc {
82 unsigned int flags;
83 const char *clk_con_id;
84 unsigned int prv_offset;
85 size_t prv_size_override;
86 const struct property_entry *properties;
87 void (*setup)(struct lpss_private_data *pdata);
88 bool resume_from_noirq;
89 };
90
91 static const struct lpss_device_desc lpss_dma_desc = {
92 .flags = LPSS_CLK,
93 };
94
95 struct lpss_private_data {
96 struct acpi_device *adev;
97 void __iomem *mmio_base;
98 resource_size_t mmio_size;
99 unsigned int fixed_clk_rate;
100 struct clk *clk;
101 const struct lpss_device_desc *dev_desc;
102 u32 prv_reg_ctx[LPSS_PRV_REG_COUNT];
103 };
104
105 /* Devices which need to be in D3 before lpss_iosf_enter_d3_state() proceeds */
106 static u32 pmc_atom_d3_mask = 0xfe000ffe;
107
108 /* LPSS run time quirks */
109 static unsigned int lpss_quirks;
110
111 /*
112 * LPSS_QUIRK_ALWAYS_POWER_ON: override power state for LPSS DMA device.
113 *
114 * The LPSS DMA controller has neither _PS0 nor _PS3 method. Moreover
115 * it can be powered off automatically whenever the last LPSS device goes down.
116 * In case of no power any access to the DMA controller will hang the system.
117 * The behaviour is reproduced on some HP laptops based on Intel BayTrail as
118 * well as on ASuS T100TA transformer.
119 *
120 * This quirk overrides power state of entire LPSS island to keep DMA powered
121 * on whenever we have at least one other device in use.
122 */
123 #define LPSS_QUIRK_ALWAYS_POWER_ON BIT(0)
124
125 /* UART Component Parameter Register */
126 #define LPSS_UART_CPR 0xF4
127 #define LPSS_UART_CPR_AFCE BIT(4)
128
lpss_uart_setup(struct lpss_private_data * pdata)129 static void lpss_uart_setup(struct lpss_private_data *pdata)
130 {
131 unsigned int offset;
132 u32 val;
133
134 offset = pdata->dev_desc->prv_offset + LPSS_TX_INT;
135 val = readl(pdata->mmio_base + offset);
136 writel(val | LPSS_TX_INT_MASK, pdata->mmio_base + offset);
137
138 val = readl(pdata->mmio_base + LPSS_UART_CPR);
139 if (!(val & LPSS_UART_CPR_AFCE)) {
140 offset = pdata->dev_desc->prv_offset + LPSS_GENERAL;
141 val = readl(pdata->mmio_base + offset);
142 val |= LPSS_GENERAL_UART_RTS_OVRD;
143 writel(val, pdata->mmio_base + offset);
144 }
145 }
146
lpss_deassert_reset(struct lpss_private_data * pdata)147 static void lpss_deassert_reset(struct lpss_private_data *pdata)
148 {
149 unsigned int offset;
150 u32 val;
151
152 offset = pdata->dev_desc->prv_offset + LPSS_RESETS;
153 val = readl(pdata->mmio_base + offset);
154 val |= LPSS_RESETS_RESET_APB | LPSS_RESETS_RESET_FUNC;
155 writel(val, pdata->mmio_base + offset);
156 }
157
158 /*
159 * BYT PWM used for backlight control by the i915 driver on systems without
160 * the Crystal Cove PMIC.
161 */
162 static struct pwm_lookup byt_pwm_lookup[] = {
163 PWM_LOOKUP_WITH_MODULE("80860F09:00", 0, "0000:00:02.0",
164 "pwm_soc_backlight", 0, PWM_POLARITY_NORMAL,
165 "pwm-lpss-platform"),
166 };
167
byt_pwm_setup(struct lpss_private_data * pdata)168 static void byt_pwm_setup(struct lpss_private_data *pdata)
169 {
170 /* Only call pwm_add_table for the first PWM controller */
171 if (acpi_dev_uid_match(pdata->adev, 1))
172 pwm_add_table(byt_pwm_lookup, ARRAY_SIZE(byt_pwm_lookup));
173 }
174
175 #define LPSS_I2C_ENABLE 0x6c
176
byt_i2c_setup(struct lpss_private_data * pdata)177 static void byt_i2c_setup(struct lpss_private_data *pdata)
178 {
179 acpi_handle handle = pdata->adev->handle;
180 unsigned long long shared_host = 0;
181 acpi_status status;
182 u64 uid;
183
184 /* Expected to always be successfull, but better safe then sorry */
185 if (!acpi_dev_uid_to_integer(pdata->adev, &uid) && uid) {
186 /* Detect I2C bus shared with PUNIT and ignore its d3 status */
187 status = acpi_evaluate_integer(handle, "_SEM", NULL, &shared_host);
188 if (ACPI_SUCCESS(status) && shared_host)
189 pmc_atom_d3_mask &= ~(BIT_LPSS2_F1_I2C1 << (uid - 1));
190 }
191
192 lpss_deassert_reset(pdata);
193
194 if (readl(pdata->mmio_base + pdata->dev_desc->prv_offset))
195 pdata->fixed_clk_rate = 133000000;
196
197 writel(0, pdata->mmio_base + LPSS_I2C_ENABLE);
198 }
199
200 /*
201 * BSW PWM1 is used for backlight control by the i915 driver
202 * BSW PWM2 is used for backlight control for fixed (etched into the glass)
203 * touch controls on some models. These touch-controls have specialized
204 * drivers which know they need the "pwm_soc_lpss_2" con-id.
205 */
206 static struct pwm_lookup bsw_pwm_lookup[] = {
207 PWM_LOOKUP_WITH_MODULE("80862288:00", 0, "0000:00:02.0",
208 "pwm_soc_backlight", 0, PWM_POLARITY_NORMAL,
209 "pwm-lpss-platform"),
210 PWM_LOOKUP_WITH_MODULE("80862289:00", 0, NULL,
211 "pwm_soc_lpss_2", 0, PWM_POLARITY_NORMAL,
212 "pwm-lpss-platform"),
213 };
214
bsw_pwm_setup(struct lpss_private_data * pdata)215 static void bsw_pwm_setup(struct lpss_private_data *pdata)
216 {
217 /* Only call pwm_add_table for the first PWM controller */
218 if (acpi_dev_uid_match(pdata->adev, 1))
219 pwm_add_table(bsw_pwm_lookup, ARRAY_SIZE(bsw_pwm_lookup));
220 }
221
222 static const struct property_entry lpt_spi_properties[] = {
223 PROPERTY_ENTRY_U32("intel,spi-pxa2xx-type", LPSS_LPT_SSP),
224 { }
225 };
226
227 static const struct lpss_device_desc lpt_spi_dev_desc = {
228 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR
229 | LPSS_SAVE_CTX,
230 .prv_offset = 0x800,
231 .properties = lpt_spi_properties,
232 };
233
234 static const struct lpss_device_desc lpt_i2c_dev_desc = {
235 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_LTR | LPSS_SAVE_CTX,
236 .prv_offset = 0x800,
237 };
238
239 static struct property_entry uart_properties[] = {
240 PROPERTY_ENTRY_U32("reg-io-width", 4),
241 PROPERTY_ENTRY_U32("reg-shift", 2),
242 PROPERTY_ENTRY_BOOL("snps,uart-16550-compatible"),
243 { },
244 };
245
246 static const struct lpss_device_desc lpt_uart_dev_desc = {
247 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR
248 | LPSS_SAVE_CTX,
249 .clk_con_id = "baudclk",
250 .prv_offset = 0x800,
251 .setup = lpss_uart_setup,
252 .properties = uart_properties,
253 };
254
255 static const struct lpss_device_desc lpt_sdio_dev_desc = {
256 .flags = LPSS_LTR,
257 .prv_offset = 0x1000,
258 .prv_size_override = 0x1018,
259 };
260
261 static const struct lpss_device_desc byt_pwm_dev_desc = {
262 .flags = LPSS_SAVE_CTX,
263 .prv_offset = 0x800,
264 .setup = byt_pwm_setup,
265 };
266
267 static const struct lpss_device_desc bsw_pwm_dev_desc = {
268 .flags = LPSS_SAVE_CTX_ONCE | LPSS_NO_D3_DELAY,
269 .prv_offset = 0x800,
270 .setup = bsw_pwm_setup,
271 .resume_from_noirq = true,
272 };
273
274 static const struct lpss_device_desc bsw_pwm2_dev_desc = {
275 .flags = LPSS_SAVE_CTX_ONCE | LPSS_NO_D3_DELAY,
276 .prv_offset = 0x800,
277 .resume_from_noirq = true,
278 };
279
280 static const struct lpss_device_desc byt_uart_dev_desc = {
281 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
282 .clk_con_id = "baudclk",
283 .prv_offset = 0x800,
284 .setup = lpss_uart_setup,
285 .properties = uart_properties,
286 };
287
288 static const struct lpss_device_desc bsw_uart_dev_desc = {
289 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
290 | LPSS_NO_D3_DELAY,
291 .clk_con_id = "baudclk",
292 .prv_offset = 0x800,
293 .setup = lpss_uart_setup,
294 .properties = uart_properties,
295 };
296
297 static const struct property_entry byt_spi_properties[] = {
298 PROPERTY_ENTRY_U32("intel,spi-pxa2xx-type", LPSS_BYT_SSP),
299 { }
300 };
301
302 static const struct lpss_device_desc byt_spi_dev_desc = {
303 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
304 .prv_offset = 0x400,
305 .properties = byt_spi_properties,
306 };
307
308 static const struct lpss_device_desc byt_sdio_dev_desc = {
309 .flags = LPSS_CLK,
310 };
311
312 static const struct lpss_device_desc byt_i2c_dev_desc = {
313 .flags = LPSS_CLK | LPSS_SAVE_CTX,
314 .prv_offset = 0x800,
315 .setup = byt_i2c_setup,
316 .resume_from_noirq = true,
317 };
318
319 static const struct lpss_device_desc bsw_i2c_dev_desc = {
320 .flags = LPSS_CLK | LPSS_SAVE_CTX | LPSS_NO_D3_DELAY,
321 .prv_offset = 0x800,
322 .setup = byt_i2c_setup,
323 .resume_from_noirq = true,
324 };
325
326 static const struct property_entry bsw_spi_properties[] = {
327 PROPERTY_ENTRY_U32("intel,spi-pxa2xx-type", LPSS_BSW_SSP),
328 PROPERTY_ENTRY_U32("num-cs", 2),
329 { }
330 };
331
332 static const struct lpss_device_desc bsw_spi_dev_desc = {
333 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
334 | LPSS_NO_D3_DELAY,
335 .prv_offset = 0x400,
336 .setup = lpss_deassert_reset,
337 .properties = bsw_spi_properties,
338 };
339
340 static const struct x86_cpu_id lpss_cpu_ids[] = {
341 X86_MATCH_VFM(INTEL_ATOM_SILVERMONT, NULL),
342 X86_MATCH_VFM(INTEL_ATOM_AIRMONT, NULL),
343 {}
344 };
345
346 #else
347
348 #define LPSS_ADDR(desc) (0UL)
349
350 #endif /* CONFIG_X86_INTEL_LPSS */
351
352 static const struct acpi_device_id acpi_lpss_device_ids[] = {
353 /* Generic LPSS devices */
354 { "INTL9C60", LPSS_ADDR(lpss_dma_desc) },
355
356 /* Lynxpoint LPSS devices */
357 { "INT33C0", LPSS_ADDR(lpt_spi_dev_desc) },
358 { "INT33C1", LPSS_ADDR(lpt_spi_dev_desc) },
359 { "INT33C2", LPSS_ADDR(lpt_i2c_dev_desc) },
360 { "INT33C3", LPSS_ADDR(lpt_i2c_dev_desc) },
361 { "INT33C4", LPSS_ADDR(lpt_uart_dev_desc) },
362 { "INT33C5", LPSS_ADDR(lpt_uart_dev_desc) },
363 { "INT33C6", LPSS_ADDR(lpt_sdio_dev_desc) },
364
365 /* BayTrail LPSS devices */
366 { "80860F09", LPSS_ADDR(byt_pwm_dev_desc) },
367 { "80860F0A", LPSS_ADDR(byt_uart_dev_desc) },
368 { "80860F0E", LPSS_ADDR(byt_spi_dev_desc) },
369 { "80860F14", LPSS_ADDR(byt_sdio_dev_desc) },
370 { "80860F41", LPSS_ADDR(byt_i2c_dev_desc) },
371
372 /* Braswell LPSS devices */
373 { "80862286", LPSS_ADDR(lpss_dma_desc) },
374 { "80862288", LPSS_ADDR(bsw_pwm_dev_desc) },
375 { "80862289", LPSS_ADDR(bsw_pwm2_dev_desc) },
376 { "8086228A", LPSS_ADDR(bsw_uart_dev_desc) },
377 { "8086228E", LPSS_ADDR(bsw_spi_dev_desc) },
378 { "808622C0", LPSS_ADDR(lpss_dma_desc) },
379 { "808622C1", LPSS_ADDR(bsw_i2c_dev_desc) },
380
381 /* Broadwell LPSS devices */
382 { "INT3430", LPSS_ADDR(lpt_spi_dev_desc) },
383 { "INT3431", LPSS_ADDR(lpt_spi_dev_desc) },
384 { "INT3432", LPSS_ADDR(lpt_i2c_dev_desc) },
385 { "INT3433", LPSS_ADDR(lpt_i2c_dev_desc) },
386 { "INT3434", LPSS_ADDR(lpt_uart_dev_desc) },
387 { "INT3435", LPSS_ADDR(lpt_uart_dev_desc) },
388 { "INT3436", LPSS_ADDR(lpt_sdio_dev_desc) },
389
390 { }
391 };
392
393 #ifdef CONFIG_X86_INTEL_LPSS
394
395 /* LPSS main clock device. */
396 static struct platform_device *lpss_clk_dev;
397
lpt_register_clock_device(void)398 static inline void lpt_register_clock_device(void)
399 {
400 lpss_clk_dev = platform_device_register_simple("clk-lpss-atom",
401 PLATFORM_DEVID_NONE,
402 NULL, 0);
403 }
404
register_device_clock(struct acpi_device * adev,struct lpss_private_data * pdata)405 static int register_device_clock(struct acpi_device *adev,
406 struct lpss_private_data *pdata)
407 {
408 const struct lpss_device_desc *dev_desc = pdata->dev_desc;
409 const char *devname = dev_name(&adev->dev);
410 struct clk *clk;
411 struct lpss_clk_data *clk_data;
412 const char *parent, *clk_name;
413 void __iomem *prv_base;
414
415 if (!lpss_clk_dev)
416 lpt_register_clock_device();
417
418 if (IS_ERR(lpss_clk_dev))
419 return PTR_ERR(lpss_clk_dev);
420
421 clk_data = platform_get_drvdata(lpss_clk_dev);
422 if (!clk_data)
423 return -ENODEV;
424 clk = clk_data->clk;
425
426 if (!pdata->mmio_base
427 || pdata->mmio_size < dev_desc->prv_offset + LPSS_CLK_SIZE)
428 return -ENODATA;
429
430 parent = clk_data->name;
431 prv_base = pdata->mmio_base + dev_desc->prv_offset;
432
433 if (pdata->fixed_clk_rate) {
434 clk = clk_register_fixed_rate(NULL, devname, parent, 0,
435 pdata->fixed_clk_rate);
436 goto out;
437 }
438
439 if (dev_desc->flags & LPSS_CLK_GATE) {
440 clk = clk_register_gate(NULL, devname, parent, 0,
441 prv_base, 0, 0, NULL);
442 parent = devname;
443 }
444
445 if (dev_desc->flags & LPSS_CLK_DIVIDER) {
446 /* Prevent division by zero */
447 if (!readl(prv_base))
448 writel(LPSS_CLK_DIVIDER_DEF_MASK, prv_base);
449
450 clk_name = kasprintf(GFP_KERNEL, "%s-div", devname);
451 if (!clk_name)
452 return -ENOMEM;
453 clk = clk_register_fractional_divider(NULL, clk_name, parent,
454 0, prv_base, 1, 15, 16, 15,
455 CLK_FRAC_DIVIDER_POWER_OF_TWO_PS,
456 NULL);
457 parent = clk_name;
458
459 clk_name = kasprintf(GFP_KERNEL, "%s-update", devname);
460 if (!clk_name) {
461 kfree(parent);
462 return -ENOMEM;
463 }
464 clk = clk_register_gate(NULL, clk_name, parent,
465 CLK_SET_RATE_PARENT | CLK_SET_RATE_GATE,
466 prv_base, 31, 0, NULL);
467 kfree(parent);
468 kfree(clk_name);
469 }
470 out:
471 if (IS_ERR(clk))
472 return PTR_ERR(clk);
473
474 pdata->clk = clk;
475 clk_register_clkdev(clk, dev_desc->clk_con_id, devname);
476 return 0;
477 }
478
479 struct lpss_device_links {
480 const char *supplier_hid;
481 const char *supplier_uid;
482 const char *consumer_hid;
483 const char *consumer_uid;
484 u32 flags;
485 const struct dmi_system_id *dep_missing_ids;
486 };
487
488 /* Please keep this list sorted alphabetically by vendor and model */
489 static const struct dmi_system_id i2c1_dep_missing_dmi_ids[] = {
490 {
491 .matches = {
492 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
493 DMI_MATCH(DMI_PRODUCT_NAME, "T200TA"),
494 },
495 },
496 {}
497 };
498
499 /*
500 * The _DEP method is used to identify dependencies but instead of creating
501 * device links for every handle in _DEP, only links in the following list are
502 * created. That is necessary because, in the general case, _DEP can refer to
503 * devices that might not have drivers, or that are on different buses, or where
504 * the supplier is not enumerated until after the consumer is probed.
505 */
506 static const struct lpss_device_links lpss_device_links[] = {
507 /* CHT External sdcard slot controller depends on PMIC I2C ctrl */
508 {"808622C1", "7", "80860F14", "3", DL_FLAG_PM_RUNTIME},
509 /* CHT iGPU depends on PMIC I2C controller */
510 {"808622C1", "7", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
511 /* BYT iGPU depends on the Embedded Controller I2C controller (UID 1) */
512 {"80860F41", "1", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME,
513 i2c1_dep_missing_dmi_ids},
514 /* BYT CR iGPU depends on PMIC I2C controller (UID 5 on CR) */
515 {"80860F41", "5", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
516 /* BYT iGPU depends on PMIC I2C controller (UID 7 on non CR) */
517 {"80860F41", "7", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
518 };
519
acpi_lpss_is_supplier(struct acpi_device * adev,const struct lpss_device_links * link)520 static bool acpi_lpss_is_supplier(struct acpi_device *adev,
521 const struct lpss_device_links *link)
522 {
523 return acpi_dev_hid_uid_match(adev, link->supplier_hid, link->supplier_uid);
524 }
525
acpi_lpss_is_consumer(struct acpi_device * adev,const struct lpss_device_links * link)526 static bool acpi_lpss_is_consumer(struct acpi_device *adev,
527 const struct lpss_device_links *link)
528 {
529 return acpi_dev_hid_uid_match(adev, link->consumer_hid, link->consumer_uid);
530 }
531
532 struct hid_uid {
533 const char *hid;
534 const char *uid;
535 };
536
match_hid_uid(struct device * dev,const void * data)537 static int match_hid_uid(struct device *dev, const void *data)
538 {
539 struct acpi_device *adev = ACPI_COMPANION(dev);
540 const struct hid_uid *id = data;
541
542 if (!adev)
543 return 0;
544
545 return acpi_dev_hid_uid_match(adev, id->hid, id->uid);
546 }
547
acpi_lpss_find_device(const char * hid,const char * uid)548 static struct device *acpi_lpss_find_device(const char *hid, const char *uid)
549 {
550 struct device *dev;
551
552 struct hid_uid data = {
553 .hid = hid,
554 .uid = uid,
555 };
556
557 dev = bus_find_device(&platform_bus_type, NULL, &data, match_hid_uid);
558 if (dev)
559 return dev;
560
561 return bus_find_device(&pci_bus_type, NULL, &data, match_hid_uid);
562 }
563
acpi_lpss_link_consumer(struct device * dev1,const struct lpss_device_links * link)564 static void acpi_lpss_link_consumer(struct device *dev1,
565 const struct lpss_device_links *link)
566 {
567 struct device *dev2;
568
569 dev2 = acpi_lpss_find_device(link->consumer_hid, link->consumer_uid);
570 if (!dev2)
571 return;
572
573 if ((link->dep_missing_ids && dmi_check_system(link->dep_missing_ids))
574 || acpi_device_dep(ACPI_HANDLE(dev2), ACPI_HANDLE(dev1)))
575 device_link_add(dev2, dev1, link->flags);
576
577 put_device(dev2);
578 }
579
acpi_lpss_link_supplier(struct device * dev1,const struct lpss_device_links * link)580 static void acpi_lpss_link_supplier(struct device *dev1,
581 const struct lpss_device_links *link)
582 {
583 struct device *dev2;
584
585 dev2 = acpi_lpss_find_device(link->supplier_hid, link->supplier_uid);
586 if (!dev2)
587 return;
588
589 if ((link->dep_missing_ids && dmi_check_system(link->dep_missing_ids))
590 || acpi_device_dep(ACPI_HANDLE(dev1), ACPI_HANDLE(dev2)))
591 device_link_add(dev1, dev2, link->flags);
592
593 put_device(dev2);
594 }
595
acpi_lpss_create_device_links(struct acpi_device * adev,struct platform_device * pdev)596 static void acpi_lpss_create_device_links(struct acpi_device *adev,
597 struct platform_device *pdev)
598 {
599 int i;
600
601 for (i = 0; i < ARRAY_SIZE(lpss_device_links); i++) {
602 const struct lpss_device_links *link = &lpss_device_links[i];
603
604 if (acpi_lpss_is_supplier(adev, link))
605 acpi_lpss_link_consumer(&pdev->dev, link);
606
607 if (acpi_lpss_is_consumer(adev, link))
608 acpi_lpss_link_supplier(&pdev->dev, link);
609 }
610 }
611
acpi_lpss_create_device(struct acpi_device * adev,const struct acpi_device_id * id)612 static int acpi_lpss_create_device(struct acpi_device *adev,
613 const struct acpi_device_id *id)
614 {
615 const struct lpss_device_desc *dev_desc;
616 struct lpss_private_data *pdata;
617 struct resource_entry *rentry;
618 struct list_head resource_list;
619 struct platform_device *pdev;
620 int ret;
621
622 dev_desc = (const struct lpss_device_desc *)id->driver_data;
623 if (!dev_desc)
624 return -EINVAL;
625
626 pdata = kzalloc(sizeof(*pdata), GFP_KERNEL);
627 if (!pdata)
628 return -ENOMEM;
629
630 INIT_LIST_HEAD(&resource_list);
631 ret = acpi_dev_get_memory_resources(adev, &resource_list);
632 if (ret < 0)
633 goto err_out;
634
635 rentry = list_first_entry_or_null(&resource_list, struct resource_entry, node);
636 if (rentry) {
637 if (dev_desc->prv_size_override)
638 pdata->mmio_size = dev_desc->prv_size_override;
639 else
640 pdata->mmio_size = resource_size(rentry->res);
641 pdata->mmio_base = ioremap(rentry->res->start, pdata->mmio_size);
642 }
643
644 acpi_dev_free_resource_list(&resource_list);
645
646 if (!pdata->mmio_base) {
647 /* Avoid acpi_bus_attach() instantiating a pdev for this dev. */
648 adev->pnp.type.platform_id = 0;
649 goto out_free;
650 }
651
652 pdata->adev = adev;
653 pdata->dev_desc = dev_desc;
654
655 if (dev_desc->setup)
656 dev_desc->setup(pdata);
657
658 if (dev_desc->flags & LPSS_CLK) {
659 ret = register_device_clock(adev, pdata);
660 if (ret)
661 goto out_free;
662 }
663
664 /*
665 * This works around a known issue in ACPI tables where LPSS devices
666 * have _PS0 and _PS3 without _PSC (and no power resources), so
667 * acpi_bus_init_power() will assume that the BIOS has put them into D0.
668 */
669 acpi_device_fix_up_power(adev);
670
671 adev->driver_data = pdata;
672 pdev = acpi_create_platform_device(adev, dev_desc->properties);
673 if (IS_ERR_OR_NULL(pdev)) {
674 adev->driver_data = NULL;
675 ret = PTR_ERR(pdev);
676 goto err_out;
677 }
678
679 acpi_lpss_create_device_links(adev, pdev);
680 return 1;
681
682 out_free:
683 /* Skip the device, but continue the namespace scan */
684 ret = 0;
685 err_out:
686 kfree(pdata);
687 return ret;
688 }
689
__lpss_reg_read(struct lpss_private_data * pdata,unsigned int reg)690 static u32 __lpss_reg_read(struct lpss_private_data *pdata, unsigned int reg)
691 {
692 return readl(pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
693 }
694
__lpss_reg_write(u32 val,struct lpss_private_data * pdata,unsigned int reg)695 static void __lpss_reg_write(u32 val, struct lpss_private_data *pdata,
696 unsigned int reg)
697 {
698 writel(val, pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
699 }
700
lpss_reg_read(struct device * dev,unsigned int reg,u32 * val)701 static int lpss_reg_read(struct device *dev, unsigned int reg, u32 *val)
702 {
703 struct acpi_device *adev = ACPI_COMPANION(dev);
704 struct lpss_private_data *pdata;
705 unsigned long flags;
706 int ret;
707
708 if (WARN_ON(!adev))
709 return -ENODEV;
710
711 spin_lock_irqsave(&dev->power.lock, flags);
712 if (pm_runtime_suspended(dev)) {
713 ret = -EAGAIN;
714 goto out;
715 }
716 pdata = acpi_driver_data(adev);
717 if (WARN_ON(!pdata || !pdata->mmio_base)) {
718 ret = -ENODEV;
719 goto out;
720 }
721 *val = __lpss_reg_read(pdata, reg);
722 ret = 0;
723
724 out:
725 spin_unlock_irqrestore(&dev->power.lock, flags);
726 return ret;
727 }
728
lpss_ltr_show(struct device * dev,struct device_attribute * attr,char * buf)729 static ssize_t lpss_ltr_show(struct device *dev, struct device_attribute *attr,
730 char *buf)
731 {
732 u32 ltr_value = 0;
733 unsigned int reg;
734 int ret;
735
736 reg = strcmp(attr->attr.name, "auto_ltr") ? LPSS_SW_LTR : LPSS_AUTO_LTR;
737 ret = lpss_reg_read(dev, reg, <r_value);
738 if (ret)
739 return ret;
740
741 return sysfs_emit(buf, "%08x\n", ltr_value);
742 }
743
lpss_ltr_mode_show(struct device * dev,struct device_attribute * attr,char * buf)744 static ssize_t lpss_ltr_mode_show(struct device *dev,
745 struct device_attribute *attr, char *buf)
746 {
747 u32 ltr_mode = 0;
748 char *outstr;
749 int ret;
750
751 ret = lpss_reg_read(dev, LPSS_GENERAL, <r_mode);
752 if (ret)
753 return ret;
754
755 outstr = (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) ? "sw" : "auto";
756 return sprintf(buf, "%s\n", outstr);
757 }
758
759 static DEVICE_ATTR(auto_ltr, S_IRUSR, lpss_ltr_show, NULL);
760 static DEVICE_ATTR(sw_ltr, S_IRUSR, lpss_ltr_show, NULL);
761 static DEVICE_ATTR(ltr_mode, S_IRUSR, lpss_ltr_mode_show, NULL);
762
763 static struct attribute *lpss_attrs[] = {
764 &dev_attr_auto_ltr.attr,
765 &dev_attr_sw_ltr.attr,
766 &dev_attr_ltr_mode.attr,
767 NULL,
768 };
769
770 static const struct attribute_group lpss_attr_group = {
771 .attrs = lpss_attrs,
772 .name = "lpss_ltr",
773 };
774
acpi_lpss_set_ltr(struct device * dev,s32 val)775 static void acpi_lpss_set_ltr(struct device *dev, s32 val)
776 {
777 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
778 u32 ltr_mode, ltr_val;
779
780 ltr_mode = __lpss_reg_read(pdata, LPSS_GENERAL);
781 if (val < 0) {
782 if (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) {
783 ltr_mode &= ~LPSS_GENERAL_LTR_MODE_SW;
784 __lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
785 }
786 return;
787 }
788 ltr_val = __lpss_reg_read(pdata, LPSS_SW_LTR) & ~LPSS_LTR_SNOOP_MASK;
789 if (val >= LPSS_LTR_SNOOP_LAT_CUTOFF) {
790 ltr_val |= LPSS_LTR_SNOOP_LAT_32US;
791 val = LPSS_LTR_MAX_VAL;
792 } else if (val > LPSS_LTR_MAX_VAL) {
793 ltr_val |= LPSS_LTR_SNOOP_LAT_32US | LPSS_LTR_SNOOP_REQ;
794 val >>= LPSS_LTR_SNOOP_LAT_SHIFT;
795 } else {
796 ltr_val |= LPSS_LTR_SNOOP_LAT_1US | LPSS_LTR_SNOOP_REQ;
797 }
798 ltr_val |= val;
799 __lpss_reg_write(ltr_val, pdata, LPSS_SW_LTR);
800 if (!(ltr_mode & LPSS_GENERAL_LTR_MODE_SW)) {
801 ltr_mode |= LPSS_GENERAL_LTR_MODE_SW;
802 __lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
803 }
804 }
805
806 #ifdef CONFIG_PM
807 /**
808 * acpi_lpss_save_ctx() - Save the private registers of LPSS device
809 * @dev: LPSS device
810 * @pdata: pointer to the private data of the LPSS device
811 *
812 * Most LPSS devices have private registers which may loose their context when
813 * the device is powered down. acpi_lpss_save_ctx() saves those registers into
814 * prv_reg_ctx array.
815 */
acpi_lpss_save_ctx(struct device * dev,struct lpss_private_data * pdata)816 static void acpi_lpss_save_ctx(struct device *dev,
817 struct lpss_private_data *pdata)
818 {
819 unsigned int i;
820
821 for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
822 unsigned long offset = i * sizeof(u32);
823
824 pdata->prv_reg_ctx[i] = __lpss_reg_read(pdata, offset);
825 dev_dbg(dev, "saving 0x%08x from LPSS reg at offset 0x%02lx\n",
826 pdata->prv_reg_ctx[i], offset);
827 }
828 }
829
830 /**
831 * acpi_lpss_restore_ctx() - Restore the private registers of LPSS device
832 * @dev: LPSS device
833 * @pdata: pointer to the private data of the LPSS device
834 *
835 * Restores the registers that were previously stored with acpi_lpss_save_ctx().
836 */
acpi_lpss_restore_ctx(struct device * dev,struct lpss_private_data * pdata)837 static void acpi_lpss_restore_ctx(struct device *dev,
838 struct lpss_private_data *pdata)
839 {
840 unsigned int i;
841
842 for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
843 unsigned long offset = i * sizeof(u32);
844
845 __lpss_reg_write(pdata->prv_reg_ctx[i], pdata, offset);
846 dev_dbg(dev, "restoring 0x%08x to LPSS reg at offset 0x%02lx\n",
847 pdata->prv_reg_ctx[i], offset);
848 }
849 }
850
acpi_lpss_d3_to_d0_delay(struct lpss_private_data * pdata)851 static void acpi_lpss_d3_to_d0_delay(struct lpss_private_data *pdata)
852 {
853 /*
854 * The following delay is needed or the subsequent write operations may
855 * fail. The LPSS devices are actually PCI devices and the PCI spec
856 * expects 10ms delay before the device can be accessed after D3 to D0
857 * transition. However some platforms like BSW does not need this delay.
858 */
859 unsigned int delay = 10; /* default 10ms delay */
860
861 if (pdata->dev_desc->flags & LPSS_NO_D3_DELAY)
862 delay = 0;
863
864 msleep(delay);
865 }
866
acpi_lpss_activate(struct device * dev)867 static int acpi_lpss_activate(struct device *dev)
868 {
869 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
870 int ret;
871
872 ret = acpi_dev_resume(dev);
873 if (ret)
874 return ret;
875
876 acpi_lpss_d3_to_d0_delay(pdata);
877
878 /*
879 * This is called only on ->probe() stage where a device is either in
880 * known state defined by BIOS or most likely powered off. Due to this
881 * we have to deassert reset line to be sure that ->probe() will
882 * recognize the device.
883 */
884 if (pdata->dev_desc->flags & (LPSS_SAVE_CTX | LPSS_SAVE_CTX_ONCE))
885 lpss_deassert_reset(pdata);
886
887 if (pdata->dev_desc->flags & LPSS_SAVE_CTX_ONCE)
888 acpi_lpss_save_ctx(dev, pdata);
889
890 return 0;
891 }
892
acpi_lpss_dismiss(struct device * dev)893 static void acpi_lpss_dismiss(struct device *dev)
894 {
895 acpi_dev_suspend(dev, false);
896 }
897
898 /* IOSF SB for LPSS island */
899 #define LPSS_IOSF_UNIT_LPIOEP 0xA0
900 #define LPSS_IOSF_UNIT_LPIO1 0xAB
901 #define LPSS_IOSF_UNIT_LPIO2 0xAC
902
903 #define LPSS_IOSF_PMCSR 0x84
904 #define LPSS_PMCSR_D0 0
905 #define LPSS_PMCSR_D3hot 3
906 #define LPSS_PMCSR_Dx_MASK GENMASK(1, 0)
907
908 #define LPSS_IOSF_GPIODEF0 0x154
909 #define LPSS_GPIODEF0_DMA1_D3 BIT(2)
910 #define LPSS_GPIODEF0_DMA2_D3 BIT(3)
911 #define LPSS_GPIODEF0_DMA_D3_MASK GENMASK(3, 2)
912 #define LPSS_GPIODEF0_DMA_LLP BIT(13)
913
914 static DEFINE_MUTEX(lpss_iosf_mutex);
915 static bool lpss_iosf_d3_entered = true;
916
lpss_iosf_enter_d3_state(void)917 static void lpss_iosf_enter_d3_state(void)
918 {
919 u32 value1 = 0;
920 u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
921 u32 value2 = LPSS_PMCSR_D3hot;
922 u32 mask2 = LPSS_PMCSR_Dx_MASK;
923 /*
924 * PMC provides an information about actual status of the LPSS devices.
925 * Here we read the values related to LPSS power island, i.e. LPSS
926 * devices, excluding both LPSS DMA controllers, along with SCC domain.
927 */
928 u32 func_dis, d3_sts_0, pmc_status;
929 int ret;
930
931 ret = pmc_atom_read(PMC_FUNC_DIS, &func_dis);
932 if (ret)
933 return;
934
935 mutex_lock(&lpss_iosf_mutex);
936
937 ret = pmc_atom_read(PMC_D3_STS_0, &d3_sts_0);
938 if (ret)
939 goto exit;
940
941 /*
942 * Get the status of entire LPSS power island per device basis.
943 * Shutdown both LPSS DMA controllers if and only if all other devices
944 * are already in D3hot.
945 */
946 pmc_status = (~(d3_sts_0 | func_dis)) & pmc_atom_d3_mask;
947 if (pmc_status)
948 goto exit;
949
950 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
951 LPSS_IOSF_PMCSR, value2, mask2);
952
953 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
954 LPSS_IOSF_PMCSR, value2, mask2);
955
956 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
957 LPSS_IOSF_GPIODEF0, value1, mask1);
958
959 lpss_iosf_d3_entered = true;
960
961 exit:
962 mutex_unlock(&lpss_iosf_mutex);
963 }
964
lpss_iosf_exit_d3_state(void)965 static void lpss_iosf_exit_d3_state(void)
966 {
967 u32 value1 = LPSS_GPIODEF0_DMA1_D3 | LPSS_GPIODEF0_DMA2_D3 |
968 LPSS_GPIODEF0_DMA_LLP;
969 u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
970 u32 value2 = LPSS_PMCSR_D0;
971 u32 mask2 = LPSS_PMCSR_Dx_MASK;
972
973 mutex_lock(&lpss_iosf_mutex);
974
975 if (!lpss_iosf_d3_entered)
976 goto exit;
977
978 lpss_iosf_d3_entered = false;
979
980 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
981 LPSS_IOSF_GPIODEF0, value1, mask1);
982
983 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
984 LPSS_IOSF_PMCSR, value2, mask2);
985
986 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
987 LPSS_IOSF_PMCSR, value2, mask2);
988
989 exit:
990 mutex_unlock(&lpss_iosf_mutex);
991 }
992
acpi_lpss_suspend(struct device * dev,bool wakeup)993 static int acpi_lpss_suspend(struct device *dev, bool wakeup)
994 {
995 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
996 int ret;
997
998 if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
999 acpi_lpss_save_ctx(dev, pdata);
1000
1001 ret = acpi_dev_suspend(dev, wakeup);
1002
1003 /*
1004 * This call must be last in the sequence, otherwise PMC will return
1005 * wrong status for devices being about to be powered off. See
1006 * lpss_iosf_enter_d3_state() for further information.
1007 */
1008 if (acpi_target_system_state() == ACPI_STATE_S0 &&
1009 lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1010 lpss_iosf_enter_d3_state();
1011
1012 return ret;
1013 }
1014
acpi_lpss_resume(struct device * dev)1015 static int acpi_lpss_resume(struct device *dev)
1016 {
1017 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1018 int ret;
1019
1020 /*
1021 * This call is kept first to be in symmetry with
1022 * acpi_lpss_runtime_suspend() one.
1023 */
1024 if (lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1025 lpss_iosf_exit_d3_state();
1026
1027 ret = acpi_dev_resume(dev);
1028 if (ret)
1029 return ret;
1030
1031 acpi_lpss_d3_to_d0_delay(pdata);
1032
1033 if (pdata->dev_desc->flags & (LPSS_SAVE_CTX | LPSS_SAVE_CTX_ONCE))
1034 acpi_lpss_restore_ctx(dev, pdata);
1035
1036 return 0;
1037 }
1038
1039 #ifdef CONFIG_PM_SLEEP
acpi_lpss_do_suspend_late(struct device * dev)1040 static int acpi_lpss_do_suspend_late(struct device *dev)
1041 {
1042 int ret;
1043
1044 if (dev_pm_skip_suspend(dev))
1045 return 0;
1046
1047 ret = pm_generic_suspend_late(dev);
1048 return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1049 }
1050
acpi_lpss_suspend_late(struct device * dev)1051 static int acpi_lpss_suspend_late(struct device *dev)
1052 {
1053 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1054
1055 if (pdata->dev_desc->resume_from_noirq)
1056 return 0;
1057
1058 return acpi_lpss_do_suspend_late(dev);
1059 }
1060
acpi_lpss_suspend_noirq(struct device * dev)1061 static int acpi_lpss_suspend_noirq(struct device *dev)
1062 {
1063 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1064 int ret;
1065
1066 if (pdata->dev_desc->resume_from_noirq) {
1067 /*
1068 * The driver's ->suspend_late callback will be invoked by
1069 * acpi_lpss_do_suspend_late(), with the assumption that the
1070 * driver really wanted to run that code in ->suspend_noirq, but
1071 * it could not run after acpi_dev_suspend() and the driver
1072 * expected the latter to be called in the "late" phase.
1073 */
1074 ret = acpi_lpss_do_suspend_late(dev);
1075 if (ret)
1076 return ret;
1077 }
1078
1079 return acpi_subsys_suspend_noirq(dev);
1080 }
1081
acpi_lpss_do_resume_early(struct device * dev)1082 static int acpi_lpss_do_resume_early(struct device *dev)
1083 {
1084 int ret = acpi_lpss_resume(dev);
1085
1086 return ret ? ret : pm_generic_resume_early(dev);
1087 }
1088
acpi_lpss_resume_early(struct device * dev)1089 static int acpi_lpss_resume_early(struct device *dev)
1090 {
1091 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1092
1093 if (pdata->dev_desc->resume_from_noirq)
1094 return 0;
1095
1096 if (dev_pm_skip_resume(dev))
1097 return 0;
1098
1099 return acpi_lpss_do_resume_early(dev);
1100 }
1101
acpi_lpss_resume_noirq(struct device * dev)1102 static int acpi_lpss_resume_noirq(struct device *dev)
1103 {
1104 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1105 int ret;
1106
1107 /* Follow acpi_subsys_resume_noirq(). */
1108 if (dev_pm_skip_resume(dev))
1109 return 0;
1110
1111 ret = pm_generic_resume_noirq(dev);
1112 if (ret)
1113 return ret;
1114
1115 if (!pdata->dev_desc->resume_from_noirq)
1116 return 0;
1117
1118 /*
1119 * The driver's ->resume_early callback will be invoked by
1120 * acpi_lpss_do_resume_early(), with the assumption that the driver
1121 * really wanted to run that code in ->resume_noirq, but it could not
1122 * run before acpi_dev_resume() and the driver expected the latter to be
1123 * called in the "early" phase.
1124 */
1125 return acpi_lpss_do_resume_early(dev);
1126 }
1127
acpi_lpss_do_restore_early(struct device * dev)1128 static int acpi_lpss_do_restore_early(struct device *dev)
1129 {
1130 int ret = acpi_lpss_resume(dev);
1131
1132 return ret ? ret : pm_generic_restore_early(dev);
1133 }
1134
acpi_lpss_restore_early(struct device * dev)1135 static int acpi_lpss_restore_early(struct device *dev)
1136 {
1137 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1138
1139 if (pdata->dev_desc->resume_from_noirq)
1140 return 0;
1141
1142 return acpi_lpss_do_restore_early(dev);
1143 }
1144
acpi_lpss_restore_noirq(struct device * dev)1145 static int acpi_lpss_restore_noirq(struct device *dev)
1146 {
1147 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1148 int ret;
1149
1150 ret = pm_generic_restore_noirq(dev);
1151 if (ret)
1152 return ret;
1153
1154 if (!pdata->dev_desc->resume_from_noirq)
1155 return 0;
1156
1157 /* This is analogous to what happens in acpi_lpss_resume_noirq(). */
1158 return acpi_lpss_do_restore_early(dev);
1159 }
1160
acpi_lpss_do_poweroff_late(struct device * dev)1161 static int acpi_lpss_do_poweroff_late(struct device *dev)
1162 {
1163 int ret = pm_generic_poweroff_late(dev);
1164
1165 return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1166 }
1167
acpi_lpss_poweroff_late(struct device * dev)1168 static int acpi_lpss_poweroff_late(struct device *dev)
1169 {
1170 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1171
1172 if (dev_pm_skip_suspend(dev))
1173 return 0;
1174
1175 if (pdata->dev_desc->resume_from_noirq)
1176 return 0;
1177
1178 return acpi_lpss_do_poweroff_late(dev);
1179 }
1180
acpi_lpss_poweroff_noirq(struct device * dev)1181 static int acpi_lpss_poweroff_noirq(struct device *dev)
1182 {
1183 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1184
1185 if (dev_pm_skip_suspend(dev))
1186 return 0;
1187
1188 if (pdata->dev_desc->resume_from_noirq) {
1189 /* This is analogous to the acpi_lpss_suspend_noirq() case. */
1190 int ret = acpi_lpss_do_poweroff_late(dev);
1191
1192 if (ret)
1193 return ret;
1194 }
1195
1196 return pm_generic_poweroff_noirq(dev);
1197 }
1198 #endif /* CONFIG_PM_SLEEP */
1199
acpi_lpss_runtime_suspend(struct device * dev)1200 static int acpi_lpss_runtime_suspend(struct device *dev)
1201 {
1202 int ret = pm_generic_runtime_suspend(dev);
1203
1204 return ret ? ret : acpi_lpss_suspend(dev, true);
1205 }
1206
acpi_lpss_runtime_resume(struct device * dev)1207 static int acpi_lpss_runtime_resume(struct device *dev)
1208 {
1209 int ret = acpi_lpss_resume(dev);
1210
1211 return ret ? ret : pm_generic_runtime_resume(dev);
1212 }
1213 #endif /* CONFIG_PM */
1214
1215 static struct dev_pm_domain acpi_lpss_pm_domain = {
1216 #ifdef CONFIG_PM
1217 .activate = acpi_lpss_activate,
1218 .dismiss = acpi_lpss_dismiss,
1219 #endif
1220 .ops = {
1221 #ifdef CONFIG_PM
1222 #ifdef CONFIG_PM_SLEEP
1223 .prepare = acpi_subsys_prepare,
1224 .complete = acpi_subsys_complete,
1225 .suspend = acpi_subsys_suspend,
1226 .suspend_late = acpi_lpss_suspend_late,
1227 .suspend_noirq = acpi_lpss_suspend_noirq,
1228 .resume_noirq = acpi_lpss_resume_noirq,
1229 .resume_early = acpi_lpss_resume_early,
1230 .freeze = acpi_subsys_freeze,
1231 .poweroff = acpi_subsys_poweroff,
1232 .poweroff_late = acpi_lpss_poweroff_late,
1233 .poweroff_noirq = acpi_lpss_poweroff_noirq,
1234 .restore_noirq = acpi_lpss_restore_noirq,
1235 .restore_early = acpi_lpss_restore_early,
1236 #endif
1237 .runtime_suspend = acpi_lpss_runtime_suspend,
1238 .runtime_resume = acpi_lpss_runtime_resume,
1239 #endif
1240 },
1241 };
1242
acpi_lpss_platform_notify(struct notifier_block * nb,unsigned long action,void * data)1243 static int acpi_lpss_platform_notify(struct notifier_block *nb,
1244 unsigned long action, void *data)
1245 {
1246 struct platform_device *pdev = to_platform_device(data);
1247 struct lpss_private_data *pdata;
1248 struct acpi_device *adev;
1249 const struct acpi_device_id *id;
1250
1251 id = acpi_match_device(acpi_lpss_device_ids, &pdev->dev);
1252 if (!id || !id->driver_data)
1253 return 0;
1254
1255 adev = ACPI_COMPANION(&pdev->dev);
1256 if (!adev)
1257 return 0;
1258
1259 pdata = acpi_driver_data(adev);
1260 if (!pdata)
1261 return 0;
1262
1263 if (pdata->mmio_base &&
1264 pdata->mmio_size < pdata->dev_desc->prv_offset + LPSS_LTR_SIZE) {
1265 dev_err(&pdev->dev, "MMIO size insufficient to access LTR\n");
1266 return 0;
1267 }
1268
1269 switch (action) {
1270 case BUS_NOTIFY_BIND_DRIVER:
1271 dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1272 break;
1273 case BUS_NOTIFY_DRIVER_NOT_BOUND:
1274 case BUS_NOTIFY_UNBOUND_DRIVER:
1275 dev_pm_domain_set(&pdev->dev, NULL);
1276 break;
1277 case BUS_NOTIFY_ADD_DEVICE:
1278 dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1279 if (pdata->dev_desc->flags & LPSS_LTR)
1280 return sysfs_create_group(&pdev->dev.kobj,
1281 &lpss_attr_group);
1282 break;
1283 case BUS_NOTIFY_DEL_DEVICE:
1284 if (pdata->dev_desc->flags & LPSS_LTR)
1285 sysfs_remove_group(&pdev->dev.kobj, &lpss_attr_group);
1286 dev_pm_domain_set(&pdev->dev, NULL);
1287 break;
1288 default:
1289 break;
1290 }
1291
1292 return 0;
1293 }
1294
1295 static struct notifier_block acpi_lpss_nb = {
1296 .notifier_call = acpi_lpss_platform_notify,
1297 };
1298
acpi_lpss_bind(struct device * dev)1299 static void acpi_lpss_bind(struct device *dev)
1300 {
1301 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1302
1303 if (!pdata || !pdata->mmio_base || !(pdata->dev_desc->flags & LPSS_LTR))
1304 return;
1305
1306 if (pdata->mmio_size >= pdata->dev_desc->prv_offset + LPSS_LTR_SIZE)
1307 dev->power.set_latency_tolerance = acpi_lpss_set_ltr;
1308 else
1309 dev_err(dev, "MMIO size insufficient to access LTR\n");
1310 }
1311
acpi_lpss_unbind(struct device * dev)1312 static void acpi_lpss_unbind(struct device *dev)
1313 {
1314 dev->power.set_latency_tolerance = NULL;
1315 }
1316
1317 static struct acpi_scan_handler lpss_handler = {
1318 .ids = acpi_lpss_device_ids,
1319 .attach = acpi_lpss_create_device,
1320 .bind = acpi_lpss_bind,
1321 .unbind = acpi_lpss_unbind,
1322 };
1323
acpi_lpss_init(void)1324 void __init acpi_lpss_init(void)
1325 {
1326 const struct x86_cpu_id *id;
1327 int ret;
1328
1329 ret = lpss_atom_clk_init();
1330 if (ret)
1331 return;
1332
1333 id = x86_match_cpu(lpss_cpu_ids);
1334 if (id)
1335 lpss_quirks |= LPSS_QUIRK_ALWAYS_POWER_ON;
1336
1337 bus_register_notifier(&platform_bus_type, &acpi_lpss_nb);
1338 acpi_scan_add_handler(&lpss_handler);
1339 }
1340
1341 #else
1342
1343 static struct acpi_scan_handler lpss_handler = {
1344 .ids = acpi_lpss_device_ids,
1345 };
1346
acpi_lpss_init(void)1347 void __init acpi_lpss_init(void)
1348 {
1349 acpi_scan_add_handler(&lpss_handler);
1350 }
1351
1352 #endif /* CONFIG_X86_INTEL_LPSS */
1353