xref: /linux/drivers/bluetooth/hci_intel.c (revision 90c38d402c5c063aff23d96dbfb997defa1b1f2c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *
4  *  Bluetooth HCI UART driver for Intel devices
5  *
6  *  Copyright (C) 2015  Intel Corporation
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/errno.h>
11 #include <linux/skbuff.h>
12 #include <linux/firmware.h>
13 #include <linux/module.h>
14 #include <linux/wait.h>
15 #include <linux/tty.h>
16 #include <linux/platform_device.h>
17 #include <linux/gpio/consumer.h>
18 #include <linux/acpi.h>
19 #include <linux/interrupt.h>
20 #include <linux/pm_runtime.h>
21 
22 #include <net/bluetooth/bluetooth.h>
23 #include <net/bluetooth/hci_core.h>
24 
25 #include "hci_uart.h"
26 #include "btintel.h"
27 
28 #define STATE_BOOTLOADER	0
29 #define STATE_DOWNLOADING	1
30 #define STATE_FIRMWARE_LOADED	2
31 #define STATE_FIRMWARE_FAILED	3
32 #define STATE_BOOTING		4
33 #define STATE_LPM_ENABLED	5
34 #define STATE_TX_ACTIVE		6
35 #define STATE_SUSPENDED		7
36 #define STATE_LPM_TRANSACTION	8
37 
38 #define HCI_LPM_WAKE_PKT 0xf0
39 #define HCI_LPM_PKT 0xf1
40 #define HCI_LPM_MAX_SIZE 10
41 #define HCI_LPM_HDR_SIZE HCI_EVENT_HDR_SIZE
42 
43 #define LPM_OP_TX_NOTIFY 0x00
44 #define LPM_OP_SUSPEND_ACK 0x02
45 #define LPM_OP_RESUME_ACK 0x03
46 
47 #define LPM_SUSPEND_DELAY_MS 1000
48 
49 struct hci_lpm_pkt {
50 	__u8 opcode;
51 	__u8 dlen;
52 	__u8 data[];
53 } __packed;
54 
55 struct intel_device {
56 	struct list_head list;
57 	struct platform_device *pdev;
58 	struct gpio_desc *reset;
59 	struct hci_uart *hu;
60 	struct mutex hu_lock;
61 	int irq;
62 };
63 
64 static LIST_HEAD(intel_device_list);
65 static DEFINE_MUTEX(intel_device_list_lock);
66 
67 struct intel_data {
68 	struct sk_buff *rx_skb;
69 	struct sk_buff_head txq;
70 	struct work_struct busy_work;
71 	struct hci_uart *hu;
72 	unsigned long flags;
73 };
74 
75 static u8 intel_convert_speed(unsigned int speed)
76 {
77 	switch (speed) {
78 	case 9600:
79 		return 0x00;
80 	case 19200:
81 		return 0x01;
82 	case 38400:
83 		return 0x02;
84 	case 57600:
85 		return 0x03;
86 	case 115200:
87 		return 0x04;
88 	case 230400:
89 		return 0x05;
90 	case 460800:
91 		return 0x06;
92 	case 921600:
93 		return 0x07;
94 	case 1843200:
95 		return 0x08;
96 	case 3250000:
97 		return 0x09;
98 	case 2000000:
99 		return 0x0a;
100 	case 3000000:
101 		return 0x0b;
102 	default:
103 		return 0xff;
104 	}
105 }
106 
107 static int intel_wait_booting(struct hci_uart *hu)
108 {
109 	struct intel_data *intel = hu->priv;
110 	int err;
111 
112 	err = wait_on_bit_timeout(&intel->flags, STATE_BOOTING,
113 				  TASK_INTERRUPTIBLE,
114 				  msecs_to_jiffies(1000));
115 
116 	if (err == -EINTR) {
117 		bt_dev_err(hu->hdev, "Device boot interrupted");
118 		return -EINTR;
119 	}
120 
121 	if (err) {
122 		bt_dev_err(hu->hdev, "Device boot timeout");
123 		return -ETIMEDOUT;
124 	}
125 
126 	return err;
127 }
128 
129 static int intel_wait_lpm_transaction(struct hci_uart *hu)
130 {
131 	struct intel_data *intel = hu->priv;
132 	int err;
133 
134 	err = wait_on_bit_timeout(&intel->flags, STATE_LPM_TRANSACTION,
135 				  TASK_INTERRUPTIBLE,
136 				  msecs_to_jiffies(1000));
137 
138 	if (err == -EINTR) {
139 		bt_dev_err(hu->hdev, "LPM transaction interrupted");
140 		return -EINTR;
141 	}
142 
143 	if (err) {
144 		bt_dev_err(hu->hdev, "LPM transaction timeout");
145 		return -ETIMEDOUT;
146 	}
147 
148 	return err;
149 }
150 
151 static int intel_lpm_suspend(struct hci_uart *hu)
152 {
153 	static const u8 suspend[] = { 0x01, 0x01, 0x01 };
154 	struct intel_data *intel = hu->priv;
155 	struct sk_buff *skb;
156 
157 	if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
158 	    test_bit(STATE_SUSPENDED, &intel->flags))
159 		return 0;
160 
161 	if (test_bit(STATE_TX_ACTIVE, &intel->flags))
162 		return -EAGAIN;
163 
164 	bt_dev_dbg(hu->hdev, "Suspending");
165 
166 	skb = bt_skb_alloc(sizeof(suspend), GFP_KERNEL);
167 	if (!skb) {
168 		bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
169 		return -ENOMEM;
170 	}
171 
172 	skb_put_data(skb, suspend, sizeof(suspend));
173 	hci_skb_pkt_type(skb) = HCI_LPM_PKT;
174 
175 	set_bit(STATE_LPM_TRANSACTION, &intel->flags);
176 
177 	/* LPM flow is a priority, enqueue packet at list head */
178 	skb_queue_head(&intel->txq, skb);
179 	hci_uart_tx_wakeup(hu);
180 
181 	intel_wait_lpm_transaction(hu);
182 	/* Even in case of failure, continue and test the suspended flag */
183 
184 	clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
185 
186 	if (!test_bit(STATE_SUSPENDED, &intel->flags)) {
187 		bt_dev_err(hu->hdev, "Device suspend error");
188 		return -EINVAL;
189 	}
190 
191 	bt_dev_dbg(hu->hdev, "Suspended");
192 
193 	hci_uart_set_flow_control(hu, true);
194 
195 	return 0;
196 }
197 
198 static int intel_lpm_resume(struct hci_uart *hu)
199 {
200 	struct intel_data *intel = hu->priv;
201 	struct sk_buff *skb;
202 
203 	if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
204 	    !test_bit(STATE_SUSPENDED, &intel->flags))
205 		return 0;
206 
207 	bt_dev_dbg(hu->hdev, "Resuming");
208 
209 	hci_uart_set_flow_control(hu, false);
210 
211 	skb = bt_skb_alloc(0, GFP_KERNEL);
212 	if (!skb) {
213 		bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
214 		return -ENOMEM;
215 	}
216 
217 	hci_skb_pkt_type(skb) = HCI_LPM_WAKE_PKT;
218 
219 	set_bit(STATE_LPM_TRANSACTION, &intel->flags);
220 
221 	/* LPM flow is a priority, enqueue packet at list head */
222 	skb_queue_head(&intel->txq, skb);
223 	hci_uart_tx_wakeup(hu);
224 
225 	intel_wait_lpm_transaction(hu);
226 	/* Even in case of failure, continue and test the suspended flag */
227 
228 	clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
229 
230 	if (test_bit(STATE_SUSPENDED, &intel->flags)) {
231 		bt_dev_err(hu->hdev, "Device resume error");
232 		return -EINVAL;
233 	}
234 
235 	bt_dev_dbg(hu->hdev, "Resumed");
236 
237 	return 0;
238 }
239 
240 static int intel_lpm_host_wake(struct hci_uart *hu)
241 {
242 	static const u8 lpm_resume_ack[] = { LPM_OP_RESUME_ACK, 0x00 };
243 	struct intel_data *intel = hu->priv;
244 	struct sk_buff *skb;
245 
246 	hci_uart_set_flow_control(hu, false);
247 
248 	clear_bit(STATE_SUSPENDED, &intel->flags);
249 
250 	skb = bt_skb_alloc(sizeof(lpm_resume_ack), GFP_KERNEL);
251 	if (!skb) {
252 		bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
253 		return -ENOMEM;
254 	}
255 
256 	skb_put_data(skb, lpm_resume_ack, sizeof(lpm_resume_ack));
257 	hci_skb_pkt_type(skb) = HCI_LPM_PKT;
258 
259 	/* LPM flow is a priority, enqueue packet at list head */
260 	skb_queue_head(&intel->txq, skb);
261 	hci_uart_tx_wakeup(hu);
262 
263 	bt_dev_dbg(hu->hdev, "Resumed by controller");
264 
265 	return 0;
266 }
267 
268 static irqreturn_t intel_irq(int irq, void *dev_id)
269 {
270 	struct intel_device *idev = dev_id;
271 
272 	dev_info(&idev->pdev->dev, "hci_intel irq\n");
273 
274 	mutex_lock(&idev->hu_lock);
275 	if (idev->hu)
276 		intel_lpm_host_wake(idev->hu);
277 	mutex_unlock(&idev->hu_lock);
278 
279 	/* Host/Controller are now LPM resumed, trigger a new delayed suspend */
280 	pm_runtime_get(&idev->pdev->dev);
281 	pm_runtime_put_autosuspend(&idev->pdev->dev);
282 
283 	return IRQ_HANDLED;
284 }
285 
286 static int intel_set_power(struct hci_uart *hu, bool powered)
287 {
288 	struct intel_device *idev;
289 	int err = -ENODEV;
290 
291 	if (!hu->tty->dev)
292 		return err;
293 
294 	mutex_lock(&intel_device_list_lock);
295 
296 	list_for_each_entry(idev, &intel_device_list, list) {
297 		/* tty device and pdev device should share the same parent
298 		 * which is the UART port.
299 		 */
300 		if (hu->tty->dev->parent != idev->pdev->dev.parent)
301 			continue;
302 
303 		if (!idev->reset) {
304 			err = -ENOTSUPP;
305 			break;
306 		}
307 
308 		BT_INFO("hu %p, Switching compatible pm device (%s) to %u",
309 			hu, dev_name(&idev->pdev->dev), powered);
310 
311 		gpiod_set_value(idev->reset, powered);
312 
313 		/* Provide to idev a hu reference which is used to run LPM
314 		 * transactions (lpm suspend/resume) from PM callbacks.
315 		 * hu needs to be protected against concurrent removing during
316 		 * these PM ops.
317 		 */
318 		mutex_lock(&idev->hu_lock);
319 		idev->hu = powered ? hu : NULL;
320 		mutex_unlock(&idev->hu_lock);
321 
322 		if (idev->irq < 0)
323 			break;
324 
325 		if (powered && device_can_wakeup(&idev->pdev->dev)) {
326 			err = devm_request_threaded_irq(&idev->pdev->dev,
327 							idev->irq, NULL,
328 							intel_irq,
329 							IRQF_ONESHOT,
330 							"bt-host-wake", idev);
331 			if (err) {
332 				BT_ERR("hu %p, unable to allocate irq-%d",
333 				       hu, idev->irq);
334 				break;
335 			}
336 
337 			device_wakeup_enable(&idev->pdev->dev);
338 
339 			pm_runtime_set_active(&idev->pdev->dev);
340 			pm_runtime_use_autosuspend(&idev->pdev->dev);
341 			pm_runtime_set_autosuspend_delay(&idev->pdev->dev,
342 							 LPM_SUSPEND_DELAY_MS);
343 			pm_runtime_enable(&idev->pdev->dev);
344 		} else if (!powered && device_may_wakeup(&idev->pdev->dev)) {
345 			devm_free_irq(&idev->pdev->dev, idev->irq, idev);
346 			device_wakeup_disable(&idev->pdev->dev);
347 
348 			pm_runtime_disable(&idev->pdev->dev);
349 		}
350 	}
351 
352 	mutex_unlock(&intel_device_list_lock);
353 
354 	return err;
355 }
356 
357 static void intel_busy_work(struct work_struct *work)
358 {
359 	struct intel_data *intel = container_of(work, struct intel_data,
360 						busy_work);
361 	struct intel_device *idev;
362 
363 	if (!intel->hu->tty->dev)
364 		return;
365 
366 	/* Link is busy, delay the suspend */
367 	mutex_lock(&intel_device_list_lock);
368 	list_for_each_entry(idev, &intel_device_list, list) {
369 		if (intel->hu->tty->dev->parent == idev->pdev->dev.parent) {
370 			pm_runtime_get(&idev->pdev->dev);
371 			pm_runtime_put_autosuspend(&idev->pdev->dev);
372 			break;
373 		}
374 	}
375 	mutex_unlock(&intel_device_list_lock);
376 }
377 
378 static int intel_open(struct hci_uart *hu)
379 {
380 	struct intel_data *intel;
381 
382 	BT_DBG("hu %p", hu);
383 
384 	if (!hci_uart_has_flow_control(hu))
385 		return -EOPNOTSUPP;
386 
387 	intel = kzalloc(sizeof(*intel), GFP_KERNEL);
388 	if (!intel)
389 		return -ENOMEM;
390 
391 	skb_queue_head_init(&intel->txq);
392 	INIT_WORK(&intel->busy_work, intel_busy_work);
393 
394 	intel->hu = hu;
395 
396 	hu->priv = intel;
397 
398 	if (!intel_set_power(hu, true))
399 		set_bit(STATE_BOOTING, &intel->flags);
400 
401 	return 0;
402 }
403 
404 static int intel_close(struct hci_uart *hu)
405 {
406 	struct intel_data *intel = hu->priv;
407 
408 	BT_DBG("hu %p", hu);
409 
410 	cancel_work_sync(&intel->busy_work);
411 
412 	intel_set_power(hu, false);
413 
414 	skb_queue_purge(&intel->txq);
415 	kfree_skb(intel->rx_skb);
416 	kfree(intel);
417 
418 	hu->priv = NULL;
419 	return 0;
420 }
421 
422 static int intel_flush(struct hci_uart *hu)
423 {
424 	struct intel_data *intel = hu->priv;
425 
426 	BT_DBG("hu %p", hu);
427 
428 	skb_queue_purge(&intel->txq);
429 
430 	return 0;
431 }
432 
433 static int inject_cmd_complete(struct hci_dev *hdev, __u16 opcode)
434 {
435 	struct sk_buff *skb;
436 	struct hci_event_hdr *hdr;
437 	struct hci_ev_cmd_complete *evt;
438 
439 	skb = bt_skb_alloc(sizeof(*hdr) + sizeof(*evt) + 1, GFP_KERNEL);
440 	if (!skb)
441 		return -ENOMEM;
442 
443 	hdr = skb_put(skb, sizeof(*hdr));
444 	hdr->evt = HCI_EV_CMD_COMPLETE;
445 	hdr->plen = sizeof(*evt) + 1;
446 
447 	evt = skb_put(skb, sizeof(*evt));
448 	evt->ncmd = 0x01;
449 	evt->opcode = cpu_to_le16(opcode);
450 
451 	skb_put_u8(skb, 0x00);
452 
453 	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
454 
455 	return hci_recv_frame(hdev, skb);
456 }
457 
458 static int intel_set_baudrate(struct hci_uart *hu, unsigned int speed)
459 {
460 	struct intel_data *intel = hu->priv;
461 	struct hci_dev *hdev = hu->hdev;
462 	u8 speed_cmd[] = { 0x06, 0xfc, 0x01, 0x00 };
463 	struct sk_buff *skb;
464 	int err;
465 
466 	/* This can be the first command sent to the chip, check
467 	 * that the controller is ready.
468 	 */
469 	err = intel_wait_booting(hu);
470 
471 	clear_bit(STATE_BOOTING, &intel->flags);
472 
473 	/* In case of timeout, try to continue anyway */
474 	if (err && err != -ETIMEDOUT)
475 		return err;
476 
477 	bt_dev_info(hdev, "Change controller speed to %d", speed);
478 
479 	speed_cmd[3] = intel_convert_speed(speed);
480 	if (speed_cmd[3] == 0xff) {
481 		bt_dev_err(hdev, "Unsupported speed");
482 		return -EINVAL;
483 	}
484 
485 	/* Device will not accept speed change if Intel version has not been
486 	 * previously requested.
487 	 */
488 	skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_CMD_TIMEOUT);
489 	if (IS_ERR(skb)) {
490 		bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
491 			   PTR_ERR(skb));
492 		return PTR_ERR(skb);
493 	}
494 	kfree_skb(skb);
495 
496 	skb = bt_skb_alloc(sizeof(speed_cmd), GFP_KERNEL);
497 	if (!skb) {
498 		bt_dev_err(hdev, "Failed to alloc memory for baudrate packet");
499 		return -ENOMEM;
500 	}
501 
502 	skb_put_data(skb, speed_cmd, sizeof(speed_cmd));
503 	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
504 
505 	hci_uart_set_flow_control(hu, true);
506 
507 	skb_queue_tail(&intel->txq, skb);
508 	hci_uart_tx_wakeup(hu);
509 
510 	/* wait 100ms to change baudrate on controller side */
511 	msleep(100);
512 
513 	hci_uart_set_baudrate(hu, speed);
514 	hci_uart_set_flow_control(hu, false);
515 
516 	return 0;
517 }
518 
519 static int intel_setup(struct hci_uart *hu)
520 {
521 	struct intel_data *intel = hu->priv;
522 	struct hci_dev *hdev = hu->hdev;
523 	struct sk_buff *skb;
524 	struct intel_version ver;
525 	struct intel_boot_params params;
526 	struct intel_device *idev;
527 	const struct firmware *fw;
528 	char fwname[64];
529 	u32 boot_param;
530 	ktime_t calltime, delta, rettime;
531 	unsigned long long duration;
532 	unsigned int init_speed, oper_speed;
533 	int speed_change = 0;
534 	int err;
535 
536 	bt_dev_dbg(hdev, "");
537 
538 	hu->hdev->set_diag = btintel_set_diag;
539 	hu->hdev->set_bdaddr = btintel_set_bdaddr;
540 
541 	/* Set the default boot parameter to 0x0 and it is updated to
542 	 * SKU specific boot parameter after reading Intel_Write_Boot_Params
543 	 * command while downloading the firmware.
544 	 */
545 	boot_param = 0x00000000;
546 
547 	calltime = ktime_get();
548 
549 	if (hu->init_speed)
550 		init_speed = hu->init_speed;
551 	else
552 		init_speed = hu->proto->init_speed;
553 
554 	if (hu->oper_speed)
555 		oper_speed = hu->oper_speed;
556 	else
557 		oper_speed = hu->proto->oper_speed;
558 
559 	if (oper_speed && init_speed && oper_speed != init_speed)
560 		speed_change = 1;
561 
562 	/* Check that the controller is ready */
563 	err = intel_wait_booting(hu);
564 
565 	clear_bit(STATE_BOOTING, &intel->flags);
566 
567 	/* In case of timeout, try to continue anyway */
568 	if (err && err != -ETIMEDOUT)
569 		return err;
570 
571 	set_bit(STATE_BOOTLOADER, &intel->flags);
572 
573 	/* Read the Intel version information to determine if the device
574 	 * is in bootloader mode or if it already has operational firmware
575 	 * loaded.
576 	 */
577 	err = btintel_read_version(hdev, &ver);
578 	if (err)
579 		return err;
580 
581 	/* The hardware platform number has a fixed value of 0x37 and
582 	 * for now only accept this single value.
583 	 */
584 	if (ver.hw_platform != 0x37) {
585 		bt_dev_err(hdev, "Unsupported Intel hardware platform (%u)",
586 			   ver.hw_platform);
587 		return -EINVAL;
588 	}
589 
590 	/* Check for supported iBT hardware variants of this firmware
591 	 * loading method.
592 	 *
593 	 * This check has been put in place to ensure correct forward
594 	 * compatibility options when newer hardware variants come along.
595 	 */
596 	switch (ver.hw_variant) {
597 	case 0x0b:	/* LnP */
598 	case 0x0c:	/* WsP */
599 	case 0x12:	/* ThP */
600 		break;
601 	default:
602 		bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
603 			   ver.hw_variant);
604 		return -EINVAL;
605 	}
606 
607 	btintel_version_info(hdev, &ver);
608 
609 	/* The firmware variant determines if the device is in bootloader
610 	 * mode or is running operational firmware. The value 0x06 identifies
611 	 * the bootloader and the value 0x23 identifies the operational
612 	 * firmware.
613 	 *
614 	 * When the operational firmware is already present, then only
615 	 * the check for valid Bluetooth device address is needed. This
616 	 * determines if the device will be added as configured or
617 	 * unconfigured controller.
618 	 *
619 	 * It is not possible to use the Secure Boot Parameters in this
620 	 * case since that command is only available in bootloader mode.
621 	 */
622 	if (ver.fw_variant == 0x23) {
623 		clear_bit(STATE_BOOTLOADER, &intel->flags);
624 		btintel_check_bdaddr(hdev);
625 		return 0;
626 	}
627 
628 	/* If the device is not in bootloader mode, then the only possible
629 	 * choice is to return an error and abort the device initialization.
630 	 */
631 	if (ver.fw_variant != 0x06) {
632 		bt_dev_err(hdev, "Unsupported Intel firmware variant (%u)",
633 			   ver.fw_variant);
634 		return -ENODEV;
635 	}
636 
637 	/* Read the secure boot parameters to identify the operating
638 	 * details of the bootloader.
639 	 */
640 	err = btintel_read_boot_params(hdev, &params);
641 	if (err)
642 		return err;
643 
644 	/* It is required that every single firmware fragment is acknowledged
645 	 * with a command complete event. If the boot parameters indicate
646 	 * that this bootloader does not send them, then abort the setup.
647 	 */
648 	if (params.limited_cce != 0x00) {
649 		bt_dev_err(hdev, "Unsupported Intel firmware loading method (%u)",
650 			   params.limited_cce);
651 		return -EINVAL;
652 	}
653 
654 	/* If the OTP has no valid Bluetooth device address, then there will
655 	 * also be no valid address for the operational firmware.
656 	 */
657 	if (!bacmp(&params.otp_bdaddr, BDADDR_ANY)) {
658 		bt_dev_info(hdev, "No device address configured");
659 		hci_set_quirk(hdev, HCI_QUIRK_INVALID_BDADDR);
660 	}
661 
662 	/* With this Intel bootloader only the hardware variant and device
663 	 * revision information are used to select the right firmware for SfP
664 	 * and WsP.
665 	 *
666 	 * The firmware filename is ibt-<hw_variant>-<dev_revid>.sfi.
667 	 *
668 	 * Currently the supported hardware variants are:
669 	 *   11 (0x0b) for iBT 3.0 (LnP/SfP)
670 	 *   12 (0x0c) for iBT 3.5 (WsP)
671 	 *
672 	 * For ThP/JfP and for future SKU's, the FW name varies based on HW
673 	 * variant, HW revision and FW revision, as these are dependent on CNVi
674 	 * and RF Combination.
675 	 *
676 	 *   18 (0x12) for iBT3.5 (ThP/JfP)
677 	 *
678 	 * The firmware file name for these will be
679 	 * ibt-<hw_variant>-<hw_revision>-<fw_revision>.sfi.
680 	 *
681 	 */
682 	switch (ver.hw_variant) {
683 	case 0x0b:      /* SfP */
684 	case 0x0c:      /* WsP */
685 		snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u.sfi",
686 			 ver.hw_variant, le16_to_cpu(params.dev_revid));
687 		break;
688 	case 0x12:      /* ThP */
689 		snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u-%u.sfi",
690 			 ver.hw_variant, ver.hw_revision, ver.fw_revision);
691 		break;
692 	default:
693 		bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
694 			   ver.hw_variant);
695 		return -EINVAL;
696 	}
697 
698 	err = request_firmware(&fw, fwname, &hdev->dev);
699 	if (err < 0) {
700 		bt_dev_err(hdev, "Failed to load Intel firmware file (%d)",
701 			   err);
702 		return err;
703 	}
704 
705 	bt_dev_info(hdev, "Found device firmware: %s", fwname);
706 
707 	/* Save the DDC file name for later */
708 	switch (ver.hw_variant) {
709 	case 0x0b:      /* SfP */
710 	case 0x0c:      /* WsP */
711 		snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u.ddc",
712 			 ver.hw_variant, le16_to_cpu(params.dev_revid));
713 		break;
714 	case 0x12:      /* ThP */
715 		snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u-%u.ddc",
716 			 ver.hw_variant, ver.hw_revision, ver.fw_revision);
717 		break;
718 	default:
719 		bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
720 			   ver.hw_variant);
721 		return -EINVAL;
722 	}
723 
724 	if (fw->size < 644) {
725 		bt_dev_err(hdev, "Invalid size of firmware file (%zu)",
726 			   fw->size);
727 		err = -EBADF;
728 		goto done;
729 	}
730 
731 	set_bit(STATE_DOWNLOADING, &intel->flags);
732 
733 	/* Start firmware downloading and get boot parameter */
734 	err = btintel_download_firmware(hdev, &ver, fw, &boot_param);
735 	if (err < 0)
736 		goto done;
737 
738 	set_bit(STATE_FIRMWARE_LOADED, &intel->flags);
739 
740 	bt_dev_info(hdev, "Waiting for firmware download to complete");
741 
742 	/* Before switching the device into operational mode and with that
743 	 * booting the loaded firmware, wait for the bootloader notification
744 	 * that all fragments have been successfully received.
745 	 *
746 	 * When the event processing receives the notification, then the
747 	 * STATE_DOWNLOADING flag will be cleared.
748 	 *
749 	 * The firmware loading should not take longer than 5 seconds
750 	 * and thus just timeout if that happens and fail the setup
751 	 * of this device.
752 	 */
753 	err = wait_on_bit_timeout(&intel->flags, STATE_DOWNLOADING,
754 				  TASK_INTERRUPTIBLE,
755 				  msecs_to_jiffies(5000));
756 	if (err == -EINTR) {
757 		bt_dev_err(hdev, "Firmware loading interrupted");
758 		err = -EINTR;
759 		goto done;
760 	}
761 
762 	if (err) {
763 		bt_dev_err(hdev, "Firmware loading timeout");
764 		err = -ETIMEDOUT;
765 		goto done;
766 	}
767 
768 	if (test_bit(STATE_FIRMWARE_FAILED, &intel->flags)) {
769 		bt_dev_err(hdev, "Firmware loading failed");
770 		err = -ENOEXEC;
771 		goto done;
772 	}
773 
774 	rettime = ktime_get();
775 	delta = ktime_sub(rettime, calltime);
776 	duration = (unsigned long long)ktime_to_ns(delta) >> 10;
777 
778 	bt_dev_info(hdev, "Firmware loaded in %llu usecs", duration);
779 
780 done:
781 	release_firmware(fw);
782 
783 	/* Check if there was an error and if is not -EALREADY which means the
784 	 * firmware has already been loaded.
785 	 */
786 	if (err < 0 && err != -EALREADY)
787 		return err;
788 
789 	/* We need to restore the default speed before Intel reset */
790 	if (speed_change) {
791 		err = intel_set_baudrate(hu, init_speed);
792 		if (err)
793 			return err;
794 	}
795 
796 	calltime = ktime_get();
797 
798 	set_bit(STATE_BOOTING, &intel->flags);
799 
800 	err = btintel_send_intel_reset(hdev, boot_param);
801 	if (err)
802 		return err;
803 
804 	/* The bootloader will not indicate when the device is ready. This
805 	 * is done by the operational firmware sending bootup notification.
806 	 *
807 	 * Booting into operational firmware should not take longer than
808 	 * 1 second. However if that happens, then just fail the setup
809 	 * since something went wrong.
810 	 */
811 	bt_dev_info(hdev, "Waiting for device to boot");
812 
813 	err = intel_wait_booting(hu);
814 	if (err)
815 		return err;
816 
817 	clear_bit(STATE_BOOTING, &intel->flags);
818 
819 	rettime = ktime_get();
820 	delta = ktime_sub(rettime, calltime);
821 	duration = (unsigned long long)ktime_to_ns(delta) >> 10;
822 
823 	bt_dev_info(hdev, "Device booted in %llu usecs", duration);
824 
825 	/* Enable LPM if matching pdev with wakeup enabled, set TX active
826 	 * until further LPM TX notification.
827 	 */
828 	mutex_lock(&intel_device_list_lock);
829 	list_for_each_entry(idev, &intel_device_list, list) {
830 		if (!hu->tty->dev)
831 			break;
832 		if (hu->tty->dev->parent == idev->pdev->dev.parent) {
833 			if (device_may_wakeup(&idev->pdev->dev)) {
834 				set_bit(STATE_LPM_ENABLED, &intel->flags);
835 				set_bit(STATE_TX_ACTIVE, &intel->flags);
836 			}
837 			break;
838 		}
839 	}
840 	mutex_unlock(&intel_device_list_lock);
841 
842 	/* Ignore errors, device can work without DDC parameters */
843 	btintel_load_ddc_config(hdev, fwname);
844 
845 	skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_CMD_TIMEOUT);
846 	if (IS_ERR(skb))
847 		return PTR_ERR(skb);
848 	kfree_skb(skb);
849 
850 	if (speed_change) {
851 		err = intel_set_baudrate(hu, oper_speed);
852 		if (err)
853 			return err;
854 	}
855 
856 	bt_dev_info(hdev, "Setup complete");
857 
858 	clear_bit(STATE_BOOTLOADER, &intel->flags);
859 
860 	return 0;
861 }
862 
863 static int intel_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
864 {
865 	struct hci_uart *hu = hci_get_drvdata(hdev);
866 	struct intel_data *intel = hu->priv;
867 	struct hci_event_hdr *hdr;
868 
869 	if (!test_bit(STATE_BOOTLOADER, &intel->flags) &&
870 	    !test_bit(STATE_BOOTING, &intel->flags))
871 		goto recv;
872 
873 	hdr = (void *)skb->data;
874 
875 	/* When the firmware loading completes the device sends
876 	 * out a vendor specific event indicating the result of
877 	 * the firmware loading.
878 	 */
879 	if (skb->len == 7 && hdr->evt == 0xff && hdr->plen == 0x05 &&
880 	    skb->data[2] == 0x06) {
881 		if (skb->data[3] != 0x00)
882 			set_bit(STATE_FIRMWARE_FAILED, &intel->flags);
883 
884 		if (test_and_clear_bit(STATE_DOWNLOADING, &intel->flags) &&
885 		    test_bit(STATE_FIRMWARE_LOADED, &intel->flags))
886 			wake_up_bit(&intel->flags, STATE_DOWNLOADING);
887 
888 	/* When switching to the operational firmware the device
889 	 * sends a vendor specific event indicating that the bootup
890 	 * completed.
891 	 */
892 	} else if (skb->len == 9 && hdr->evt == 0xff && hdr->plen == 0x07 &&
893 		   skb->data[2] == 0x02) {
894 		if (test_and_clear_bit(STATE_BOOTING, &intel->flags))
895 			wake_up_bit(&intel->flags, STATE_BOOTING);
896 	}
897 recv:
898 	return hci_recv_frame(hdev, skb);
899 }
900 
901 static void intel_recv_lpm_notify(struct hci_dev *hdev, int value)
902 {
903 	struct hci_uart *hu = hci_get_drvdata(hdev);
904 	struct intel_data *intel = hu->priv;
905 
906 	bt_dev_dbg(hdev, "TX idle notification (%d)", value);
907 
908 	if (value) {
909 		set_bit(STATE_TX_ACTIVE, &intel->flags);
910 		schedule_work(&intel->busy_work);
911 	} else {
912 		clear_bit(STATE_TX_ACTIVE, &intel->flags);
913 	}
914 }
915 
916 static int intel_recv_lpm(struct hci_dev *hdev, struct sk_buff *skb)
917 {
918 	struct hci_lpm_pkt *lpm = (void *)skb->data;
919 	struct hci_uart *hu = hci_get_drvdata(hdev);
920 	struct intel_data *intel = hu->priv;
921 
922 	switch (lpm->opcode) {
923 	case LPM_OP_TX_NOTIFY:
924 		if (lpm->dlen < 1) {
925 			bt_dev_err(hu->hdev, "Invalid LPM notification packet");
926 			break;
927 		}
928 		intel_recv_lpm_notify(hdev, lpm->data[0]);
929 		break;
930 	case LPM_OP_SUSPEND_ACK:
931 		set_bit(STATE_SUSPENDED, &intel->flags);
932 		if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags))
933 			wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
934 		break;
935 	case LPM_OP_RESUME_ACK:
936 		clear_bit(STATE_SUSPENDED, &intel->flags);
937 		if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags))
938 			wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
939 		break;
940 	default:
941 		bt_dev_err(hdev, "Unknown LPM opcode (%02x)", lpm->opcode);
942 		break;
943 	}
944 
945 	kfree_skb(skb);
946 
947 	return 0;
948 }
949 
950 #define INTEL_RECV_LPM \
951 	.type = HCI_LPM_PKT, \
952 	.hlen = HCI_LPM_HDR_SIZE, \
953 	.loff = 1, \
954 	.lsize = 1, \
955 	.maxlen = HCI_LPM_MAX_SIZE
956 
957 static const struct h4_recv_pkt intel_recv_pkts[] = {
958 	{ H4_RECV_ACL,    .recv = hci_recv_frame   },
959 	{ H4_RECV_SCO,    .recv = hci_recv_frame   },
960 	{ H4_RECV_EVENT,  .recv = intel_recv_event },
961 	{ INTEL_RECV_LPM, .recv = intel_recv_lpm   },
962 };
963 
964 static int intel_recv(struct hci_uart *hu, const void *data, int count)
965 {
966 	struct intel_data *intel = hu->priv;
967 
968 	if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
969 		return -EUNATCH;
970 
971 	intel->rx_skb = h4_recv_buf(hu, intel->rx_skb, data, count,
972 				    intel_recv_pkts,
973 				    ARRAY_SIZE(intel_recv_pkts));
974 	if (IS_ERR(intel->rx_skb)) {
975 		int err = PTR_ERR(intel->rx_skb);
976 
977 		bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
978 		intel->rx_skb = NULL;
979 		return err;
980 	}
981 
982 	return count;
983 }
984 
985 static int intel_enqueue(struct hci_uart *hu, struct sk_buff *skb)
986 {
987 	struct intel_data *intel = hu->priv;
988 	struct intel_device *idev;
989 
990 	BT_DBG("hu %p skb %p", hu, skb);
991 
992 	if (!hu->tty->dev)
993 		goto out_enqueue;
994 
995 	/* Be sure our controller is resumed and potential LPM transaction
996 	 * completed before enqueuing any packet.
997 	 */
998 	mutex_lock(&intel_device_list_lock);
999 	list_for_each_entry(idev, &intel_device_list, list) {
1000 		if (hu->tty->dev->parent == idev->pdev->dev.parent) {
1001 			pm_runtime_get_sync(&idev->pdev->dev);
1002 			pm_runtime_put_autosuspend(&idev->pdev->dev);
1003 			break;
1004 		}
1005 	}
1006 	mutex_unlock(&intel_device_list_lock);
1007 out_enqueue:
1008 	skb_queue_tail(&intel->txq, skb);
1009 
1010 	return 0;
1011 }
1012 
1013 static struct sk_buff *intel_dequeue(struct hci_uart *hu)
1014 {
1015 	struct intel_data *intel = hu->priv;
1016 	struct sk_buff *skb;
1017 
1018 	skb = skb_dequeue(&intel->txq);
1019 	if (!skb)
1020 		return skb;
1021 
1022 	if (test_bit(STATE_BOOTLOADER, &intel->flags) &&
1023 	    (hci_skb_pkt_type(skb) == HCI_COMMAND_PKT)) {
1024 		struct hci_command_hdr *cmd = (void *)skb->data;
1025 		__u16 opcode = le16_to_cpu(cmd->opcode);
1026 
1027 		/* When the BTINTEL_HCI_OP_RESET command is issued to boot into
1028 		 * the operational firmware, it will actually not send a command
1029 		 * complete event. To keep the flow control working inject that
1030 		 * event here.
1031 		 */
1032 		if (opcode == BTINTEL_HCI_OP_RESET)
1033 			inject_cmd_complete(hu->hdev, opcode);
1034 	}
1035 
1036 	/* Prepend skb with frame type */
1037 	memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1);
1038 
1039 	return skb;
1040 }
1041 
1042 static const struct hci_uart_proto intel_proto = {
1043 	.id		= HCI_UART_INTEL,
1044 	.name		= "Intel",
1045 	.manufacturer	= 2,
1046 	.init_speed	= 115200,
1047 	.oper_speed	= 3000000,
1048 	.open		= intel_open,
1049 	.close		= intel_close,
1050 	.flush		= intel_flush,
1051 	.setup		= intel_setup,
1052 	.set_baudrate	= intel_set_baudrate,
1053 	.recv		= intel_recv,
1054 	.enqueue	= intel_enqueue,
1055 	.dequeue	= intel_dequeue,
1056 };
1057 
1058 #ifdef CONFIG_ACPI
1059 static const struct acpi_device_id intel_acpi_match[] = {
1060 	{ "INT33E1", 0 },
1061 	{ "INT33E3", 0 },
1062 	{ }
1063 };
1064 MODULE_DEVICE_TABLE(acpi, intel_acpi_match);
1065 #endif
1066 
1067 static int intel_suspend_device(struct device *dev)
1068 {
1069 	struct intel_device *idev = dev_get_drvdata(dev);
1070 
1071 	mutex_lock(&idev->hu_lock);
1072 	if (idev->hu)
1073 		intel_lpm_suspend(idev->hu);
1074 	mutex_unlock(&idev->hu_lock);
1075 
1076 	return 0;
1077 }
1078 
1079 static int intel_resume_device(struct device *dev)
1080 {
1081 	struct intel_device *idev = dev_get_drvdata(dev);
1082 
1083 	mutex_lock(&idev->hu_lock);
1084 	if (idev->hu)
1085 		intel_lpm_resume(idev->hu);
1086 	mutex_unlock(&idev->hu_lock);
1087 
1088 	return 0;
1089 }
1090 
1091 static int __maybe_unused intel_suspend(struct device *dev)
1092 {
1093 	struct intel_device *idev = dev_get_drvdata(dev);
1094 
1095 	if (device_may_wakeup(dev))
1096 		enable_irq_wake(idev->irq);
1097 
1098 	return intel_suspend_device(dev);
1099 }
1100 
1101 static int __maybe_unused intel_resume(struct device *dev)
1102 {
1103 	struct intel_device *idev = dev_get_drvdata(dev);
1104 
1105 	if (device_may_wakeup(dev))
1106 		disable_irq_wake(idev->irq);
1107 
1108 	return intel_resume_device(dev);
1109 }
1110 
1111 static const struct dev_pm_ops intel_pm_ops = {
1112 	SET_SYSTEM_SLEEP_PM_OPS(intel_suspend, intel_resume)
1113 	SET_RUNTIME_PM_OPS(intel_suspend_device, intel_resume_device, NULL)
1114 };
1115 
1116 static const struct acpi_gpio_params reset_gpios = { 0, 0, false };
1117 static const struct acpi_gpio_params host_wake_gpios = { 1, 0, false };
1118 
1119 static const struct acpi_gpio_mapping acpi_hci_intel_gpios[] = {
1120 	{ "reset-gpios", &reset_gpios, 1, ACPI_GPIO_QUIRK_ONLY_GPIOIO },
1121 	{ "host-wake-gpios", &host_wake_gpios, 1, ACPI_GPIO_QUIRK_ONLY_GPIOIO },
1122 	{ }
1123 };
1124 
1125 static int intel_probe(struct platform_device *pdev)
1126 {
1127 	struct intel_device *idev;
1128 	int ret;
1129 
1130 	idev = devm_kzalloc(&pdev->dev, sizeof(*idev), GFP_KERNEL);
1131 	if (!idev)
1132 		return -ENOMEM;
1133 
1134 	mutex_init(&idev->hu_lock);
1135 
1136 	idev->pdev = pdev;
1137 
1138 	ret = devm_acpi_dev_add_driver_gpios(&pdev->dev, acpi_hci_intel_gpios);
1139 	if (ret)
1140 		dev_dbg(&pdev->dev, "Unable to add GPIO mapping table\n");
1141 
1142 	idev->reset = devm_gpiod_get(&pdev->dev, "reset", GPIOD_OUT_LOW);
1143 	if (IS_ERR(idev->reset)) {
1144 		dev_err(&pdev->dev, "Unable to retrieve gpio\n");
1145 		return PTR_ERR(idev->reset);
1146 	}
1147 
1148 	idev->irq = platform_get_irq(pdev, 0);
1149 	if (idev->irq < 0) {
1150 		struct gpio_desc *host_wake;
1151 
1152 		dev_err(&pdev->dev, "No IRQ, falling back to gpio-irq\n");
1153 
1154 		host_wake = devm_gpiod_get(&pdev->dev, "host-wake", GPIOD_IN);
1155 		if (IS_ERR(host_wake)) {
1156 			dev_err(&pdev->dev, "Unable to retrieve IRQ\n");
1157 			goto no_irq;
1158 		}
1159 
1160 		idev->irq = gpiod_to_irq(host_wake);
1161 		if (idev->irq < 0) {
1162 			dev_err(&pdev->dev, "No corresponding irq for gpio\n");
1163 			goto no_irq;
1164 		}
1165 	}
1166 
1167 	/* Only enable wake-up/irq when controller is powered */
1168 	device_set_wakeup_capable(&pdev->dev, true);
1169 	device_wakeup_disable(&pdev->dev);
1170 
1171 no_irq:
1172 	platform_set_drvdata(pdev, idev);
1173 
1174 	/* Place this instance on the device list */
1175 	mutex_lock(&intel_device_list_lock);
1176 	list_add_tail(&idev->list, &intel_device_list);
1177 	mutex_unlock(&intel_device_list_lock);
1178 
1179 	dev_info(&pdev->dev, "registered, gpio(%d)/irq(%d).\n",
1180 		 desc_to_gpio(idev->reset), idev->irq);
1181 
1182 	return 0;
1183 }
1184 
1185 static void intel_remove(struct platform_device *pdev)
1186 {
1187 	struct intel_device *idev = platform_get_drvdata(pdev);
1188 
1189 	device_wakeup_disable(&pdev->dev);
1190 
1191 	mutex_lock(&intel_device_list_lock);
1192 	list_del(&idev->list);
1193 	mutex_unlock(&intel_device_list_lock);
1194 
1195 	dev_info(&pdev->dev, "unregistered.\n");
1196 }
1197 
1198 static struct platform_driver intel_driver = {
1199 	.probe = intel_probe,
1200 	.remove = intel_remove,
1201 	.driver = {
1202 		.name = "hci_intel",
1203 		.acpi_match_table = ACPI_PTR(intel_acpi_match),
1204 		.pm = &intel_pm_ops,
1205 	},
1206 };
1207 
1208 int __init intel_init(void)
1209 {
1210 	int err;
1211 
1212 	err = platform_driver_register(&intel_driver);
1213 	if (err)
1214 		return err;
1215 
1216 	return hci_uart_register_proto(&intel_proto);
1217 }
1218 
1219 int __exit intel_deinit(void)
1220 {
1221 	platform_driver_unregister(&intel_driver);
1222 
1223 	return hci_uart_unregister_proto(&intel_proto);
1224 }
1225