1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <ctype.h> 28 #include <asm/unistd.h> 29 #include <linux/err.h> 30 #include <linux/kernel.h> 31 #include <linux/bpf.h> 32 #include <linux/btf.h> 33 #include <linux/filter.h> 34 #include <linux/limits.h> 35 #include <linux/perf_event.h> 36 #include <linux/bpf_perf_event.h> 37 #include <linux/ring_buffer.h> 38 #include <sys/epoll.h> 39 #include <sys/ioctl.h> 40 #include <sys/mman.h> 41 #include <sys/stat.h> 42 #include <sys/types.h> 43 #include <sys/vfs.h> 44 #include <sys/utsname.h> 45 #include <sys/resource.h> 46 #include <libelf.h> 47 #include <gelf.h> 48 #include <zlib.h> 49 50 #include "libbpf.h" 51 #include "bpf.h" 52 #include "btf.h" 53 #include "libbpf_internal.h" 54 #include "hashmap.h" 55 #include "bpf_gen_internal.h" 56 #include "zip.h" 57 58 #ifndef BPF_FS_MAGIC 59 #define BPF_FS_MAGIC 0xcafe4a11 60 #endif 61 62 #define MAX_EVENT_NAME_LEN 64 63 64 #define BPF_FS_DEFAULT_PATH "/sys/fs/bpf" 65 66 #define BPF_INSN_SZ (sizeof(struct bpf_insn)) 67 68 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 69 * compilation if user enables corresponding warning. Disable it explicitly. 70 */ 71 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 72 73 #define __printf(a, b) __attribute__((format(printf, a, b))) 74 75 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 76 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog); 77 static int map_set_def_max_entries(struct bpf_map *map); 78 79 static const char * const attach_type_name[] = { 80 [BPF_CGROUP_INET_INGRESS] = "cgroup_inet_ingress", 81 [BPF_CGROUP_INET_EGRESS] = "cgroup_inet_egress", 82 [BPF_CGROUP_INET_SOCK_CREATE] = "cgroup_inet_sock_create", 83 [BPF_CGROUP_INET_SOCK_RELEASE] = "cgroup_inet_sock_release", 84 [BPF_CGROUP_SOCK_OPS] = "cgroup_sock_ops", 85 [BPF_CGROUP_DEVICE] = "cgroup_device", 86 [BPF_CGROUP_INET4_BIND] = "cgroup_inet4_bind", 87 [BPF_CGROUP_INET6_BIND] = "cgroup_inet6_bind", 88 [BPF_CGROUP_INET4_CONNECT] = "cgroup_inet4_connect", 89 [BPF_CGROUP_INET6_CONNECT] = "cgroup_inet6_connect", 90 [BPF_CGROUP_UNIX_CONNECT] = "cgroup_unix_connect", 91 [BPF_CGROUP_INET4_POST_BIND] = "cgroup_inet4_post_bind", 92 [BPF_CGROUP_INET6_POST_BIND] = "cgroup_inet6_post_bind", 93 [BPF_CGROUP_INET4_GETPEERNAME] = "cgroup_inet4_getpeername", 94 [BPF_CGROUP_INET6_GETPEERNAME] = "cgroup_inet6_getpeername", 95 [BPF_CGROUP_UNIX_GETPEERNAME] = "cgroup_unix_getpeername", 96 [BPF_CGROUP_INET4_GETSOCKNAME] = "cgroup_inet4_getsockname", 97 [BPF_CGROUP_INET6_GETSOCKNAME] = "cgroup_inet6_getsockname", 98 [BPF_CGROUP_UNIX_GETSOCKNAME] = "cgroup_unix_getsockname", 99 [BPF_CGROUP_UDP4_SENDMSG] = "cgroup_udp4_sendmsg", 100 [BPF_CGROUP_UDP6_SENDMSG] = "cgroup_udp6_sendmsg", 101 [BPF_CGROUP_UNIX_SENDMSG] = "cgroup_unix_sendmsg", 102 [BPF_CGROUP_SYSCTL] = "cgroup_sysctl", 103 [BPF_CGROUP_UDP4_RECVMSG] = "cgroup_udp4_recvmsg", 104 [BPF_CGROUP_UDP6_RECVMSG] = "cgroup_udp6_recvmsg", 105 [BPF_CGROUP_UNIX_RECVMSG] = "cgroup_unix_recvmsg", 106 [BPF_CGROUP_GETSOCKOPT] = "cgroup_getsockopt", 107 [BPF_CGROUP_SETSOCKOPT] = "cgroup_setsockopt", 108 [BPF_SK_SKB_STREAM_PARSER] = "sk_skb_stream_parser", 109 [BPF_SK_SKB_STREAM_VERDICT] = "sk_skb_stream_verdict", 110 [BPF_SK_SKB_VERDICT] = "sk_skb_verdict", 111 [BPF_SK_MSG_VERDICT] = "sk_msg_verdict", 112 [BPF_LIRC_MODE2] = "lirc_mode2", 113 [BPF_FLOW_DISSECTOR] = "flow_dissector", 114 [BPF_TRACE_RAW_TP] = "trace_raw_tp", 115 [BPF_TRACE_FENTRY] = "trace_fentry", 116 [BPF_TRACE_FEXIT] = "trace_fexit", 117 [BPF_MODIFY_RETURN] = "modify_return", 118 [BPF_LSM_MAC] = "lsm_mac", 119 [BPF_LSM_CGROUP] = "lsm_cgroup", 120 [BPF_SK_LOOKUP] = "sk_lookup", 121 [BPF_TRACE_ITER] = "trace_iter", 122 [BPF_XDP_DEVMAP] = "xdp_devmap", 123 [BPF_XDP_CPUMAP] = "xdp_cpumap", 124 [BPF_XDP] = "xdp", 125 [BPF_SK_REUSEPORT_SELECT] = "sk_reuseport_select", 126 [BPF_SK_REUSEPORT_SELECT_OR_MIGRATE] = "sk_reuseport_select_or_migrate", 127 [BPF_PERF_EVENT] = "perf_event", 128 [BPF_TRACE_KPROBE_MULTI] = "trace_kprobe_multi", 129 [BPF_STRUCT_OPS] = "struct_ops", 130 [BPF_NETFILTER] = "netfilter", 131 [BPF_TCX_INGRESS] = "tcx_ingress", 132 [BPF_TCX_EGRESS] = "tcx_egress", 133 [BPF_TRACE_UPROBE_MULTI] = "trace_uprobe_multi", 134 [BPF_NETKIT_PRIMARY] = "netkit_primary", 135 [BPF_NETKIT_PEER] = "netkit_peer", 136 [BPF_TRACE_KPROBE_SESSION] = "trace_kprobe_session", 137 [BPF_TRACE_UPROBE_SESSION] = "trace_uprobe_session", 138 }; 139 140 static const char * const link_type_name[] = { 141 [BPF_LINK_TYPE_UNSPEC] = "unspec", 142 [BPF_LINK_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 143 [BPF_LINK_TYPE_TRACING] = "tracing", 144 [BPF_LINK_TYPE_CGROUP] = "cgroup", 145 [BPF_LINK_TYPE_ITER] = "iter", 146 [BPF_LINK_TYPE_NETNS] = "netns", 147 [BPF_LINK_TYPE_XDP] = "xdp", 148 [BPF_LINK_TYPE_PERF_EVENT] = "perf_event", 149 [BPF_LINK_TYPE_KPROBE_MULTI] = "kprobe_multi", 150 [BPF_LINK_TYPE_STRUCT_OPS] = "struct_ops", 151 [BPF_LINK_TYPE_NETFILTER] = "netfilter", 152 [BPF_LINK_TYPE_TCX] = "tcx", 153 [BPF_LINK_TYPE_UPROBE_MULTI] = "uprobe_multi", 154 [BPF_LINK_TYPE_NETKIT] = "netkit", 155 [BPF_LINK_TYPE_SOCKMAP] = "sockmap", 156 }; 157 158 static const char * const map_type_name[] = { 159 [BPF_MAP_TYPE_UNSPEC] = "unspec", 160 [BPF_MAP_TYPE_HASH] = "hash", 161 [BPF_MAP_TYPE_ARRAY] = "array", 162 [BPF_MAP_TYPE_PROG_ARRAY] = "prog_array", 163 [BPF_MAP_TYPE_PERF_EVENT_ARRAY] = "perf_event_array", 164 [BPF_MAP_TYPE_PERCPU_HASH] = "percpu_hash", 165 [BPF_MAP_TYPE_PERCPU_ARRAY] = "percpu_array", 166 [BPF_MAP_TYPE_STACK_TRACE] = "stack_trace", 167 [BPF_MAP_TYPE_CGROUP_ARRAY] = "cgroup_array", 168 [BPF_MAP_TYPE_LRU_HASH] = "lru_hash", 169 [BPF_MAP_TYPE_LRU_PERCPU_HASH] = "lru_percpu_hash", 170 [BPF_MAP_TYPE_LPM_TRIE] = "lpm_trie", 171 [BPF_MAP_TYPE_ARRAY_OF_MAPS] = "array_of_maps", 172 [BPF_MAP_TYPE_HASH_OF_MAPS] = "hash_of_maps", 173 [BPF_MAP_TYPE_DEVMAP] = "devmap", 174 [BPF_MAP_TYPE_DEVMAP_HASH] = "devmap_hash", 175 [BPF_MAP_TYPE_SOCKMAP] = "sockmap", 176 [BPF_MAP_TYPE_CPUMAP] = "cpumap", 177 [BPF_MAP_TYPE_XSKMAP] = "xskmap", 178 [BPF_MAP_TYPE_SOCKHASH] = "sockhash", 179 [BPF_MAP_TYPE_CGROUP_STORAGE] = "cgroup_storage", 180 [BPF_MAP_TYPE_REUSEPORT_SOCKARRAY] = "reuseport_sockarray", 181 [BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE] = "percpu_cgroup_storage", 182 [BPF_MAP_TYPE_QUEUE] = "queue", 183 [BPF_MAP_TYPE_STACK] = "stack", 184 [BPF_MAP_TYPE_SK_STORAGE] = "sk_storage", 185 [BPF_MAP_TYPE_STRUCT_OPS] = "struct_ops", 186 [BPF_MAP_TYPE_RINGBUF] = "ringbuf", 187 [BPF_MAP_TYPE_INODE_STORAGE] = "inode_storage", 188 [BPF_MAP_TYPE_TASK_STORAGE] = "task_storage", 189 [BPF_MAP_TYPE_BLOOM_FILTER] = "bloom_filter", 190 [BPF_MAP_TYPE_USER_RINGBUF] = "user_ringbuf", 191 [BPF_MAP_TYPE_CGRP_STORAGE] = "cgrp_storage", 192 [BPF_MAP_TYPE_ARENA] = "arena", 193 }; 194 195 static const char * const prog_type_name[] = { 196 [BPF_PROG_TYPE_UNSPEC] = "unspec", 197 [BPF_PROG_TYPE_SOCKET_FILTER] = "socket_filter", 198 [BPF_PROG_TYPE_KPROBE] = "kprobe", 199 [BPF_PROG_TYPE_SCHED_CLS] = "sched_cls", 200 [BPF_PROG_TYPE_SCHED_ACT] = "sched_act", 201 [BPF_PROG_TYPE_TRACEPOINT] = "tracepoint", 202 [BPF_PROG_TYPE_XDP] = "xdp", 203 [BPF_PROG_TYPE_PERF_EVENT] = "perf_event", 204 [BPF_PROG_TYPE_CGROUP_SKB] = "cgroup_skb", 205 [BPF_PROG_TYPE_CGROUP_SOCK] = "cgroup_sock", 206 [BPF_PROG_TYPE_LWT_IN] = "lwt_in", 207 [BPF_PROG_TYPE_LWT_OUT] = "lwt_out", 208 [BPF_PROG_TYPE_LWT_XMIT] = "lwt_xmit", 209 [BPF_PROG_TYPE_SOCK_OPS] = "sock_ops", 210 [BPF_PROG_TYPE_SK_SKB] = "sk_skb", 211 [BPF_PROG_TYPE_CGROUP_DEVICE] = "cgroup_device", 212 [BPF_PROG_TYPE_SK_MSG] = "sk_msg", 213 [BPF_PROG_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 214 [BPF_PROG_TYPE_CGROUP_SOCK_ADDR] = "cgroup_sock_addr", 215 [BPF_PROG_TYPE_LWT_SEG6LOCAL] = "lwt_seg6local", 216 [BPF_PROG_TYPE_LIRC_MODE2] = "lirc_mode2", 217 [BPF_PROG_TYPE_SK_REUSEPORT] = "sk_reuseport", 218 [BPF_PROG_TYPE_FLOW_DISSECTOR] = "flow_dissector", 219 [BPF_PROG_TYPE_CGROUP_SYSCTL] = "cgroup_sysctl", 220 [BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE] = "raw_tracepoint_writable", 221 [BPF_PROG_TYPE_CGROUP_SOCKOPT] = "cgroup_sockopt", 222 [BPF_PROG_TYPE_TRACING] = "tracing", 223 [BPF_PROG_TYPE_STRUCT_OPS] = "struct_ops", 224 [BPF_PROG_TYPE_EXT] = "ext", 225 [BPF_PROG_TYPE_LSM] = "lsm", 226 [BPF_PROG_TYPE_SK_LOOKUP] = "sk_lookup", 227 [BPF_PROG_TYPE_SYSCALL] = "syscall", 228 [BPF_PROG_TYPE_NETFILTER] = "netfilter", 229 }; 230 231 static int __base_pr(enum libbpf_print_level level, const char *format, 232 va_list args) 233 { 234 const char *env_var = "LIBBPF_LOG_LEVEL"; 235 static enum libbpf_print_level min_level = LIBBPF_INFO; 236 static bool initialized; 237 238 if (!initialized) { 239 char *verbosity; 240 241 initialized = true; 242 verbosity = getenv(env_var); 243 if (verbosity) { 244 if (strcasecmp(verbosity, "warn") == 0) 245 min_level = LIBBPF_WARN; 246 else if (strcasecmp(verbosity, "debug") == 0) 247 min_level = LIBBPF_DEBUG; 248 else if (strcasecmp(verbosity, "info") == 0) 249 min_level = LIBBPF_INFO; 250 else 251 fprintf(stderr, "libbpf: unrecognized '%s' envvar value: '%s', should be one of 'warn', 'debug', or 'info'.\n", 252 env_var, verbosity); 253 } 254 } 255 256 /* if too verbose, skip logging */ 257 if (level > min_level) 258 return 0; 259 260 return vfprintf(stderr, format, args); 261 } 262 263 static libbpf_print_fn_t __libbpf_pr = __base_pr; 264 265 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 266 { 267 libbpf_print_fn_t old_print_fn; 268 269 old_print_fn = __atomic_exchange_n(&__libbpf_pr, fn, __ATOMIC_RELAXED); 270 271 return old_print_fn; 272 } 273 274 __printf(2, 3) 275 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 276 { 277 va_list args; 278 int old_errno; 279 libbpf_print_fn_t print_fn; 280 281 print_fn = __atomic_load_n(&__libbpf_pr, __ATOMIC_RELAXED); 282 if (!print_fn) 283 return; 284 285 old_errno = errno; 286 287 va_start(args, format); 288 print_fn(level, format, args); 289 va_end(args); 290 291 errno = old_errno; 292 } 293 294 static void pr_perm_msg(int err) 295 { 296 struct rlimit limit; 297 char buf[100]; 298 299 if (err != -EPERM || geteuid() != 0) 300 return; 301 302 err = getrlimit(RLIMIT_MEMLOCK, &limit); 303 if (err) 304 return; 305 306 if (limit.rlim_cur == RLIM_INFINITY) 307 return; 308 309 if (limit.rlim_cur < 1024) 310 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 311 else if (limit.rlim_cur < 1024*1024) 312 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 313 else 314 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 315 316 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 317 buf); 318 } 319 320 /* Copied from tools/perf/util/util.h */ 321 #ifndef zfree 322 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 323 #endif 324 325 #ifndef zclose 326 # define zclose(fd) ({ \ 327 int ___err = 0; \ 328 if ((fd) >= 0) \ 329 ___err = close((fd)); \ 330 fd = -1; \ 331 ___err; }) 332 #endif 333 334 static inline __u64 ptr_to_u64(const void *ptr) 335 { 336 return (__u64) (unsigned long) ptr; 337 } 338 339 int libbpf_set_strict_mode(enum libbpf_strict_mode mode) 340 { 341 /* as of v1.0 libbpf_set_strict_mode() is a no-op */ 342 return 0; 343 } 344 345 __u32 libbpf_major_version(void) 346 { 347 return LIBBPF_MAJOR_VERSION; 348 } 349 350 __u32 libbpf_minor_version(void) 351 { 352 return LIBBPF_MINOR_VERSION; 353 } 354 355 const char *libbpf_version_string(void) 356 { 357 #define __S(X) #X 358 #define _S(X) __S(X) 359 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION); 360 #undef _S 361 #undef __S 362 } 363 364 enum reloc_type { 365 RELO_LD64, 366 RELO_CALL, 367 RELO_DATA, 368 RELO_EXTERN_LD64, 369 RELO_EXTERN_CALL, 370 RELO_SUBPROG_ADDR, 371 RELO_CORE, 372 }; 373 374 struct reloc_desc { 375 enum reloc_type type; 376 int insn_idx; 377 union { 378 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */ 379 struct { 380 int map_idx; 381 int sym_off; 382 int ext_idx; 383 }; 384 }; 385 }; 386 387 /* stored as sec_def->cookie for all libbpf-supported SEC()s */ 388 enum sec_def_flags { 389 SEC_NONE = 0, 390 /* expected_attach_type is optional, if kernel doesn't support that */ 391 SEC_EXP_ATTACH_OPT = 1, 392 /* legacy, only used by libbpf_get_type_names() and 393 * libbpf_attach_type_by_name(), not used by libbpf itself at all. 394 * This used to be associated with cgroup (and few other) BPF programs 395 * that were attachable through BPF_PROG_ATTACH command. Pretty 396 * meaningless nowadays, though. 397 */ 398 SEC_ATTACHABLE = 2, 399 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT, 400 /* attachment target is specified through BTF ID in either kernel or 401 * other BPF program's BTF object 402 */ 403 SEC_ATTACH_BTF = 4, 404 /* BPF program type allows sleeping/blocking in kernel */ 405 SEC_SLEEPABLE = 8, 406 /* BPF program support non-linear XDP buffer */ 407 SEC_XDP_FRAGS = 16, 408 /* Setup proper attach type for usdt probes. */ 409 SEC_USDT = 32, 410 }; 411 412 struct bpf_sec_def { 413 char *sec; 414 enum bpf_prog_type prog_type; 415 enum bpf_attach_type expected_attach_type; 416 long cookie; 417 int handler_id; 418 419 libbpf_prog_setup_fn_t prog_setup_fn; 420 libbpf_prog_prepare_load_fn_t prog_prepare_load_fn; 421 libbpf_prog_attach_fn_t prog_attach_fn; 422 }; 423 424 /* 425 * bpf_prog should be a better name but it has been used in 426 * linux/filter.h. 427 */ 428 struct bpf_program { 429 char *name; 430 char *sec_name; 431 size_t sec_idx; 432 const struct bpf_sec_def *sec_def; 433 /* this program's instruction offset (in number of instructions) 434 * within its containing ELF section 435 */ 436 size_t sec_insn_off; 437 /* number of original instructions in ELF section belonging to this 438 * program, not taking into account subprogram instructions possible 439 * appended later during relocation 440 */ 441 size_t sec_insn_cnt; 442 /* Offset (in number of instructions) of the start of instruction 443 * belonging to this BPF program within its containing main BPF 444 * program. For the entry-point (main) BPF program, this is always 445 * zero. For a sub-program, this gets reset before each of main BPF 446 * programs are processed and relocated and is used to determined 447 * whether sub-program was already appended to the main program, and 448 * if yes, at which instruction offset. 449 */ 450 size_t sub_insn_off; 451 452 /* instructions that belong to BPF program; insns[0] is located at 453 * sec_insn_off instruction within its ELF section in ELF file, so 454 * when mapping ELF file instruction index to the local instruction, 455 * one needs to subtract sec_insn_off; and vice versa. 456 */ 457 struct bpf_insn *insns; 458 /* actual number of instruction in this BPF program's image; for 459 * entry-point BPF programs this includes the size of main program 460 * itself plus all the used sub-programs, appended at the end 461 */ 462 size_t insns_cnt; 463 464 struct reloc_desc *reloc_desc; 465 int nr_reloc; 466 467 /* BPF verifier log settings */ 468 char *log_buf; 469 size_t log_size; 470 __u32 log_level; 471 472 struct bpf_object *obj; 473 474 int fd; 475 bool autoload; 476 bool autoattach; 477 bool sym_global; 478 bool mark_btf_static; 479 enum bpf_prog_type type; 480 enum bpf_attach_type expected_attach_type; 481 int exception_cb_idx; 482 483 int prog_ifindex; 484 __u32 attach_btf_obj_fd; 485 __u32 attach_btf_id; 486 __u32 attach_prog_fd; 487 488 void *func_info; 489 __u32 func_info_rec_size; 490 __u32 func_info_cnt; 491 492 void *line_info; 493 __u32 line_info_rec_size; 494 __u32 line_info_cnt; 495 __u32 prog_flags; 496 __u8 hash[SHA256_DIGEST_LENGTH]; 497 }; 498 499 struct bpf_struct_ops { 500 struct bpf_program **progs; 501 __u32 *kern_func_off; 502 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 503 void *data; 504 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 505 * btf_vmlinux's format. 506 * struct bpf_struct_ops_tcp_congestion_ops { 507 * [... some other kernel fields ...] 508 * struct tcp_congestion_ops data; 509 * } 510 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 511 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 512 * from "data". 513 */ 514 void *kern_vdata; 515 __u32 type_id; 516 }; 517 518 #define DATA_SEC ".data" 519 #define BSS_SEC ".bss" 520 #define RODATA_SEC ".rodata" 521 #define KCONFIG_SEC ".kconfig" 522 #define KSYMS_SEC ".ksyms" 523 #define STRUCT_OPS_SEC ".struct_ops" 524 #define STRUCT_OPS_LINK_SEC ".struct_ops.link" 525 #define ARENA_SEC ".addr_space.1" 526 527 enum libbpf_map_type { 528 LIBBPF_MAP_UNSPEC, 529 LIBBPF_MAP_DATA, 530 LIBBPF_MAP_BSS, 531 LIBBPF_MAP_RODATA, 532 LIBBPF_MAP_KCONFIG, 533 }; 534 535 struct bpf_map_def { 536 unsigned int type; 537 unsigned int key_size; 538 unsigned int value_size; 539 unsigned int max_entries; 540 unsigned int map_flags; 541 }; 542 543 struct bpf_map { 544 struct bpf_object *obj; 545 char *name; 546 /* real_name is defined for special internal maps (.rodata*, 547 * .data*, .bss, .kconfig) and preserves their original ELF section 548 * name. This is important to be able to find corresponding BTF 549 * DATASEC information. 550 */ 551 char *real_name; 552 int fd; 553 int sec_idx; 554 size_t sec_offset; 555 int map_ifindex; 556 int inner_map_fd; 557 struct bpf_map_def def; 558 __u32 numa_node; 559 __u32 btf_var_idx; 560 int mod_btf_fd; 561 __u32 btf_key_type_id; 562 __u32 btf_value_type_id; 563 __u32 btf_vmlinux_value_type_id; 564 enum libbpf_map_type libbpf_type; 565 void *mmaped; 566 struct bpf_struct_ops *st_ops; 567 struct bpf_map *inner_map; 568 void **init_slots; 569 int init_slots_sz; 570 char *pin_path; 571 bool pinned; 572 bool reused; 573 bool autocreate; 574 bool autoattach; 575 __u64 map_extra; 576 struct bpf_program *excl_prog; 577 }; 578 579 enum extern_type { 580 EXT_UNKNOWN, 581 EXT_KCFG, 582 EXT_KSYM, 583 }; 584 585 enum kcfg_type { 586 KCFG_UNKNOWN, 587 KCFG_CHAR, 588 KCFG_BOOL, 589 KCFG_INT, 590 KCFG_TRISTATE, 591 KCFG_CHAR_ARR, 592 }; 593 594 struct extern_desc { 595 enum extern_type type; 596 int sym_idx; 597 int btf_id; 598 int sec_btf_id; 599 char *name; 600 char *essent_name; 601 bool is_set; 602 bool is_weak; 603 union { 604 struct { 605 enum kcfg_type type; 606 int sz; 607 int align; 608 int data_off; 609 bool is_signed; 610 } kcfg; 611 struct { 612 unsigned long long addr; 613 614 /* target btf_id of the corresponding kernel var. */ 615 int kernel_btf_obj_fd; 616 int kernel_btf_id; 617 618 /* local btf_id of the ksym extern's type. */ 619 __u32 type_id; 620 /* BTF fd index to be patched in for insn->off, this is 621 * 0 for vmlinux BTF, index in obj->fd_array for module 622 * BTF 623 */ 624 __s16 btf_fd_idx; 625 } ksym; 626 }; 627 }; 628 629 struct module_btf { 630 struct btf *btf; 631 char *name; 632 __u32 id; 633 int fd; 634 int fd_array_idx; 635 }; 636 637 enum sec_type { 638 SEC_UNUSED = 0, 639 SEC_RELO, 640 SEC_BSS, 641 SEC_DATA, 642 SEC_RODATA, 643 SEC_ST_OPS, 644 }; 645 646 struct elf_sec_desc { 647 enum sec_type sec_type; 648 Elf64_Shdr *shdr; 649 Elf_Data *data; 650 }; 651 652 struct elf_state { 653 int fd; 654 const void *obj_buf; 655 size_t obj_buf_sz; 656 Elf *elf; 657 Elf64_Ehdr *ehdr; 658 Elf_Data *symbols; 659 Elf_Data *arena_data; 660 size_t shstrndx; /* section index for section name strings */ 661 size_t strtabidx; 662 struct elf_sec_desc *secs; 663 size_t sec_cnt; 664 int btf_maps_shndx; 665 __u32 btf_maps_sec_btf_id; 666 int text_shndx; 667 int symbols_shndx; 668 bool has_st_ops; 669 int arena_data_shndx; 670 }; 671 672 struct usdt_manager; 673 674 enum bpf_object_state { 675 OBJ_OPEN, 676 OBJ_PREPARED, 677 OBJ_LOADED, 678 }; 679 680 struct bpf_object { 681 char name[BPF_OBJ_NAME_LEN]; 682 char license[64]; 683 __u32 kern_version; 684 685 enum bpf_object_state state; 686 struct bpf_program *programs; 687 size_t nr_programs; 688 struct bpf_map *maps; 689 size_t nr_maps; 690 size_t maps_cap; 691 692 char *kconfig; 693 struct extern_desc *externs; 694 int nr_extern; 695 int kconfig_map_idx; 696 697 bool has_subcalls; 698 bool has_rodata; 699 700 struct bpf_gen *gen_loader; 701 702 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */ 703 struct elf_state efile; 704 705 unsigned char byteorder; 706 707 struct btf *btf; 708 struct btf_ext *btf_ext; 709 710 /* Parse and load BTF vmlinux if any of the programs in the object need 711 * it at load time. 712 */ 713 struct btf *btf_vmlinux; 714 /* Path to the custom BTF to be used for BPF CO-RE relocations as an 715 * override for vmlinux BTF. 716 */ 717 char *btf_custom_path; 718 /* vmlinux BTF override for CO-RE relocations */ 719 struct btf *btf_vmlinux_override; 720 /* Lazily initialized kernel module BTFs */ 721 struct module_btf *btf_modules; 722 bool btf_modules_loaded; 723 size_t btf_module_cnt; 724 size_t btf_module_cap; 725 726 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */ 727 char *log_buf; 728 size_t log_size; 729 __u32 log_level; 730 731 int *fd_array; 732 size_t fd_array_cap; 733 size_t fd_array_cnt; 734 735 struct usdt_manager *usdt_man; 736 737 int arena_map_idx; 738 void *arena_data; 739 size_t arena_data_sz; 740 741 struct kern_feature_cache *feat_cache; 742 char *token_path; 743 int token_fd; 744 745 char path[]; 746 }; 747 748 static const char *elf_sym_str(const struct bpf_object *obj, size_t off); 749 static const char *elf_sec_str(const struct bpf_object *obj, size_t off); 750 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx); 751 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name); 752 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn); 753 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn); 754 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn); 755 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx); 756 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx); 757 758 void bpf_program__unload(struct bpf_program *prog) 759 { 760 if (!prog) 761 return; 762 763 zclose(prog->fd); 764 765 zfree(&prog->func_info); 766 zfree(&prog->line_info); 767 } 768 769 static void bpf_program__exit(struct bpf_program *prog) 770 { 771 if (!prog) 772 return; 773 774 bpf_program__unload(prog); 775 zfree(&prog->name); 776 zfree(&prog->sec_name); 777 zfree(&prog->insns); 778 zfree(&prog->reloc_desc); 779 780 prog->nr_reloc = 0; 781 prog->insns_cnt = 0; 782 prog->sec_idx = -1; 783 } 784 785 static bool insn_is_subprog_call(const struct bpf_insn *insn) 786 { 787 return BPF_CLASS(insn->code) == BPF_JMP && 788 BPF_OP(insn->code) == BPF_CALL && 789 BPF_SRC(insn->code) == BPF_K && 790 insn->src_reg == BPF_PSEUDO_CALL && 791 insn->dst_reg == 0 && 792 insn->off == 0; 793 } 794 795 static bool is_call_insn(const struct bpf_insn *insn) 796 { 797 return insn->code == (BPF_JMP | BPF_CALL); 798 } 799 800 static bool insn_is_pseudo_func(struct bpf_insn *insn) 801 { 802 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 803 } 804 805 static int 806 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog, 807 const char *name, size_t sec_idx, const char *sec_name, 808 size_t sec_off, void *insn_data, size_t insn_data_sz) 809 { 810 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) { 811 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n", 812 sec_name, name, sec_off, insn_data_sz); 813 return -EINVAL; 814 } 815 816 memset(prog, 0, sizeof(*prog)); 817 prog->obj = obj; 818 819 prog->sec_idx = sec_idx; 820 prog->sec_insn_off = sec_off / BPF_INSN_SZ; 821 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ; 822 /* insns_cnt can later be increased by appending used subprograms */ 823 prog->insns_cnt = prog->sec_insn_cnt; 824 825 prog->type = BPF_PROG_TYPE_UNSPEC; 826 prog->fd = -1; 827 prog->exception_cb_idx = -1; 828 829 /* libbpf's convention for SEC("?abc...") is that it's just like 830 * SEC("abc...") but the corresponding bpf_program starts out with 831 * autoload set to false. 832 */ 833 if (sec_name[0] == '?') { 834 prog->autoload = false; 835 /* from now on forget there was ? in section name */ 836 sec_name++; 837 } else { 838 prog->autoload = true; 839 } 840 841 prog->autoattach = true; 842 843 /* inherit object's log_level */ 844 prog->log_level = obj->log_level; 845 846 prog->sec_name = strdup(sec_name); 847 if (!prog->sec_name) 848 goto errout; 849 850 prog->name = strdup(name); 851 if (!prog->name) 852 goto errout; 853 854 prog->insns = malloc(insn_data_sz); 855 if (!prog->insns) 856 goto errout; 857 memcpy(prog->insns, insn_data, insn_data_sz); 858 859 return 0; 860 errout: 861 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name); 862 bpf_program__exit(prog); 863 return -ENOMEM; 864 } 865 866 static int 867 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data, 868 const char *sec_name, int sec_idx) 869 { 870 Elf_Data *symbols = obj->efile.symbols; 871 struct bpf_program *prog, *progs; 872 void *data = sec_data->d_buf; 873 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms; 874 int nr_progs, err, i; 875 const char *name; 876 Elf64_Sym *sym; 877 878 progs = obj->programs; 879 nr_progs = obj->nr_programs; 880 nr_syms = symbols->d_size / sizeof(Elf64_Sym); 881 882 for (i = 0; i < nr_syms; i++) { 883 sym = elf_sym_by_idx(obj, i); 884 885 if (sym->st_shndx != sec_idx) 886 continue; 887 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC) 888 continue; 889 890 prog_sz = sym->st_size; 891 sec_off = sym->st_value; 892 893 name = elf_sym_str(obj, sym->st_name); 894 if (!name) { 895 pr_warn("sec '%s': failed to get symbol name for offset %zu\n", 896 sec_name, sec_off); 897 return -LIBBPF_ERRNO__FORMAT; 898 } 899 900 if (sec_off + prog_sz > sec_sz || sec_off + prog_sz < sec_off) { 901 pr_warn("sec '%s': program at offset %zu crosses section boundary\n", 902 sec_name, sec_off); 903 return -LIBBPF_ERRNO__FORMAT; 904 } 905 906 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) { 907 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name); 908 return -ENOTSUP; 909 } 910 911 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n", 912 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz); 913 914 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs)); 915 if (!progs) { 916 /* 917 * In this case the original obj->programs 918 * is still valid, so don't need special treat for 919 * bpf_close_object(). 920 */ 921 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n", 922 sec_name, name); 923 return -ENOMEM; 924 } 925 obj->programs = progs; 926 927 prog = &progs[nr_progs]; 928 929 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name, 930 sec_off, data + sec_off, prog_sz); 931 if (err) 932 return err; 933 934 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL) 935 prog->sym_global = true; 936 937 /* if function is a global/weak symbol, but has restricted 938 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC 939 * as static to enable more permissive BPF verification mode 940 * with more outside context available to BPF verifier 941 */ 942 if (prog->sym_global && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 943 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)) 944 prog->mark_btf_static = true; 945 946 nr_progs++; 947 obj->nr_programs = nr_progs; 948 } 949 950 return 0; 951 } 952 953 static void bpf_object_bswap_progs(struct bpf_object *obj) 954 { 955 struct bpf_program *prog = obj->programs; 956 struct bpf_insn *insn; 957 int p, i; 958 959 for (p = 0; p < obj->nr_programs; p++, prog++) { 960 insn = prog->insns; 961 for (i = 0; i < prog->insns_cnt; i++, insn++) 962 bpf_insn_bswap(insn); 963 } 964 pr_debug("converted %zu BPF programs to native byte order\n", obj->nr_programs); 965 } 966 967 static const struct btf_member * 968 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 969 { 970 struct btf_member *m; 971 int i; 972 973 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 974 if (btf_member_bit_offset(t, i) == bit_offset) 975 return m; 976 } 977 978 return NULL; 979 } 980 981 static const struct btf_member * 982 find_member_by_name(const struct btf *btf, const struct btf_type *t, 983 const char *name) 984 { 985 struct btf_member *m; 986 int i; 987 988 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 989 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 990 return m; 991 } 992 993 return NULL; 994 } 995 996 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 997 __u16 kind, struct btf **res_btf, 998 struct module_btf **res_mod_btf); 999 1000 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 1001 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 1002 const char *name, __u32 kind); 1003 1004 static int 1005 find_struct_ops_kern_types(struct bpf_object *obj, const char *tname_raw, 1006 struct module_btf **mod_btf, 1007 const struct btf_type **type, __u32 *type_id, 1008 const struct btf_type **vtype, __u32 *vtype_id, 1009 const struct btf_member **data_member) 1010 { 1011 const struct btf_type *kern_type, *kern_vtype; 1012 const struct btf_member *kern_data_member; 1013 struct btf *btf = NULL; 1014 __s32 kern_vtype_id, kern_type_id; 1015 char tname[192], stname[256]; 1016 __u32 i; 1017 1018 snprintf(tname, sizeof(tname), "%.*s", 1019 (int)bpf_core_essential_name_len(tname_raw), tname_raw); 1020 1021 snprintf(stname, sizeof(stname), "%s%s", STRUCT_OPS_VALUE_PREFIX, tname); 1022 1023 /* Look for the corresponding "map_value" type that will be used 1024 * in map_update(BPF_MAP_TYPE_STRUCT_OPS) first, figure out the btf 1025 * and the mod_btf. 1026 * For example, find "struct bpf_struct_ops_tcp_congestion_ops". 1027 */ 1028 kern_vtype_id = find_ksym_btf_id(obj, stname, BTF_KIND_STRUCT, &btf, mod_btf); 1029 if (kern_vtype_id < 0) { 1030 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", stname); 1031 return kern_vtype_id; 1032 } 1033 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 1034 1035 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT); 1036 if (kern_type_id < 0) { 1037 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", tname); 1038 return kern_type_id; 1039 } 1040 kern_type = btf__type_by_id(btf, kern_type_id); 1041 1042 /* Find "struct tcp_congestion_ops" from 1043 * struct bpf_struct_ops_tcp_congestion_ops { 1044 * [ ... ] 1045 * struct tcp_congestion_ops data; 1046 * } 1047 */ 1048 kern_data_member = btf_members(kern_vtype); 1049 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 1050 if (kern_data_member->type == kern_type_id) 1051 break; 1052 } 1053 if (i == btf_vlen(kern_vtype)) { 1054 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s\n", 1055 tname, stname); 1056 return -EINVAL; 1057 } 1058 1059 *type = kern_type; 1060 *type_id = kern_type_id; 1061 *vtype = kern_vtype; 1062 *vtype_id = kern_vtype_id; 1063 *data_member = kern_data_member; 1064 1065 return 0; 1066 } 1067 1068 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 1069 { 1070 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 1071 } 1072 1073 static bool is_valid_st_ops_program(struct bpf_object *obj, 1074 const struct bpf_program *prog) 1075 { 1076 int i; 1077 1078 for (i = 0; i < obj->nr_programs; i++) { 1079 if (&obj->programs[i] == prog) 1080 return prog->type == BPF_PROG_TYPE_STRUCT_OPS; 1081 } 1082 1083 return false; 1084 } 1085 1086 /* For each struct_ops program P, referenced from some struct_ops map M, 1087 * enable P.autoload if there are Ms for which M.autocreate is true, 1088 * disable P.autoload if for all Ms M.autocreate is false. 1089 * Don't change P.autoload for programs that are not referenced from any maps. 1090 */ 1091 static int bpf_object_adjust_struct_ops_autoload(struct bpf_object *obj) 1092 { 1093 struct bpf_program *prog, *slot_prog; 1094 struct bpf_map *map; 1095 int i, j, k, vlen; 1096 1097 for (i = 0; i < obj->nr_programs; ++i) { 1098 int should_load = false; 1099 int use_cnt = 0; 1100 1101 prog = &obj->programs[i]; 1102 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) 1103 continue; 1104 1105 for (j = 0; j < obj->nr_maps; ++j) { 1106 const struct btf_type *type; 1107 1108 map = &obj->maps[j]; 1109 if (!bpf_map__is_struct_ops(map)) 1110 continue; 1111 1112 type = btf__type_by_id(obj->btf, map->st_ops->type_id); 1113 vlen = btf_vlen(type); 1114 for (k = 0; k < vlen; ++k) { 1115 slot_prog = map->st_ops->progs[k]; 1116 if (prog != slot_prog) 1117 continue; 1118 1119 use_cnt++; 1120 if (map->autocreate) 1121 should_load = true; 1122 } 1123 } 1124 if (use_cnt) 1125 prog->autoload = should_load; 1126 } 1127 1128 return 0; 1129 } 1130 1131 /* Init the map's fields that depend on kern_btf */ 1132 static int bpf_map__init_kern_struct_ops(struct bpf_map *map) 1133 { 1134 const struct btf_member *member, *kern_member, *kern_data_member; 1135 const struct btf_type *type, *kern_type, *kern_vtype; 1136 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 1137 struct bpf_object *obj = map->obj; 1138 const struct btf *btf = obj->btf; 1139 struct bpf_struct_ops *st_ops; 1140 const struct btf *kern_btf; 1141 struct module_btf *mod_btf = NULL; 1142 void *data, *kern_data; 1143 const char *tname; 1144 int err; 1145 1146 st_ops = map->st_ops; 1147 type = btf__type_by_id(btf, st_ops->type_id); 1148 tname = btf__name_by_offset(btf, type->name_off); 1149 err = find_struct_ops_kern_types(obj, tname, &mod_btf, 1150 &kern_type, &kern_type_id, 1151 &kern_vtype, &kern_vtype_id, 1152 &kern_data_member); 1153 if (err) 1154 return err; 1155 1156 kern_btf = mod_btf ? mod_btf->btf : obj->btf_vmlinux; 1157 1158 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 1159 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 1160 1161 map->mod_btf_fd = mod_btf ? mod_btf->fd : -1; 1162 map->def.value_size = kern_vtype->size; 1163 map->btf_vmlinux_value_type_id = kern_vtype_id; 1164 1165 st_ops->kern_vdata = calloc(1, kern_vtype->size); 1166 if (!st_ops->kern_vdata) 1167 return -ENOMEM; 1168 1169 data = st_ops->data; 1170 kern_data_off = kern_data_member->offset / 8; 1171 kern_data = st_ops->kern_vdata + kern_data_off; 1172 1173 member = btf_members(type); 1174 for (i = 0; i < btf_vlen(type); i++, member++) { 1175 const struct btf_type *mtype, *kern_mtype; 1176 __u32 mtype_id, kern_mtype_id; 1177 void *mdata, *kern_mdata; 1178 struct bpf_program *prog; 1179 __s64 msize, kern_msize; 1180 __u32 moff, kern_moff; 1181 __u32 kern_member_idx; 1182 const char *mname; 1183 1184 mname = btf__name_by_offset(btf, member->name_off); 1185 moff = member->offset / 8; 1186 mdata = data + moff; 1187 msize = btf__resolve_size(btf, member->type); 1188 if (msize < 0) { 1189 pr_warn("struct_ops init_kern %s: failed to resolve the size of member %s\n", 1190 map->name, mname); 1191 return msize; 1192 } 1193 1194 kern_member = find_member_by_name(kern_btf, kern_type, mname); 1195 if (!kern_member) { 1196 if (!libbpf_is_mem_zeroed(mdata, msize)) { 1197 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 1198 map->name, mname); 1199 return -ENOTSUP; 1200 } 1201 1202 if (st_ops->progs[i]) { 1203 /* If we had declaratively set struct_ops callback, we need to 1204 * force its autoload to false, because it doesn't have 1205 * a chance of succeeding from POV of the current struct_ops map. 1206 * If this program is still referenced somewhere else, though, 1207 * then bpf_object_adjust_struct_ops_autoload() will update its 1208 * autoload accordingly. 1209 */ 1210 st_ops->progs[i]->autoload = false; 1211 st_ops->progs[i] = NULL; 1212 } 1213 1214 /* Skip all-zero/NULL fields if they are not present in the kernel BTF */ 1215 pr_info("struct_ops %s: member %s not found in kernel, skipping it as it's set to zero\n", 1216 map->name, mname); 1217 continue; 1218 } 1219 1220 kern_member_idx = kern_member - btf_members(kern_type); 1221 if (btf_member_bitfield_size(type, i) || 1222 btf_member_bitfield_size(kern_type, kern_member_idx)) { 1223 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 1224 map->name, mname); 1225 return -ENOTSUP; 1226 } 1227 1228 kern_moff = kern_member->offset / 8; 1229 kern_mdata = kern_data + kern_moff; 1230 1231 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 1232 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 1233 &kern_mtype_id); 1234 if (BTF_INFO_KIND(mtype->info) != 1235 BTF_INFO_KIND(kern_mtype->info)) { 1236 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 1237 map->name, mname, BTF_INFO_KIND(mtype->info), 1238 BTF_INFO_KIND(kern_mtype->info)); 1239 return -ENOTSUP; 1240 } 1241 1242 if (btf_is_ptr(mtype)) { 1243 prog = *(void **)mdata; 1244 /* just like for !kern_member case above, reset declaratively 1245 * set (at compile time) program's autload to false, 1246 * if user replaced it with another program or NULL 1247 */ 1248 if (st_ops->progs[i] && st_ops->progs[i] != prog) 1249 st_ops->progs[i]->autoload = false; 1250 1251 /* Update the value from the shadow type */ 1252 st_ops->progs[i] = prog; 1253 if (!prog) 1254 continue; 1255 1256 if (!is_valid_st_ops_program(obj, prog)) { 1257 pr_warn("struct_ops init_kern %s: member %s is not a struct_ops program\n", 1258 map->name, mname); 1259 return -ENOTSUP; 1260 } 1261 1262 kern_mtype = skip_mods_and_typedefs(kern_btf, 1263 kern_mtype->type, 1264 &kern_mtype_id); 1265 1266 /* mtype->type must be a func_proto which was 1267 * guaranteed in bpf_object__collect_st_ops_relos(), 1268 * so only check kern_mtype for func_proto here. 1269 */ 1270 if (!btf_is_func_proto(kern_mtype)) { 1271 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n", 1272 map->name, mname); 1273 return -ENOTSUP; 1274 } 1275 1276 if (mod_btf) 1277 prog->attach_btf_obj_fd = mod_btf->fd; 1278 1279 /* if we haven't yet processed this BPF program, record proper 1280 * attach_btf_id and member_idx 1281 */ 1282 if (!prog->attach_btf_id) { 1283 prog->attach_btf_id = kern_type_id; 1284 prog->expected_attach_type = kern_member_idx; 1285 } 1286 1287 /* struct_ops BPF prog can be re-used between multiple 1288 * .struct_ops & .struct_ops.link as long as it's the 1289 * same struct_ops struct definition and the same 1290 * function pointer field 1291 */ 1292 if (prog->attach_btf_id != kern_type_id) { 1293 pr_warn("struct_ops init_kern %s func ptr %s: invalid reuse of prog %s in sec %s with type %u: attach_btf_id %u != kern_type_id %u\n", 1294 map->name, mname, prog->name, prog->sec_name, prog->type, 1295 prog->attach_btf_id, kern_type_id); 1296 return -EINVAL; 1297 } 1298 if (prog->expected_attach_type != kern_member_idx) { 1299 pr_warn("struct_ops init_kern %s func ptr %s: invalid reuse of prog %s in sec %s with type %u: expected_attach_type %u != kern_member_idx %u\n", 1300 map->name, mname, prog->name, prog->sec_name, prog->type, 1301 prog->expected_attach_type, kern_member_idx); 1302 return -EINVAL; 1303 } 1304 1305 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 1306 1307 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 1308 map->name, mname, prog->name, moff, 1309 kern_moff); 1310 1311 continue; 1312 } 1313 1314 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 1315 if (kern_msize < 0 || msize != kern_msize) { 1316 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 1317 map->name, mname, (ssize_t)msize, 1318 (ssize_t)kern_msize); 1319 return -ENOTSUP; 1320 } 1321 1322 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 1323 map->name, mname, (unsigned int)msize, 1324 moff, kern_moff); 1325 memcpy(kern_mdata, mdata, msize); 1326 } 1327 1328 return 0; 1329 } 1330 1331 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 1332 { 1333 struct bpf_map *map; 1334 size_t i; 1335 int err; 1336 1337 for (i = 0; i < obj->nr_maps; i++) { 1338 map = &obj->maps[i]; 1339 1340 if (!bpf_map__is_struct_ops(map)) 1341 continue; 1342 1343 if (!map->autocreate) 1344 continue; 1345 1346 err = bpf_map__init_kern_struct_ops(map); 1347 if (err) 1348 return err; 1349 } 1350 1351 return 0; 1352 } 1353 1354 static int init_struct_ops_maps(struct bpf_object *obj, const char *sec_name, 1355 int shndx, Elf_Data *data) 1356 { 1357 const struct btf_type *type, *datasec; 1358 const struct btf_var_secinfo *vsi; 1359 struct bpf_struct_ops *st_ops; 1360 const char *tname, *var_name; 1361 __s32 type_id, datasec_id; 1362 const struct btf *btf; 1363 struct bpf_map *map; 1364 __u32 i; 1365 1366 if (shndx == -1) 1367 return 0; 1368 1369 btf = obj->btf; 1370 datasec_id = btf__find_by_name_kind(btf, sec_name, 1371 BTF_KIND_DATASEC); 1372 if (datasec_id < 0) { 1373 pr_warn("struct_ops init: DATASEC %s not found\n", 1374 sec_name); 1375 return -EINVAL; 1376 } 1377 1378 datasec = btf__type_by_id(btf, datasec_id); 1379 vsi = btf_var_secinfos(datasec); 1380 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 1381 type = btf__type_by_id(obj->btf, vsi->type); 1382 var_name = btf__name_by_offset(obj->btf, type->name_off); 1383 1384 type_id = btf__resolve_type(obj->btf, vsi->type); 1385 if (type_id < 0) { 1386 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 1387 vsi->type, sec_name); 1388 return -EINVAL; 1389 } 1390 1391 type = btf__type_by_id(obj->btf, type_id); 1392 tname = btf__name_by_offset(obj->btf, type->name_off); 1393 if (!tname[0]) { 1394 pr_warn("struct_ops init: anonymous type is not supported\n"); 1395 return -ENOTSUP; 1396 } 1397 if (!btf_is_struct(type)) { 1398 pr_warn("struct_ops init: %s is not a struct\n", tname); 1399 return -EINVAL; 1400 } 1401 1402 map = bpf_object__add_map(obj); 1403 if (IS_ERR(map)) 1404 return PTR_ERR(map); 1405 1406 map->sec_idx = shndx; 1407 map->sec_offset = vsi->offset; 1408 map->name = strdup(var_name); 1409 if (!map->name) 1410 return -ENOMEM; 1411 map->btf_value_type_id = type_id; 1412 1413 /* Follow same convention as for programs autoload: 1414 * SEC("?.struct_ops") means map is not created by default. 1415 */ 1416 if (sec_name[0] == '?') { 1417 map->autocreate = false; 1418 /* from now on forget there was ? in section name */ 1419 sec_name++; 1420 } 1421 1422 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 1423 map->def.key_size = sizeof(int); 1424 map->def.value_size = type->size; 1425 map->def.max_entries = 1; 1426 map->def.map_flags = strcmp(sec_name, STRUCT_OPS_LINK_SEC) == 0 ? BPF_F_LINK : 0; 1427 map->autoattach = true; 1428 1429 map->st_ops = calloc(1, sizeof(*map->st_ops)); 1430 if (!map->st_ops) 1431 return -ENOMEM; 1432 st_ops = map->st_ops; 1433 st_ops->data = malloc(type->size); 1434 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 1435 st_ops->kern_func_off = malloc(btf_vlen(type) * 1436 sizeof(*st_ops->kern_func_off)); 1437 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 1438 return -ENOMEM; 1439 1440 if (vsi->offset + type->size > data->d_size) { 1441 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 1442 var_name, sec_name); 1443 return -EINVAL; 1444 } 1445 1446 memcpy(st_ops->data, 1447 data->d_buf + vsi->offset, 1448 type->size); 1449 st_ops->type_id = type_id; 1450 1451 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 1452 tname, type_id, var_name, vsi->offset); 1453 } 1454 1455 return 0; 1456 } 1457 1458 static int bpf_object_init_struct_ops(struct bpf_object *obj) 1459 { 1460 const char *sec_name; 1461 int sec_idx, err; 1462 1463 for (sec_idx = 0; sec_idx < obj->efile.sec_cnt; ++sec_idx) { 1464 struct elf_sec_desc *desc = &obj->efile.secs[sec_idx]; 1465 1466 if (desc->sec_type != SEC_ST_OPS) 1467 continue; 1468 1469 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1470 if (!sec_name) 1471 return -LIBBPF_ERRNO__FORMAT; 1472 1473 err = init_struct_ops_maps(obj, sec_name, sec_idx, desc->data); 1474 if (err) 1475 return err; 1476 } 1477 1478 return 0; 1479 } 1480 1481 static struct bpf_object *bpf_object__new(const char *path, 1482 const void *obj_buf, 1483 size_t obj_buf_sz, 1484 const char *obj_name) 1485 { 1486 struct bpf_object *obj; 1487 char *end; 1488 1489 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 1490 if (!obj) { 1491 pr_warn("alloc memory failed for %s\n", path); 1492 return ERR_PTR(-ENOMEM); 1493 } 1494 1495 strcpy(obj->path, path); 1496 if (obj_name) { 1497 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name)); 1498 } else { 1499 /* Using basename() GNU version which doesn't modify arg. */ 1500 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name)); 1501 end = strchr(obj->name, '.'); 1502 if (end) 1503 *end = 0; 1504 } 1505 1506 obj->efile.fd = -1; 1507 /* 1508 * Caller of this function should also call 1509 * bpf_object__elf_finish() after data collection to return 1510 * obj_buf to user. If not, we should duplicate the buffer to 1511 * avoid user freeing them before elf finish. 1512 */ 1513 obj->efile.obj_buf = obj_buf; 1514 obj->efile.obj_buf_sz = obj_buf_sz; 1515 obj->efile.btf_maps_shndx = -1; 1516 obj->kconfig_map_idx = -1; 1517 obj->arena_map_idx = -1; 1518 1519 obj->kern_version = get_kernel_version(); 1520 obj->state = OBJ_OPEN; 1521 1522 return obj; 1523 } 1524 1525 static void bpf_object__elf_finish(struct bpf_object *obj) 1526 { 1527 if (!obj->efile.elf) 1528 return; 1529 1530 elf_end(obj->efile.elf); 1531 obj->efile.elf = NULL; 1532 obj->efile.ehdr = NULL; 1533 obj->efile.symbols = NULL; 1534 obj->efile.arena_data = NULL; 1535 1536 zfree(&obj->efile.secs); 1537 obj->efile.sec_cnt = 0; 1538 zclose(obj->efile.fd); 1539 obj->efile.obj_buf = NULL; 1540 obj->efile.obj_buf_sz = 0; 1541 } 1542 1543 static int bpf_object__elf_init(struct bpf_object *obj) 1544 { 1545 Elf64_Ehdr *ehdr; 1546 int err = 0; 1547 Elf *elf; 1548 1549 if (obj->efile.elf) { 1550 pr_warn("elf: init internal error\n"); 1551 return -LIBBPF_ERRNO__LIBELF; 1552 } 1553 1554 if (obj->efile.obj_buf_sz > 0) { 1555 /* obj_buf should have been validated by bpf_object__open_mem(). */ 1556 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz); 1557 } else { 1558 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC); 1559 if (obj->efile.fd < 0) { 1560 err = -errno; 1561 pr_warn("elf: failed to open %s: %s\n", obj->path, errstr(err)); 1562 return err; 1563 } 1564 1565 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL); 1566 } 1567 1568 if (!elf) { 1569 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1)); 1570 err = -LIBBPF_ERRNO__LIBELF; 1571 goto errout; 1572 } 1573 1574 obj->efile.elf = elf; 1575 1576 if (elf_kind(elf) != ELF_K_ELF) { 1577 err = -LIBBPF_ERRNO__FORMAT; 1578 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path); 1579 goto errout; 1580 } 1581 1582 if (gelf_getclass(elf) != ELFCLASS64) { 1583 err = -LIBBPF_ERRNO__FORMAT; 1584 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path); 1585 goto errout; 1586 } 1587 1588 obj->efile.ehdr = ehdr = elf64_getehdr(elf); 1589 if (!obj->efile.ehdr) { 1590 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1)); 1591 err = -LIBBPF_ERRNO__FORMAT; 1592 goto errout; 1593 } 1594 1595 /* Validate ELF object endianness... */ 1596 if (ehdr->e_ident[EI_DATA] != ELFDATA2LSB && 1597 ehdr->e_ident[EI_DATA] != ELFDATA2MSB) { 1598 err = -LIBBPF_ERRNO__ENDIAN; 1599 pr_warn("elf: '%s' has unknown byte order\n", obj->path); 1600 goto errout; 1601 } 1602 /* and save after bpf_object_open() frees ELF data */ 1603 obj->byteorder = ehdr->e_ident[EI_DATA]; 1604 1605 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) { 1606 pr_warn("elf: failed to get section names section index for %s: %s\n", 1607 obj->path, elf_errmsg(-1)); 1608 err = -LIBBPF_ERRNO__FORMAT; 1609 goto errout; 1610 } 1611 1612 /* ELF is corrupted/truncated, avoid calling elf_strptr. */ 1613 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) { 1614 pr_warn("elf: failed to get section names strings from %s: %s\n", 1615 obj->path, elf_errmsg(-1)); 1616 err = -LIBBPF_ERRNO__FORMAT; 1617 goto errout; 1618 } 1619 1620 /* Old LLVM set e_machine to EM_NONE */ 1621 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) { 1622 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path); 1623 err = -LIBBPF_ERRNO__FORMAT; 1624 goto errout; 1625 } 1626 1627 return 0; 1628 errout: 1629 bpf_object__elf_finish(obj); 1630 return err; 1631 } 1632 1633 static bool is_native_endianness(struct bpf_object *obj) 1634 { 1635 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1636 return obj->byteorder == ELFDATA2LSB; 1637 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1638 return obj->byteorder == ELFDATA2MSB; 1639 #else 1640 # error "Unrecognized __BYTE_ORDER__" 1641 #endif 1642 } 1643 1644 static int 1645 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1646 { 1647 if (!data) { 1648 pr_warn("invalid license section in %s\n", obj->path); 1649 return -LIBBPF_ERRNO__FORMAT; 1650 } 1651 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't 1652 * go over allowed ELF data section buffer 1653 */ 1654 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license))); 1655 pr_debug("license of %s is %s\n", obj->path, obj->license); 1656 return 0; 1657 } 1658 1659 static int 1660 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1661 { 1662 __u32 kver; 1663 1664 if (!data || size != sizeof(kver)) { 1665 pr_warn("invalid kver section in %s\n", obj->path); 1666 return -LIBBPF_ERRNO__FORMAT; 1667 } 1668 memcpy(&kver, data, sizeof(kver)); 1669 obj->kern_version = kver; 1670 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1671 return 0; 1672 } 1673 1674 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1675 { 1676 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1677 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1678 return true; 1679 return false; 1680 } 1681 1682 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size) 1683 { 1684 Elf_Data *data; 1685 Elf_Scn *scn; 1686 1687 if (!name) 1688 return -EINVAL; 1689 1690 scn = elf_sec_by_name(obj, name); 1691 data = elf_sec_data(obj, scn); 1692 if (data) { 1693 *size = data->d_size; 1694 return 0; /* found it */ 1695 } 1696 1697 return -ENOENT; 1698 } 1699 1700 static Elf64_Sym *find_elf_var_sym(const struct bpf_object *obj, const char *name) 1701 { 1702 Elf_Data *symbols = obj->efile.symbols; 1703 const char *sname; 1704 size_t si; 1705 1706 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) { 1707 Elf64_Sym *sym = elf_sym_by_idx(obj, si); 1708 1709 if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT) 1710 continue; 1711 1712 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL && 1713 ELF64_ST_BIND(sym->st_info) != STB_WEAK) 1714 continue; 1715 1716 sname = elf_sym_str(obj, sym->st_name); 1717 if (!sname) { 1718 pr_warn("failed to get sym name string for var %s\n", name); 1719 return ERR_PTR(-EIO); 1720 } 1721 if (strcmp(name, sname) == 0) 1722 return sym; 1723 } 1724 1725 return ERR_PTR(-ENOENT); 1726 } 1727 1728 #ifndef MFD_CLOEXEC 1729 #define MFD_CLOEXEC 0x0001U 1730 #endif 1731 #ifndef MFD_NOEXEC_SEAL 1732 #define MFD_NOEXEC_SEAL 0x0008U 1733 #endif 1734 1735 static int create_placeholder_fd(void) 1736 { 1737 unsigned int flags = MFD_CLOEXEC | MFD_NOEXEC_SEAL; 1738 const char *name = "libbpf-placeholder-fd"; 1739 int fd; 1740 1741 fd = ensure_good_fd(sys_memfd_create(name, flags)); 1742 if (fd >= 0) 1743 return fd; 1744 else if (errno != EINVAL) 1745 return -errno; 1746 1747 /* Possibly running on kernel without MFD_NOEXEC_SEAL */ 1748 fd = ensure_good_fd(sys_memfd_create(name, flags & ~MFD_NOEXEC_SEAL)); 1749 if (fd < 0) 1750 return -errno; 1751 return fd; 1752 } 1753 1754 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1755 { 1756 struct bpf_map *map; 1757 int err; 1758 1759 err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap, 1760 sizeof(*obj->maps), obj->nr_maps + 1); 1761 if (err) 1762 return ERR_PTR(err); 1763 1764 map = &obj->maps[obj->nr_maps++]; 1765 map->obj = obj; 1766 /* Preallocate map FD without actually creating BPF map just yet. 1767 * These map FD "placeholders" will be reused later without changing 1768 * FD value when map is actually created in the kernel. 1769 * 1770 * This is useful to be able to perform BPF program relocations 1771 * without having to create BPF maps before that step. This allows us 1772 * to finalize and load BTF very late in BPF object's loading phase, 1773 * right before BPF maps have to be created and BPF programs have to 1774 * be loaded. By having these map FD placeholders we can perform all 1775 * the sanitizations, relocations, and any other adjustments before we 1776 * start creating actual BPF kernel objects (BTF, maps, progs). 1777 */ 1778 map->fd = create_placeholder_fd(); 1779 if (map->fd < 0) 1780 return ERR_PTR(map->fd); 1781 map->inner_map_fd = -1; 1782 map->autocreate = true; 1783 1784 return map; 1785 } 1786 1787 static size_t array_map_mmap_sz(unsigned int value_sz, unsigned int max_entries) 1788 { 1789 const long page_sz = sysconf(_SC_PAGE_SIZE); 1790 size_t map_sz; 1791 1792 map_sz = (size_t)roundup(value_sz, 8) * max_entries; 1793 map_sz = roundup(map_sz, page_sz); 1794 return map_sz; 1795 } 1796 1797 static size_t bpf_map_mmap_sz(const struct bpf_map *map) 1798 { 1799 const long page_sz = sysconf(_SC_PAGE_SIZE); 1800 1801 switch (map->def.type) { 1802 case BPF_MAP_TYPE_ARRAY: 1803 return array_map_mmap_sz(map->def.value_size, map->def.max_entries); 1804 case BPF_MAP_TYPE_ARENA: 1805 return page_sz * map->def.max_entries; 1806 default: 1807 return 0; /* not supported */ 1808 } 1809 } 1810 1811 static int bpf_map_mmap_resize(struct bpf_map *map, size_t old_sz, size_t new_sz) 1812 { 1813 void *mmaped; 1814 1815 if (!map->mmaped) 1816 return -EINVAL; 1817 1818 if (old_sz == new_sz) 1819 return 0; 1820 1821 mmaped = mmap(NULL, new_sz, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1822 if (mmaped == MAP_FAILED) 1823 return -errno; 1824 1825 memcpy(mmaped, map->mmaped, min(old_sz, new_sz)); 1826 munmap(map->mmaped, old_sz); 1827 map->mmaped = mmaped; 1828 return 0; 1829 } 1830 1831 static char *internal_map_name(struct bpf_object *obj, const char *real_name) 1832 { 1833 char map_name[BPF_OBJ_NAME_LEN], *p; 1834 int pfx_len, sfx_len = max((size_t)7, strlen(real_name)); 1835 1836 /* This is one of the more confusing parts of libbpf for various 1837 * reasons, some of which are historical. The original idea for naming 1838 * internal names was to include as much of BPF object name prefix as 1839 * possible, so that it can be distinguished from similar internal 1840 * maps of a different BPF object. 1841 * As an example, let's say we have bpf_object named 'my_object_name' 1842 * and internal map corresponding to '.rodata' ELF section. The final 1843 * map name advertised to user and to the kernel will be 1844 * 'my_objec.rodata', taking first 8 characters of object name and 1845 * entire 7 characters of '.rodata'. 1846 * Somewhat confusingly, if internal map ELF section name is shorter 1847 * than 7 characters, e.g., '.bss', we still reserve 7 characters 1848 * for the suffix, even though we only have 4 actual characters, and 1849 * resulting map will be called 'my_objec.bss', not even using all 15 1850 * characters allowed by the kernel. Oh well, at least the truncated 1851 * object name is somewhat consistent in this case. But if the map 1852 * name is '.kconfig', we'll still have entirety of '.kconfig' added 1853 * (8 chars) and thus will be left with only first 7 characters of the 1854 * object name ('my_obje'). Happy guessing, user, that the final map 1855 * name will be "my_obje.kconfig". 1856 * Now, with libbpf starting to support arbitrarily named .rodata.* 1857 * and .data.* data sections, it's possible that ELF section name is 1858 * longer than allowed 15 chars, so we now need to be careful to take 1859 * only up to 15 first characters of ELF name, taking no BPF object 1860 * name characters at all. So '.rodata.abracadabra' will result in 1861 * '.rodata.abracad' kernel and user-visible name. 1862 * We need to keep this convoluted logic intact for .data, .bss and 1863 * .rodata maps, but for new custom .data.custom and .rodata.custom 1864 * maps we use their ELF names as is, not prepending bpf_object name 1865 * in front. We still need to truncate them to 15 characters for the 1866 * kernel. Full name can be recovered for such maps by using DATASEC 1867 * BTF type associated with such map's value type, though. 1868 */ 1869 if (sfx_len >= BPF_OBJ_NAME_LEN) 1870 sfx_len = BPF_OBJ_NAME_LEN - 1; 1871 1872 /* if there are two or more dots in map name, it's a custom dot map */ 1873 if (strchr(real_name + 1, '.') != NULL) 1874 pfx_len = 0; 1875 else 1876 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name)); 1877 1878 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1879 sfx_len, real_name); 1880 1881 /* sanities map name to characters allowed by kernel */ 1882 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1883 if (!isalnum(*p) && *p != '_' && *p != '.') 1884 *p = '_'; 1885 1886 return strdup(map_name); 1887 } 1888 1889 static int 1890 map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map); 1891 1892 /* Internal BPF map is mmap()'able only if at least one of corresponding 1893 * DATASEC's VARs are to be exposed through BPF skeleton. I.e., it's a GLOBAL 1894 * variable and it's not marked as __hidden (which turns it into, effectively, 1895 * a STATIC variable). 1896 */ 1897 static bool map_is_mmapable(struct bpf_object *obj, struct bpf_map *map) 1898 { 1899 const struct btf_type *t, *vt; 1900 struct btf_var_secinfo *vsi; 1901 int i, n; 1902 1903 if (!map->btf_value_type_id) 1904 return false; 1905 1906 t = btf__type_by_id(obj->btf, map->btf_value_type_id); 1907 if (!btf_is_datasec(t)) 1908 return false; 1909 1910 vsi = btf_var_secinfos(t); 1911 for (i = 0, n = btf_vlen(t); i < n; i++, vsi++) { 1912 vt = btf__type_by_id(obj->btf, vsi->type); 1913 if (!btf_is_var(vt)) 1914 continue; 1915 1916 if (btf_var(vt)->linkage != BTF_VAR_STATIC) 1917 return true; 1918 } 1919 1920 return false; 1921 } 1922 1923 static int 1924 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1925 const char *real_name, int sec_idx, void *data, size_t data_sz) 1926 { 1927 struct bpf_map_def *def; 1928 struct bpf_map *map; 1929 size_t mmap_sz; 1930 int err; 1931 1932 map = bpf_object__add_map(obj); 1933 if (IS_ERR(map)) 1934 return PTR_ERR(map); 1935 1936 map->libbpf_type = type; 1937 map->sec_idx = sec_idx; 1938 map->sec_offset = 0; 1939 map->real_name = strdup(real_name); 1940 map->name = internal_map_name(obj, real_name); 1941 if (!map->real_name || !map->name) { 1942 zfree(&map->real_name); 1943 zfree(&map->name); 1944 return -ENOMEM; 1945 } 1946 1947 def = &map->def; 1948 def->type = BPF_MAP_TYPE_ARRAY; 1949 def->key_size = sizeof(int); 1950 def->value_size = data_sz; 1951 def->max_entries = 1; 1952 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1953 ? BPF_F_RDONLY_PROG : 0; 1954 1955 /* failures are fine because of maps like .rodata.str1.1 */ 1956 (void) map_fill_btf_type_info(obj, map); 1957 1958 if (map_is_mmapable(obj, map)) 1959 def->map_flags |= BPF_F_MMAPABLE; 1960 1961 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1962 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1963 1964 mmap_sz = bpf_map_mmap_sz(map); 1965 map->mmaped = mmap(NULL, mmap_sz, PROT_READ | PROT_WRITE, 1966 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1967 if (map->mmaped == MAP_FAILED) { 1968 err = -errno; 1969 map->mmaped = NULL; 1970 pr_warn("failed to alloc map '%s' content buffer: %s\n", map->name, errstr(err)); 1971 zfree(&map->real_name); 1972 zfree(&map->name); 1973 return err; 1974 } 1975 1976 if (data) 1977 memcpy(map->mmaped, data, data_sz); 1978 1979 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1980 return 0; 1981 } 1982 1983 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1984 { 1985 struct elf_sec_desc *sec_desc; 1986 const char *sec_name; 1987 int err = 0, sec_idx; 1988 1989 /* 1990 * Populate obj->maps with libbpf internal maps. 1991 */ 1992 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) { 1993 sec_desc = &obj->efile.secs[sec_idx]; 1994 1995 /* Skip recognized sections with size 0. */ 1996 if (!sec_desc->data || sec_desc->data->d_size == 0) 1997 continue; 1998 1999 switch (sec_desc->sec_type) { 2000 case SEC_DATA: 2001 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 2002 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 2003 sec_name, sec_idx, 2004 sec_desc->data->d_buf, 2005 sec_desc->data->d_size); 2006 break; 2007 case SEC_RODATA: 2008 obj->has_rodata = true; 2009 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 2010 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 2011 sec_name, sec_idx, 2012 sec_desc->data->d_buf, 2013 sec_desc->data->d_size); 2014 break; 2015 case SEC_BSS: 2016 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 2017 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 2018 sec_name, sec_idx, 2019 NULL, 2020 sec_desc->data->d_size); 2021 break; 2022 default: 2023 /* skip */ 2024 break; 2025 } 2026 if (err) 2027 return err; 2028 } 2029 return 0; 2030 } 2031 2032 2033 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 2034 const void *name) 2035 { 2036 int i; 2037 2038 for (i = 0; i < obj->nr_extern; i++) { 2039 if (strcmp(obj->externs[i].name, name) == 0) 2040 return &obj->externs[i]; 2041 } 2042 return NULL; 2043 } 2044 2045 static struct extern_desc *find_extern_by_name_with_len(const struct bpf_object *obj, 2046 const void *name, int len) 2047 { 2048 const char *ext_name; 2049 int i; 2050 2051 for (i = 0; i < obj->nr_extern; i++) { 2052 ext_name = obj->externs[i].name; 2053 if (strlen(ext_name) == len && strncmp(ext_name, name, len) == 0) 2054 return &obj->externs[i]; 2055 } 2056 return NULL; 2057 } 2058 2059 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val, 2060 char value) 2061 { 2062 switch (ext->kcfg.type) { 2063 case KCFG_BOOL: 2064 if (value == 'm') { 2065 pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n", 2066 ext->name, value); 2067 return -EINVAL; 2068 } 2069 *(bool *)ext_val = value == 'y' ? true : false; 2070 break; 2071 case KCFG_TRISTATE: 2072 if (value == 'y') 2073 *(enum libbpf_tristate *)ext_val = TRI_YES; 2074 else if (value == 'm') 2075 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 2076 else /* value == 'n' */ 2077 *(enum libbpf_tristate *)ext_val = TRI_NO; 2078 break; 2079 case KCFG_CHAR: 2080 *(char *)ext_val = value; 2081 break; 2082 case KCFG_UNKNOWN: 2083 case KCFG_INT: 2084 case KCFG_CHAR_ARR: 2085 default: 2086 pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n", 2087 ext->name, value); 2088 return -EINVAL; 2089 } 2090 ext->is_set = true; 2091 return 0; 2092 } 2093 2094 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val, 2095 const char *value) 2096 { 2097 size_t len; 2098 2099 if (ext->kcfg.type != KCFG_CHAR_ARR) { 2100 pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n", 2101 ext->name, value); 2102 return -EINVAL; 2103 } 2104 2105 len = strlen(value); 2106 if (len < 2 || value[len - 1] != '"') { 2107 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n", 2108 ext->name, value); 2109 return -EINVAL; 2110 } 2111 2112 /* strip quotes */ 2113 len -= 2; 2114 if (len >= ext->kcfg.sz) { 2115 pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n", 2116 ext->name, value, len, ext->kcfg.sz - 1); 2117 len = ext->kcfg.sz - 1; 2118 } 2119 memcpy(ext_val, value + 1, len); 2120 ext_val[len] = '\0'; 2121 ext->is_set = true; 2122 return 0; 2123 } 2124 2125 static int parse_u64(const char *value, __u64 *res) 2126 { 2127 char *value_end; 2128 int err; 2129 2130 errno = 0; 2131 *res = strtoull(value, &value_end, 0); 2132 if (errno) { 2133 err = -errno; 2134 pr_warn("failed to parse '%s': %s\n", value, errstr(err)); 2135 return err; 2136 } 2137 if (*value_end) { 2138 pr_warn("failed to parse '%s' as integer completely\n", value); 2139 return -EINVAL; 2140 } 2141 return 0; 2142 } 2143 2144 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v) 2145 { 2146 int bit_sz = ext->kcfg.sz * 8; 2147 2148 if (ext->kcfg.sz == 8) 2149 return true; 2150 2151 /* Validate that value stored in u64 fits in integer of `ext->sz` 2152 * bytes size without any loss of information. If the target integer 2153 * is signed, we rely on the following limits of integer type of 2154 * Y bits and subsequent transformation: 2155 * 2156 * -2^(Y-1) <= X <= 2^(Y-1) - 1 2157 * 0 <= X + 2^(Y-1) <= 2^Y - 1 2158 * 0 <= X + 2^(Y-1) < 2^Y 2159 * 2160 * For unsigned target integer, check that all the (64 - Y) bits are 2161 * zero. 2162 */ 2163 if (ext->kcfg.is_signed) 2164 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 2165 else 2166 return (v >> bit_sz) == 0; 2167 } 2168 2169 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val, 2170 __u64 value) 2171 { 2172 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR && 2173 ext->kcfg.type != KCFG_BOOL) { 2174 pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n", 2175 ext->name, (unsigned long long)value); 2176 return -EINVAL; 2177 } 2178 if (ext->kcfg.type == KCFG_BOOL && value > 1) { 2179 pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n", 2180 ext->name, (unsigned long long)value); 2181 return -EINVAL; 2182 2183 } 2184 if (!is_kcfg_value_in_range(ext, value)) { 2185 pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n", 2186 ext->name, (unsigned long long)value, ext->kcfg.sz); 2187 return -ERANGE; 2188 } 2189 switch (ext->kcfg.sz) { 2190 case 1: 2191 *(__u8 *)ext_val = value; 2192 break; 2193 case 2: 2194 *(__u16 *)ext_val = value; 2195 break; 2196 case 4: 2197 *(__u32 *)ext_val = value; 2198 break; 2199 case 8: 2200 *(__u64 *)ext_val = value; 2201 break; 2202 default: 2203 return -EINVAL; 2204 } 2205 ext->is_set = true; 2206 return 0; 2207 } 2208 2209 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 2210 char *buf, void *data) 2211 { 2212 struct extern_desc *ext; 2213 char *sep, *value; 2214 int len, err = 0; 2215 void *ext_val; 2216 __u64 num; 2217 2218 if (!str_has_pfx(buf, "CONFIG_")) 2219 return 0; 2220 2221 sep = strchr(buf, '='); 2222 if (!sep) { 2223 pr_warn("failed to parse '%s': no separator\n", buf); 2224 return -EINVAL; 2225 } 2226 2227 /* Trim ending '\n' */ 2228 len = strlen(buf); 2229 if (buf[len - 1] == '\n') 2230 buf[len - 1] = '\0'; 2231 /* Split on '=' and ensure that a value is present. */ 2232 *sep = '\0'; 2233 if (!sep[1]) { 2234 *sep = '='; 2235 pr_warn("failed to parse '%s': no value\n", buf); 2236 return -EINVAL; 2237 } 2238 2239 ext = find_extern_by_name(obj, buf); 2240 if (!ext || ext->is_set) 2241 return 0; 2242 2243 ext_val = data + ext->kcfg.data_off; 2244 value = sep + 1; 2245 2246 switch (*value) { 2247 case 'y': case 'n': case 'm': 2248 err = set_kcfg_value_tri(ext, ext_val, *value); 2249 break; 2250 case '"': 2251 err = set_kcfg_value_str(ext, ext_val, value); 2252 break; 2253 default: 2254 /* assume integer */ 2255 err = parse_u64(value, &num); 2256 if (err) { 2257 pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value); 2258 return err; 2259 } 2260 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) { 2261 pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value); 2262 return -EINVAL; 2263 } 2264 err = set_kcfg_value_num(ext, ext_val, num); 2265 break; 2266 } 2267 if (err) 2268 return err; 2269 pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value); 2270 return 0; 2271 } 2272 2273 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 2274 { 2275 char buf[PATH_MAX]; 2276 struct utsname uts; 2277 int len, err = 0; 2278 gzFile file; 2279 2280 uname(&uts); 2281 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 2282 if (len < 0) 2283 return -EINVAL; 2284 else if (len >= PATH_MAX) 2285 return -ENAMETOOLONG; 2286 2287 /* gzopen also accepts uncompressed files. */ 2288 file = gzopen(buf, "re"); 2289 if (!file) 2290 file = gzopen("/proc/config.gz", "re"); 2291 2292 if (!file) { 2293 pr_warn("failed to open system Kconfig\n"); 2294 return -ENOENT; 2295 } 2296 2297 while (gzgets(file, buf, sizeof(buf))) { 2298 err = bpf_object__process_kconfig_line(obj, buf, data); 2299 if (err) { 2300 pr_warn("error parsing system Kconfig line '%s': %s\n", 2301 buf, errstr(err)); 2302 goto out; 2303 } 2304 } 2305 2306 out: 2307 gzclose(file); 2308 return err; 2309 } 2310 2311 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 2312 const char *config, void *data) 2313 { 2314 char buf[PATH_MAX]; 2315 int err = 0; 2316 FILE *file; 2317 2318 file = fmemopen((void *)config, strlen(config), "r"); 2319 if (!file) { 2320 err = -errno; 2321 pr_warn("failed to open in-memory Kconfig: %s\n", errstr(err)); 2322 return err; 2323 } 2324 2325 while (fgets(buf, sizeof(buf), file)) { 2326 err = bpf_object__process_kconfig_line(obj, buf, data); 2327 if (err) { 2328 pr_warn("error parsing in-memory Kconfig line '%s': %s\n", 2329 buf, errstr(err)); 2330 break; 2331 } 2332 } 2333 2334 fclose(file); 2335 return err; 2336 } 2337 2338 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 2339 { 2340 struct extern_desc *last_ext = NULL, *ext; 2341 size_t map_sz; 2342 int i, err; 2343 2344 for (i = 0; i < obj->nr_extern; i++) { 2345 ext = &obj->externs[i]; 2346 if (ext->type == EXT_KCFG) 2347 last_ext = ext; 2348 } 2349 2350 if (!last_ext) 2351 return 0; 2352 2353 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz; 2354 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 2355 ".kconfig", obj->efile.symbols_shndx, 2356 NULL, map_sz); 2357 if (err) 2358 return err; 2359 2360 obj->kconfig_map_idx = obj->nr_maps - 1; 2361 2362 return 0; 2363 } 2364 2365 const struct btf_type * 2366 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 2367 { 2368 const struct btf_type *t = btf__type_by_id(btf, id); 2369 2370 if (res_id) 2371 *res_id = id; 2372 2373 while (btf_is_mod(t) || btf_is_typedef(t)) { 2374 if (res_id) 2375 *res_id = t->type; 2376 t = btf__type_by_id(btf, t->type); 2377 } 2378 2379 return t; 2380 } 2381 2382 static const struct btf_type * 2383 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 2384 { 2385 const struct btf_type *t; 2386 2387 t = skip_mods_and_typedefs(btf, id, NULL); 2388 if (!btf_is_ptr(t)) 2389 return NULL; 2390 2391 t = skip_mods_and_typedefs(btf, t->type, res_id); 2392 2393 return btf_is_func_proto(t) ? t : NULL; 2394 } 2395 2396 static const char *__btf_kind_str(__u16 kind) 2397 { 2398 switch (kind) { 2399 case BTF_KIND_UNKN: return "void"; 2400 case BTF_KIND_INT: return "int"; 2401 case BTF_KIND_PTR: return "ptr"; 2402 case BTF_KIND_ARRAY: return "array"; 2403 case BTF_KIND_STRUCT: return "struct"; 2404 case BTF_KIND_UNION: return "union"; 2405 case BTF_KIND_ENUM: return "enum"; 2406 case BTF_KIND_FWD: return "fwd"; 2407 case BTF_KIND_TYPEDEF: return "typedef"; 2408 case BTF_KIND_VOLATILE: return "volatile"; 2409 case BTF_KIND_CONST: return "const"; 2410 case BTF_KIND_RESTRICT: return "restrict"; 2411 case BTF_KIND_FUNC: return "func"; 2412 case BTF_KIND_FUNC_PROTO: return "func_proto"; 2413 case BTF_KIND_VAR: return "var"; 2414 case BTF_KIND_DATASEC: return "datasec"; 2415 case BTF_KIND_FLOAT: return "float"; 2416 case BTF_KIND_DECL_TAG: return "decl_tag"; 2417 case BTF_KIND_TYPE_TAG: return "type_tag"; 2418 case BTF_KIND_ENUM64: return "enum64"; 2419 default: return "unknown"; 2420 } 2421 } 2422 2423 const char *btf_kind_str(const struct btf_type *t) 2424 { 2425 return __btf_kind_str(btf_kind(t)); 2426 } 2427 2428 /* 2429 * Fetch integer attribute of BTF map definition. Such attributes are 2430 * represented using a pointer to an array, in which dimensionality of array 2431 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 2432 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 2433 * type definition, while using only sizeof(void *) space in ELF data section. 2434 */ 2435 static bool get_map_field_int(const char *map_name, const struct btf *btf, 2436 const struct btf_member *m, __u32 *res) 2437 { 2438 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2439 const char *name = btf__name_by_offset(btf, m->name_off); 2440 const struct btf_array *arr_info; 2441 const struct btf_type *arr_t; 2442 2443 if (!btf_is_ptr(t)) { 2444 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n", 2445 map_name, name, btf_kind_str(t)); 2446 return false; 2447 } 2448 2449 arr_t = btf__type_by_id(btf, t->type); 2450 if (!arr_t) { 2451 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 2452 map_name, name, t->type); 2453 return false; 2454 } 2455 if (!btf_is_array(arr_t)) { 2456 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n", 2457 map_name, name, btf_kind_str(arr_t)); 2458 return false; 2459 } 2460 arr_info = btf_array(arr_t); 2461 *res = arr_info->nelems; 2462 return true; 2463 } 2464 2465 static bool get_map_field_long(const char *map_name, const struct btf *btf, 2466 const struct btf_member *m, __u64 *res) 2467 { 2468 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2469 const char *name = btf__name_by_offset(btf, m->name_off); 2470 2471 if (btf_is_ptr(t)) { 2472 __u32 res32; 2473 bool ret; 2474 2475 ret = get_map_field_int(map_name, btf, m, &res32); 2476 if (ret) 2477 *res = (__u64)res32; 2478 return ret; 2479 } 2480 2481 if (!btf_is_enum(t) && !btf_is_enum64(t)) { 2482 pr_warn("map '%s': attr '%s': expected ENUM or ENUM64, got %s.\n", 2483 map_name, name, btf_kind_str(t)); 2484 return false; 2485 } 2486 2487 if (btf_vlen(t) != 1) { 2488 pr_warn("map '%s': attr '%s': invalid __ulong\n", 2489 map_name, name); 2490 return false; 2491 } 2492 2493 if (btf_is_enum(t)) { 2494 const struct btf_enum *e = btf_enum(t); 2495 2496 *res = e->val; 2497 } else { 2498 const struct btf_enum64 *e = btf_enum64(t); 2499 2500 *res = btf_enum64_value(e); 2501 } 2502 return true; 2503 } 2504 2505 static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name) 2506 { 2507 int len; 2508 2509 len = snprintf(buf, buf_sz, "%s/%s", path, name); 2510 if (len < 0) 2511 return -EINVAL; 2512 if (len >= buf_sz) 2513 return -ENAMETOOLONG; 2514 2515 return 0; 2516 } 2517 2518 static int build_map_pin_path(struct bpf_map *map, const char *path) 2519 { 2520 char buf[PATH_MAX]; 2521 int err; 2522 2523 if (!path) 2524 path = BPF_FS_DEFAULT_PATH; 2525 2526 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 2527 if (err) 2528 return err; 2529 2530 return bpf_map__set_pin_path(map, buf); 2531 } 2532 2533 /* should match definition in bpf_helpers.h */ 2534 enum libbpf_pin_type { 2535 LIBBPF_PIN_NONE, 2536 /* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */ 2537 LIBBPF_PIN_BY_NAME, 2538 }; 2539 2540 int parse_btf_map_def(const char *map_name, struct btf *btf, 2541 const struct btf_type *def_t, bool strict, 2542 struct btf_map_def *map_def, struct btf_map_def *inner_def) 2543 { 2544 const struct btf_type *t; 2545 const struct btf_member *m; 2546 bool is_inner = inner_def == NULL; 2547 int vlen, i; 2548 2549 vlen = btf_vlen(def_t); 2550 m = btf_members(def_t); 2551 for (i = 0; i < vlen; i++, m++) { 2552 const char *name = btf__name_by_offset(btf, m->name_off); 2553 2554 if (!name) { 2555 pr_warn("map '%s': invalid field #%d.\n", map_name, i); 2556 return -EINVAL; 2557 } 2558 if (strcmp(name, "type") == 0) { 2559 if (!get_map_field_int(map_name, btf, m, &map_def->map_type)) 2560 return -EINVAL; 2561 map_def->parts |= MAP_DEF_MAP_TYPE; 2562 } else if (strcmp(name, "max_entries") == 0) { 2563 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries)) 2564 return -EINVAL; 2565 map_def->parts |= MAP_DEF_MAX_ENTRIES; 2566 } else if (strcmp(name, "map_flags") == 0) { 2567 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags)) 2568 return -EINVAL; 2569 map_def->parts |= MAP_DEF_MAP_FLAGS; 2570 } else if (strcmp(name, "numa_node") == 0) { 2571 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node)) 2572 return -EINVAL; 2573 map_def->parts |= MAP_DEF_NUMA_NODE; 2574 } else if (strcmp(name, "key_size") == 0) { 2575 __u32 sz; 2576 2577 if (!get_map_field_int(map_name, btf, m, &sz)) 2578 return -EINVAL; 2579 if (map_def->key_size && map_def->key_size != sz) { 2580 pr_warn("map '%s': conflicting key size %u != %u.\n", 2581 map_name, map_def->key_size, sz); 2582 return -EINVAL; 2583 } 2584 map_def->key_size = sz; 2585 map_def->parts |= MAP_DEF_KEY_SIZE; 2586 } else if (strcmp(name, "key") == 0) { 2587 __s64 sz; 2588 2589 t = btf__type_by_id(btf, m->type); 2590 if (!t) { 2591 pr_warn("map '%s': key type [%d] not found.\n", 2592 map_name, m->type); 2593 return -EINVAL; 2594 } 2595 if (!btf_is_ptr(t)) { 2596 pr_warn("map '%s': key spec is not PTR: %s.\n", 2597 map_name, btf_kind_str(t)); 2598 return -EINVAL; 2599 } 2600 sz = btf__resolve_size(btf, t->type); 2601 if (sz < 0) { 2602 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2603 map_name, t->type, (ssize_t)sz); 2604 return sz; 2605 } 2606 if (map_def->key_size && map_def->key_size != sz) { 2607 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2608 map_name, map_def->key_size, (ssize_t)sz); 2609 return -EINVAL; 2610 } 2611 map_def->key_size = sz; 2612 map_def->key_type_id = t->type; 2613 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE; 2614 } else if (strcmp(name, "value_size") == 0) { 2615 __u32 sz; 2616 2617 if (!get_map_field_int(map_name, btf, m, &sz)) 2618 return -EINVAL; 2619 if (map_def->value_size && map_def->value_size != sz) { 2620 pr_warn("map '%s': conflicting value size %u != %u.\n", 2621 map_name, map_def->value_size, sz); 2622 return -EINVAL; 2623 } 2624 map_def->value_size = sz; 2625 map_def->parts |= MAP_DEF_VALUE_SIZE; 2626 } else if (strcmp(name, "value") == 0) { 2627 __s64 sz; 2628 2629 t = btf__type_by_id(btf, m->type); 2630 if (!t) { 2631 pr_warn("map '%s': value type [%d] not found.\n", 2632 map_name, m->type); 2633 return -EINVAL; 2634 } 2635 if (!btf_is_ptr(t)) { 2636 pr_warn("map '%s': value spec is not PTR: %s.\n", 2637 map_name, btf_kind_str(t)); 2638 return -EINVAL; 2639 } 2640 sz = btf__resolve_size(btf, t->type); 2641 if (sz < 0) { 2642 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2643 map_name, t->type, (ssize_t)sz); 2644 return sz; 2645 } 2646 if (map_def->value_size && map_def->value_size != sz) { 2647 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2648 map_name, map_def->value_size, (ssize_t)sz); 2649 return -EINVAL; 2650 } 2651 map_def->value_size = sz; 2652 map_def->value_type_id = t->type; 2653 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE; 2654 } 2655 else if (strcmp(name, "values") == 0) { 2656 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type); 2657 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY; 2658 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value"; 2659 char inner_map_name[128]; 2660 int err; 2661 2662 if (is_inner) { 2663 pr_warn("map '%s': multi-level inner maps not supported.\n", 2664 map_name); 2665 return -ENOTSUP; 2666 } 2667 if (i != vlen - 1) { 2668 pr_warn("map '%s': '%s' member should be last.\n", 2669 map_name, name); 2670 return -EINVAL; 2671 } 2672 if (!is_map_in_map && !is_prog_array) { 2673 pr_warn("map '%s': should be map-in-map or prog-array.\n", 2674 map_name); 2675 return -ENOTSUP; 2676 } 2677 if (map_def->value_size && map_def->value_size != 4) { 2678 pr_warn("map '%s': conflicting value size %u != 4.\n", 2679 map_name, map_def->value_size); 2680 return -EINVAL; 2681 } 2682 map_def->value_size = 4; 2683 t = btf__type_by_id(btf, m->type); 2684 if (!t) { 2685 pr_warn("map '%s': %s type [%d] not found.\n", 2686 map_name, desc, m->type); 2687 return -EINVAL; 2688 } 2689 if (!btf_is_array(t) || btf_array(t)->nelems) { 2690 pr_warn("map '%s': %s spec is not a zero-sized array.\n", 2691 map_name, desc); 2692 return -EINVAL; 2693 } 2694 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL); 2695 if (!btf_is_ptr(t)) { 2696 pr_warn("map '%s': %s def is of unexpected kind %s.\n", 2697 map_name, desc, btf_kind_str(t)); 2698 return -EINVAL; 2699 } 2700 t = skip_mods_and_typedefs(btf, t->type, NULL); 2701 if (is_prog_array) { 2702 if (!btf_is_func_proto(t)) { 2703 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n", 2704 map_name, btf_kind_str(t)); 2705 return -EINVAL; 2706 } 2707 continue; 2708 } 2709 if (!btf_is_struct(t)) { 2710 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2711 map_name, btf_kind_str(t)); 2712 return -EINVAL; 2713 } 2714 2715 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name); 2716 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL); 2717 if (err) 2718 return err; 2719 2720 map_def->parts |= MAP_DEF_INNER_MAP; 2721 } else if (strcmp(name, "pinning") == 0) { 2722 __u32 val; 2723 2724 if (is_inner) { 2725 pr_warn("map '%s': inner def can't be pinned.\n", map_name); 2726 return -EINVAL; 2727 } 2728 if (!get_map_field_int(map_name, btf, m, &val)) 2729 return -EINVAL; 2730 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) { 2731 pr_warn("map '%s': invalid pinning value %u.\n", 2732 map_name, val); 2733 return -EINVAL; 2734 } 2735 map_def->pinning = val; 2736 map_def->parts |= MAP_DEF_PINNING; 2737 } else if (strcmp(name, "map_extra") == 0) { 2738 __u64 map_extra; 2739 2740 if (!get_map_field_long(map_name, btf, m, &map_extra)) 2741 return -EINVAL; 2742 map_def->map_extra = map_extra; 2743 map_def->parts |= MAP_DEF_MAP_EXTRA; 2744 } else { 2745 if (strict) { 2746 pr_warn("map '%s': unknown field '%s'.\n", map_name, name); 2747 return -ENOTSUP; 2748 } 2749 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name); 2750 } 2751 } 2752 2753 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) { 2754 pr_warn("map '%s': map type isn't specified.\n", map_name); 2755 return -EINVAL; 2756 } 2757 2758 return 0; 2759 } 2760 2761 static size_t adjust_ringbuf_sz(size_t sz) 2762 { 2763 __u32 page_sz = sysconf(_SC_PAGE_SIZE); 2764 __u32 mul; 2765 2766 /* if user forgot to set any size, make sure they see error */ 2767 if (sz == 0) 2768 return 0; 2769 /* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be 2770 * a power-of-2 multiple of kernel's page size. If user diligently 2771 * satisified these conditions, pass the size through. 2772 */ 2773 if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz)) 2774 return sz; 2775 2776 /* Otherwise find closest (page_sz * power_of_2) product bigger than 2777 * user-set size to satisfy both user size request and kernel 2778 * requirements and substitute correct max_entries for map creation. 2779 */ 2780 for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) { 2781 if (mul * page_sz > sz) 2782 return mul * page_sz; 2783 } 2784 2785 /* if it's impossible to satisfy the conditions (i.e., user size is 2786 * very close to UINT_MAX but is not a power-of-2 multiple of 2787 * page_size) then just return original size and let kernel reject it 2788 */ 2789 return sz; 2790 } 2791 2792 static bool map_is_ringbuf(const struct bpf_map *map) 2793 { 2794 return map->def.type == BPF_MAP_TYPE_RINGBUF || 2795 map->def.type == BPF_MAP_TYPE_USER_RINGBUF; 2796 } 2797 2798 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def) 2799 { 2800 map->def.type = def->map_type; 2801 map->def.key_size = def->key_size; 2802 map->def.value_size = def->value_size; 2803 map->def.max_entries = def->max_entries; 2804 map->def.map_flags = def->map_flags; 2805 map->map_extra = def->map_extra; 2806 2807 map->numa_node = def->numa_node; 2808 map->btf_key_type_id = def->key_type_id; 2809 map->btf_value_type_id = def->value_type_id; 2810 2811 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 2812 if (map_is_ringbuf(map)) 2813 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 2814 2815 if (def->parts & MAP_DEF_MAP_TYPE) 2816 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type); 2817 2818 if (def->parts & MAP_DEF_KEY_TYPE) 2819 pr_debug("map '%s': found key [%u], sz = %u.\n", 2820 map->name, def->key_type_id, def->key_size); 2821 else if (def->parts & MAP_DEF_KEY_SIZE) 2822 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size); 2823 2824 if (def->parts & MAP_DEF_VALUE_TYPE) 2825 pr_debug("map '%s': found value [%u], sz = %u.\n", 2826 map->name, def->value_type_id, def->value_size); 2827 else if (def->parts & MAP_DEF_VALUE_SIZE) 2828 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size); 2829 2830 if (def->parts & MAP_DEF_MAX_ENTRIES) 2831 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries); 2832 if (def->parts & MAP_DEF_MAP_FLAGS) 2833 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags); 2834 if (def->parts & MAP_DEF_MAP_EXTRA) 2835 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name, 2836 (unsigned long long)def->map_extra); 2837 if (def->parts & MAP_DEF_PINNING) 2838 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning); 2839 if (def->parts & MAP_DEF_NUMA_NODE) 2840 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node); 2841 2842 if (def->parts & MAP_DEF_INNER_MAP) 2843 pr_debug("map '%s': found inner map definition.\n", map->name); 2844 } 2845 2846 static const char *btf_var_linkage_str(__u32 linkage) 2847 { 2848 switch (linkage) { 2849 case BTF_VAR_STATIC: return "static"; 2850 case BTF_VAR_GLOBAL_ALLOCATED: return "global"; 2851 case BTF_VAR_GLOBAL_EXTERN: return "extern"; 2852 default: return "unknown"; 2853 } 2854 } 2855 2856 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 2857 const struct btf_type *sec, 2858 int var_idx, int sec_idx, 2859 const Elf_Data *data, bool strict, 2860 const char *pin_root_path) 2861 { 2862 struct btf_map_def map_def = {}, inner_def = {}; 2863 const struct btf_type *var, *def; 2864 const struct btf_var_secinfo *vi; 2865 const struct btf_var *var_extra; 2866 const char *map_name; 2867 struct bpf_map *map; 2868 int err; 2869 2870 vi = btf_var_secinfos(sec) + var_idx; 2871 var = btf__type_by_id(obj->btf, vi->type); 2872 var_extra = btf_var(var); 2873 map_name = btf__name_by_offset(obj->btf, var->name_off); 2874 2875 if (map_name == NULL || map_name[0] == '\0') { 2876 pr_warn("map #%d: empty name.\n", var_idx); 2877 return -EINVAL; 2878 } 2879 if ((__u64)vi->offset + vi->size > data->d_size) { 2880 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 2881 return -EINVAL; 2882 } 2883 if (!btf_is_var(var)) { 2884 pr_warn("map '%s': unexpected var kind %s.\n", 2885 map_name, btf_kind_str(var)); 2886 return -EINVAL; 2887 } 2888 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 2889 pr_warn("map '%s': unsupported map linkage %s.\n", 2890 map_name, btf_var_linkage_str(var_extra->linkage)); 2891 return -EOPNOTSUPP; 2892 } 2893 2894 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 2895 if (!btf_is_struct(def)) { 2896 pr_warn("map '%s': unexpected def kind %s.\n", 2897 map_name, btf_kind_str(var)); 2898 return -EINVAL; 2899 } 2900 if (def->size > vi->size) { 2901 pr_warn("map '%s': invalid def size.\n", map_name); 2902 return -EINVAL; 2903 } 2904 2905 map = bpf_object__add_map(obj); 2906 if (IS_ERR(map)) 2907 return PTR_ERR(map); 2908 map->name = strdup(map_name); 2909 if (!map->name) { 2910 pr_warn("map '%s': failed to alloc map name.\n", map_name); 2911 return -ENOMEM; 2912 } 2913 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2914 map->def.type = BPF_MAP_TYPE_UNSPEC; 2915 map->sec_idx = sec_idx; 2916 map->sec_offset = vi->offset; 2917 map->btf_var_idx = var_idx; 2918 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 2919 map_name, map->sec_idx, map->sec_offset); 2920 2921 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def); 2922 if (err) 2923 return err; 2924 2925 fill_map_from_def(map, &map_def); 2926 2927 if (map_def.pinning == LIBBPF_PIN_BY_NAME) { 2928 err = build_map_pin_path(map, pin_root_path); 2929 if (err) { 2930 pr_warn("map '%s': couldn't build pin path.\n", map->name); 2931 return err; 2932 } 2933 } 2934 2935 if (map_def.parts & MAP_DEF_INNER_MAP) { 2936 map->inner_map = calloc(1, sizeof(*map->inner_map)); 2937 if (!map->inner_map) 2938 return -ENOMEM; 2939 map->inner_map->fd = create_placeholder_fd(); 2940 if (map->inner_map->fd < 0) 2941 return map->inner_map->fd; 2942 map->inner_map->sec_idx = sec_idx; 2943 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1); 2944 if (!map->inner_map->name) 2945 return -ENOMEM; 2946 sprintf(map->inner_map->name, "%s.inner", map_name); 2947 2948 fill_map_from_def(map->inner_map, &inner_def); 2949 } 2950 2951 err = map_fill_btf_type_info(obj, map); 2952 if (err) 2953 return err; 2954 2955 return 0; 2956 } 2957 2958 static int init_arena_map_data(struct bpf_object *obj, struct bpf_map *map, 2959 const char *sec_name, int sec_idx, 2960 void *data, size_t data_sz) 2961 { 2962 const long page_sz = sysconf(_SC_PAGE_SIZE); 2963 size_t mmap_sz; 2964 2965 mmap_sz = bpf_map_mmap_sz(map); 2966 if (roundup(data_sz, page_sz) > mmap_sz) { 2967 pr_warn("elf: sec '%s': declared ARENA map size (%zu) is too small to hold global __arena variables of size %zu\n", 2968 sec_name, mmap_sz, data_sz); 2969 return -E2BIG; 2970 } 2971 2972 obj->arena_data = malloc(data_sz); 2973 if (!obj->arena_data) 2974 return -ENOMEM; 2975 memcpy(obj->arena_data, data, data_sz); 2976 obj->arena_data_sz = data_sz; 2977 2978 /* make bpf_map__init_value() work for ARENA maps */ 2979 map->mmaped = obj->arena_data; 2980 2981 return 0; 2982 } 2983 2984 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2985 const char *pin_root_path) 2986 { 2987 const struct btf_type *sec = NULL; 2988 int nr_types, i, vlen, err; 2989 const struct btf_type *t; 2990 const char *name; 2991 Elf_Data *data; 2992 Elf_Scn *scn; 2993 2994 if (obj->efile.btf_maps_shndx < 0) 2995 return 0; 2996 2997 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx); 2998 data = elf_sec_data(obj, scn); 2999 if (!scn || !data) { 3000 pr_warn("elf: failed to get %s map definitions for %s\n", 3001 MAPS_ELF_SEC, obj->path); 3002 return -EINVAL; 3003 } 3004 3005 nr_types = btf__type_cnt(obj->btf); 3006 for (i = 1; i < nr_types; i++) { 3007 t = btf__type_by_id(obj->btf, i); 3008 if (!btf_is_datasec(t)) 3009 continue; 3010 name = btf__name_by_offset(obj->btf, t->name_off); 3011 if (strcmp(name, MAPS_ELF_SEC) == 0) { 3012 sec = t; 3013 obj->efile.btf_maps_sec_btf_id = i; 3014 break; 3015 } 3016 } 3017 3018 if (!sec) { 3019 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 3020 return -ENOENT; 3021 } 3022 3023 vlen = btf_vlen(sec); 3024 for (i = 0; i < vlen; i++) { 3025 err = bpf_object__init_user_btf_map(obj, sec, i, 3026 obj->efile.btf_maps_shndx, 3027 data, strict, 3028 pin_root_path); 3029 if (err) 3030 return err; 3031 } 3032 3033 for (i = 0; i < obj->nr_maps; i++) { 3034 struct bpf_map *map = &obj->maps[i]; 3035 3036 if (map->def.type != BPF_MAP_TYPE_ARENA) 3037 continue; 3038 3039 if (obj->arena_map_idx >= 0) { 3040 pr_warn("map '%s': only single ARENA map is supported (map '%s' is also ARENA)\n", 3041 map->name, obj->maps[obj->arena_map_idx].name); 3042 return -EINVAL; 3043 } 3044 obj->arena_map_idx = i; 3045 3046 if (obj->efile.arena_data) { 3047 err = init_arena_map_data(obj, map, ARENA_SEC, obj->efile.arena_data_shndx, 3048 obj->efile.arena_data->d_buf, 3049 obj->efile.arena_data->d_size); 3050 if (err) 3051 return err; 3052 } 3053 } 3054 if (obj->efile.arena_data && obj->arena_map_idx < 0) { 3055 pr_warn("elf: sec '%s': to use global __arena variables the ARENA map should be explicitly declared in SEC(\".maps\")\n", 3056 ARENA_SEC); 3057 return -ENOENT; 3058 } 3059 3060 return 0; 3061 } 3062 3063 static int bpf_object__init_maps(struct bpf_object *obj, 3064 const struct bpf_object_open_opts *opts) 3065 { 3066 const char *pin_root_path; 3067 bool strict; 3068 int err = 0; 3069 3070 strict = !OPTS_GET(opts, relaxed_maps, false); 3071 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 3072 3073 err = bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 3074 err = err ?: bpf_object__init_global_data_maps(obj); 3075 err = err ?: bpf_object__init_kconfig_map(obj); 3076 err = err ?: bpf_object_init_struct_ops(obj); 3077 3078 return err; 3079 } 3080 3081 static bool section_have_execinstr(struct bpf_object *obj, int idx) 3082 { 3083 Elf64_Shdr *sh; 3084 3085 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx)); 3086 if (!sh) 3087 return false; 3088 3089 return sh->sh_flags & SHF_EXECINSTR; 3090 } 3091 3092 static bool starts_with_qmark(const char *s) 3093 { 3094 return s && s[0] == '?'; 3095 } 3096 3097 static bool btf_needs_sanitization(struct bpf_object *obj) 3098 { 3099 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 3100 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 3101 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 3102 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 3103 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 3104 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 3105 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 3106 bool has_qmark_datasec = kernel_supports(obj, FEAT_BTF_QMARK_DATASEC); 3107 3108 return !has_func || !has_datasec || !has_func_global || !has_float || 3109 !has_decl_tag || !has_type_tag || !has_enum64 || !has_qmark_datasec; 3110 } 3111 3112 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf) 3113 { 3114 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 3115 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 3116 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 3117 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 3118 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 3119 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 3120 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 3121 bool has_qmark_datasec = kernel_supports(obj, FEAT_BTF_QMARK_DATASEC); 3122 int enum64_placeholder_id = 0; 3123 struct btf_type *t; 3124 int i, j, vlen; 3125 3126 for (i = 1; i < btf__type_cnt(btf); i++) { 3127 t = (struct btf_type *)btf__type_by_id(btf, i); 3128 3129 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) { 3130 /* replace VAR/DECL_TAG with INT */ 3131 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 3132 /* 3133 * using size = 1 is the safest choice, 4 will be too 3134 * big and cause kernel BTF validation failure if 3135 * original variable took less than 4 bytes 3136 */ 3137 t->size = 1; 3138 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 3139 } else if (!has_datasec && btf_is_datasec(t)) { 3140 /* replace DATASEC with STRUCT */ 3141 const struct btf_var_secinfo *v = btf_var_secinfos(t); 3142 struct btf_member *m = btf_members(t); 3143 struct btf_type *vt; 3144 char *name; 3145 3146 name = (char *)btf__name_by_offset(btf, t->name_off); 3147 while (*name) { 3148 if (*name == '.' || *name == '?') 3149 *name = '_'; 3150 name++; 3151 } 3152 3153 vlen = btf_vlen(t); 3154 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 3155 for (j = 0; j < vlen; j++, v++, m++) { 3156 /* order of field assignments is important */ 3157 m->offset = v->offset * 8; 3158 m->type = v->type; 3159 /* preserve variable name as member name */ 3160 vt = (void *)btf__type_by_id(btf, v->type); 3161 m->name_off = vt->name_off; 3162 } 3163 } else if (!has_qmark_datasec && btf_is_datasec(t) && 3164 starts_with_qmark(btf__name_by_offset(btf, t->name_off))) { 3165 /* replace '?' prefix with '_' for DATASEC names */ 3166 char *name; 3167 3168 name = (char *)btf__name_by_offset(btf, t->name_off); 3169 if (name[0] == '?') 3170 name[0] = '_'; 3171 } else if (!has_func && btf_is_func_proto(t)) { 3172 /* replace FUNC_PROTO with ENUM */ 3173 vlen = btf_vlen(t); 3174 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 3175 t->size = sizeof(__u32); /* kernel enforced */ 3176 } else if (!has_func && btf_is_func(t)) { 3177 /* replace FUNC with TYPEDEF */ 3178 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 3179 } else if (!has_func_global && btf_is_func(t)) { 3180 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 3181 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 3182 } else if (!has_float && btf_is_float(t)) { 3183 /* replace FLOAT with an equally-sized empty STRUCT; 3184 * since C compilers do not accept e.g. "float" as a 3185 * valid struct name, make it anonymous 3186 */ 3187 t->name_off = 0; 3188 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0); 3189 } else if (!has_type_tag && btf_is_type_tag(t)) { 3190 /* replace TYPE_TAG with a CONST */ 3191 t->name_off = 0; 3192 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0); 3193 } else if (!has_enum64 && btf_is_enum(t)) { 3194 /* clear the kflag */ 3195 t->info = btf_type_info(btf_kind(t), btf_vlen(t), false); 3196 } else if (!has_enum64 && btf_is_enum64(t)) { 3197 /* replace ENUM64 with a union */ 3198 struct btf_member *m; 3199 3200 if (enum64_placeholder_id == 0) { 3201 enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0); 3202 if (enum64_placeholder_id < 0) 3203 return enum64_placeholder_id; 3204 3205 t = (struct btf_type *)btf__type_by_id(btf, i); 3206 } 3207 3208 m = btf_members(t); 3209 vlen = btf_vlen(t); 3210 t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen); 3211 for (j = 0; j < vlen; j++, m++) { 3212 m->type = enum64_placeholder_id; 3213 m->offset = 0; 3214 } 3215 } 3216 } 3217 3218 return 0; 3219 } 3220 3221 static bool libbpf_needs_btf(const struct bpf_object *obj) 3222 { 3223 return obj->efile.btf_maps_shndx >= 0 || 3224 obj->efile.has_st_ops || 3225 obj->nr_extern > 0; 3226 } 3227 3228 static bool kernel_needs_btf(const struct bpf_object *obj) 3229 { 3230 return obj->efile.has_st_ops; 3231 } 3232 3233 static int bpf_object__init_btf(struct bpf_object *obj, 3234 Elf_Data *btf_data, 3235 Elf_Data *btf_ext_data) 3236 { 3237 int err = -ENOENT; 3238 3239 if (btf_data) { 3240 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 3241 err = libbpf_get_error(obj->btf); 3242 if (err) { 3243 obj->btf = NULL; 3244 pr_warn("Error loading ELF section %s: %s.\n", BTF_ELF_SEC, errstr(err)); 3245 goto out; 3246 } 3247 /* enforce 8-byte pointers for BPF-targeted BTFs */ 3248 btf__set_pointer_size(obj->btf, 8); 3249 } 3250 if (btf_ext_data) { 3251 struct btf_ext_info *ext_segs[3]; 3252 int seg_num, sec_num; 3253 3254 if (!obj->btf) { 3255 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 3256 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 3257 goto out; 3258 } 3259 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); 3260 err = libbpf_get_error(obj->btf_ext); 3261 if (err) { 3262 pr_warn("Error loading ELF section %s: %s. Ignored and continue.\n", 3263 BTF_EXT_ELF_SEC, errstr(err)); 3264 obj->btf_ext = NULL; 3265 goto out; 3266 } 3267 3268 /* setup .BTF.ext to ELF section mapping */ 3269 ext_segs[0] = &obj->btf_ext->func_info; 3270 ext_segs[1] = &obj->btf_ext->line_info; 3271 ext_segs[2] = &obj->btf_ext->core_relo_info; 3272 for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) { 3273 struct btf_ext_info *seg = ext_segs[seg_num]; 3274 const struct btf_ext_info_sec *sec; 3275 const char *sec_name; 3276 Elf_Scn *scn; 3277 3278 if (seg->sec_cnt == 0) 3279 continue; 3280 3281 seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs)); 3282 if (!seg->sec_idxs) { 3283 err = -ENOMEM; 3284 goto out; 3285 } 3286 3287 sec_num = 0; 3288 for_each_btf_ext_sec(seg, sec) { 3289 /* preventively increment index to avoid doing 3290 * this before every continue below 3291 */ 3292 sec_num++; 3293 3294 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 3295 if (str_is_empty(sec_name)) 3296 continue; 3297 scn = elf_sec_by_name(obj, sec_name); 3298 if (!scn) 3299 continue; 3300 3301 seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn); 3302 } 3303 } 3304 } 3305 out: 3306 if (err && libbpf_needs_btf(obj)) { 3307 pr_warn("BTF is required, but is missing or corrupted.\n"); 3308 return err; 3309 } 3310 return 0; 3311 } 3312 3313 static int compare_vsi_off(const void *_a, const void *_b) 3314 { 3315 const struct btf_var_secinfo *a = _a; 3316 const struct btf_var_secinfo *b = _b; 3317 3318 return a->offset - b->offset; 3319 } 3320 3321 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, 3322 struct btf_type *t) 3323 { 3324 __u32 size = 0, i, vars = btf_vlen(t); 3325 const char *sec_name = btf__name_by_offset(btf, t->name_off); 3326 struct btf_var_secinfo *vsi; 3327 bool fixup_offsets = false; 3328 int err; 3329 3330 if (!sec_name) { 3331 pr_debug("No name found in string section for DATASEC kind.\n"); 3332 return -ENOENT; 3333 } 3334 3335 /* Extern-backing datasecs (.ksyms, .kconfig) have their size and 3336 * variable offsets set at the previous step. Further, not every 3337 * extern BTF VAR has corresponding ELF symbol preserved, so we skip 3338 * all fixups altogether for such sections and go straight to sorting 3339 * VARs within their DATASEC. 3340 */ 3341 if (strcmp(sec_name, KCONFIG_SEC) == 0 || strcmp(sec_name, KSYMS_SEC) == 0) 3342 goto sort_vars; 3343 3344 /* Clang leaves DATASEC size and VAR offsets as zeroes, so we need to 3345 * fix this up. But BPF static linker already fixes this up and fills 3346 * all the sizes and offsets during static linking. So this step has 3347 * to be optional. But the STV_HIDDEN handling is non-optional for any 3348 * non-extern DATASEC, so the variable fixup loop below handles both 3349 * functions at the same time, paying the cost of BTF VAR <-> ELF 3350 * symbol matching just once. 3351 */ 3352 if (t->size == 0) { 3353 err = find_elf_sec_sz(obj, sec_name, &size); 3354 if (err || !size) { 3355 pr_debug("sec '%s': failed to determine size from ELF: size %u, err %s\n", 3356 sec_name, size, errstr(err)); 3357 return -ENOENT; 3358 } 3359 3360 t->size = size; 3361 fixup_offsets = true; 3362 } 3363 3364 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { 3365 const struct btf_type *t_var; 3366 struct btf_var *var; 3367 const char *var_name; 3368 Elf64_Sym *sym; 3369 3370 t_var = btf__type_by_id(btf, vsi->type); 3371 if (!t_var || !btf_is_var(t_var)) { 3372 pr_debug("sec '%s': unexpected non-VAR type found\n", sec_name); 3373 return -EINVAL; 3374 } 3375 3376 var = btf_var(t_var); 3377 if (var->linkage == BTF_VAR_STATIC || var->linkage == BTF_VAR_GLOBAL_EXTERN) 3378 continue; 3379 3380 var_name = btf__name_by_offset(btf, t_var->name_off); 3381 if (!var_name) { 3382 pr_debug("sec '%s': failed to find name of DATASEC's member #%d\n", 3383 sec_name, i); 3384 return -ENOENT; 3385 } 3386 3387 sym = find_elf_var_sym(obj, var_name); 3388 if (IS_ERR(sym)) { 3389 pr_debug("sec '%s': failed to find ELF symbol for VAR '%s'\n", 3390 sec_name, var_name); 3391 return -ENOENT; 3392 } 3393 3394 if (fixup_offsets) 3395 vsi->offset = sym->st_value; 3396 3397 /* if variable is a global/weak symbol, but has restricted 3398 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF VAR 3399 * as static. This follows similar logic for functions (BPF 3400 * subprogs) and influences libbpf's further decisions about 3401 * whether to make global data BPF array maps as 3402 * BPF_F_MMAPABLE. 3403 */ 3404 if (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 3405 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL) 3406 var->linkage = BTF_VAR_STATIC; 3407 } 3408 3409 sort_vars: 3410 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off); 3411 return 0; 3412 } 3413 3414 static int bpf_object_fixup_btf(struct bpf_object *obj) 3415 { 3416 int i, n, err = 0; 3417 3418 if (!obj->btf) 3419 return 0; 3420 3421 n = btf__type_cnt(obj->btf); 3422 for (i = 1; i < n; i++) { 3423 struct btf_type *t = btf_type_by_id(obj->btf, i); 3424 3425 /* Loader needs to fix up some of the things compiler 3426 * couldn't get its hands on while emitting BTF. This 3427 * is section size and global variable offset. We use 3428 * the info from the ELF itself for this purpose. 3429 */ 3430 if (btf_is_datasec(t)) { 3431 err = btf_fixup_datasec(obj, obj->btf, t); 3432 if (err) 3433 return err; 3434 } 3435 } 3436 3437 return 0; 3438 } 3439 3440 static bool prog_needs_vmlinux_btf(struct bpf_program *prog) 3441 { 3442 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 3443 prog->type == BPF_PROG_TYPE_LSM) 3444 return true; 3445 3446 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 3447 * also need vmlinux BTF 3448 */ 3449 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 3450 return true; 3451 3452 return false; 3453 } 3454 3455 static bool map_needs_vmlinux_btf(struct bpf_map *map) 3456 { 3457 return bpf_map__is_struct_ops(map); 3458 } 3459 3460 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj) 3461 { 3462 struct bpf_program *prog; 3463 struct bpf_map *map; 3464 int i; 3465 3466 /* CO-RE relocations need kernel BTF, only when btf_custom_path 3467 * is not specified 3468 */ 3469 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path) 3470 return true; 3471 3472 /* Support for typed ksyms needs kernel BTF */ 3473 for (i = 0; i < obj->nr_extern; i++) { 3474 const struct extern_desc *ext; 3475 3476 ext = &obj->externs[i]; 3477 if (ext->type == EXT_KSYM && ext->ksym.type_id) 3478 return true; 3479 } 3480 3481 bpf_object__for_each_program(prog, obj) { 3482 if (!prog->autoload) 3483 continue; 3484 if (prog_needs_vmlinux_btf(prog)) 3485 return true; 3486 } 3487 3488 bpf_object__for_each_map(map, obj) { 3489 if (map_needs_vmlinux_btf(map)) 3490 return true; 3491 } 3492 3493 return false; 3494 } 3495 3496 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force) 3497 { 3498 int err; 3499 3500 /* btf_vmlinux could be loaded earlier */ 3501 if (obj->btf_vmlinux || obj->gen_loader) 3502 return 0; 3503 3504 if (!force && !obj_needs_vmlinux_btf(obj)) 3505 return 0; 3506 3507 obj->btf_vmlinux = btf__load_vmlinux_btf(); 3508 err = libbpf_get_error(obj->btf_vmlinux); 3509 if (err) { 3510 pr_warn("Error loading vmlinux BTF: %s\n", errstr(err)); 3511 obj->btf_vmlinux = NULL; 3512 return err; 3513 } 3514 return 0; 3515 } 3516 3517 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 3518 { 3519 struct btf *kern_btf = obj->btf; 3520 bool btf_mandatory, sanitize; 3521 int i, err = 0; 3522 3523 if (!obj->btf) 3524 return 0; 3525 3526 if (!kernel_supports(obj, FEAT_BTF)) { 3527 if (kernel_needs_btf(obj)) { 3528 err = -EOPNOTSUPP; 3529 goto report; 3530 } 3531 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n"); 3532 return 0; 3533 } 3534 3535 /* Even though some subprogs are global/weak, user might prefer more 3536 * permissive BPF verification process that BPF verifier performs for 3537 * static functions, taking into account more context from the caller 3538 * functions. In such case, they need to mark such subprogs with 3539 * __attribute__((visibility("hidden"))) and libbpf will adjust 3540 * corresponding FUNC BTF type to be marked as static and trigger more 3541 * involved BPF verification process. 3542 */ 3543 for (i = 0; i < obj->nr_programs; i++) { 3544 struct bpf_program *prog = &obj->programs[i]; 3545 struct btf_type *t; 3546 const char *name; 3547 int j, n; 3548 3549 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog)) 3550 continue; 3551 3552 n = btf__type_cnt(obj->btf); 3553 for (j = 1; j < n; j++) { 3554 t = btf_type_by_id(obj->btf, j); 3555 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) 3556 continue; 3557 3558 name = btf__str_by_offset(obj->btf, t->name_off); 3559 if (strcmp(name, prog->name) != 0) 3560 continue; 3561 3562 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0); 3563 break; 3564 } 3565 } 3566 3567 sanitize = btf_needs_sanitization(obj); 3568 if (sanitize) { 3569 const void *raw_data; 3570 __u32 sz; 3571 3572 /* clone BTF to sanitize a copy and leave the original intact */ 3573 raw_data = btf__raw_data(obj->btf, &sz); 3574 kern_btf = btf__new(raw_data, sz); 3575 err = libbpf_get_error(kern_btf); 3576 if (err) 3577 return err; 3578 3579 /* enforce 8-byte pointers for BPF-targeted BTFs */ 3580 btf__set_pointer_size(obj->btf, 8); 3581 err = bpf_object__sanitize_btf(obj, kern_btf); 3582 if (err) 3583 return err; 3584 } 3585 3586 if (obj->gen_loader) { 3587 __u32 raw_size = 0; 3588 const void *raw_data = btf__raw_data(kern_btf, &raw_size); 3589 3590 if (!raw_data) 3591 return -ENOMEM; 3592 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size); 3593 /* Pretend to have valid FD to pass various fd >= 0 checks. 3594 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 3595 */ 3596 btf__set_fd(kern_btf, 0); 3597 } else { 3598 /* currently BPF_BTF_LOAD only supports log_level 1 */ 3599 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size, 3600 obj->log_level ? 1 : 0, obj->token_fd); 3601 } 3602 if (sanitize) { 3603 if (!err) { 3604 /* move fd to libbpf's BTF */ 3605 btf__set_fd(obj->btf, btf__fd(kern_btf)); 3606 btf__set_fd(kern_btf, -1); 3607 } 3608 btf__free(kern_btf); 3609 } 3610 report: 3611 if (err) { 3612 btf_mandatory = kernel_needs_btf(obj); 3613 if (btf_mandatory) { 3614 pr_warn("Error loading .BTF into kernel: %s. BTF is mandatory, can't proceed.\n", 3615 errstr(err)); 3616 } else { 3617 pr_info("Error loading .BTF into kernel: %s. BTF is optional, ignoring.\n", 3618 errstr(err)); 3619 err = 0; 3620 } 3621 } 3622 return err; 3623 } 3624 3625 static const char *elf_sym_str(const struct bpf_object *obj, size_t off) 3626 { 3627 const char *name; 3628 3629 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off); 3630 if (!name) { 3631 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3632 off, obj->path, elf_errmsg(-1)); 3633 return NULL; 3634 } 3635 3636 return name; 3637 } 3638 3639 static const char *elf_sec_str(const struct bpf_object *obj, size_t off) 3640 { 3641 const char *name; 3642 3643 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off); 3644 if (!name) { 3645 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3646 off, obj->path, elf_errmsg(-1)); 3647 return NULL; 3648 } 3649 3650 return name; 3651 } 3652 3653 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx) 3654 { 3655 Elf_Scn *scn; 3656 3657 scn = elf_getscn(obj->efile.elf, idx); 3658 if (!scn) { 3659 pr_warn("elf: failed to get section(%zu) from %s: %s\n", 3660 idx, obj->path, elf_errmsg(-1)); 3661 return NULL; 3662 } 3663 return scn; 3664 } 3665 3666 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name) 3667 { 3668 Elf_Scn *scn = NULL; 3669 Elf *elf = obj->efile.elf; 3670 const char *sec_name; 3671 3672 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3673 sec_name = elf_sec_name(obj, scn); 3674 if (!sec_name) 3675 return NULL; 3676 3677 if (strcmp(sec_name, name) != 0) 3678 continue; 3679 3680 return scn; 3681 } 3682 return NULL; 3683 } 3684 3685 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn) 3686 { 3687 Elf64_Shdr *shdr; 3688 3689 if (!scn) 3690 return NULL; 3691 3692 shdr = elf64_getshdr(scn); 3693 if (!shdr) { 3694 pr_warn("elf: failed to get section(%zu) header from %s: %s\n", 3695 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3696 return NULL; 3697 } 3698 3699 return shdr; 3700 } 3701 3702 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn) 3703 { 3704 const char *name; 3705 Elf64_Shdr *sh; 3706 3707 if (!scn) 3708 return NULL; 3709 3710 sh = elf_sec_hdr(obj, scn); 3711 if (!sh) 3712 return NULL; 3713 3714 name = elf_sec_str(obj, sh->sh_name); 3715 if (!name) { 3716 pr_warn("elf: failed to get section(%zu) name from %s: %s\n", 3717 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3718 return NULL; 3719 } 3720 3721 return name; 3722 } 3723 3724 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn) 3725 { 3726 Elf_Data *data; 3727 3728 if (!scn) 3729 return NULL; 3730 3731 data = elf_getdata(scn, 0); 3732 if (!data) { 3733 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n", 3734 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>", 3735 obj->path, elf_errmsg(-1)); 3736 return NULL; 3737 } 3738 3739 return data; 3740 } 3741 3742 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx) 3743 { 3744 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym)) 3745 return NULL; 3746 3747 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx; 3748 } 3749 3750 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx) 3751 { 3752 if (idx >= data->d_size / sizeof(Elf64_Rel)) 3753 return NULL; 3754 3755 return (Elf64_Rel *)data->d_buf + idx; 3756 } 3757 3758 static bool is_sec_name_dwarf(const char *name) 3759 { 3760 /* approximation, but the actual list is too long */ 3761 return str_has_pfx(name, ".debug_"); 3762 } 3763 3764 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name) 3765 { 3766 /* no special handling of .strtab */ 3767 if (hdr->sh_type == SHT_STRTAB) 3768 return true; 3769 3770 /* ignore .llvm_addrsig section as well */ 3771 if (hdr->sh_type == SHT_LLVM_ADDRSIG) 3772 return true; 3773 3774 /* no subprograms will lead to an empty .text section, ignore it */ 3775 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 && 3776 strcmp(name, ".text") == 0) 3777 return true; 3778 3779 /* DWARF sections */ 3780 if (is_sec_name_dwarf(name)) 3781 return true; 3782 3783 if (str_has_pfx(name, ".rel")) { 3784 name += sizeof(".rel") - 1; 3785 /* DWARF section relocations */ 3786 if (is_sec_name_dwarf(name)) 3787 return true; 3788 3789 /* .BTF and .BTF.ext don't need relocations */ 3790 if (strcmp(name, BTF_ELF_SEC) == 0 || 3791 strcmp(name, BTF_EXT_ELF_SEC) == 0) 3792 return true; 3793 } 3794 3795 return false; 3796 } 3797 3798 static int cmp_progs(const void *_a, const void *_b) 3799 { 3800 const struct bpf_program *a = _a; 3801 const struct bpf_program *b = _b; 3802 3803 if (a->sec_idx != b->sec_idx) 3804 return a->sec_idx < b->sec_idx ? -1 : 1; 3805 3806 /* sec_insn_off can't be the same within the section */ 3807 return a->sec_insn_off < b->sec_insn_off ? -1 : 1; 3808 } 3809 3810 static int bpf_object__elf_collect(struct bpf_object *obj) 3811 { 3812 struct elf_sec_desc *sec_desc; 3813 Elf *elf = obj->efile.elf; 3814 Elf_Data *btf_ext_data = NULL; 3815 Elf_Data *btf_data = NULL; 3816 int idx = 0, err = 0; 3817 const char *name; 3818 Elf_Data *data; 3819 Elf_Scn *scn; 3820 Elf64_Shdr *sh; 3821 3822 /* ELF section indices are 0-based, but sec #0 is special "invalid" 3823 * section. Since section count retrieved by elf_getshdrnum() does 3824 * include sec #0, it is already the necessary size of an array to keep 3825 * all the sections. 3826 */ 3827 if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) { 3828 pr_warn("elf: failed to get the number of sections for %s: %s\n", 3829 obj->path, elf_errmsg(-1)); 3830 return -LIBBPF_ERRNO__FORMAT; 3831 } 3832 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs)); 3833 if (!obj->efile.secs) 3834 return -ENOMEM; 3835 3836 /* a bunch of ELF parsing functionality depends on processing symbols, 3837 * so do the first pass and find the symbol table 3838 */ 3839 scn = NULL; 3840 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3841 sh = elf_sec_hdr(obj, scn); 3842 if (!sh) 3843 return -LIBBPF_ERRNO__FORMAT; 3844 3845 if (sh->sh_type == SHT_SYMTAB) { 3846 if (obj->efile.symbols) { 3847 pr_warn("elf: multiple symbol tables in %s\n", obj->path); 3848 return -LIBBPF_ERRNO__FORMAT; 3849 } 3850 3851 data = elf_sec_data(obj, scn); 3852 if (!data) 3853 return -LIBBPF_ERRNO__FORMAT; 3854 3855 idx = elf_ndxscn(scn); 3856 3857 obj->efile.symbols = data; 3858 obj->efile.symbols_shndx = idx; 3859 obj->efile.strtabidx = sh->sh_link; 3860 } 3861 } 3862 3863 if (!obj->efile.symbols) { 3864 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n", 3865 obj->path); 3866 return -ENOENT; 3867 } 3868 3869 scn = NULL; 3870 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3871 idx = elf_ndxscn(scn); 3872 sec_desc = &obj->efile.secs[idx]; 3873 3874 sh = elf_sec_hdr(obj, scn); 3875 if (!sh) 3876 return -LIBBPF_ERRNO__FORMAT; 3877 3878 name = elf_sec_str(obj, sh->sh_name); 3879 if (!name) 3880 return -LIBBPF_ERRNO__FORMAT; 3881 3882 if (ignore_elf_section(sh, name)) 3883 continue; 3884 3885 data = elf_sec_data(obj, scn); 3886 if (!data) 3887 return -LIBBPF_ERRNO__FORMAT; 3888 3889 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 3890 idx, name, (unsigned long)data->d_size, 3891 (int)sh->sh_link, (unsigned long)sh->sh_flags, 3892 (int)sh->sh_type); 3893 3894 if (strcmp(name, "license") == 0) { 3895 err = bpf_object__init_license(obj, data->d_buf, data->d_size); 3896 if (err) 3897 return err; 3898 } else if (strcmp(name, "version") == 0) { 3899 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size); 3900 if (err) 3901 return err; 3902 } else if (strcmp(name, "maps") == 0) { 3903 pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n"); 3904 return -ENOTSUP; 3905 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 3906 obj->efile.btf_maps_shndx = idx; 3907 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 3908 if (sh->sh_type != SHT_PROGBITS) 3909 return -LIBBPF_ERRNO__FORMAT; 3910 btf_data = data; 3911 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 3912 if (sh->sh_type != SHT_PROGBITS) 3913 return -LIBBPF_ERRNO__FORMAT; 3914 btf_ext_data = data; 3915 } else if (sh->sh_type == SHT_SYMTAB) { 3916 /* already processed during the first pass above */ 3917 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) { 3918 if (sh->sh_flags & SHF_EXECINSTR) { 3919 if (strcmp(name, ".text") == 0) 3920 obj->efile.text_shndx = idx; 3921 err = bpf_object__add_programs(obj, data, name, idx); 3922 if (err) 3923 return err; 3924 } else if (strcmp(name, DATA_SEC) == 0 || 3925 str_has_pfx(name, DATA_SEC ".")) { 3926 sec_desc->sec_type = SEC_DATA; 3927 sec_desc->shdr = sh; 3928 sec_desc->data = data; 3929 } else if (strcmp(name, RODATA_SEC) == 0 || 3930 str_has_pfx(name, RODATA_SEC ".")) { 3931 sec_desc->sec_type = SEC_RODATA; 3932 sec_desc->shdr = sh; 3933 sec_desc->data = data; 3934 } else if (strcmp(name, STRUCT_OPS_SEC) == 0 || 3935 strcmp(name, STRUCT_OPS_LINK_SEC) == 0 || 3936 strcmp(name, "?" STRUCT_OPS_SEC) == 0 || 3937 strcmp(name, "?" STRUCT_OPS_LINK_SEC) == 0) { 3938 sec_desc->sec_type = SEC_ST_OPS; 3939 sec_desc->shdr = sh; 3940 sec_desc->data = data; 3941 obj->efile.has_st_ops = true; 3942 } else if (strcmp(name, ARENA_SEC) == 0) { 3943 obj->efile.arena_data = data; 3944 obj->efile.arena_data_shndx = idx; 3945 } else { 3946 pr_info("elf: skipping unrecognized data section(%d) %s\n", 3947 idx, name); 3948 } 3949 } else if (sh->sh_type == SHT_REL) { 3950 int targ_sec_idx = sh->sh_info; /* points to other section */ 3951 3952 if (sh->sh_entsize != sizeof(Elf64_Rel) || 3953 targ_sec_idx >= obj->efile.sec_cnt) 3954 return -LIBBPF_ERRNO__FORMAT; 3955 3956 /* Only do relo for section with exec instructions */ 3957 if (!section_have_execinstr(obj, targ_sec_idx) && 3958 strcmp(name, ".rel" STRUCT_OPS_SEC) && 3959 strcmp(name, ".rel" STRUCT_OPS_LINK_SEC) && 3960 strcmp(name, ".rel?" STRUCT_OPS_SEC) && 3961 strcmp(name, ".rel?" STRUCT_OPS_LINK_SEC) && 3962 strcmp(name, ".rel" MAPS_ELF_SEC)) { 3963 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n", 3964 idx, name, targ_sec_idx, 3965 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>"); 3966 continue; 3967 } 3968 3969 sec_desc->sec_type = SEC_RELO; 3970 sec_desc->shdr = sh; 3971 sec_desc->data = data; 3972 } else if (sh->sh_type == SHT_NOBITS && (strcmp(name, BSS_SEC) == 0 || 3973 str_has_pfx(name, BSS_SEC "."))) { 3974 sec_desc->sec_type = SEC_BSS; 3975 sec_desc->shdr = sh; 3976 sec_desc->data = data; 3977 } else { 3978 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name, 3979 (size_t)sh->sh_size); 3980 } 3981 } 3982 3983 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 3984 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path); 3985 return -LIBBPF_ERRNO__FORMAT; 3986 } 3987 3988 /* change BPF program insns to native endianness for introspection */ 3989 if (!is_native_endianness(obj)) 3990 bpf_object_bswap_progs(obj); 3991 3992 /* sort BPF programs by section name and in-section instruction offset 3993 * for faster search 3994 */ 3995 if (obj->nr_programs) 3996 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs); 3997 3998 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 3999 } 4000 4001 static bool sym_is_extern(const Elf64_Sym *sym) 4002 { 4003 int bind = ELF64_ST_BIND(sym->st_info); 4004 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 4005 return sym->st_shndx == SHN_UNDEF && 4006 (bind == STB_GLOBAL || bind == STB_WEAK) && 4007 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE; 4008 } 4009 4010 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx) 4011 { 4012 int bind = ELF64_ST_BIND(sym->st_info); 4013 int type = ELF64_ST_TYPE(sym->st_info); 4014 4015 /* in .text section */ 4016 if (sym->st_shndx != text_shndx) 4017 return false; 4018 4019 /* local function */ 4020 if (bind == STB_LOCAL && type == STT_SECTION) 4021 return true; 4022 4023 /* global function */ 4024 return (bind == STB_GLOBAL || bind == STB_WEAK) && type == STT_FUNC; 4025 } 4026 4027 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 4028 { 4029 const struct btf_type *t; 4030 const char *tname; 4031 int i, n; 4032 4033 if (!btf) 4034 return -ESRCH; 4035 4036 n = btf__type_cnt(btf); 4037 for (i = 1; i < n; i++) { 4038 t = btf__type_by_id(btf, i); 4039 4040 if (!btf_is_var(t) && !btf_is_func(t)) 4041 continue; 4042 4043 tname = btf__name_by_offset(btf, t->name_off); 4044 if (strcmp(tname, ext_name)) 4045 continue; 4046 4047 if (btf_is_var(t) && 4048 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 4049 return -EINVAL; 4050 4051 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN) 4052 return -EINVAL; 4053 4054 return i; 4055 } 4056 4057 return -ENOENT; 4058 } 4059 4060 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) { 4061 const struct btf_var_secinfo *vs; 4062 const struct btf_type *t; 4063 int i, j, n; 4064 4065 if (!btf) 4066 return -ESRCH; 4067 4068 n = btf__type_cnt(btf); 4069 for (i = 1; i < n; i++) { 4070 t = btf__type_by_id(btf, i); 4071 4072 if (!btf_is_datasec(t)) 4073 continue; 4074 4075 vs = btf_var_secinfos(t); 4076 for (j = 0; j < btf_vlen(t); j++, vs++) { 4077 if (vs->type == ext_btf_id) 4078 return i; 4079 } 4080 } 4081 4082 return -ENOENT; 4083 } 4084 4085 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id, 4086 bool *is_signed) 4087 { 4088 const struct btf_type *t; 4089 const char *name; 4090 4091 t = skip_mods_and_typedefs(btf, id, NULL); 4092 name = btf__name_by_offset(btf, t->name_off); 4093 4094 if (is_signed) 4095 *is_signed = false; 4096 switch (btf_kind(t)) { 4097 case BTF_KIND_INT: { 4098 int enc = btf_int_encoding(t); 4099 4100 if (enc & BTF_INT_BOOL) 4101 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN; 4102 if (is_signed) 4103 *is_signed = enc & BTF_INT_SIGNED; 4104 if (t->size == 1) 4105 return KCFG_CHAR; 4106 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 4107 return KCFG_UNKNOWN; 4108 return KCFG_INT; 4109 } 4110 case BTF_KIND_ENUM: 4111 if (t->size != 4) 4112 return KCFG_UNKNOWN; 4113 if (strcmp(name, "libbpf_tristate")) 4114 return KCFG_UNKNOWN; 4115 return KCFG_TRISTATE; 4116 case BTF_KIND_ENUM64: 4117 if (strcmp(name, "libbpf_tristate")) 4118 return KCFG_UNKNOWN; 4119 return KCFG_TRISTATE; 4120 case BTF_KIND_ARRAY: 4121 if (btf_array(t)->nelems == 0) 4122 return KCFG_UNKNOWN; 4123 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR) 4124 return KCFG_UNKNOWN; 4125 return KCFG_CHAR_ARR; 4126 default: 4127 return KCFG_UNKNOWN; 4128 } 4129 } 4130 4131 static int cmp_externs(const void *_a, const void *_b) 4132 { 4133 const struct extern_desc *a = _a; 4134 const struct extern_desc *b = _b; 4135 4136 if (a->type != b->type) 4137 return a->type < b->type ? -1 : 1; 4138 4139 if (a->type == EXT_KCFG) { 4140 /* descending order by alignment requirements */ 4141 if (a->kcfg.align != b->kcfg.align) 4142 return a->kcfg.align > b->kcfg.align ? -1 : 1; 4143 /* ascending order by size, within same alignment class */ 4144 if (a->kcfg.sz != b->kcfg.sz) 4145 return a->kcfg.sz < b->kcfg.sz ? -1 : 1; 4146 } 4147 4148 /* resolve ties by name */ 4149 return strcmp(a->name, b->name); 4150 } 4151 4152 static int find_int_btf_id(const struct btf *btf) 4153 { 4154 const struct btf_type *t; 4155 int i, n; 4156 4157 n = btf__type_cnt(btf); 4158 for (i = 1; i < n; i++) { 4159 t = btf__type_by_id(btf, i); 4160 4161 if (btf_is_int(t) && btf_int_bits(t) == 32) 4162 return i; 4163 } 4164 4165 return 0; 4166 } 4167 4168 static int add_dummy_ksym_var(struct btf *btf) 4169 { 4170 int i, int_btf_id, sec_btf_id, dummy_var_btf_id; 4171 const struct btf_var_secinfo *vs; 4172 const struct btf_type *sec; 4173 4174 if (!btf) 4175 return 0; 4176 4177 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC, 4178 BTF_KIND_DATASEC); 4179 if (sec_btf_id < 0) 4180 return 0; 4181 4182 sec = btf__type_by_id(btf, sec_btf_id); 4183 vs = btf_var_secinfos(sec); 4184 for (i = 0; i < btf_vlen(sec); i++, vs++) { 4185 const struct btf_type *vt; 4186 4187 vt = btf__type_by_id(btf, vs->type); 4188 if (btf_is_func(vt)) 4189 break; 4190 } 4191 4192 /* No func in ksyms sec. No need to add dummy var. */ 4193 if (i == btf_vlen(sec)) 4194 return 0; 4195 4196 int_btf_id = find_int_btf_id(btf); 4197 dummy_var_btf_id = btf__add_var(btf, 4198 "dummy_ksym", 4199 BTF_VAR_GLOBAL_ALLOCATED, 4200 int_btf_id); 4201 if (dummy_var_btf_id < 0) 4202 pr_warn("cannot create a dummy_ksym var\n"); 4203 4204 return dummy_var_btf_id; 4205 } 4206 4207 static int bpf_object__collect_externs(struct bpf_object *obj) 4208 { 4209 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL; 4210 const struct btf_type *t; 4211 struct extern_desc *ext; 4212 int i, n, off, dummy_var_btf_id; 4213 const char *ext_name, *sec_name; 4214 size_t ext_essent_len; 4215 Elf_Scn *scn; 4216 Elf64_Shdr *sh; 4217 4218 if (!obj->efile.symbols) 4219 return 0; 4220 4221 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx); 4222 sh = elf_sec_hdr(obj, scn); 4223 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym)) 4224 return -LIBBPF_ERRNO__FORMAT; 4225 4226 dummy_var_btf_id = add_dummy_ksym_var(obj->btf); 4227 if (dummy_var_btf_id < 0) 4228 return dummy_var_btf_id; 4229 4230 n = sh->sh_size / sh->sh_entsize; 4231 pr_debug("looking for externs among %d symbols...\n", n); 4232 4233 for (i = 0; i < n; i++) { 4234 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 4235 4236 if (!sym) 4237 return -LIBBPF_ERRNO__FORMAT; 4238 if (!sym_is_extern(sym)) 4239 continue; 4240 ext_name = elf_sym_str(obj, sym->st_name); 4241 if (!ext_name || !ext_name[0]) 4242 continue; 4243 4244 ext = obj->externs; 4245 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 4246 if (!ext) 4247 return -ENOMEM; 4248 obj->externs = ext; 4249 ext = &ext[obj->nr_extern]; 4250 memset(ext, 0, sizeof(*ext)); 4251 obj->nr_extern++; 4252 4253 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 4254 if (ext->btf_id <= 0) { 4255 pr_warn("failed to find BTF for extern '%s': %d\n", 4256 ext_name, ext->btf_id); 4257 return ext->btf_id; 4258 } 4259 t = btf__type_by_id(obj->btf, ext->btf_id); 4260 ext->name = strdup(btf__name_by_offset(obj->btf, t->name_off)); 4261 if (!ext->name) 4262 return -ENOMEM; 4263 ext->sym_idx = i; 4264 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK; 4265 4266 ext_essent_len = bpf_core_essential_name_len(ext->name); 4267 ext->essent_name = NULL; 4268 if (ext_essent_len != strlen(ext->name)) { 4269 ext->essent_name = strndup(ext->name, ext_essent_len); 4270 if (!ext->essent_name) 4271 return -ENOMEM; 4272 } 4273 4274 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id); 4275 if (ext->sec_btf_id <= 0) { 4276 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n", 4277 ext_name, ext->btf_id, ext->sec_btf_id); 4278 return ext->sec_btf_id; 4279 } 4280 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id); 4281 sec_name = btf__name_by_offset(obj->btf, sec->name_off); 4282 4283 if (strcmp(sec_name, KCONFIG_SEC) == 0) { 4284 if (btf_is_func(t)) { 4285 pr_warn("extern function %s is unsupported under %s section\n", 4286 ext->name, KCONFIG_SEC); 4287 return -ENOTSUP; 4288 } 4289 kcfg_sec = sec; 4290 ext->type = EXT_KCFG; 4291 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type); 4292 if (ext->kcfg.sz <= 0) { 4293 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n", 4294 ext_name, ext->kcfg.sz); 4295 return ext->kcfg.sz; 4296 } 4297 ext->kcfg.align = btf__align_of(obj->btf, t->type); 4298 if (ext->kcfg.align <= 0) { 4299 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n", 4300 ext_name, ext->kcfg.align); 4301 return -EINVAL; 4302 } 4303 ext->kcfg.type = find_kcfg_type(obj->btf, t->type, 4304 &ext->kcfg.is_signed); 4305 if (ext->kcfg.type == KCFG_UNKNOWN) { 4306 pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name); 4307 return -ENOTSUP; 4308 } 4309 } else if (strcmp(sec_name, KSYMS_SEC) == 0) { 4310 ksym_sec = sec; 4311 ext->type = EXT_KSYM; 4312 skip_mods_and_typedefs(obj->btf, t->type, 4313 &ext->ksym.type_id); 4314 } else { 4315 pr_warn("unrecognized extern section '%s'\n", sec_name); 4316 return -ENOTSUP; 4317 } 4318 } 4319 pr_debug("collected %d externs total\n", obj->nr_extern); 4320 4321 if (!obj->nr_extern) 4322 return 0; 4323 4324 /* sort externs by type, for kcfg ones also by (align, size, name) */ 4325 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 4326 4327 /* for .ksyms section, we need to turn all externs into allocated 4328 * variables in BTF to pass kernel verification; we do this by 4329 * pretending that each extern is a 8-byte variable 4330 */ 4331 if (ksym_sec) { 4332 /* find existing 4-byte integer type in BTF to use for fake 4333 * extern variables in DATASEC 4334 */ 4335 int int_btf_id = find_int_btf_id(obj->btf); 4336 /* For extern function, a dummy_var added earlier 4337 * will be used to replace the vs->type and 4338 * its name string will be used to refill 4339 * the missing param's name. 4340 */ 4341 const struct btf_type *dummy_var; 4342 4343 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id); 4344 for (i = 0; i < obj->nr_extern; i++) { 4345 ext = &obj->externs[i]; 4346 if (ext->type != EXT_KSYM) 4347 continue; 4348 pr_debug("extern (ksym) #%d: symbol %d, name %s\n", 4349 i, ext->sym_idx, ext->name); 4350 } 4351 4352 sec = ksym_sec; 4353 n = btf_vlen(sec); 4354 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) { 4355 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 4356 struct btf_type *vt; 4357 4358 vt = (void *)btf__type_by_id(obj->btf, vs->type); 4359 ext_name = btf__name_by_offset(obj->btf, vt->name_off); 4360 ext = find_extern_by_name(obj, ext_name); 4361 if (!ext) { 4362 pr_warn("failed to find extern definition for BTF %s '%s'\n", 4363 btf_kind_str(vt), ext_name); 4364 return -ESRCH; 4365 } 4366 if (btf_is_func(vt)) { 4367 const struct btf_type *func_proto; 4368 struct btf_param *param; 4369 int j; 4370 4371 func_proto = btf__type_by_id(obj->btf, 4372 vt->type); 4373 param = btf_params(func_proto); 4374 /* Reuse the dummy_var string if the 4375 * func proto does not have param name. 4376 */ 4377 for (j = 0; j < btf_vlen(func_proto); j++) 4378 if (param[j].type && !param[j].name_off) 4379 param[j].name_off = 4380 dummy_var->name_off; 4381 vs->type = dummy_var_btf_id; 4382 vt->info &= ~0xffff; 4383 vt->info |= BTF_FUNC_GLOBAL; 4384 } else { 4385 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 4386 vt->type = int_btf_id; 4387 } 4388 vs->offset = off; 4389 vs->size = sizeof(int); 4390 } 4391 sec->size = off; 4392 } 4393 4394 if (kcfg_sec) { 4395 sec = kcfg_sec; 4396 /* for kcfg externs calculate their offsets within a .kconfig map */ 4397 off = 0; 4398 for (i = 0; i < obj->nr_extern; i++) { 4399 ext = &obj->externs[i]; 4400 if (ext->type != EXT_KCFG) 4401 continue; 4402 4403 ext->kcfg.data_off = roundup(off, ext->kcfg.align); 4404 off = ext->kcfg.data_off + ext->kcfg.sz; 4405 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n", 4406 i, ext->sym_idx, ext->kcfg.data_off, ext->name); 4407 } 4408 sec->size = off; 4409 n = btf_vlen(sec); 4410 for (i = 0; i < n; i++) { 4411 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 4412 4413 t = btf__type_by_id(obj->btf, vs->type); 4414 ext_name = btf__name_by_offset(obj->btf, t->name_off); 4415 ext = find_extern_by_name(obj, ext_name); 4416 if (!ext) { 4417 pr_warn("failed to find extern definition for BTF var '%s'\n", 4418 ext_name); 4419 return -ESRCH; 4420 } 4421 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 4422 vs->offset = ext->kcfg.data_off; 4423 } 4424 } 4425 return 0; 4426 } 4427 4428 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog) 4429 { 4430 return prog->sec_idx == obj->efile.text_shndx; 4431 } 4432 4433 struct bpf_program * 4434 bpf_object__find_program_by_name(const struct bpf_object *obj, 4435 const char *name) 4436 { 4437 struct bpf_program *prog; 4438 4439 bpf_object__for_each_program(prog, obj) { 4440 if (prog_is_subprog(obj, prog)) 4441 continue; 4442 if (!strcmp(prog->name, name)) 4443 return prog; 4444 } 4445 return errno = ENOENT, NULL; 4446 } 4447 4448 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 4449 int shndx) 4450 { 4451 switch (obj->efile.secs[shndx].sec_type) { 4452 case SEC_BSS: 4453 case SEC_DATA: 4454 case SEC_RODATA: 4455 return true; 4456 default: 4457 return false; 4458 } 4459 } 4460 4461 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 4462 int shndx) 4463 { 4464 return shndx == obj->efile.btf_maps_shndx; 4465 } 4466 4467 static enum libbpf_map_type 4468 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 4469 { 4470 if (shndx == obj->efile.symbols_shndx) 4471 return LIBBPF_MAP_KCONFIG; 4472 4473 switch (obj->efile.secs[shndx].sec_type) { 4474 case SEC_BSS: 4475 return LIBBPF_MAP_BSS; 4476 case SEC_DATA: 4477 return LIBBPF_MAP_DATA; 4478 case SEC_RODATA: 4479 return LIBBPF_MAP_RODATA; 4480 default: 4481 return LIBBPF_MAP_UNSPEC; 4482 } 4483 } 4484 4485 static int bpf_prog_compute_hash(struct bpf_program *prog) 4486 { 4487 struct bpf_insn *purged; 4488 int i, err = 0; 4489 4490 purged = calloc(prog->insns_cnt, BPF_INSN_SZ); 4491 if (!purged) 4492 return -ENOMEM; 4493 4494 /* If relocations have been done, the map_fd needs to be 4495 * discarded for the digest calculation. 4496 */ 4497 for (i = 0; i < prog->insns_cnt; i++) { 4498 purged[i] = prog->insns[i]; 4499 if (purged[i].code == (BPF_LD | BPF_IMM | BPF_DW) && 4500 (purged[i].src_reg == BPF_PSEUDO_MAP_FD || 4501 purged[i].src_reg == BPF_PSEUDO_MAP_VALUE)) { 4502 purged[i].imm = 0; 4503 i++; 4504 if (i >= prog->insns_cnt || 4505 prog->insns[i].code != 0 || 4506 prog->insns[i].dst_reg != 0 || 4507 prog->insns[i].src_reg != 0 || 4508 prog->insns[i].off != 0) { 4509 err = -EINVAL; 4510 goto out; 4511 } 4512 purged[i] = prog->insns[i]; 4513 purged[i].imm = 0; 4514 } 4515 } 4516 libbpf_sha256(purged, prog->insns_cnt * sizeof(struct bpf_insn), 4517 prog->hash); 4518 out: 4519 free(purged); 4520 return err; 4521 } 4522 4523 static int bpf_program__record_reloc(struct bpf_program *prog, 4524 struct reloc_desc *reloc_desc, 4525 __u32 insn_idx, const char *sym_name, 4526 const Elf64_Sym *sym, const Elf64_Rel *rel) 4527 { 4528 struct bpf_insn *insn = &prog->insns[insn_idx]; 4529 size_t map_idx, nr_maps = prog->obj->nr_maps; 4530 struct bpf_object *obj = prog->obj; 4531 __u32 shdr_idx = sym->st_shndx; 4532 enum libbpf_map_type type; 4533 const char *sym_sec_name; 4534 struct bpf_map *map; 4535 4536 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) { 4537 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n", 4538 prog->name, sym_name, insn_idx, insn->code); 4539 return -LIBBPF_ERRNO__RELOC; 4540 } 4541 4542 if (sym_is_extern(sym)) { 4543 int sym_idx = ELF64_R_SYM(rel->r_info); 4544 int i, n = obj->nr_extern; 4545 struct extern_desc *ext; 4546 4547 for (i = 0; i < n; i++) { 4548 ext = &obj->externs[i]; 4549 if (ext->sym_idx == sym_idx) 4550 break; 4551 } 4552 if (i >= n) { 4553 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n", 4554 prog->name, sym_name, sym_idx); 4555 return -LIBBPF_ERRNO__RELOC; 4556 } 4557 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n", 4558 prog->name, i, ext->name, ext->sym_idx, insn_idx); 4559 if (insn->code == (BPF_JMP | BPF_CALL)) 4560 reloc_desc->type = RELO_EXTERN_CALL; 4561 else 4562 reloc_desc->type = RELO_EXTERN_LD64; 4563 reloc_desc->insn_idx = insn_idx; 4564 reloc_desc->ext_idx = i; 4565 return 0; 4566 } 4567 4568 /* sub-program call relocation */ 4569 if (is_call_insn(insn)) { 4570 if (insn->src_reg != BPF_PSEUDO_CALL) { 4571 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name); 4572 return -LIBBPF_ERRNO__RELOC; 4573 } 4574 /* text_shndx can be 0, if no default "main" program exists */ 4575 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 4576 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4577 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n", 4578 prog->name, sym_name, sym_sec_name); 4579 return -LIBBPF_ERRNO__RELOC; 4580 } 4581 if (sym->st_value % BPF_INSN_SZ) { 4582 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n", 4583 prog->name, sym_name, (size_t)sym->st_value); 4584 return -LIBBPF_ERRNO__RELOC; 4585 } 4586 reloc_desc->type = RELO_CALL; 4587 reloc_desc->insn_idx = insn_idx; 4588 reloc_desc->sym_off = sym->st_value; 4589 return 0; 4590 } 4591 4592 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 4593 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n", 4594 prog->name, sym_name, shdr_idx); 4595 return -LIBBPF_ERRNO__RELOC; 4596 } 4597 4598 /* loading subprog addresses */ 4599 if (sym_is_subprog(sym, obj->efile.text_shndx)) { 4600 /* global_func: sym->st_value = offset in the section, insn->imm = 0. 4601 * local_func: sym->st_value = 0, insn->imm = offset in the section. 4602 */ 4603 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) { 4604 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n", 4605 prog->name, sym_name, (size_t)sym->st_value, insn->imm); 4606 return -LIBBPF_ERRNO__RELOC; 4607 } 4608 4609 reloc_desc->type = RELO_SUBPROG_ADDR; 4610 reloc_desc->insn_idx = insn_idx; 4611 reloc_desc->sym_off = sym->st_value; 4612 return 0; 4613 } 4614 4615 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 4616 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4617 4618 /* arena data relocation */ 4619 if (shdr_idx == obj->efile.arena_data_shndx) { 4620 if (obj->arena_map_idx < 0) { 4621 pr_warn("prog '%s': bad arena data relocation at insn %u, no arena maps defined\n", 4622 prog->name, insn_idx); 4623 return -LIBBPF_ERRNO__RELOC; 4624 } 4625 reloc_desc->type = RELO_DATA; 4626 reloc_desc->insn_idx = insn_idx; 4627 reloc_desc->map_idx = obj->arena_map_idx; 4628 reloc_desc->sym_off = sym->st_value; 4629 4630 map = &obj->maps[obj->arena_map_idx]; 4631 pr_debug("prog '%s': found arena map %d (%s, sec %d, off %zu) for insn %u\n", 4632 prog->name, obj->arena_map_idx, map->name, map->sec_idx, 4633 map->sec_offset, insn_idx); 4634 return 0; 4635 } 4636 4637 /* generic map reference relocation */ 4638 if (type == LIBBPF_MAP_UNSPEC) { 4639 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 4640 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n", 4641 prog->name, sym_name, sym_sec_name); 4642 return -LIBBPF_ERRNO__RELOC; 4643 } 4644 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4645 map = &obj->maps[map_idx]; 4646 if (map->libbpf_type != type || 4647 map->sec_idx != sym->st_shndx || 4648 map->sec_offset != sym->st_value) 4649 continue; 4650 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n", 4651 prog->name, map_idx, map->name, map->sec_idx, 4652 map->sec_offset, insn_idx); 4653 break; 4654 } 4655 if (map_idx >= nr_maps) { 4656 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n", 4657 prog->name, sym_sec_name, (size_t)sym->st_value); 4658 return -LIBBPF_ERRNO__RELOC; 4659 } 4660 reloc_desc->type = RELO_LD64; 4661 reloc_desc->insn_idx = insn_idx; 4662 reloc_desc->map_idx = map_idx; 4663 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 4664 return 0; 4665 } 4666 4667 /* global data map relocation */ 4668 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 4669 pr_warn("prog '%s': bad data relo against section '%s'\n", 4670 prog->name, sym_sec_name); 4671 return -LIBBPF_ERRNO__RELOC; 4672 } 4673 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4674 map = &obj->maps[map_idx]; 4675 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx) 4676 continue; 4677 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n", 4678 prog->name, map_idx, map->name, map->sec_idx, 4679 map->sec_offset, insn_idx); 4680 break; 4681 } 4682 if (map_idx >= nr_maps) { 4683 pr_warn("prog '%s': data relo failed to find map for section '%s'\n", 4684 prog->name, sym_sec_name); 4685 return -LIBBPF_ERRNO__RELOC; 4686 } 4687 4688 reloc_desc->type = RELO_DATA; 4689 reloc_desc->insn_idx = insn_idx; 4690 reloc_desc->map_idx = map_idx; 4691 reloc_desc->sym_off = sym->st_value; 4692 return 0; 4693 } 4694 4695 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx) 4696 { 4697 return insn_idx >= prog->sec_insn_off && 4698 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt; 4699 } 4700 4701 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj, 4702 size_t sec_idx, size_t insn_idx) 4703 { 4704 int l = 0, r = obj->nr_programs - 1, m; 4705 struct bpf_program *prog; 4706 4707 if (!obj->nr_programs) 4708 return NULL; 4709 4710 while (l < r) { 4711 m = l + (r - l + 1) / 2; 4712 prog = &obj->programs[m]; 4713 4714 if (prog->sec_idx < sec_idx || 4715 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx)) 4716 l = m; 4717 else 4718 r = m - 1; 4719 } 4720 /* matching program could be at index l, but it still might be the 4721 * wrong one, so we need to double check conditions for the last time 4722 */ 4723 prog = &obj->programs[l]; 4724 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx)) 4725 return prog; 4726 return NULL; 4727 } 4728 4729 static int 4730 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data) 4731 { 4732 const char *relo_sec_name, *sec_name; 4733 size_t sec_idx = shdr->sh_info, sym_idx; 4734 struct bpf_program *prog; 4735 struct reloc_desc *relos; 4736 int err, i, nrels; 4737 const char *sym_name; 4738 __u32 insn_idx; 4739 Elf_Scn *scn; 4740 Elf_Data *scn_data; 4741 Elf64_Sym *sym; 4742 Elf64_Rel *rel; 4743 4744 if (sec_idx >= obj->efile.sec_cnt) 4745 return -EINVAL; 4746 4747 scn = elf_sec_by_idx(obj, sec_idx); 4748 scn_data = elf_sec_data(obj, scn); 4749 if (!scn_data) 4750 return -LIBBPF_ERRNO__FORMAT; 4751 4752 relo_sec_name = elf_sec_str(obj, shdr->sh_name); 4753 sec_name = elf_sec_name(obj, scn); 4754 if (!relo_sec_name || !sec_name) 4755 return -EINVAL; 4756 4757 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n", 4758 relo_sec_name, sec_idx, sec_name); 4759 nrels = shdr->sh_size / shdr->sh_entsize; 4760 4761 for (i = 0; i < nrels; i++) { 4762 rel = elf_rel_by_idx(data, i); 4763 if (!rel) { 4764 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i); 4765 return -LIBBPF_ERRNO__FORMAT; 4766 } 4767 4768 sym_idx = ELF64_R_SYM(rel->r_info); 4769 sym = elf_sym_by_idx(obj, sym_idx); 4770 if (!sym) { 4771 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n", 4772 relo_sec_name, sym_idx, i); 4773 return -LIBBPF_ERRNO__FORMAT; 4774 } 4775 4776 if (sym->st_shndx >= obj->efile.sec_cnt) { 4777 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n", 4778 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i); 4779 return -LIBBPF_ERRNO__FORMAT; 4780 } 4781 4782 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) { 4783 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n", 4784 relo_sec_name, (size_t)rel->r_offset, i); 4785 return -LIBBPF_ERRNO__FORMAT; 4786 } 4787 4788 insn_idx = rel->r_offset / BPF_INSN_SZ; 4789 /* relocations against static functions are recorded as 4790 * relocations against the section that contains a function; 4791 * in such case, symbol will be STT_SECTION and sym.st_name 4792 * will point to empty string (0), so fetch section name 4793 * instead 4794 */ 4795 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0) 4796 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx)); 4797 else 4798 sym_name = elf_sym_str(obj, sym->st_name); 4799 sym_name = sym_name ?: "<?"; 4800 4801 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n", 4802 relo_sec_name, i, insn_idx, sym_name); 4803 4804 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 4805 if (!prog) { 4806 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n", 4807 relo_sec_name, i, sec_name, insn_idx); 4808 continue; 4809 } 4810 4811 relos = libbpf_reallocarray(prog->reloc_desc, 4812 prog->nr_reloc + 1, sizeof(*relos)); 4813 if (!relos) 4814 return -ENOMEM; 4815 prog->reloc_desc = relos; 4816 4817 /* adjust insn_idx to local BPF program frame of reference */ 4818 insn_idx -= prog->sec_insn_off; 4819 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc], 4820 insn_idx, sym_name, sym, rel); 4821 if (err) 4822 return err; 4823 4824 prog->nr_reloc++; 4825 } 4826 return 0; 4827 } 4828 4829 static int map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map) 4830 { 4831 int id; 4832 4833 if (!obj->btf) 4834 return -ENOENT; 4835 4836 /* if it's BTF-defined map, we don't need to search for type IDs. 4837 * For struct_ops map, it does not need btf_key_type_id and 4838 * btf_value_type_id. 4839 */ 4840 if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map)) 4841 return 0; 4842 4843 /* 4844 * LLVM annotates global data differently in BTF, that is, 4845 * only as '.data', '.bss' or '.rodata'. 4846 */ 4847 if (!bpf_map__is_internal(map)) 4848 return -ENOENT; 4849 4850 id = btf__find_by_name(obj->btf, map->real_name); 4851 if (id < 0) 4852 return id; 4853 4854 map->btf_key_type_id = 0; 4855 map->btf_value_type_id = id; 4856 return 0; 4857 } 4858 4859 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info) 4860 { 4861 char file[PATH_MAX], buff[4096]; 4862 FILE *fp; 4863 __u32 val; 4864 int err; 4865 4866 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd); 4867 memset(info, 0, sizeof(*info)); 4868 4869 fp = fopen(file, "re"); 4870 if (!fp) { 4871 err = -errno; 4872 pr_warn("failed to open %s: %s. No procfs support?\n", file, 4873 errstr(err)); 4874 return err; 4875 } 4876 4877 while (fgets(buff, sizeof(buff), fp)) { 4878 if (sscanf(buff, "map_type:\t%u", &val) == 1) 4879 info->type = val; 4880 else if (sscanf(buff, "key_size:\t%u", &val) == 1) 4881 info->key_size = val; 4882 else if (sscanf(buff, "value_size:\t%u", &val) == 1) 4883 info->value_size = val; 4884 else if (sscanf(buff, "max_entries:\t%u", &val) == 1) 4885 info->max_entries = val; 4886 else if (sscanf(buff, "map_flags:\t%i", &val) == 1) 4887 info->map_flags = val; 4888 } 4889 4890 fclose(fp); 4891 4892 return 0; 4893 } 4894 4895 static bool map_is_created(const struct bpf_map *map) 4896 { 4897 return map->obj->state >= OBJ_PREPARED || map->reused; 4898 } 4899 4900 bool bpf_map__autocreate(const struct bpf_map *map) 4901 { 4902 return map->autocreate; 4903 } 4904 4905 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate) 4906 { 4907 if (map_is_created(map)) 4908 return libbpf_err(-EBUSY); 4909 4910 map->autocreate = autocreate; 4911 return 0; 4912 } 4913 4914 int bpf_map__set_autoattach(struct bpf_map *map, bool autoattach) 4915 { 4916 if (!bpf_map__is_struct_ops(map)) 4917 return libbpf_err(-EINVAL); 4918 4919 map->autoattach = autoattach; 4920 return 0; 4921 } 4922 4923 bool bpf_map__autoattach(const struct bpf_map *map) 4924 { 4925 return map->autoattach; 4926 } 4927 4928 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 4929 { 4930 struct bpf_map_info info; 4931 __u32 len = sizeof(info), name_len; 4932 int new_fd, err; 4933 char *new_name; 4934 4935 memset(&info, 0, len); 4936 err = bpf_map_get_info_by_fd(fd, &info, &len); 4937 if (err && errno == EINVAL) 4938 err = bpf_get_map_info_from_fdinfo(fd, &info); 4939 if (err) 4940 return libbpf_err(err); 4941 4942 name_len = strlen(info.name); 4943 if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0) 4944 new_name = strdup(map->name); 4945 else 4946 new_name = strdup(info.name); 4947 4948 if (!new_name) 4949 return libbpf_err(-errno); 4950 4951 /* 4952 * Like dup(), but make sure new FD is >= 3 and has O_CLOEXEC set. 4953 * This is similar to what we do in ensure_good_fd(), but without 4954 * closing original FD. 4955 */ 4956 new_fd = fcntl(fd, F_DUPFD_CLOEXEC, 3); 4957 if (new_fd < 0) { 4958 err = -errno; 4959 goto err_free_new_name; 4960 } 4961 4962 err = reuse_fd(map->fd, new_fd); 4963 if (err) 4964 goto err_free_new_name; 4965 4966 free(map->name); 4967 4968 map->name = new_name; 4969 map->def.type = info.type; 4970 map->def.key_size = info.key_size; 4971 map->def.value_size = info.value_size; 4972 map->def.max_entries = info.max_entries; 4973 map->def.map_flags = info.map_flags; 4974 map->btf_key_type_id = info.btf_key_type_id; 4975 map->btf_value_type_id = info.btf_value_type_id; 4976 map->reused = true; 4977 map->map_extra = info.map_extra; 4978 4979 return 0; 4980 4981 err_free_new_name: 4982 free(new_name); 4983 return libbpf_err(err); 4984 } 4985 4986 __u32 bpf_map__max_entries(const struct bpf_map *map) 4987 { 4988 return map->def.max_entries; 4989 } 4990 4991 struct bpf_map *bpf_map__inner_map(struct bpf_map *map) 4992 { 4993 if (!bpf_map_type__is_map_in_map(map->def.type)) 4994 return errno = EINVAL, NULL; 4995 4996 return map->inner_map; 4997 } 4998 4999 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries) 5000 { 5001 if (map_is_created(map)) 5002 return libbpf_err(-EBUSY); 5003 5004 map->def.max_entries = max_entries; 5005 5006 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 5007 if (map_is_ringbuf(map)) 5008 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 5009 5010 return 0; 5011 } 5012 5013 static int bpf_object_prepare_token(struct bpf_object *obj) 5014 { 5015 const char *bpffs_path; 5016 int bpffs_fd = -1, token_fd, err; 5017 bool mandatory; 5018 enum libbpf_print_level level; 5019 5020 /* token is explicitly prevented */ 5021 if (obj->token_path && obj->token_path[0] == '\0') { 5022 pr_debug("object '%s': token is prevented, skipping...\n", obj->name); 5023 return 0; 5024 } 5025 5026 mandatory = obj->token_path != NULL; 5027 level = mandatory ? LIBBPF_WARN : LIBBPF_DEBUG; 5028 5029 bpffs_path = obj->token_path ?: BPF_FS_DEFAULT_PATH; 5030 bpffs_fd = open(bpffs_path, O_DIRECTORY, O_RDWR); 5031 if (bpffs_fd < 0) { 5032 err = -errno; 5033 __pr(level, "object '%s': failed (%s) to open BPF FS mount at '%s'%s\n", 5034 obj->name, errstr(err), bpffs_path, 5035 mandatory ? "" : ", skipping optional step..."); 5036 return mandatory ? err : 0; 5037 } 5038 5039 token_fd = bpf_token_create(bpffs_fd, 0); 5040 close(bpffs_fd); 5041 if (token_fd < 0) { 5042 if (!mandatory && token_fd == -ENOENT) { 5043 pr_debug("object '%s': BPF FS at '%s' doesn't have BPF token delegation set up, skipping...\n", 5044 obj->name, bpffs_path); 5045 return 0; 5046 } 5047 __pr(level, "object '%s': failed (%d) to create BPF token from '%s'%s\n", 5048 obj->name, token_fd, bpffs_path, 5049 mandatory ? "" : ", skipping optional step..."); 5050 return mandatory ? token_fd : 0; 5051 } 5052 5053 obj->feat_cache = calloc(1, sizeof(*obj->feat_cache)); 5054 if (!obj->feat_cache) { 5055 close(token_fd); 5056 return -ENOMEM; 5057 } 5058 5059 obj->token_fd = token_fd; 5060 obj->feat_cache->token_fd = token_fd; 5061 5062 return 0; 5063 } 5064 5065 static int 5066 bpf_object__probe_loading(struct bpf_object *obj) 5067 { 5068 struct bpf_insn insns[] = { 5069 BPF_MOV64_IMM(BPF_REG_0, 0), 5070 BPF_EXIT_INSN(), 5071 }; 5072 int ret, insn_cnt = ARRAY_SIZE(insns); 5073 LIBBPF_OPTS(bpf_prog_load_opts, opts, 5074 .token_fd = obj->token_fd, 5075 .prog_flags = obj->token_fd ? BPF_F_TOKEN_FD : 0, 5076 ); 5077 5078 if (obj->gen_loader) 5079 return 0; 5080 5081 ret = bump_rlimit_memlock(); 5082 if (ret) 5083 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %s), you might need to do it explicitly!\n", 5084 errstr(ret)); 5085 5086 /* make sure basic loading works */ 5087 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, &opts); 5088 if (ret < 0) 5089 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, &opts); 5090 if (ret < 0) { 5091 ret = errno; 5092 pr_warn("Error in %s(): %s. Couldn't load trivial BPF program. Make sure your kernel supports BPF (CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is set to big enough value.\n", 5093 __func__, errstr(ret)); 5094 return -ret; 5095 } 5096 close(ret); 5097 5098 return 0; 5099 } 5100 5101 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id) 5102 { 5103 if (obj->gen_loader) 5104 /* To generate loader program assume the latest kernel 5105 * to avoid doing extra prog_load, map_create syscalls. 5106 */ 5107 return true; 5108 5109 if (obj->token_fd) 5110 return feat_supported(obj->feat_cache, feat_id); 5111 5112 return feat_supported(NULL, feat_id); 5113 } 5114 5115 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 5116 { 5117 struct bpf_map_info map_info; 5118 __u32 map_info_len = sizeof(map_info); 5119 int err; 5120 5121 memset(&map_info, 0, map_info_len); 5122 err = bpf_map_get_info_by_fd(map_fd, &map_info, &map_info_len); 5123 if (err && errno == EINVAL) 5124 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info); 5125 if (err) { 5126 pr_warn("failed to get map info for map FD %d: %s\n", map_fd, 5127 errstr(err)); 5128 return false; 5129 } 5130 5131 /* 5132 * bpf_get_map_info_by_fd() for DEVMAP will always return flags with 5133 * BPF_F_RDONLY_PROG set, but it generally is not set at map creation time. 5134 * Thus, ignore the BPF_F_RDONLY_PROG flag in the flags returned from 5135 * bpf_get_map_info_by_fd() when checking for compatibility with an 5136 * existing DEVMAP. 5137 */ 5138 if (map->def.type == BPF_MAP_TYPE_DEVMAP || map->def.type == BPF_MAP_TYPE_DEVMAP_HASH) 5139 map_info.map_flags &= ~BPF_F_RDONLY_PROG; 5140 5141 return (map_info.type == map->def.type && 5142 map_info.key_size == map->def.key_size && 5143 map_info.value_size == map->def.value_size && 5144 map_info.max_entries == map->def.max_entries && 5145 map_info.map_flags == map->def.map_flags && 5146 map_info.map_extra == map->map_extra); 5147 } 5148 5149 static int 5150 bpf_object__reuse_map(struct bpf_map *map) 5151 { 5152 int err, pin_fd; 5153 5154 pin_fd = bpf_obj_get(map->pin_path); 5155 if (pin_fd < 0) { 5156 err = -errno; 5157 if (err == -ENOENT) { 5158 pr_debug("found no pinned map to reuse at '%s'\n", 5159 map->pin_path); 5160 return 0; 5161 } 5162 5163 pr_warn("couldn't retrieve pinned map '%s': %s\n", 5164 map->pin_path, errstr(err)); 5165 return err; 5166 } 5167 5168 if (!map_is_reuse_compat(map, pin_fd)) { 5169 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 5170 map->pin_path); 5171 close(pin_fd); 5172 return -EINVAL; 5173 } 5174 5175 err = bpf_map__reuse_fd(map, pin_fd); 5176 close(pin_fd); 5177 if (err) 5178 return err; 5179 5180 map->pinned = true; 5181 pr_debug("reused pinned map at '%s'\n", map->pin_path); 5182 5183 return 0; 5184 } 5185 5186 static int 5187 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 5188 { 5189 enum libbpf_map_type map_type = map->libbpf_type; 5190 int err, zero = 0; 5191 size_t mmap_sz; 5192 5193 if (obj->gen_loader) { 5194 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps, 5195 map->mmaped, map->def.value_size); 5196 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) 5197 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps); 5198 return 0; 5199 } 5200 5201 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 5202 if (err) { 5203 err = -errno; 5204 pr_warn("map '%s': failed to set initial contents: %s\n", 5205 bpf_map__name(map), errstr(err)); 5206 return err; 5207 } 5208 5209 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 5210 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 5211 err = bpf_map_freeze(map->fd); 5212 if (err) { 5213 err = -errno; 5214 pr_warn("map '%s': failed to freeze as read-only: %s\n", 5215 bpf_map__name(map), errstr(err)); 5216 return err; 5217 } 5218 } 5219 5220 /* Remap anonymous mmap()-ed "map initialization image" as 5221 * a BPF map-backed mmap()-ed memory, but preserving the same 5222 * memory address. This will cause kernel to change process' 5223 * page table to point to a different piece of kernel memory, 5224 * but from userspace point of view memory address (and its 5225 * contents, being identical at this point) will stay the 5226 * same. This mapping will be released by bpf_object__close() 5227 * as per normal clean up procedure. 5228 */ 5229 mmap_sz = bpf_map_mmap_sz(map); 5230 if (map->def.map_flags & BPF_F_MMAPABLE) { 5231 void *mmaped; 5232 int prot; 5233 5234 if (map->def.map_flags & BPF_F_RDONLY_PROG) 5235 prot = PROT_READ; 5236 else 5237 prot = PROT_READ | PROT_WRITE; 5238 mmaped = mmap(map->mmaped, mmap_sz, prot, MAP_SHARED | MAP_FIXED, map->fd, 0); 5239 if (mmaped == MAP_FAILED) { 5240 err = -errno; 5241 pr_warn("map '%s': failed to re-mmap() contents: %s\n", 5242 bpf_map__name(map), errstr(err)); 5243 return err; 5244 } 5245 map->mmaped = mmaped; 5246 } else if (map->mmaped) { 5247 munmap(map->mmaped, mmap_sz); 5248 map->mmaped = NULL; 5249 } 5250 5251 return 0; 5252 } 5253 5254 static void bpf_map__destroy(struct bpf_map *map); 5255 5256 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner) 5257 { 5258 LIBBPF_OPTS(bpf_map_create_opts, create_attr); 5259 struct bpf_map_def *def = &map->def; 5260 const char *map_name = NULL; 5261 int err = 0, map_fd; 5262 5263 if (kernel_supports(obj, FEAT_PROG_NAME)) 5264 map_name = map->name; 5265 create_attr.map_ifindex = map->map_ifindex; 5266 create_attr.map_flags = def->map_flags; 5267 create_attr.numa_node = map->numa_node; 5268 create_attr.map_extra = map->map_extra; 5269 create_attr.token_fd = obj->token_fd; 5270 if (obj->token_fd) 5271 create_attr.map_flags |= BPF_F_TOKEN_FD; 5272 if (map->excl_prog) { 5273 err = bpf_prog_compute_hash(map->excl_prog); 5274 if (err) 5275 return err; 5276 5277 create_attr.excl_prog_hash = map->excl_prog->hash; 5278 create_attr.excl_prog_hash_size = SHA256_DIGEST_LENGTH; 5279 } 5280 5281 if (bpf_map__is_struct_ops(map)) { 5282 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id; 5283 if (map->mod_btf_fd >= 0) { 5284 create_attr.value_type_btf_obj_fd = map->mod_btf_fd; 5285 create_attr.map_flags |= BPF_F_VTYPE_BTF_OBJ_FD; 5286 } 5287 } 5288 5289 if (obj->btf && btf__fd(obj->btf) >= 0) { 5290 create_attr.btf_fd = btf__fd(obj->btf); 5291 create_attr.btf_key_type_id = map->btf_key_type_id; 5292 create_attr.btf_value_type_id = map->btf_value_type_id; 5293 } 5294 5295 if (bpf_map_type__is_map_in_map(def->type)) { 5296 if (map->inner_map) { 5297 err = map_set_def_max_entries(map->inner_map); 5298 if (err) 5299 return err; 5300 err = bpf_object__create_map(obj, map->inner_map, true); 5301 if (err) { 5302 pr_warn("map '%s': failed to create inner map: %s\n", 5303 map->name, errstr(err)); 5304 return err; 5305 } 5306 map->inner_map_fd = map->inner_map->fd; 5307 } 5308 if (map->inner_map_fd >= 0) 5309 create_attr.inner_map_fd = map->inner_map_fd; 5310 } 5311 5312 switch (def->type) { 5313 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 5314 case BPF_MAP_TYPE_CGROUP_ARRAY: 5315 case BPF_MAP_TYPE_STACK_TRACE: 5316 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 5317 case BPF_MAP_TYPE_HASH_OF_MAPS: 5318 case BPF_MAP_TYPE_DEVMAP: 5319 case BPF_MAP_TYPE_DEVMAP_HASH: 5320 case BPF_MAP_TYPE_CPUMAP: 5321 case BPF_MAP_TYPE_XSKMAP: 5322 case BPF_MAP_TYPE_SOCKMAP: 5323 case BPF_MAP_TYPE_SOCKHASH: 5324 case BPF_MAP_TYPE_QUEUE: 5325 case BPF_MAP_TYPE_STACK: 5326 case BPF_MAP_TYPE_ARENA: 5327 create_attr.btf_fd = 0; 5328 create_attr.btf_key_type_id = 0; 5329 create_attr.btf_value_type_id = 0; 5330 map->btf_key_type_id = 0; 5331 map->btf_value_type_id = 0; 5332 break; 5333 case BPF_MAP_TYPE_STRUCT_OPS: 5334 create_attr.btf_value_type_id = 0; 5335 break; 5336 default: 5337 break; 5338 } 5339 5340 if (obj->gen_loader) { 5341 bpf_gen__map_create(obj->gen_loader, def->type, map_name, 5342 def->key_size, def->value_size, def->max_entries, 5343 &create_attr, is_inner ? -1 : map - obj->maps); 5344 /* We keep pretenting we have valid FD to pass various fd >= 0 5345 * checks by just keeping original placeholder FDs in place. 5346 * See bpf_object__add_map() comment. 5347 * This placeholder fd will not be used with any syscall and 5348 * will be reset to -1 eventually. 5349 */ 5350 map_fd = map->fd; 5351 } else { 5352 map_fd = bpf_map_create(def->type, map_name, 5353 def->key_size, def->value_size, 5354 def->max_entries, &create_attr); 5355 } 5356 if (map_fd < 0 && (create_attr.btf_key_type_id || create_attr.btf_value_type_id)) { 5357 err = -errno; 5358 pr_warn("Error in bpf_create_map_xattr(%s): %s. Retrying without BTF.\n", 5359 map->name, errstr(err)); 5360 create_attr.btf_fd = 0; 5361 create_attr.btf_key_type_id = 0; 5362 create_attr.btf_value_type_id = 0; 5363 map->btf_key_type_id = 0; 5364 map->btf_value_type_id = 0; 5365 map_fd = bpf_map_create(def->type, map_name, 5366 def->key_size, def->value_size, 5367 def->max_entries, &create_attr); 5368 } 5369 5370 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) { 5371 if (obj->gen_loader) 5372 map->inner_map->fd = -1; 5373 bpf_map__destroy(map->inner_map); 5374 zfree(&map->inner_map); 5375 } 5376 5377 if (map_fd < 0) 5378 return map_fd; 5379 5380 /* obj->gen_loader case, prevent reuse_fd() from closing map_fd */ 5381 if (map->fd == map_fd) 5382 return 0; 5383 5384 /* Keep placeholder FD value but now point it to the BPF map object. 5385 * This way everything that relied on this map's FD (e.g., relocated 5386 * ldimm64 instructions) will stay valid and won't need adjustments. 5387 * map->fd stays valid but now point to what map_fd points to. 5388 */ 5389 return reuse_fd(map->fd, map_fd); 5390 } 5391 5392 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map) 5393 { 5394 const struct bpf_map *targ_map; 5395 unsigned int i; 5396 int fd, err = 0; 5397 5398 for (i = 0; i < map->init_slots_sz; i++) { 5399 if (!map->init_slots[i]) 5400 continue; 5401 5402 targ_map = map->init_slots[i]; 5403 fd = targ_map->fd; 5404 5405 if (obj->gen_loader) { 5406 bpf_gen__populate_outer_map(obj->gen_loader, 5407 map - obj->maps, i, 5408 targ_map - obj->maps); 5409 } else { 5410 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5411 } 5412 if (err) { 5413 err = -errno; 5414 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %s\n", 5415 map->name, i, targ_map->name, fd, errstr(err)); 5416 return err; 5417 } 5418 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n", 5419 map->name, i, targ_map->name, fd); 5420 } 5421 5422 zfree(&map->init_slots); 5423 map->init_slots_sz = 0; 5424 5425 return 0; 5426 } 5427 5428 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map) 5429 { 5430 const struct bpf_program *targ_prog; 5431 unsigned int i; 5432 int fd, err; 5433 5434 if (obj->gen_loader) 5435 return -ENOTSUP; 5436 5437 for (i = 0; i < map->init_slots_sz; i++) { 5438 if (!map->init_slots[i]) 5439 continue; 5440 5441 targ_prog = map->init_slots[i]; 5442 fd = bpf_program__fd(targ_prog); 5443 5444 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5445 if (err) { 5446 err = -errno; 5447 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %s\n", 5448 map->name, i, targ_prog->name, fd, errstr(err)); 5449 return err; 5450 } 5451 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n", 5452 map->name, i, targ_prog->name, fd); 5453 } 5454 5455 zfree(&map->init_slots); 5456 map->init_slots_sz = 0; 5457 5458 return 0; 5459 } 5460 5461 static int bpf_object_init_prog_arrays(struct bpf_object *obj) 5462 { 5463 struct bpf_map *map; 5464 int i, err; 5465 5466 for (i = 0; i < obj->nr_maps; i++) { 5467 map = &obj->maps[i]; 5468 5469 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY) 5470 continue; 5471 5472 err = init_prog_array_slots(obj, map); 5473 if (err < 0) 5474 return err; 5475 } 5476 return 0; 5477 } 5478 5479 static int map_set_def_max_entries(struct bpf_map *map) 5480 { 5481 if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) { 5482 int nr_cpus; 5483 5484 nr_cpus = libbpf_num_possible_cpus(); 5485 if (nr_cpus < 0) { 5486 pr_warn("map '%s': failed to determine number of system CPUs: %d\n", 5487 map->name, nr_cpus); 5488 return nr_cpus; 5489 } 5490 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus); 5491 map->def.max_entries = nr_cpus; 5492 } 5493 5494 return 0; 5495 } 5496 5497 static int 5498 bpf_object__create_maps(struct bpf_object *obj) 5499 { 5500 struct bpf_map *map; 5501 unsigned int i, j; 5502 int err; 5503 bool retried; 5504 5505 for (i = 0; i < obj->nr_maps; i++) { 5506 map = &obj->maps[i]; 5507 5508 /* To support old kernels, we skip creating global data maps 5509 * (.rodata, .data, .kconfig, etc); later on, during program 5510 * loading, if we detect that at least one of the to-be-loaded 5511 * programs is referencing any global data map, we'll error 5512 * out with program name and relocation index logged. 5513 * This approach allows to accommodate Clang emitting 5514 * unnecessary .rodata.str1.1 sections for string literals, 5515 * but also it allows to have CO-RE applications that use 5516 * global variables in some of BPF programs, but not others. 5517 * If those global variable-using programs are not loaded at 5518 * runtime due to bpf_program__set_autoload(prog, false), 5519 * bpf_object loading will succeed just fine even on old 5520 * kernels. 5521 */ 5522 if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA)) 5523 map->autocreate = false; 5524 5525 if (!map->autocreate) { 5526 pr_debug("map '%s': skipped auto-creating...\n", map->name); 5527 continue; 5528 } 5529 5530 err = map_set_def_max_entries(map); 5531 if (err) 5532 goto err_out; 5533 5534 retried = false; 5535 retry: 5536 if (map->pin_path) { 5537 err = bpf_object__reuse_map(map); 5538 if (err) { 5539 pr_warn("map '%s': error reusing pinned map\n", 5540 map->name); 5541 goto err_out; 5542 } 5543 if (retried && map->fd < 0) { 5544 pr_warn("map '%s': cannot find pinned map\n", 5545 map->name); 5546 err = -ENOENT; 5547 goto err_out; 5548 } 5549 } 5550 5551 if (map->reused) { 5552 pr_debug("map '%s': skipping creation (preset fd=%d)\n", 5553 map->name, map->fd); 5554 } else { 5555 err = bpf_object__create_map(obj, map, false); 5556 if (err) 5557 goto err_out; 5558 5559 pr_debug("map '%s': created successfully, fd=%d\n", 5560 map->name, map->fd); 5561 5562 if (bpf_map__is_internal(map)) { 5563 err = bpf_object__populate_internal_map(obj, map); 5564 if (err < 0) 5565 goto err_out; 5566 } else if (map->def.type == BPF_MAP_TYPE_ARENA) { 5567 map->mmaped = mmap((void *)(long)map->map_extra, 5568 bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE, 5569 map->map_extra ? MAP_SHARED | MAP_FIXED : MAP_SHARED, 5570 map->fd, 0); 5571 if (map->mmaped == MAP_FAILED) { 5572 err = -errno; 5573 map->mmaped = NULL; 5574 pr_warn("map '%s': failed to mmap arena: %s\n", 5575 map->name, errstr(err)); 5576 return err; 5577 } 5578 if (obj->arena_data) { 5579 memcpy(map->mmaped, obj->arena_data, obj->arena_data_sz); 5580 zfree(&obj->arena_data); 5581 } 5582 } 5583 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) { 5584 err = init_map_in_map_slots(obj, map); 5585 if (err < 0) 5586 goto err_out; 5587 } 5588 } 5589 5590 if (map->pin_path && !map->pinned) { 5591 err = bpf_map__pin(map, NULL); 5592 if (err) { 5593 if (!retried && err == -EEXIST) { 5594 retried = true; 5595 goto retry; 5596 } 5597 pr_warn("map '%s': failed to auto-pin at '%s': %s\n", 5598 map->name, map->pin_path, errstr(err)); 5599 goto err_out; 5600 } 5601 } 5602 } 5603 5604 return 0; 5605 5606 err_out: 5607 pr_warn("map '%s': failed to create: %s\n", map->name, errstr(err)); 5608 pr_perm_msg(err); 5609 for (j = 0; j < i; j++) 5610 zclose(obj->maps[j].fd); 5611 return err; 5612 } 5613 5614 static bool bpf_core_is_flavor_sep(const char *s) 5615 { 5616 /* check X___Y name pattern, where X and Y are not underscores */ 5617 return s[0] != '_' && /* X */ 5618 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 5619 s[4] != '_'; /* Y */ 5620 } 5621 5622 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 5623 * before last triple underscore. Struct name part after last triple 5624 * underscore is ignored by BPF CO-RE relocation during relocation matching. 5625 */ 5626 size_t bpf_core_essential_name_len(const char *name) 5627 { 5628 size_t n = strlen(name); 5629 int i; 5630 5631 for (i = n - 5; i >= 0; i--) { 5632 if (bpf_core_is_flavor_sep(name + i)) 5633 return i + 1; 5634 } 5635 return n; 5636 } 5637 5638 void bpf_core_free_cands(struct bpf_core_cand_list *cands) 5639 { 5640 if (!cands) 5641 return; 5642 5643 free(cands->cands); 5644 free(cands); 5645 } 5646 5647 int bpf_core_add_cands(struct bpf_core_cand *local_cand, 5648 size_t local_essent_len, 5649 const struct btf *targ_btf, 5650 const char *targ_btf_name, 5651 int targ_start_id, 5652 struct bpf_core_cand_list *cands) 5653 { 5654 struct bpf_core_cand *new_cands, *cand; 5655 const struct btf_type *t, *local_t; 5656 const char *targ_name, *local_name; 5657 size_t targ_essent_len; 5658 int n, i; 5659 5660 local_t = btf__type_by_id(local_cand->btf, local_cand->id); 5661 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off); 5662 5663 n = btf__type_cnt(targ_btf); 5664 for (i = targ_start_id; i < n; i++) { 5665 t = btf__type_by_id(targ_btf, i); 5666 if (!btf_kind_core_compat(t, local_t)) 5667 continue; 5668 5669 targ_name = btf__name_by_offset(targ_btf, t->name_off); 5670 if (str_is_empty(targ_name)) 5671 continue; 5672 5673 targ_essent_len = bpf_core_essential_name_len(targ_name); 5674 if (targ_essent_len != local_essent_len) 5675 continue; 5676 5677 if (strncmp(local_name, targ_name, local_essent_len) != 0) 5678 continue; 5679 5680 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n", 5681 local_cand->id, btf_kind_str(local_t), 5682 local_name, i, btf_kind_str(t), targ_name, 5683 targ_btf_name); 5684 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1, 5685 sizeof(*cands->cands)); 5686 if (!new_cands) 5687 return -ENOMEM; 5688 5689 cand = &new_cands[cands->len]; 5690 cand->btf = targ_btf; 5691 cand->id = i; 5692 5693 cands->cands = new_cands; 5694 cands->len++; 5695 } 5696 return 0; 5697 } 5698 5699 static int load_module_btfs(struct bpf_object *obj) 5700 { 5701 struct bpf_btf_info info; 5702 struct module_btf *mod_btf; 5703 struct btf *btf; 5704 char name[64]; 5705 __u32 id = 0, len; 5706 int err, fd; 5707 5708 if (obj->btf_modules_loaded) 5709 return 0; 5710 5711 if (obj->gen_loader) 5712 return 0; 5713 5714 /* don't do this again, even if we find no module BTFs */ 5715 obj->btf_modules_loaded = true; 5716 5717 /* kernel too old to support module BTFs */ 5718 if (!kernel_supports(obj, FEAT_MODULE_BTF)) 5719 return 0; 5720 5721 while (true) { 5722 err = bpf_btf_get_next_id(id, &id); 5723 if (err && errno == ENOENT) 5724 return 0; 5725 if (err && errno == EPERM) { 5726 pr_debug("skipping module BTFs loading, missing privileges\n"); 5727 return 0; 5728 } 5729 if (err) { 5730 err = -errno; 5731 pr_warn("failed to iterate BTF objects: %s\n", errstr(err)); 5732 return err; 5733 } 5734 5735 fd = bpf_btf_get_fd_by_id(id); 5736 if (fd < 0) { 5737 if (errno == ENOENT) 5738 continue; /* expected race: BTF was unloaded */ 5739 err = -errno; 5740 pr_warn("failed to get BTF object #%d FD: %s\n", id, errstr(err)); 5741 return err; 5742 } 5743 5744 len = sizeof(info); 5745 memset(&info, 0, sizeof(info)); 5746 info.name = ptr_to_u64(name); 5747 info.name_len = sizeof(name); 5748 5749 err = bpf_btf_get_info_by_fd(fd, &info, &len); 5750 if (err) { 5751 err = -errno; 5752 pr_warn("failed to get BTF object #%d info: %s\n", id, errstr(err)); 5753 goto err_out; 5754 } 5755 5756 /* ignore non-module BTFs */ 5757 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) { 5758 close(fd); 5759 continue; 5760 } 5761 5762 btf = btf_get_from_fd(fd, obj->btf_vmlinux); 5763 err = libbpf_get_error(btf); 5764 if (err) { 5765 pr_warn("failed to load module [%s]'s BTF object #%d: %s\n", 5766 name, id, errstr(err)); 5767 goto err_out; 5768 } 5769 5770 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap, 5771 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1); 5772 if (err) 5773 goto err_out; 5774 5775 mod_btf = &obj->btf_modules[obj->btf_module_cnt++]; 5776 5777 mod_btf->btf = btf; 5778 mod_btf->id = id; 5779 mod_btf->fd = fd; 5780 mod_btf->name = strdup(name); 5781 if (!mod_btf->name) { 5782 err = -ENOMEM; 5783 goto err_out; 5784 } 5785 continue; 5786 5787 err_out: 5788 close(fd); 5789 return err; 5790 } 5791 5792 return 0; 5793 } 5794 5795 static struct bpf_core_cand_list * 5796 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id) 5797 { 5798 struct bpf_core_cand local_cand = {}; 5799 struct bpf_core_cand_list *cands; 5800 const struct btf *main_btf; 5801 const struct btf_type *local_t; 5802 const char *local_name; 5803 size_t local_essent_len; 5804 int err, i; 5805 5806 local_cand.btf = local_btf; 5807 local_cand.id = local_type_id; 5808 local_t = btf__type_by_id(local_btf, local_type_id); 5809 if (!local_t) 5810 return ERR_PTR(-EINVAL); 5811 5812 local_name = btf__name_by_offset(local_btf, local_t->name_off); 5813 if (str_is_empty(local_name)) 5814 return ERR_PTR(-EINVAL); 5815 local_essent_len = bpf_core_essential_name_len(local_name); 5816 5817 cands = calloc(1, sizeof(*cands)); 5818 if (!cands) 5819 return ERR_PTR(-ENOMEM); 5820 5821 /* Attempt to find target candidates in vmlinux BTF first */ 5822 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux; 5823 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands); 5824 if (err) 5825 goto err_out; 5826 5827 /* if vmlinux BTF has any candidate, don't got for module BTFs */ 5828 if (cands->len) 5829 return cands; 5830 5831 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */ 5832 if (obj->btf_vmlinux_override) 5833 return cands; 5834 5835 /* now look through module BTFs, trying to still find candidates */ 5836 err = load_module_btfs(obj); 5837 if (err) 5838 goto err_out; 5839 5840 for (i = 0; i < obj->btf_module_cnt; i++) { 5841 err = bpf_core_add_cands(&local_cand, local_essent_len, 5842 obj->btf_modules[i].btf, 5843 obj->btf_modules[i].name, 5844 btf__type_cnt(obj->btf_vmlinux), 5845 cands); 5846 if (err) 5847 goto err_out; 5848 } 5849 5850 return cands; 5851 err_out: 5852 bpf_core_free_cands(cands); 5853 return ERR_PTR(err); 5854 } 5855 5856 /* Check local and target types for compatibility. This check is used for 5857 * type-based CO-RE relocations and follow slightly different rules than 5858 * field-based relocations. This function assumes that root types were already 5859 * checked for name match. Beyond that initial root-level name check, names 5860 * are completely ignored. Compatibility rules are as follows: 5861 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but 5862 * kind should match for local and target types (i.e., STRUCT is not 5863 * compatible with UNION); 5864 * - for ENUMs, the size is ignored; 5865 * - for INT, size and signedness are ignored; 5866 * - for ARRAY, dimensionality is ignored, element types are checked for 5867 * compatibility recursively; 5868 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 5869 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 5870 * - FUNC_PROTOs are compatible if they have compatible signature: same 5871 * number of input args and compatible return and argument types. 5872 * These rules are not set in stone and probably will be adjusted as we get 5873 * more experience with using BPF CO-RE relocations. 5874 */ 5875 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 5876 const struct btf *targ_btf, __u32 targ_id) 5877 { 5878 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32); 5879 } 5880 5881 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id, 5882 const struct btf *targ_btf, __u32 targ_id) 5883 { 5884 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32); 5885 } 5886 5887 static size_t bpf_core_hash_fn(const long key, void *ctx) 5888 { 5889 return key; 5890 } 5891 5892 static bool bpf_core_equal_fn(const long k1, const long k2, void *ctx) 5893 { 5894 return k1 == k2; 5895 } 5896 5897 static int record_relo_core(struct bpf_program *prog, 5898 const struct bpf_core_relo *core_relo, int insn_idx) 5899 { 5900 struct reloc_desc *relos, *relo; 5901 5902 relos = libbpf_reallocarray(prog->reloc_desc, 5903 prog->nr_reloc + 1, sizeof(*relos)); 5904 if (!relos) 5905 return -ENOMEM; 5906 relo = &relos[prog->nr_reloc]; 5907 relo->type = RELO_CORE; 5908 relo->insn_idx = insn_idx; 5909 relo->core_relo = core_relo; 5910 prog->reloc_desc = relos; 5911 prog->nr_reloc++; 5912 return 0; 5913 } 5914 5915 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx) 5916 { 5917 struct reloc_desc *relo; 5918 int i; 5919 5920 for (i = 0; i < prog->nr_reloc; i++) { 5921 relo = &prog->reloc_desc[i]; 5922 if (relo->type != RELO_CORE || relo->insn_idx != insn_idx) 5923 continue; 5924 5925 return relo->core_relo; 5926 } 5927 5928 return NULL; 5929 } 5930 5931 static int bpf_core_resolve_relo(struct bpf_program *prog, 5932 const struct bpf_core_relo *relo, 5933 int relo_idx, 5934 const struct btf *local_btf, 5935 struct hashmap *cand_cache, 5936 struct bpf_core_relo_res *targ_res) 5937 { 5938 struct bpf_core_spec specs_scratch[3] = {}; 5939 struct bpf_core_cand_list *cands = NULL; 5940 const char *prog_name = prog->name; 5941 const struct btf_type *local_type; 5942 const char *local_name; 5943 __u32 local_id = relo->type_id; 5944 int err; 5945 5946 local_type = btf__type_by_id(local_btf, local_id); 5947 if (!local_type) 5948 return -EINVAL; 5949 5950 local_name = btf__name_by_offset(local_btf, local_type->name_off); 5951 if (!local_name) 5952 return -EINVAL; 5953 5954 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL && 5955 !hashmap__find(cand_cache, local_id, &cands)) { 5956 cands = bpf_core_find_cands(prog->obj, local_btf, local_id); 5957 if (IS_ERR(cands)) { 5958 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n", 5959 prog_name, relo_idx, local_id, btf_kind_str(local_type), 5960 local_name, PTR_ERR(cands)); 5961 return PTR_ERR(cands); 5962 } 5963 err = hashmap__set(cand_cache, local_id, cands, NULL, NULL); 5964 if (err) { 5965 bpf_core_free_cands(cands); 5966 return err; 5967 } 5968 } 5969 5970 return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch, 5971 targ_res); 5972 } 5973 5974 static int 5975 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 5976 { 5977 const struct btf_ext_info_sec *sec; 5978 struct bpf_core_relo_res targ_res; 5979 const struct bpf_core_relo *rec; 5980 const struct btf_ext_info *seg; 5981 struct hashmap_entry *entry; 5982 struct hashmap *cand_cache = NULL; 5983 struct bpf_program *prog; 5984 struct bpf_insn *insn; 5985 const char *sec_name; 5986 int i, err = 0, insn_idx, sec_idx, sec_num; 5987 5988 if (obj->btf_ext->core_relo_info.len == 0) 5989 return 0; 5990 5991 if (targ_btf_path) { 5992 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL); 5993 err = libbpf_get_error(obj->btf_vmlinux_override); 5994 if (err) { 5995 pr_warn("failed to parse target BTF: %s\n", errstr(err)); 5996 return err; 5997 } 5998 } 5999 6000 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 6001 if (IS_ERR(cand_cache)) { 6002 err = PTR_ERR(cand_cache); 6003 goto out; 6004 } 6005 6006 seg = &obj->btf_ext->core_relo_info; 6007 sec_num = 0; 6008 for_each_btf_ext_sec(seg, sec) { 6009 sec_idx = seg->sec_idxs[sec_num]; 6010 sec_num++; 6011 6012 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 6013 if (str_is_empty(sec_name)) { 6014 err = -EINVAL; 6015 goto out; 6016 } 6017 6018 pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info); 6019 6020 for_each_btf_ext_rec(seg, sec, i, rec) { 6021 if (rec->insn_off % BPF_INSN_SZ) 6022 return -EINVAL; 6023 insn_idx = rec->insn_off / BPF_INSN_SZ; 6024 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 6025 if (!prog) { 6026 /* When __weak subprog is "overridden" by another instance 6027 * of the subprog from a different object file, linker still 6028 * appends all the .BTF.ext info that used to belong to that 6029 * eliminated subprogram. 6030 * This is similar to what x86-64 linker does for relocations. 6031 * So just ignore such relocations just like we ignore 6032 * subprog instructions when discovering subprograms. 6033 */ 6034 pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n", 6035 sec_name, i, insn_idx); 6036 continue; 6037 } 6038 /* no need to apply CO-RE relocation if the program is 6039 * not going to be loaded 6040 */ 6041 if (!prog->autoload) 6042 continue; 6043 6044 /* adjust insn_idx from section frame of reference to the local 6045 * program's frame of reference; (sub-)program code is not yet 6046 * relocated, so it's enough to just subtract in-section offset 6047 */ 6048 insn_idx = insn_idx - prog->sec_insn_off; 6049 if (insn_idx >= prog->insns_cnt) 6050 return -EINVAL; 6051 insn = &prog->insns[insn_idx]; 6052 6053 err = record_relo_core(prog, rec, insn_idx); 6054 if (err) { 6055 pr_warn("prog '%s': relo #%d: failed to record relocation: %s\n", 6056 prog->name, i, errstr(err)); 6057 goto out; 6058 } 6059 6060 if (prog->obj->gen_loader) 6061 continue; 6062 6063 err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res); 6064 if (err) { 6065 pr_warn("prog '%s': relo #%d: failed to relocate: %s\n", 6066 prog->name, i, errstr(err)); 6067 goto out; 6068 } 6069 6070 err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res); 6071 if (err) { 6072 pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %s\n", 6073 prog->name, i, insn_idx, errstr(err)); 6074 goto out; 6075 } 6076 } 6077 } 6078 6079 out: 6080 /* obj->btf_vmlinux and module BTFs are freed after object load */ 6081 btf__free(obj->btf_vmlinux_override); 6082 obj->btf_vmlinux_override = NULL; 6083 6084 if (!IS_ERR_OR_NULL(cand_cache)) { 6085 hashmap__for_each_entry(cand_cache, entry, i) { 6086 bpf_core_free_cands(entry->pvalue); 6087 } 6088 hashmap__free(cand_cache); 6089 } 6090 return err; 6091 } 6092 6093 /* base map load ldimm64 special constant, used also for log fixup logic */ 6094 #define POISON_LDIMM64_MAP_BASE 2001000000 6095 #define POISON_LDIMM64_MAP_PFX "200100" 6096 6097 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx, 6098 int insn_idx, struct bpf_insn *insn, 6099 int map_idx, const struct bpf_map *map) 6100 { 6101 int i; 6102 6103 pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n", 6104 prog->name, relo_idx, insn_idx, map_idx, map->name); 6105 6106 /* we turn single ldimm64 into two identical invalid calls */ 6107 for (i = 0; i < 2; i++) { 6108 insn->code = BPF_JMP | BPF_CALL; 6109 insn->dst_reg = 0; 6110 insn->src_reg = 0; 6111 insn->off = 0; 6112 /* if this instruction is reachable (not a dead code), 6113 * verifier will complain with something like: 6114 * invalid func unknown#2001000123 6115 * where lower 123 is map index into obj->maps[] array 6116 */ 6117 insn->imm = POISON_LDIMM64_MAP_BASE + map_idx; 6118 6119 insn++; 6120 } 6121 } 6122 6123 /* unresolved kfunc call special constant, used also for log fixup logic */ 6124 #define POISON_CALL_KFUNC_BASE 2002000000 6125 #define POISON_CALL_KFUNC_PFX "2002" 6126 6127 static void poison_kfunc_call(struct bpf_program *prog, int relo_idx, 6128 int insn_idx, struct bpf_insn *insn, 6129 int ext_idx, const struct extern_desc *ext) 6130 { 6131 pr_debug("prog '%s': relo #%d: poisoning insn #%d that calls kfunc '%s'\n", 6132 prog->name, relo_idx, insn_idx, ext->name); 6133 6134 /* we turn kfunc call into invalid helper call with identifiable constant */ 6135 insn->code = BPF_JMP | BPF_CALL; 6136 insn->dst_reg = 0; 6137 insn->src_reg = 0; 6138 insn->off = 0; 6139 /* if this instruction is reachable (not a dead code), 6140 * verifier will complain with something like: 6141 * invalid func unknown#2001000123 6142 * where lower 123 is extern index into obj->externs[] array 6143 */ 6144 insn->imm = POISON_CALL_KFUNC_BASE + ext_idx; 6145 } 6146 6147 /* Relocate data references within program code: 6148 * - map references; 6149 * - global variable references; 6150 * - extern references. 6151 */ 6152 static int 6153 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog) 6154 { 6155 int i; 6156 6157 for (i = 0; i < prog->nr_reloc; i++) { 6158 struct reloc_desc *relo = &prog->reloc_desc[i]; 6159 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6160 const struct bpf_map *map; 6161 struct extern_desc *ext; 6162 6163 switch (relo->type) { 6164 case RELO_LD64: 6165 map = &obj->maps[relo->map_idx]; 6166 if (obj->gen_loader) { 6167 insn[0].src_reg = BPF_PSEUDO_MAP_IDX; 6168 insn[0].imm = relo->map_idx; 6169 } else if (map->autocreate) { 6170 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 6171 insn[0].imm = map->fd; 6172 } else { 6173 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 6174 relo->map_idx, map); 6175 } 6176 break; 6177 case RELO_DATA: 6178 map = &obj->maps[relo->map_idx]; 6179 insn[1].imm = insn[0].imm + relo->sym_off; 6180 if (obj->gen_loader) { 6181 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 6182 insn[0].imm = relo->map_idx; 6183 } else if (map->autocreate) { 6184 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 6185 insn[0].imm = map->fd; 6186 } else { 6187 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 6188 relo->map_idx, map); 6189 } 6190 break; 6191 case RELO_EXTERN_LD64: 6192 ext = &obj->externs[relo->ext_idx]; 6193 if (ext->type == EXT_KCFG) { 6194 if (obj->gen_loader) { 6195 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 6196 insn[0].imm = obj->kconfig_map_idx; 6197 } else { 6198 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 6199 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 6200 } 6201 insn[1].imm = ext->kcfg.data_off; 6202 } else /* EXT_KSYM */ { 6203 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */ 6204 insn[0].src_reg = BPF_PSEUDO_BTF_ID; 6205 insn[0].imm = ext->ksym.kernel_btf_id; 6206 insn[1].imm = ext->ksym.kernel_btf_obj_fd; 6207 } else { /* typeless ksyms or unresolved typed ksyms */ 6208 insn[0].imm = (__u32)ext->ksym.addr; 6209 insn[1].imm = ext->ksym.addr >> 32; 6210 } 6211 } 6212 break; 6213 case RELO_EXTERN_CALL: 6214 ext = &obj->externs[relo->ext_idx]; 6215 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL; 6216 if (ext->is_set) { 6217 insn[0].imm = ext->ksym.kernel_btf_id; 6218 insn[0].off = ext->ksym.btf_fd_idx; 6219 } else { /* unresolved weak kfunc call */ 6220 poison_kfunc_call(prog, i, relo->insn_idx, insn, 6221 relo->ext_idx, ext); 6222 } 6223 break; 6224 case RELO_SUBPROG_ADDR: 6225 if (insn[0].src_reg != BPF_PSEUDO_FUNC) { 6226 pr_warn("prog '%s': relo #%d: bad insn\n", 6227 prog->name, i); 6228 return -EINVAL; 6229 } 6230 /* handled already */ 6231 break; 6232 case RELO_CALL: 6233 /* handled already */ 6234 break; 6235 case RELO_CORE: 6236 /* will be handled by bpf_program_record_relos() */ 6237 break; 6238 default: 6239 pr_warn("prog '%s': relo #%d: bad relo type %d\n", 6240 prog->name, i, relo->type); 6241 return -EINVAL; 6242 } 6243 } 6244 6245 return 0; 6246 } 6247 6248 static int adjust_prog_btf_ext_info(const struct bpf_object *obj, 6249 const struct bpf_program *prog, 6250 const struct btf_ext_info *ext_info, 6251 void **prog_info, __u32 *prog_rec_cnt, 6252 __u32 *prog_rec_sz) 6253 { 6254 void *copy_start = NULL, *copy_end = NULL; 6255 void *rec, *rec_end, *new_prog_info; 6256 const struct btf_ext_info_sec *sec; 6257 size_t old_sz, new_sz; 6258 int i, sec_num, sec_idx, off_adj; 6259 6260 sec_num = 0; 6261 for_each_btf_ext_sec(ext_info, sec) { 6262 sec_idx = ext_info->sec_idxs[sec_num]; 6263 sec_num++; 6264 if (prog->sec_idx != sec_idx) 6265 continue; 6266 6267 for_each_btf_ext_rec(ext_info, sec, i, rec) { 6268 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ; 6269 6270 if (insn_off < prog->sec_insn_off) 6271 continue; 6272 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt) 6273 break; 6274 6275 if (!copy_start) 6276 copy_start = rec; 6277 copy_end = rec + ext_info->rec_size; 6278 } 6279 6280 if (!copy_start) 6281 return -ENOENT; 6282 6283 /* append func/line info of a given (sub-)program to the main 6284 * program func/line info 6285 */ 6286 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size; 6287 new_sz = old_sz + (copy_end - copy_start); 6288 new_prog_info = realloc(*prog_info, new_sz); 6289 if (!new_prog_info) 6290 return -ENOMEM; 6291 *prog_info = new_prog_info; 6292 *prog_rec_cnt = new_sz / ext_info->rec_size; 6293 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start); 6294 6295 /* Kernel instruction offsets are in units of 8-byte 6296 * instructions, while .BTF.ext instruction offsets generated 6297 * by Clang are in units of bytes. So convert Clang offsets 6298 * into kernel offsets and adjust offset according to program 6299 * relocated position. 6300 */ 6301 off_adj = prog->sub_insn_off - prog->sec_insn_off; 6302 rec = new_prog_info + old_sz; 6303 rec_end = new_prog_info + new_sz; 6304 for (; rec < rec_end; rec += ext_info->rec_size) { 6305 __u32 *insn_off = rec; 6306 6307 *insn_off = *insn_off / BPF_INSN_SZ + off_adj; 6308 } 6309 *prog_rec_sz = ext_info->rec_size; 6310 return 0; 6311 } 6312 6313 return -ENOENT; 6314 } 6315 6316 static int 6317 reloc_prog_func_and_line_info(const struct bpf_object *obj, 6318 struct bpf_program *main_prog, 6319 const struct bpf_program *prog) 6320 { 6321 int err; 6322 6323 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't 6324 * support func/line info 6325 */ 6326 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC)) 6327 return 0; 6328 6329 /* only attempt func info relocation if main program's func_info 6330 * relocation was successful 6331 */ 6332 if (main_prog != prog && !main_prog->func_info) 6333 goto line_info; 6334 6335 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info, 6336 &main_prog->func_info, 6337 &main_prog->func_info_cnt, 6338 &main_prog->func_info_rec_size); 6339 if (err) { 6340 if (err != -ENOENT) { 6341 pr_warn("prog '%s': error relocating .BTF.ext function info: %s\n", 6342 prog->name, errstr(err)); 6343 return err; 6344 } 6345 if (main_prog->func_info) { 6346 /* 6347 * Some info has already been found but has problem 6348 * in the last btf_ext reloc. Must have to error out. 6349 */ 6350 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name); 6351 return err; 6352 } 6353 /* Have problem loading the very first info. Ignore the rest. */ 6354 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n", 6355 prog->name); 6356 } 6357 6358 line_info: 6359 /* don't relocate line info if main program's relocation failed */ 6360 if (main_prog != prog && !main_prog->line_info) 6361 return 0; 6362 6363 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info, 6364 &main_prog->line_info, 6365 &main_prog->line_info_cnt, 6366 &main_prog->line_info_rec_size); 6367 if (err) { 6368 if (err != -ENOENT) { 6369 pr_warn("prog '%s': error relocating .BTF.ext line info: %s\n", 6370 prog->name, errstr(err)); 6371 return err; 6372 } 6373 if (main_prog->line_info) { 6374 /* 6375 * Some info has already been found but has problem 6376 * in the last btf_ext reloc. Must have to error out. 6377 */ 6378 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name); 6379 return err; 6380 } 6381 /* Have problem loading the very first info. Ignore the rest. */ 6382 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n", 6383 prog->name); 6384 } 6385 return 0; 6386 } 6387 6388 static int cmp_relo_by_insn_idx(const void *key, const void *elem) 6389 { 6390 size_t insn_idx = *(const size_t *)key; 6391 const struct reloc_desc *relo = elem; 6392 6393 if (insn_idx == relo->insn_idx) 6394 return 0; 6395 return insn_idx < relo->insn_idx ? -1 : 1; 6396 } 6397 6398 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx) 6399 { 6400 if (!prog->nr_reloc) 6401 return NULL; 6402 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc, 6403 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx); 6404 } 6405 6406 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog) 6407 { 6408 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc; 6409 struct reloc_desc *relos; 6410 int i; 6411 6412 if (main_prog == subprog) 6413 return 0; 6414 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos)); 6415 /* if new count is zero, reallocarray can return a valid NULL result; 6416 * in this case the previous pointer will be freed, so we *have to* 6417 * reassign old pointer to the new value (even if it's NULL) 6418 */ 6419 if (!relos && new_cnt) 6420 return -ENOMEM; 6421 if (subprog->nr_reloc) 6422 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc, 6423 sizeof(*relos) * subprog->nr_reloc); 6424 6425 for (i = main_prog->nr_reloc; i < new_cnt; i++) 6426 relos[i].insn_idx += subprog->sub_insn_off; 6427 /* After insn_idx adjustment the 'relos' array is still sorted 6428 * by insn_idx and doesn't break bsearch. 6429 */ 6430 main_prog->reloc_desc = relos; 6431 main_prog->nr_reloc = new_cnt; 6432 return 0; 6433 } 6434 6435 static int 6436 bpf_object__append_subprog_code(struct bpf_object *obj, struct bpf_program *main_prog, 6437 struct bpf_program *subprog) 6438 { 6439 struct bpf_insn *insns; 6440 size_t new_cnt; 6441 int err; 6442 6443 subprog->sub_insn_off = main_prog->insns_cnt; 6444 6445 new_cnt = main_prog->insns_cnt + subprog->insns_cnt; 6446 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns)); 6447 if (!insns) { 6448 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name); 6449 return -ENOMEM; 6450 } 6451 main_prog->insns = insns; 6452 main_prog->insns_cnt = new_cnt; 6453 6454 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns, 6455 subprog->insns_cnt * sizeof(*insns)); 6456 6457 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n", 6458 main_prog->name, subprog->insns_cnt, subprog->name); 6459 6460 /* The subprog insns are now appended. Append its relos too. */ 6461 err = append_subprog_relos(main_prog, subprog); 6462 if (err) 6463 return err; 6464 return 0; 6465 } 6466 6467 static int 6468 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog, 6469 struct bpf_program *prog) 6470 { 6471 size_t sub_insn_idx, insn_idx; 6472 struct bpf_program *subprog; 6473 struct reloc_desc *relo; 6474 struct bpf_insn *insn; 6475 int err; 6476 6477 err = reloc_prog_func_and_line_info(obj, main_prog, prog); 6478 if (err) 6479 return err; 6480 6481 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) { 6482 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6483 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn)) 6484 continue; 6485 6486 relo = find_prog_insn_relo(prog, insn_idx); 6487 if (relo && relo->type == RELO_EXTERN_CALL) 6488 /* kfunc relocations will be handled later 6489 * in bpf_object__relocate_data() 6490 */ 6491 continue; 6492 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) { 6493 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n", 6494 prog->name, insn_idx, relo->type); 6495 return -LIBBPF_ERRNO__RELOC; 6496 } 6497 if (relo) { 6498 /* sub-program instruction index is a combination of 6499 * an offset of a symbol pointed to by relocation and 6500 * call instruction's imm field; for global functions, 6501 * call always has imm = -1, but for static functions 6502 * relocation is against STT_SECTION and insn->imm 6503 * points to a start of a static function 6504 * 6505 * for subprog addr relocation, the relo->sym_off + insn->imm is 6506 * the byte offset in the corresponding section. 6507 */ 6508 if (relo->type == RELO_CALL) 6509 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1; 6510 else 6511 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ; 6512 } else if (insn_is_pseudo_func(insn)) { 6513 /* 6514 * RELO_SUBPROG_ADDR relo is always emitted even if both 6515 * functions are in the same section, so it shouldn't reach here. 6516 */ 6517 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n", 6518 prog->name, insn_idx); 6519 return -LIBBPF_ERRNO__RELOC; 6520 } else { 6521 /* if subprogram call is to a static function within 6522 * the same ELF section, there won't be any relocation 6523 * emitted, but it also means there is no additional 6524 * offset necessary, insns->imm is relative to 6525 * instruction's original position within the section 6526 */ 6527 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1; 6528 } 6529 6530 /* we enforce that sub-programs should be in .text section */ 6531 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx); 6532 if (!subprog) { 6533 pr_warn("prog '%s': no .text section found yet sub-program call exists\n", 6534 prog->name); 6535 return -LIBBPF_ERRNO__RELOC; 6536 } 6537 6538 /* if it's the first call instruction calling into this 6539 * subprogram (meaning this subprog hasn't been processed 6540 * yet) within the context of current main program: 6541 * - append it at the end of main program's instructions blog; 6542 * - process is recursively, while current program is put on hold; 6543 * - if that subprogram calls some other not yet processes 6544 * subprogram, same thing will happen recursively until 6545 * there are no more unprocesses subprograms left to append 6546 * and relocate. 6547 */ 6548 if (subprog->sub_insn_off == 0) { 6549 err = bpf_object__append_subprog_code(obj, main_prog, subprog); 6550 if (err) 6551 return err; 6552 err = bpf_object__reloc_code(obj, main_prog, subprog); 6553 if (err) 6554 return err; 6555 } 6556 6557 /* main_prog->insns memory could have been re-allocated, so 6558 * calculate pointer again 6559 */ 6560 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6561 /* calculate correct instruction position within current main 6562 * prog; each main prog can have a different set of 6563 * subprograms appended (potentially in different order as 6564 * well), so position of any subprog can be different for 6565 * different main programs 6566 */ 6567 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1; 6568 6569 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n", 6570 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off); 6571 } 6572 6573 return 0; 6574 } 6575 6576 /* 6577 * Relocate sub-program calls. 6578 * 6579 * Algorithm operates as follows. Each entry-point BPF program (referred to as 6580 * main prog) is processed separately. For each subprog (non-entry functions, 6581 * that can be called from either entry progs or other subprogs) gets their 6582 * sub_insn_off reset to zero. This serves as indicator that this subprogram 6583 * hasn't been yet appended and relocated within current main prog. Once its 6584 * relocated, sub_insn_off will point at the position within current main prog 6585 * where given subprog was appended. This will further be used to relocate all 6586 * the call instructions jumping into this subprog. 6587 * 6588 * We start with main program and process all call instructions. If the call 6589 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off 6590 * is zero), subprog instructions are appended at the end of main program's 6591 * instruction array. Then main program is "put on hold" while we recursively 6592 * process newly appended subprogram. If that subprogram calls into another 6593 * subprogram that hasn't been appended, new subprogram is appended again to 6594 * the *main* prog's instructions (subprog's instructions are always left 6595 * untouched, as they need to be in unmodified state for subsequent main progs 6596 * and subprog instructions are always sent only as part of a main prog) and 6597 * the process continues recursively. Once all the subprogs called from a main 6598 * prog or any of its subprogs are appended (and relocated), all their 6599 * positions within finalized instructions array are known, so it's easy to 6600 * rewrite call instructions with correct relative offsets, corresponding to 6601 * desired target subprog. 6602 * 6603 * Its important to realize that some subprogs might not be called from some 6604 * main prog and any of its called/used subprogs. Those will keep their 6605 * subprog->sub_insn_off as zero at all times and won't be appended to current 6606 * main prog and won't be relocated within the context of current main prog. 6607 * They might still be used from other main progs later. 6608 * 6609 * Visually this process can be shown as below. Suppose we have two main 6610 * programs mainA and mainB and BPF object contains three subprogs: subA, 6611 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and 6612 * subC both call subB: 6613 * 6614 * +--------+ +-------+ 6615 * | v v | 6616 * +--+---+ +--+-+-+ +---+--+ 6617 * | subA | | subB | | subC | 6618 * +--+---+ +------+ +---+--+ 6619 * ^ ^ 6620 * | | 6621 * +---+-------+ +------+----+ 6622 * | mainA | | mainB | 6623 * +-----------+ +-----------+ 6624 * 6625 * We'll start relocating mainA, will find subA, append it and start 6626 * processing sub A recursively: 6627 * 6628 * +-----------+------+ 6629 * | mainA | subA | 6630 * +-----------+------+ 6631 * 6632 * At this point we notice that subB is used from subA, so we append it and 6633 * relocate (there are no further subcalls from subB): 6634 * 6635 * +-----------+------+------+ 6636 * | mainA | subA | subB | 6637 * +-----------+------+------+ 6638 * 6639 * At this point, we relocate subA calls, then go one level up and finish with 6640 * relocatin mainA calls. mainA is done. 6641 * 6642 * For mainB process is similar but results in different order. We start with 6643 * mainB and skip subA and subB, as mainB never calls them (at least 6644 * directly), but we see subC is needed, so we append and start processing it: 6645 * 6646 * +-----------+------+ 6647 * | mainB | subC | 6648 * +-----------+------+ 6649 * Now we see subC needs subB, so we go back to it, append and relocate it: 6650 * 6651 * +-----------+------+------+ 6652 * | mainB | subC | subB | 6653 * +-----------+------+------+ 6654 * 6655 * At this point we unwind recursion, relocate calls in subC, then in mainB. 6656 */ 6657 static int 6658 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog) 6659 { 6660 struct bpf_program *subprog; 6661 int i, err; 6662 6663 /* mark all subprogs as not relocated (yet) within the context of 6664 * current main program 6665 */ 6666 for (i = 0; i < obj->nr_programs; i++) { 6667 subprog = &obj->programs[i]; 6668 if (!prog_is_subprog(obj, subprog)) 6669 continue; 6670 6671 subprog->sub_insn_off = 0; 6672 } 6673 6674 err = bpf_object__reloc_code(obj, prog, prog); 6675 if (err) 6676 return err; 6677 6678 return 0; 6679 } 6680 6681 static void 6682 bpf_object__free_relocs(struct bpf_object *obj) 6683 { 6684 struct bpf_program *prog; 6685 int i; 6686 6687 /* free up relocation descriptors */ 6688 for (i = 0; i < obj->nr_programs; i++) { 6689 prog = &obj->programs[i]; 6690 zfree(&prog->reloc_desc); 6691 prog->nr_reloc = 0; 6692 } 6693 } 6694 6695 static int cmp_relocs(const void *_a, const void *_b) 6696 { 6697 const struct reloc_desc *a = _a; 6698 const struct reloc_desc *b = _b; 6699 6700 if (a->insn_idx != b->insn_idx) 6701 return a->insn_idx < b->insn_idx ? -1 : 1; 6702 6703 /* no two relocations should have the same insn_idx, but ... */ 6704 if (a->type != b->type) 6705 return a->type < b->type ? -1 : 1; 6706 6707 return 0; 6708 } 6709 6710 static void bpf_object__sort_relos(struct bpf_object *obj) 6711 { 6712 int i; 6713 6714 for (i = 0; i < obj->nr_programs; i++) { 6715 struct bpf_program *p = &obj->programs[i]; 6716 6717 if (!p->nr_reloc) 6718 continue; 6719 6720 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs); 6721 } 6722 } 6723 6724 static int bpf_prog_assign_exc_cb(struct bpf_object *obj, struct bpf_program *prog) 6725 { 6726 const char *str = "exception_callback:"; 6727 size_t pfx_len = strlen(str); 6728 int i, j, n; 6729 6730 if (!obj->btf || !kernel_supports(obj, FEAT_BTF_DECL_TAG)) 6731 return 0; 6732 6733 n = btf__type_cnt(obj->btf); 6734 for (i = 1; i < n; i++) { 6735 const char *name; 6736 struct btf_type *t; 6737 6738 t = btf_type_by_id(obj->btf, i); 6739 if (!btf_is_decl_tag(t) || btf_decl_tag(t)->component_idx != -1) 6740 continue; 6741 6742 name = btf__str_by_offset(obj->btf, t->name_off); 6743 if (strncmp(name, str, pfx_len) != 0) 6744 continue; 6745 6746 t = btf_type_by_id(obj->btf, t->type); 6747 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) { 6748 pr_warn("prog '%s': exception_callback:<value> decl tag not applied to the main program\n", 6749 prog->name); 6750 return -EINVAL; 6751 } 6752 if (strcmp(prog->name, btf__str_by_offset(obj->btf, t->name_off)) != 0) 6753 continue; 6754 /* Multiple callbacks are specified for the same prog, 6755 * the verifier will eventually return an error for this 6756 * case, hence simply skip appending a subprog. 6757 */ 6758 if (prog->exception_cb_idx >= 0) { 6759 prog->exception_cb_idx = -1; 6760 break; 6761 } 6762 6763 name += pfx_len; 6764 if (str_is_empty(name)) { 6765 pr_warn("prog '%s': exception_callback:<value> decl tag contains empty value\n", 6766 prog->name); 6767 return -EINVAL; 6768 } 6769 6770 for (j = 0; j < obj->nr_programs; j++) { 6771 struct bpf_program *subprog = &obj->programs[j]; 6772 6773 if (!prog_is_subprog(obj, subprog)) 6774 continue; 6775 if (strcmp(name, subprog->name) != 0) 6776 continue; 6777 /* Enforce non-hidden, as from verifier point of 6778 * view it expects global functions, whereas the 6779 * mark_btf_static fixes up linkage as static. 6780 */ 6781 if (!subprog->sym_global || subprog->mark_btf_static) { 6782 pr_warn("prog '%s': exception callback %s must be a global non-hidden function\n", 6783 prog->name, subprog->name); 6784 return -EINVAL; 6785 } 6786 /* Let's see if we already saw a static exception callback with the same name */ 6787 if (prog->exception_cb_idx >= 0) { 6788 pr_warn("prog '%s': multiple subprogs with same name as exception callback '%s'\n", 6789 prog->name, subprog->name); 6790 return -EINVAL; 6791 } 6792 prog->exception_cb_idx = j; 6793 break; 6794 } 6795 6796 if (prog->exception_cb_idx >= 0) 6797 continue; 6798 6799 pr_warn("prog '%s': cannot find exception callback '%s'\n", prog->name, name); 6800 return -ENOENT; 6801 } 6802 6803 return 0; 6804 } 6805 6806 static struct { 6807 enum bpf_prog_type prog_type; 6808 const char *ctx_name; 6809 } global_ctx_map[] = { 6810 { BPF_PROG_TYPE_CGROUP_DEVICE, "bpf_cgroup_dev_ctx" }, 6811 { BPF_PROG_TYPE_CGROUP_SKB, "__sk_buff" }, 6812 { BPF_PROG_TYPE_CGROUP_SOCK, "bpf_sock" }, 6813 { BPF_PROG_TYPE_CGROUP_SOCK_ADDR, "bpf_sock_addr" }, 6814 { BPF_PROG_TYPE_CGROUP_SOCKOPT, "bpf_sockopt" }, 6815 { BPF_PROG_TYPE_CGROUP_SYSCTL, "bpf_sysctl" }, 6816 { BPF_PROG_TYPE_FLOW_DISSECTOR, "__sk_buff" }, 6817 { BPF_PROG_TYPE_KPROBE, "bpf_user_pt_regs_t" }, 6818 { BPF_PROG_TYPE_LWT_IN, "__sk_buff" }, 6819 { BPF_PROG_TYPE_LWT_OUT, "__sk_buff" }, 6820 { BPF_PROG_TYPE_LWT_SEG6LOCAL, "__sk_buff" }, 6821 { BPF_PROG_TYPE_LWT_XMIT, "__sk_buff" }, 6822 { BPF_PROG_TYPE_NETFILTER, "bpf_nf_ctx" }, 6823 { BPF_PROG_TYPE_PERF_EVENT, "bpf_perf_event_data" }, 6824 { BPF_PROG_TYPE_RAW_TRACEPOINT, "bpf_raw_tracepoint_args" }, 6825 { BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE, "bpf_raw_tracepoint_args" }, 6826 { BPF_PROG_TYPE_SCHED_ACT, "__sk_buff" }, 6827 { BPF_PROG_TYPE_SCHED_CLS, "__sk_buff" }, 6828 { BPF_PROG_TYPE_SK_LOOKUP, "bpf_sk_lookup" }, 6829 { BPF_PROG_TYPE_SK_MSG, "sk_msg_md" }, 6830 { BPF_PROG_TYPE_SK_REUSEPORT, "sk_reuseport_md" }, 6831 { BPF_PROG_TYPE_SK_SKB, "__sk_buff" }, 6832 { BPF_PROG_TYPE_SOCK_OPS, "bpf_sock_ops" }, 6833 { BPF_PROG_TYPE_SOCKET_FILTER, "__sk_buff" }, 6834 { BPF_PROG_TYPE_XDP, "xdp_md" }, 6835 /* all other program types don't have "named" context structs */ 6836 }; 6837 6838 /* forward declarations for arch-specific underlying types of bpf_user_pt_regs_t typedef, 6839 * for below __builtin_types_compatible_p() checks; 6840 * with this approach we don't need any extra arch-specific #ifdef guards 6841 */ 6842 struct pt_regs; 6843 struct user_pt_regs; 6844 struct user_regs_struct; 6845 6846 static bool need_func_arg_type_fixup(const struct btf *btf, const struct bpf_program *prog, 6847 const char *subprog_name, int arg_idx, 6848 int arg_type_id, const char *ctx_name) 6849 { 6850 const struct btf_type *t; 6851 const char *tname; 6852 6853 /* check if existing parameter already matches verifier expectations */ 6854 t = skip_mods_and_typedefs(btf, arg_type_id, NULL); 6855 if (!btf_is_ptr(t)) 6856 goto out_warn; 6857 6858 /* typedef bpf_user_pt_regs_t is a special PITA case, valid for kprobe 6859 * and perf_event programs, so check this case early on and forget 6860 * about it for subsequent checks 6861 */ 6862 while (btf_is_mod(t)) 6863 t = btf__type_by_id(btf, t->type); 6864 if (btf_is_typedef(t) && 6865 (prog->type == BPF_PROG_TYPE_KPROBE || prog->type == BPF_PROG_TYPE_PERF_EVENT)) { 6866 tname = btf__str_by_offset(btf, t->name_off) ?: "<anon>"; 6867 if (strcmp(tname, "bpf_user_pt_regs_t") == 0) 6868 return false; /* canonical type for kprobe/perf_event */ 6869 } 6870 6871 /* now we can ignore typedefs moving forward */ 6872 t = skip_mods_and_typedefs(btf, t->type, NULL); 6873 6874 /* if it's `void *`, definitely fix up BTF info */ 6875 if (btf_is_void(t)) 6876 return true; 6877 6878 /* if it's already proper canonical type, no need to fix up */ 6879 tname = btf__str_by_offset(btf, t->name_off) ?: "<anon>"; 6880 if (btf_is_struct(t) && strcmp(tname, ctx_name) == 0) 6881 return false; 6882 6883 /* special cases */ 6884 switch (prog->type) { 6885 case BPF_PROG_TYPE_KPROBE: 6886 /* `struct pt_regs *` is expected, but we need to fix up */ 6887 if (btf_is_struct(t) && strcmp(tname, "pt_regs") == 0) 6888 return true; 6889 break; 6890 case BPF_PROG_TYPE_PERF_EVENT: 6891 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct pt_regs) && 6892 btf_is_struct(t) && strcmp(tname, "pt_regs") == 0) 6893 return true; 6894 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_pt_regs) && 6895 btf_is_struct(t) && strcmp(tname, "user_pt_regs") == 0) 6896 return true; 6897 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_regs_struct) && 6898 btf_is_struct(t) && strcmp(tname, "user_regs_struct") == 0) 6899 return true; 6900 break; 6901 case BPF_PROG_TYPE_RAW_TRACEPOINT: 6902 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 6903 /* allow u64* as ctx */ 6904 if (btf_is_int(t) && t->size == 8) 6905 return true; 6906 break; 6907 default: 6908 break; 6909 } 6910 6911 out_warn: 6912 pr_warn("prog '%s': subprog '%s' arg#%d is expected to be of `struct %s *` type\n", 6913 prog->name, subprog_name, arg_idx, ctx_name); 6914 return false; 6915 } 6916 6917 static int clone_func_btf_info(struct btf *btf, int orig_fn_id, struct bpf_program *prog) 6918 { 6919 int fn_id, fn_proto_id, ret_type_id, orig_proto_id; 6920 int i, err, arg_cnt, fn_name_off, linkage; 6921 struct btf_type *fn_t, *fn_proto_t, *t; 6922 struct btf_param *p; 6923 6924 /* caller already validated FUNC -> FUNC_PROTO validity */ 6925 fn_t = btf_type_by_id(btf, orig_fn_id); 6926 fn_proto_t = btf_type_by_id(btf, fn_t->type); 6927 6928 /* Note that each btf__add_xxx() operation invalidates 6929 * all btf_type and string pointers, so we need to be 6930 * very careful when cloning BTF types. BTF type 6931 * pointers have to be always refetched. And to avoid 6932 * problems with invalidated string pointers, we 6933 * add empty strings initially, then just fix up 6934 * name_off offsets in place. Offsets are stable for 6935 * existing strings, so that works out. 6936 */ 6937 fn_name_off = fn_t->name_off; /* we are about to invalidate fn_t */ 6938 linkage = btf_func_linkage(fn_t); 6939 orig_proto_id = fn_t->type; /* original FUNC_PROTO ID */ 6940 ret_type_id = fn_proto_t->type; /* fn_proto_t will be invalidated */ 6941 arg_cnt = btf_vlen(fn_proto_t); 6942 6943 /* clone FUNC_PROTO and its params */ 6944 fn_proto_id = btf__add_func_proto(btf, ret_type_id); 6945 if (fn_proto_id < 0) 6946 return -EINVAL; 6947 6948 for (i = 0; i < arg_cnt; i++) { 6949 int name_off; 6950 6951 /* copy original parameter data */ 6952 t = btf_type_by_id(btf, orig_proto_id); 6953 p = &btf_params(t)[i]; 6954 name_off = p->name_off; 6955 6956 err = btf__add_func_param(btf, "", p->type); 6957 if (err) 6958 return err; 6959 6960 fn_proto_t = btf_type_by_id(btf, fn_proto_id); 6961 p = &btf_params(fn_proto_t)[i]; 6962 p->name_off = name_off; /* use remembered str offset */ 6963 } 6964 6965 /* clone FUNC now, btf__add_func() enforces non-empty name, so use 6966 * entry program's name as a placeholder, which we replace immediately 6967 * with original name_off 6968 */ 6969 fn_id = btf__add_func(btf, prog->name, linkage, fn_proto_id); 6970 if (fn_id < 0) 6971 return -EINVAL; 6972 6973 fn_t = btf_type_by_id(btf, fn_id); 6974 fn_t->name_off = fn_name_off; /* reuse original string */ 6975 6976 return fn_id; 6977 } 6978 6979 /* Check if main program or global subprog's function prototype has `arg:ctx` 6980 * argument tags, and, if necessary, substitute correct type to match what BPF 6981 * verifier would expect, taking into account specific program type. This 6982 * allows to support __arg_ctx tag transparently on old kernels that don't yet 6983 * have a native support for it in the verifier, making user's life much 6984 * easier. 6985 */ 6986 static int bpf_program_fixup_func_info(struct bpf_object *obj, struct bpf_program *prog) 6987 { 6988 const char *ctx_name = NULL, *ctx_tag = "arg:ctx", *fn_name; 6989 struct bpf_func_info_min *func_rec; 6990 struct btf_type *fn_t, *fn_proto_t; 6991 struct btf *btf = obj->btf; 6992 const struct btf_type *t; 6993 struct btf_param *p; 6994 int ptr_id = 0, struct_id, tag_id, orig_fn_id; 6995 int i, n, arg_idx, arg_cnt, err, rec_idx; 6996 int *orig_ids; 6997 6998 /* no .BTF.ext, no problem */ 6999 if (!obj->btf_ext || !prog->func_info) 7000 return 0; 7001 7002 /* don't do any fix ups if kernel natively supports __arg_ctx */ 7003 if (kernel_supports(obj, FEAT_ARG_CTX_TAG)) 7004 return 0; 7005 7006 /* some BPF program types just don't have named context structs, so 7007 * this fallback mechanism doesn't work for them 7008 */ 7009 for (i = 0; i < ARRAY_SIZE(global_ctx_map); i++) { 7010 if (global_ctx_map[i].prog_type != prog->type) 7011 continue; 7012 ctx_name = global_ctx_map[i].ctx_name; 7013 break; 7014 } 7015 if (!ctx_name) 7016 return 0; 7017 7018 /* remember original func BTF IDs to detect if we already cloned them */ 7019 orig_ids = calloc(prog->func_info_cnt, sizeof(*orig_ids)); 7020 if (!orig_ids) 7021 return -ENOMEM; 7022 for (i = 0; i < prog->func_info_cnt; i++) { 7023 func_rec = prog->func_info + prog->func_info_rec_size * i; 7024 orig_ids[i] = func_rec->type_id; 7025 } 7026 7027 /* go through each DECL_TAG with "arg:ctx" and see if it points to one 7028 * of our subprogs; if yes and subprog is global and needs adjustment, 7029 * clone and adjust FUNC -> FUNC_PROTO combo 7030 */ 7031 for (i = 1, n = btf__type_cnt(btf); i < n; i++) { 7032 /* only DECL_TAG with "arg:ctx" value are interesting */ 7033 t = btf__type_by_id(btf, i); 7034 if (!btf_is_decl_tag(t)) 7035 continue; 7036 if (strcmp(btf__str_by_offset(btf, t->name_off), ctx_tag) != 0) 7037 continue; 7038 7039 /* only global funcs need adjustment, if at all */ 7040 orig_fn_id = t->type; 7041 fn_t = btf_type_by_id(btf, orig_fn_id); 7042 if (!btf_is_func(fn_t) || btf_func_linkage(fn_t) != BTF_FUNC_GLOBAL) 7043 continue; 7044 7045 /* sanity check FUNC -> FUNC_PROTO chain, just in case */ 7046 fn_proto_t = btf_type_by_id(btf, fn_t->type); 7047 if (!fn_proto_t || !btf_is_func_proto(fn_proto_t)) 7048 continue; 7049 7050 /* find corresponding func_info record */ 7051 func_rec = NULL; 7052 for (rec_idx = 0; rec_idx < prog->func_info_cnt; rec_idx++) { 7053 if (orig_ids[rec_idx] == t->type) { 7054 func_rec = prog->func_info + prog->func_info_rec_size * rec_idx; 7055 break; 7056 } 7057 } 7058 /* current main program doesn't call into this subprog */ 7059 if (!func_rec) 7060 continue; 7061 7062 /* some more sanity checking of DECL_TAG */ 7063 arg_cnt = btf_vlen(fn_proto_t); 7064 arg_idx = btf_decl_tag(t)->component_idx; 7065 if (arg_idx < 0 || arg_idx >= arg_cnt) 7066 continue; 7067 7068 /* check if we should fix up argument type */ 7069 p = &btf_params(fn_proto_t)[arg_idx]; 7070 fn_name = btf__str_by_offset(btf, fn_t->name_off) ?: "<anon>"; 7071 if (!need_func_arg_type_fixup(btf, prog, fn_name, arg_idx, p->type, ctx_name)) 7072 continue; 7073 7074 /* clone fn/fn_proto, unless we already did it for another arg */ 7075 if (func_rec->type_id == orig_fn_id) { 7076 int fn_id; 7077 7078 fn_id = clone_func_btf_info(btf, orig_fn_id, prog); 7079 if (fn_id < 0) { 7080 err = fn_id; 7081 goto err_out; 7082 } 7083 7084 /* point func_info record to a cloned FUNC type */ 7085 func_rec->type_id = fn_id; 7086 } 7087 7088 /* create PTR -> STRUCT type chain to mark PTR_TO_CTX argument; 7089 * we do it just once per main BPF program, as all global 7090 * funcs share the same program type, so need only PTR -> 7091 * STRUCT type chain 7092 */ 7093 if (ptr_id == 0) { 7094 struct_id = btf__add_struct(btf, ctx_name, 0); 7095 ptr_id = btf__add_ptr(btf, struct_id); 7096 if (ptr_id < 0 || struct_id < 0) { 7097 err = -EINVAL; 7098 goto err_out; 7099 } 7100 } 7101 7102 /* for completeness, clone DECL_TAG and point it to cloned param */ 7103 tag_id = btf__add_decl_tag(btf, ctx_tag, func_rec->type_id, arg_idx); 7104 if (tag_id < 0) { 7105 err = -EINVAL; 7106 goto err_out; 7107 } 7108 7109 /* all the BTF manipulations invalidated pointers, refetch them */ 7110 fn_t = btf_type_by_id(btf, func_rec->type_id); 7111 fn_proto_t = btf_type_by_id(btf, fn_t->type); 7112 7113 /* fix up type ID pointed to by param */ 7114 p = &btf_params(fn_proto_t)[arg_idx]; 7115 p->type = ptr_id; 7116 } 7117 7118 free(orig_ids); 7119 return 0; 7120 err_out: 7121 free(orig_ids); 7122 return err; 7123 } 7124 7125 static int bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 7126 { 7127 struct bpf_program *prog; 7128 size_t i, j; 7129 int err; 7130 7131 if (obj->btf_ext) { 7132 err = bpf_object__relocate_core(obj, targ_btf_path); 7133 if (err) { 7134 pr_warn("failed to perform CO-RE relocations: %s\n", 7135 errstr(err)); 7136 return err; 7137 } 7138 bpf_object__sort_relos(obj); 7139 } 7140 7141 /* Before relocating calls pre-process relocations and mark 7142 * few ld_imm64 instructions that points to subprogs. 7143 * Otherwise bpf_object__reloc_code() later would have to consider 7144 * all ld_imm64 insns as relocation candidates. That would 7145 * reduce relocation speed, since amount of find_prog_insn_relo() 7146 * would increase and most of them will fail to find a relo. 7147 */ 7148 for (i = 0; i < obj->nr_programs; i++) { 7149 prog = &obj->programs[i]; 7150 for (j = 0; j < prog->nr_reloc; j++) { 7151 struct reloc_desc *relo = &prog->reloc_desc[j]; 7152 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 7153 7154 /* mark the insn, so it's recognized by insn_is_pseudo_func() */ 7155 if (relo->type == RELO_SUBPROG_ADDR) 7156 insn[0].src_reg = BPF_PSEUDO_FUNC; 7157 } 7158 } 7159 7160 /* relocate subprogram calls and append used subprograms to main 7161 * programs; each copy of subprogram code needs to be relocated 7162 * differently for each main program, because its code location might 7163 * have changed. 7164 * Append subprog relos to main programs to allow data relos to be 7165 * processed after text is completely relocated. 7166 */ 7167 for (i = 0; i < obj->nr_programs; i++) { 7168 prog = &obj->programs[i]; 7169 /* sub-program's sub-calls are relocated within the context of 7170 * its main program only 7171 */ 7172 if (prog_is_subprog(obj, prog)) 7173 continue; 7174 if (!prog->autoload) 7175 continue; 7176 7177 err = bpf_object__relocate_calls(obj, prog); 7178 if (err) { 7179 pr_warn("prog '%s': failed to relocate calls: %s\n", 7180 prog->name, errstr(err)); 7181 return err; 7182 } 7183 7184 err = bpf_prog_assign_exc_cb(obj, prog); 7185 if (err) 7186 return err; 7187 /* Now, also append exception callback if it has not been done already. */ 7188 if (prog->exception_cb_idx >= 0) { 7189 struct bpf_program *subprog = &obj->programs[prog->exception_cb_idx]; 7190 7191 /* Calling exception callback directly is disallowed, which the 7192 * verifier will reject later. In case it was processed already, 7193 * we can skip this step, otherwise for all other valid cases we 7194 * have to append exception callback now. 7195 */ 7196 if (subprog->sub_insn_off == 0) { 7197 err = bpf_object__append_subprog_code(obj, prog, subprog); 7198 if (err) 7199 return err; 7200 err = bpf_object__reloc_code(obj, prog, subprog); 7201 if (err) 7202 return err; 7203 } 7204 } 7205 } 7206 for (i = 0; i < obj->nr_programs; i++) { 7207 prog = &obj->programs[i]; 7208 if (prog_is_subprog(obj, prog)) 7209 continue; 7210 if (!prog->autoload) 7211 continue; 7212 7213 /* Process data relos for main programs */ 7214 err = bpf_object__relocate_data(obj, prog); 7215 if (err) { 7216 pr_warn("prog '%s': failed to relocate data references: %s\n", 7217 prog->name, errstr(err)); 7218 return err; 7219 } 7220 7221 /* Fix up .BTF.ext information, if necessary */ 7222 err = bpf_program_fixup_func_info(obj, prog); 7223 if (err) { 7224 pr_warn("prog '%s': failed to perform .BTF.ext fix ups: %s\n", 7225 prog->name, errstr(err)); 7226 return err; 7227 } 7228 } 7229 7230 return 0; 7231 } 7232 7233 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 7234 Elf64_Shdr *shdr, Elf_Data *data); 7235 7236 static int bpf_object__collect_map_relos(struct bpf_object *obj, 7237 Elf64_Shdr *shdr, Elf_Data *data) 7238 { 7239 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *); 7240 int i, j, nrels, new_sz; 7241 const struct btf_var_secinfo *vi = NULL; 7242 const struct btf_type *sec, *var, *def; 7243 struct bpf_map *map = NULL, *targ_map = NULL; 7244 struct bpf_program *targ_prog = NULL; 7245 bool is_prog_array, is_map_in_map; 7246 const struct btf_member *member; 7247 const char *name, *mname, *type; 7248 unsigned int moff; 7249 Elf64_Sym *sym; 7250 Elf64_Rel *rel; 7251 void *tmp; 7252 7253 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf) 7254 return -EINVAL; 7255 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id); 7256 if (!sec) 7257 return -EINVAL; 7258 7259 nrels = shdr->sh_size / shdr->sh_entsize; 7260 for (i = 0; i < nrels; i++) { 7261 rel = elf_rel_by_idx(data, i); 7262 if (!rel) { 7263 pr_warn(".maps relo #%d: failed to get ELF relo\n", i); 7264 return -LIBBPF_ERRNO__FORMAT; 7265 } 7266 7267 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 7268 if (!sym) { 7269 pr_warn(".maps relo #%d: symbol %zx not found\n", 7270 i, (size_t)ELF64_R_SYM(rel->r_info)); 7271 return -LIBBPF_ERRNO__FORMAT; 7272 } 7273 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 7274 7275 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n", 7276 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value, 7277 (size_t)rel->r_offset, sym->st_name, name); 7278 7279 for (j = 0; j < obj->nr_maps; j++) { 7280 map = &obj->maps[j]; 7281 if (map->sec_idx != obj->efile.btf_maps_shndx) 7282 continue; 7283 7284 vi = btf_var_secinfos(sec) + map->btf_var_idx; 7285 if (vi->offset <= rel->r_offset && 7286 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size) 7287 break; 7288 } 7289 if (j == obj->nr_maps) { 7290 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n", 7291 i, name, (size_t)rel->r_offset); 7292 return -EINVAL; 7293 } 7294 7295 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type); 7296 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY; 7297 type = is_map_in_map ? "map" : "prog"; 7298 if (is_map_in_map) { 7299 if (sym->st_shndx != obj->efile.btf_maps_shndx) { 7300 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n", 7301 i, name); 7302 return -LIBBPF_ERRNO__RELOC; 7303 } 7304 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS && 7305 map->def.key_size != sizeof(int)) { 7306 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n", 7307 i, map->name, sizeof(int)); 7308 return -EINVAL; 7309 } 7310 targ_map = bpf_object__find_map_by_name(obj, name); 7311 if (!targ_map) { 7312 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n", 7313 i, name); 7314 return -ESRCH; 7315 } 7316 } else if (is_prog_array) { 7317 targ_prog = bpf_object__find_program_by_name(obj, name); 7318 if (!targ_prog) { 7319 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n", 7320 i, name); 7321 return -ESRCH; 7322 } 7323 if (targ_prog->sec_idx != sym->st_shndx || 7324 targ_prog->sec_insn_off * 8 != sym->st_value || 7325 prog_is_subprog(obj, targ_prog)) { 7326 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n", 7327 i, name); 7328 return -LIBBPF_ERRNO__RELOC; 7329 } 7330 } else { 7331 return -EINVAL; 7332 } 7333 7334 var = btf__type_by_id(obj->btf, vi->type); 7335 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 7336 if (btf_vlen(def) == 0) 7337 return -EINVAL; 7338 member = btf_members(def) + btf_vlen(def) - 1; 7339 mname = btf__name_by_offset(obj->btf, member->name_off); 7340 if (strcmp(mname, "values")) 7341 return -EINVAL; 7342 7343 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8; 7344 if (rel->r_offset - vi->offset < moff) 7345 return -EINVAL; 7346 7347 moff = rel->r_offset - vi->offset - moff; 7348 /* here we use BPF pointer size, which is always 64 bit, as we 7349 * are parsing ELF that was built for BPF target 7350 */ 7351 if (moff % bpf_ptr_sz) 7352 return -EINVAL; 7353 moff /= bpf_ptr_sz; 7354 if (moff >= map->init_slots_sz) { 7355 new_sz = moff + 1; 7356 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz); 7357 if (!tmp) 7358 return -ENOMEM; 7359 map->init_slots = tmp; 7360 memset(map->init_slots + map->init_slots_sz, 0, 7361 (new_sz - map->init_slots_sz) * host_ptr_sz); 7362 map->init_slots_sz = new_sz; 7363 } 7364 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog; 7365 7366 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n", 7367 i, map->name, moff, type, name); 7368 } 7369 7370 return 0; 7371 } 7372 7373 static int bpf_object__collect_relos(struct bpf_object *obj) 7374 { 7375 int i, err; 7376 7377 for (i = 0; i < obj->efile.sec_cnt; i++) { 7378 struct elf_sec_desc *sec_desc = &obj->efile.secs[i]; 7379 Elf64_Shdr *shdr; 7380 Elf_Data *data; 7381 int idx; 7382 7383 if (sec_desc->sec_type != SEC_RELO) 7384 continue; 7385 7386 shdr = sec_desc->shdr; 7387 data = sec_desc->data; 7388 idx = shdr->sh_info; 7389 7390 if (shdr->sh_type != SHT_REL || idx < 0 || idx >= obj->efile.sec_cnt) { 7391 pr_warn("internal error at %d\n", __LINE__); 7392 return -LIBBPF_ERRNO__INTERNAL; 7393 } 7394 7395 if (obj->efile.secs[idx].sec_type == SEC_ST_OPS) 7396 err = bpf_object__collect_st_ops_relos(obj, shdr, data); 7397 else if (idx == obj->efile.btf_maps_shndx) 7398 err = bpf_object__collect_map_relos(obj, shdr, data); 7399 else 7400 err = bpf_object__collect_prog_relos(obj, shdr, data); 7401 if (err) 7402 return err; 7403 } 7404 7405 bpf_object__sort_relos(obj); 7406 return 0; 7407 } 7408 7409 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id) 7410 { 7411 if (BPF_CLASS(insn->code) == BPF_JMP && 7412 BPF_OP(insn->code) == BPF_CALL && 7413 BPF_SRC(insn->code) == BPF_K && 7414 insn->src_reg == 0 && 7415 insn->dst_reg == 0) { 7416 *func_id = insn->imm; 7417 return true; 7418 } 7419 return false; 7420 } 7421 7422 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog) 7423 { 7424 struct bpf_insn *insn = prog->insns; 7425 enum bpf_func_id func_id; 7426 int i; 7427 7428 if (obj->gen_loader) 7429 return 0; 7430 7431 for (i = 0; i < prog->insns_cnt; i++, insn++) { 7432 if (!insn_is_helper_call(insn, &func_id)) 7433 continue; 7434 7435 /* on kernels that don't yet support 7436 * bpf_probe_read_{kernel,user}[_str] helpers, fall back 7437 * to bpf_probe_read() which works well for old kernels 7438 */ 7439 switch (func_id) { 7440 case BPF_FUNC_probe_read_kernel: 7441 case BPF_FUNC_probe_read_user: 7442 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 7443 insn->imm = BPF_FUNC_probe_read; 7444 break; 7445 case BPF_FUNC_probe_read_kernel_str: 7446 case BPF_FUNC_probe_read_user_str: 7447 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 7448 insn->imm = BPF_FUNC_probe_read_str; 7449 break; 7450 default: 7451 break; 7452 } 7453 } 7454 return 0; 7455 } 7456 7457 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 7458 int *btf_obj_fd, int *btf_type_id); 7459 7460 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */ 7461 static int libbpf_prepare_prog_load(struct bpf_program *prog, 7462 struct bpf_prog_load_opts *opts, long cookie) 7463 { 7464 enum sec_def_flags def = cookie; 7465 7466 /* old kernels might not support specifying expected_attach_type */ 7467 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE)) 7468 opts->expected_attach_type = 0; 7469 7470 if (def & SEC_SLEEPABLE) 7471 opts->prog_flags |= BPF_F_SLEEPABLE; 7472 7473 if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS)) 7474 opts->prog_flags |= BPF_F_XDP_HAS_FRAGS; 7475 7476 /* special check for usdt to use uprobe_multi link */ 7477 if ((def & SEC_USDT) && kernel_supports(prog->obj, FEAT_UPROBE_MULTI_LINK)) { 7478 /* for BPF_TRACE_UPROBE_MULTI, user might want to query expected_attach_type 7479 * in prog, and expected_attach_type we set in kernel is from opts, so we 7480 * update both. 7481 */ 7482 prog->expected_attach_type = BPF_TRACE_UPROBE_MULTI; 7483 opts->expected_attach_type = BPF_TRACE_UPROBE_MULTI; 7484 } 7485 7486 if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) { 7487 int btf_obj_fd = 0, btf_type_id = 0, err; 7488 const char *attach_name; 7489 7490 attach_name = strchr(prog->sec_name, '/'); 7491 if (!attach_name) { 7492 /* if BPF program is annotated with just SEC("fentry") 7493 * (or similar) without declaratively specifying 7494 * target, then it is expected that target will be 7495 * specified with bpf_program__set_attach_target() at 7496 * runtime before BPF object load step. If not, then 7497 * there is nothing to load into the kernel as BPF 7498 * verifier won't be able to validate BPF program 7499 * correctness anyways. 7500 */ 7501 pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n", 7502 prog->name); 7503 return -EINVAL; 7504 } 7505 attach_name++; /* skip over / */ 7506 7507 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id); 7508 if (err) 7509 return err; 7510 7511 /* cache resolved BTF FD and BTF type ID in the prog */ 7512 prog->attach_btf_obj_fd = btf_obj_fd; 7513 prog->attach_btf_id = btf_type_id; 7514 7515 /* but by now libbpf common logic is not utilizing 7516 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because 7517 * this callback is called after opts were populated by 7518 * libbpf, so this callback has to update opts explicitly here 7519 */ 7520 opts->attach_btf_obj_fd = btf_obj_fd; 7521 opts->attach_btf_id = btf_type_id; 7522 } 7523 return 0; 7524 } 7525 7526 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz); 7527 7528 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog, 7529 struct bpf_insn *insns, int insns_cnt, 7530 const char *license, __u32 kern_version, int *prog_fd) 7531 { 7532 LIBBPF_OPTS(bpf_prog_load_opts, load_attr); 7533 const char *prog_name = NULL; 7534 size_t log_buf_size = 0; 7535 char *log_buf = NULL, *tmp; 7536 bool own_log_buf = true; 7537 __u32 log_level = prog->log_level; 7538 int ret, err; 7539 7540 /* Be more helpful by rejecting programs that can't be validated early 7541 * with more meaningful and actionable error message. 7542 */ 7543 switch (prog->type) { 7544 case BPF_PROG_TYPE_UNSPEC: 7545 /* 7546 * The program type must be set. Most likely we couldn't find a proper 7547 * section definition at load time, and thus we didn't infer the type. 7548 */ 7549 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n", 7550 prog->name, prog->sec_name); 7551 return -EINVAL; 7552 case BPF_PROG_TYPE_STRUCT_OPS: 7553 if (prog->attach_btf_id == 0) { 7554 pr_warn("prog '%s': SEC(\"struct_ops\") program isn't referenced anywhere, did you forget to use it?\n", 7555 prog->name); 7556 return -EINVAL; 7557 } 7558 break; 7559 default: 7560 break; 7561 } 7562 7563 if (!insns || !insns_cnt) 7564 return -EINVAL; 7565 7566 if (kernel_supports(obj, FEAT_PROG_NAME)) 7567 prog_name = prog->name; 7568 load_attr.attach_prog_fd = prog->attach_prog_fd; 7569 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd; 7570 load_attr.attach_btf_id = prog->attach_btf_id; 7571 load_attr.kern_version = kern_version; 7572 load_attr.prog_ifindex = prog->prog_ifindex; 7573 load_attr.expected_attach_type = prog->expected_attach_type; 7574 7575 /* specify func_info/line_info only if kernel supports them */ 7576 if (obj->btf && btf__fd(obj->btf) >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) { 7577 load_attr.prog_btf_fd = btf__fd(obj->btf); 7578 load_attr.func_info = prog->func_info; 7579 load_attr.func_info_rec_size = prog->func_info_rec_size; 7580 load_attr.func_info_cnt = prog->func_info_cnt; 7581 load_attr.line_info = prog->line_info; 7582 load_attr.line_info_rec_size = prog->line_info_rec_size; 7583 load_attr.line_info_cnt = prog->line_info_cnt; 7584 } 7585 load_attr.log_level = log_level; 7586 load_attr.prog_flags = prog->prog_flags; 7587 load_attr.fd_array = obj->fd_array; 7588 7589 load_attr.token_fd = obj->token_fd; 7590 if (obj->token_fd) 7591 load_attr.prog_flags |= BPF_F_TOKEN_FD; 7592 7593 /* adjust load_attr if sec_def provides custom preload callback */ 7594 if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) { 7595 err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie); 7596 if (err < 0) { 7597 pr_warn("prog '%s': failed to prepare load attributes: %s\n", 7598 prog->name, errstr(err)); 7599 return err; 7600 } 7601 insns = prog->insns; 7602 insns_cnt = prog->insns_cnt; 7603 } 7604 7605 if (obj->gen_loader) { 7606 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name, 7607 license, insns, insns_cnt, &load_attr, 7608 prog - obj->programs); 7609 *prog_fd = -1; 7610 return 0; 7611 } 7612 7613 retry_load: 7614 /* if log_level is zero, we don't request logs initially even if 7615 * custom log_buf is specified; if the program load fails, then we'll 7616 * bump log_level to 1 and use either custom log_buf or we'll allocate 7617 * our own and retry the load to get details on what failed 7618 */ 7619 if (log_level) { 7620 if (prog->log_buf) { 7621 log_buf = prog->log_buf; 7622 log_buf_size = prog->log_size; 7623 own_log_buf = false; 7624 } else if (obj->log_buf) { 7625 log_buf = obj->log_buf; 7626 log_buf_size = obj->log_size; 7627 own_log_buf = false; 7628 } else { 7629 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2); 7630 tmp = realloc(log_buf, log_buf_size); 7631 if (!tmp) { 7632 ret = -ENOMEM; 7633 goto out; 7634 } 7635 log_buf = tmp; 7636 log_buf[0] = '\0'; 7637 own_log_buf = true; 7638 } 7639 } 7640 7641 load_attr.log_buf = log_buf; 7642 load_attr.log_size = log_buf_size; 7643 load_attr.log_level = log_level; 7644 7645 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr); 7646 if (ret >= 0) { 7647 if (log_level && own_log_buf) { 7648 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 7649 prog->name, log_buf); 7650 } 7651 7652 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) { 7653 struct bpf_map *map; 7654 int i; 7655 7656 for (i = 0; i < obj->nr_maps; i++) { 7657 map = &prog->obj->maps[i]; 7658 if (map->libbpf_type != LIBBPF_MAP_RODATA) 7659 continue; 7660 7661 if (bpf_prog_bind_map(ret, map->fd, NULL)) { 7662 pr_warn("prog '%s': failed to bind map '%s': %s\n", 7663 prog->name, map->real_name, errstr(errno)); 7664 /* Don't fail hard if can't bind rodata. */ 7665 } 7666 } 7667 } 7668 7669 *prog_fd = ret; 7670 ret = 0; 7671 goto out; 7672 } 7673 7674 if (log_level == 0) { 7675 log_level = 1; 7676 goto retry_load; 7677 } 7678 /* On ENOSPC, increase log buffer size and retry, unless custom 7679 * log_buf is specified. 7680 * Be careful to not overflow u32, though. Kernel's log buf size limit 7681 * isn't part of UAPI so it can always be bumped to full 4GB. So don't 7682 * multiply by 2 unless we are sure we'll fit within 32 bits. 7683 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2). 7684 */ 7685 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2) 7686 goto retry_load; 7687 7688 ret = -errno; 7689 7690 /* post-process verifier log to improve error descriptions */ 7691 fixup_verifier_log(prog, log_buf, log_buf_size); 7692 7693 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, errstr(errno)); 7694 pr_perm_msg(ret); 7695 7696 if (own_log_buf && log_buf && log_buf[0] != '\0') { 7697 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 7698 prog->name, log_buf); 7699 } 7700 7701 out: 7702 if (own_log_buf) 7703 free(log_buf); 7704 return ret; 7705 } 7706 7707 static char *find_prev_line(char *buf, char *cur) 7708 { 7709 char *p; 7710 7711 if (cur == buf) /* end of a log buf */ 7712 return NULL; 7713 7714 p = cur - 1; 7715 while (p - 1 >= buf && *(p - 1) != '\n') 7716 p--; 7717 7718 return p; 7719 } 7720 7721 static void patch_log(char *buf, size_t buf_sz, size_t log_sz, 7722 char *orig, size_t orig_sz, const char *patch) 7723 { 7724 /* size of the remaining log content to the right from the to-be-replaced part */ 7725 size_t rem_sz = (buf + log_sz) - (orig + orig_sz); 7726 size_t patch_sz = strlen(patch); 7727 7728 if (patch_sz != orig_sz) { 7729 /* If patch line(s) are longer than original piece of verifier log, 7730 * shift log contents by (patch_sz - orig_sz) bytes to the right 7731 * starting from after to-be-replaced part of the log. 7732 * 7733 * If patch line(s) are shorter than original piece of verifier log, 7734 * shift log contents by (orig_sz - patch_sz) bytes to the left 7735 * starting from after to-be-replaced part of the log 7736 * 7737 * We need to be careful about not overflowing available 7738 * buf_sz capacity. If that's the case, we'll truncate the end 7739 * of the original log, as necessary. 7740 */ 7741 if (patch_sz > orig_sz) { 7742 if (orig + patch_sz >= buf + buf_sz) { 7743 /* patch is big enough to cover remaining space completely */ 7744 patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1; 7745 rem_sz = 0; 7746 } else if (patch_sz - orig_sz > buf_sz - log_sz) { 7747 /* patch causes part of remaining log to be truncated */ 7748 rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz); 7749 } 7750 } 7751 /* shift remaining log to the right by calculated amount */ 7752 memmove(orig + patch_sz, orig + orig_sz, rem_sz); 7753 } 7754 7755 memcpy(orig, patch, patch_sz); 7756 } 7757 7758 static void fixup_log_failed_core_relo(struct bpf_program *prog, 7759 char *buf, size_t buf_sz, size_t log_sz, 7760 char *line1, char *line2, char *line3) 7761 { 7762 /* Expected log for failed and not properly guarded CO-RE relocation: 7763 * line1 -> 123: (85) call unknown#195896080 7764 * line2 -> invalid func unknown#195896080 7765 * line3 -> <anything else or end of buffer> 7766 * 7767 * "123" is the index of the instruction that was poisoned. We extract 7768 * instruction index to find corresponding CO-RE relocation and 7769 * replace this part of the log with more relevant information about 7770 * failed CO-RE relocation. 7771 */ 7772 const struct bpf_core_relo *relo; 7773 struct bpf_core_spec spec; 7774 char patch[512], spec_buf[256]; 7775 int insn_idx, err, spec_len; 7776 7777 if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1) 7778 return; 7779 7780 relo = find_relo_core(prog, insn_idx); 7781 if (!relo) 7782 return; 7783 7784 err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec); 7785 if (err) 7786 return; 7787 7788 spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec); 7789 snprintf(patch, sizeof(patch), 7790 "%d: <invalid CO-RE relocation>\n" 7791 "failed to resolve CO-RE relocation %s%s\n", 7792 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : ""); 7793 7794 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7795 } 7796 7797 static void fixup_log_missing_map_load(struct bpf_program *prog, 7798 char *buf, size_t buf_sz, size_t log_sz, 7799 char *line1, char *line2, char *line3) 7800 { 7801 /* Expected log for failed and not properly guarded map reference: 7802 * line1 -> 123: (85) call unknown#2001000345 7803 * line2 -> invalid func unknown#2001000345 7804 * line3 -> <anything else or end of buffer> 7805 * 7806 * "123" is the index of the instruction that was poisoned. 7807 * "345" in "2001000345" is a map index in obj->maps to fetch map name. 7808 */ 7809 struct bpf_object *obj = prog->obj; 7810 const struct bpf_map *map; 7811 int insn_idx, map_idx; 7812 char patch[128]; 7813 7814 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2) 7815 return; 7816 7817 map_idx -= POISON_LDIMM64_MAP_BASE; 7818 if (map_idx < 0 || map_idx >= obj->nr_maps) 7819 return; 7820 map = &obj->maps[map_idx]; 7821 7822 snprintf(patch, sizeof(patch), 7823 "%d: <invalid BPF map reference>\n" 7824 "BPF map '%s' is referenced but wasn't created\n", 7825 insn_idx, map->name); 7826 7827 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7828 } 7829 7830 static void fixup_log_missing_kfunc_call(struct bpf_program *prog, 7831 char *buf, size_t buf_sz, size_t log_sz, 7832 char *line1, char *line2, char *line3) 7833 { 7834 /* Expected log for failed and not properly guarded kfunc call: 7835 * line1 -> 123: (85) call unknown#2002000345 7836 * line2 -> invalid func unknown#2002000345 7837 * line3 -> <anything else or end of buffer> 7838 * 7839 * "123" is the index of the instruction that was poisoned. 7840 * "345" in "2002000345" is an extern index in obj->externs to fetch kfunc name. 7841 */ 7842 struct bpf_object *obj = prog->obj; 7843 const struct extern_desc *ext; 7844 int insn_idx, ext_idx; 7845 char patch[128]; 7846 7847 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &ext_idx) != 2) 7848 return; 7849 7850 ext_idx -= POISON_CALL_KFUNC_BASE; 7851 if (ext_idx < 0 || ext_idx >= obj->nr_extern) 7852 return; 7853 ext = &obj->externs[ext_idx]; 7854 7855 snprintf(patch, sizeof(patch), 7856 "%d: <invalid kfunc call>\n" 7857 "kfunc '%s' is referenced but wasn't resolved\n", 7858 insn_idx, ext->name); 7859 7860 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7861 } 7862 7863 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz) 7864 { 7865 /* look for familiar error patterns in last N lines of the log */ 7866 const size_t max_last_line_cnt = 10; 7867 char *prev_line, *cur_line, *next_line; 7868 size_t log_sz; 7869 int i; 7870 7871 if (!buf) 7872 return; 7873 7874 log_sz = strlen(buf) + 1; 7875 next_line = buf + log_sz - 1; 7876 7877 for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) { 7878 cur_line = find_prev_line(buf, next_line); 7879 if (!cur_line) 7880 return; 7881 7882 if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) { 7883 prev_line = find_prev_line(buf, cur_line); 7884 if (!prev_line) 7885 continue; 7886 7887 /* failed CO-RE relocation case */ 7888 fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz, 7889 prev_line, cur_line, next_line); 7890 return; 7891 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_LDIMM64_MAP_PFX)) { 7892 prev_line = find_prev_line(buf, cur_line); 7893 if (!prev_line) 7894 continue; 7895 7896 /* reference to uncreated BPF map */ 7897 fixup_log_missing_map_load(prog, buf, buf_sz, log_sz, 7898 prev_line, cur_line, next_line); 7899 return; 7900 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_CALL_KFUNC_PFX)) { 7901 prev_line = find_prev_line(buf, cur_line); 7902 if (!prev_line) 7903 continue; 7904 7905 /* reference to unresolved kfunc */ 7906 fixup_log_missing_kfunc_call(prog, buf, buf_sz, log_sz, 7907 prev_line, cur_line, next_line); 7908 return; 7909 } 7910 } 7911 } 7912 7913 static int bpf_program_record_relos(struct bpf_program *prog) 7914 { 7915 struct bpf_object *obj = prog->obj; 7916 int i; 7917 7918 for (i = 0; i < prog->nr_reloc; i++) { 7919 struct reloc_desc *relo = &prog->reloc_desc[i]; 7920 struct extern_desc *ext = &obj->externs[relo->ext_idx]; 7921 int kind; 7922 7923 switch (relo->type) { 7924 case RELO_EXTERN_LD64: 7925 if (ext->type != EXT_KSYM) 7926 continue; 7927 kind = btf_is_var(btf__type_by_id(obj->btf, ext->btf_id)) ? 7928 BTF_KIND_VAR : BTF_KIND_FUNC; 7929 bpf_gen__record_extern(obj->gen_loader, ext->name, 7930 ext->is_weak, !ext->ksym.type_id, 7931 true, kind, relo->insn_idx); 7932 break; 7933 case RELO_EXTERN_CALL: 7934 bpf_gen__record_extern(obj->gen_loader, ext->name, 7935 ext->is_weak, false, false, BTF_KIND_FUNC, 7936 relo->insn_idx); 7937 break; 7938 case RELO_CORE: { 7939 struct bpf_core_relo cr = { 7940 .insn_off = relo->insn_idx * 8, 7941 .type_id = relo->core_relo->type_id, 7942 .access_str_off = relo->core_relo->access_str_off, 7943 .kind = relo->core_relo->kind, 7944 }; 7945 7946 bpf_gen__record_relo_core(obj->gen_loader, &cr); 7947 break; 7948 } 7949 default: 7950 continue; 7951 } 7952 } 7953 return 0; 7954 } 7955 7956 static int 7957 bpf_object__load_progs(struct bpf_object *obj, int log_level) 7958 { 7959 struct bpf_program *prog; 7960 size_t i; 7961 int err; 7962 7963 for (i = 0; i < obj->nr_programs; i++) { 7964 prog = &obj->programs[i]; 7965 if (prog_is_subprog(obj, prog)) 7966 continue; 7967 if (!prog->autoload) { 7968 pr_debug("prog '%s': skipped loading\n", prog->name); 7969 continue; 7970 } 7971 prog->log_level |= log_level; 7972 7973 if (obj->gen_loader) 7974 bpf_program_record_relos(prog); 7975 7976 err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt, 7977 obj->license, obj->kern_version, &prog->fd); 7978 if (err) { 7979 pr_warn("prog '%s': failed to load: %s\n", prog->name, errstr(err)); 7980 return err; 7981 } 7982 } 7983 7984 bpf_object__free_relocs(obj); 7985 return 0; 7986 } 7987 7988 static int bpf_object_prepare_progs(struct bpf_object *obj) 7989 { 7990 struct bpf_program *prog; 7991 size_t i; 7992 int err; 7993 7994 for (i = 0; i < obj->nr_programs; i++) { 7995 prog = &obj->programs[i]; 7996 err = bpf_object__sanitize_prog(obj, prog); 7997 if (err) 7998 return err; 7999 } 8000 return 0; 8001 } 8002 8003 static const struct bpf_sec_def *find_sec_def(const char *sec_name); 8004 8005 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts) 8006 { 8007 struct bpf_program *prog; 8008 int err; 8009 8010 bpf_object__for_each_program(prog, obj) { 8011 prog->sec_def = find_sec_def(prog->sec_name); 8012 if (!prog->sec_def) { 8013 /* couldn't guess, but user might manually specify */ 8014 pr_debug("prog '%s': unrecognized ELF section name '%s'\n", 8015 prog->name, prog->sec_name); 8016 continue; 8017 } 8018 8019 prog->type = prog->sec_def->prog_type; 8020 prog->expected_attach_type = prog->sec_def->expected_attach_type; 8021 8022 /* sec_def can have custom callback which should be called 8023 * after bpf_program is initialized to adjust its properties 8024 */ 8025 if (prog->sec_def->prog_setup_fn) { 8026 err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie); 8027 if (err < 0) { 8028 pr_warn("prog '%s': failed to initialize: %s\n", 8029 prog->name, errstr(err)); 8030 return err; 8031 } 8032 } 8033 } 8034 8035 return 0; 8036 } 8037 8038 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz, 8039 const char *obj_name, 8040 const struct bpf_object_open_opts *opts) 8041 { 8042 const char *kconfig, *btf_tmp_path, *token_path; 8043 struct bpf_object *obj; 8044 int err; 8045 char *log_buf; 8046 size_t log_size; 8047 __u32 log_level; 8048 8049 if (obj_buf && !obj_name) 8050 return ERR_PTR(-EINVAL); 8051 8052 if (elf_version(EV_CURRENT) == EV_NONE) { 8053 pr_warn("failed to init libelf for %s\n", 8054 path ? : "(mem buf)"); 8055 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 8056 } 8057 8058 if (!OPTS_VALID(opts, bpf_object_open_opts)) 8059 return ERR_PTR(-EINVAL); 8060 8061 obj_name = OPTS_GET(opts, object_name, NULL) ?: obj_name; 8062 if (obj_buf) { 8063 path = obj_name; 8064 pr_debug("loading object '%s' from buffer\n", obj_name); 8065 } else { 8066 pr_debug("loading object from %s\n", path); 8067 } 8068 8069 log_buf = OPTS_GET(opts, kernel_log_buf, NULL); 8070 log_size = OPTS_GET(opts, kernel_log_size, 0); 8071 log_level = OPTS_GET(opts, kernel_log_level, 0); 8072 if (log_size > UINT_MAX) 8073 return ERR_PTR(-EINVAL); 8074 if (log_size && !log_buf) 8075 return ERR_PTR(-EINVAL); 8076 8077 token_path = OPTS_GET(opts, bpf_token_path, NULL); 8078 /* if user didn't specify bpf_token_path explicitly, check if 8079 * LIBBPF_BPF_TOKEN_PATH envvar was set and treat it as bpf_token_path 8080 * option 8081 */ 8082 if (!token_path) 8083 token_path = getenv("LIBBPF_BPF_TOKEN_PATH"); 8084 if (token_path && strlen(token_path) >= PATH_MAX) 8085 return ERR_PTR(-ENAMETOOLONG); 8086 8087 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 8088 if (IS_ERR(obj)) 8089 return obj; 8090 8091 obj->log_buf = log_buf; 8092 obj->log_size = log_size; 8093 obj->log_level = log_level; 8094 8095 if (token_path) { 8096 obj->token_path = strdup(token_path); 8097 if (!obj->token_path) { 8098 err = -ENOMEM; 8099 goto out; 8100 } 8101 } 8102 8103 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL); 8104 if (btf_tmp_path) { 8105 if (strlen(btf_tmp_path) >= PATH_MAX) { 8106 err = -ENAMETOOLONG; 8107 goto out; 8108 } 8109 obj->btf_custom_path = strdup(btf_tmp_path); 8110 if (!obj->btf_custom_path) { 8111 err = -ENOMEM; 8112 goto out; 8113 } 8114 } 8115 8116 kconfig = OPTS_GET(opts, kconfig, NULL); 8117 if (kconfig) { 8118 obj->kconfig = strdup(kconfig); 8119 if (!obj->kconfig) { 8120 err = -ENOMEM; 8121 goto out; 8122 } 8123 } 8124 8125 err = bpf_object__elf_init(obj); 8126 err = err ? : bpf_object__elf_collect(obj); 8127 err = err ? : bpf_object__collect_externs(obj); 8128 err = err ? : bpf_object_fixup_btf(obj); 8129 err = err ? : bpf_object__init_maps(obj, opts); 8130 err = err ? : bpf_object_init_progs(obj, opts); 8131 err = err ? : bpf_object__collect_relos(obj); 8132 if (err) 8133 goto out; 8134 8135 bpf_object__elf_finish(obj); 8136 8137 return obj; 8138 out: 8139 bpf_object__close(obj); 8140 return ERR_PTR(err); 8141 } 8142 8143 struct bpf_object * 8144 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 8145 { 8146 if (!path) 8147 return libbpf_err_ptr(-EINVAL); 8148 8149 return libbpf_ptr(bpf_object_open(path, NULL, 0, NULL, opts)); 8150 } 8151 8152 struct bpf_object *bpf_object__open(const char *path) 8153 { 8154 return bpf_object__open_file(path, NULL); 8155 } 8156 8157 struct bpf_object * 8158 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 8159 const struct bpf_object_open_opts *opts) 8160 { 8161 char tmp_name[64]; 8162 8163 if (!obj_buf || obj_buf_sz == 0) 8164 return libbpf_err_ptr(-EINVAL); 8165 8166 /* create a (quite useless) default "name" for this memory buffer object */ 8167 snprintf(tmp_name, sizeof(tmp_name), "%lx-%zx", (unsigned long)obj_buf, obj_buf_sz); 8168 8169 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, tmp_name, opts)); 8170 } 8171 8172 static int bpf_object_unload(struct bpf_object *obj) 8173 { 8174 size_t i; 8175 8176 if (!obj) 8177 return libbpf_err(-EINVAL); 8178 8179 for (i = 0; i < obj->nr_maps; i++) { 8180 zclose(obj->maps[i].fd); 8181 if (obj->maps[i].st_ops) 8182 zfree(&obj->maps[i].st_ops->kern_vdata); 8183 } 8184 8185 for (i = 0; i < obj->nr_programs; i++) 8186 bpf_program__unload(&obj->programs[i]); 8187 8188 return 0; 8189 } 8190 8191 static int bpf_object__sanitize_maps(struct bpf_object *obj) 8192 { 8193 struct bpf_map *m; 8194 8195 bpf_object__for_each_map(m, obj) { 8196 if (!bpf_map__is_internal(m)) 8197 continue; 8198 if (!kernel_supports(obj, FEAT_ARRAY_MMAP)) 8199 m->def.map_flags &= ~BPF_F_MMAPABLE; 8200 } 8201 8202 return 0; 8203 } 8204 8205 typedef int (*kallsyms_cb_t)(unsigned long long sym_addr, char sym_type, 8206 const char *sym_name, void *ctx); 8207 8208 static int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx) 8209 { 8210 char sym_type, sym_name[500]; 8211 unsigned long long sym_addr; 8212 int ret, err = 0; 8213 FILE *f; 8214 8215 f = fopen("/proc/kallsyms", "re"); 8216 if (!f) { 8217 err = -errno; 8218 pr_warn("failed to open /proc/kallsyms: %s\n", errstr(err)); 8219 return err; 8220 } 8221 8222 while (true) { 8223 ret = fscanf(f, "%llx %c %499s%*[^\n]\n", 8224 &sym_addr, &sym_type, sym_name); 8225 if (ret == EOF && feof(f)) 8226 break; 8227 if (ret != 3) { 8228 pr_warn("failed to read kallsyms entry: %d\n", ret); 8229 err = -EINVAL; 8230 break; 8231 } 8232 8233 err = cb(sym_addr, sym_type, sym_name, ctx); 8234 if (err) 8235 break; 8236 } 8237 8238 fclose(f); 8239 return err; 8240 } 8241 8242 static int kallsyms_cb(unsigned long long sym_addr, char sym_type, 8243 const char *sym_name, void *ctx) 8244 { 8245 struct bpf_object *obj = ctx; 8246 const struct btf_type *t; 8247 struct extern_desc *ext; 8248 char *res; 8249 8250 res = strstr(sym_name, ".llvm."); 8251 if (sym_type == 'd' && res) 8252 ext = find_extern_by_name_with_len(obj, sym_name, res - sym_name); 8253 else 8254 ext = find_extern_by_name(obj, sym_name); 8255 if (!ext || ext->type != EXT_KSYM) 8256 return 0; 8257 8258 t = btf__type_by_id(obj->btf, ext->btf_id); 8259 if (!btf_is_var(t)) 8260 return 0; 8261 8262 if (ext->is_set && ext->ksym.addr != sym_addr) { 8263 pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n", 8264 sym_name, ext->ksym.addr, sym_addr); 8265 return -EINVAL; 8266 } 8267 if (!ext->is_set) { 8268 ext->is_set = true; 8269 ext->ksym.addr = sym_addr; 8270 pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr); 8271 } 8272 return 0; 8273 } 8274 8275 static int bpf_object__read_kallsyms_file(struct bpf_object *obj) 8276 { 8277 return libbpf_kallsyms_parse(kallsyms_cb, obj); 8278 } 8279 8280 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 8281 __u16 kind, struct btf **res_btf, 8282 struct module_btf **res_mod_btf) 8283 { 8284 struct module_btf *mod_btf; 8285 struct btf *btf; 8286 int i, id, err; 8287 8288 btf = obj->btf_vmlinux; 8289 mod_btf = NULL; 8290 id = btf__find_by_name_kind(btf, ksym_name, kind); 8291 8292 if (id == -ENOENT) { 8293 err = load_module_btfs(obj); 8294 if (err) 8295 return err; 8296 8297 for (i = 0; i < obj->btf_module_cnt; i++) { 8298 /* we assume module_btf's BTF FD is always >0 */ 8299 mod_btf = &obj->btf_modules[i]; 8300 btf = mod_btf->btf; 8301 id = btf__find_by_name_kind_own(btf, ksym_name, kind); 8302 if (id != -ENOENT) 8303 break; 8304 } 8305 } 8306 if (id <= 0) 8307 return -ESRCH; 8308 8309 *res_btf = btf; 8310 *res_mod_btf = mod_btf; 8311 return id; 8312 } 8313 8314 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj, 8315 struct extern_desc *ext) 8316 { 8317 const struct btf_type *targ_var, *targ_type; 8318 __u32 targ_type_id, local_type_id; 8319 struct module_btf *mod_btf = NULL; 8320 const char *targ_var_name; 8321 struct btf *btf = NULL; 8322 int id, err; 8323 8324 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf); 8325 if (id < 0) { 8326 if (id == -ESRCH && ext->is_weak) 8327 return 0; 8328 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n", 8329 ext->name); 8330 return id; 8331 } 8332 8333 /* find local type_id */ 8334 local_type_id = ext->ksym.type_id; 8335 8336 /* find target type_id */ 8337 targ_var = btf__type_by_id(btf, id); 8338 targ_var_name = btf__name_by_offset(btf, targ_var->name_off); 8339 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id); 8340 8341 err = bpf_core_types_are_compat(obj->btf, local_type_id, 8342 btf, targ_type_id); 8343 if (err <= 0) { 8344 const struct btf_type *local_type; 8345 const char *targ_name, *local_name; 8346 8347 local_type = btf__type_by_id(obj->btf, local_type_id); 8348 local_name = btf__name_by_offset(obj->btf, local_type->name_off); 8349 targ_name = btf__name_by_offset(btf, targ_type->name_off); 8350 8351 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n", 8352 ext->name, local_type_id, 8353 btf_kind_str(local_type), local_name, targ_type_id, 8354 btf_kind_str(targ_type), targ_name); 8355 return -EINVAL; 8356 } 8357 8358 ext->is_set = true; 8359 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 8360 ext->ksym.kernel_btf_id = id; 8361 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n", 8362 ext->name, id, btf_kind_str(targ_var), targ_var_name); 8363 8364 return 0; 8365 } 8366 8367 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj, 8368 struct extern_desc *ext) 8369 { 8370 int local_func_proto_id, kfunc_proto_id, kfunc_id; 8371 struct module_btf *mod_btf = NULL; 8372 const struct btf_type *kern_func; 8373 struct btf *kern_btf = NULL; 8374 int ret; 8375 8376 local_func_proto_id = ext->ksym.type_id; 8377 8378 kfunc_id = find_ksym_btf_id(obj, ext->essent_name ?: ext->name, BTF_KIND_FUNC, &kern_btf, 8379 &mod_btf); 8380 if (kfunc_id < 0) { 8381 if (kfunc_id == -ESRCH && ext->is_weak) 8382 return 0; 8383 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n", 8384 ext->name); 8385 return kfunc_id; 8386 } 8387 8388 kern_func = btf__type_by_id(kern_btf, kfunc_id); 8389 kfunc_proto_id = kern_func->type; 8390 8391 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id, 8392 kern_btf, kfunc_proto_id); 8393 if (ret <= 0) { 8394 if (ext->is_weak) 8395 return 0; 8396 8397 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with %s [%d]\n", 8398 ext->name, local_func_proto_id, 8399 mod_btf ? mod_btf->name : "vmlinux", kfunc_proto_id); 8400 return -EINVAL; 8401 } 8402 8403 /* set index for module BTF fd in fd_array, if unset */ 8404 if (mod_btf && !mod_btf->fd_array_idx) { 8405 /* insn->off is s16 */ 8406 if (obj->fd_array_cnt == INT16_MAX) { 8407 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n", 8408 ext->name, mod_btf->fd_array_idx); 8409 return -E2BIG; 8410 } 8411 /* Cannot use index 0 for module BTF fd */ 8412 if (!obj->fd_array_cnt) 8413 obj->fd_array_cnt = 1; 8414 8415 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int), 8416 obj->fd_array_cnt + 1); 8417 if (ret) 8418 return ret; 8419 mod_btf->fd_array_idx = obj->fd_array_cnt; 8420 /* we assume module BTF FD is always >0 */ 8421 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd; 8422 } 8423 8424 ext->is_set = true; 8425 ext->ksym.kernel_btf_id = kfunc_id; 8426 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0; 8427 /* Also set kernel_btf_obj_fd to make sure that bpf_object__relocate_data() 8428 * populates FD into ld_imm64 insn when it's used to point to kfunc. 8429 * {kernel_btf_id, btf_fd_idx} -> fixup bpf_call. 8430 * {kernel_btf_id, kernel_btf_obj_fd} -> fixup ld_imm64. 8431 */ 8432 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 8433 pr_debug("extern (func ksym) '%s': resolved to %s [%d]\n", 8434 ext->name, mod_btf ? mod_btf->name : "vmlinux", kfunc_id); 8435 8436 return 0; 8437 } 8438 8439 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj) 8440 { 8441 const struct btf_type *t; 8442 struct extern_desc *ext; 8443 int i, err; 8444 8445 for (i = 0; i < obj->nr_extern; i++) { 8446 ext = &obj->externs[i]; 8447 if (ext->type != EXT_KSYM || !ext->ksym.type_id) 8448 continue; 8449 8450 if (obj->gen_loader) { 8451 ext->is_set = true; 8452 ext->ksym.kernel_btf_obj_fd = 0; 8453 ext->ksym.kernel_btf_id = 0; 8454 continue; 8455 } 8456 t = btf__type_by_id(obj->btf, ext->btf_id); 8457 if (btf_is_var(t)) 8458 err = bpf_object__resolve_ksym_var_btf_id(obj, ext); 8459 else 8460 err = bpf_object__resolve_ksym_func_btf_id(obj, ext); 8461 if (err) 8462 return err; 8463 } 8464 return 0; 8465 } 8466 8467 static int bpf_object__resolve_externs(struct bpf_object *obj, 8468 const char *extra_kconfig) 8469 { 8470 bool need_config = false, need_kallsyms = false; 8471 bool need_vmlinux_btf = false; 8472 struct extern_desc *ext; 8473 void *kcfg_data = NULL; 8474 int err, i; 8475 8476 if (obj->nr_extern == 0) 8477 return 0; 8478 8479 if (obj->kconfig_map_idx >= 0) 8480 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped; 8481 8482 for (i = 0; i < obj->nr_extern; i++) { 8483 ext = &obj->externs[i]; 8484 8485 if (ext->type == EXT_KSYM) { 8486 if (ext->ksym.type_id) 8487 need_vmlinux_btf = true; 8488 else 8489 need_kallsyms = true; 8490 continue; 8491 } else if (ext->type == EXT_KCFG) { 8492 void *ext_ptr = kcfg_data + ext->kcfg.data_off; 8493 __u64 value = 0; 8494 8495 /* Kconfig externs need actual /proc/config.gz */ 8496 if (str_has_pfx(ext->name, "CONFIG_")) { 8497 need_config = true; 8498 continue; 8499 } 8500 8501 /* Virtual kcfg externs are customly handled by libbpf */ 8502 if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 8503 value = get_kernel_version(); 8504 if (!value) { 8505 pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name); 8506 return -EINVAL; 8507 } 8508 } else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) { 8509 value = kernel_supports(obj, FEAT_BPF_COOKIE); 8510 } else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) { 8511 value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER); 8512 } else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) { 8513 /* Currently libbpf supports only CONFIG_ and LINUX_ prefixed 8514 * __kconfig externs, where LINUX_ ones are virtual and filled out 8515 * customly by libbpf (their values don't come from Kconfig). 8516 * If LINUX_xxx variable is not recognized by libbpf, but is marked 8517 * __weak, it defaults to zero value, just like for CONFIG_xxx 8518 * externs. 8519 */ 8520 pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name); 8521 return -EINVAL; 8522 } 8523 8524 err = set_kcfg_value_num(ext, ext_ptr, value); 8525 if (err) 8526 return err; 8527 pr_debug("extern (kcfg) '%s': set to 0x%llx\n", 8528 ext->name, (long long)value); 8529 } else { 8530 pr_warn("extern '%s': unrecognized extern kind\n", ext->name); 8531 return -EINVAL; 8532 } 8533 } 8534 if (need_config && extra_kconfig) { 8535 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data); 8536 if (err) 8537 return -EINVAL; 8538 need_config = false; 8539 for (i = 0; i < obj->nr_extern; i++) { 8540 ext = &obj->externs[i]; 8541 if (ext->type == EXT_KCFG && !ext->is_set) { 8542 need_config = true; 8543 break; 8544 } 8545 } 8546 } 8547 if (need_config) { 8548 err = bpf_object__read_kconfig_file(obj, kcfg_data); 8549 if (err) 8550 return -EINVAL; 8551 } 8552 if (need_kallsyms) { 8553 err = bpf_object__read_kallsyms_file(obj); 8554 if (err) 8555 return -EINVAL; 8556 } 8557 if (need_vmlinux_btf) { 8558 err = bpf_object__resolve_ksyms_btf_id(obj); 8559 if (err) 8560 return -EINVAL; 8561 } 8562 for (i = 0; i < obj->nr_extern; i++) { 8563 ext = &obj->externs[i]; 8564 8565 if (!ext->is_set && !ext->is_weak) { 8566 pr_warn("extern '%s' (strong): not resolved\n", ext->name); 8567 return -ESRCH; 8568 } else if (!ext->is_set) { 8569 pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n", 8570 ext->name); 8571 } 8572 } 8573 8574 return 0; 8575 } 8576 8577 static void bpf_map_prepare_vdata(const struct bpf_map *map) 8578 { 8579 const struct btf_type *type; 8580 struct bpf_struct_ops *st_ops; 8581 __u32 i; 8582 8583 st_ops = map->st_ops; 8584 type = btf__type_by_id(map->obj->btf, st_ops->type_id); 8585 for (i = 0; i < btf_vlen(type); i++) { 8586 struct bpf_program *prog = st_ops->progs[i]; 8587 void *kern_data; 8588 int prog_fd; 8589 8590 if (!prog) 8591 continue; 8592 8593 prog_fd = bpf_program__fd(prog); 8594 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 8595 *(unsigned long *)kern_data = prog_fd; 8596 } 8597 } 8598 8599 static int bpf_object_prepare_struct_ops(struct bpf_object *obj) 8600 { 8601 struct bpf_map *map; 8602 int i; 8603 8604 for (i = 0; i < obj->nr_maps; i++) { 8605 map = &obj->maps[i]; 8606 8607 if (!bpf_map__is_struct_ops(map)) 8608 continue; 8609 8610 if (!map->autocreate) 8611 continue; 8612 8613 bpf_map_prepare_vdata(map); 8614 } 8615 8616 return 0; 8617 } 8618 8619 static void bpf_object_unpin(struct bpf_object *obj) 8620 { 8621 int i; 8622 8623 /* unpin any maps that were auto-pinned during load */ 8624 for (i = 0; i < obj->nr_maps; i++) 8625 if (obj->maps[i].pinned && !obj->maps[i].reused) 8626 bpf_map__unpin(&obj->maps[i], NULL); 8627 } 8628 8629 static void bpf_object_post_load_cleanup(struct bpf_object *obj) 8630 { 8631 int i; 8632 8633 /* clean up fd_array */ 8634 zfree(&obj->fd_array); 8635 8636 /* clean up module BTFs */ 8637 for (i = 0; i < obj->btf_module_cnt; i++) { 8638 close(obj->btf_modules[i].fd); 8639 btf__free(obj->btf_modules[i].btf); 8640 free(obj->btf_modules[i].name); 8641 } 8642 obj->btf_module_cnt = 0; 8643 zfree(&obj->btf_modules); 8644 8645 /* clean up vmlinux BTF */ 8646 btf__free(obj->btf_vmlinux); 8647 obj->btf_vmlinux = NULL; 8648 } 8649 8650 static int bpf_object_prepare(struct bpf_object *obj, const char *target_btf_path) 8651 { 8652 int err; 8653 8654 if (obj->state >= OBJ_PREPARED) { 8655 pr_warn("object '%s': prepare loading can't be attempted twice\n", obj->name); 8656 return -EINVAL; 8657 } 8658 8659 err = bpf_object_prepare_token(obj); 8660 err = err ? : bpf_object__probe_loading(obj); 8661 err = err ? : bpf_object__load_vmlinux_btf(obj, false); 8662 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 8663 err = err ? : bpf_object__sanitize_maps(obj); 8664 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 8665 err = err ? : bpf_object_adjust_struct_ops_autoload(obj); 8666 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path); 8667 err = err ? : bpf_object__sanitize_and_load_btf(obj); 8668 err = err ? : bpf_object__create_maps(obj); 8669 err = err ? : bpf_object_prepare_progs(obj); 8670 8671 if (err) { 8672 bpf_object_unpin(obj); 8673 bpf_object_unload(obj); 8674 obj->state = OBJ_LOADED; 8675 return err; 8676 } 8677 8678 obj->state = OBJ_PREPARED; 8679 return 0; 8680 } 8681 8682 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path) 8683 { 8684 int err; 8685 8686 if (!obj) 8687 return libbpf_err(-EINVAL); 8688 8689 if (obj->state >= OBJ_LOADED) { 8690 pr_warn("object '%s': load can't be attempted twice\n", obj->name); 8691 return libbpf_err(-EINVAL); 8692 } 8693 8694 /* Disallow kernel loading programs of non-native endianness but 8695 * permit cross-endian creation of "light skeleton". 8696 */ 8697 if (obj->gen_loader) { 8698 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps); 8699 } else if (!is_native_endianness(obj)) { 8700 pr_warn("object '%s': loading non-native endianness is unsupported\n", obj->name); 8701 return libbpf_err(-LIBBPF_ERRNO__ENDIAN); 8702 } 8703 8704 if (obj->state < OBJ_PREPARED) { 8705 err = bpf_object_prepare(obj, target_btf_path); 8706 if (err) 8707 return libbpf_err(err); 8708 } 8709 err = bpf_object__load_progs(obj, extra_log_level); 8710 err = err ? : bpf_object_init_prog_arrays(obj); 8711 err = err ? : bpf_object_prepare_struct_ops(obj); 8712 8713 if (obj->gen_loader) { 8714 /* reset FDs */ 8715 if (obj->btf) 8716 btf__set_fd(obj->btf, -1); 8717 if (!err) 8718 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps); 8719 } 8720 8721 bpf_object_post_load_cleanup(obj); 8722 obj->state = OBJ_LOADED; /* doesn't matter if successfully or not */ 8723 8724 if (err) { 8725 bpf_object_unpin(obj); 8726 bpf_object_unload(obj); 8727 pr_warn("failed to load object '%s'\n", obj->path); 8728 return libbpf_err(err); 8729 } 8730 8731 return 0; 8732 } 8733 8734 int bpf_object__prepare(struct bpf_object *obj) 8735 { 8736 return libbpf_err(bpf_object_prepare(obj, NULL)); 8737 } 8738 8739 int bpf_object__load(struct bpf_object *obj) 8740 { 8741 return bpf_object_load(obj, 0, NULL); 8742 } 8743 8744 static int make_parent_dir(const char *path) 8745 { 8746 char *dname, *dir; 8747 int err = 0; 8748 8749 dname = strdup(path); 8750 if (dname == NULL) 8751 return -ENOMEM; 8752 8753 dir = dirname(dname); 8754 if (mkdir(dir, 0700) && errno != EEXIST) 8755 err = -errno; 8756 8757 free(dname); 8758 if (err) { 8759 pr_warn("failed to mkdir %s: %s\n", path, errstr(err)); 8760 } 8761 return err; 8762 } 8763 8764 static int check_path(const char *path) 8765 { 8766 struct statfs st_fs; 8767 char *dname, *dir; 8768 int err = 0; 8769 8770 if (path == NULL) 8771 return -EINVAL; 8772 8773 dname = strdup(path); 8774 if (dname == NULL) 8775 return -ENOMEM; 8776 8777 dir = dirname(dname); 8778 if (statfs(dir, &st_fs)) { 8779 pr_warn("failed to statfs %s: %s\n", dir, errstr(errno)); 8780 err = -errno; 8781 } 8782 free(dname); 8783 8784 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 8785 pr_warn("specified path %s is not on BPF FS\n", path); 8786 err = -EINVAL; 8787 } 8788 8789 return err; 8790 } 8791 8792 int bpf_program__pin(struct bpf_program *prog, const char *path) 8793 { 8794 int err; 8795 8796 if (prog->fd < 0) { 8797 pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name); 8798 return libbpf_err(-EINVAL); 8799 } 8800 8801 err = make_parent_dir(path); 8802 if (err) 8803 return libbpf_err(err); 8804 8805 err = check_path(path); 8806 if (err) 8807 return libbpf_err(err); 8808 8809 if (bpf_obj_pin(prog->fd, path)) { 8810 err = -errno; 8811 pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, errstr(err)); 8812 return libbpf_err(err); 8813 } 8814 8815 pr_debug("prog '%s': pinned at '%s'\n", prog->name, path); 8816 return 0; 8817 } 8818 8819 int bpf_program__unpin(struct bpf_program *prog, const char *path) 8820 { 8821 int err; 8822 8823 if (prog->fd < 0) { 8824 pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name); 8825 return libbpf_err(-EINVAL); 8826 } 8827 8828 err = check_path(path); 8829 if (err) 8830 return libbpf_err(err); 8831 8832 err = unlink(path); 8833 if (err) 8834 return libbpf_err(-errno); 8835 8836 pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path); 8837 return 0; 8838 } 8839 8840 int bpf_map__pin(struct bpf_map *map, const char *path) 8841 { 8842 int err; 8843 8844 if (map == NULL) { 8845 pr_warn("invalid map pointer\n"); 8846 return libbpf_err(-EINVAL); 8847 } 8848 8849 if (map->fd < 0) { 8850 pr_warn("map '%s': can't pin BPF map without FD (was it created?)\n", map->name); 8851 return libbpf_err(-EINVAL); 8852 } 8853 8854 if (map->pin_path) { 8855 if (path && strcmp(path, map->pin_path)) { 8856 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8857 bpf_map__name(map), map->pin_path, path); 8858 return libbpf_err(-EINVAL); 8859 } else if (map->pinned) { 8860 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 8861 bpf_map__name(map), map->pin_path); 8862 return 0; 8863 } 8864 } else { 8865 if (!path) { 8866 pr_warn("missing a path to pin map '%s' at\n", 8867 bpf_map__name(map)); 8868 return libbpf_err(-EINVAL); 8869 } else if (map->pinned) { 8870 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 8871 return libbpf_err(-EEXIST); 8872 } 8873 8874 map->pin_path = strdup(path); 8875 if (!map->pin_path) { 8876 err = -errno; 8877 goto out_err; 8878 } 8879 } 8880 8881 err = make_parent_dir(map->pin_path); 8882 if (err) 8883 return libbpf_err(err); 8884 8885 err = check_path(map->pin_path); 8886 if (err) 8887 return libbpf_err(err); 8888 8889 if (bpf_obj_pin(map->fd, map->pin_path)) { 8890 err = -errno; 8891 goto out_err; 8892 } 8893 8894 map->pinned = true; 8895 pr_debug("pinned map '%s'\n", map->pin_path); 8896 8897 return 0; 8898 8899 out_err: 8900 pr_warn("failed to pin map: %s\n", errstr(err)); 8901 return libbpf_err(err); 8902 } 8903 8904 int bpf_map__unpin(struct bpf_map *map, const char *path) 8905 { 8906 int err; 8907 8908 if (map == NULL) { 8909 pr_warn("invalid map pointer\n"); 8910 return libbpf_err(-EINVAL); 8911 } 8912 8913 if (map->pin_path) { 8914 if (path && strcmp(path, map->pin_path)) { 8915 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8916 bpf_map__name(map), map->pin_path, path); 8917 return libbpf_err(-EINVAL); 8918 } 8919 path = map->pin_path; 8920 } else if (!path) { 8921 pr_warn("no path to unpin map '%s' from\n", 8922 bpf_map__name(map)); 8923 return libbpf_err(-EINVAL); 8924 } 8925 8926 err = check_path(path); 8927 if (err) 8928 return libbpf_err(err); 8929 8930 err = unlink(path); 8931 if (err != 0) 8932 return libbpf_err(-errno); 8933 8934 map->pinned = false; 8935 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 8936 8937 return 0; 8938 } 8939 8940 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 8941 { 8942 char *new = NULL; 8943 8944 if (path) { 8945 new = strdup(path); 8946 if (!new) 8947 return libbpf_err(-errno); 8948 } 8949 8950 free(map->pin_path); 8951 map->pin_path = new; 8952 return 0; 8953 } 8954 8955 __alias(bpf_map__pin_path) 8956 const char *bpf_map__get_pin_path(const struct bpf_map *map); 8957 8958 const char *bpf_map__pin_path(const struct bpf_map *map) 8959 { 8960 return map->pin_path; 8961 } 8962 8963 bool bpf_map__is_pinned(const struct bpf_map *map) 8964 { 8965 return map->pinned; 8966 } 8967 8968 static void sanitize_pin_path(char *s) 8969 { 8970 /* bpffs disallows periods in path names */ 8971 while (*s) { 8972 if (*s == '.') 8973 *s = '_'; 8974 s++; 8975 } 8976 } 8977 8978 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 8979 { 8980 struct bpf_map *map; 8981 int err; 8982 8983 if (!obj) 8984 return libbpf_err(-ENOENT); 8985 8986 if (obj->state < OBJ_PREPARED) { 8987 pr_warn("object not yet loaded; load it first\n"); 8988 return libbpf_err(-ENOENT); 8989 } 8990 8991 bpf_object__for_each_map(map, obj) { 8992 char *pin_path = NULL; 8993 char buf[PATH_MAX]; 8994 8995 if (!map->autocreate) 8996 continue; 8997 8998 if (path) { 8999 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 9000 if (err) 9001 goto err_unpin_maps; 9002 sanitize_pin_path(buf); 9003 pin_path = buf; 9004 } else if (!map->pin_path) { 9005 continue; 9006 } 9007 9008 err = bpf_map__pin(map, pin_path); 9009 if (err) 9010 goto err_unpin_maps; 9011 } 9012 9013 return 0; 9014 9015 err_unpin_maps: 9016 while ((map = bpf_object__prev_map(obj, map))) { 9017 if (!map->pin_path) 9018 continue; 9019 9020 bpf_map__unpin(map, NULL); 9021 } 9022 9023 return libbpf_err(err); 9024 } 9025 9026 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 9027 { 9028 struct bpf_map *map; 9029 int err; 9030 9031 if (!obj) 9032 return libbpf_err(-ENOENT); 9033 9034 bpf_object__for_each_map(map, obj) { 9035 char *pin_path = NULL; 9036 char buf[PATH_MAX]; 9037 9038 if (path) { 9039 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 9040 if (err) 9041 return libbpf_err(err); 9042 sanitize_pin_path(buf); 9043 pin_path = buf; 9044 } else if (!map->pin_path) { 9045 continue; 9046 } 9047 9048 err = bpf_map__unpin(map, pin_path); 9049 if (err) 9050 return libbpf_err(err); 9051 } 9052 9053 return 0; 9054 } 9055 9056 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 9057 { 9058 struct bpf_program *prog; 9059 char buf[PATH_MAX]; 9060 int err; 9061 9062 if (!obj) 9063 return libbpf_err(-ENOENT); 9064 9065 if (obj->state < OBJ_LOADED) { 9066 pr_warn("object not yet loaded; load it first\n"); 9067 return libbpf_err(-ENOENT); 9068 } 9069 9070 bpf_object__for_each_program(prog, obj) { 9071 err = pathname_concat(buf, sizeof(buf), path, prog->name); 9072 if (err) 9073 goto err_unpin_programs; 9074 9075 err = bpf_program__pin(prog, buf); 9076 if (err) 9077 goto err_unpin_programs; 9078 } 9079 9080 return 0; 9081 9082 err_unpin_programs: 9083 while ((prog = bpf_object__prev_program(obj, prog))) { 9084 if (pathname_concat(buf, sizeof(buf), path, prog->name)) 9085 continue; 9086 9087 bpf_program__unpin(prog, buf); 9088 } 9089 9090 return libbpf_err(err); 9091 } 9092 9093 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 9094 { 9095 struct bpf_program *prog; 9096 int err; 9097 9098 if (!obj) 9099 return libbpf_err(-ENOENT); 9100 9101 bpf_object__for_each_program(prog, obj) { 9102 char buf[PATH_MAX]; 9103 9104 err = pathname_concat(buf, sizeof(buf), path, prog->name); 9105 if (err) 9106 return libbpf_err(err); 9107 9108 err = bpf_program__unpin(prog, buf); 9109 if (err) 9110 return libbpf_err(err); 9111 } 9112 9113 return 0; 9114 } 9115 9116 int bpf_object__pin(struct bpf_object *obj, const char *path) 9117 { 9118 int err; 9119 9120 err = bpf_object__pin_maps(obj, path); 9121 if (err) 9122 return libbpf_err(err); 9123 9124 err = bpf_object__pin_programs(obj, path); 9125 if (err) { 9126 bpf_object__unpin_maps(obj, path); 9127 return libbpf_err(err); 9128 } 9129 9130 return 0; 9131 } 9132 9133 int bpf_object__unpin(struct bpf_object *obj, const char *path) 9134 { 9135 int err; 9136 9137 err = bpf_object__unpin_programs(obj, path); 9138 if (err) 9139 return libbpf_err(err); 9140 9141 err = bpf_object__unpin_maps(obj, path); 9142 if (err) 9143 return libbpf_err(err); 9144 9145 return 0; 9146 } 9147 9148 static void bpf_map__destroy(struct bpf_map *map) 9149 { 9150 if (map->inner_map) { 9151 bpf_map__destroy(map->inner_map); 9152 zfree(&map->inner_map); 9153 } 9154 9155 zfree(&map->init_slots); 9156 map->init_slots_sz = 0; 9157 9158 if (map->mmaped && map->mmaped != map->obj->arena_data) 9159 munmap(map->mmaped, bpf_map_mmap_sz(map)); 9160 map->mmaped = NULL; 9161 9162 if (map->st_ops) { 9163 zfree(&map->st_ops->data); 9164 zfree(&map->st_ops->progs); 9165 zfree(&map->st_ops->kern_func_off); 9166 zfree(&map->st_ops); 9167 } 9168 9169 zfree(&map->name); 9170 zfree(&map->real_name); 9171 zfree(&map->pin_path); 9172 9173 if (map->fd >= 0) 9174 zclose(map->fd); 9175 } 9176 9177 void bpf_object__close(struct bpf_object *obj) 9178 { 9179 size_t i; 9180 9181 if (IS_ERR_OR_NULL(obj)) 9182 return; 9183 9184 /* 9185 * if user called bpf_object__prepare() without ever getting to 9186 * bpf_object__load(), we need to clean up stuff that is normally 9187 * cleaned up at the end of loading step 9188 */ 9189 bpf_object_post_load_cleanup(obj); 9190 9191 usdt_manager_free(obj->usdt_man); 9192 obj->usdt_man = NULL; 9193 9194 bpf_gen__free(obj->gen_loader); 9195 bpf_object__elf_finish(obj); 9196 bpf_object_unload(obj); 9197 btf__free(obj->btf); 9198 btf__free(obj->btf_vmlinux); 9199 btf_ext__free(obj->btf_ext); 9200 9201 for (i = 0; i < obj->nr_maps; i++) 9202 bpf_map__destroy(&obj->maps[i]); 9203 9204 zfree(&obj->btf_custom_path); 9205 zfree(&obj->kconfig); 9206 9207 for (i = 0; i < obj->nr_extern; i++) { 9208 zfree(&obj->externs[i].name); 9209 zfree(&obj->externs[i].essent_name); 9210 } 9211 9212 zfree(&obj->externs); 9213 obj->nr_extern = 0; 9214 9215 zfree(&obj->maps); 9216 obj->nr_maps = 0; 9217 9218 if (obj->programs && obj->nr_programs) { 9219 for (i = 0; i < obj->nr_programs; i++) 9220 bpf_program__exit(&obj->programs[i]); 9221 } 9222 zfree(&obj->programs); 9223 9224 zfree(&obj->feat_cache); 9225 zfree(&obj->token_path); 9226 if (obj->token_fd > 0) 9227 close(obj->token_fd); 9228 9229 zfree(&obj->arena_data); 9230 9231 free(obj); 9232 } 9233 9234 const char *bpf_object__name(const struct bpf_object *obj) 9235 { 9236 return obj ? obj->name : libbpf_err_ptr(-EINVAL); 9237 } 9238 9239 unsigned int bpf_object__kversion(const struct bpf_object *obj) 9240 { 9241 return obj ? obj->kern_version : 0; 9242 } 9243 9244 int bpf_object__token_fd(const struct bpf_object *obj) 9245 { 9246 return obj->token_fd ?: -1; 9247 } 9248 9249 struct btf *bpf_object__btf(const struct bpf_object *obj) 9250 { 9251 return obj ? obj->btf : NULL; 9252 } 9253 9254 int bpf_object__btf_fd(const struct bpf_object *obj) 9255 { 9256 return obj->btf ? btf__fd(obj->btf) : -1; 9257 } 9258 9259 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version) 9260 { 9261 if (obj->state >= OBJ_LOADED) 9262 return libbpf_err(-EINVAL); 9263 9264 obj->kern_version = kern_version; 9265 9266 return 0; 9267 } 9268 9269 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts) 9270 { 9271 struct bpf_gen *gen; 9272 9273 if (!opts) 9274 return libbpf_err(-EFAULT); 9275 if (!OPTS_VALID(opts, gen_loader_opts)) 9276 return libbpf_err(-EINVAL); 9277 gen = calloc(1, sizeof(*gen)); 9278 if (!gen) 9279 return libbpf_err(-ENOMEM); 9280 gen->opts = opts; 9281 gen->swapped_endian = !is_native_endianness(obj); 9282 obj->gen_loader = gen; 9283 return 0; 9284 } 9285 9286 static struct bpf_program * 9287 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 9288 bool forward) 9289 { 9290 size_t nr_programs = obj->nr_programs; 9291 ssize_t idx; 9292 9293 if (!nr_programs) 9294 return NULL; 9295 9296 if (!p) 9297 /* Iter from the beginning */ 9298 return forward ? &obj->programs[0] : 9299 &obj->programs[nr_programs - 1]; 9300 9301 if (p->obj != obj) { 9302 pr_warn("error: program handler doesn't match object\n"); 9303 return errno = EINVAL, NULL; 9304 } 9305 9306 idx = (p - obj->programs) + (forward ? 1 : -1); 9307 if (idx >= obj->nr_programs || idx < 0) 9308 return NULL; 9309 return &obj->programs[idx]; 9310 } 9311 9312 struct bpf_program * 9313 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev) 9314 { 9315 struct bpf_program *prog = prev; 9316 9317 do { 9318 prog = __bpf_program__iter(prog, obj, true); 9319 } while (prog && prog_is_subprog(obj, prog)); 9320 9321 return prog; 9322 } 9323 9324 struct bpf_program * 9325 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next) 9326 { 9327 struct bpf_program *prog = next; 9328 9329 do { 9330 prog = __bpf_program__iter(prog, obj, false); 9331 } while (prog && prog_is_subprog(obj, prog)); 9332 9333 return prog; 9334 } 9335 9336 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 9337 { 9338 prog->prog_ifindex = ifindex; 9339 } 9340 9341 const char *bpf_program__name(const struct bpf_program *prog) 9342 { 9343 return prog->name; 9344 } 9345 9346 const char *bpf_program__section_name(const struct bpf_program *prog) 9347 { 9348 return prog->sec_name; 9349 } 9350 9351 bool bpf_program__autoload(const struct bpf_program *prog) 9352 { 9353 return prog->autoload; 9354 } 9355 9356 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload) 9357 { 9358 if (prog->obj->state >= OBJ_LOADED) 9359 return libbpf_err(-EINVAL); 9360 9361 prog->autoload = autoload; 9362 return 0; 9363 } 9364 9365 bool bpf_program__autoattach(const struct bpf_program *prog) 9366 { 9367 return prog->autoattach; 9368 } 9369 9370 void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach) 9371 { 9372 prog->autoattach = autoattach; 9373 } 9374 9375 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog) 9376 { 9377 return prog->insns; 9378 } 9379 9380 size_t bpf_program__insn_cnt(const struct bpf_program *prog) 9381 { 9382 return prog->insns_cnt; 9383 } 9384 9385 int bpf_program__set_insns(struct bpf_program *prog, 9386 struct bpf_insn *new_insns, size_t new_insn_cnt) 9387 { 9388 struct bpf_insn *insns; 9389 9390 if (prog->obj->state >= OBJ_LOADED) 9391 return libbpf_err(-EBUSY); 9392 9393 insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns)); 9394 /* NULL is a valid return from reallocarray if the new count is zero */ 9395 if (!insns && new_insn_cnt) { 9396 pr_warn("prog '%s': failed to realloc prog code\n", prog->name); 9397 return libbpf_err(-ENOMEM); 9398 } 9399 memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns)); 9400 9401 prog->insns = insns; 9402 prog->insns_cnt = new_insn_cnt; 9403 return 0; 9404 } 9405 9406 int bpf_program__fd(const struct bpf_program *prog) 9407 { 9408 if (!prog) 9409 return libbpf_err(-EINVAL); 9410 9411 if (prog->fd < 0) 9412 return libbpf_err(-ENOENT); 9413 9414 return prog->fd; 9415 } 9416 9417 __alias(bpf_program__type) 9418 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog); 9419 9420 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog) 9421 { 9422 return prog->type; 9423 } 9424 9425 static size_t custom_sec_def_cnt; 9426 static struct bpf_sec_def *custom_sec_defs; 9427 static struct bpf_sec_def custom_fallback_def; 9428 static bool has_custom_fallback_def; 9429 static int last_custom_sec_def_handler_id; 9430 9431 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 9432 { 9433 if (prog->obj->state >= OBJ_LOADED) 9434 return libbpf_err(-EBUSY); 9435 9436 /* if type is not changed, do nothing */ 9437 if (prog->type == type) 9438 return 0; 9439 9440 prog->type = type; 9441 9442 /* If a program type was changed, we need to reset associated SEC() 9443 * handler, as it will be invalid now. The only exception is a generic 9444 * fallback handler, which by definition is program type-agnostic and 9445 * is a catch-all custom handler, optionally set by the application, 9446 * so should be able to handle any type of BPF program. 9447 */ 9448 if (prog->sec_def != &custom_fallback_def) 9449 prog->sec_def = NULL; 9450 return 0; 9451 } 9452 9453 __alias(bpf_program__expected_attach_type) 9454 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog); 9455 9456 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog) 9457 { 9458 return prog->expected_attach_type; 9459 } 9460 9461 int bpf_program__set_expected_attach_type(struct bpf_program *prog, 9462 enum bpf_attach_type type) 9463 { 9464 if (prog->obj->state >= OBJ_LOADED) 9465 return libbpf_err(-EBUSY); 9466 9467 prog->expected_attach_type = type; 9468 return 0; 9469 } 9470 9471 __u32 bpf_program__flags(const struct bpf_program *prog) 9472 { 9473 return prog->prog_flags; 9474 } 9475 9476 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags) 9477 { 9478 if (prog->obj->state >= OBJ_LOADED) 9479 return libbpf_err(-EBUSY); 9480 9481 prog->prog_flags = flags; 9482 return 0; 9483 } 9484 9485 __u32 bpf_program__log_level(const struct bpf_program *prog) 9486 { 9487 return prog->log_level; 9488 } 9489 9490 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level) 9491 { 9492 if (prog->obj->state >= OBJ_LOADED) 9493 return libbpf_err(-EBUSY); 9494 9495 prog->log_level = log_level; 9496 return 0; 9497 } 9498 9499 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size) 9500 { 9501 *log_size = prog->log_size; 9502 return prog->log_buf; 9503 } 9504 9505 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size) 9506 { 9507 if (log_size && !log_buf) 9508 return libbpf_err(-EINVAL); 9509 if (prog->log_size > UINT_MAX) 9510 return libbpf_err(-EINVAL); 9511 if (prog->obj->state >= OBJ_LOADED) 9512 return libbpf_err(-EBUSY); 9513 9514 prog->log_buf = log_buf; 9515 prog->log_size = log_size; 9516 return 0; 9517 } 9518 9519 struct bpf_func_info *bpf_program__func_info(const struct bpf_program *prog) 9520 { 9521 if (prog->func_info_rec_size != sizeof(struct bpf_func_info)) 9522 return libbpf_err_ptr(-EOPNOTSUPP); 9523 return prog->func_info; 9524 } 9525 9526 __u32 bpf_program__func_info_cnt(const struct bpf_program *prog) 9527 { 9528 return prog->func_info_cnt; 9529 } 9530 9531 struct bpf_line_info *bpf_program__line_info(const struct bpf_program *prog) 9532 { 9533 if (prog->line_info_rec_size != sizeof(struct bpf_line_info)) 9534 return libbpf_err_ptr(-EOPNOTSUPP); 9535 return prog->line_info; 9536 } 9537 9538 __u32 bpf_program__line_info_cnt(const struct bpf_program *prog) 9539 { 9540 return prog->line_info_cnt; 9541 } 9542 9543 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \ 9544 .sec = (char *)sec_pfx, \ 9545 .prog_type = BPF_PROG_TYPE_##ptype, \ 9546 .expected_attach_type = atype, \ 9547 .cookie = (long)(flags), \ 9548 .prog_prepare_load_fn = libbpf_prepare_prog_load, \ 9549 __VA_ARGS__ \ 9550 } 9551 9552 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9553 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9554 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9555 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9556 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9557 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9558 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9559 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9560 static int attach_kprobe_session(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9561 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9562 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9563 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9564 9565 static const struct bpf_sec_def section_defs[] = { 9566 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE), 9567 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE), 9568 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE), 9569 SEC_DEF("kprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 9570 SEC_DEF("uprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 9571 SEC_DEF("uprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 9572 SEC_DEF("kretprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 9573 SEC_DEF("uretprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 9574 SEC_DEF("uretprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 9575 SEC_DEF("kprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 9576 SEC_DEF("kretprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 9577 SEC_DEF("kprobe.session+", KPROBE, BPF_TRACE_KPROBE_SESSION, SEC_NONE, attach_kprobe_session), 9578 SEC_DEF("uprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi), 9579 SEC_DEF("uretprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi), 9580 SEC_DEF("uprobe.session+", KPROBE, BPF_TRACE_UPROBE_SESSION, SEC_NONE, attach_uprobe_multi), 9581 SEC_DEF("uprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi), 9582 SEC_DEF("uretprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi), 9583 SEC_DEF("uprobe.session.s+", KPROBE, BPF_TRACE_UPROBE_SESSION, SEC_SLEEPABLE, attach_uprobe_multi), 9584 SEC_DEF("ksyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 9585 SEC_DEF("kretsyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 9586 SEC_DEF("usdt+", KPROBE, 0, SEC_USDT, attach_usdt), 9587 SEC_DEF("usdt.s+", KPROBE, 0, SEC_USDT | SEC_SLEEPABLE, attach_usdt), 9588 SEC_DEF("tc/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), /* alias for tcx */ 9589 SEC_DEF("tc/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE), /* alias for tcx */ 9590 SEC_DEF("tcx/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), 9591 SEC_DEF("tcx/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE), 9592 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 9593 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 9594 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 9595 SEC_DEF("netkit/primary", SCHED_CLS, BPF_NETKIT_PRIMARY, SEC_NONE), 9596 SEC_DEF("netkit/peer", SCHED_CLS, BPF_NETKIT_PEER, SEC_NONE), 9597 SEC_DEF("tracepoint+", TRACEPOINT, 0, SEC_NONE, attach_tp), 9598 SEC_DEF("tp+", TRACEPOINT, 0, SEC_NONE, attach_tp), 9599 SEC_DEF("raw_tracepoint+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 9600 SEC_DEF("raw_tp+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 9601 SEC_DEF("raw_tracepoint.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 9602 SEC_DEF("raw_tp.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 9603 SEC_DEF("tp_btf+", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace), 9604 SEC_DEF("fentry+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace), 9605 SEC_DEF("fmod_ret+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace), 9606 SEC_DEF("fexit+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace), 9607 SEC_DEF("fentry.s+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 9608 SEC_DEF("fmod_ret.s+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 9609 SEC_DEF("fexit.s+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 9610 SEC_DEF("freplace+", EXT, 0, SEC_ATTACH_BTF, attach_trace), 9611 SEC_DEF("lsm+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm), 9612 SEC_DEF("lsm.s+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm), 9613 SEC_DEF("lsm_cgroup+", LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF), 9614 SEC_DEF("iter+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter), 9615 SEC_DEF("iter.s+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter), 9616 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE), 9617 SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS), 9618 SEC_DEF("xdp/devmap", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE), 9619 SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS), 9620 SEC_DEF("xdp/cpumap", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE), 9621 SEC_DEF("xdp.frags", XDP, BPF_XDP, SEC_XDP_FRAGS), 9622 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT), 9623 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE), 9624 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE), 9625 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE), 9626 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE), 9627 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE), 9628 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT), 9629 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT), 9630 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT), 9631 SEC_DEF("sk_skb/verdict", SK_SKB, BPF_SK_SKB_VERDICT, SEC_ATTACHABLE_OPT), 9632 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE), 9633 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT), 9634 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT), 9635 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT), 9636 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT), 9637 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT), 9638 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE), 9639 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE), 9640 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE), 9641 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT), 9642 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE), 9643 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE), 9644 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE), 9645 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE), 9646 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE), 9647 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE), 9648 SEC_DEF("cgroup/connect_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_CONNECT, SEC_ATTACHABLE), 9649 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE), 9650 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE), 9651 SEC_DEF("cgroup/sendmsg_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_SENDMSG, SEC_ATTACHABLE), 9652 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE), 9653 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE), 9654 SEC_DEF("cgroup/recvmsg_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_RECVMSG, SEC_ATTACHABLE), 9655 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE), 9656 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE), 9657 SEC_DEF("cgroup/getpeername_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETPEERNAME, SEC_ATTACHABLE), 9658 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE), 9659 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE), 9660 SEC_DEF("cgroup/getsockname_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETSOCKNAME, SEC_ATTACHABLE), 9661 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE), 9662 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE), 9663 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE), 9664 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT), 9665 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE), 9666 SEC_DEF("struct_ops.s+", STRUCT_OPS, 0, SEC_SLEEPABLE), 9667 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE), 9668 SEC_DEF("netfilter", NETFILTER, BPF_NETFILTER, SEC_NONE), 9669 }; 9670 9671 int libbpf_register_prog_handler(const char *sec, 9672 enum bpf_prog_type prog_type, 9673 enum bpf_attach_type exp_attach_type, 9674 const struct libbpf_prog_handler_opts *opts) 9675 { 9676 struct bpf_sec_def *sec_def; 9677 9678 if (!OPTS_VALID(opts, libbpf_prog_handler_opts)) 9679 return libbpf_err(-EINVAL); 9680 9681 if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */ 9682 return libbpf_err(-E2BIG); 9683 9684 if (sec) { 9685 sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1, 9686 sizeof(*sec_def)); 9687 if (!sec_def) 9688 return libbpf_err(-ENOMEM); 9689 9690 custom_sec_defs = sec_def; 9691 sec_def = &custom_sec_defs[custom_sec_def_cnt]; 9692 } else { 9693 if (has_custom_fallback_def) 9694 return libbpf_err(-EBUSY); 9695 9696 sec_def = &custom_fallback_def; 9697 } 9698 9699 sec_def->sec = sec ? strdup(sec) : NULL; 9700 if (sec && !sec_def->sec) 9701 return libbpf_err(-ENOMEM); 9702 9703 sec_def->prog_type = prog_type; 9704 sec_def->expected_attach_type = exp_attach_type; 9705 sec_def->cookie = OPTS_GET(opts, cookie, 0); 9706 9707 sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL); 9708 sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL); 9709 sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL); 9710 9711 sec_def->handler_id = ++last_custom_sec_def_handler_id; 9712 9713 if (sec) 9714 custom_sec_def_cnt++; 9715 else 9716 has_custom_fallback_def = true; 9717 9718 return sec_def->handler_id; 9719 } 9720 9721 int libbpf_unregister_prog_handler(int handler_id) 9722 { 9723 struct bpf_sec_def *sec_defs; 9724 int i; 9725 9726 if (handler_id <= 0) 9727 return libbpf_err(-EINVAL); 9728 9729 if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) { 9730 memset(&custom_fallback_def, 0, sizeof(custom_fallback_def)); 9731 has_custom_fallback_def = false; 9732 return 0; 9733 } 9734 9735 for (i = 0; i < custom_sec_def_cnt; i++) { 9736 if (custom_sec_defs[i].handler_id == handler_id) 9737 break; 9738 } 9739 9740 if (i == custom_sec_def_cnt) 9741 return libbpf_err(-ENOENT); 9742 9743 free(custom_sec_defs[i].sec); 9744 for (i = i + 1; i < custom_sec_def_cnt; i++) 9745 custom_sec_defs[i - 1] = custom_sec_defs[i]; 9746 custom_sec_def_cnt--; 9747 9748 /* try to shrink the array, but it's ok if we couldn't */ 9749 sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs)); 9750 /* if new count is zero, reallocarray can return a valid NULL result; 9751 * in this case the previous pointer will be freed, so we *have to* 9752 * reassign old pointer to the new value (even if it's NULL) 9753 */ 9754 if (sec_defs || custom_sec_def_cnt == 0) 9755 custom_sec_defs = sec_defs; 9756 9757 return 0; 9758 } 9759 9760 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name) 9761 { 9762 size_t len = strlen(sec_def->sec); 9763 9764 /* "type/" always has to have proper SEC("type/extras") form */ 9765 if (sec_def->sec[len - 1] == '/') { 9766 if (str_has_pfx(sec_name, sec_def->sec)) 9767 return true; 9768 return false; 9769 } 9770 9771 /* "type+" means it can be either exact SEC("type") or 9772 * well-formed SEC("type/extras") with proper '/' separator 9773 */ 9774 if (sec_def->sec[len - 1] == '+') { 9775 len--; 9776 /* not even a prefix */ 9777 if (strncmp(sec_name, sec_def->sec, len) != 0) 9778 return false; 9779 /* exact match or has '/' separator */ 9780 if (sec_name[len] == '\0' || sec_name[len] == '/') 9781 return true; 9782 return false; 9783 } 9784 9785 return strcmp(sec_name, sec_def->sec) == 0; 9786 } 9787 9788 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 9789 { 9790 const struct bpf_sec_def *sec_def; 9791 int i, n; 9792 9793 n = custom_sec_def_cnt; 9794 for (i = 0; i < n; i++) { 9795 sec_def = &custom_sec_defs[i]; 9796 if (sec_def_matches(sec_def, sec_name)) 9797 return sec_def; 9798 } 9799 9800 n = ARRAY_SIZE(section_defs); 9801 for (i = 0; i < n; i++) { 9802 sec_def = §ion_defs[i]; 9803 if (sec_def_matches(sec_def, sec_name)) 9804 return sec_def; 9805 } 9806 9807 if (has_custom_fallback_def) 9808 return &custom_fallback_def; 9809 9810 return NULL; 9811 } 9812 9813 #define MAX_TYPE_NAME_SIZE 32 9814 9815 static char *libbpf_get_type_names(bool attach_type) 9816 { 9817 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 9818 char *buf; 9819 9820 buf = malloc(len); 9821 if (!buf) 9822 return NULL; 9823 9824 buf[0] = '\0'; 9825 /* Forge string buf with all available names */ 9826 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 9827 const struct bpf_sec_def *sec_def = §ion_defs[i]; 9828 9829 if (attach_type) { 9830 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 9831 continue; 9832 9833 if (!(sec_def->cookie & SEC_ATTACHABLE)) 9834 continue; 9835 } 9836 9837 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 9838 free(buf); 9839 return NULL; 9840 } 9841 strcat(buf, " "); 9842 strcat(buf, section_defs[i].sec); 9843 } 9844 9845 return buf; 9846 } 9847 9848 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 9849 enum bpf_attach_type *expected_attach_type) 9850 { 9851 const struct bpf_sec_def *sec_def; 9852 char *type_names; 9853 9854 if (!name) 9855 return libbpf_err(-EINVAL); 9856 9857 sec_def = find_sec_def(name); 9858 if (sec_def) { 9859 *prog_type = sec_def->prog_type; 9860 *expected_attach_type = sec_def->expected_attach_type; 9861 return 0; 9862 } 9863 9864 pr_debug("failed to guess program type from ELF section '%s'\n", name); 9865 type_names = libbpf_get_type_names(false); 9866 if (type_names != NULL) { 9867 pr_debug("supported section(type) names are:%s\n", type_names); 9868 free(type_names); 9869 } 9870 9871 return libbpf_err(-ESRCH); 9872 } 9873 9874 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t) 9875 { 9876 if (t < 0 || t >= ARRAY_SIZE(attach_type_name)) 9877 return NULL; 9878 9879 return attach_type_name[t]; 9880 } 9881 9882 const char *libbpf_bpf_link_type_str(enum bpf_link_type t) 9883 { 9884 if (t < 0 || t >= ARRAY_SIZE(link_type_name)) 9885 return NULL; 9886 9887 return link_type_name[t]; 9888 } 9889 9890 const char *libbpf_bpf_map_type_str(enum bpf_map_type t) 9891 { 9892 if (t < 0 || t >= ARRAY_SIZE(map_type_name)) 9893 return NULL; 9894 9895 return map_type_name[t]; 9896 } 9897 9898 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t) 9899 { 9900 if (t < 0 || t >= ARRAY_SIZE(prog_type_name)) 9901 return NULL; 9902 9903 return prog_type_name[t]; 9904 } 9905 9906 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 9907 int sec_idx, 9908 size_t offset) 9909 { 9910 struct bpf_map *map; 9911 size_t i; 9912 9913 for (i = 0; i < obj->nr_maps; i++) { 9914 map = &obj->maps[i]; 9915 if (!bpf_map__is_struct_ops(map)) 9916 continue; 9917 if (map->sec_idx == sec_idx && 9918 map->sec_offset <= offset && 9919 offset - map->sec_offset < map->def.value_size) 9920 return map; 9921 } 9922 9923 return NULL; 9924 } 9925 9926 /* Collect the reloc from ELF, populate the st_ops->progs[], and update 9927 * st_ops->data for shadow type. 9928 */ 9929 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 9930 Elf64_Shdr *shdr, Elf_Data *data) 9931 { 9932 const struct btf_type *type; 9933 const struct btf_member *member; 9934 struct bpf_struct_ops *st_ops; 9935 struct bpf_program *prog; 9936 unsigned int shdr_idx; 9937 const struct btf *btf; 9938 struct bpf_map *map; 9939 unsigned int moff, insn_idx; 9940 const char *name; 9941 __u32 member_idx; 9942 Elf64_Sym *sym; 9943 Elf64_Rel *rel; 9944 int i, nrels; 9945 9946 btf = obj->btf; 9947 nrels = shdr->sh_size / shdr->sh_entsize; 9948 for (i = 0; i < nrels; i++) { 9949 rel = elf_rel_by_idx(data, i); 9950 if (!rel) { 9951 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 9952 return -LIBBPF_ERRNO__FORMAT; 9953 } 9954 9955 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 9956 if (!sym) { 9957 pr_warn("struct_ops reloc: symbol %zx not found\n", 9958 (size_t)ELF64_R_SYM(rel->r_info)); 9959 return -LIBBPF_ERRNO__FORMAT; 9960 } 9961 9962 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 9963 map = find_struct_ops_map_by_offset(obj, shdr->sh_info, rel->r_offset); 9964 if (!map) { 9965 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n", 9966 (size_t)rel->r_offset); 9967 return -EINVAL; 9968 } 9969 9970 moff = rel->r_offset - map->sec_offset; 9971 shdr_idx = sym->st_shndx; 9972 st_ops = map->st_ops; 9973 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 9974 map->name, 9975 (long long)(rel->r_info >> 32), 9976 (long long)sym->st_value, 9977 shdr_idx, (size_t)rel->r_offset, 9978 map->sec_offset, sym->st_name, name); 9979 9980 if (shdr_idx >= SHN_LORESERVE) { 9981 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n", 9982 map->name, (size_t)rel->r_offset, shdr_idx); 9983 return -LIBBPF_ERRNO__RELOC; 9984 } 9985 if (sym->st_value % BPF_INSN_SZ) { 9986 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n", 9987 map->name, (unsigned long long)sym->st_value); 9988 return -LIBBPF_ERRNO__FORMAT; 9989 } 9990 insn_idx = sym->st_value / BPF_INSN_SZ; 9991 9992 type = btf__type_by_id(btf, st_ops->type_id); 9993 member = find_member_by_offset(type, moff * 8); 9994 if (!member) { 9995 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 9996 map->name, moff); 9997 return -EINVAL; 9998 } 9999 member_idx = member - btf_members(type); 10000 name = btf__name_by_offset(btf, member->name_off); 10001 10002 if (!resolve_func_ptr(btf, member->type, NULL)) { 10003 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 10004 map->name, name); 10005 return -EINVAL; 10006 } 10007 10008 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx); 10009 if (!prog) { 10010 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 10011 map->name, shdr_idx, name); 10012 return -EINVAL; 10013 } 10014 10015 /* prevent the use of BPF prog with invalid type */ 10016 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) { 10017 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n", 10018 map->name, prog->name); 10019 return -EINVAL; 10020 } 10021 10022 st_ops->progs[member_idx] = prog; 10023 10024 /* st_ops->data will be exposed to users, being returned by 10025 * bpf_map__initial_value() as a pointer to the shadow 10026 * type. All function pointers in the original struct type 10027 * should be converted to a pointer to struct bpf_program 10028 * in the shadow type. 10029 */ 10030 *((struct bpf_program **)(st_ops->data + moff)) = prog; 10031 } 10032 10033 return 0; 10034 } 10035 10036 #define BTF_TRACE_PREFIX "btf_trace_" 10037 #define BTF_LSM_PREFIX "bpf_lsm_" 10038 #define BTF_ITER_PREFIX "bpf_iter_" 10039 #define BTF_MAX_NAME_SIZE 128 10040 10041 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type, 10042 const char **prefix, int *kind) 10043 { 10044 switch (attach_type) { 10045 case BPF_TRACE_RAW_TP: 10046 *prefix = BTF_TRACE_PREFIX; 10047 *kind = BTF_KIND_TYPEDEF; 10048 break; 10049 case BPF_LSM_MAC: 10050 case BPF_LSM_CGROUP: 10051 *prefix = BTF_LSM_PREFIX; 10052 *kind = BTF_KIND_FUNC; 10053 break; 10054 case BPF_TRACE_ITER: 10055 *prefix = BTF_ITER_PREFIX; 10056 *kind = BTF_KIND_FUNC; 10057 break; 10058 default: 10059 *prefix = ""; 10060 *kind = BTF_KIND_FUNC; 10061 } 10062 } 10063 10064 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 10065 const char *name, __u32 kind) 10066 { 10067 char btf_type_name[BTF_MAX_NAME_SIZE]; 10068 int ret; 10069 10070 ret = snprintf(btf_type_name, sizeof(btf_type_name), 10071 "%s%s", prefix, name); 10072 /* snprintf returns the number of characters written excluding the 10073 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 10074 * indicates truncation. 10075 */ 10076 if (ret < 0 || ret >= sizeof(btf_type_name)) 10077 return -ENAMETOOLONG; 10078 return btf__find_by_name_kind(btf, btf_type_name, kind); 10079 } 10080 10081 static inline int find_attach_btf_id(struct btf *btf, const char *name, 10082 enum bpf_attach_type attach_type) 10083 { 10084 const char *prefix; 10085 int kind; 10086 10087 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind); 10088 return find_btf_by_prefix_kind(btf, prefix, name, kind); 10089 } 10090 10091 int libbpf_find_vmlinux_btf_id(const char *name, 10092 enum bpf_attach_type attach_type) 10093 { 10094 struct btf *btf; 10095 int err; 10096 10097 btf = btf__load_vmlinux_btf(); 10098 err = libbpf_get_error(btf); 10099 if (err) { 10100 pr_warn("vmlinux BTF is not found\n"); 10101 return libbpf_err(err); 10102 } 10103 10104 err = find_attach_btf_id(btf, name, attach_type); 10105 if (err <= 0) 10106 pr_warn("%s is not found in vmlinux BTF\n", name); 10107 10108 btf__free(btf); 10109 return libbpf_err(err); 10110 } 10111 10112 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd, int token_fd) 10113 { 10114 struct bpf_prog_info info; 10115 __u32 info_len = sizeof(info); 10116 struct btf *btf; 10117 int err; 10118 10119 memset(&info, 0, info_len); 10120 err = bpf_prog_get_info_by_fd(attach_prog_fd, &info, &info_len); 10121 if (err) { 10122 pr_warn("failed bpf_prog_get_info_by_fd for FD %d: %s\n", 10123 attach_prog_fd, errstr(err)); 10124 return err; 10125 } 10126 10127 err = -EINVAL; 10128 if (!info.btf_id) { 10129 pr_warn("The target program doesn't have BTF\n"); 10130 goto out; 10131 } 10132 btf = btf_load_from_kernel(info.btf_id, NULL, token_fd); 10133 err = libbpf_get_error(btf); 10134 if (err) { 10135 pr_warn("Failed to get BTF %d of the program: %s\n", info.btf_id, errstr(err)); 10136 goto out; 10137 } 10138 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 10139 btf__free(btf); 10140 if (err <= 0) { 10141 pr_warn("%s is not found in prog's BTF\n", name); 10142 goto out; 10143 } 10144 out: 10145 return err; 10146 } 10147 10148 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name, 10149 enum bpf_attach_type attach_type, 10150 int *btf_obj_fd, int *btf_type_id) 10151 { 10152 int ret, i, mod_len = 0; 10153 const char *fn_name, *mod_name = NULL; 10154 10155 fn_name = strchr(attach_name, ':'); 10156 if (fn_name) { 10157 mod_name = attach_name; 10158 mod_len = fn_name - mod_name; 10159 fn_name++; 10160 } 10161 10162 if (!mod_name || strncmp(mod_name, "vmlinux", mod_len) == 0) { 10163 ret = find_attach_btf_id(obj->btf_vmlinux, 10164 mod_name ? fn_name : attach_name, 10165 attach_type); 10166 if (ret > 0) { 10167 *btf_obj_fd = 0; /* vmlinux BTF */ 10168 *btf_type_id = ret; 10169 return 0; 10170 } 10171 if (ret != -ENOENT) 10172 return ret; 10173 } 10174 10175 ret = load_module_btfs(obj); 10176 if (ret) 10177 return ret; 10178 10179 for (i = 0; i < obj->btf_module_cnt; i++) { 10180 const struct module_btf *mod = &obj->btf_modules[i]; 10181 10182 if (mod_name && strncmp(mod->name, mod_name, mod_len) != 0) 10183 continue; 10184 10185 ret = find_attach_btf_id(mod->btf, 10186 mod_name ? fn_name : attach_name, 10187 attach_type); 10188 if (ret > 0) { 10189 *btf_obj_fd = mod->fd; 10190 *btf_type_id = ret; 10191 return 0; 10192 } 10193 if (ret == -ENOENT) 10194 continue; 10195 10196 return ret; 10197 } 10198 10199 return -ESRCH; 10200 } 10201 10202 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 10203 int *btf_obj_fd, int *btf_type_id) 10204 { 10205 enum bpf_attach_type attach_type = prog->expected_attach_type; 10206 __u32 attach_prog_fd = prog->attach_prog_fd; 10207 int err = 0; 10208 10209 /* BPF program's BTF ID */ 10210 if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) { 10211 if (!attach_prog_fd) { 10212 pr_warn("prog '%s': attach program FD is not set\n", prog->name); 10213 return -EINVAL; 10214 } 10215 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd, prog->obj->token_fd); 10216 if (err < 0) { 10217 pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %s\n", 10218 prog->name, attach_prog_fd, attach_name, errstr(err)); 10219 return err; 10220 } 10221 *btf_obj_fd = 0; 10222 *btf_type_id = err; 10223 return 0; 10224 } 10225 10226 /* kernel/module BTF ID */ 10227 if (prog->obj->gen_loader) { 10228 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type); 10229 *btf_obj_fd = 0; 10230 *btf_type_id = 1; 10231 } else { 10232 err = find_kernel_btf_id(prog->obj, attach_name, 10233 attach_type, btf_obj_fd, 10234 btf_type_id); 10235 } 10236 if (err) { 10237 pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %s\n", 10238 prog->name, attach_name, errstr(err)); 10239 return err; 10240 } 10241 return 0; 10242 } 10243 10244 int libbpf_attach_type_by_name(const char *name, 10245 enum bpf_attach_type *attach_type) 10246 { 10247 char *type_names; 10248 const struct bpf_sec_def *sec_def; 10249 10250 if (!name) 10251 return libbpf_err(-EINVAL); 10252 10253 sec_def = find_sec_def(name); 10254 if (!sec_def) { 10255 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 10256 type_names = libbpf_get_type_names(true); 10257 if (type_names != NULL) { 10258 pr_debug("attachable section(type) names are:%s\n", type_names); 10259 free(type_names); 10260 } 10261 10262 return libbpf_err(-EINVAL); 10263 } 10264 10265 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 10266 return libbpf_err(-EINVAL); 10267 if (!(sec_def->cookie & SEC_ATTACHABLE)) 10268 return libbpf_err(-EINVAL); 10269 10270 *attach_type = sec_def->expected_attach_type; 10271 return 0; 10272 } 10273 10274 int bpf_map__fd(const struct bpf_map *map) 10275 { 10276 if (!map) 10277 return libbpf_err(-EINVAL); 10278 if (!map_is_created(map)) 10279 return -1; 10280 return map->fd; 10281 } 10282 10283 static bool map_uses_real_name(const struct bpf_map *map) 10284 { 10285 /* Since libbpf started to support custom .data.* and .rodata.* maps, 10286 * their user-visible name differs from kernel-visible name. Users see 10287 * such map's corresponding ELF section name as a map name. 10288 * This check distinguishes .data/.rodata from .data.* and .rodata.* 10289 * maps to know which name has to be returned to the user. 10290 */ 10291 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0) 10292 return true; 10293 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0) 10294 return true; 10295 return false; 10296 } 10297 10298 const char *bpf_map__name(const struct bpf_map *map) 10299 { 10300 if (!map) 10301 return NULL; 10302 10303 if (map_uses_real_name(map)) 10304 return map->real_name; 10305 10306 return map->name; 10307 } 10308 10309 enum bpf_map_type bpf_map__type(const struct bpf_map *map) 10310 { 10311 return map->def.type; 10312 } 10313 10314 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type) 10315 { 10316 if (map_is_created(map)) 10317 return libbpf_err(-EBUSY); 10318 map->def.type = type; 10319 return 0; 10320 } 10321 10322 __u32 bpf_map__map_flags(const struct bpf_map *map) 10323 { 10324 return map->def.map_flags; 10325 } 10326 10327 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags) 10328 { 10329 if (map_is_created(map)) 10330 return libbpf_err(-EBUSY); 10331 map->def.map_flags = flags; 10332 return 0; 10333 } 10334 10335 __u64 bpf_map__map_extra(const struct bpf_map *map) 10336 { 10337 return map->map_extra; 10338 } 10339 10340 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra) 10341 { 10342 if (map_is_created(map)) 10343 return libbpf_err(-EBUSY); 10344 map->map_extra = map_extra; 10345 return 0; 10346 } 10347 10348 __u32 bpf_map__numa_node(const struct bpf_map *map) 10349 { 10350 return map->numa_node; 10351 } 10352 10353 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node) 10354 { 10355 if (map_is_created(map)) 10356 return libbpf_err(-EBUSY); 10357 map->numa_node = numa_node; 10358 return 0; 10359 } 10360 10361 __u32 bpf_map__key_size(const struct bpf_map *map) 10362 { 10363 return map->def.key_size; 10364 } 10365 10366 int bpf_map__set_key_size(struct bpf_map *map, __u32 size) 10367 { 10368 if (map_is_created(map)) 10369 return libbpf_err(-EBUSY); 10370 map->def.key_size = size; 10371 return 0; 10372 } 10373 10374 __u32 bpf_map__value_size(const struct bpf_map *map) 10375 { 10376 return map->def.value_size; 10377 } 10378 10379 static int map_btf_datasec_resize(struct bpf_map *map, __u32 size) 10380 { 10381 struct btf *btf; 10382 struct btf_type *datasec_type, *var_type; 10383 struct btf_var_secinfo *var; 10384 const struct btf_type *array_type; 10385 const struct btf_array *array; 10386 int vlen, element_sz, new_array_id; 10387 __u32 nr_elements; 10388 10389 /* check btf existence */ 10390 btf = bpf_object__btf(map->obj); 10391 if (!btf) 10392 return -ENOENT; 10393 10394 /* verify map is datasec */ 10395 datasec_type = btf_type_by_id(btf, bpf_map__btf_value_type_id(map)); 10396 if (!btf_is_datasec(datasec_type)) { 10397 pr_warn("map '%s': cannot be resized, map value type is not a datasec\n", 10398 bpf_map__name(map)); 10399 return -EINVAL; 10400 } 10401 10402 /* verify datasec has at least one var */ 10403 vlen = btf_vlen(datasec_type); 10404 if (vlen == 0) { 10405 pr_warn("map '%s': cannot be resized, map value datasec is empty\n", 10406 bpf_map__name(map)); 10407 return -EINVAL; 10408 } 10409 10410 /* verify last var in the datasec is an array */ 10411 var = &btf_var_secinfos(datasec_type)[vlen - 1]; 10412 var_type = btf_type_by_id(btf, var->type); 10413 array_type = skip_mods_and_typedefs(btf, var_type->type, NULL); 10414 if (!btf_is_array(array_type)) { 10415 pr_warn("map '%s': cannot be resized, last var must be an array\n", 10416 bpf_map__name(map)); 10417 return -EINVAL; 10418 } 10419 10420 /* verify request size aligns with array */ 10421 array = btf_array(array_type); 10422 element_sz = btf__resolve_size(btf, array->type); 10423 if (element_sz <= 0 || (size - var->offset) % element_sz != 0) { 10424 pr_warn("map '%s': cannot be resized, element size (%d) doesn't align with new total size (%u)\n", 10425 bpf_map__name(map), element_sz, size); 10426 return -EINVAL; 10427 } 10428 10429 /* create a new array based on the existing array, but with new length */ 10430 nr_elements = (size - var->offset) / element_sz; 10431 new_array_id = btf__add_array(btf, array->index_type, array->type, nr_elements); 10432 if (new_array_id < 0) 10433 return new_array_id; 10434 10435 /* adding a new btf type invalidates existing pointers to btf objects, 10436 * so refresh pointers before proceeding 10437 */ 10438 datasec_type = btf_type_by_id(btf, map->btf_value_type_id); 10439 var = &btf_var_secinfos(datasec_type)[vlen - 1]; 10440 var_type = btf_type_by_id(btf, var->type); 10441 10442 /* finally update btf info */ 10443 datasec_type->size = size; 10444 var->size = size - var->offset; 10445 var_type->type = new_array_id; 10446 10447 return 0; 10448 } 10449 10450 int bpf_map__set_value_size(struct bpf_map *map, __u32 size) 10451 { 10452 if (map_is_created(map)) 10453 return libbpf_err(-EBUSY); 10454 10455 if (map->mmaped) { 10456 size_t mmap_old_sz, mmap_new_sz; 10457 int err; 10458 10459 if (map->def.type != BPF_MAP_TYPE_ARRAY) 10460 return libbpf_err(-EOPNOTSUPP); 10461 10462 mmap_old_sz = bpf_map_mmap_sz(map); 10463 mmap_new_sz = array_map_mmap_sz(size, map->def.max_entries); 10464 err = bpf_map_mmap_resize(map, mmap_old_sz, mmap_new_sz); 10465 if (err) { 10466 pr_warn("map '%s': failed to resize memory-mapped region: %s\n", 10467 bpf_map__name(map), errstr(err)); 10468 return libbpf_err(err); 10469 } 10470 err = map_btf_datasec_resize(map, size); 10471 if (err && err != -ENOENT) { 10472 pr_warn("map '%s': failed to adjust resized BTF, clearing BTF key/value info: %s\n", 10473 bpf_map__name(map), errstr(err)); 10474 map->btf_value_type_id = 0; 10475 map->btf_key_type_id = 0; 10476 } 10477 } 10478 10479 map->def.value_size = size; 10480 return 0; 10481 } 10482 10483 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 10484 { 10485 return map ? map->btf_key_type_id : 0; 10486 } 10487 10488 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 10489 { 10490 return map ? map->btf_value_type_id : 0; 10491 } 10492 10493 int bpf_map__set_initial_value(struct bpf_map *map, 10494 const void *data, size_t size) 10495 { 10496 size_t actual_sz; 10497 10498 if (map_is_created(map)) 10499 return libbpf_err(-EBUSY); 10500 10501 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG) 10502 return libbpf_err(-EINVAL); 10503 10504 if (map->def.type == BPF_MAP_TYPE_ARENA) 10505 actual_sz = map->obj->arena_data_sz; 10506 else 10507 actual_sz = map->def.value_size; 10508 if (size != actual_sz) 10509 return libbpf_err(-EINVAL); 10510 10511 memcpy(map->mmaped, data, size); 10512 return 0; 10513 } 10514 10515 void *bpf_map__initial_value(const struct bpf_map *map, size_t *psize) 10516 { 10517 if (bpf_map__is_struct_ops(map)) { 10518 if (psize) 10519 *psize = map->def.value_size; 10520 return map->st_ops->data; 10521 } 10522 10523 if (!map->mmaped) 10524 return NULL; 10525 10526 if (map->def.type == BPF_MAP_TYPE_ARENA) 10527 *psize = map->obj->arena_data_sz; 10528 else 10529 *psize = map->def.value_size; 10530 10531 return map->mmaped; 10532 } 10533 10534 bool bpf_map__is_internal(const struct bpf_map *map) 10535 { 10536 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 10537 } 10538 10539 __u32 bpf_map__ifindex(const struct bpf_map *map) 10540 { 10541 return map->map_ifindex; 10542 } 10543 10544 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 10545 { 10546 if (map_is_created(map)) 10547 return libbpf_err(-EBUSY); 10548 map->map_ifindex = ifindex; 10549 return 0; 10550 } 10551 10552 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 10553 { 10554 if (!bpf_map_type__is_map_in_map(map->def.type)) { 10555 pr_warn("error: unsupported map type\n"); 10556 return libbpf_err(-EINVAL); 10557 } 10558 if (map->inner_map_fd != -1) { 10559 pr_warn("error: inner_map_fd already specified\n"); 10560 return libbpf_err(-EINVAL); 10561 } 10562 if (map->inner_map) { 10563 bpf_map__destroy(map->inner_map); 10564 zfree(&map->inner_map); 10565 } 10566 map->inner_map_fd = fd; 10567 return 0; 10568 } 10569 10570 int bpf_map__set_exclusive_program(struct bpf_map *map, struct bpf_program *prog) 10571 { 10572 if (map_is_created(map)) { 10573 pr_warn("exclusive programs must be set before map creation\n"); 10574 return libbpf_err(-EINVAL); 10575 } 10576 10577 if (map->obj != prog->obj) { 10578 pr_warn("excl_prog and map must be from the same bpf object\n"); 10579 return libbpf_err(-EINVAL); 10580 } 10581 10582 map->excl_prog = prog; 10583 return 0; 10584 } 10585 10586 struct bpf_program *bpf_map__exclusive_program(struct bpf_map *map) 10587 { 10588 return map->excl_prog; 10589 } 10590 10591 static struct bpf_map * 10592 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 10593 { 10594 ssize_t idx; 10595 struct bpf_map *s, *e; 10596 10597 if (!obj || !obj->maps) 10598 return errno = EINVAL, NULL; 10599 10600 s = obj->maps; 10601 e = obj->maps + obj->nr_maps; 10602 10603 if ((m < s) || (m >= e)) { 10604 pr_warn("error in %s: map handler doesn't belong to object\n", 10605 __func__); 10606 return errno = EINVAL, NULL; 10607 } 10608 10609 idx = (m - obj->maps) + i; 10610 if (idx >= obj->nr_maps || idx < 0) 10611 return NULL; 10612 return &obj->maps[idx]; 10613 } 10614 10615 struct bpf_map * 10616 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev) 10617 { 10618 if (prev == NULL && obj != NULL) 10619 return obj->maps; 10620 10621 return __bpf_map__iter(prev, obj, 1); 10622 } 10623 10624 struct bpf_map * 10625 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next) 10626 { 10627 if (next == NULL && obj != NULL) { 10628 if (!obj->nr_maps) 10629 return NULL; 10630 return obj->maps + obj->nr_maps - 1; 10631 } 10632 10633 return __bpf_map__iter(next, obj, -1); 10634 } 10635 10636 struct bpf_map * 10637 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 10638 { 10639 struct bpf_map *pos; 10640 10641 bpf_object__for_each_map(pos, obj) { 10642 /* if it's a special internal map name (which always starts 10643 * with dot) then check if that special name matches the 10644 * real map name (ELF section name) 10645 */ 10646 if (name[0] == '.') { 10647 if (pos->real_name && strcmp(pos->real_name, name) == 0) 10648 return pos; 10649 continue; 10650 } 10651 /* otherwise map name has to be an exact match */ 10652 if (map_uses_real_name(pos)) { 10653 if (strcmp(pos->real_name, name) == 0) 10654 return pos; 10655 continue; 10656 } 10657 if (strcmp(pos->name, name) == 0) 10658 return pos; 10659 } 10660 return errno = ENOENT, NULL; 10661 } 10662 10663 int 10664 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 10665 { 10666 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 10667 } 10668 10669 static int validate_map_op(const struct bpf_map *map, size_t key_sz, 10670 size_t value_sz, bool check_value_sz) 10671 { 10672 if (!map_is_created(map)) /* map is not yet created */ 10673 return -ENOENT; 10674 10675 if (map->def.key_size != key_sz) { 10676 pr_warn("map '%s': unexpected key size %zu provided, expected %u\n", 10677 map->name, key_sz, map->def.key_size); 10678 return -EINVAL; 10679 } 10680 10681 if (map->fd < 0) { 10682 pr_warn("map '%s': can't use BPF map without FD (was it created?)\n", map->name); 10683 return -EINVAL; 10684 } 10685 10686 if (!check_value_sz) 10687 return 0; 10688 10689 switch (map->def.type) { 10690 case BPF_MAP_TYPE_PERCPU_ARRAY: 10691 case BPF_MAP_TYPE_PERCPU_HASH: 10692 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 10693 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: { 10694 int num_cpu = libbpf_num_possible_cpus(); 10695 size_t elem_sz = roundup(map->def.value_size, 8); 10696 10697 if (value_sz != num_cpu * elem_sz) { 10698 pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n", 10699 map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz); 10700 return -EINVAL; 10701 } 10702 break; 10703 } 10704 default: 10705 if (map->def.value_size != value_sz) { 10706 pr_warn("map '%s': unexpected value size %zu provided, expected %u\n", 10707 map->name, value_sz, map->def.value_size); 10708 return -EINVAL; 10709 } 10710 break; 10711 } 10712 return 0; 10713 } 10714 10715 int bpf_map__lookup_elem(const struct bpf_map *map, 10716 const void *key, size_t key_sz, 10717 void *value, size_t value_sz, __u64 flags) 10718 { 10719 int err; 10720 10721 err = validate_map_op(map, key_sz, value_sz, true); 10722 if (err) 10723 return libbpf_err(err); 10724 10725 return bpf_map_lookup_elem_flags(map->fd, key, value, flags); 10726 } 10727 10728 int bpf_map__update_elem(const struct bpf_map *map, 10729 const void *key, size_t key_sz, 10730 const void *value, size_t value_sz, __u64 flags) 10731 { 10732 int err; 10733 10734 err = validate_map_op(map, key_sz, value_sz, true); 10735 if (err) 10736 return libbpf_err(err); 10737 10738 return bpf_map_update_elem(map->fd, key, value, flags); 10739 } 10740 10741 int bpf_map__delete_elem(const struct bpf_map *map, 10742 const void *key, size_t key_sz, __u64 flags) 10743 { 10744 int err; 10745 10746 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 10747 if (err) 10748 return libbpf_err(err); 10749 10750 return bpf_map_delete_elem_flags(map->fd, key, flags); 10751 } 10752 10753 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map, 10754 const void *key, size_t key_sz, 10755 void *value, size_t value_sz, __u64 flags) 10756 { 10757 int err; 10758 10759 err = validate_map_op(map, key_sz, value_sz, true); 10760 if (err) 10761 return libbpf_err(err); 10762 10763 return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags); 10764 } 10765 10766 int bpf_map__get_next_key(const struct bpf_map *map, 10767 const void *cur_key, void *next_key, size_t key_sz) 10768 { 10769 int err; 10770 10771 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 10772 if (err) 10773 return libbpf_err(err); 10774 10775 return bpf_map_get_next_key(map->fd, cur_key, next_key); 10776 } 10777 10778 long libbpf_get_error(const void *ptr) 10779 { 10780 if (!IS_ERR_OR_NULL(ptr)) 10781 return 0; 10782 10783 if (IS_ERR(ptr)) 10784 errno = -PTR_ERR(ptr); 10785 10786 /* If ptr == NULL, then errno should be already set by the failing 10787 * API, because libbpf never returns NULL on success and it now always 10788 * sets errno on error. So no extra errno handling for ptr == NULL 10789 * case. 10790 */ 10791 return -errno; 10792 } 10793 10794 /* Replace link's underlying BPF program with the new one */ 10795 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog) 10796 { 10797 int ret; 10798 int prog_fd = bpf_program__fd(prog); 10799 10800 if (prog_fd < 0) { 10801 pr_warn("prog '%s': can't use BPF program without FD (was it loaded?)\n", 10802 prog->name); 10803 return libbpf_err(-EINVAL); 10804 } 10805 10806 ret = bpf_link_update(bpf_link__fd(link), prog_fd, NULL); 10807 return libbpf_err_errno(ret); 10808 } 10809 10810 /* Release "ownership" of underlying BPF resource (typically, BPF program 10811 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 10812 * link, when destructed through bpf_link__destroy() call won't attempt to 10813 * detach/unregisted that BPF resource. This is useful in situations where, 10814 * say, attached BPF program has to outlive userspace program that attached it 10815 * in the system. Depending on type of BPF program, though, there might be 10816 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 10817 * exit of userspace program doesn't trigger automatic detachment and clean up 10818 * inside the kernel. 10819 */ 10820 void bpf_link__disconnect(struct bpf_link *link) 10821 { 10822 link->disconnected = true; 10823 } 10824 10825 int bpf_link__destroy(struct bpf_link *link) 10826 { 10827 int err = 0; 10828 10829 if (IS_ERR_OR_NULL(link)) 10830 return 0; 10831 10832 if (!link->disconnected && link->detach) 10833 err = link->detach(link); 10834 if (link->pin_path) 10835 free(link->pin_path); 10836 if (link->dealloc) 10837 link->dealloc(link); 10838 else 10839 free(link); 10840 10841 return libbpf_err(err); 10842 } 10843 10844 int bpf_link__fd(const struct bpf_link *link) 10845 { 10846 return link->fd; 10847 } 10848 10849 const char *bpf_link__pin_path(const struct bpf_link *link) 10850 { 10851 return link->pin_path; 10852 } 10853 10854 static int bpf_link__detach_fd(struct bpf_link *link) 10855 { 10856 return libbpf_err_errno(close(link->fd)); 10857 } 10858 10859 struct bpf_link *bpf_link__open(const char *path) 10860 { 10861 struct bpf_link *link; 10862 int fd; 10863 10864 fd = bpf_obj_get(path); 10865 if (fd < 0) { 10866 fd = -errno; 10867 pr_warn("failed to open link at %s: %d\n", path, fd); 10868 return libbpf_err_ptr(fd); 10869 } 10870 10871 link = calloc(1, sizeof(*link)); 10872 if (!link) { 10873 close(fd); 10874 return libbpf_err_ptr(-ENOMEM); 10875 } 10876 link->detach = &bpf_link__detach_fd; 10877 link->fd = fd; 10878 10879 link->pin_path = strdup(path); 10880 if (!link->pin_path) { 10881 bpf_link__destroy(link); 10882 return libbpf_err_ptr(-ENOMEM); 10883 } 10884 10885 return link; 10886 } 10887 10888 int bpf_link__detach(struct bpf_link *link) 10889 { 10890 return bpf_link_detach(link->fd) ? -errno : 0; 10891 } 10892 10893 int bpf_link__pin(struct bpf_link *link, const char *path) 10894 { 10895 int err; 10896 10897 if (link->pin_path) 10898 return libbpf_err(-EBUSY); 10899 err = make_parent_dir(path); 10900 if (err) 10901 return libbpf_err(err); 10902 err = check_path(path); 10903 if (err) 10904 return libbpf_err(err); 10905 10906 link->pin_path = strdup(path); 10907 if (!link->pin_path) 10908 return libbpf_err(-ENOMEM); 10909 10910 if (bpf_obj_pin(link->fd, link->pin_path)) { 10911 err = -errno; 10912 zfree(&link->pin_path); 10913 return libbpf_err(err); 10914 } 10915 10916 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path); 10917 return 0; 10918 } 10919 10920 int bpf_link__unpin(struct bpf_link *link) 10921 { 10922 int err; 10923 10924 if (!link->pin_path) 10925 return libbpf_err(-EINVAL); 10926 10927 err = unlink(link->pin_path); 10928 if (err != 0) 10929 return -errno; 10930 10931 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path); 10932 zfree(&link->pin_path); 10933 return 0; 10934 } 10935 10936 struct bpf_link_perf { 10937 struct bpf_link link; 10938 int perf_event_fd; 10939 /* legacy kprobe support: keep track of probe identifier and type */ 10940 char *legacy_probe_name; 10941 bool legacy_is_kprobe; 10942 bool legacy_is_retprobe; 10943 }; 10944 10945 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe); 10946 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe); 10947 10948 static int bpf_link_perf_detach(struct bpf_link *link) 10949 { 10950 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10951 int err = 0; 10952 10953 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0) 10954 err = -errno; 10955 10956 if (perf_link->perf_event_fd != link->fd) 10957 close(perf_link->perf_event_fd); 10958 close(link->fd); 10959 10960 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */ 10961 if (perf_link->legacy_probe_name) { 10962 if (perf_link->legacy_is_kprobe) { 10963 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name, 10964 perf_link->legacy_is_retprobe); 10965 } else { 10966 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name, 10967 perf_link->legacy_is_retprobe); 10968 } 10969 } 10970 10971 return err; 10972 } 10973 10974 static void bpf_link_perf_dealloc(struct bpf_link *link) 10975 { 10976 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10977 10978 free(perf_link->legacy_probe_name); 10979 free(perf_link); 10980 } 10981 10982 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd, 10983 const struct bpf_perf_event_opts *opts) 10984 { 10985 struct bpf_link_perf *link; 10986 int prog_fd, link_fd = -1, err; 10987 bool force_ioctl_attach; 10988 10989 if (!OPTS_VALID(opts, bpf_perf_event_opts)) 10990 return libbpf_err_ptr(-EINVAL); 10991 10992 if (pfd < 0) { 10993 pr_warn("prog '%s': invalid perf event FD %d\n", 10994 prog->name, pfd); 10995 return libbpf_err_ptr(-EINVAL); 10996 } 10997 prog_fd = bpf_program__fd(prog); 10998 if (prog_fd < 0) { 10999 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n", 11000 prog->name); 11001 return libbpf_err_ptr(-EINVAL); 11002 } 11003 11004 link = calloc(1, sizeof(*link)); 11005 if (!link) 11006 return libbpf_err_ptr(-ENOMEM); 11007 link->link.detach = &bpf_link_perf_detach; 11008 link->link.dealloc = &bpf_link_perf_dealloc; 11009 link->perf_event_fd = pfd; 11010 11011 force_ioctl_attach = OPTS_GET(opts, force_ioctl_attach, false); 11012 if (kernel_supports(prog->obj, FEAT_PERF_LINK) && !force_ioctl_attach) { 11013 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts, 11014 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0)); 11015 11016 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts); 11017 if (link_fd < 0) { 11018 err = -errno; 11019 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %s\n", 11020 prog->name, pfd, errstr(err)); 11021 goto err_out; 11022 } 11023 link->link.fd = link_fd; 11024 } else { 11025 if (OPTS_GET(opts, bpf_cookie, 0)) { 11026 pr_warn("prog '%s': user context value is not supported\n", prog->name); 11027 err = -EOPNOTSUPP; 11028 goto err_out; 11029 } 11030 11031 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 11032 err = -errno; 11033 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n", 11034 prog->name, pfd, errstr(err)); 11035 if (err == -EPROTO) 11036 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n", 11037 prog->name, pfd); 11038 goto err_out; 11039 } 11040 link->link.fd = pfd; 11041 } 11042 11043 if (!OPTS_GET(opts, dont_enable, false)) { 11044 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 11045 err = -errno; 11046 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n", 11047 prog->name, pfd, errstr(err)); 11048 goto err_out; 11049 } 11050 } 11051 11052 return &link->link; 11053 err_out: 11054 if (link_fd >= 0) 11055 close(link_fd); 11056 free(link); 11057 return libbpf_err_ptr(err); 11058 } 11059 11060 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd) 11061 { 11062 return bpf_program__attach_perf_event_opts(prog, pfd, NULL); 11063 } 11064 11065 /* 11066 * this function is expected to parse integer in the range of [0, 2^31-1] from 11067 * given file using scanf format string fmt. If actual parsed value is 11068 * negative, the result might be indistinguishable from error 11069 */ 11070 static int parse_uint_from_file(const char *file, const char *fmt) 11071 { 11072 int err, ret; 11073 FILE *f; 11074 11075 f = fopen(file, "re"); 11076 if (!f) { 11077 err = -errno; 11078 pr_debug("failed to open '%s': %s\n", file, errstr(err)); 11079 return err; 11080 } 11081 err = fscanf(f, fmt, &ret); 11082 if (err != 1) { 11083 err = err == EOF ? -EIO : -errno; 11084 pr_debug("failed to parse '%s': %s\n", file, errstr(err)); 11085 fclose(f); 11086 return err; 11087 } 11088 fclose(f); 11089 return ret; 11090 } 11091 11092 static int determine_kprobe_perf_type(void) 11093 { 11094 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 11095 11096 return parse_uint_from_file(file, "%d\n"); 11097 } 11098 11099 static int determine_uprobe_perf_type(void) 11100 { 11101 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 11102 11103 return parse_uint_from_file(file, "%d\n"); 11104 } 11105 11106 static int determine_kprobe_retprobe_bit(void) 11107 { 11108 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 11109 11110 return parse_uint_from_file(file, "config:%d\n"); 11111 } 11112 11113 static int determine_uprobe_retprobe_bit(void) 11114 { 11115 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 11116 11117 return parse_uint_from_file(file, "config:%d\n"); 11118 } 11119 11120 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32 11121 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32 11122 11123 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 11124 uint64_t offset, int pid, size_t ref_ctr_off) 11125 { 11126 const size_t attr_sz = sizeof(struct perf_event_attr); 11127 struct perf_event_attr attr; 11128 int type, pfd; 11129 11130 if ((__u64)ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS)) 11131 return -EINVAL; 11132 11133 memset(&attr, 0, attr_sz); 11134 11135 type = uprobe ? determine_uprobe_perf_type() 11136 : determine_kprobe_perf_type(); 11137 if (type < 0) { 11138 pr_warn("failed to determine %s perf type: %s\n", 11139 uprobe ? "uprobe" : "kprobe", 11140 errstr(type)); 11141 return type; 11142 } 11143 if (retprobe) { 11144 int bit = uprobe ? determine_uprobe_retprobe_bit() 11145 : determine_kprobe_retprobe_bit(); 11146 11147 if (bit < 0) { 11148 pr_warn("failed to determine %s retprobe bit: %s\n", 11149 uprobe ? "uprobe" : "kprobe", 11150 errstr(bit)); 11151 return bit; 11152 } 11153 attr.config |= 1 << bit; 11154 } 11155 attr.size = attr_sz; 11156 attr.type = type; 11157 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 11158 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 11159 attr.config2 = offset; /* kprobe_addr or probe_offset */ 11160 11161 /* pid filter is meaningful only for uprobes */ 11162 pfd = syscall(__NR_perf_event_open, &attr, 11163 pid < 0 ? -1 : pid /* pid */, 11164 pid == -1 ? 0 : -1 /* cpu */, 11165 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 11166 return pfd >= 0 ? pfd : -errno; 11167 } 11168 11169 static int append_to_file(const char *file, const char *fmt, ...) 11170 { 11171 int fd, n, err = 0; 11172 va_list ap; 11173 char buf[1024]; 11174 11175 va_start(ap, fmt); 11176 n = vsnprintf(buf, sizeof(buf), fmt, ap); 11177 va_end(ap); 11178 11179 if (n < 0 || n >= sizeof(buf)) 11180 return -EINVAL; 11181 11182 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0); 11183 if (fd < 0) 11184 return -errno; 11185 11186 if (write(fd, buf, n) < 0) 11187 err = -errno; 11188 11189 close(fd); 11190 return err; 11191 } 11192 11193 #define DEBUGFS "/sys/kernel/debug/tracing" 11194 #define TRACEFS "/sys/kernel/tracing" 11195 11196 static bool use_debugfs(void) 11197 { 11198 static int has_debugfs = -1; 11199 11200 if (has_debugfs < 0) 11201 has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0; 11202 11203 return has_debugfs == 1; 11204 } 11205 11206 static const char *tracefs_path(void) 11207 { 11208 return use_debugfs() ? DEBUGFS : TRACEFS; 11209 } 11210 11211 static const char *tracefs_kprobe_events(void) 11212 { 11213 return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events"; 11214 } 11215 11216 static const char *tracefs_uprobe_events(void) 11217 { 11218 return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events"; 11219 } 11220 11221 static const char *tracefs_available_filter_functions(void) 11222 { 11223 return use_debugfs() ? DEBUGFS"/available_filter_functions" 11224 : TRACEFS"/available_filter_functions"; 11225 } 11226 11227 static const char *tracefs_available_filter_functions_addrs(void) 11228 { 11229 return use_debugfs() ? DEBUGFS"/available_filter_functions_addrs" 11230 : TRACEFS"/available_filter_functions_addrs"; 11231 } 11232 11233 static void gen_probe_legacy_event_name(char *buf, size_t buf_sz, 11234 const char *name, size_t offset) 11235 { 11236 static int index = 0; 11237 int i; 11238 11239 snprintf(buf, buf_sz, "libbpf_%u_%d_%s_0x%zx", getpid(), 11240 __sync_fetch_and_add(&index, 1), name, offset); 11241 11242 /* sanitize name in the probe name */ 11243 for (i = 0; buf[i]; i++) { 11244 if (!isalnum(buf[i])) 11245 buf[i] = '_'; 11246 } 11247 } 11248 11249 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe, 11250 const char *kfunc_name, size_t offset) 11251 { 11252 return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx", 11253 retprobe ? 'r' : 'p', 11254 retprobe ? "kretprobes" : "kprobes", 11255 probe_name, kfunc_name, offset); 11256 } 11257 11258 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe) 11259 { 11260 return append_to_file(tracefs_kprobe_events(), "-:%s/%s", 11261 retprobe ? "kretprobes" : "kprobes", probe_name); 11262 } 11263 11264 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe) 11265 { 11266 char file[256]; 11267 11268 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 11269 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name); 11270 11271 return parse_uint_from_file(file, "%d\n"); 11272 } 11273 11274 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe, 11275 const char *kfunc_name, size_t offset, int pid) 11276 { 11277 const size_t attr_sz = sizeof(struct perf_event_attr); 11278 struct perf_event_attr attr; 11279 int type, pfd, err; 11280 11281 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset); 11282 if (err < 0) { 11283 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n", 11284 kfunc_name, offset, 11285 errstr(err)); 11286 return err; 11287 } 11288 type = determine_kprobe_perf_type_legacy(probe_name, retprobe); 11289 if (type < 0) { 11290 err = type; 11291 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n", 11292 kfunc_name, offset, 11293 errstr(err)); 11294 goto err_clean_legacy; 11295 } 11296 11297 memset(&attr, 0, attr_sz); 11298 attr.size = attr_sz; 11299 attr.config = type; 11300 attr.type = PERF_TYPE_TRACEPOINT; 11301 11302 pfd = syscall(__NR_perf_event_open, &attr, 11303 pid < 0 ? -1 : pid, /* pid */ 11304 pid == -1 ? 0 : -1, /* cpu */ 11305 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 11306 if (pfd < 0) { 11307 err = -errno; 11308 pr_warn("legacy kprobe perf_event_open() failed: %s\n", 11309 errstr(err)); 11310 goto err_clean_legacy; 11311 } 11312 return pfd; 11313 11314 err_clean_legacy: 11315 /* Clear the newly added legacy kprobe_event */ 11316 remove_kprobe_event_legacy(probe_name, retprobe); 11317 return err; 11318 } 11319 11320 static const char *arch_specific_syscall_pfx(void) 11321 { 11322 #if defined(__x86_64__) 11323 return "x64"; 11324 #elif defined(__i386__) 11325 return "ia32"; 11326 #elif defined(__s390x__) 11327 return "s390x"; 11328 #elif defined(__s390__) 11329 return "s390"; 11330 #elif defined(__arm__) 11331 return "arm"; 11332 #elif defined(__aarch64__) 11333 return "arm64"; 11334 #elif defined(__mips__) 11335 return "mips"; 11336 #elif defined(__riscv) 11337 return "riscv"; 11338 #elif defined(__powerpc__) 11339 return "powerpc"; 11340 #elif defined(__powerpc64__) 11341 return "powerpc64"; 11342 #else 11343 return NULL; 11344 #endif 11345 } 11346 11347 int probe_kern_syscall_wrapper(int token_fd) 11348 { 11349 char syscall_name[64]; 11350 const char *ksys_pfx; 11351 11352 ksys_pfx = arch_specific_syscall_pfx(); 11353 if (!ksys_pfx) 11354 return 0; 11355 11356 snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx); 11357 11358 if (determine_kprobe_perf_type() >= 0) { 11359 int pfd; 11360 11361 pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0); 11362 if (pfd >= 0) 11363 close(pfd); 11364 11365 return pfd >= 0 ? 1 : 0; 11366 } else { /* legacy mode */ 11367 char probe_name[MAX_EVENT_NAME_LEN]; 11368 11369 gen_probe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0); 11370 if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0) 11371 return 0; 11372 11373 (void)remove_kprobe_event_legacy(probe_name, false); 11374 return 1; 11375 } 11376 } 11377 11378 struct bpf_link * 11379 bpf_program__attach_kprobe_opts(const struct bpf_program *prog, 11380 const char *func_name, 11381 const struct bpf_kprobe_opts *opts) 11382 { 11383 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 11384 enum probe_attach_mode attach_mode; 11385 char *legacy_probe = NULL; 11386 struct bpf_link *link; 11387 size_t offset; 11388 bool retprobe, legacy; 11389 int pfd, err; 11390 11391 if (!OPTS_VALID(opts, bpf_kprobe_opts)) 11392 return libbpf_err_ptr(-EINVAL); 11393 11394 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT); 11395 retprobe = OPTS_GET(opts, retprobe, false); 11396 offset = OPTS_GET(opts, offset, 0); 11397 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11398 11399 legacy = determine_kprobe_perf_type() < 0; 11400 switch (attach_mode) { 11401 case PROBE_ATTACH_MODE_LEGACY: 11402 legacy = true; 11403 pe_opts.force_ioctl_attach = true; 11404 break; 11405 case PROBE_ATTACH_MODE_PERF: 11406 if (legacy) 11407 return libbpf_err_ptr(-ENOTSUP); 11408 pe_opts.force_ioctl_attach = true; 11409 break; 11410 case PROBE_ATTACH_MODE_LINK: 11411 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK)) 11412 return libbpf_err_ptr(-ENOTSUP); 11413 break; 11414 case PROBE_ATTACH_MODE_DEFAULT: 11415 break; 11416 default: 11417 return libbpf_err_ptr(-EINVAL); 11418 } 11419 11420 if (!legacy) { 11421 pfd = perf_event_open_probe(false /* uprobe */, retprobe, 11422 func_name, offset, 11423 -1 /* pid */, 0 /* ref_ctr_off */); 11424 } else { 11425 char probe_name[MAX_EVENT_NAME_LEN]; 11426 11427 gen_probe_legacy_event_name(probe_name, sizeof(probe_name), 11428 func_name, offset); 11429 11430 legacy_probe = strdup(probe_name); 11431 if (!legacy_probe) 11432 return libbpf_err_ptr(-ENOMEM); 11433 11434 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name, 11435 offset, -1 /* pid */); 11436 } 11437 if (pfd < 0) { 11438 err = -errno; 11439 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n", 11440 prog->name, retprobe ? "kretprobe" : "kprobe", 11441 func_name, offset, 11442 errstr(err)); 11443 goto err_out; 11444 } 11445 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 11446 err = libbpf_get_error(link); 11447 if (err) { 11448 close(pfd); 11449 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n", 11450 prog->name, retprobe ? "kretprobe" : "kprobe", 11451 func_name, offset, 11452 errstr(err)); 11453 goto err_clean_legacy; 11454 } 11455 if (legacy) { 11456 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 11457 11458 perf_link->legacy_probe_name = legacy_probe; 11459 perf_link->legacy_is_kprobe = true; 11460 perf_link->legacy_is_retprobe = retprobe; 11461 } 11462 11463 return link; 11464 11465 err_clean_legacy: 11466 if (legacy) 11467 remove_kprobe_event_legacy(legacy_probe, retprobe); 11468 err_out: 11469 free(legacy_probe); 11470 return libbpf_err_ptr(err); 11471 } 11472 11473 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog, 11474 bool retprobe, 11475 const char *func_name) 11476 { 11477 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts, 11478 .retprobe = retprobe, 11479 ); 11480 11481 return bpf_program__attach_kprobe_opts(prog, func_name, &opts); 11482 } 11483 11484 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog, 11485 const char *syscall_name, 11486 const struct bpf_ksyscall_opts *opts) 11487 { 11488 LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts); 11489 char func_name[128]; 11490 11491 if (!OPTS_VALID(opts, bpf_ksyscall_opts)) 11492 return libbpf_err_ptr(-EINVAL); 11493 11494 if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) { 11495 /* arch_specific_syscall_pfx() should never return NULL here 11496 * because it is guarded by kernel_supports(). However, since 11497 * compiler does not know that we have an explicit conditional 11498 * as well. 11499 */ 11500 snprintf(func_name, sizeof(func_name), "__%s_sys_%s", 11501 arch_specific_syscall_pfx() ? : "", syscall_name); 11502 } else { 11503 snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name); 11504 } 11505 11506 kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false); 11507 kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11508 11509 return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts); 11510 } 11511 11512 /* Adapted from perf/util/string.c */ 11513 bool glob_match(const char *str, const char *pat) 11514 { 11515 while (*str && *pat && *pat != '*') { 11516 if (*pat == '?') { /* Matches any single character */ 11517 str++; 11518 pat++; 11519 continue; 11520 } 11521 if (*str != *pat) 11522 return false; 11523 str++; 11524 pat++; 11525 } 11526 /* Check wild card */ 11527 if (*pat == '*') { 11528 while (*pat == '*') 11529 pat++; 11530 if (!*pat) /* Tail wild card matches all */ 11531 return true; 11532 while (*str) 11533 if (glob_match(str++, pat)) 11534 return true; 11535 } 11536 return !*str && !*pat; 11537 } 11538 11539 struct kprobe_multi_resolve { 11540 const char *pattern; 11541 unsigned long *addrs; 11542 size_t cap; 11543 size_t cnt; 11544 }; 11545 11546 struct avail_kallsyms_data { 11547 char **syms; 11548 size_t cnt; 11549 struct kprobe_multi_resolve *res; 11550 }; 11551 11552 static int avail_func_cmp(const void *a, const void *b) 11553 { 11554 return strcmp(*(const char **)a, *(const char **)b); 11555 } 11556 11557 static int avail_kallsyms_cb(unsigned long long sym_addr, char sym_type, 11558 const char *sym_name, void *ctx) 11559 { 11560 struct avail_kallsyms_data *data = ctx; 11561 struct kprobe_multi_resolve *res = data->res; 11562 int err; 11563 11564 if (!glob_match(sym_name, res->pattern)) 11565 return 0; 11566 11567 if (!bsearch(&sym_name, data->syms, data->cnt, sizeof(*data->syms), avail_func_cmp)) { 11568 /* Some versions of kernel strip out .llvm.<hash> suffix from 11569 * function names reported in available_filter_functions, but 11570 * don't do so for kallsyms. While this is clearly a kernel 11571 * bug (fixed by [0]) we try to accommodate that in libbpf to 11572 * make multi-kprobe usability a bit better: if no match is 11573 * found, we will strip .llvm. suffix and try one more time. 11574 * 11575 * [0] fb6a421fb615 ("kallsyms: Match symbols exactly with CONFIG_LTO_CLANG") 11576 */ 11577 char sym_trim[256], *psym_trim = sym_trim, *sym_sfx; 11578 11579 if (!(sym_sfx = strstr(sym_name, ".llvm."))) 11580 return 0; 11581 11582 /* psym_trim vs sym_trim dance is done to avoid pointer vs array 11583 * coercion differences and get proper `const char **` pointer 11584 * which avail_func_cmp() expects 11585 */ 11586 snprintf(sym_trim, sizeof(sym_trim), "%.*s", (int)(sym_sfx - sym_name), sym_name); 11587 if (!bsearch(&psym_trim, data->syms, data->cnt, sizeof(*data->syms), avail_func_cmp)) 11588 return 0; 11589 } 11590 11591 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, sizeof(*res->addrs), res->cnt + 1); 11592 if (err) 11593 return err; 11594 11595 res->addrs[res->cnt++] = (unsigned long)sym_addr; 11596 return 0; 11597 } 11598 11599 static int libbpf_available_kallsyms_parse(struct kprobe_multi_resolve *res) 11600 { 11601 const char *available_functions_file = tracefs_available_filter_functions(); 11602 struct avail_kallsyms_data data; 11603 char sym_name[500]; 11604 FILE *f; 11605 int err = 0, ret, i; 11606 char **syms = NULL; 11607 size_t cap = 0, cnt = 0; 11608 11609 f = fopen(available_functions_file, "re"); 11610 if (!f) { 11611 err = -errno; 11612 pr_warn("failed to open %s: %s\n", available_functions_file, errstr(err)); 11613 return err; 11614 } 11615 11616 while (true) { 11617 char *name; 11618 11619 ret = fscanf(f, "%499s%*[^\n]\n", sym_name); 11620 if (ret == EOF && feof(f)) 11621 break; 11622 11623 if (ret != 1) { 11624 pr_warn("failed to parse available_filter_functions entry: %d\n", ret); 11625 err = -EINVAL; 11626 goto cleanup; 11627 } 11628 11629 if (!glob_match(sym_name, res->pattern)) 11630 continue; 11631 11632 err = libbpf_ensure_mem((void **)&syms, &cap, sizeof(*syms), cnt + 1); 11633 if (err) 11634 goto cleanup; 11635 11636 name = strdup(sym_name); 11637 if (!name) { 11638 err = -errno; 11639 goto cleanup; 11640 } 11641 11642 syms[cnt++] = name; 11643 } 11644 11645 /* no entries found, bail out */ 11646 if (cnt == 0) { 11647 err = -ENOENT; 11648 goto cleanup; 11649 } 11650 11651 /* sort available functions */ 11652 qsort(syms, cnt, sizeof(*syms), avail_func_cmp); 11653 11654 data.syms = syms; 11655 data.res = res; 11656 data.cnt = cnt; 11657 libbpf_kallsyms_parse(avail_kallsyms_cb, &data); 11658 11659 if (res->cnt == 0) 11660 err = -ENOENT; 11661 11662 cleanup: 11663 for (i = 0; i < cnt; i++) 11664 free((char *)syms[i]); 11665 free(syms); 11666 11667 fclose(f); 11668 return err; 11669 } 11670 11671 static bool has_available_filter_functions_addrs(void) 11672 { 11673 return access(tracefs_available_filter_functions_addrs(), R_OK) != -1; 11674 } 11675 11676 static int libbpf_available_kprobes_parse(struct kprobe_multi_resolve *res) 11677 { 11678 const char *available_path = tracefs_available_filter_functions_addrs(); 11679 char sym_name[500]; 11680 FILE *f; 11681 int ret, err = 0; 11682 unsigned long long sym_addr; 11683 11684 f = fopen(available_path, "re"); 11685 if (!f) { 11686 err = -errno; 11687 pr_warn("failed to open %s: %s\n", available_path, errstr(err)); 11688 return err; 11689 } 11690 11691 while (true) { 11692 ret = fscanf(f, "%llx %499s%*[^\n]\n", &sym_addr, sym_name); 11693 if (ret == EOF && feof(f)) 11694 break; 11695 11696 if (ret != 2) { 11697 pr_warn("failed to parse available_filter_functions_addrs entry: %d\n", 11698 ret); 11699 err = -EINVAL; 11700 goto cleanup; 11701 } 11702 11703 if (!glob_match(sym_name, res->pattern)) 11704 continue; 11705 11706 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, 11707 sizeof(*res->addrs), res->cnt + 1); 11708 if (err) 11709 goto cleanup; 11710 11711 res->addrs[res->cnt++] = (unsigned long)sym_addr; 11712 } 11713 11714 if (res->cnt == 0) 11715 err = -ENOENT; 11716 11717 cleanup: 11718 fclose(f); 11719 return err; 11720 } 11721 11722 struct bpf_link * 11723 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog, 11724 const char *pattern, 11725 const struct bpf_kprobe_multi_opts *opts) 11726 { 11727 LIBBPF_OPTS(bpf_link_create_opts, lopts); 11728 struct kprobe_multi_resolve res = { 11729 .pattern = pattern, 11730 }; 11731 enum bpf_attach_type attach_type; 11732 struct bpf_link *link = NULL; 11733 const unsigned long *addrs; 11734 int err, link_fd, prog_fd; 11735 bool retprobe, session, unique_match; 11736 const __u64 *cookies; 11737 const char **syms; 11738 size_t cnt; 11739 11740 if (!OPTS_VALID(opts, bpf_kprobe_multi_opts)) 11741 return libbpf_err_ptr(-EINVAL); 11742 11743 prog_fd = bpf_program__fd(prog); 11744 if (prog_fd < 0) { 11745 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n", 11746 prog->name); 11747 return libbpf_err_ptr(-EINVAL); 11748 } 11749 11750 syms = OPTS_GET(opts, syms, false); 11751 addrs = OPTS_GET(opts, addrs, false); 11752 cnt = OPTS_GET(opts, cnt, false); 11753 cookies = OPTS_GET(opts, cookies, false); 11754 unique_match = OPTS_GET(opts, unique_match, false); 11755 11756 if (!pattern && !addrs && !syms) 11757 return libbpf_err_ptr(-EINVAL); 11758 if (pattern && (addrs || syms || cookies || cnt)) 11759 return libbpf_err_ptr(-EINVAL); 11760 if (!pattern && !cnt) 11761 return libbpf_err_ptr(-EINVAL); 11762 if (!pattern && unique_match) 11763 return libbpf_err_ptr(-EINVAL); 11764 if (addrs && syms) 11765 return libbpf_err_ptr(-EINVAL); 11766 11767 if (pattern) { 11768 if (has_available_filter_functions_addrs()) 11769 err = libbpf_available_kprobes_parse(&res); 11770 else 11771 err = libbpf_available_kallsyms_parse(&res); 11772 if (err) 11773 goto error; 11774 11775 if (unique_match && res.cnt != 1) { 11776 pr_warn("prog '%s': failed to find a unique match for '%s' (%zu matches)\n", 11777 prog->name, pattern, res.cnt); 11778 err = -EINVAL; 11779 goto error; 11780 } 11781 11782 addrs = res.addrs; 11783 cnt = res.cnt; 11784 } 11785 11786 retprobe = OPTS_GET(opts, retprobe, false); 11787 session = OPTS_GET(opts, session, false); 11788 11789 if (retprobe && session) 11790 return libbpf_err_ptr(-EINVAL); 11791 11792 attach_type = session ? BPF_TRACE_KPROBE_SESSION : BPF_TRACE_KPROBE_MULTI; 11793 11794 lopts.kprobe_multi.syms = syms; 11795 lopts.kprobe_multi.addrs = addrs; 11796 lopts.kprobe_multi.cookies = cookies; 11797 lopts.kprobe_multi.cnt = cnt; 11798 lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0; 11799 11800 link = calloc(1, sizeof(*link)); 11801 if (!link) { 11802 err = -ENOMEM; 11803 goto error; 11804 } 11805 link->detach = &bpf_link__detach_fd; 11806 11807 link_fd = bpf_link_create(prog_fd, 0, attach_type, &lopts); 11808 if (link_fd < 0) { 11809 err = -errno; 11810 pr_warn("prog '%s': failed to attach: %s\n", 11811 prog->name, errstr(err)); 11812 goto error; 11813 } 11814 link->fd = link_fd; 11815 free(res.addrs); 11816 return link; 11817 11818 error: 11819 free(link); 11820 free(res.addrs); 11821 return libbpf_err_ptr(err); 11822 } 11823 11824 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11825 { 11826 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts); 11827 unsigned long offset = 0; 11828 const char *func_name; 11829 char *func; 11830 int n; 11831 11832 *link = NULL; 11833 11834 /* no auto-attach for SEC("kprobe") and SEC("kretprobe") */ 11835 if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0) 11836 return 0; 11837 11838 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/"); 11839 if (opts.retprobe) 11840 func_name = prog->sec_name + sizeof("kretprobe/") - 1; 11841 else 11842 func_name = prog->sec_name + sizeof("kprobe/") - 1; 11843 11844 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset); 11845 if (n < 1) { 11846 pr_warn("kprobe name is invalid: %s\n", func_name); 11847 return -EINVAL; 11848 } 11849 if (opts.retprobe && offset != 0) { 11850 free(func); 11851 pr_warn("kretprobes do not support offset specification\n"); 11852 return -EINVAL; 11853 } 11854 11855 opts.offset = offset; 11856 *link = bpf_program__attach_kprobe_opts(prog, func, &opts); 11857 free(func); 11858 return libbpf_get_error(*link); 11859 } 11860 11861 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11862 { 11863 LIBBPF_OPTS(bpf_ksyscall_opts, opts); 11864 const char *syscall_name; 11865 11866 *link = NULL; 11867 11868 /* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */ 11869 if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0) 11870 return 0; 11871 11872 opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/"); 11873 if (opts.retprobe) 11874 syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1; 11875 else 11876 syscall_name = prog->sec_name + sizeof("ksyscall/") - 1; 11877 11878 *link = bpf_program__attach_ksyscall(prog, syscall_name, &opts); 11879 return *link ? 0 : -errno; 11880 } 11881 11882 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11883 { 11884 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts); 11885 const char *spec; 11886 char *pattern; 11887 int n; 11888 11889 *link = NULL; 11890 11891 /* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */ 11892 if (strcmp(prog->sec_name, "kprobe.multi") == 0 || 11893 strcmp(prog->sec_name, "kretprobe.multi") == 0) 11894 return 0; 11895 11896 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/"); 11897 if (opts.retprobe) 11898 spec = prog->sec_name + sizeof("kretprobe.multi/") - 1; 11899 else 11900 spec = prog->sec_name + sizeof("kprobe.multi/") - 1; 11901 11902 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern); 11903 if (n < 1) { 11904 pr_warn("kprobe multi pattern is invalid: %s\n", spec); 11905 return -EINVAL; 11906 } 11907 11908 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts); 11909 free(pattern); 11910 return libbpf_get_error(*link); 11911 } 11912 11913 static int attach_kprobe_session(const struct bpf_program *prog, long cookie, 11914 struct bpf_link **link) 11915 { 11916 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts, .session = true); 11917 const char *spec; 11918 char *pattern; 11919 int n; 11920 11921 *link = NULL; 11922 11923 /* no auto-attach for SEC("kprobe.session") */ 11924 if (strcmp(prog->sec_name, "kprobe.session") == 0) 11925 return 0; 11926 11927 spec = prog->sec_name + sizeof("kprobe.session/") - 1; 11928 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern); 11929 if (n < 1) { 11930 pr_warn("kprobe session pattern is invalid: %s\n", spec); 11931 return -EINVAL; 11932 } 11933 11934 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts); 11935 free(pattern); 11936 return *link ? 0 : -errno; 11937 } 11938 11939 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11940 { 11941 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL; 11942 LIBBPF_OPTS(bpf_uprobe_multi_opts, opts); 11943 int n, ret = -EINVAL; 11944 11945 *link = NULL; 11946 11947 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]", 11948 &probe_type, &binary_path, &func_name); 11949 switch (n) { 11950 case 1: 11951 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */ 11952 ret = 0; 11953 break; 11954 case 3: 11955 opts.session = str_has_pfx(probe_type, "uprobe.session"); 11956 opts.retprobe = str_has_pfx(probe_type, "uretprobe.multi"); 11957 11958 *link = bpf_program__attach_uprobe_multi(prog, -1, binary_path, func_name, &opts); 11959 ret = libbpf_get_error(*link); 11960 break; 11961 default: 11962 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name, 11963 prog->sec_name); 11964 break; 11965 } 11966 free(probe_type); 11967 free(binary_path); 11968 free(func_name); 11969 return ret; 11970 } 11971 11972 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe, 11973 const char *binary_path, size_t offset) 11974 { 11975 return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx", 11976 retprobe ? 'r' : 'p', 11977 retprobe ? "uretprobes" : "uprobes", 11978 probe_name, binary_path, offset); 11979 } 11980 11981 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe) 11982 { 11983 return append_to_file(tracefs_uprobe_events(), "-:%s/%s", 11984 retprobe ? "uretprobes" : "uprobes", probe_name); 11985 } 11986 11987 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe) 11988 { 11989 char file[512]; 11990 11991 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 11992 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name); 11993 11994 return parse_uint_from_file(file, "%d\n"); 11995 } 11996 11997 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe, 11998 const char *binary_path, size_t offset, int pid) 11999 { 12000 const size_t attr_sz = sizeof(struct perf_event_attr); 12001 struct perf_event_attr attr; 12002 int type, pfd, err; 12003 12004 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset); 12005 if (err < 0) { 12006 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %s\n", 12007 binary_path, (size_t)offset, errstr(err)); 12008 return err; 12009 } 12010 type = determine_uprobe_perf_type_legacy(probe_name, retprobe); 12011 if (type < 0) { 12012 err = type; 12013 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %s\n", 12014 binary_path, offset, errstr(err)); 12015 goto err_clean_legacy; 12016 } 12017 12018 memset(&attr, 0, attr_sz); 12019 attr.size = attr_sz; 12020 attr.config = type; 12021 attr.type = PERF_TYPE_TRACEPOINT; 12022 12023 pfd = syscall(__NR_perf_event_open, &attr, 12024 pid < 0 ? -1 : pid, /* pid */ 12025 pid == -1 ? 0 : -1, /* cpu */ 12026 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 12027 if (pfd < 0) { 12028 err = -errno; 12029 pr_warn("legacy uprobe perf_event_open() failed: %s\n", errstr(err)); 12030 goto err_clean_legacy; 12031 } 12032 return pfd; 12033 12034 err_clean_legacy: 12035 /* Clear the newly added legacy uprobe_event */ 12036 remove_uprobe_event_legacy(probe_name, retprobe); 12037 return err; 12038 } 12039 12040 /* Find offset of function name in archive specified by path. Currently 12041 * supported are .zip files that do not compress their contents, as used on 12042 * Android in the form of APKs, for example. "file_name" is the name of the ELF 12043 * file inside the archive. "func_name" matches symbol name or name@@LIB for 12044 * library functions. 12045 * 12046 * An overview of the APK format specifically provided here: 12047 * https://en.wikipedia.org/w/index.php?title=Apk_(file_format)&oldid=1139099120#Package_contents 12048 */ 12049 static long elf_find_func_offset_from_archive(const char *archive_path, const char *file_name, 12050 const char *func_name) 12051 { 12052 struct zip_archive *archive; 12053 struct zip_entry entry; 12054 long ret; 12055 Elf *elf; 12056 12057 archive = zip_archive_open(archive_path); 12058 if (IS_ERR(archive)) { 12059 ret = PTR_ERR(archive); 12060 pr_warn("zip: failed to open %s: %ld\n", archive_path, ret); 12061 return ret; 12062 } 12063 12064 ret = zip_archive_find_entry(archive, file_name, &entry); 12065 if (ret) { 12066 pr_warn("zip: could not find archive member %s in %s: %ld\n", file_name, 12067 archive_path, ret); 12068 goto out; 12069 } 12070 pr_debug("zip: found entry for %s in %s at 0x%lx\n", file_name, archive_path, 12071 (unsigned long)entry.data_offset); 12072 12073 if (entry.compression) { 12074 pr_warn("zip: entry %s of %s is compressed and cannot be handled\n", file_name, 12075 archive_path); 12076 ret = -LIBBPF_ERRNO__FORMAT; 12077 goto out; 12078 } 12079 12080 elf = elf_memory((void *)entry.data, entry.data_length); 12081 if (!elf) { 12082 pr_warn("elf: could not read elf file %s from %s: %s\n", file_name, archive_path, 12083 elf_errmsg(-1)); 12084 ret = -LIBBPF_ERRNO__LIBELF; 12085 goto out; 12086 } 12087 12088 ret = elf_find_func_offset(elf, file_name, func_name); 12089 if (ret > 0) { 12090 pr_debug("elf: symbol address match for %s of %s in %s: 0x%x + 0x%lx = 0x%lx\n", 12091 func_name, file_name, archive_path, entry.data_offset, ret, 12092 ret + entry.data_offset); 12093 ret += entry.data_offset; 12094 } 12095 elf_end(elf); 12096 12097 out: 12098 zip_archive_close(archive); 12099 return ret; 12100 } 12101 12102 static const char *arch_specific_lib_paths(void) 12103 { 12104 /* 12105 * Based on https://packages.debian.org/sid/libc6. 12106 * 12107 * Assume that the traced program is built for the same architecture 12108 * as libbpf, which should cover the vast majority of cases. 12109 */ 12110 #if defined(__x86_64__) 12111 return "/lib/x86_64-linux-gnu"; 12112 #elif defined(__i386__) 12113 return "/lib/i386-linux-gnu"; 12114 #elif defined(__s390x__) 12115 return "/lib/s390x-linux-gnu"; 12116 #elif defined(__s390__) 12117 return "/lib/s390-linux-gnu"; 12118 #elif defined(__arm__) && defined(__SOFTFP__) 12119 return "/lib/arm-linux-gnueabi"; 12120 #elif defined(__arm__) && !defined(__SOFTFP__) 12121 return "/lib/arm-linux-gnueabihf"; 12122 #elif defined(__aarch64__) 12123 return "/lib/aarch64-linux-gnu"; 12124 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64 12125 return "/lib/mips64el-linux-gnuabi64"; 12126 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32 12127 return "/lib/mipsel-linux-gnu"; 12128 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 12129 return "/lib/powerpc64le-linux-gnu"; 12130 #elif defined(__sparc__) && defined(__arch64__) 12131 return "/lib/sparc64-linux-gnu"; 12132 #elif defined(__riscv) && __riscv_xlen == 64 12133 return "/lib/riscv64-linux-gnu"; 12134 #else 12135 return NULL; 12136 #endif 12137 } 12138 12139 /* Get full path to program/shared library. */ 12140 static int resolve_full_path(const char *file, char *result, size_t result_sz) 12141 { 12142 const char *search_paths[3] = {}; 12143 int i, perm; 12144 12145 if (str_has_sfx(file, ".so") || strstr(file, ".so.")) { 12146 search_paths[0] = getenv("LD_LIBRARY_PATH"); 12147 search_paths[1] = "/usr/lib64:/usr/lib"; 12148 search_paths[2] = arch_specific_lib_paths(); 12149 perm = R_OK; 12150 } else { 12151 search_paths[0] = getenv("PATH"); 12152 search_paths[1] = "/usr/bin:/usr/sbin"; 12153 perm = R_OK | X_OK; 12154 } 12155 12156 for (i = 0; i < ARRAY_SIZE(search_paths); i++) { 12157 const char *s; 12158 12159 if (!search_paths[i]) 12160 continue; 12161 for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) { 12162 char *next_path; 12163 int seg_len; 12164 12165 if (s[0] == ':') 12166 s++; 12167 next_path = strchr(s, ':'); 12168 seg_len = next_path ? next_path - s : strlen(s); 12169 if (!seg_len) 12170 continue; 12171 snprintf(result, result_sz, "%.*s/%s", seg_len, s, file); 12172 /* ensure it has required permissions */ 12173 if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0) 12174 continue; 12175 pr_debug("resolved '%s' to '%s'\n", file, result); 12176 return 0; 12177 } 12178 } 12179 return -ENOENT; 12180 } 12181 12182 struct bpf_link * 12183 bpf_program__attach_uprobe_multi(const struct bpf_program *prog, 12184 pid_t pid, 12185 const char *path, 12186 const char *func_pattern, 12187 const struct bpf_uprobe_multi_opts *opts) 12188 { 12189 const unsigned long *ref_ctr_offsets = NULL, *offsets = NULL; 12190 LIBBPF_OPTS(bpf_link_create_opts, lopts); 12191 unsigned long *resolved_offsets = NULL; 12192 enum bpf_attach_type attach_type; 12193 int err = 0, link_fd, prog_fd; 12194 struct bpf_link *link = NULL; 12195 char full_path[PATH_MAX]; 12196 bool retprobe, session; 12197 const __u64 *cookies; 12198 const char **syms; 12199 size_t cnt; 12200 12201 if (!OPTS_VALID(opts, bpf_uprobe_multi_opts)) 12202 return libbpf_err_ptr(-EINVAL); 12203 12204 prog_fd = bpf_program__fd(prog); 12205 if (prog_fd < 0) { 12206 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n", 12207 prog->name); 12208 return libbpf_err_ptr(-EINVAL); 12209 } 12210 12211 syms = OPTS_GET(opts, syms, NULL); 12212 offsets = OPTS_GET(opts, offsets, NULL); 12213 ref_ctr_offsets = OPTS_GET(opts, ref_ctr_offsets, NULL); 12214 cookies = OPTS_GET(opts, cookies, NULL); 12215 cnt = OPTS_GET(opts, cnt, 0); 12216 retprobe = OPTS_GET(opts, retprobe, false); 12217 session = OPTS_GET(opts, session, false); 12218 12219 /* 12220 * User can specify 2 mutually exclusive set of inputs: 12221 * 12222 * 1) use only path/func_pattern/pid arguments 12223 * 12224 * 2) use path/pid with allowed combinations of: 12225 * syms/offsets/ref_ctr_offsets/cookies/cnt 12226 * 12227 * - syms and offsets are mutually exclusive 12228 * - ref_ctr_offsets and cookies are optional 12229 * 12230 * Any other usage results in error. 12231 */ 12232 12233 if (!path) 12234 return libbpf_err_ptr(-EINVAL); 12235 if (!func_pattern && cnt == 0) 12236 return libbpf_err_ptr(-EINVAL); 12237 12238 if (func_pattern) { 12239 if (syms || offsets || ref_ctr_offsets || cookies || cnt) 12240 return libbpf_err_ptr(-EINVAL); 12241 } else { 12242 if (!!syms == !!offsets) 12243 return libbpf_err_ptr(-EINVAL); 12244 } 12245 12246 if (retprobe && session) 12247 return libbpf_err_ptr(-EINVAL); 12248 12249 if (func_pattern) { 12250 if (!strchr(path, '/')) { 12251 err = resolve_full_path(path, full_path, sizeof(full_path)); 12252 if (err) { 12253 pr_warn("prog '%s': failed to resolve full path for '%s': %s\n", 12254 prog->name, path, errstr(err)); 12255 return libbpf_err_ptr(err); 12256 } 12257 path = full_path; 12258 } 12259 12260 err = elf_resolve_pattern_offsets(path, func_pattern, 12261 &resolved_offsets, &cnt); 12262 if (err < 0) 12263 return libbpf_err_ptr(err); 12264 offsets = resolved_offsets; 12265 } else if (syms) { 12266 err = elf_resolve_syms_offsets(path, cnt, syms, &resolved_offsets, STT_FUNC); 12267 if (err < 0) 12268 return libbpf_err_ptr(err); 12269 offsets = resolved_offsets; 12270 } 12271 12272 attach_type = session ? BPF_TRACE_UPROBE_SESSION : BPF_TRACE_UPROBE_MULTI; 12273 12274 lopts.uprobe_multi.path = path; 12275 lopts.uprobe_multi.offsets = offsets; 12276 lopts.uprobe_multi.ref_ctr_offsets = ref_ctr_offsets; 12277 lopts.uprobe_multi.cookies = cookies; 12278 lopts.uprobe_multi.cnt = cnt; 12279 lopts.uprobe_multi.flags = retprobe ? BPF_F_UPROBE_MULTI_RETURN : 0; 12280 12281 if (pid == 0) 12282 pid = getpid(); 12283 if (pid > 0) 12284 lopts.uprobe_multi.pid = pid; 12285 12286 link = calloc(1, sizeof(*link)); 12287 if (!link) { 12288 err = -ENOMEM; 12289 goto error; 12290 } 12291 link->detach = &bpf_link__detach_fd; 12292 12293 link_fd = bpf_link_create(prog_fd, 0, attach_type, &lopts); 12294 if (link_fd < 0) { 12295 err = -errno; 12296 pr_warn("prog '%s': failed to attach multi-uprobe: %s\n", 12297 prog->name, errstr(err)); 12298 goto error; 12299 } 12300 link->fd = link_fd; 12301 free(resolved_offsets); 12302 return link; 12303 12304 error: 12305 free(resolved_offsets); 12306 free(link); 12307 return libbpf_err_ptr(err); 12308 } 12309 12310 LIBBPF_API struct bpf_link * 12311 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid, 12312 const char *binary_path, size_t func_offset, 12313 const struct bpf_uprobe_opts *opts) 12314 { 12315 const char *archive_path = NULL, *archive_sep = NULL; 12316 char *legacy_probe = NULL; 12317 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 12318 enum probe_attach_mode attach_mode; 12319 char full_path[PATH_MAX]; 12320 struct bpf_link *link; 12321 size_t ref_ctr_off; 12322 int pfd, err; 12323 bool retprobe, legacy; 12324 const char *func_name; 12325 12326 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 12327 return libbpf_err_ptr(-EINVAL); 12328 12329 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT); 12330 retprobe = OPTS_GET(opts, retprobe, false); 12331 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0); 12332 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 12333 12334 if (!binary_path) 12335 return libbpf_err_ptr(-EINVAL); 12336 12337 /* Check if "binary_path" refers to an archive. */ 12338 archive_sep = strstr(binary_path, "!/"); 12339 if (archive_sep) { 12340 full_path[0] = '\0'; 12341 libbpf_strlcpy(full_path, binary_path, 12342 min(sizeof(full_path), (size_t)(archive_sep - binary_path + 1))); 12343 archive_path = full_path; 12344 binary_path = archive_sep + 2; 12345 } else if (!strchr(binary_path, '/')) { 12346 err = resolve_full_path(binary_path, full_path, sizeof(full_path)); 12347 if (err) { 12348 pr_warn("prog '%s': failed to resolve full path for '%s': %s\n", 12349 prog->name, binary_path, errstr(err)); 12350 return libbpf_err_ptr(err); 12351 } 12352 binary_path = full_path; 12353 } 12354 func_name = OPTS_GET(opts, func_name, NULL); 12355 if (func_name) { 12356 long sym_off; 12357 12358 if (archive_path) { 12359 sym_off = elf_find_func_offset_from_archive(archive_path, binary_path, 12360 func_name); 12361 binary_path = archive_path; 12362 } else { 12363 sym_off = elf_find_func_offset_from_file(binary_path, func_name); 12364 } 12365 if (sym_off < 0) 12366 return libbpf_err_ptr(sym_off); 12367 func_offset += sym_off; 12368 } 12369 12370 legacy = determine_uprobe_perf_type() < 0; 12371 switch (attach_mode) { 12372 case PROBE_ATTACH_MODE_LEGACY: 12373 legacy = true; 12374 pe_opts.force_ioctl_attach = true; 12375 break; 12376 case PROBE_ATTACH_MODE_PERF: 12377 if (legacy) 12378 return libbpf_err_ptr(-ENOTSUP); 12379 pe_opts.force_ioctl_attach = true; 12380 break; 12381 case PROBE_ATTACH_MODE_LINK: 12382 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK)) 12383 return libbpf_err_ptr(-ENOTSUP); 12384 break; 12385 case PROBE_ATTACH_MODE_DEFAULT: 12386 break; 12387 default: 12388 return libbpf_err_ptr(-EINVAL); 12389 } 12390 12391 if (!legacy) { 12392 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path, 12393 func_offset, pid, ref_ctr_off); 12394 } else { 12395 char probe_name[MAX_EVENT_NAME_LEN]; 12396 12397 if (ref_ctr_off) 12398 return libbpf_err_ptr(-EINVAL); 12399 12400 gen_probe_legacy_event_name(probe_name, sizeof(probe_name), 12401 strrchr(binary_path, '/') ? : binary_path, 12402 func_offset); 12403 12404 legacy_probe = strdup(probe_name); 12405 if (!legacy_probe) 12406 return libbpf_err_ptr(-ENOMEM); 12407 12408 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe, 12409 binary_path, func_offset, pid); 12410 } 12411 if (pfd < 0) { 12412 err = -errno; 12413 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 12414 prog->name, retprobe ? "uretprobe" : "uprobe", 12415 binary_path, func_offset, 12416 errstr(err)); 12417 goto err_out; 12418 } 12419 12420 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 12421 err = libbpf_get_error(link); 12422 if (err) { 12423 close(pfd); 12424 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n", 12425 prog->name, retprobe ? "uretprobe" : "uprobe", 12426 binary_path, func_offset, 12427 errstr(err)); 12428 goto err_clean_legacy; 12429 } 12430 if (legacy) { 12431 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 12432 12433 perf_link->legacy_probe_name = legacy_probe; 12434 perf_link->legacy_is_kprobe = false; 12435 perf_link->legacy_is_retprobe = retprobe; 12436 } 12437 return link; 12438 12439 err_clean_legacy: 12440 if (legacy) 12441 remove_uprobe_event_legacy(legacy_probe, retprobe); 12442 err_out: 12443 free(legacy_probe); 12444 return libbpf_err_ptr(err); 12445 } 12446 12447 /* Format of u[ret]probe section definition supporting auto-attach: 12448 * u[ret]probe/binary:function[+offset] 12449 * 12450 * binary can be an absolute/relative path or a filename; the latter is resolved to a 12451 * full binary path via bpf_program__attach_uprobe_opts. 12452 * 12453 * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be 12454 * specified (and auto-attach is not possible) or the above format is specified for 12455 * auto-attach. 12456 */ 12457 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12458 { 12459 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts); 12460 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL, *func_off; 12461 int n, c, ret = -EINVAL; 12462 long offset = 0; 12463 12464 *link = NULL; 12465 12466 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]", 12467 &probe_type, &binary_path, &func_name); 12468 switch (n) { 12469 case 1: 12470 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */ 12471 ret = 0; 12472 break; 12473 case 2: 12474 pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n", 12475 prog->name, prog->sec_name); 12476 break; 12477 case 3: 12478 /* check if user specifies `+offset`, if yes, this should be 12479 * the last part of the string, make sure sscanf read to EOL 12480 */ 12481 func_off = strrchr(func_name, '+'); 12482 if (func_off) { 12483 n = sscanf(func_off, "+%li%n", &offset, &c); 12484 if (n == 1 && *(func_off + c) == '\0') 12485 func_off[0] = '\0'; 12486 else 12487 offset = 0; 12488 } 12489 opts.retprobe = strcmp(probe_type, "uretprobe") == 0 || 12490 strcmp(probe_type, "uretprobe.s") == 0; 12491 if (opts.retprobe && offset != 0) { 12492 pr_warn("prog '%s': uretprobes do not support offset specification\n", 12493 prog->name); 12494 break; 12495 } 12496 opts.func_name = func_name; 12497 *link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts); 12498 ret = libbpf_get_error(*link); 12499 break; 12500 default: 12501 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name, 12502 prog->sec_name); 12503 break; 12504 } 12505 free(probe_type); 12506 free(binary_path); 12507 free(func_name); 12508 12509 return ret; 12510 } 12511 12512 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog, 12513 bool retprobe, pid_t pid, 12514 const char *binary_path, 12515 size_t func_offset) 12516 { 12517 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe); 12518 12519 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts); 12520 } 12521 12522 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog, 12523 pid_t pid, const char *binary_path, 12524 const char *usdt_provider, const char *usdt_name, 12525 const struct bpf_usdt_opts *opts) 12526 { 12527 char resolved_path[512]; 12528 struct bpf_object *obj = prog->obj; 12529 struct bpf_link *link; 12530 __u64 usdt_cookie; 12531 int err; 12532 12533 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 12534 return libbpf_err_ptr(-EINVAL); 12535 12536 if (bpf_program__fd(prog) < 0) { 12537 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n", 12538 prog->name); 12539 return libbpf_err_ptr(-EINVAL); 12540 } 12541 12542 if (!binary_path) 12543 return libbpf_err_ptr(-EINVAL); 12544 12545 if (!strchr(binary_path, '/')) { 12546 err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path)); 12547 if (err) { 12548 pr_warn("prog '%s': failed to resolve full path for '%s': %s\n", 12549 prog->name, binary_path, errstr(err)); 12550 return libbpf_err_ptr(err); 12551 } 12552 binary_path = resolved_path; 12553 } 12554 12555 /* USDT manager is instantiated lazily on first USDT attach. It will 12556 * be destroyed together with BPF object in bpf_object__close(). 12557 */ 12558 if (IS_ERR(obj->usdt_man)) 12559 return libbpf_ptr(obj->usdt_man); 12560 if (!obj->usdt_man) { 12561 obj->usdt_man = usdt_manager_new(obj); 12562 if (IS_ERR(obj->usdt_man)) 12563 return libbpf_ptr(obj->usdt_man); 12564 } 12565 12566 usdt_cookie = OPTS_GET(opts, usdt_cookie, 0); 12567 link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path, 12568 usdt_provider, usdt_name, usdt_cookie); 12569 err = libbpf_get_error(link); 12570 if (err) 12571 return libbpf_err_ptr(err); 12572 return link; 12573 } 12574 12575 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12576 { 12577 char *path = NULL, *provider = NULL, *name = NULL; 12578 const char *sec_name; 12579 int n, err; 12580 12581 sec_name = bpf_program__section_name(prog); 12582 if (strcmp(sec_name, "usdt") == 0) { 12583 /* no auto-attach for just SEC("usdt") */ 12584 *link = NULL; 12585 return 0; 12586 } 12587 12588 n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name); 12589 if (n != 3) { 12590 pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n", 12591 sec_name); 12592 err = -EINVAL; 12593 } else { 12594 *link = bpf_program__attach_usdt(prog, -1 /* any process */, path, 12595 provider, name, NULL); 12596 err = libbpf_get_error(*link); 12597 } 12598 free(path); 12599 free(provider); 12600 free(name); 12601 return err; 12602 } 12603 12604 static int determine_tracepoint_id(const char *tp_category, 12605 const char *tp_name) 12606 { 12607 char file[PATH_MAX]; 12608 int ret; 12609 12610 ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id", 12611 tracefs_path(), tp_category, tp_name); 12612 if (ret < 0) 12613 return -errno; 12614 if (ret >= sizeof(file)) { 12615 pr_debug("tracepoint %s/%s path is too long\n", 12616 tp_category, tp_name); 12617 return -E2BIG; 12618 } 12619 return parse_uint_from_file(file, "%d\n"); 12620 } 12621 12622 static int perf_event_open_tracepoint(const char *tp_category, 12623 const char *tp_name) 12624 { 12625 const size_t attr_sz = sizeof(struct perf_event_attr); 12626 struct perf_event_attr attr; 12627 int tp_id, pfd, err; 12628 12629 tp_id = determine_tracepoint_id(tp_category, tp_name); 12630 if (tp_id < 0) { 12631 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 12632 tp_category, tp_name, 12633 errstr(tp_id)); 12634 return tp_id; 12635 } 12636 12637 memset(&attr, 0, attr_sz); 12638 attr.type = PERF_TYPE_TRACEPOINT; 12639 attr.size = attr_sz; 12640 attr.config = tp_id; 12641 12642 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 12643 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 12644 if (pfd < 0) { 12645 err = -errno; 12646 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 12647 tp_category, tp_name, 12648 errstr(err)); 12649 return err; 12650 } 12651 return pfd; 12652 } 12653 12654 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog, 12655 const char *tp_category, 12656 const char *tp_name, 12657 const struct bpf_tracepoint_opts *opts) 12658 { 12659 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 12660 struct bpf_link *link; 12661 int pfd, err; 12662 12663 if (!OPTS_VALID(opts, bpf_tracepoint_opts)) 12664 return libbpf_err_ptr(-EINVAL); 12665 12666 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 12667 12668 pfd = perf_event_open_tracepoint(tp_category, tp_name); 12669 if (pfd < 0) { 12670 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 12671 prog->name, tp_category, tp_name, 12672 errstr(pfd)); 12673 return libbpf_err_ptr(pfd); 12674 } 12675 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 12676 err = libbpf_get_error(link); 12677 if (err) { 12678 close(pfd); 12679 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n", 12680 prog->name, tp_category, tp_name, 12681 errstr(err)); 12682 return libbpf_err_ptr(err); 12683 } 12684 return link; 12685 } 12686 12687 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog, 12688 const char *tp_category, 12689 const char *tp_name) 12690 { 12691 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL); 12692 } 12693 12694 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12695 { 12696 char *sec_name, *tp_cat, *tp_name; 12697 12698 *link = NULL; 12699 12700 /* no auto-attach for SEC("tp") or SEC("tracepoint") */ 12701 if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0) 12702 return 0; 12703 12704 sec_name = strdup(prog->sec_name); 12705 if (!sec_name) 12706 return -ENOMEM; 12707 12708 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */ 12709 if (str_has_pfx(prog->sec_name, "tp/")) 12710 tp_cat = sec_name + sizeof("tp/") - 1; 12711 else 12712 tp_cat = sec_name + sizeof("tracepoint/") - 1; 12713 tp_name = strchr(tp_cat, '/'); 12714 if (!tp_name) { 12715 free(sec_name); 12716 return -EINVAL; 12717 } 12718 *tp_name = '\0'; 12719 tp_name++; 12720 12721 *link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 12722 free(sec_name); 12723 return libbpf_get_error(*link); 12724 } 12725 12726 struct bpf_link * 12727 bpf_program__attach_raw_tracepoint_opts(const struct bpf_program *prog, 12728 const char *tp_name, 12729 struct bpf_raw_tracepoint_opts *opts) 12730 { 12731 LIBBPF_OPTS(bpf_raw_tp_opts, raw_opts); 12732 struct bpf_link *link; 12733 int prog_fd, pfd; 12734 12735 if (!OPTS_VALID(opts, bpf_raw_tracepoint_opts)) 12736 return libbpf_err_ptr(-EINVAL); 12737 12738 prog_fd = bpf_program__fd(prog); 12739 if (prog_fd < 0) { 12740 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12741 return libbpf_err_ptr(-EINVAL); 12742 } 12743 12744 link = calloc(1, sizeof(*link)); 12745 if (!link) 12746 return libbpf_err_ptr(-ENOMEM); 12747 link->detach = &bpf_link__detach_fd; 12748 12749 raw_opts.tp_name = tp_name; 12750 raw_opts.cookie = OPTS_GET(opts, cookie, 0); 12751 pfd = bpf_raw_tracepoint_open_opts(prog_fd, &raw_opts); 12752 if (pfd < 0) { 12753 pfd = -errno; 12754 free(link); 12755 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n", 12756 prog->name, tp_name, errstr(pfd)); 12757 return libbpf_err_ptr(pfd); 12758 } 12759 link->fd = pfd; 12760 return link; 12761 } 12762 12763 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog, 12764 const char *tp_name) 12765 { 12766 return bpf_program__attach_raw_tracepoint_opts(prog, tp_name, NULL); 12767 } 12768 12769 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12770 { 12771 static const char *const prefixes[] = { 12772 "raw_tp", 12773 "raw_tracepoint", 12774 "raw_tp.w", 12775 "raw_tracepoint.w", 12776 }; 12777 size_t i; 12778 const char *tp_name = NULL; 12779 12780 *link = NULL; 12781 12782 for (i = 0; i < ARRAY_SIZE(prefixes); i++) { 12783 size_t pfx_len; 12784 12785 if (!str_has_pfx(prog->sec_name, prefixes[i])) 12786 continue; 12787 12788 pfx_len = strlen(prefixes[i]); 12789 /* no auto-attach case of, e.g., SEC("raw_tp") */ 12790 if (prog->sec_name[pfx_len] == '\0') 12791 return 0; 12792 12793 if (prog->sec_name[pfx_len] != '/') 12794 continue; 12795 12796 tp_name = prog->sec_name + pfx_len + 1; 12797 break; 12798 } 12799 12800 if (!tp_name) { 12801 pr_warn("prog '%s': invalid section name '%s'\n", 12802 prog->name, prog->sec_name); 12803 return -EINVAL; 12804 } 12805 12806 *link = bpf_program__attach_raw_tracepoint(prog, tp_name); 12807 return libbpf_get_error(*link); 12808 } 12809 12810 /* Common logic for all BPF program types that attach to a btf_id */ 12811 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog, 12812 const struct bpf_trace_opts *opts) 12813 { 12814 LIBBPF_OPTS(bpf_link_create_opts, link_opts); 12815 struct bpf_link *link; 12816 int prog_fd, pfd; 12817 12818 if (!OPTS_VALID(opts, bpf_trace_opts)) 12819 return libbpf_err_ptr(-EINVAL); 12820 12821 prog_fd = bpf_program__fd(prog); 12822 if (prog_fd < 0) { 12823 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12824 return libbpf_err_ptr(-EINVAL); 12825 } 12826 12827 link = calloc(1, sizeof(*link)); 12828 if (!link) 12829 return libbpf_err_ptr(-ENOMEM); 12830 link->detach = &bpf_link__detach_fd; 12831 12832 /* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */ 12833 link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0); 12834 pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts); 12835 if (pfd < 0) { 12836 pfd = -errno; 12837 free(link); 12838 pr_warn("prog '%s': failed to attach: %s\n", 12839 prog->name, errstr(pfd)); 12840 return libbpf_err_ptr(pfd); 12841 } 12842 link->fd = pfd; 12843 return link; 12844 } 12845 12846 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog) 12847 { 12848 return bpf_program__attach_btf_id(prog, NULL); 12849 } 12850 12851 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog, 12852 const struct bpf_trace_opts *opts) 12853 { 12854 return bpf_program__attach_btf_id(prog, opts); 12855 } 12856 12857 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog) 12858 { 12859 return bpf_program__attach_btf_id(prog, NULL); 12860 } 12861 12862 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12863 { 12864 *link = bpf_program__attach_trace(prog); 12865 return libbpf_get_error(*link); 12866 } 12867 12868 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12869 { 12870 *link = bpf_program__attach_lsm(prog); 12871 return libbpf_get_error(*link); 12872 } 12873 12874 static struct bpf_link * 12875 bpf_program_attach_fd(const struct bpf_program *prog, 12876 int target_fd, const char *target_name, 12877 const struct bpf_link_create_opts *opts) 12878 { 12879 enum bpf_attach_type attach_type; 12880 struct bpf_link *link; 12881 int prog_fd, link_fd; 12882 12883 prog_fd = bpf_program__fd(prog); 12884 if (prog_fd < 0) { 12885 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12886 return libbpf_err_ptr(-EINVAL); 12887 } 12888 12889 link = calloc(1, sizeof(*link)); 12890 if (!link) 12891 return libbpf_err_ptr(-ENOMEM); 12892 link->detach = &bpf_link__detach_fd; 12893 12894 attach_type = bpf_program__expected_attach_type(prog); 12895 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, opts); 12896 if (link_fd < 0) { 12897 link_fd = -errno; 12898 free(link); 12899 pr_warn("prog '%s': failed to attach to %s: %s\n", 12900 prog->name, target_name, 12901 errstr(link_fd)); 12902 return libbpf_err_ptr(link_fd); 12903 } 12904 link->fd = link_fd; 12905 return link; 12906 } 12907 12908 struct bpf_link * 12909 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd) 12910 { 12911 return bpf_program_attach_fd(prog, cgroup_fd, "cgroup", NULL); 12912 } 12913 12914 struct bpf_link * 12915 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd) 12916 { 12917 return bpf_program_attach_fd(prog, netns_fd, "netns", NULL); 12918 } 12919 12920 struct bpf_link * 12921 bpf_program__attach_sockmap(const struct bpf_program *prog, int map_fd) 12922 { 12923 return bpf_program_attach_fd(prog, map_fd, "sockmap", NULL); 12924 } 12925 12926 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex) 12927 { 12928 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 12929 return bpf_program_attach_fd(prog, ifindex, "xdp", NULL); 12930 } 12931 12932 struct bpf_link * 12933 bpf_program__attach_cgroup_opts(const struct bpf_program *prog, int cgroup_fd, 12934 const struct bpf_cgroup_opts *opts) 12935 { 12936 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 12937 __u32 relative_id; 12938 int relative_fd; 12939 12940 if (!OPTS_VALID(opts, bpf_cgroup_opts)) 12941 return libbpf_err_ptr(-EINVAL); 12942 12943 relative_id = OPTS_GET(opts, relative_id, 0); 12944 relative_fd = OPTS_GET(opts, relative_fd, 0); 12945 12946 if (relative_fd && relative_id) { 12947 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n", 12948 prog->name); 12949 return libbpf_err_ptr(-EINVAL); 12950 } 12951 12952 link_create_opts.cgroup.expected_revision = OPTS_GET(opts, expected_revision, 0); 12953 link_create_opts.cgroup.relative_fd = relative_fd; 12954 link_create_opts.cgroup.relative_id = relative_id; 12955 link_create_opts.flags = OPTS_GET(opts, flags, 0); 12956 12957 return bpf_program_attach_fd(prog, cgroup_fd, "cgroup", &link_create_opts); 12958 } 12959 12960 struct bpf_link * 12961 bpf_program__attach_tcx(const struct bpf_program *prog, int ifindex, 12962 const struct bpf_tcx_opts *opts) 12963 { 12964 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 12965 __u32 relative_id; 12966 int relative_fd; 12967 12968 if (!OPTS_VALID(opts, bpf_tcx_opts)) 12969 return libbpf_err_ptr(-EINVAL); 12970 12971 relative_id = OPTS_GET(opts, relative_id, 0); 12972 relative_fd = OPTS_GET(opts, relative_fd, 0); 12973 12974 /* validate we don't have unexpected combinations of non-zero fields */ 12975 if (!ifindex) { 12976 pr_warn("prog '%s': target netdevice ifindex cannot be zero\n", 12977 prog->name); 12978 return libbpf_err_ptr(-EINVAL); 12979 } 12980 if (relative_fd && relative_id) { 12981 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n", 12982 prog->name); 12983 return libbpf_err_ptr(-EINVAL); 12984 } 12985 12986 link_create_opts.tcx.expected_revision = OPTS_GET(opts, expected_revision, 0); 12987 link_create_opts.tcx.relative_fd = relative_fd; 12988 link_create_opts.tcx.relative_id = relative_id; 12989 link_create_opts.flags = OPTS_GET(opts, flags, 0); 12990 12991 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 12992 return bpf_program_attach_fd(prog, ifindex, "tcx", &link_create_opts); 12993 } 12994 12995 struct bpf_link * 12996 bpf_program__attach_netkit(const struct bpf_program *prog, int ifindex, 12997 const struct bpf_netkit_opts *opts) 12998 { 12999 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 13000 __u32 relative_id; 13001 int relative_fd; 13002 13003 if (!OPTS_VALID(opts, bpf_netkit_opts)) 13004 return libbpf_err_ptr(-EINVAL); 13005 13006 relative_id = OPTS_GET(opts, relative_id, 0); 13007 relative_fd = OPTS_GET(opts, relative_fd, 0); 13008 13009 /* validate we don't have unexpected combinations of non-zero fields */ 13010 if (!ifindex) { 13011 pr_warn("prog '%s': target netdevice ifindex cannot be zero\n", 13012 prog->name); 13013 return libbpf_err_ptr(-EINVAL); 13014 } 13015 if (relative_fd && relative_id) { 13016 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n", 13017 prog->name); 13018 return libbpf_err_ptr(-EINVAL); 13019 } 13020 13021 link_create_opts.netkit.expected_revision = OPTS_GET(opts, expected_revision, 0); 13022 link_create_opts.netkit.relative_fd = relative_fd; 13023 link_create_opts.netkit.relative_id = relative_id; 13024 link_create_opts.flags = OPTS_GET(opts, flags, 0); 13025 13026 return bpf_program_attach_fd(prog, ifindex, "netkit", &link_create_opts); 13027 } 13028 13029 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog, 13030 int target_fd, 13031 const char *attach_func_name) 13032 { 13033 int btf_id; 13034 13035 if (!!target_fd != !!attach_func_name) { 13036 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n", 13037 prog->name); 13038 return libbpf_err_ptr(-EINVAL); 13039 } 13040 13041 if (prog->type != BPF_PROG_TYPE_EXT) { 13042 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace\n", 13043 prog->name); 13044 return libbpf_err_ptr(-EINVAL); 13045 } 13046 13047 if (target_fd) { 13048 LIBBPF_OPTS(bpf_link_create_opts, target_opts); 13049 13050 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd, prog->obj->token_fd); 13051 if (btf_id < 0) 13052 return libbpf_err_ptr(btf_id); 13053 13054 target_opts.target_btf_id = btf_id; 13055 13056 return bpf_program_attach_fd(prog, target_fd, "freplace", 13057 &target_opts); 13058 } else { 13059 /* no target, so use raw_tracepoint_open for compatibility 13060 * with old kernels 13061 */ 13062 return bpf_program__attach_trace(prog); 13063 } 13064 } 13065 13066 struct bpf_link * 13067 bpf_program__attach_iter(const struct bpf_program *prog, 13068 const struct bpf_iter_attach_opts *opts) 13069 { 13070 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 13071 struct bpf_link *link; 13072 int prog_fd, link_fd; 13073 __u32 target_fd = 0; 13074 13075 if (!OPTS_VALID(opts, bpf_iter_attach_opts)) 13076 return libbpf_err_ptr(-EINVAL); 13077 13078 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0); 13079 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0); 13080 13081 prog_fd = bpf_program__fd(prog); 13082 if (prog_fd < 0) { 13083 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 13084 return libbpf_err_ptr(-EINVAL); 13085 } 13086 13087 link = calloc(1, sizeof(*link)); 13088 if (!link) 13089 return libbpf_err_ptr(-ENOMEM); 13090 link->detach = &bpf_link__detach_fd; 13091 13092 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER, 13093 &link_create_opts); 13094 if (link_fd < 0) { 13095 link_fd = -errno; 13096 free(link); 13097 pr_warn("prog '%s': failed to attach to iterator: %s\n", 13098 prog->name, errstr(link_fd)); 13099 return libbpf_err_ptr(link_fd); 13100 } 13101 link->fd = link_fd; 13102 return link; 13103 } 13104 13105 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link) 13106 { 13107 *link = bpf_program__attach_iter(prog, NULL); 13108 return libbpf_get_error(*link); 13109 } 13110 13111 struct bpf_link *bpf_program__attach_netfilter(const struct bpf_program *prog, 13112 const struct bpf_netfilter_opts *opts) 13113 { 13114 LIBBPF_OPTS(bpf_link_create_opts, lopts); 13115 struct bpf_link *link; 13116 int prog_fd, link_fd; 13117 13118 if (!OPTS_VALID(opts, bpf_netfilter_opts)) 13119 return libbpf_err_ptr(-EINVAL); 13120 13121 prog_fd = bpf_program__fd(prog); 13122 if (prog_fd < 0) { 13123 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 13124 return libbpf_err_ptr(-EINVAL); 13125 } 13126 13127 link = calloc(1, sizeof(*link)); 13128 if (!link) 13129 return libbpf_err_ptr(-ENOMEM); 13130 13131 link->detach = &bpf_link__detach_fd; 13132 13133 lopts.netfilter.pf = OPTS_GET(opts, pf, 0); 13134 lopts.netfilter.hooknum = OPTS_GET(opts, hooknum, 0); 13135 lopts.netfilter.priority = OPTS_GET(opts, priority, 0); 13136 lopts.netfilter.flags = OPTS_GET(opts, flags, 0); 13137 13138 link_fd = bpf_link_create(prog_fd, 0, BPF_NETFILTER, &lopts); 13139 if (link_fd < 0) { 13140 link_fd = -errno; 13141 free(link); 13142 pr_warn("prog '%s': failed to attach to netfilter: %s\n", 13143 prog->name, errstr(link_fd)); 13144 return libbpf_err_ptr(link_fd); 13145 } 13146 link->fd = link_fd; 13147 13148 return link; 13149 } 13150 13151 struct bpf_link *bpf_program__attach(const struct bpf_program *prog) 13152 { 13153 struct bpf_link *link = NULL; 13154 int err; 13155 13156 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 13157 return libbpf_err_ptr(-EOPNOTSUPP); 13158 13159 if (bpf_program__fd(prog) < 0) { 13160 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n", 13161 prog->name); 13162 return libbpf_err_ptr(-EINVAL); 13163 } 13164 13165 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link); 13166 if (err) 13167 return libbpf_err_ptr(err); 13168 13169 /* When calling bpf_program__attach() explicitly, auto-attach support 13170 * is expected to work, so NULL returned link is considered an error. 13171 * This is different for skeleton's attach, see comment in 13172 * bpf_object__attach_skeleton(). 13173 */ 13174 if (!link) 13175 return libbpf_err_ptr(-EOPNOTSUPP); 13176 13177 return link; 13178 } 13179 13180 struct bpf_link_struct_ops { 13181 struct bpf_link link; 13182 int map_fd; 13183 }; 13184 13185 static int bpf_link__detach_struct_ops(struct bpf_link *link) 13186 { 13187 struct bpf_link_struct_ops *st_link; 13188 __u32 zero = 0; 13189 13190 st_link = container_of(link, struct bpf_link_struct_ops, link); 13191 13192 if (st_link->map_fd < 0) 13193 /* w/o a real link */ 13194 return bpf_map_delete_elem(link->fd, &zero); 13195 13196 return close(link->fd); 13197 } 13198 13199 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map) 13200 { 13201 struct bpf_link_struct_ops *link; 13202 __u32 zero = 0; 13203 int err, fd; 13204 13205 if (!bpf_map__is_struct_ops(map)) { 13206 pr_warn("map '%s': can't attach non-struct_ops map\n", map->name); 13207 return libbpf_err_ptr(-EINVAL); 13208 } 13209 13210 if (map->fd < 0) { 13211 pr_warn("map '%s': can't attach BPF map without FD (was it created?)\n", map->name); 13212 return libbpf_err_ptr(-EINVAL); 13213 } 13214 13215 link = calloc(1, sizeof(*link)); 13216 if (!link) 13217 return libbpf_err_ptr(-EINVAL); 13218 13219 /* kern_vdata should be prepared during the loading phase. */ 13220 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0); 13221 /* It can be EBUSY if the map has been used to create or 13222 * update a link before. We don't allow updating the value of 13223 * a struct_ops once it is set. That ensures that the value 13224 * never changed. So, it is safe to skip EBUSY. 13225 */ 13226 if (err && (!(map->def.map_flags & BPF_F_LINK) || err != -EBUSY)) { 13227 free(link); 13228 return libbpf_err_ptr(err); 13229 } 13230 13231 link->link.detach = bpf_link__detach_struct_ops; 13232 13233 if (!(map->def.map_flags & BPF_F_LINK)) { 13234 /* w/o a real link */ 13235 link->link.fd = map->fd; 13236 link->map_fd = -1; 13237 return &link->link; 13238 } 13239 13240 fd = bpf_link_create(map->fd, 0, BPF_STRUCT_OPS, NULL); 13241 if (fd < 0) { 13242 free(link); 13243 return libbpf_err_ptr(fd); 13244 } 13245 13246 link->link.fd = fd; 13247 link->map_fd = map->fd; 13248 13249 return &link->link; 13250 } 13251 13252 /* 13253 * Swap the back struct_ops of a link with a new struct_ops map. 13254 */ 13255 int bpf_link__update_map(struct bpf_link *link, const struct bpf_map *map) 13256 { 13257 struct bpf_link_struct_ops *st_ops_link; 13258 __u32 zero = 0; 13259 int err; 13260 13261 if (!bpf_map__is_struct_ops(map)) 13262 return libbpf_err(-EINVAL); 13263 13264 if (map->fd < 0) { 13265 pr_warn("map '%s': can't use BPF map without FD (was it created?)\n", map->name); 13266 return libbpf_err(-EINVAL); 13267 } 13268 13269 st_ops_link = container_of(link, struct bpf_link_struct_ops, link); 13270 /* Ensure the type of a link is correct */ 13271 if (st_ops_link->map_fd < 0) 13272 return libbpf_err(-EINVAL); 13273 13274 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0); 13275 /* It can be EBUSY if the map has been used to create or 13276 * update a link before. We don't allow updating the value of 13277 * a struct_ops once it is set. That ensures that the value 13278 * never changed. So, it is safe to skip EBUSY. 13279 */ 13280 if (err && err != -EBUSY) 13281 return err; 13282 13283 err = bpf_link_update(link->fd, map->fd, NULL); 13284 if (err < 0) 13285 return err; 13286 13287 st_ops_link->map_fd = map->fd; 13288 13289 return 0; 13290 } 13291 13292 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr, 13293 void *private_data); 13294 13295 static enum bpf_perf_event_ret 13296 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 13297 void **copy_mem, size_t *copy_size, 13298 bpf_perf_event_print_t fn, void *private_data) 13299 { 13300 struct perf_event_mmap_page *header = mmap_mem; 13301 __u64 data_head = ring_buffer_read_head(header); 13302 __u64 data_tail = header->data_tail; 13303 void *base = ((__u8 *)header) + page_size; 13304 int ret = LIBBPF_PERF_EVENT_CONT; 13305 struct perf_event_header *ehdr; 13306 size_t ehdr_size; 13307 13308 while (data_head != data_tail) { 13309 ehdr = base + (data_tail & (mmap_size - 1)); 13310 ehdr_size = ehdr->size; 13311 13312 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 13313 void *copy_start = ehdr; 13314 size_t len_first = base + mmap_size - copy_start; 13315 size_t len_secnd = ehdr_size - len_first; 13316 13317 if (*copy_size < ehdr_size) { 13318 free(*copy_mem); 13319 *copy_mem = malloc(ehdr_size); 13320 if (!*copy_mem) { 13321 *copy_size = 0; 13322 ret = LIBBPF_PERF_EVENT_ERROR; 13323 break; 13324 } 13325 *copy_size = ehdr_size; 13326 } 13327 13328 memcpy(*copy_mem, copy_start, len_first); 13329 memcpy(*copy_mem + len_first, base, len_secnd); 13330 ehdr = *copy_mem; 13331 } 13332 13333 ret = fn(ehdr, private_data); 13334 data_tail += ehdr_size; 13335 if (ret != LIBBPF_PERF_EVENT_CONT) 13336 break; 13337 } 13338 13339 ring_buffer_write_tail(header, data_tail); 13340 return libbpf_err(ret); 13341 } 13342 13343 struct perf_buffer; 13344 13345 struct perf_buffer_params { 13346 struct perf_event_attr *attr; 13347 /* if event_cb is specified, it takes precendence */ 13348 perf_buffer_event_fn event_cb; 13349 /* sample_cb and lost_cb are higher-level common-case callbacks */ 13350 perf_buffer_sample_fn sample_cb; 13351 perf_buffer_lost_fn lost_cb; 13352 void *ctx; 13353 int cpu_cnt; 13354 int *cpus; 13355 int *map_keys; 13356 }; 13357 13358 struct perf_cpu_buf { 13359 struct perf_buffer *pb; 13360 void *base; /* mmap()'ed memory */ 13361 void *buf; /* for reconstructing segmented data */ 13362 size_t buf_size; 13363 int fd; 13364 int cpu; 13365 int map_key; 13366 }; 13367 13368 struct perf_buffer { 13369 perf_buffer_event_fn event_cb; 13370 perf_buffer_sample_fn sample_cb; 13371 perf_buffer_lost_fn lost_cb; 13372 void *ctx; /* passed into callbacks */ 13373 13374 size_t page_size; 13375 size_t mmap_size; 13376 struct perf_cpu_buf **cpu_bufs; 13377 struct epoll_event *events; 13378 int cpu_cnt; /* number of allocated CPU buffers */ 13379 int epoll_fd; /* perf event FD */ 13380 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 13381 }; 13382 13383 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 13384 struct perf_cpu_buf *cpu_buf) 13385 { 13386 if (!cpu_buf) 13387 return; 13388 if (cpu_buf->base && 13389 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 13390 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 13391 if (cpu_buf->fd >= 0) { 13392 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 13393 close(cpu_buf->fd); 13394 } 13395 free(cpu_buf->buf); 13396 free(cpu_buf); 13397 } 13398 13399 void perf_buffer__free(struct perf_buffer *pb) 13400 { 13401 int i; 13402 13403 if (IS_ERR_OR_NULL(pb)) 13404 return; 13405 if (pb->cpu_bufs) { 13406 for (i = 0; i < pb->cpu_cnt; i++) { 13407 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 13408 13409 if (!cpu_buf) 13410 continue; 13411 13412 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 13413 perf_buffer__free_cpu_buf(pb, cpu_buf); 13414 } 13415 free(pb->cpu_bufs); 13416 } 13417 if (pb->epoll_fd >= 0) 13418 close(pb->epoll_fd); 13419 free(pb->events); 13420 free(pb); 13421 } 13422 13423 static struct perf_cpu_buf * 13424 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 13425 int cpu, int map_key) 13426 { 13427 struct perf_cpu_buf *cpu_buf; 13428 int err; 13429 13430 cpu_buf = calloc(1, sizeof(*cpu_buf)); 13431 if (!cpu_buf) 13432 return ERR_PTR(-ENOMEM); 13433 13434 cpu_buf->pb = pb; 13435 cpu_buf->cpu = cpu; 13436 cpu_buf->map_key = map_key; 13437 13438 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 13439 -1, PERF_FLAG_FD_CLOEXEC); 13440 if (cpu_buf->fd < 0) { 13441 err = -errno; 13442 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 13443 cpu, errstr(err)); 13444 goto error; 13445 } 13446 13447 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 13448 PROT_READ | PROT_WRITE, MAP_SHARED, 13449 cpu_buf->fd, 0); 13450 if (cpu_buf->base == MAP_FAILED) { 13451 cpu_buf->base = NULL; 13452 err = -errno; 13453 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 13454 cpu, errstr(err)); 13455 goto error; 13456 } 13457 13458 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 13459 err = -errno; 13460 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 13461 cpu, errstr(err)); 13462 goto error; 13463 } 13464 13465 return cpu_buf; 13466 13467 error: 13468 perf_buffer__free_cpu_buf(pb, cpu_buf); 13469 return (struct perf_cpu_buf *)ERR_PTR(err); 13470 } 13471 13472 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 13473 struct perf_buffer_params *p); 13474 13475 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt, 13476 perf_buffer_sample_fn sample_cb, 13477 perf_buffer_lost_fn lost_cb, 13478 void *ctx, 13479 const struct perf_buffer_opts *opts) 13480 { 13481 const size_t attr_sz = sizeof(struct perf_event_attr); 13482 struct perf_buffer_params p = {}; 13483 struct perf_event_attr attr; 13484 __u32 sample_period; 13485 13486 if (!OPTS_VALID(opts, perf_buffer_opts)) 13487 return libbpf_err_ptr(-EINVAL); 13488 13489 sample_period = OPTS_GET(opts, sample_period, 1); 13490 if (!sample_period) 13491 sample_period = 1; 13492 13493 memset(&attr, 0, attr_sz); 13494 attr.size = attr_sz; 13495 attr.config = PERF_COUNT_SW_BPF_OUTPUT; 13496 attr.type = PERF_TYPE_SOFTWARE; 13497 attr.sample_type = PERF_SAMPLE_RAW; 13498 attr.wakeup_events = sample_period; 13499 13500 p.attr = &attr; 13501 p.sample_cb = sample_cb; 13502 p.lost_cb = lost_cb; 13503 p.ctx = ctx; 13504 13505 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 13506 } 13507 13508 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt, 13509 struct perf_event_attr *attr, 13510 perf_buffer_event_fn event_cb, void *ctx, 13511 const struct perf_buffer_raw_opts *opts) 13512 { 13513 struct perf_buffer_params p = {}; 13514 13515 if (!attr) 13516 return libbpf_err_ptr(-EINVAL); 13517 13518 if (!OPTS_VALID(opts, perf_buffer_raw_opts)) 13519 return libbpf_err_ptr(-EINVAL); 13520 13521 p.attr = attr; 13522 p.event_cb = event_cb; 13523 p.ctx = ctx; 13524 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0); 13525 p.cpus = OPTS_GET(opts, cpus, NULL); 13526 p.map_keys = OPTS_GET(opts, map_keys, NULL); 13527 13528 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 13529 } 13530 13531 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 13532 struct perf_buffer_params *p) 13533 { 13534 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 13535 struct bpf_map_info map; 13536 struct perf_buffer *pb; 13537 bool *online = NULL; 13538 __u32 map_info_len; 13539 int err, i, j, n; 13540 13541 if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) { 13542 pr_warn("page count should be power of two, but is %zu\n", 13543 page_cnt); 13544 return ERR_PTR(-EINVAL); 13545 } 13546 13547 /* best-effort sanity checks */ 13548 memset(&map, 0, sizeof(map)); 13549 map_info_len = sizeof(map); 13550 err = bpf_map_get_info_by_fd(map_fd, &map, &map_info_len); 13551 if (err) { 13552 err = -errno; 13553 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return 13554 * -EBADFD, -EFAULT, or -E2BIG on real error 13555 */ 13556 if (err != -EINVAL) { 13557 pr_warn("failed to get map info for map FD %d: %s\n", 13558 map_fd, errstr(err)); 13559 return ERR_PTR(err); 13560 } 13561 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n", 13562 map_fd); 13563 } else { 13564 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 13565 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 13566 map.name); 13567 return ERR_PTR(-EINVAL); 13568 } 13569 } 13570 13571 pb = calloc(1, sizeof(*pb)); 13572 if (!pb) 13573 return ERR_PTR(-ENOMEM); 13574 13575 pb->event_cb = p->event_cb; 13576 pb->sample_cb = p->sample_cb; 13577 pb->lost_cb = p->lost_cb; 13578 pb->ctx = p->ctx; 13579 13580 pb->page_size = getpagesize(); 13581 pb->mmap_size = pb->page_size * page_cnt; 13582 pb->map_fd = map_fd; 13583 13584 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 13585 if (pb->epoll_fd < 0) { 13586 err = -errno; 13587 pr_warn("failed to create epoll instance: %s\n", 13588 errstr(err)); 13589 goto error; 13590 } 13591 13592 if (p->cpu_cnt > 0) { 13593 pb->cpu_cnt = p->cpu_cnt; 13594 } else { 13595 pb->cpu_cnt = libbpf_num_possible_cpus(); 13596 if (pb->cpu_cnt < 0) { 13597 err = pb->cpu_cnt; 13598 goto error; 13599 } 13600 if (map.max_entries && map.max_entries < pb->cpu_cnt) 13601 pb->cpu_cnt = map.max_entries; 13602 } 13603 13604 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 13605 if (!pb->events) { 13606 err = -ENOMEM; 13607 pr_warn("failed to allocate events: out of memory\n"); 13608 goto error; 13609 } 13610 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 13611 if (!pb->cpu_bufs) { 13612 err = -ENOMEM; 13613 pr_warn("failed to allocate buffers: out of memory\n"); 13614 goto error; 13615 } 13616 13617 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 13618 if (err) { 13619 pr_warn("failed to get online CPU mask: %s\n", errstr(err)); 13620 goto error; 13621 } 13622 13623 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 13624 struct perf_cpu_buf *cpu_buf; 13625 int cpu, map_key; 13626 13627 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 13628 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 13629 13630 /* in case user didn't explicitly requested particular CPUs to 13631 * be attached to, skip offline/not present CPUs 13632 */ 13633 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 13634 continue; 13635 13636 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 13637 if (IS_ERR(cpu_buf)) { 13638 err = PTR_ERR(cpu_buf); 13639 goto error; 13640 } 13641 13642 pb->cpu_bufs[j] = cpu_buf; 13643 13644 err = bpf_map_update_elem(pb->map_fd, &map_key, 13645 &cpu_buf->fd, 0); 13646 if (err) { 13647 err = -errno; 13648 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 13649 cpu, map_key, cpu_buf->fd, 13650 errstr(err)); 13651 goto error; 13652 } 13653 13654 pb->events[j].events = EPOLLIN; 13655 pb->events[j].data.ptr = cpu_buf; 13656 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 13657 &pb->events[j]) < 0) { 13658 err = -errno; 13659 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 13660 cpu, cpu_buf->fd, 13661 errstr(err)); 13662 goto error; 13663 } 13664 j++; 13665 } 13666 pb->cpu_cnt = j; 13667 free(online); 13668 13669 return pb; 13670 13671 error: 13672 free(online); 13673 if (pb) 13674 perf_buffer__free(pb); 13675 return ERR_PTR(err); 13676 } 13677 13678 struct perf_sample_raw { 13679 struct perf_event_header header; 13680 uint32_t size; 13681 char data[]; 13682 }; 13683 13684 struct perf_sample_lost { 13685 struct perf_event_header header; 13686 uint64_t id; 13687 uint64_t lost; 13688 uint64_t sample_id; 13689 }; 13690 13691 static enum bpf_perf_event_ret 13692 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 13693 { 13694 struct perf_cpu_buf *cpu_buf = ctx; 13695 struct perf_buffer *pb = cpu_buf->pb; 13696 void *data = e; 13697 13698 /* user wants full control over parsing perf event */ 13699 if (pb->event_cb) 13700 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 13701 13702 switch (e->type) { 13703 case PERF_RECORD_SAMPLE: { 13704 struct perf_sample_raw *s = data; 13705 13706 if (pb->sample_cb) 13707 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 13708 break; 13709 } 13710 case PERF_RECORD_LOST: { 13711 struct perf_sample_lost *s = data; 13712 13713 if (pb->lost_cb) 13714 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 13715 break; 13716 } 13717 default: 13718 pr_warn("unknown perf sample type %d\n", e->type); 13719 return LIBBPF_PERF_EVENT_ERROR; 13720 } 13721 return LIBBPF_PERF_EVENT_CONT; 13722 } 13723 13724 static int perf_buffer__process_records(struct perf_buffer *pb, 13725 struct perf_cpu_buf *cpu_buf) 13726 { 13727 enum bpf_perf_event_ret ret; 13728 13729 ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size, 13730 pb->page_size, &cpu_buf->buf, 13731 &cpu_buf->buf_size, 13732 perf_buffer__process_record, cpu_buf); 13733 if (ret != LIBBPF_PERF_EVENT_CONT) 13734 return ret; 13735 return 0; 13736 } 13737 13738 int perf_buffer__epoll_fd(const struct perf_buffer *pb) 13739 { 13740 return pb->epoll_fd; 13741 } 13742 13743 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 13744 { 13745 int i, cnt, err; 13746 13747 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 13748 if (cnt < 0) 13749 return -errno; 13750 13751 for (i = 0; i < cnt; i++) { 13752 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 13753 13754 err = perf_buffer__process_records(pb, cpu_buf); 13755 if (err) { 13756 pr_warn("error while processing records: %s\n", errstr(err)); 13757 return libbpf_err(err); 13758 } 13759 } 13760 return cnt; 13761 } 13762 13763 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer 13764 * manager. 13765 */ 13766 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb) 13767 { 13768 return pb->cpu_cnt; 13769 } 13770 13771 /* 13772 * Return perf_event FD of a ring buffer in *buf_idx* slot of 13773 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using 13774 * select()/poll()/epoll() Linux syscalls. 13775 */ 13776 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx) 13777 { 13778 struct perf_cpu_buf *cpu_buf; 13779 13780 if (buf_idx >= pb->cpu_cnt) 13781 return libbpf_err(-EINVAL); 13782 13783 cpu_buf = pb->cpu_bufs[buf_idx]; 13784 if (!cpu_buf) 13785 return libbpf_err(-ENOENT); 13786 13787 return cpu_buf->fd; 13788 } 13789 13790 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size) 13791 { 13792 struct perf_cpu_buf *cpu_buf; 13793 13794 if (buf_idx >= pb->cpu_cnt) 13795 return libbpf_err(-EINVAL); 13796 13797 cpu_buf = pb->cpu_bufs[buf_idx]; 13798 if (!cpu_buf) 13799 return libbpf_err(-ENOENT); 13800 13801 *buf = cpu_buf->base; 13802 *buf_size = pb->mmap_size; 13803 return 0; 13804 } 13805 13806 /* 13807 * Consume data from perf ring buffer corresponding to slot *buf_idx* in 13808 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to 13809 * consume, do nothing and return success. 13810 * Returns: 13811 * - 0 on success; 13812 * - <0 on failure. 13813 */ 13814 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx) 13815 { 13816 struct perf_cpu_buf *cpu_buf; 13817 13818 if (buf_idx >= pb->cpu_cnt) 13819 return libbpf_err(-EINVAL); 13820 13821 cpu_buf = pb->cpu_bufs[buf_idx]; 13822 if (!cpu_buf) 13823 return libbpf_err(-ENOENT); 13824 13825 return perf_buffer__process_records(pb, cpu_buf); 13826 } 13827 13828 int perf_buffer__consume(struct perf_buffer *pb) 13829 { 13830 int i, err; 13831 13832 for (i = 0; i < pb->cpu_cnt; i++) { 13833 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 13834 13835 if (!cpu_buf) 13836 continue; 13837 13838 err = perf_buffer__process_records(pb, cpu_buf); 13839 if (err) { 13840 pr_warn("perf_buffer: failed to process records in buffer #%d: %s\n", 13841 i, errstr(err)); 13842 return libbpf_err(err); 13843 } 13844 } 13845 return 0; 13846 } 13847 13848 int bpf_program__set_attach_target(struct bpf_program *prog, 13849 int attach_prog_fd, 13850 const char *attach_func_name) 13851 { 13852 int btf_obj_fd = 0, btf_id = 0, err; 13853 13854 if (!prog || attach_prog_fd < 0) 13855 return libbpf_err(-EINVAL); 13856 13857 if (prog->obj->state >= OBJ_LOADED) 13858 return libbpf_err(-EINVAL); 13859 13860 if (attach_prog_fd && !attach_func_name) { 13861 /* remember attach_prog_fd and let bpf_program__load() find 13862 * BTF ID during the program load 13863 */ 13864 prog->attach_prog_fd = attach_prog_fd; 13865 return 0; 13866 } 13867 13868 if (attach_prog_fd) { 13869 btf_id = libbpf_find_prog_btf_id(attach_func_name, 13870 attach_prog_fd, prog->obj->token_fd); 13871 if (btf_id < 0) 13872 return libbpf_err(btf_id); 13873 } else { 13874 if (!attach_func_name) 13875 return libbpf_err(-EINVAL); 13876 13877 /* load btf_vmlinux, if not yet */ 13878 err = bpf_object__load_vmlinux_btf(prog->obj, true); 13879 if (err) 13880 return libbpf_err(err); 13881 err = find_kernel_btf_id(prog->obj, attach_func_name, 13882 prog->expected_attach_type, 13883 &btf_obj_fd, &btf_id); 13884 if (err) 13885 return libbpf_err(err); 13886 } 13887 13888 prog->attach_btf_id = btf_id; 13889 prog->attach_btf_obj_fd = btf_obj_fd; 13890 prog->attach_prog_fd = attach_prog_fd; 13891 return 0; 13892 } 13893 13894 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 13895 { 13896 int err = 0, n, len, start, end = -1; 13897 bool *tmp; 13898 13899 *mask = NULL; 13900 *mask_sz = 0; 13901 13902 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 13903 while (*s) { 13904 if (*s == ',' || *s == '\n') { 13905 s++; 13906 continue; 13907 } 13908 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 13909 if (n <= 0 || n > 2) { 13910 pr_warn("Failed to get CPU range %s: %d\n", s, n); 13911 err = -EINVAL; 13912 goto cleanup; 13913 } else if (n == 1) { 13914 end = start; 13915 } 13916 if (start < 0 || start > end) { 13917 pr_warn("Invalid CPU range [%d,%d] in %s\n", 13918 start, end, s); 13919 err = -EINVAL; 13920 goto cleanup; 13921 } 13922 tmp = realloc(*mask, end + 1); 13923 if (!tmp) { 13924 err = -ENOMEM; 13925 goto cleanup; 13926 } 13927 *mask = tmp; 13928 memset(tmp + *mask_sz, 0, start - *mask_sz); 13929 memset(tmp + start, 1, end - start + 1); 13930 *mask_sz = end + 1; 13931 s += len; 13932 } 13933 if (!*mask_sz) { 13934 pr_warn("Empty CPU range\n"); 13935 return -EINVAL; 13936 } 13937 return 0; 13938 cleanup: 13939 free(*mask); 13940 *mask = NULL; 13941 return err; 13942 } 13943 13944 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 13945 { 13946 int fd, err = 0, len; 13947 char buf[128]; 13948 13949 fd = open(fcpu, O_RDONLY | O_CLOEXEC); 13950 if (fd < 0) { 13951 err = -errno; 13952 pr_warn("Failed to open cpu mask file %s: %s\n", fcpu, errstr(err)); 13953 return err; 13954 } 13955 len = read(fd, buf, sizeof(buf)); 13956 close(fd); 13957 if (len <= 0) { 13958 err = len ? -errno : -EINVAL; 13959 pr_warn("Failed to read cpu mask from %s: %s\n", fcpu, errstr(err)); 13960 return err; 13961 } 13962 if (len >= sizeof(buf)) { 13963 pr_warn("CPU mask is too big in file %s\n", fcpu); 13964 return -E2BIG; 13965 } 13966 buf[len] = '\0'; 13967 13968 return parse_cpu_mask_str(buf, mask, mask_sz); 13969 } 13970 13971 int libbpf_num_possible_cpus(void) 13972 { 13973 static const char *fcpu = "/sys/devices/system/cpu/possible"; 13974 static int cpus; 13975 int err, n, i, tmp_cpus; 13976 bool *mask; 13977 13978 tmp_cpus = READ_ONCE(cpus); 13979 if (tmp_cpus > 0) 13980 return tmp_cpus; 13981 13982 err = parse_cpu_mask_file(fcpu, &mask, &n); 13983 if (err) 13984 return libbpf_err(err); 13985 13986 tmp_cpus = 0; 13987 for (i = 0; i < n; i++) { 13988 if (mask[i]) 13989 tmp_cpus++; 13990 } 13991 free(mask); 13992 13993 WRITE_ONCE(cpus, tmp_cpus); 13994 return tmp_cpus; 13995 } 13996 13997 static int populate_skeleton_maps(const struct bpf_object *obj, 13998 struct bpf_map_skeleton *maps, 13999 size_t map_cnt, size_t map_skel_sz) 14000 { 14001 int i; 14002 14003 for (i = 0; i < map_cnt; i++) { 14004 struct bpf_map_skeleton *map_skel = (void *)maps + i * map_skel_sz; 14005 struct bpf_map **map = map_skel->map; 14006 const char *name = map_skel->name; 14007 void **mmaped = map_skel->mmaped; 14008 14009 *map = bpf_object__find_map_by_name(obj, name); 14010 if (!*map) { 14011 pr_warn("failed to find skeleton map '%s'\n", name); 14012 return -ESRCH; 14013 } 14014 14015 /* externs shouldn't be pre-setup from user code */ 14016 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 14017 *mmaped = (*map)->mmaped; 14018 } 14019 return 0; 14020 } 14021 14022 static int populate_skeleton_progs(const struct bpf_object *obj, 14023 struct bpf_prog_skeleton *progs, 14024 size_t prog_cnt, size_t prog_skel_sz) 14025 { 14026 int i; 14027 14028 for (i = 0; i < prog_cnt; i++) { 14029 struct bpf_prog_skeleton *prog_skel = (void *)progs + i * prog_skel_sz; 14030 struct bpf_program **prog = prog_skel->prog; 14031 const char *name = prog_skel->name; 14032 14033 *prog = bpf_object__find_program_by_name(obj, name); 14034 if (!*prog) { 14035 pr_warn("failed to find skeleton program '%s'\n", name); 14036 return -ESRCH; 14037 } 14038 } 14039 return 0; 14040 } 14041 14042 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 14043 const struct bpf_object_open_opts *opts) 14044 { 14045 struct bpf_object *obj; 14046 int err; 14047 14048 obj = bpf_object_open(NULL, s->data, s->data_sz, s->name, opts); 14049 if (IS_ERR(obj)) { 14050 err = PTR_ERR(obj); 14051 pr_warn("failed to initialize skeleton BPF object '%s': %s\n", 14052 s->name, errstr(err)); 14053 return libbpf_err(err); 14054 } 14055 14056 *s->obj = obj; 14057 err = populate_skeleton_maps(obj, s->maps, s->map_cnt, s->map_skel_sz); 14058 if (err) { 14059 pr_warn("failed to populate skeleton maps for '%s': %s\n", s->name, errstr(err)); 14060 return libbpf_err(err); 14061 } 14062 14063 err = populate_skeleton_progs(obj, s->progs, s->prog_cnt, s->prog_skel_sz); 14064 if (err) { 14065 pr_warn("failed to populate skeleton progs for '%s': %s\n", s->name, errstr(err)); 14066 return libbpf_err(err); 14067 } 14068 14069 return 0; 14070 } 14071 14072 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s) 14073 { 14074 int err, len, var_idx, i; 14075 const char *var_name; 14076 const struct bpf_map *map; 14077 struct btf *btf; 14078 __u32 map_type_id; 14079 const struct btf_type *map_type, *var_type; 14080 const struct bpf_var_skeleton *var_skel; 14081 struct btf_var_secinfo *var; 14082 14083 if (!s->obj) 14084 return libbpf_err(-EINVAL); 14085 14086 btf = bpf_object__btf(s->obj); 14087 if (!btf) { 14088 pr_warn("subskeletons require BTF at runtime (object %s)\n", 14089 bpf_object__name(s->obj)); 14090 return libbpf_err(-errno); 14091 } 14092 14093 err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt, s->map_skel_sz); 14094 if (err) { 14095 pr_warn("failed to populate subskeleton maps: %s\n", errstr(err)); 14096 return libbpf_err(err); 14097 } 14098 14099 err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt, s->prog_skel_sz); 14100 if (err) { 14101 pr_warn("failed to populate subskeleton maps: %s\n", errstr(err)); 14102 return libbpf_err(err); 14103 } 14104 14105 for (var_idx = 0; var_idx < s->var_cnt; var_idx++) { 14106 var_skel = (void *)s->vars + var_idx * s->var_skel_sz; 14107 map = *var_skel->map; 14108 map_type_id = bpf_map__btf_value_type_id(map); 14109 map_type = btf__type_by_id(btf, map_type_id); 14110 14111 if (!btf_is_datasec(map_type)) { 14112 pr_warn("type for map '%1$s' is not a datasec: %2$s\n", 14113 bpf_map__name(map), 14114 __btf_kind_str(btf_kind(map_type))); 14115 return libbpf_err(-EINVAL); 14116 } 14117 14118 len = btf_vlen(map_type); 14119 var = btf_var_secinfos(map_type); 14120 for (i = 0; i < len; i++, var++) { 14121 var_type = btf__type_by_id(btf, var->type); 14122 var_name = btf__name_by_offset(btf, var_type->name_off); 14123 if (strcmp(var_name, var_skel->name) == 0) { 14124 *var_skel->addr = map->mmaped + var->offset; 14125 break; 14126 } 14127 } 14128 } 14129 return 0; 14130 } 14131 14132 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s) 14133 { 14134 if (!s) 14135 return; 14136 free(s->maps); 14137 free(s->progs); 14138 free(s->vars); 14139 free(s); 14140 } 14141 14142 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 14143 { 14144 int i, err; 14145 14146 err = bpf_object__load(*s->obj); 14147 if (err) { 14148 pr_warn("failed to load BPF skeleton '%s': %s\n", s->name, errstr(err)); 14149 return libbpf_err(err); 14150 } 14151 14152 for (i = 0; i < s->map_cnt; i++) { 14153 struct bpf_map_skeleton *map_skel = (void *)s->maps + i * s->map_skel_sz; 14154 struct bpf_map *map = *map_skel->map; 14155 14156 if (!map_skel->mmaped) 14157 continue; 14158 14159 *map_skel->mmaped = map->mmaped; 14160 } 14161 14162 return 0; 14163 } 14164 14165 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 14166 { 14167 int i, err; 14168 14169 for (i = 0; i < s->prog_cnt; i++) { 14170 struct bpf_prog_skeleton *prog_skel = (void *)s->progs + i * s->prog_skel_sz; 14171 struct bpf_program *prog = *prog_skel->prog; 14172 struct bpf_link **link = prog_skel->link; 14173 14174 if (!prog->autoload || !prog->autoattach) 14175 continue; 14176 14177 /* auto-attaching not supported for this program */ 14178 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 14179 continue; 14180 14181 /* if user already set the link manually, don't attempt auto-attach */ 14182 if (*link) 14183 continue; 14184 14185 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link); 14186 if (err) { 14187 pr_warn("prog '%s': failed to auto-attach: %s\n", 14188 bpf_program__name(prog), errstr(err)); 14189 return libbpf_err(err); 14190 } 14191 14192 /* It's possible that for some SEC() definitions auto-attach 14193 * is supported in some cases (e.g., if definition completely 14194 * specifies target information), but is not in other cases. 14195 * SEC("uprobe") is one such case. If user specified target 14196 * binary and function name, such BPF program can be 14197 * auto-attached. But if not, it shouldn't trigger skeleton's 14198 * attach to fail. It should just be skipped. 14199 * attach_fn signals such case with returning 0 (no error) and 14200 * setting link to NULL. 14201 */ 14202 } 14203 14204 14205 for (i = 0; i < s->map_cnt; i++) { 14206 struct bpf_map_skeleton *map_skel = (void *)s->maps + i * s->map_skel_sz; 14207 struct bpf_map *map = *map_skel->map; 14208 struct bpf_link **link; 14209 14210 if (!map->autocreate || !map->autoattach) 14211 continue; 14212 14213 /* only struct_ops maps can be attached */ 14214 if (!bpf_map__is_struct_ops(map)) 14215 continue; 14216 14217 /* skeleton is created with earlier version of bpftool, notify user */ 14218 if (s->map_skel_sz < offsetofend(struct bpf_map_skeleton, link)) { 14219 pr_warn("map '%s': BPF skeleton version is old, skipping map auto-attachment...\n", 14220 bpf_map__name(map)); 14221 continue; 14222 } 14223 14224 link = map_skel->link; 14225 if (!link) { 14226 pr_warn("map '%s': BPF map skeleton link is uninitialized\n", 14227 bpf_map__name(map)); 14228 continue; 14229 } 14230 14231 if (*link) 14232 continue; 14233 14234 *link = bpf_map__attach_struct_ops(map); 14235 if (!*link) { 14236 err = -errno; 14237 pr_warn("map '%s': failed to auto-attach: %s\n", 14238 bpf_map__name(map), errstr(err)); 14239 return libbpf_err(err); 14240 } 14241 } 14242 14243 return 0; 14244 } 14245 14246 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 14247 { 14248 int i; 14249 14250 for (i = 0; i < s->prog_cnt; i++) { 14251 struct bpf_prog_skeleton *prog_skel = (void *)s->progs + i * s->prog_skel_sz; 14252 struct bpf_link **link = prog_skel->link; 14253 14254 bpf_link__destroy(*link); 14255 *link = NULL; 14256 } 14257 14258 if (s->map_skel_sz < sizeof(struct bpf_map_skeleton)) 14259 return; 14260 14261 for (i = 0; i < s->map_cnt; i++) { 14262 struct bpf_map_skeleton *map_skel = (void *)s->maps + i * s->map_skel_sz; 14263 struct bpf_link **link = map_skel->link; 14264 14265 if (link) { 14266 bpf_link__destroy(*link); 14267 *link = NULL; 14268 } 14269 } 14270 } 14271 14272 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 14273 { 14274 if (!s) 14275 return; 14276 14277 bpf_object__detach_skeleton(s); 14278 if (s->obj) 14279 bpf_object__close(*s->obj); 14280 free(s->maps); 14281 free(s->progs); 14282 free(s); 14283 } 14284