1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/init.h>
3
4 #include <linux/mm.h>
5 #include <linux/spinlock.h>
6 #include <linux/smp.h>
7 #include <linux/interrupt.h>
8 #include <linux/export.h>
9 #include <linux/cpu.h>
10 #include <linux/debugfs.h>
11 #include <linux/sched/smt.h>
12 #include <linux/task_work.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/mmu_context.h>
15
16 #include <asm/tlbflush.h>
17 #include <asm/mmu_context.h>
18 #include <asm/nospec-branch.h>
19 #include <asm/cache.h>
20 #include <asm/cacheflush.h>
21 #include <asm/apic.h>
22 #include <asm/perf_event.h>
23
24 #include "mm_internal.h"
25
26 #ifdef CONFIG_PARAVIRT
27 # define STATIC_NOPV
28 #else
29 # define STATIC_NOPV static
30 # define __flush_tlb_local native_flush_tlb_local
31 # define __flush_tlb_global native_flush_tlb_global
32 # define __flush_tlb_one_user(addr) native_flush_tlb_one_user(addr)
33 # define __flush_tlb_multi(msk, info) native_flush_tlb_multi(msk, info)
34 #endif
35
36 /*
37 * TLB flushing, formerly SMP-only
38 * c/o Linus Torvalds.
39 *
40 * These mean you can really definitely utterly forget about
41 * writing to user space from interrupts. (Its not allowed anyway).
42 *
43 * Optimizations Manfred Spraul <manfred@colorfullife.com>
44 *
45 * More scalable flush, from Andi Kleen
46 *
47 * Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
48 */
49
50 /*
51 * Bits to mangle the TIF_SPEC_* state into the mm pointer which is
52 * stored in cpu_tlb_state.last_user_mm_spec.
53 */
54 #define LAST_USER_MM_IBPB 0x1UL
55 #define LAST_USER_MM_L1D_FLUSH 0x2UL
56 #define LAST_USER_MM_SPEC_MASK (LAST_USER_MM_IBPB | LAST_USER_MM_L1D_FLUSH)
57
58 /* Bits to set when tlbstate and flush is (re)initialized */
59 #define LAST_USER_MM_INIT LAST_USER_MM_IBPB
60
61 /*
62 * The x86 feature is called PCID (Process Context IDentifier). It is similar
63 * to what is traditionally called ASID on the RISC processors.
64 *
65 * We don't use the traditional ASID implementation, where each process/mm gets
66 * its own ASID and flush/restart when we run out of ASID space.
67 *
68 * Instead we have a small per-cpu array of ASIDs and cache the last few mm's
69 * that came by on this CPU, allowing cheaper switch_mm between processes on
70 * this CPU.
71 *
72 * We end up with different spaces for different things. To avoid confusion we
73 * use different names for each of them:
74 *
75 * ASID - [0, TLB_NR_DYN_ASIDS-1]
76 * the canonical identifier for an mm
77 *
78 * kPCID - [1, TLB_NR_DYN_ASIDS]
79 * the value we write into the PCID part of CR3; corresponds to the
80 * ASID+1, because PCID 0 is special.
81 *
82 * uPCID - [2048 + 1, 2048 + TLB_NR_DYN_ASIDS]
83 * for KPTI each mm has two address spaces and thus needs two
84 * PCID values, but we can still do with a single ASID denomination
85 * for each mm. Corresponds to kPCID + 2048.
86 *
87 */
88
89 /*
90 * When enabled, MITIGATION_PAGE_TABLE_ISOLATION consumes a single bit for
91 * user/kernel switches
92 */
93 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
94 # define PTI_CONSUMED_PCID_BITS 1
95 #else
96 # define PTI_CONSUMED_PCID_BITS 0
97 #endif
98
99 #define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS)
100
101 /*
102 * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid. -1 below to account
103 * for them being zero-based. Another -1 is because PCID 0 is reserved for
104 * use by non-PCID-aware users.
105 */
106 #define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2)
107
108 /*
109 * Given @asid, compute kPCID
110 */
kern_pcid(u16 asid)111 static inline u16 kern_pcid(u16 asid)
112 {
113 VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
114
115 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
116 /*
117 * Make sure that the dynamic ASID space does not conflict with the
118 * bit we are using to switch between user and kernel ASIDs.
119 */
120 BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT));
121
122 /*
123 * The ASID being passed in here should have respected the
124 * MAX_ASID_AVAILABLE and thus never have the switch bit set.
125 */
126 VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT));
127 #endif
128 /*
129 * The dynamically-assigned ASIDs that get passed in are small
130 * (<TLB_NR_DYN_ASIDS). They never have the high switch bit set,
131 * so do not bother to clear it.
132 *
133 * If PCID is on, ASID-aware code paths put the ASID+1 into the
134 * PCID bits. This serves two purposes. It prevents a nasty
135 * situation in which PCID-unaware code saves CR3, loads some other
136 * value (with PCID == 0), and then restores CR3, thus corrupting
137 * the TLB for ASID 0 if the saved ASID was nonzero. It also means
138 * that any bugs involving loading a PCID-enabled CR3 with
139 * CR4.PCIDE off will trigger deterministically.
140 */
141 return asid + 1;
142 }
143
144 /*
145 * Given @asid, compute uPCID
146 */
user_pcid(u16 asid)147 static inline u16 user_pcid(u16 asid)
148 {
149 u16 ret = kern_pcid(asid);
150 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
151 ret |= 1 << X86_CR3_PTI_PCID_USER_BIT;
152 #endif
153 return ret;
154 }
155
build_cr3(pgd_t * pgd,u16 asid,unsigned long lam)156 static inline unsigned long build_cr3(pgd_t *pgd, u16 asid, unsigned long lam)
157 {
158 unsigned long cr3 = __sme_pa(pgd) | lam;
159
160 if (static_cpu_has(X86_FEATURE_PCID)) {
161 cr3 |= kern_pcid(asid);
162 } else {
163 VM_WARN_ON_ONCE(asid != 0);
164 }
165
166 return cr3;
167 }
168
build_cr3_noflush(pgd_t * pgd,u16 asid,unsigned long lam)169 static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid,
170 unsigned long lam)
171 {
172 /*
173 * Use boot_cpu_has() instead of this_cpu_has() as this function
174 * might be called during early boot. This should work even after
175 * boot because all CPU's the have same capabilities:
176 */
177 VM_WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_PCID));
178 return build_cr3(pgd, asid, lam) | CR3_NOFLUSH;
179 }
180
181 /*
182 * We get here when we do something requiring a TLB invalidation
183 * but could not go invalidate all of the contexts. We do the
184 * necessary invalidation by clearing out the 'ctx_id' which
185 * forces a TLB flush when the context is loaded.
186 */
clear_asid_other(void)187 static void clear_asid_other(void)
188 {
189 u16 asid;
190
191 /*
192 * This is only expected to be set if we have disabled
193 * kernel _PAGE_GLOBAL pages.
194 */
195 if (!static_cpu_has(X86_FEATURE_PTI)) {
196 WARN_ON_ONCE(1);
197 return;
198 }
199
200 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
201 /* Do not need to flush the current asid */
202 if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
203 continue;
204 /*
205 * Make sure the next time we go to switch to
206 * this asid, we do a flush:
207 */
208 this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
209 }
210 this_cpu_write(cpu_tlbstate.invalidate_other, false);
211 }
212
213 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
214
215
choose_new_asid(struct mm_struct * next,u64 next_tlb_gen,u16 * new_asid,bool * need_flush)216 static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
217 u16 *new_asid, bool *need_flush)
218 {
219 u16 asid;
220
221 if (!static_cpu_has(X86_FEATURE_PCID)) {
222 *new_asid = 0;
223 *need_flush = true;
224 return;
225 }
226
227 if (this_cpu_read(cpu_tlbstate.invalidate_other))
228 clear_asid_other();
229
230 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
231 if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
232 next->context.ctx_id)
233 continue;
234
235 *new_asid = asid;
236 *need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
237 next_tlb_gen);
238 return;
239 }
240
241 /*
242 * We don't currently own an ASID slot on this CPU.
243 * Allocate a slot.
244 */
245 *new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
246 if (*new_asid >= TLB_NR_DYN_ASIDS) {
247 *new_asid = 0;
248 this_cpu_write(cpu_tlbstate.next_asid, 1);
249 }
250 *need_flush = true;
251 }
252
253 /*
254 * Given an ASID, flush the corresponding user ASID. We can delay this
255 * until the next time we switch to it.
256 *
257 * See SWITCH_TO_USER_CR3.
258 */
invalidate_user_asid(u16 asid)259 static inline void invalidate_user_asid(u16 asid)
260 {
261 /* There is no user ASID if address space separation is off */
262 if (!IS_ENABLED(CONFIG_MITIGATION_PAGE_TABLE_ISOLATION))
263 return;
264
265 /*
266 * We only have a single ASID if PCID is off and the CR3
267 * write will have flushed it.
268 */
269 if (!cpu_feature_enabled(X86_FEATURE_PCID))
270 return;
271
272 if (!static_cpu_has(X86_FEATURE_PTI))
273 return;
274
275 __set_bit(kern_pcid(asid),
276 (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask));
277 }
278
load_new_mm_cr3(pgd_t * pgdir,u16 new_asid,unsigned long lam,bool need_flush)279 static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, unsigned long lam,
280 bool need_flush)
281 {
282 unsigned long new_mm_cr3;
283
284 if (need_flush) {
285 invalidate_user_asid(new_asid);
286 new_mm_cr3 = build_cr3(pgdir, new_asid, lam);
287 } else {
288 new_mm_cr3 = build_cr3_noflush(pgdir, new_asid, lam);
289 }
290
291 /*
292 * Caution: many callers of this function expect
293 * that load_cr3() is serializing and orders TLB
294 * fills with respect to the mm_cpumask writes.
295 */
296 write_cr3(new_mm_cr3);
297 }
298
leave_mm(void)299 void leave_mm(void)
300 {
301 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
302
303 /*
304 * It's plausible that we're in lazy TLB mode while our mm is init_mm.
305 * If so, our callers still expect us to flush the TLB, but there
306 * aren't any user TLB entries in init_mm to worry about.
307 *
308 * This needs to happen before any other sanity checks due to
309 * intel_idle's shenanigans.
310 */
311 if (loaded_mm == &init_mm)
312 return;
313
314 /* Warn if we're not lazy. */
315 WARN_ON(!this_cpu_read(cpu_tlbstate_shared.is_lazy));
316
317 switch_mm(NULL, &init_mm, NULL);
318 }
319 EXPORT_SYMBOL_GPL(leave_mm);
320
switch_mm(struct mm_struct * prev,struct mm_struct * next,struct task_struct * tsk)321 void switch_mm(struct mm_struct *prev, struct mm_struct *next,
322 struct task_struct *tsk)
323 {
324 unsigned long flags;
325
326 local_irq_save(flags);
327 switch_mm_irqs_off(NULL, next, tsk);
328 local_irq_restore(flags);
329 }
330
331 /*
332 * Invoked from return to user/guest by a task that opted-in to L1D
333 * flushing but ended up running on an SMT enabled core due to wrong
334 * affinity settings or CPU hotplug. This is part of the paranoid L1D flush
335 * contract which this task requested.
336 */
l1d_flush_force_sigbus(struct callback_head * ch)337 static void l1d_flush_force_sigbus(struct callback_head *ch)
338 {
339 force_sig(SIGBUS);
340 }
341
l1d_flush_evaluate(unsigned long prev_mm,unsigned long next_mm,struct task_struct * next)342 static void l1d_flush_evaluate(unsigned long prev_mm, unsigned long next_mm,
343 struct task_struct *next)
344 {
345 /* Flush L1D if the outgoing task requests it */
346 if (prev_mm & LAST_USER_MM_L1D_FLUSH)
347 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
348
349 /* Check whether the incoming task opted in for L1D flush */
350 if (likely(!(next_mm & LAST_USER_MM_L1D_FLUSH)))
351 return;
352
353 /*
354 * Validate that it is not running on an SMT sibling as this would
355 * make the exercise pointless because the siblings share L1D. If
356 * it runs on a SMT sibling, notify it with SIGBUS on return to
357 * user/guest
358 */
359 if (this_cpu_read(cpu_info.smt_active)) {
360 clear_ti_thread_flag(&next->thread_info, TIF_SPEC_L1D_FLUSH);
361 next->l1d_flush_kill.func = l1d_flush_force_sigbus;
362 task_work_add(next, &next->l1d_flush_kill, TWA_RESUME);
363 }
364 }
365
mm_mangle_tif_spec_bits(struct task_struct * next)366 static unsigned long mm_mangle_tif_spec_bits(struct task_struct *next)
367 {
368 unsigned long next_tif = read_task_thread_flags(next);
369 unsigned long spec_bits = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_SPEC_MASK;
370
371 /*
372 * Ensure that the bit shift above works as expected and the two flags
373 * end up in bit 0 and 1.
374 */
375 BUILD_BUG_ON(TIF_SPEC_L1D_FLUSH != TIF_SPEC_IB + 1);
376
377 return (unsigned long)next->mm | spec_bits;
378 }
379
cond_mitigation(struct task_struct * next)380 static void cond_mitigation(struct task_struct *next)
381 {
382 unsigned long prev_mm, next_mm;
383
384 if (!next || !next->mm)
385 return;
386
387 next_mm = mm_mangle_tif_spec_bits(next);
388 prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_spec);
389
390 /*
391 * Avoid user/user BTB poisoning by flushing the branch predictor
392 * when switching between processes. This stops one process from
393 * doing Spectre-v2 attacks on another.
394 *
395 * Both, the conditional and the always IBPB mode use the mm
396 * pointer to avoid the IBPB when switching between tasks of the
397 * same process. Using the mm pointer instead of mm->context.ctx_id
398 * opens a hypothetical hole vs. mm_struct reuse, which is more or
399 * less impossible to control by an attacker. Aside of that it
400 * would only affect the first schedule so the theoretically
401 * exposed data is not really interesting.
402 */
403 if (static_branch_likely(&switch_mm_cond_ibpb)) {
404 /*
405 * This is a bit more complex than the always mode because
406 * it has to handle two cases:
407 *
408 * 1) Switch from a user space task (potential attacker)
409 * which has TIF_SPEC_IB set to a user space task
410 * (potential victim) which has TIF_SPEC_IB not set.
411 *
412 * 2) Switch from a user space task (potential attacker)
413 * which has TIF_SPEC_IB not set to a user space task
414 * (potential victim) which has TIF_SPEC_IB set.
415 *
416 * This could be done by unconditionally issuing IBPB when
417 * a task which has TIF_SPEC_IB set is either scheduled in
418 * or out. Though that results in two flushes when:
419 *
420 * - the same user space task is scheduled out and later
421 * scheduled in again and only a kernel thread ran in
422 * between.
423 *
424 * - a user space task belonging to the same process is
425 * scheduled in after a kernel thread ran in between
426 *
427 * - a user space task belonging to the same process is
428 * scheduled in immediately.
429 *
430 * Optimize this with reasonably small overhead for the
431 * above cases. Mangle the TIF_SPEC_IB bit into the mm
432 * pointer of the incoming task which is stored in
433 * cpu_tlbstate.last_user_mm_spec for comparison.
434 *
435 * Issue IBPB only if the mm's are different and one or
436 * both have the IBPB bit set.
437 */
438 if (next_mm != prev_mm &&
439 (next_mm | prev_mm) & LAST_USER_MM_IBPB)
440 indirect_branch_prediction_barrier();
441 }
442
443 if (static_branch_unlikely(&switch_mm_always_ibpb)) {
444 /*
445 * Only flush when switching to a user space task with a
446 * different context than the user space task which ran
447 * last on this CPU.
448 */
449 if ((prev_mm & ~LAST_USER_MM_SPEC_MASK) !=
450 (unsigned long)next->mm)
451 indirect_branch_prediction_barrier();
452 }
453
454 if (static_branch_unlikely(&switch_mm_cond_l1d_flush)) {
455 /*
456 * Flush L1D when the outgoing task requested it and/or
457 * check whether the incoming task requested L1D flushing
458 * and ended up on an SMT sibling.
459 */
460 if (unlikely((prev_mm | next_mm) & LAST_USER_MM_L1D_FLUSH))
461 l1d_flush_evaluate(prev_mm, next_mm, next);
462 }
463
464 this_cpu_write(cpu_tlbstate.last_user_mm_spec, next_mm);
465 }
466
467 #ifdef CONFIG_PERF_EVENTS
cr4_update_pce_mm(struct mm_struct * mm)468 static inline void cr4_update_pce_mm(struct mm_struct *mm)
469 {
470 if (static_branch_unlikely(&rdpmc_always_available_key) ||
471 (!static_branch_unlikely(&rdpmc_never_available_key) &&
472 atomic_read(&mm->context.perf_rdpmc_allowed))) {
473 /*
474 * Clear the existing dirty counters to
475 * prevent the leak for an RDPMC task.
476 */
477 perf_clear_dirty_counters();
478 cr4_set_bits_irqsoff(X86_CR4_PCE);
479 } else
480 cr4_clear_bits_irqsoff(X86_CR4_PCE);
481 }
482
cr4_update_pce(void * ignored)483 void cr4_update_pce(void *ignored)
484 {
485 cr4_update_pce_mm(this_cpu_read(cpu_tlbstate.loaded_mm));
486 }
487
488 #else
cr4_update_pce_mm(struct mm_struct * mm)489 static inline void cr4_update_pce_mm(struct mm_struct *mm) { }
490 #endif
491
492 /*
493 * This optimizes when not actually switching mm's. Some architectures use the
494 * 'unused' argument for this optimization, but x86 must use
495 * 'cpu_tlbstate.loaded_mm' instead because it does not always keep
496 * 'current->active_mm' up to date.
497 */
switch_mm_irqs_off(struct mm_struct * unused,struct mm_struct * next,struct task_struct * tsk)498 void switch_mm_irqs_off(struct mm_struct *unused, struct mm_struct *next,
499 struct task_struct *tsk)
500 {
501 struct mm_struct *prev = this_cpu_read(cpu_tlbstate.loaded_mm);
502 u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
503 bool was_lazy = this_cpu_read(cpu_tlbstate_shared.is_lazy);
504 unsigned cpu = smp_processor_id();
505 unsigned long new_lam;
506 u64 next_tlb_gen;
507 bool need_flush;
508 u16 new_asid;
509
510 /* We don't want flush_tlb_func() to run concurrently with us. */
511 if (IS_ENABLED(CONFIG_PROVE_LOCKING))
512 WARN_ON_ONCE(!irqs_disabled());
513
514 /*
515 * Verify that CR3 is what we think it is. This will catch
516 * hypothetical buggy code that directly switches to swapper_pg_dir
517 * without going through leave_mm() / switch_mm_irqs_off() or that
518 * does something like write_cr3(read_cr3_pa()).
519 *
520 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
521 * isn't free.
522 */
523 #ifdef CONFIG_DEBUG_VM
524 if (WARN_ON_ONCE(__read_cr3() != build_cr3(prev->pgd, prev_asid,
525 tlbstate_lam_cr3_mask()))) {
526 /*
527 * If we were to BUG here, we'd be very likely to kill
528 * the system so hard that we don't see the call trace.
529 * Try to recover instead by ignoring the error and doing
530 * a global flush to minimize the chance of corruption.
531 *
532 * (This is far from being a fully correct recovery.
533 * Architecturally, the CPU could prefetch something
534 * back into an incorrect ASID slot and leave it there
535 * to cause trouble down the road. It's better than
536 * nothing, though.)
537 */
538 __flush_tlb_all();
539 }
540 #endif
541 if (was_lazy)
542 this_cpu_write(cpu_tlbstate_shared.is_lazy, false);
543
544 /*
545 * The membarrier system call requires a full memory barrier and
546 * core serialization before returning to user-space, after
547 * storing to rq->curr, when changing mm. This is because
548 * membarrier() sends IPIs to all CPUs that are in the target mm
549 * to make them issue memory barriers. However, if another CPU
550 * switches to/from the target mm concurrently with
551 * membarrier(), it can cause that CPU not to receive an IPI
552 * when it really should issue a memory barrier. Writing to CR3
553 * provides that full memory barrier and core serializing
554 * instruction.
555 */
556 if (prev == next) {
557 /* Not actually switching mm's */
558 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
559 next->context.ctx_id);
560
561 /*
562 * If this races with another thread that enables lam, 'new_lam'
563 * might not match tlbstate_lam_cr3_mask().
564 */
565
566 /*
567 * Even in lazy TLB mode, the CPU should stay set in the
568 * mm_cpumask. The TLB shootdown code can figure out from
569 * cpu_tlbstate_shared.is_lazy whether or not to send an IPI.
570 */
571 if (WARN_ON_ONCE(prev != &init_mm &&
572 !cpumask_test_cpu(cpu, mm_cpumask(next))))
573 cpumask_set_cpu(cpu, mm_cpumask(next));
574
575 /*
576 * If the CPU is not in lazy TLB mode, we are just switching
577 * from one thread in a process to another thread in the same
578 * process. No TLB flush required.
579 */
580 if (!was_lazy)
581 return;
582
583 /*
584 * Read the tlb_gen to check whether a flush is needed.
585 * If the TLB is up to date, just use it.
586 * The barrier synchronizes with the tlb_gen increment in
587 * the TLB shootdown code.
588 */
589 smp_mb();
590 next_tlb_gen = atomic64_read(&next->context.tlb_gen);
591 if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) ==
592 next_tlb_gen)
593 return;
594
595 /*
596 * TLB contents went out of date while we were in lazy
597 * mode. Fall through to the TLB switching code below.
598 */
599 new_asid = prev_asid;
600 need_flush = true;
601 } else {
602 /*
603 * Apply process to process speculation vulnerability
604 * mitigations if applicable.
605 */
606 cond_mitigation(tsk);
607
608 /*
609 * Stop remote flushes for the previous mm.
610 * Skip kernel threads; we never send init_mm TLB flushing IPIs,
611 * but the bitmap manipulation can cause cache line contention.
612 */
613 if (prev != &init_mm) {
614 VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu,
615 mm_cpumask(prev)));
616 cpumask_clear_cpu(cpu, mm_cpumask(prev));
617 }
618
619 /* Start receiving IPIs and then read tlb_gen (and LAM below) */
620 if (next != &init_mm)
621 cpumask_set_cpu(cpu, mm_cpumask(next));
622 next_tlb_gen = atomic64_read(&next->context.tlb_gen);
623
624 choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
625
626 /* Let nmi_uaccess_okay() know that we're changing CR3. */
627 this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING);
628 barrier();
629 }
630
631 new_lam = mm_lam_cr3_mask(next);
632 if (need_flush) {
633 this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
634 this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
635 load_new_mm_cr3(next->pgd, new_asid, new_lam, true);
636
637 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
638 } else {
639 /* The new ASID is already up to date. */
640 load_new_mm_cr3(next->pgd, new_asid, new_lam, false);
641
642 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, 0);
643 }
644
645 /* Make sure we write CR3 before loaded_mm. */
646 barrier();
647
648 this_cpu_write(cpu_tlbstate.loaded_mm, next);
649 this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
650 cpu_tlbstate_update_lam(new_lam, mm_untag_mask(next));
651
652 if (next != prev) {
653 cr4_update_pce_mm(next);
654 switch_ldt(prev, next);
655 }
656 }
657
658 /*
659 * Please ignore the name of this function. It should be called
660 * switch_to_kernel_thread().
661 *
662 * enter_lazy_tlb() is a hint from the scheduler that we are entering a
663 * kernel thread or other context without an mm. Acceptable implementations
664 * include doing nothing whatsoever, switching to init_mm, or various clever
665 * lazy tricks to try to minimize TLB flushes.
666 *
667 * The scheduler reserves the right to call enter_lazy_tlb() several times
668 * in a row. It will notify us that we're going back to a real mm by
669 * calling switch_mm_irqs_off().
670 */
enter_lazy_tlb(struct mm_struct * mm,struct task_struct * tsk)671 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
672 {
673 if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
674 return;
675
676 this_cpu_write(cpu_tlbstate_shared.is_lazy, true);
677 }
678
679 /*
680 * Call this when reinitializing a CPU. It fixes the following potential
681 * problems:
682 *
683 * - The ASID changed from what cpu_tlbstate thinks it is (most likely
684 * because the CPU was taken down and came back up with CR3's PCID
685 * bits clear. CPU hotplug can do this.
686 *
687 * - The TLB contains junk in slots corresponding to inactive ASIDs.
688 *
689 * - The CPU went so far out to lunch that it may have missed a TLB
690 * flush.
691 */
initialize_tlbstate_and_flush(void)692 void initialize_tlbstate_and_flush(void)
693 {
694 int i;
695 struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
696 u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
697 unsigned long lam = mm_lam_cr3_mask(mm);
698 unsigned long cr3 = __read_cr3();
699
700 /* Assert that CR3 already references the right mm. */
701 WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
702
703 /* LAM expected to be disabled */
704 WARN_ON(cr3 & (X86_CR3_LAM_U48 | X86_CR3_LAM_U57));
705 WARN_ON(lam);
706
707 /*
708 * Assert that CR4.PCIDE is set if needed. (CR4.PCIDE initialization
709 * doesn't work like other CR4 bits because it can only be set from
710 * long mode.)
711 */
712 WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
713 !(cr4_read_shadow() & X86_CR4_PCIDE));
714
715 /* Disable LAM, force ASID 0 and force a TLB flush. */
716 write_cr3(build_cr3(mm->pgd, 0, 0));
717
718 /* Reinitialize tlbstate. */
719 this_cpu_write(cpu_tlbstate.last_user_mm_spec, LAST_USER_MM_INIT);
720 this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
721 this_cpu_write(cpu_tlbstate.next_asid, 1);
722 this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
723 this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
724 cpu_tlbstate_update_lam(lam, mm_untag_mask(mm));
725
726 for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
727 this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
728 }
729
730 /*
731 * flush_tlb_func()'s memory ordering requirement is that any
732 * TLB fills that happen after we flush the TLB are ordered after we
733 * read active_mm's tlb_gen. We don't need any explicit barriers
734 * because all x86 flush operations are serializing and the
735 * atomic64_read operation won't be reordered by the compiler.
736 */
flush_tlb_func(void * info)737 static void flush_tlb_func(void *info)
738 {
739 /*
740 * We have three different tlb_gen values in here. They are:
741 *
742 * - mm_tlb_gen: the latest generation.
743 * - local_tlb_gen: the generation that this CPU has already caught
744 * up to.
745 * - f->new_tlb_gen: the generation that the requester of the flush
746 * wants us to catch up to.
747 */
748 const struct flush_tlb_info *f = info;
749 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
750 u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
751 u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
752 bool local = smp_processor_id() == f->initiating_cpu;
753 unsigned long nr_invalidate = 0;
754 u64 mm_tlb_gen;
755
756 /* This code cannot presently handle being reentered. */
757 VM_WARN_ON(!irqs_disabled());
758
759 if (!local) {
760 inc_irq_stat(irq_tlb_count);
761 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
762
763 /* Can only happen on remote CPUs */
764 if (f->mm && f->mm != loaded_mm)
765 return;
766 }
767
768 if (unlikely(loaded_mm == &init_mm))
769 return;
770
771 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
772 loaded_mm->context.ctx_id);
773
774 if (this_cpu_read(cpu_tlbstate_shared.is_lazy)) {
775 /*
776 * We're in lazy mode. We need to at least flush our
777 * paging-structure cache to avoid speculatively reading
778 * garbage into our TLB. Since switching to init_mm is barely
779 * slower than a minimal flush, just switch to init_mm.
780 *
781 * This should be rare, with native_flush_tlb_multi() skipping
782 * IPIs to lazy TLB mode CPUs.
783 */
784 switch_mm_irqs_off(NULL, &init_mm, NULL);
785 return;
786 }
787
788 if (unlikely(f->new_tlb_gen != TLB_GENERATION_INVALID &&
789 f->new_tlb_gen <= local_tlb_gen)) {
790 /*
791 * The TLB is already up to date in respect to f->new_tlb_gen.
792 * While the core might be still behind mm_tlb_gen, checking
793 * mm_tlb_gen unnecessarily would have negative caching effects
794 * so avoid it.
795 */
796 return;
797 }
798
799 /*
800 * Defer mm_tlb_gen reading as long as possible to avoid cache
801 * contention.
802 */
803 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
804
805 if (unlikely(local_tlb_gen == mm_tlb_gen)) {
806 /*
807 * There's nothing to do: we're already up to date. This can
808 * happen if two concurrent flushes happen -- the first flush to
809 * be handled can catch us all the way up, leaving no work for
810 * the second flush.
811 */
812 goto done;
813 }
814
815 WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
816 WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
817
818 /*
819 * If we get to this point, we know that our TLB is out of date.
820 * This does not strictly imply that we need to flush (it's
821 * possible that f->new_tlb_gen <= local_tlb_gen), but we're
822 * going to need to flush in the very near future, so we might
823 * as well get it over with.
824 *
825 * The only question is whether to do a full or partial flush.
826 *
827 * We do a partial flush if requested and two extra conditions
828 * are met:
829 *
830 * 1. f->new_tlb_gen == local_tlb_gen + 1. We have an invariant that
831 * we've always done all needed flushes to catch up to
832 * local_tlb_gen. If, for example, local_tlb_gen == 2 and
833 * f->new_tlb_gen == 3, then we know that the flush needed to bring
834 * us up to date for tlb_gen 3 is the partial flush we're
835 * processing.
836 *
837 * As an example of why this check is needed, suppose that there
838 * are two concurrent flushes. The first is a full flush that
839 * changes context.tlb_gen from 1 to 2. The second is a partial
840 * flush that changes context.tlb_gen from 2 to 3. If they get
841 * processed on this CPU in reverse order, we'll see
842 * local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
843 * If we were to use __flush_tlb_one_user() and set local_tlb_gen to
844 * 3, we'd be break the invariant: we'd update local_tlb_gen above
845 * 1 without the full flush that's needed for tlb_gen 2.
846 *
847 * 2. f->new_tlb_gen == mm_tlb_gen. This is purely an optimization.
848 * Partial TLB flushes are not all that much cheaper than full TLB
849 * flushes, so it seems unlikely that it would be a performance win
850 * to do a partial flush if that won't bring our TLB fully up to
851 * date. By doing a full flush instead, we can increase
852 * local_tlb_gen all the way to mm_tlb_gen and we can probably
853 * avoid another flush in the very near future.
854 */
855 if (f->end != TLB_FLUSH_ALL &&
856 f->new_tlb_gen == local_tlb_gen + 1 &&
857 f->new_tlb_gen == mm_tlb_gen) {
858 /* Partial flush */
859 unsigned long addr = f->start;
860
861 /* Partial flush cannot have invalid generations */
862 VM_WARN_ON(f->new_tlb_gen == TLB_GENERATION_INVALID);
863
864 /* Partial flush must have valid mm */
865 VM_WARN_ON(f->mm == NULL);
866
867 nr_invalidate = (f->end - f->start) >> f->stride_shift;
868
869 while (addr < f->end) {
870 flush_tlb_one_user(addr);
871 addr += 1UL << f->stride_shift;
872 }
873 if (local)
874 count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate);
875 } else {
876 /* Full flush. */
877 nr_invalidate = TLB_FLUSH_ALL;
878
879 flush_tlb_local();
880 if (local)
881 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
882 }
883
884 /* Both paths above update our state to mm_tlb_gen. */
885 this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
886
887 /* Tracing is done in a unified manner to reduce the code size */
888 done:
889 trace_tlb_flush(!local ? TLB_REMOTE_SHOOTDOWN :
890 (f->mm == NULL) ? TLB_LOCAL_SHOOTDOWN :
891 TLB_LOCAL_MM_SHOOTDOWN,
892 nr_invalidate);
893 }
894
tlb_is_not_lazy(int cpu,void * data)895 static bool tlb_is_not_lazy(int cpu, void *data)
896 {
897 return !per_cpu(cpu_tlbstate_shared.is_lazy, cpu);
898 }
899
900 DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state_shared, cpu_tlbstate_shared);
901 EXPORT_PER_CPU_SYMBOL(cpu_tlbstate_shared);
902
native_flush_tlb_multi(const struct cpumask * cpumask,const struct flush_tlb_info * info)903 STATIC_NOPV void native_flush_tlb_multi(const struct cpumask *cpumask,
904 const struct flush_tlb_info *info)
905 {
906 /*
907 * Do accounting and tracing. Note that there are (and have always been)
908 * cases in which a remote TLB flush will be traced, but eventually
909 * would not happen.
910 */
911 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
912 if (info->end == TLB_FLUSH_ALL)
913 trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
914 else
915 trace_tlb_flush(TLB_REMOTE_SEND_IPI,
916 (info->end - info->start) >> PAGE_SHIFT);
917
918 /*
919 * If no page tables were freed, we can skip sending IPIs to
920 * CPUs in lazy TLB mode. They will flush the CPU themselves
921 * at the next context switch.
922 *
923 * However, if page tables are getting freed, we need to send the
924 * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping
925 * up on the new contents of what used to be page tables, while
926 * doing a speculative memory access.
927 */
928 if (info->freed_tables)
929 on_each_cpu_mask(cpumask, flush_tlb_func, (void *)info, true);
930 else
931 on_each_cpu_cond_mask(tlb_is_not_lazy, flush_tlb_func,
932 (void *)info, 1, cpumask);
933 }
934
flush_tlb_multi(const struct cpumask * cpumask,const struct flush_tlb_info * info)935 void flush_tlb_multi(const struct cpumask *cpumask,
936 const struct flush_tlb_info *info)
937 {
938 __flush_tlb_multi(cpumask, info);
939 }
940
941 /*
942 * See Documentation/arch/x86/tlb.rst for details. We choose 33
943 * because it is large enough to cover the vast majority (at
944 * least 95%) of allocations, and is small enough that we are
945 * confident it will not cause too much overhead. Each single
946 * flush is about 100 ns, so this caps the maximum overhead at
947 * _about_ 3,000 ns.
948 *
949 * This is in units of pages.
950 */
951 unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
952
953 static DEFINE_PER_CPU_SHARED_ALIGNED(struct flush_tlb_info, flush_tlb_info);
954
955 #ifdef CONFIG_DEBUG_VM
956 static DEFINE_PER_CPU(unsigned int, flush_tlb_info_idx);
957 #endif
958
get_flush_tlb_info(struct mm_struct * mm,unsigned long start,unsigned long end,unsigned int stride_shift,bool freed_tables,u64 new_tlb_gen)959 static struct flush_tlb_info *get_flush_tlb_info(struct mm_struct *mm,
960 unsigned long start, unsigned long end,
961 unsigned int stride_shift, bool freed_tables,
962 u64 new_tlb_gen)
963 {
964 struct flush_tlb_info *info = this_cpu_ptr(&flush_tlb_info);
965
966 #ifdef CONFIG_DEBUG_VM
967 /*
968 * Ensure that the following code is non-reentrant and flush_tlb_info
969 * is not overwritten. This means no TLB flushing is initiated by
970 * interrupt handlers and machine-check exception handlers.
971 */
972 BUG_ON(this_cpu_inc_return(flush_tlb_info_idx) != 1);
973 #endif
974
975 info->start = start;
976 info->end = end;
977 info->mm = mm;
978 info->stride_shift = stride_shift;
979 info->freed_tables = freed_tables;
980 info->new_tlb_gen = new_tlb_gen;
981 info->initiating_cpu = smp_processor_id();
982
983 return info;
984 }
985
put_flush_tlb_info(void)986 static void put_flush_tlb_info(void)
987 {
988 #ifdef CONFIG_DEBUG_VM
989 /* Complete reentrancy prevention checks */
990 barrier();
991 this_cpu_dec(flush_tlb_info_idx);
992 #endif
993 }
994
flush_tlb_mm_range(struct mm_struct * mm,unsigned long start,unsigned long end,unsigned int stride_shift,bool freed_tables)995 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
996 unsigned long end, unsigned int stride_shift,
997 bool freed_tables)
998 {
999 struct flush_tlb_info *info;
1000 u64 new_tlb_gen;
1001 int cpu;
1002
1003 cpu = get_cpu();
1004
1005 /* Should we flush just the requested range? */
1006 if ((end == TLB_FLUSH_ALL) ||
1007 ((end - start) >> stride_shift) > tlb_single_page_flush_ceiling) {
1008 start = 0;
1009 end = TLB_FLUSH_ALL;
1010 }
1011
1012 /* This is also a barrier that synchronizes with switch_mm(). */
1013 new_tlb_gen = inc_mm_tlb_gen(mm);
1014
1015 info = get_flush_tlb_info(mm, start, end, stride_shift, freed_tables,
1016 new_tlb_gen);
1017
1018 /*
1019 * flush_tlb_multi() is not optimized for the common case in which only
1020 * a local TLB flush is needed. Optimize this use-case by calling
1021 * flush_tlb_func_local() directly in this case.
1022 */
1023 if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids) {
1024 flush_tlb_multi(mm_cpumask(mm), info);
1025 } else if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
1026 lockdep_assert_irqs_enabled();
1027 local_irq_disable();
1028 flush_tlb_func(info);
1029 local_irq_enable();
1030 }
1031
1032 put_flush_tlb_info();
1033 put_cpu();
1034 mmu_notifier_arch_invalidate_secondary_tlbs(mm, start, end);
1035 }
1036
1037
do_flush_tlb_all(void * info)1038 static void do_flush_tlb_all(void *info)
1039 {
1040 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
1041 __flush_tlb_all();
1042 }
1043
flush_tlb_all(void)1044 void flush_tlb_all(void)
1045 {
1046 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
1047 on_each_cpu(do_flush_tlb_all, NULL, 1);
1048 }
1049
do_kernel_range_flush(void * info)1050 static void do_kernel_range_flush(void *info)
1051 {
1052 struct flush_tlb_info *f = info;
1053 unsigned long addr;
1054
1055 /* flush range by one by one 'invlpg' */
1056 for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
1057 flush_tlb_one_kernel(addr);
1058 }
1059
flush_tlb_kernel_range(unsigned long start,unsigned long end)1060 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
1061 {
1062 /* Balance as user space task's flush, a bit conservative */
1063 if (end == TLB_FLUSH_ALL ||
1064 (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
1065 on_each_cpu(do_flush_tlb_all, NULL, 1);
1066 } else {
1067 struct flush_tlb_info *info;
1068
1069 preempt_disable();
1070 info = get_flush_tlb_info(NULL, start, end, 0, false,
1071 TLB_GENERATION_INVALID);
1072
1073 on_each_cpu(do_kernel_range_flush, info, 1);
1074
1075 put_flush_tlb_info();
1076 preempt_enable();
1077 }
1078 }
1079
1080 /*
1081 * This can be used from process context to figure out what the value of
1082 * CR3 is without needing to do a (slow) __read_cr3().
1083 *
1084 * It's intended to be used for code like KVM that sneakily changes CR3
1085 * and needs to restore it. It needs to be used very carefully.
1086 */
__get_current_cr3_fast(void)1087 unsigned long __get_current_cr3_fast(void)
1088 {
1089 unsigned long cr3 =
1090 build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd,
1091 this_cpu_read(cpu_tlbstate.loaded_mm_asid),
1092 tlbstate_lam_cr3_mask());
1093
1094 /* For now, be very restrictive about when this can be called. */
1095 VM_WARN_ON(in_nmi() || preemptible());
1096
1097 VM_BUG_ON(cr3 != __read_cr3());
1098 return cr3;
1099 }
1100 EXPORT_SYMBOL_GPL(__get_current_cr3_fast);
1101
1102 /*
1103 * Flush one page in the kernel mapping
1104 */
flush_tlb_one_kernel(unsigned long addr)1105 void flush_tlb_one_kernel(unsigned long addr)
1106 {
1107 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
1108
1109 /*
1110 * If PTI is off, then __flush_tlb_one_user() is just INVLPG or its
1111 * paravirt equivalent. Even with PCID, this is sufficient: we only
1112 * use PCID if we also use global PTEs for the kernel mapping, and
1113 * INVLPG flushes global translations across all address spaces.
1114 *
1115 * If PTI is on, then the kernel is mapped with non-global PTEs, and
1116 * __flush_tlb_one_user() will flush the given address for the current
1117 * kernel address space and for its usermode counterpart, but it does
1118 * not flush it for other address spaces.
1119 */
1120 flush_tlb_one_user(addr);
1121
1122 if (!static_cpu_has(X86_FEATURE_PTI))
1123 return;
1124
1125 /*
1126 * See above. We need to propagate the flush to all other address
1127 * spaces. In principle, we only need to propagate it to kernelmode
1128 * address spaces, but the extra bookkeeping we would need is not
1129 * worth it.
1130 */
1131 this_cpu_write(cpu_tlbstate.invalidate_other, true);
1132 }
1133
1134 /*
1135 * Flush one page in the user mapping
1136 */
native_flush_tlb_one_user(unsigned long addr)1137 STATIC_NOPV void native_flush_tlb_one_user(unsigned long addr)
1138 {
1139 u32 loaded_mm_asid;
1140 bool cpu_pcide;
1141
1142 /* Flush 'addr' from the kernel PCID: */
1143 asm volatile("invlpg (%0)" ::"r" (addr) : "memory");
1144
1145 /* If PTI is off there is no user PCID and nothing to flush. */
1146 if (!static_cpu_has(X86_FEATURE_PTI))
1147 return;
1148
1149 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
1150 cpu_pcide = this_cpu_read(cpu_tlbstate.cr4) & X86_CR4_PCIDE;
1151
1152 /*
1153 * invpcid_flush_one(pcid>0) will #GP if CR4.PCIDE==0. Check
1154 * 'cpu_pcide' to ensure that *this* CPU will not trigger those
1155 * #GP's even if called before CR4.PCIDE has been initialized.
1156 */
1157 if (boot_cpu_has(X86_FEATURE_INVPCID) && cpu_pcide)
1158 invpcid_flush_one(user_pcid(loaded_mm_asid), addr);
1159 else
1160 invalidate_user_asid(loaded_mm_asid);
1161 }
1162
flush_tlb_one_user(unsigned long addr)1163 void flush_tlb_one_user(unsigned long addr)
1164 {
1165 __flush_tlb_one_user(addr);
1166 }
1167
1168 /*
1169 * Flush everything
1170 */
native_flush_tlb_global(void)1171 STATIC_NOPV void native_flush_tlb_global(void)
1172 {
1173 unsigned long flags;
1174
1175 if (static_cpu_has(X86_FEATURE_INVPCID)) {
1176 /*
1177 * Using INVPCID is considerably faster than a pair of writes
1178 * to CR4 sandwiched inside an IRQ flag save/restore.
1179 *
1180 * Note, this works with CR4.PCIDE=0 or 1.
1181 */
1182 invpcid_flush_all();
1183 return;
1184 }
1185
1186 /*
1187 * Read-modify-write to CR4 - protect it from preemption and
1188 * from interrupts. (Use the raw variant because this code can
1189 * be called from deep inside debugging code.)
1190 */
1191 raw_local_irq_save(flags);
1192
1193 __native_tlb_flush_global(this_cpu_read(cpu_tlbstate.cr4));
1194
1195 raw_local_irq_restore(flags);
1196 }
1197
1198 /*
1199 * Flush the entire current user mapping
1200 */
native_flush_tlb_local(void)1201 STATIC_NOPV void native_flush_tlb_local(void)
1202 {
1203 /*
1204 * Preemption or interrupts must be disabled to protect the access
1205 * to the per CPU variable and to prevent being preempted between
1206 * read_cr3() and write_cr3().
1207 */
1208 WARN_ON_ONCE(preemptible());
1209
1210 invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid));
1211
1212 /* If current->mm == NULL then the read_cr3() "borrows" an mm */
1213 native_write_cr3(__native_read_cr3());
1214 }
1215
flush_tlb_local(void)1216 void flush_tlb_local(void)
1217 {
1218 __flush_tlb_local();
1219 }
1220
1221 /*
1222 * Flush everything
1223 */
__flush_tlb_all(void)1224 void __flush_tlb_all(void)
1225 {
1226 /*
1227 * This is to catch users with enabled preemption and the PGE feature
1228 * and don't trigger the warning in __native_flush_tlb().
1229 */
1230 VM_WARN_ON_ONCE(preemptible());
1231
1232 if (cpu_feature_enabled(X86_FEATURE_PGE)) {
1233 __flush_tlb_global();
1234 } else {
1235 /*
1236 * !PGE -> !PCID (setup_pcid()), thus every flush is total.
1237 */
1238 flush_tlb_local();
1239 }
1240 }
1241 EXPORT_SYMBOL_GPL(__flush_tlb_all);
1242
arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch * batch)1243 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
1244 {
1245 struct flush_tlb_info *info;
1246
1247 int cpu = get_cpu();
1248
1249 info = get_flush_tlb_info(NULL, 0, TLB_FLUSH_ALL, 0, false,
1250 TLB_GENERATION_INVALID);
1251 /*
1252 * flush_tlb_multi() is not optimized for the common case in which only
1253 * a local TLB flush is needed. Optimize this use-case by calling
1254 * flush_tlb_func_local() directly in this case.
1255 */
1256 if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids) {
1257 flush_tlb_multi(&batch->cpumask, info);
1258 } else if (cpumask_test_cpu(cpu, &batch->cpumask)) {
1259 lockdep_assert_irqs_enabled();
1260 local_irq_disable();
1261 flush_tlb_func(info);
1262 local_irq_enable();
1263 }
1264
1265 cpumask_clear(&batch->cpumask);
1266
1267 put_flush_tlb_info();
1268 put_cpu();
1269 }
1270
1271 /*
1272 * Blindly accessing user memory from NMI context can be dangerous
1273 * if we're in the middle of switching the current user task or
1274 * switching the loaded mm. It can also be dangerous if we
1275 * interrupted some kernel code that was temporarily using a
1276 * different mm.
1277 */
nmi_uaccess_okay(void)1278 bool nmi_uaccess_okay(void)
1279 {
1280 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
1281 struct mm_struct *current_mm = current->mm;
1282
1283 VM_WARN_ON_ONCE(!loaded_mm);
1284
1285 /*
1286 * The condition we want to check is
1287 * current_mm->pgd == __va(read_cr3_pa()). This may be slow, though,
1288 * if we're running in a VM with shadow paging, and nmi_uaccess_okay()
1289 * is supposed to be reasonably fast.
1290 *
1291 * Instead, we check the almost equivalent but somewhat conservative
1292 * condition below, and we rely on the fact that switch_mm_irqs_off()
1293 * sets loaded_mm to LOADED_MM_SWITCHING before writing to CR3.
1294 */
1295 if (loaded_mm != current_mm)
1296 return false;
1297
1298 VM_WARN_ON_ONCE(current_mm->pgd != __va(read_cr3_pa()));
1299
1300 return true;
1301 }
1302
tlbflush_read_file(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)1303 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
1304 size_t count, loff_t *ppos)
1305 {
1306 char buf[32];
1307 unsigned int len;
1308
1309 len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
1310 return simple_read_from_buffer(user_buf, count, ppos, buf, len);
1311 }
1312
tlbflush_write_file(struct file * file,const char __user * user_buf,size_t count,loff_t * ppos)1313 static ssize_t tlbflush_write_file(struct file *file,
1314 const char __user *user_buf, size_t count, loff_t *ppos)
1315 {
1316 char buf[32];
1317 ssize_t len;
1318 int ceiling;
1319
1320 len = min(count, sizeof(buf) - 1);
1321 if (copy_from_user(buf, user_buf, len))
1322 return -EFAULT;
1323
1324 buf[len] = '\0';
1325 if (kstrtoint(buf, 0, &ceiling))
1326 return -EINVAL;
1327
1328 if (ceiling < 0)
1329 return -EINVAL;
1330
1331 tlb_single_page_flush_ceiling = ceiling;
1332 return count;
1333 }
1334
1335 static const struct file_operations fops_tlbflush = {
1336 .read = tlbflush_read_file,
1337 .write = tlbflush_write_file,
1338 .llseek = default_llseek,
1339 };
1340
create_tlb_single_page_flush_ceiling(void)1341 static int __init create_tlb_single_page_flush_ceiling(void)
1342 {
1343 debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
1344 arch_debugfs_dir, NULL, &fops_tlbflush);
1345 return 0;
1346 }
1347 late_initcall(create_tlb_single_page_flush_ceiling);
1348