1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * drivers/net/phy/micrel.c
4 *
5 * Driver for Micrel PHYs
6 *
7 * Author: David J. Choi
8 *
9 * Copyright (c) 2010-2013 Micrel, Inc.
10 * Copyright (c) 2014 Johan Hovold <johan@kernel.org>
11 *
12 * Support : Micrel Phys:
13 * Giga phys: ksz9021, ksz9031, ksz9131, lan8841, lan8814
14 * 100/10 Phys : ksz8001, ksz8721, ksz8737, ksz8041
15 * ksz8021, ksz8031, ksz8051,
16 * ksz8081, ksz8091,
17 * ksz8061,
18 * Switch : ksz8873, ksz886x
19 * ksz9477, lan8804
20 */
21
22 #include <linux/bitfield.h>
23 #include <linux/ethtool_netlink.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/phy.h>
27 #include <linux/micrel_phy.h>
28 #include <linux/of.h>
29 #include <linux/clk.h>
30 #include <linux/delay.h>
31 #include <linux/ptp_clock_kernel.h>
32 #include <linux/ptp_clock.h>
33 #include <linux/ptp_classify.h>
34 #include <linux/net_tstamp.h>
35 #include <linux/gpio/consumer.h>
36
37 /* Operation Mode Strap Override */
38 #define MII_KSZPHY_OMSO 0x16
39 #define KSZPHY_OMSO_FACTORY_TEST BIT(15)
40 #define KSZPHY_OMSO_B_CAST_OFF BIT(9)
41 #define KSZPHY_OMSO_NAND_TREE_ON BIT(5)
42 #define KSZPHY_OMSO_RMII_OVERRIDE BIT(1)
43 #define KSZPHY_OMSO_MII_OVERRIDE BIT(0)
44
45 /* general Interrupt control/status reg in vendor specific block. */
46 #define MII_KSZPHY_INTCS 0x1B
47 #define KSZPHY_INTCS_JABBER BIT(15)
48 #define KSZPHY_INTCS_RECEIVE_ERR BIT(14)
49 #define KSZPHY_INTCS_PAGE_RECEIVE BIT(13)
50 #define KSZPHY_INTCS_PARELLEL BIT(12)
51 #define KSZPHY_INTCS_LINK_PARTNER_ACK BIT(11)
52 #define KSZPHY_INTCS_LINK_DOWN BIT(10)
53 #define KSZPHY_INTCS_REMOTE_FAULT BIT(9)
54 #define KSZPHY_INTCS_LINK_UP BIT(8)
55 #define KSZPHY_INTCS_ALL (KSZPHY_INTCS_LINK_UP |\
56 KSZPHY_INTCS_LINK_DOWN)
57 #define KSZPHY_INTCS_LINK_DOWN_STATUS BIT(2)
58 #define KSZPHY_INTCS_LINK_UP_STATUS BIT(0)
59 #define KSZPHY_INTCS_STATUS (KSZPHY_INTCS_LINK_DOWN_STATUS |\
60 KSZPHY_INTCS_LINK_UP_STATUS)
61
62 /* LinkMD Control/Status */
63 #define KSZ8081_LMD 0x1d
64 #define KSZ8081_LMD_ENABLE_TEST BIT(15)
65 #define KSZ8081_LMD_STAT_NORMAL 0
66 #define KSZ8081_LMD_STAT_OPEN 1
67 #define KSZ8081_LMD_STAT_SHORT 2
68 #define KSZ8081_LMD_STAT_FAIL 3
69 #define KSZ8081_LMD_STAT_MASK GENMASK(14, 13)
70 /* Short cable (<10 meter) has been detected by LinkMD */
71 #define KSZ8081_LMD_SHORT_INDICATOR BIT(12)
72 #define KSZ8081_LMD_DELTA_TIME_MASK GENMASK(8, 0)
73
74 #define KSZ9x31_LMD 0x12
75 #define KSZ9x31_LMD_VCT_EN BIT(15)
76 #define KSZ9x31_LMD_VCT_DIS_TX BIT(14)
77 #define KSZ9x31_LMD_VCT_PAIR(n) (((n) & 0x3) << 12)
78 #define KSZ9x31_LMD_VCT_SEL_RESULT 0
79 #define KSZ9x31_LMD_VCT_SEL_THRES_HI BIT(10)
80 #define KSZ9x31_LMD_VCT_SEL_THRES_LO BIT(11)
81 #define KSZ9x31_LMD_VCT_SEL_MASK GENMASK(11, 10)
82 #define KSZ9x31_LMD_VCT_ST_NORMAL 0
83 #define KSZ9x31_LMD_VCT_ST_OPEN 1
84 #define KSZ9x31_LMD_VCT_ST_SHORT 2
85 #define KSZ9x31_LMD_VCT_ST_FAIL 3
86 #define KSZ9x31_LMD_VCT_ST_MASK GENMASK(9, 8)
87 #define KSZ9x31_LMD_VCT_DATA_REFLECTED_INVALID BIT(7)
88 #define KSZ9x31_LMD_VCT_DATA_SIG_WAIT_TOO_LONG BIT(6)
89 #define KSZ9x31_LMD_VCT_DATA_MASK100 BIT(5)
90 #define KSZ9x31_LMD_VCT_DATA_NLP_FLP BIT(4)
91 #define KSZ9x31_LMD_VCT_DATA_LO_PULSE_MASK GENMASK(3, 2)
92 #define KSZ9x31_LMD_VCT_DATA_HI_PULSE_MASK GENMASK(1, 0)
93 #define KSZ9x31_LMD_VCT_DATA_MASK GENMASK(7, 0)
94
95 #define KSZPHY_WIRE_PAIR_MASK 0x3
96
97 #define LAN8814_CABLE_DIAG 0x12
98 #define LAN8814_CABLE_DIAG_STAT_MASK GENMASK(9, 8)
99 #define LAN8814_CABLE_DIAG_VCT_DATA_MASK GENMASK(7, 0)
100 #define LAN8814_PAIR_BIT_SHIFT 12
101
102 #define LAN8814_WIRE_PAIR_MASK 0xF
103
104 /* Lan8814 general Interrupt control/status reg in GPHY specific block. */
105 #define LAN8814_INTC 0x18
106 #define LAN8814_INTS 0x1B
107
108 #define LAN8814_INT_LINK_DOWN BIT(2)
109 #define LAN8814_INT_LINK_UP BIT(0)
110 #define LAN8814_INT_LINK (LAN8814_INT_LINK_UP |\
111 LAN8814_INT_LINK_DOWN)
112
113 #define LAN8814_INTR_CTRL_REG 0x34
114 #define LAN8814_INTR_CTRL_REG_POLARITY BIT(1)
115 #define LAN8814_INTR_CTRL_REG_INTR_ENABLE BIT(0)
116
117 #define LAN8814_EEE_STATE 0x38
118 #define LAN8814_EEE_STATE_MASK2P5P BIT(10)
119
120 #define LAN8814_PD_CONTROLS 0x9d
121 #define LAN8814_PD_CONTROLS_PD_MEAS_TIME_MASK GENMASK(3, 0)
122 #define LAN8814_PD_CONTROLS_PD_MEAS_TIME_VAL 0xb
123
124 /* Represents 1ppm adjustment in 2^32 format with
125 * each nsec contains 4 clock cycles.
126 * The value is calculated as following: (1/1000000)/((2^-32)/4)
127 */
128 #define LAN8814_1PPM_FORMAT 17179
129
130 /* Represents 1ppm adjustment in 2^32 format with
131 * each nsec contains 8 clock cycles.
132 * The value is calculated as following: (1/1000000)/((2^-32)/8)
133 */
134 #define LAN8841_1PPM_FORMAT 34360
135
136 #define PTP_RX_VERSION 0x0248
137 #define PTP_TX_VERSION 0x0288
138 #define PTP_MAX_VERSION(x) (((x) & GENMASK(7, 0)) << 8)
139 #define PTP_MIN_VERSION(x) ((x) & GENMASK(7, 0))
140
141 #define PTP_RX_MOD 0x024F
142 #define PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3)
143 #define PTP_RX_TIMESTAMP_EN 0x024D
144 #define PTP_TX_TIMESTAMP_EN 0x028D
145
146 #define PTP_TIMESTAMP_EN_SYNC_ BIT(0)
147 #define PTP_TIMESTAMP_EN_DREQ_ BIT(1)
148 #define PTP_TIMESTAMP_EN_PDREQ_ BIT(2)
149 #define PTP_TIMESTAMP_EN_PDRES_ BIT(3)
150
151 #define PTP_TX_PARSE_L2_ADDR_EN 0x0284
152 #define PTP_RX_PARSE_L2_ADDR_EN 0x0244
153
154 #define PTP_TX_PARSE_IP_ADDR_EN 0x0285
155 #define PTP_RX_PARSE_IP_ADDR_EN 0x0245
156 #define LTC_HARD_RESET 0x023F
157 #define LTC_HARD_RESET_ BIT(0)
158
159 #define TSU_HARD_RESET 0x02C1
160 #define TSU_HARD_RESET_ BIT(0)
161
162 #define PTP_CMD_CTL 0x0200
163 #define PTP_CMD_CTL_PTP_DISABLE_ BIT(0)
164 #define PTP_CMD_CTL_PTP_ENABLE_ BIT(1)
165 #define PTP_CMD_CTL_PTP_CLOCK_READ_ BIT(3)
166 #define PTP_CMD_CTL_PTP_CLOCK_LOAD_ BIT(4)
167 #define PTP_CMD_CTL_PTP_LTC_STEP_SEC_ BIT(5)
168 #define PTP_CMD_CTL_PTP_LTC_STEP_NSEC_ BIT(6)
169
170 #define PTP_COMMON_INT_ENA 0x0204
171 #define PTP_COMMON_INT_ENA_GPIO_CAP_EN BIT(2)
172
173 #define PTP_CLOCK_SET_SEC_HI 0x0205
174 #define PTP_CLOCK_SET_SEC_MID 0x0206
175 #define PTP_CLOCK_SET_SEC_LO 0x0207
176 #define PTP_CLOCK_SET_NS_HI 0x0208
177 #define PTP_CLOCK_SET_NS_LO 0x0209
178
179 #define PTP_CLOCK_READ_SEC_HI 0x0229
180 #define PTP_CLOCK_READ_SEC_MID 0x022A
181 #define PTP_CLOCK_READ_SEC_LO 0x022B
182 #define PTP_CLOCK_READ_NS_HI 0x022C
183 #define PTP_CLOCK_READ_NS_LO 0x022D
184
185 #define PTP_GPIO_SEL 0x0230
186 #define PTP_GPIO_SEL_GPIO_SEL(pin) ((pin) << 8)
187 #define PTP_GPIO_CAP_MAP_LO 0x0232
188
189 #define PTP_GPIO_CAP_EN 0x0233
190 #define PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(gpio) BIT(gpio)
191 #define PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(gpio) (BIT(gpio) << 8)
192
193 #define PTP_GPIO_RE_LTC_SEC_HI_CAP 0x0235
194 #define PTP_GPIO_RE_LTC_SEC_LO_CAP 0x0236
195 #define PTP_GPIO_RE_LTC_NS_HI_CAP 0x0237
196 #define PTP_GPIO_RE_LTC_NS_LO_CAP 0x0238
197 #define PTP_GPIO_FE_LTC_SEC_HI_CAP 0x0239
198 #define PTP_GPIO_FE_LTC_SEC_LO_CAP 0x023A
199 #define PTP_GPIO_FE_LTC_NS_HI_CAP 0x023B
200 #define PTP_GPIO_FE_LTC_NS_LO_CAP 0x023C
201
202 #define PTP_GPIO_CAP_STS 0x023D
203 #define PTP_GPIO_CAP_STS_PTP_GPIO_RE_STS(gpio) BIT(gpio)
204 #define PTP_GPIO_CAP_STS_PTP_GPIO_FE_STS(gpio) (BIT(gpio) << 8)
205
206 #define PTP_OPERATING_MODE 0x0241
207 #define PTP_OPERATING_MODE_STANDALONE_ BIT(0)
208
209 #define PTP_TX_MOD 0x028F
210 #define PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ BIT(12)
211 #define PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3)
212
213 #define PTP_RX_PARSE_CONFIG 0x0242
214 #define PTP_RX_PARSE_CONFIG_LAYER2_EN_ BIT(0)
215 #define PTP_RX_PARSE_CONFIG_IPV4_EN_ BIT(1)
216 #define PTP_RX_PARSE_CONFIG_IPV6_EN_ BIT(2)
217
218 #define PTP_TX_PARSE_CONFIG 0x0282
219 #define PTP_TX_PARSE_CONFIG_LAYER2_EN_ BIT(0)
220 #define PTP_TX_PARSE_CONFIG_IPV4_EN_ BIT(1)
221 #define PTP_TX_PARSE_CONFIG_IPV6_EN_ BIT(2)
222
223 #define PTP_CLOCK_RATE_ADJ_HI 0x020C
224 #define PTP_CLOCK_RATE_ADJ_LO 0x020D
225 #define PTP_CLOCK_RATE_ADJ_DIR_ BIT(15)
226
227 #define PTP_LTC_STEP_ADJ_HI 0x0212
228 #define PTP_LTC_STEP_ADJ_LO 0x0213
229 #define PTP_LTC_STEP_ADJ_DIR_ BIT(15)
230
231 #define LAN8814_INTR_STS_REG 0x0033
232 #define LAN8814_INTR_STS_REG_1588_TSU0_ BIT(0)
233 #define LAN8814_INTR_STS_REG_1588_TSU1_ BIT(1)
234 #define LAN8814_INTR_STS_REG_1588_TSU2_ BIT(2)
235 #define LAN8814_INTR_STS_REG_1588_TSU3_ BIT(3)
236
237 #define PTP_CAP_INFO 0x022A
238 #define PTP_CAP_INFO_TX_TS_CNT_GET_(reg_val) (((reg_val) & 0x0f00) >> 8)
239 #define PTP_CAP_INFO_RX_TS_CNT_GET_(reg_val) ((reg_val) & 0x000f)
240
241 #define PTP_TX_EGRESS_SEC_HI 0x0296
242 #define PTP_TX_EGRESS_SEC_LO 0x0297
243 #define PTP_TX_EGRESS_NS_HI 0x0294
244 #define PTP_TX_EGRESS_NS_LO 0x0295
245 #define PTP_TX_MSG_HEADER2 0x0299
246
247 #define PTP_RX_INGRESS_SEC_HI 0x0256
248 #define PTP_RX_INGRESS_SEC_LO 0x0257
249 #define PTP_RX_INGRESS_NS_HI 0x0254
250 #define PTP_RX_INGRESS_NS_LO 0x0255
251 #define PTP_RX_MSG_HEADER2 0x0259
252
253 #define PTP_TSU_INT_EN 0x0200
254 #define PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ BIT(3)
255 #define PTP_TSU_INT_EN_PTP_TX_TS_EN_ BIT(2)
256 #define PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_ BIT(1)
257 #define PTP_TSU_INT_EN_PTP_RX_TS_EN_ BIT(0)
258
259 #define PTP_TSU_INT_STS 0x0201
260 #define PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_ BIT(3)
261 #define PTP_TSU_INT_STS_PTP_TX_TS_EN_ BIT(2)
262 #define PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_ BIT(1)
263 #define PTP_TSU_INT_STS_PTP_RX_TS_EN_ BIT(0)
264
265 #define LAN8814_LED_CTRL_1 0x0
266 #define LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_ BIT(6)
267
268 /* PHY Control 1 */
269 #define MII_KSZPHY_CTRL_1 0x1e
270 #define KSZ8081_CTRL1_MDIX_STAT BIT(4)
271
272 /* PHY Control 2 / PHY Control (if no PHY Control 1) */
273 #define MII_KSZPHY_CTRL_2 0x1f
274 #define MII_KSZPHY_CTRL MII_KSZPHY_CTRL_2
275 /* bitmap of PHY register to set interrupt mode */
276 #define KSZ8081_CTRL2_HP_MDIX BIT(15)
277 #define KSZ8081_CTRL2_MDI_MDI_X_SELECT BIT(14)
278 #define KSZ8081_CTRL2_DISABLE_AUTO_MDIX BIT(13)
279 #define KSZ8081_CTRL2_FORCE_LINK BIT(11)
280 #define KSZ8081_CTRL2_POWER_SAVING BIT(10)
281 #define KSZPHY_CTRL_INT_ACTIVE_HIGH BIT(9)
282 #define KSZPHY_RMII_REF_CLK_SEL BIT(7)
283
284 /* Write/read to/from extended registers */
285 #define MII_KSZPHY_EXTREG 0x0b
286 #define KSZPHY_EXTREG_WRITE 0x8000
287
288 #define MII_KSZPHY_EXTREG_WRITE 0x0c
289 #define MII_KSZPHY_EXTREG_READ 0x0d
290
291 /* Extended registers */
292 #define MII_KSZPHY_CLK_CONTROL_PAD_SKEW 0x104
293 #define MII_KSZPHY_RX_DATA_PAD_SKEW 0x105
294 #define MII_KSZPHY_TX_DATA_PAD_SKEW 0x106
295
296 #define PS_TO_REG 200
297 #define FIFO_SIZE 8
298
299 #define LAN8814_PTP_GPIO_NUM 24
300 #define LAN8814_PTP_PEROUT_NUM 2
301 #define LAN8814_PTP_EXTTS_NUM 3
302
303 #define LAN8814_BUFFER_TIME 2
304
305 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS 13
306 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS 12
307 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS 11
308 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS 10
309 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS 9
310 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS 8
311 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US 7
312 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US 6
313 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US 5
314 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US 4
315 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US 3
316 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US 2
317 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS 1
318 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS 0
319
320 #define LAN8814_GPIO_EN1 0x20
321 #define LAN8814_GPIO_EN2 0x21
322 #define LAN8814_GPIO_DIR1 0x22
323 #define LAN8814_GPIO_DIR2 0x23
324 #define LAN8814_GPIO_BUF1 0x24
325 #define LAN8814_GPIO_BUF2 0x25
326
327 #define LAN8814_GPIO_EN_ADDR(pin) \
328 ((pin) > 15 ? LAN8814_GPIO_EN1 : LAN8814_GPIO_EN2)
329 #define LAN8814_GPIO_EN_BIT(pin) BIT(pin)
330 #define LAN8814_GPIO_DIR_ADDR(pin) \
331 ((pin) > 15 ? LAN8814_GPIO_DIR1 : LAN8814_GPIO_DIR2)
332 #define LAN8814_GPIO_DIR_BIT(pin) BIT(pin)
333 #define LAN8814_GPIO_BUF_ADDR(pin) \
334 ((pin) > 15 ? LAN8814_GPIO_BUF1 : LAN8814_GPIO_BUF2)
335 #define LAN8814_GPIO_BUF_BIT(pin) BIT(pin)
336
337 #define LAN8814_EVENT_A 0
338 #define LAN8814_EVENT_B 1
339
340 #define LAN8814_PTP_GENERAL_CONFIG 0x0201
341 #define LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_MASK(event) \
342 ((event) ? GENMASK(11, 8) : GENMASK(7, 4))
343 #define LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_SET(event, value) \
344 (((value) & GENMASK(3, 0)) << (4 + ((event) << 2)))
345 #define LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event) \
346 ((event) ? BIT(2) : BIT(0))
347 #define LAN8814_PTP_GENERAL_CONFIG_POLARITY_X(event) \
348 ((event) ? BIT(3) : BIT(1))
349
350 #define LAN8814_PTP_CLOCK_TARGET_SEC_HI(event) ((event) ? 0x21F : 0x215)
351 #define LAN8814_PTP_CLOCK_TARGET_SEC_LO(event) ((event) ? 0x220 : 0x216)
352 #define LAN8814_PTP_CLOCK_TARGET_NS_HI(event) ((event) ? 0x221 : 0x217)
353 #define LAN8814_PTP_CLOCK_TARGET_NS_LO(event) ((event) ? 0x222 : 0x218)
354
355 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_HI(event) ((event) ? 0x223 : 0x219)
356 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_LO(event) ((event) ? 0x224 : 0x21A)
357 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_HI(event) ((event) ? 0x225 : 0x21B)
358 #define LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_LO(event) ((event) ? 0x226 : 0x21C)
359
360 /* Delay used to get the second part from the LTC */
361 #define LAN8841_GET_SEC_LTC_DELAY (500 * NSEC_PER_MSEC)
362
363 struct kszphy_hw_stat {
364 const char *string;
365 u8 reg;
366 u8 bits;
367 };
368
369 static struct kszphy_hw_stat kszphy_hw_stats[] = {
370 { "phy_receive_errors", 21, 16},
371 { "phy_idle_errors", 10, 8 },
372 };
373
374 struct kszphy_type {
375 u32 led_mode_reg;
376 u16 interrupt_level_mask;
377 u16 cable_diag_reg;
378 unsigned long pair_mask;
379 u16 disable_dll_tx_bit;
380 u16 disable_dll_rx_bit;
381 u16 disable_dll_mask;
382 bool has_broadcast_disable;
383 bool has_nand_tree_disable;
384 bool has_rmii_ref_clk_sel;
385 };
386
387 /* Shared structure between the PHYs of the same package. */
388 struct lan8814_shared_priv {
389 struct phy_device *phydev;
390 struct ptp_clock *ptp_clock;
391 struct ptp_clock_info ptp_clock_info;
392 struct ptp_pin_desc *pin_config;
393
394 /* Lock for ptp_clock */
395 struct mutex shared_lock;
396 };
397
398 struct lan8814_ptp_rx_ts {
399 struct list_head list;
400 u32 seconds;
401 u32 nsec;
402 u16 seq_id;
403 };
404
405 struct kszphy_ptp_priv {
406 struct mii_timestamper mii_ts;
407 struct phy_device *phydev;
408
409 struct sk_buff_head tx_queue;
410 struct sk_buff_head rx_queue;
411
412 struct list_head rx_ts_list;
413 /* Lock for Rx ts fifo */
414 spinlock_t rx_ts_lock;
415
416 int hwts_tx_type;
417 enum hwtstamp_rx_filters rx_filter;
418 int layer;
419 int version;
420
421 struct ptp_clock *ptp_clock;
422 struct ptp_clock_info ptp_clock_info;
423 /* Lock for ptp_clock */
424 struct mutex ptp_lock;
425 struct ptp_pin_desc *pin_config;
426
427 s64 seconds;
428 /* Lock for accessing seconds */
429 spinlock_t seconds_lock;
430 };
431
432 struct kszphy_priv {
433 struct kszphy_ptp_priv ptp_priv;
434 const struct kszphy_type *type;
435 int led_mode;
436 u16 vct_ctrl1000;
437 bool rmii_ref_clk_sel;
438 bool rmii_ref_clk_sel_val;
439 u64 stats[ARRAY_SIZE(kszphy_hw_stats)];
440 };
441
442 static const struct kszphy_type lan8814_type = {
443 .led_mode_reg = ~LAN8814_LED_CTRL_1,
444 .cable_diag_reg = LAN8814_CABLE_DIAG,
445 .pair_mask = LAN8814_WIRE_PAIR_MASK,
446 };
447
448 static const struct kszphy_type ksz886x_type = {
449 .cable_diag_reg = KSZ8081_LMD,
450 .pair_mask = KSZPHY_WIRE_PAIR_MASK,
451 };
452
453 static const struct kszphy_type ksz8021_type = {
454 .led_mode_reg = MII_KSZPHY_CTRL_2,
455 .has_broadcast_disable = true,
456 .has_nand_tree_disable = true,
457 .has_rmii_ref_clk_sel = true,
458 };
459
460 static const struct kszphy_type ksz8041_type = {
461 .led_mode_reg = MII_KSZPHY_CTRL_1,
462 };
463
464 static const struct kszphy_type ksz8051_type = {
465 .led_mode_reg = MII_KSZPHY_CTRL_2,
466 .has_nand_tree_disable = true,
467 };
468
469 static const struct kszphy_type ksz8081_type = {
470 .led_mode_reg = MII_KSZPHY_CTRL_2,
471 .has_broadcast_disable = true,
472 .has_nand_tree_disable = true,
473 .has_rmii_ref_clk_sel = true,
474 };
475
476 static const struct kszphy_type ks8737_type = {
477 .interrupt_level_mask = BIT(14),
478 };
479
480 static const struct kszphy_type ksz9021_type = {
481 .interrupt_level_mask = BIT(14),
482 };
483
484 static const struct kszphy_type ksz9131_type = {
485 .interrupt_level_mask = BIT(14),
486 .disable_dll_tx_bit = BIT(12),
487 .disable_dll_rx_bit = BIT(12),
488 .disable_dll_mask = BIT_MASK(12),
489 };
490
491 static const struct kszphy_type lan8841_type = {
492 .disable_dll_tx_bit = BIT(14),
493 .disable_dll_rx_bit = BIT(14),
494 .disable_dll_mask = BIT_MASK(14),
495 .cable_diag_reg = LAN8814_CABLE_DIAG,
496 .pair_mask = LAN8814_WIRE_PAIR_MASK,
497 };
498
kszphy_extended_write(struct phy_device * phydev,u32 regnum,u16 val)499 static int kszphy_extended_write(struct phy_device *phydev,
500 u32 regnum, u16 val)
501 {
502 phy_write(phydev, MII_KSZPHY_EXTREG, KSZPHY_EXTREG_WRITE | regnum);
503 return phy_write(phydev, MII_KSZPHY_EXTREG_WRITE, val);
504 }
505
kszphy_extended_read(struct phy_device * phydev,u32 regnum)506 static int kszphy_extended_read(struct phy_device *phydev,
507 u32 regnum)
508 {
509 phy_write(phydev, MII_KSZPHY_EXTREG, regnum);
510 return phy_read(phydev, MII_KSZPHY_EXTREG_READ);
511 }
512
kszphy_ack_interrupt(struct phy_device * phydev)513 static int kszphy_ack_interrupt(struct phy_device *phydev)
514 {
515 /* bit[7..0] int status, which is a read and clear register. */
516 int rc;
517
518 rc = phy_read(phydev, MII_KSZPHY_INTCS);
519
520 return (rc < 0) ? rc : 0;
521 }
522
kszphy_config_intr(struct phy_device * phydev)523 static int kszphy_config_intr(struct phy_device *phydev)
524 {
525 const struct kszphy_type *type = phydev->drv->driver_data;
526 int temp, err;
527 u16 mask;
528
529 if (type && type->interrupt_level_mask)
530 mask = type->interrupt_level_mask;
531 else
532 mask = KSZPHY_CTRL_INT_ACTIVE_HIGH;
533
534 /* set the interrupt pin active low */
535 temp = phy_read(phydev, MII_KSZPHY_CTRL);
536 if (temp < 0)
537 return temp;
538 temp &= ~mask;
539 phy_write(phydev, MII_KSZPHY_CTRL, temp);
540
541 /* enable / disable interrupts */
542 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
543 err = kszphy_ack_interrupt(phydev);
544 if (err)
545 return err;
546
547 err = phy_write(phydev, MII_KSZPHY_INTCS, KSZPHY_INTCS_ALL);
548 } else {
549 err = phy_write(phydev, MII_KSZPHY_INTCS, 0);
550 if (err)
551 return err;
552
553 err = kszphy_ack_interrupt(phydev);
554 }
555
556 return err;
557 }
558
kszphy_handle_interrupt(struct phy_device * phydev)559 static irqreturn_t kszphy_handle_interrupt(struct phy_device *phydev)
560 {
561 int irq_status;
562
563 irq_status = phy_read(phydev, MII_KSZPHY_INTCS);
564 if (irq_status < 0) {
565 phy_error(phydev);
566 return IRQ_NONE;
567 }
568
569 if (!(irq_status & KSZPHY_INTCS_STATUS))
570 return IRQ_NONE;
571
572 phy_trigger_machine(phydev);
573
574 return IRQ_HANDLED;
575 }
576
kszphy_rmii_clk_sel(struct phy_device * phydev,bool val)577 static int kszphy_rmii_clk_sel(struct phy_device *phydev, bool val)
578 {
579 int ctrl;
580
581 ctrl = phy_read(phydev, MII_KSZPHY_CTRL);
582 if (ctrl < 0)
583 return ctrl;
584
585 if (val)
586 ctrl |= KSZPHY_RMII_REF_CLK_SEL;
587 else
588 ctrl &= ~KSZPHY_RMII_REF_CLK_SEL;
589
590 return phy_write(phydev, MII_KSZPHY_CTRL, ctrl);
591 }
592
kszphy_setup_led(struct phy_device * phydev,u32 reg,int val)593 static int kszphy_setup_led(struct phy_device *phydev, u32 reg, int val)
594 {
595 int rc, temp, shift;
596
597 switch (reg) {
598 case MII_KSZPHY_CTRL_1:
599 shift = 14;
600 break;
601 case MII_KSZPHY_CTRL_2:
602 shift = 4;
603 break;
604 default:
605 return -EINVAL;
606 }
607
608 temp = phy_read(phydev, reg);
609 if (temp < 0) {
610 rc = temp;
611 goto out;
612 }
613
614 temp &= ~(3 << shift);
615 temp |= val << shift;
616 rc = phy_write(phydev, reg, temp);
617 out:
618 if (rc < 0)
619 phydev_err(phydev, "failed to set led mode\n");
620
621 return rc;
622 }
623
624 /* Disable PHY address 0 as the broadcast address, so that it can be used as a
625 * unique (non-broadcast) address on a shared bus.
626 */
kszphy_broadcast_disable(struct phy_device * phydev)627 static int kszphy_broadcast_disable(struct phy_device *phydev)
628 {
629 int ret;
630
631 ret = phy_read(phydev, MII_KSZPHY_OMSO);
632 if (ret < 0)
633 goto out;
634
635 ret = phy_write(phydev, MII_KSZPHY_OMSO, ret | KSZPHY_OMSO_B_CAST_OFF);
636 out:
637 if (ret)
638 phydev_err(phydev, "failed to disable broadcast address\n");
639
640 return ret;
641 }
642
kszphy_nand_tree_disable(struct phy_device * phydev)643 static int kszphy_nand_tree_disable(struct phy_device *phydev)
644 {
645 int ret;
646
647 ret = phy_read(phydev, MII_KSZPHY_OMSO);
648 if (ret < 0)
649 goto out;
650
651 if (!(ret & KSZPHY_OMSO_NAND_TREE_ON))
652 return 0;
653
654 ret = phy_write(phydev, MII_KSZPHY_OMSO,
655 ret & ~KSZPHY_OMSO_NAND_TREE_ON);
656 out:
657 if (ret)
658 phydev_err(phydev, "failed to disable NAND tree mode\n");
659
660 return ret;
661 }
662
663 /* Some config bits need to be set again on resume, handle them here. */
kszphy_config_reset(struct phy_device * phydev)664 static int kszphy_config_reset(struct phy_device *phydev)
665 {
666 struct kszphy_priv *priv = phydev->priv;
667 int ret;
668
669 if (priv->rmii_ref_clk_sel) {
670 ret = kszphy_rmii_clk_sel(phydev, priv->rmii_ref_clk_sel_val);
671 if (ret) {
672 phydev_err(phydev,
673 "failed to set rmii reference clock\n");
674 return ret;
675 }
676 }
677
678 if (priv->type && priv->led_mode >= 0)
679 kszphy_setup_led(phydev, priv->type->led_mode_reg, priv->led_mode);
680
681 return 0;
682 }
683
kszphy_config_init(struct phy_device * phydev)684 static int kszphy_config_init(struct phy_device *phydev)
685 {
686 struct kszphy_priv *priv = phydev->priv;
687 const struct kszphy_type *type;
688
689 if (!priv)
690 return 0;
691
692 type = priv->type;
693
694 if (type && type->has_broadcast_disable)
695 kszphy_broadcast_disable(phydev);
696
697 if (type && type->has_nand_tree_disable)
698 kszphy_nand_tree_disable(phydev);
699
700 return kszphy_config_reset(phydev);
701 }
702
ksz8041_fiber_mode(struct phy_device * phydev)703 static int ksz8041_fiber_mode(struct phy_device *phydev)
704 {
705 struct device_node *of_node = phydev->mdio.dev.of_node;
706
707 return of_property_read_bool(of_node, "micrel,fiber-mode");
708 }
709
ksz8041_config_init(struct phy_device * phydev)710 static int ksz8041_config_init(struct phy_device *phydev)
711 {
712 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
713
714 /* Limit supported and advertised modes in fiber mode */
715 if (ksz8041_fiber_mode(phydev)) {
716 phydev->dev_flags |= MICREL_PHY_FXEN;
717 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask);
718 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask);
719
720 linkmode_and(phydev->supported, phydev->supported, mask);
721 linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT,
722 phydev->supported);
723 linkmode_and(phydev->advertising, phydev->advertising, mask);
724 linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT,
725 phydev->advertising);
726 phydev->autoneg = AUTONEG_DISABLE;
727 }
728
729 return kszphy_config_init(phydev);
730 }
731
ksz8041_config_aneg(struct phy_device * phydev)732 static int ksz8041_config_aneg(struct phy_device *phydev)
733 {
734 /* Skip auto-negotiation in fiber mode */
735 if (phydev->dev_flags & MICREL_PHY_FXEN) {
736 phydev->speed = SPEED_100;
737 return 0;
738 }
739
740 return genphy_config_aneg(phydev);
741 }
742
ksz8051_ksz8795_match_phy_device(struct phy_device * phydev,const bool ksz_8051)743 static int ksz8051_ksz8795_match_phy_device(struct phy_device *phydev,
744 const bool ksz_8051)
745 {
746 int ret;
747
748 if (!phy_id_compare(phydev->phy_id, PHY_ID_KSZ8051, MICREL_PHY_ID_MASK))
749 return 0;
750
751 ret = phy_read(phydev, MII_BMSR);
752 if (ret < 0)
753 return ret;
754
755 /* KSZ8051 PHY and KSZ8794/KSZ8795/KSZ8765 switch share the same
756 * exact PHY ID. However, they can be told apart by the extended
757 * capability registers presence. The KSZ8051 PHY has them while
758 * the switch does not.
759 */
760 ret &= BMSR_ERCAP;
761 if (ksz_8051)
762 return ret;
763 else
764 return !ret;
765 }
766
ksz8051_match_phy_device(struct phy_device * phydev)767 static int ksz8051_match_phy_device(struct phy_device *phydev)
768 {
769 return ksz8051_ksz8795_match_phy_device(phydev, true);
770 }
771
ksz8081_config_init(struct phy_device * phydev)772 static int ksz8081_config_init(struct phy_device *phydev)
773 {
774 /* KSZPHY_OMSO_FACTORY_TEST is set at de-assertion of the reset line
775 * based on the RXER (KSZ8081RNA/RND) or TXC (KSZ8081MNX/RNB) pin. If a
776 * pull-down is missing, the factory test mode should be cleared by
777 * manually writing a 0.
778 */
779 phy_clear_bits(phydev, MII_KSZPHY_OMSO, KSZPHY_OMSO_FACTORY_TEST);
780
781 return kszphy_config_init(phydev);
782 }
783
ksz8081_config_mdix(struct phy_device * phydev,u8 ctrl)784 static int ksz8081_config_mdix(struct phy_device *phydev, u8 ctrl)
785 {
786 u16 val;
787
788 switch (ctrl) {
789 case ETH_TP_MDI:
790 val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX;
791 break;
792 case ETH_TP_MDI_X:
793 val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX |
794 KSZ8081_CTRL2_MDI_MDI_X_SELECT;
795 break;
796 case ETH_TP_MDI_AUTO:
797 val = 0;
798 break;
799 default:
800 return 0;
801 }
802
803 return phy_modify(phydev, MII_KSZPHY_CTRL_2,
804 KSZ8081_CTRL2_HP_MDIX |
805 KSZ8081_CTRL2_MDI_MDI_X_SELECT |
806 KSZ8081_CTRL2_DISABLE_AUTO_MDIX,
807 KSZ8081_CTRL2_HP_MDIX | val);
808 }
809
ksz8081_config_aneg(struct phy_device * phydev)810 static int ksz8081_config_aneg(struct phy_device *phydev)
811 {
812 int ret;
813
814 ret = genphy_config_aneg(phydev);
815 if (ret)
816 return ret;
817
818 /* The MDI-X configuration is automatically changed by the PHY after
819 * switching from autoneg off to on. So, take MDI-X configuration under
820 * own control and set it after autoneg configuration was done.
821 */
822 return ksz8081_config_mdix(phydev, phydev->mdix_ctrl);
823 }
824
ksz8081_mdix_update(struct phy_device * phydev)825 static int ksz8081_mdix_update(struct phy_device *phydev)
826 {
827 int ret;
828
829 ret = phy_read(phydev, MII_KSZPHY_CTRL_2);
830 if (ret < 0)
831 return ret;
832
833 if (ret & KSZ8081_CTRL2_DISABLE_AUTO_MDIX) {
834 if (ret & KSZ8081_CTRL2_MDI_MDI_X_SELECT)
835 phydev->mdix_ctrl = ETH_TP_MDI_X;
836 else
837 phydev->mdix_ctrl = ETH_TP_MDI;
838 } else {
839 phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
840 }
841
842 ret = phy_read(phydev, MII_KSZPHY_CTRL_1);
843 if (ret < 0)
844 return ret;
845
846 if (ret & KSZ8081_CTRL1_MDIX_STAT)
847 phydev->mdix = ETH_TP_MDI;
848 else
849 phydev->mdix = ETH_TP_MDI_X;
850
851 return 0;
852 }
853
ksz8081_read_status(struct phy_device * phydev)854 static int ksz8081_read_status(struct phy_device *phydev)
855 {
856 int ret;
857
858 ret = ksz8081_mdix_update(phydev);
859 if (ret < 0)
860 return ret;
861
862 return genphy_read_status(phydev);
863 }
864
ksz8061_config_init(struct phy_device * phydev)865 static int ksz8061_config_init(struct phy_device *phydev)
866 {
867 int ret;
868
869 /* Chip can be powered down by the bootstrap code. */
870 ret = phy_read(phydev, MII_BMCR);
871 if (ret < 0)
872 return ret;
873 if (ret & BMCR_PDOWN) {
874 ret = phy_write(phydev, MII_BMCR, ret & ~BMCR_PDOWN);
875 if (ret < 0)
876 return ret;
877 usleep_range(1000, 2000);
878 }
879
880 ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A);
881 if (ret)
882 return ret;
883
884 return kszphy_config_init(phydev);
885 }
886
ksz8795_match_phy_device(struct phy_device * phydev)887 static int ksz8795_match_phy_device(struct phy_device *phydev)
888 {
889 return ksz8051_ksz8795_match_phy_device(phydev, false);
890 }
891
ksz9021_load_values_from_of(struct phy_device * phydev,const struct device_node * of_node,u16 reg,const char * field1,const char * field2,const char * field3,const char * field4)892 static int ksz9021_load_values_from_of(struct phy_device *phydev,
893 const struct device_node *of_node,
894 u16 reg,
895 const char *field1, const char *field2,
896 const char *field3, const char *field4)
897 {
898 int val1 = -1;
899 int val2 = -2;
900 int val3 = -3;
901 int val4 = -4;
902 int newval;
903 int matches = 0;
904
905 if (!of_property_read_u32(of_node, field1, &val1))
906 matches++;
907
908 if (!of_property_read_u32(of_node, field2, &val2))
909 matches++;
910
911 if (!of_property_read_u32(of_node, field3, &val3))
912 matches++;
913
914 if (!of_property_read_u32(of_node, field4, &val4))
915 matches++;
916
917 if (!matches)
918 return 0;
919
920 if (matches < 4)
921 newval = kszphy_extended_read(phydev, reg);
922 else
923 newval = 0;
924
925 if (val1 != -1)
926 newval = ((newval & 0xfff0) | ((val1 / PS_TO_REG) & 0xf) << 0);
927
928 if (val2 != -2)
929 newval = ((newval & 0xff0f) | ((val2 / PS_TO_REG) & 0xf) << 4);
930
931 if (val3 != -3)
932 newval = ((newval & 0xf0ff) | ((val3 / PS_TO_REG) & 0xf) << 8);
933
934 if (val4 != -4)
935 newval = ((newval & 0x0fff) | ((val4 / PS_TO_REG) & 0xf) << 12);
936
937 return kszphy_extended_write(phydev, reg, newval);
938 }
939
ksz9021_config_init(struct phy_device * phydev)940 static int ksz9021_config_init(struct phy_device *phydev)
941 {
942 const struct device_node *of_node;
943 const struct device *dev_walker;
944
945 /* The Micrel driver has a deprecated option to place phy OF
946 * properties in the MAC node. Walk up the tree of devices to
947 * find a device with an OF node.
948 */
949 dev_walker = &phydev->mdio.dev;
950 do {
951 of_node = dev_walker->of_node;
952 dev_walker = dev_walker->parent;
953
954 } while (!of_node && dev_walker);
955
956 if (of_node) {
957 ksz9021_load_values_from_of(phydev, of_node,
958 MII_KSZPHY_CLK_CONTROL_PAD_SKEW,
959 "txen-skew-ps", "txc-skew-ps",
960 "rxdv-skew-ps", "rxc-skew-ps");
961 ksz9021_load_values_from_of(phydev, of_node,
962 MII_KSZPHY_RX_DATA_PAD_SKEW,
963 "rxd0-skew-ps", "rxd1-skew-ps",
964 "rxd2-skew-ps", "rxd3-skew-ps");
965 ksz9021_load_values_from_of(phydev, of_node,
966 MII_KSZPHY_TX_DATA_PAD_SKEW,
967 "txd0-skew-ps", "txd1-skew-ps",
968 "txd2-skew-ps", "txd3-skew-ps");
969 }
970 return 0;
971 }
972
973 #define KSZ9031_PS_TO_REG 60
974
975 /* Extended registers */
976 /* MMD Address 0x0 */
977 #define MII_KSZ9031RN_FLP_BURST_TX_LO 3
978 #define MII_KSZ9031RN_FLP_BURST_TX_HI 4
979
980 /* MMD Address 0x2 */
981 #define MII_KSZ9031RN_CONTROL_PAD_SKEW 4
982 #define MII_KSZ9031RN_RX_CTL_M GENMASK(7, 4)
983 #define MII_KSZ9031RN_TX_CTL_M GENMASK(3, 0)
984
985 #define MII_KSZ9031RN_RX_DATA_PAD_SKEW 5
986 #define MII_KSZ9031RN_RXD3 GENMASK(15, 12)
987 #define MII_KSZ9031RN_RXD2 GENMASK(11, 8)
988 #define MII_KSZ9031RN_RXD1 GENMASK(7, 4)
989 #define MII_KSZ9031RN_RXD0 GENMASK(3, 0)
990
991 #define MII_KSZ9031RN_TX_DATA_PAD_SKEW 6
992 #define MII_KSZ9031RN_TXD3 GENMASK(15, 12)
993 #define MII_KSZ9031RN_TXD2 GENMASK(11, 8)
994 #define MII_KSZ9031RN_TXD1 GENMASK(7, 4)
995 #define MII_KSZ9031RN_TXD0 GENMASK(3, 0)
996
997 #define MII_KSZ9031RN_CLK_PAD_SKEW 8
998 #define MII_KSZ9031RN_GTX_CLK GENMASK(9, 5)
999 #define MII_KSZ9031RN_RX_CLK GENMASK(4, 0)
1000
1001 /* KSZ9031 has internal RGMII_IDRX = 1.2ns and RGMII_IDTX = 0ns. To
1002 * provide different RGMII options we need to configure delay offset
1003 * for each pad relative to build in delay.
1004 */
1005 /* keep rx as "No delay adjustment" and set rx_clk to +0.60ns to get delays of
1006 * 1.80ns
1007 */
1008 #define RX_ID 0x7
1009 #define RX_CLK_ID 0x19
1010
1011 /* set rx to +0.30ns and rx_clk to -0.90ns to compensate the
1012 * internal 1.2ns delay.
1013 */
1014 #define RX_ND 0xc
1015 #define RX_CLK_ND 0x0
1016
1017 /* set tx to -0.42ns and tx_clk to +0.96ns to get 1.38ns delay */
1018 #define TX_ID 0x0
1019 #define TX_CLK_ID 0x1f
1020
1021 /* set tx and tx_clk to "No delay adjustment" to keep 0ns
1022 * dealy
1023 */
1024 #define TX_ND 0x7
1025 #define TX_CLK_ND 0xf
1026
1027 /* MMD Address 0x1C */
1028 #define MII_KSZ9031RN_EDPD 0x23
1029 #define MII_KSZ9031RN_EDPD_ENABLE BIT(0)
1030
ksz9031_of_load_skew_values(struct phy_device * phydev,const struct device_node * of_node,u16 reg,size_t field_sz,const char * field[],u8 numfields,bool * update)1031 static int ksz9031_of_load_skew_values(struct phy_device *phydev,
1032 const struct device_node *of_node,
1033 u16 reg, size_t field_sz,
1034 const char *field[], u8 numfields,
1035 bool *update)
1036 {
1037 int val[4] = {-1, -2, -3, -4};
1038 int matches = 0;
1039 u16 mask;
1040 u16 maxval;
1041 u16 newval;
1042 int i;
1043
1044 for (i = 0; i < numfields; i++)
1045 if (!of_property_read_u32(of_node, field[i], val + i))
1046 matches++;
1047
1048 if (!matches)
1049 return 0;
1050
1051 *update |= true;
1052
1053 if (matches < numfields)
1054 newval = phy_read_mmd(phydev, 2, reg);
1055 else
1056 newval = 0;
1057
1058 maxval = (field_sz == 4) ? 0xf : 0x1f;
1059 for (i = 0; i < numfields; i++)
1060 if (val[i] != -(i + 1)) {
1061 mask = 0xffff;
1062 mask ^= maxval << (field_sz * i);
1063 newval = (newval & mask) |
1064 (((val[i] / KSZ9031_PS_TO_REG) & maxval)
1065 << (field_sz * i));
1066 }
1067
1068 return phy_write_mmd(phydev, 2, reg, newval);
1069 }
1070
1071 /* Center KSZ9031RNX FLP timing at 16ms. */
ksz9031_center_flp_timing(struct phy_device * phydev)1072 static int ksz9031_center_flp_timing(struct phy_device *phydev)
1073 {
1074 int result;
1075
1076 result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_HI,
1077 0x0006);
1078 if (result)
1079 return result;
1080
1081 result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_LO,
1082 0x1A80);
1083 if (result)
1084 return result;
1085
1086 return genphy_restart_aneg(phydev);
1087 }
1088
1089 /* Enable energy-detect power-down mode */
ksz9031_enable_edpd(struct phy_device * phydev)1090 static int ksz9031_enable_edpd(struct phy_device *phydev)
1091 {
1092 int reg;
1093
1094 reg = phy_read_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD);
1095 if (reg < 0)
1096 return reg;
1097 return phy_write_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD,
1098 reg | MII_KSZ9031RN_EDPD_ENABLE);
1099 }
1100
ksz9031_config_rgmii_delay(struct phy_device * phydev)1101 static int ksz9031_config_rgmii_delay(struct phy_device *phydev)
1102 {
1103 u16 rx, tx, rx_clk, tx_clk;
1104 int ret;
1105
1106 switch (phydev->interface) {
1107 case PHY_INTERFACE_MODE_RGMII:
1108 tx = TX_ND;
1109 tx_clk = TX_CLK_ND;
1110 rx = RX_ND;
1111 rx_clk = RX_CLK_ND;
1112 break;
1113 case PHY_INTERFACE_MODE_RGMII_ID:
1114 tx = TX_ID;
1115 tx_clk = TX_CLK_ID;
1116 rx = RX_ID;
1117 rx_clk = RX_CLK_ID;
1118 break;
1119 case PHY_INTERFACE_MODE_RGMII_RXID:
1120 tx = TX_ND;
1121 tx_clk = TX_CLK_ND;
1122 rx = RX_ID;
1123 rx_clk = RX_CLK_ID;
1124 break;
1125 case PHY_INTERFACE_MODE_RGMII_TXID:
1126 tx = TX_ID;
1127 tx_clk = TX_CLK_ID;
1128 rx = RX_ND;
1129 rx_clk = RX_CLK_ND;
1130 break;
1131 default:
1132 return 0;
1133 }
1134
1135 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_CONTROL_PAD_SKEW,
1136 FIELD_PREP(MII_KSZ9031RN_RX_CTL_M, rx) |
1137 FIELD_PREP(MII_KSZ9031RN_TX_CTL_M, tx));
1138 if (ret < 0)
1139 return ret;
1140
1141 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_RX_DATA_PAD_SKEW,
1142 FIELD_PREP(MII_KSZ9031RN_RXD3, rx) |
1143 FIELD_PREP(MII_KSZ9031RN_RXD2, rx) |
1144 FIELD_PREP(MII_KSZ9031RN_RXD1, rx) |
1145 FIELD_PREP(MII_KSZ9031RN_RXD0, rx));
1146 if (ret < 0)
1147 return ret;
1148
1149 ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_TX_DATA_PAD_SKEW,
1150 FIELD_PREP(MII_KSZ9031RN_TXD3, tx) |
1151 FIELD_PREP(MII_KSZ9031RN_TXD2, tx) |
1152 FIELD_PREP(MII_KSZ9031RN_TXD1, tx) |
1153 FIELD_PREP(MII_KSZ9031RN_TXD0, tx));
1154 if (ret < 0)
1155 return ret;
1156
1157 return phy_write_mmd(phydev, 2, MII_KSZ9031RN_CLK_PAD_SKEW,
1158 FIELD_PREP(MII_KSZ9031RN_GTX_CLK, tx_clk) |
1159 FIELD_PREP(MII_KSZ9031RN_RX_CLK, rx_clk));
1160 }
1161
ksz9031_config_init(struct phy_device * phydev)1162 static int ksz9031_config_init(struct phy_device *phydev)
1163 {
1164 const struct device_node *of_node;
1165 static const char *clk_skews[2] = {"rxc-skew-ps", "txc-skew-ps"};
1166 static const char *rx_data_skews[4] = {
1167 "rxd0-skew-ps", "rxd1-skew-ps",
1168 "rxd2-skew-ps", "rxd3-skew-ps"
1169 };
1170 static const char *tx_data_skews[4] = {
1171 "txd0-skew-ps", "txd1-skew-ps",
1172 "txd2-skew-ps", "txd3-skew-ps"
1173 };
1174 static const char *control_skews[2] = {"txen-skew-ps", "rxdv-skew-ps"};
1175 const struct device *dev_walker;
1176 int result;
1177
1178 result = ksz9031_enable_edpd(phydev);
1179 if (result < 0)
1180 return result;
1181
1182 /* The Micrel driver has a deprecated option to place phy OF
1183 * properties in the MAC node. Walk up the tree of devices to
1184 * find a device with an OF node.
1185 */
1186 dev_walker = &phydev->mdio.dev;
1187 do {
1188 of_node = dev_walker->of_node;
1189 dev_walker = dev_walker->parent;
1190 } while (!of_node && dev_walker);
1191
1192 if (of_node) {
1193 bool update = false;
1194
1195 if (phy_interface_is_rgmii(phydev)) {
1196 result = ksz9031_config_rgmii_delay(phydev);
1197 if (result < 0)
1198 return result;
1199 }
1200
1201 ksz9031_of_load_skew_values(phydev, of_node,
1202 MII_KSZ9031RN_CLK_PAD_SKEW, 5,
1203 clk_skews, 2, &update);
1204
1205 ksz9031_of_load_skew_values(phydev, of_node,
1206 MII_KSZ9031RN_CONTROL_PAD_SKEW, 4,
1207 control_skews, 2, &update);
1208
1209 ksz9031_of_load_skew_values(phydev, of_node,
1210 MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4,
1211 rx_data_skews, 4, &update);
1212
1213 ksz9031_of_load_skew_values(phydev, of_node,
1214 MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4,
1215 tx_data_skews, 4, &update);
1216
1217 if (update && !phy_interface_is_rgmii(phydev))
1218 phydev_warn(phydev,
1219 "*-skew-ps values should be used only with RGMII PHY modes\n");
1220
1221 /* Silicon Errata Sheet (DS80000691D or DS80000692D):
1222 * When the device links in the 1000BASE-T slave mode only,
1223 * the optional 125MHz reference output clock (CLK125_NDO)
1224 * has wide duty cycle variation.
1225 *
1226 * The optional CLK125_NDO clock does not meet the RGMII
1227 * 45/55 percent (min/max) duty cycle requirement and therefore
1228 * cannot be used directly by the MAC side for clocking
1229 * applications that have setup/hold time requirements on
1230 * rising and falling clock edges.
1231 *
1232 * Workaround:
1233 * Force the phy to be the master to receive a stable clock
1234 * which meets the duty cycle requirement.
1235 */
1236 if (of_property_read_bool(of_node, "micrel,force-master")) {
1237 result = phy_read(phydev, MII_CTRL1000);
1238 if (result < 0)
1239 goto err_force_master;
1240
1241 /* enable master mode, config & prefer master */
1242 result |= CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER;
1243 result = phy_write(phydev, MII_CTRL1000, result);
1244 if (result < 0)
1245 goto err_force_master;
1246 }
1247 }
1248
1249 return ksz9031_center_flp_timing(phydev);
1250
1251 err_force_master:
1252 phydev_err(phydev, "failed to force the phy to master mode\n");
1253 return result;
1254 }
1255
1256 #define KSZ9131_SKEW_5BIT_MAX 2400
1257 #define KSZ9131_SKEW_4BIT_MAX 800
1258 #define KSZ9131_OFFSET 700
1259 #define KSZ9131_STEP 100
1260
ksz9131_of_load_skew_values(struct phy_device * phydev,struct device_node * of_node,u16 reg,size_t field_sz,char * field[],u8 numfields)1261 static int ksz9131_of_load_skew_values(struct phy_device *phydev,
1262 struct device_node *of_node,
1263 u16 reg, size_t field_sz,
1264 char *field[], u8 numfields)
1265 {
1266 int val[4] = {-(1 + KSZ9131_OFFSET), -(2 + KSZ9131_OFFSET),
1267 -(3 + KSZ9131_OFFSET), -(4 + KSZ9131_OFFSET)};
1268 int skewval, skewmax = 0;
1269 int matches = 0;
1270 u16 maxval;
1271 u16 newval;
1272 u16 mask;
1273 int i;
1274
1275 /* psec properties in dts should mean x pico seconds */
1276 if (field_sz == 5)
1277 skewmax = KSZ9131_SKEW_5BIT_MAX;
1278 else
1279 skewmax = KSZ9131_SKEW_4BIT_MAX;
1280
1281 for (i = 0; i < numfields; i++)
1282 if (!of_property_read_s32(of_node, field[i], &skewval)) {
1283 if (skewval < -KSZ9131_OFFSET)
1284 skewval = -KSZ9131_OFFSET;
1285 else if (skewval > skewmax)
1286 skewval = skewmax;
1287
1288 val[i] = skewval + KSZ9131_OFFSET;
1289 matches++;
1290 }
1291
1292 if (!matches)
1293 return 0;
1294
1295 if (matches < numfields)
1296 newval = phy_read_mmd(phydev, 2, reg);
1297 else
1298 newval = 0;
1299
1300 maxval = (field_sz == 4) ? 0xf : 0x1f;
1301 for (i = 0; i < numfields; i++)
1302 if (val[i] != -(i + 1 + KSZ9131_OFFSET)) {
1303 mask = 0xffff;
1304 mask ^= maxval << (field_sz * i);
1305 newval = (newval & mask) |
1306 (((val[i] / KSZ9131_STEP) & maxval)
1307 << (field_sz * i));
1308 }
1309
1310 return phy_write_mmd(phydev, 2, reg, newval);
1311 }
1312
1313 #define KSZ9131RN_MMD_COMMON_CTRL_REG 2
1314 #define KSZ9131RN_RXC_DLL_CTRL 76
1315 #define KSZ9131RN_TXC_DLL_CTRL 77
1316 #define KSZ9131RN_DLL_ENABLE_DELAY 0
1317
ksz9131_config_rgmii_delay(struct phy_device * phydev)1318 static int ksz9131_config_rgmii_delay(struct phy_device *phydev)
1319 {
1320 const struct kszphy_type *type = phydev->drv->driver_data;
1321 u16 rxcdll_val, txcdll_val;
1322 int ret;
1323
1324 switch (phydev->interface) {
1325 case PHY_INTERFACE_MODE_RGMII:
1326 rxcdll_val = type->disable_dll_rx_bit;
1327 txcdll_val = type->disable_dll_tx_bit;
1328 break;
1329 case PHY_INTERFACE_MODE_RGMII_ID:
1330 rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1331 txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1332 break;
1333 case PHY_INTERFACE_MODE_RGMII_RXID:
1334 rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1335 txcdll_val = type->disable_dll_tx_bit;
1336 break;
1337 case PHY_INTERFACE_MODE_RGMII_TXID:
1338 rxcdll_val = type->disable_dll_rx_bit;
1339 txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY;
1340 break;
1341 default:
1342 return 0;
1343 }
1344
1345 ret = phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
1346 KSZ9131RN_RXC_DLL_CTRL, type->disable_dll_mask,
1347 rxcdll_val);
1348 if (ret < 0)
1349 return ret;
1350
1351 return phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
1352 KSZ9131RN_TXC_DLL_CTRL, type->disable_dll_mask,
1353 txcdll_val);
1354 }
1355
1356 /* Silicon Errata DS80000693B
1357 *
1358 * When LEDs are configured in Individual Mode, LED1 is ON in a no-link
1359 * condition. Workaround is to set register 0x1e, bit 9, this way LED1 behaves
1360 * according to the datasheet (off if there is no link).
1361 */
ksz9131_led_errata(struct phy_device * phydev)1362 static int ksz9131_led_errata(struct phy_device *phydev)
1363 {
1364 int reg;
1365
1366 reg = phy_read_mmd(phydev, 2, 0);
1367 if (reg < 0)
1368 return reg;
1369
1370 if (!(reg & BIT(4)))
1371 return 0;
1372
1373 return phy_set_bits(phydev, 0x1e, BIT(9));
1374 }
1375
ksz9131_config_init(struct phy_device * phydev)1376 static int ksz9131_config_init(struct phy_device *phydev)
1377 {
1378 struct device_node *of_node;
1379 char *clk_skews[2] = {"rxc-skew-psec", "txc-skew-psec"};
1380 char *rx_data_skews[4] = {
1381 "rxd0-skew-psec", "rxd1-skew-psec",
1382 "rxd2-skew-psec", "rxd3-skew-psec"
1383 };
1384 char *tx_data_skews[4] = {
1385 "txd0-skew-psec", "txd1-skew-psec",
1386 "txd2-skew-psec", "txd3-skew-psec"
1387 };
1388 char *control_skews[2] = {"txen-skew-psec", "rxdv-skew-psec"};
1389 const struct device *dev_walker;
1390 int ret;
1391
1392 phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
1393
1394 dev_walker = &phydev->mdio.dev;
1395 do {
1396 of_node = dev_walker->of_node;
1397 dev_walker = dev_walker->parent;
1398 } while (!of_node && dev_walker);
1399
1400 if (!of_node)
1401 return 0;
1402
1403 if (phy_interface_is_rgmii(phydev)) {
1404 ret = ksz9131_config_rgmii_delay(phydev);
1405 if (ret < 0)
1406 return ret;
1407 }
1408
1409 ret = ksz9131_of_load_skew_values(phydev, of_node,
1410 MII_KSZ9031RN_CLK_PAD_SKEW, 5,
1411 clk_skews, 2);
1412 if (ret < 0)
1413 return ret;
1414
1415 ret = ksz9131_of_load_skew_values(phydev, of_node,
1416 MII_KSZ9031RN_CONTROL_PAD_SKEW, 4,
1417 control_skews, 2);
1418 if (ret < 0)
1419 return ret;
1420
1421 ret = ksz9131_of_load_skew_values(phydev, of_node,
1422 MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4,
1423 rx_data_skews, 4);
1424 if (ret < 0)
1425 return ret;
1426
1427 ret = ksz9131_of_load_skew_values(phydev, of_node,
1428 MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4,
1429 tx_data_skews, 4);
1430 if (ret < 0)
1431 return ret;
1432
1433 ret = ksz9131_led_errata(phydev);
1434 if (ret < 0)
1435 return ret;
1436
1437 return 0;
1438 }
1439
1440 #define MII_KSZ9131_AUTO_MDIX 0x1C
1441 #define MII_KSZ9131_AUTO_MDI_SET BIT(7)
1442 #define MII_KSZ9131_AUTO_MDIX_SWAP_OFF BIT(6)
1443 #define MII_KSZ9131_DIG_AXAN_STS 0x14
1444 #define MII_KSZ9131_DIG_AXAN_STS_LINK_DET BIT(14)
1445 #define MII_KSZ9131_DIG_AXAN_STS_A_SELECT BIT(12)
1446
ksz9131_mdix_update(struct phy_device * phydev)1447 static int ksz9131_mdix_update(struct phy_device *phydev)
1448 {
1449 int ret;
1450
1451 if (phydev->mdix_ctrl != ETH_TP_MDI_AUTO) {
1452 phydev->mdix = phydev->mdix_ctrl;
1453 } else {
1454 ret = phy_read(phydev, MII_KSZ9131_DIG_AXAN_STS);
1455 if (ret < 0)
1456 return ret;
1457
1458 if (ret & MII_KSZ9131_DIG_AXAN_STS_LINK_DET) {
1459 if (ret & MII_KSZ9131_DIG_AXAN_STS_A_SELECT)
1460 phydev->mdix = ETH_TP_MDI;
1461 else
1462 phydev->mdix = ETH_TP_MDI_X;
1463 } else {
1464 phydev->mdix = ETH_TP_MDI_INVALID;
1465 }
1466 }
1467
1468 return 0;
1469 }
1470
ksz9131_config_mdix(struct phy_device * phydev,u8 ctrl)1471 static int ksz9131_config_mdix(struct phy_device *phydev, u8 ctrl)
1472 {
1473 u16 val;
1474
1475 switch (ctrl) {
1476 case ETH_TP_MDI:
1477 val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF |
1478 MII_KSZ9131_AUTO_MDI_SET;
1479 break;
1480 case ETH_TP_MDI_X:
1481 val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF;
1482 break;
1483 case ETH_TP_MDI_AUTO:
1484 val = 0;
1485 break;
1486 default:
1487 return 0;
1488 }
1489
1490 return phy_modify(phydev, MII_KSZ9131_AUTO_MDIX,
1491 MII_KSZ9131_AUTO_MDIX_SWAP_OFF |
1492 MII_KSZ9131_AUTO_MDI_SET, val);
1493 }
1494
ksz9131_read_status(struct phy_device * phydev)1495 static int ksz9131_read_status(struct phy_device *phydev)
1496 {
1497 int ret;
1498
1499 ret = ksz9131_mdix_update(phydev);
1500 if (ret < 0)
1501 return ret;
1502
1503 return genphy_read_status(phydev);
1504 }
1505
ksz9131_config_aneg(struct phy_device * phydev)1506 static int ksz9131_config_aneg(struct phy_device *phydev)
1507 {
1508 int ret;
1509
1510 ret = ksz9131_config_mdix(phydev, phydev->mdix_ctrl);
1511 if (ret)
1512 return ret;
1513
1514 return genphy_config_aneg(phydev);
1515 }
1516
ksz9477_get_features(struct phy_device * phydev)1517 static int ksz9477_get_features(struct phy_device *phydev)
1518 {
1519 int ret;
1520
1521 ret = genphy_read_abilities(phydev);
1522 if (ret)
1523 return ret;
1524
1525 /* The "EEE control and capability 1" (Register 3.20) seems to be
1526 * influenced by the "EEE advertisement 1" (Register 7.60). Changes
1527 * on the 7.60 will affect 3.20. So, we need to construct our own list
1528 * of caps.
1529 * KSZ8563R should have 100BaseTX/Full only.
1530 */
1531 linkmode_and(phydev->supported_eee, phydev->supported,
1532 PHY_EEE_CAP1_FEATURES);
1533
1534 return 0;
1535 }
1536
1537 #define KSZ8873MLL_GLOBAL_CONTROL_4 0x06
1538 #define KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX BIT(6)
1539 #define KSZ8873MLL_GLOBAL_CONTROL_4_SPEED BIT(4)
ksz8873mll_read_status(struct phy_device * phydev)1540 static int ksz8873mll_read_status(struct phy_device *phydev)
1541 {
1542 int regval;
1543
1544 /* dummy read */
1545 regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4);
1546
1547 regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4);
1548
1549 if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX)
1550 phydev->duplex = DUPLEX_HALF;
1551 else
1552 phydev->duplex = DUPLEX_FULL;
1553
1554 if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_SPEED)
1555 phydev->speed = SPEED_10;
1556 else
1557 phydev->speed = SPEED_100;
1558
1559 phydev->link = 1;
1560 phydev->pause = phydev->asym_pause = 0;
1561
1562 return 0;
1563 }
1564
ksz9031_get_features(struct phy_device * phydev)1565 static int ksz9031_get_features(struct phy_device *phydev)
1566 {
1567 int ret;
1568
1569 ret = genphy_read_abilities(phydev);
1570 if (ret < 0)
1571 return ret;
1572
1573 /* Silicon Errata Sheet (DS80000691D or DS80000692D):
1574 * Whenever the device's Asymmetric Pause capability is set to 1,
1575 * link-up may fail after a link-up to link-down transition.
1576 *
1577 * The Errata Sheet is for ksz9031, but ksz9021 has the same issue
1578 *
1579 * Workaround:
1580 * Do not enable the Asymmetric Pause capability bit.
1581 */
1582 linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported);
1583
1584 /* We force setting the Pause capability as the core will force the
1585 * Asymmetric Pause capability to 1 otherwise.
1586 */
1587 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported);
1588
1589 return 0;
1590 }
1591
ksz9031_read_status(struct phy_device * phydev)1592 static int ksz9031_read_status(struct phy_device *phydev)
1593 {
1594 int err;
1595 int regval;
1596
1597 err = genphy_read_status(phydev);
1598 if (err)
1599 return err;
1600
1601 /* Make sure the PHY is not broken. Read idle error count,
1602 * and reset the PHY if it is maxed out.
1603 */
1604 regval = phy_read(phydev, MII_STAT1000);
1605 if ((regval & 0xFF) == 0xFF) {
1606 phy_init_hw(phydev);
1607 phydev->link = 0;
1608 if (phydev->drv->config_intr && phy_interrupt_is_valid(phydev))
1609 phydev->drv->config_intr(phydev);
1610 return genphy_config_aneg(phydev);
1611 }
1612
1613 return 0;
1614 }
1615
ksz9x31_cable_test_start(struct phy_device * phydev)1616 static int ksz9x31_cable_test_start(struct phy_device *phydev)
1617 {
1618 struct kszphy_priv *priv = phydev->priv;
1619 int ret;
1620
1621 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1622 * Prior to running the cable diagnostics, Auto-negotiation should
1623 * be disabled, full duplex set and the link speed set to 1000Mbps
1624 * via the Basic Control Register.
1625 */
1626 ret = phy_modify(phydev, MII_BMCR,
1627 BMCR_SPEED1000 | BMCR_FULLDPLX |
1628 BMCR_ANENABLE | BMCR_SPEED100,
1629 BMCR_SPEED1000 | BMCR_FULLDPLX);
1630 if (ret)
1631 return ret;
1632
1633 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1634 * The Master-Slave configuration should be set to Slave by writing
1635 * a value of 0x1000 to the Auto-Negotiation Master Slave Control
1636 * Register.
1637 */
1638 ret = phy_read(phydev, MII_CTRL1000);
1639 if (ret < 0)
1640 return ret;
1641
1642 /* Cache these bits, they need to be restored once LinkMD finishes. */
1643 priv->vct_ctrl1000 = ret & (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
1644 ret &= ~(CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
1645 ret |= CTL1000_ENABLE_MASTER;
1646
1647 return phy_write(phydev, MII_CTRL1000, ret);
1648 }
1649
ksz9x31_cable_test_result_trans(u16 status)1650 static int ksz9x31_cable_test_result_trans(u16 status)
1651 {
1652 switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) {
1653 case KSZ9x31_LMD_VCT_ST_NORMAL:
1654 return ETHTOOL_A_CABLE_RESULT_CODE_OK;
1655 case KSZ9x31_LMD_VCT_ST_OPEN:
1656 return ETHTOOL_A_CABLE_RESULT_CODE_OPEN;
1657 case KSZ9x31_LMD_VCT_ST_SHORT:
1658 return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT;
1659 case KSZ9x31_LMD_VCT_ST_FAIL:
1660 fallthrough;
1661 default:
1662 return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC;
1663 }
1664 }
1665
ksz9x31_cable_test_failed(u16 status)1666 static bool ksz9x31_cable_test_failed(u16 status)
1667 {
1668 int stat = FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status);
1669
1670 return stat == KSZ9x31_LMD_VCT_ST_FAIL;
1671 }
1672
ksz9x31_cable_test_fault_length_valid(u16 status)1673 static bool ksz9x31_cable_test_fault_length_valid(u16 status)
1674 {
1675 switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) {
1676 case KSZ9x31_LMD_VCT_ST_OPEN:
1677 fallthrough;
1678 case KSZ9x31_LMD_VCT_ST_SHORT:
1679 return true;
1680 }
1681 return false;
1682 }
1683
ksz9x31_cable_test_fault_length(struct phy_device * phydev,u16 stat)1684 static int ksz9x31_cable_test_fault_length(struct phy_device *phydev, u16 stat)
1685 {
1686 int dt = FIELD_GET(KSZ9x31_LMD_VCT_DATA_MASK, stat);
1687
1688 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1689 *
1690 * distance to fault = (VCT_DATA - 22) * 4 / cable propagation velocity
1691 */
1692 if (phydev_id_compare(phydev, PHY_ID_KSZ9131))
1693 dt = clamp(dt - 22, 0, 255);
1694
1695 return (dt * 400) / 10;
1696 }
1697
ksz9x31_cable_test_wait_for_completion(struct phy_device * phydev)1698 static int ksz9x31_cable_test_wait_for_completion(struct phy_device *phydev)
1699 {
1700 int val, ret;
1701
1702 ret = phy_read_poll_timeout(phydev, KSZ9x31_LMD, val,
1703 !(val & KSZ9x31_LMD_VCT_EN),
1704 30000, 100000, true);
1705
1706 return ret < 0 ? ret : 0;
1707 }
1708
ksz9x31_cable_test_get_pair(int pair)1709 static int ksz9x31_cable_test_get_pair(int pair)
1710 {
1711 static const int ethtool_pair[] = {
1712 ETHTOOL_A_CABLE_PAIR_A,
1713 ETHTOOL_A_CABLE_PAIR_B,
1714 ETHTOOL_A_CABLE_PAIR_C,
1715 ETHTOOL_A_CABLE_PAIR_D,
1716 };
1717
1718 return ethtool_pair[pair];
1719 }
1720
ksz9x31_cable_test_one_pair(struct phy_device * phydev,int pair)1721 static int ksz9x31_cable_test_one_pair(struct phy_device *phydev, int pair)
1722 {
1723 int ret, val;
1724
1725 /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic
1726 * To test each individual cable pair, set the cable pair in the Cable
1727 * Diagnostics Test Pair (VCT_PAIR[1:0]) field of the LinkMD Cable
1728 * Diagnostic Register, along with setting the Cable Diagnostics Test
1729 * Enable (VCT_EN) bit. The Cable Diagnostics Test Enable (VCT_EN) bit
1730 * will self clear when the test is concluded.
1731 */
1732 ret = phy_write(phydev, KSZ9x31_LMD,
1733 KSZ9x31_LMD_VCT_EN | KSZ9x31_LMD_VCT_PAIR(pair));
1734 if (ret)
1735 return ret;
1736
1737 ret = ksz9x31_cable_test_wait_for_completion(phydev);
1738 if (ret)
1739 return ret;
1740
1741 val = phy_read(phydev, KSZ9x31_LMD);
1742 if (val < 0)
1743 return val;
1744
1745 if (ksz9x31_cable_test_failed(val))
1746 return -EAGAIN;
1747
1748 ret = ethnl_cable_test_result(phydev,
1749 ksz9x31_cable_test_get_pair(pair),
1750 ksz9x31_cable_test_result_trans(val));
1751 if (ret)
1752 return ret;
1753
1754 if (!ksz9x31_cable_test_fault_length_valid(val))
1755 return 0;
1756
1757 return ethnl_cable_test_fault_length(phydev,
1758 ksz9x31_cable_test_get_pair(pair),
1759 ksz9x31_cable_test_fault_length(phydev, val));
1760 }
1761
ksz9x31_cable_test_get_status(struct phy_device * phydev,bool * finished)1762 static int ksz9x31_cable_test_get_status(struct phy_device *phydev,
1763 bool *finished)
1764 {
1765 struct kszphy_priv *priv = phydev->priv;
1766 unsigned long pair_mask = 0xf;
1767 int retries = 20;
1768 int pair, ret, rv;
1769
1770 *finished = false;
1771
1772 /* Try harder if link partner is active */
1773 while (pair_mask && retries--) {
1774 for_each_set_bit(pair, &pair_mask, 4) {
1775 ret = ksz9x31_cable_test_one_pair(phydev, pair);
1776 if (ret == -EAGAIN)
1777 continue;
1778 if (ret < 0)
1779 return ret;
1780 clear_bit(pair, &pair_mask);
1781 }
1782 /* If link partner is in autonegotiation mode it will send 2ms
1783 * of FLPs with at least 6ms of silence.
1784 * Add 2ms sleep to have better chances to hit this silence.
1785 */
1786 if (pair_mask)
1787 usleep_range(2000, 3000);
1788 }
1789
1790 /* Report remaining unfinished pair result as unknown. */
1791 for_each_set_bit(pair, &pair_mask, 4) {
1792 ret = ethnl_cable_test_result(phydev,
1793 ksz9x31_cable_test_get_pair(pair),
1794 ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC);
1795 }
1796
1797 *finished = true;
1798
1799 /* Restore cached bits from before LinkMD got started. */
1800 rv = phy_modify(phydev, MII_CTRL1000,
1801 CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER,
1802 priv->vct_ctrl1000);
1803 if (rv)
1804 return rv;
1805
1806 return ret;
1807 }
1808
ksz8873mll_config_aneg(struct phy_device * phydev)1809 static int ksz8873mll_config_aneg(struct phy_device *phydev)
1810 {
1811 return 0;
1812 }
1813
ksz886x_config_mdix(struct phy_device * phydev,u8 ctrl)1814 static int ksz886x_config_mdix(struct phy_device *phydev, u8 ctrl)
1815 {
1816 u16 val;
1817
1818 switch (ctrl) {
1819 case ETH_TP_MDI:
1820 val = KSZ886X_BMCR_DISABLE_AUTO_MDIX;
1821 break;
1822 case ETH_TP_MDI_X:
1823 /* Note: The naming of the bit KSZ886X_BMCR_FORCE_MDI is bit
1824 * counter intuitive, the "-X" in "1 = Force MDI" in the data
1825 * sheet seems to be missing:
1826 * 1 = Force MDI (sic!) (transmit on RX+/RX- pins)
1827 * 0 = Normal operation (transmit on TX+/TX- pins)
1828 */
1829 val = KSZ886X_BMCR_DISABLE_AUTO_MDIX | KSZ886X_BMCR_FORCE_MDI;
1830 break;
1831 case ETH_TP_MDI_AUTO:
1832 val = 0;
1833 break;
1834 default:
1835 return 0;
1836 }
1837
1838 return phy_modify(phydev, MII_BMCR,
1839 KSZ886X_BMCR_HP_MDIX | KSZ886X_BMCR_FORCE_MDI |
1840 KSZ886X_BMCR_DISABLE_AUTO_MDIX,
1841 KSZ886X_BMCR_HP_MDIX | val);
1842 }
1843
ksz886x_config_aneg(struct phy_device * phydev)1844 static int ksz886x_config_aneg(struct phy_device *phydev)
1845 {
1846 int ret;
1847
1848 ret = genphy_config_aneg(phydev);
1849 if (ret)
1850 return ret;
1851
1852 if (phydev->autoneg != AUTONEG_ENABLE) {
1853 /* When autonegotation is disabled, we need to manually force
1854 * the link state. If we don't do this, the PHY will keep
1855 * sending Fast Link Pulses (FLPs) which are part of the
1856 * autonegotiation process. This is not desired when
1857 * autonegotiation is off.
1858 */
1859 ret = phy_set_bits(phydev, MII_KSZPHY_CTRL,
1860 KSZ886X_CTRL_FORCE_LINK);
1861 if (ret)
1862 return ret;
1863 } else {
1864 /* If we had previously forced the link state, we need to
1865 * clear KSZ886X_CTRL_FORCE_LINK bit now. Otherwise, the PHY
1866 * will not perform autonegotiation.
1867 */
1868 ret = phy_clear_bits(phydev, MII_KSZPHY_CTRL,
1869 KSZ886X_CTRL_FORCE_LINK);
1870 if (ret)
1871 return ret;
1872 }
1873
1874 /* The MDI-X configuration is automatically changed by the PHY after
1875 * switching from autoneg off to on. So, take MDI-X configuration under
1876 * own control and set it after autoneg configuration was done.
1877 */
1878 return ksz886x_config_mdix(phydev, phydev->mdix_ctrl);
1879 }
1880
ksz886x_mdix_update(struct phy_device * phydev)1881 static int ksz886x_mdix_update(struct phy_device *phydev)
1882 {
1883 int ret;
1884
1885 ret = phy_read(phydev, MII_BMCR);
1886 if (ret < 0)
1887 return ret;
1888
1889 if (ret & KSZ886X_BMCR_DISABLE_AUTO_MDIX) {
1890 if (ret & KSZ886X_BMCR_FORCE_MDI)
1891 phydev->mdix_ctrl = ETH_TP_MDI_X;
1892 else
1893 phydev->mdix_ctrl = ETH_TP_MDI;
1894 } else {
1895 phydev->mdix_ctrl = ETH_TP_MDI_AUTO;
1896 }
1897
1898 ret = phy_read(phydev, MII_KSZPHY_CTRL);
1899 if (ret < 0)
1900 return ret;
1901
1902 /* Same reverse logic as KSZ886X_BMCR_FORCE_MDI */
1903 if (ret & KSZ886X_CTRL_MDIX_STAT)
1904 phydev->mdix = ETH_TP_MDI_X;
1905 else
1906 phydev->mdix = ETH_TP_MDI;
1907
1908 return 0;
1909 }
1910
ksz886x_read_status(struct phy_device * phydev)1911 static int ksz886x_read_status(struct phy_device *phydev)
1912 {
1913 int ret;
1914
1915 ret = ksz886x_mdix_update(phydev);
1916 if (ret < 0)
1917 return ret;
1918
1919 return genphy_read_status(phydev);
1920 }
1921
1922 struct ksz9477_errata_write {
1923 u8 dev_addr;
1924 u8 reg_addr;
1925 u16 val;
1926 };
1927
1928 static const struct ksz9477_errata_write ksz9477_errata_writes[] = {
1929 /* Register settings are needed to improve PHY receive performance */
1930 {0x01, 0x6f, 0xdd0b},
1931 {0x01, 0x8f, 0x6032},
1932 {0x01, 0x9d, 0x248c},
1933 {0x01, 0x75, 0x0060},
1934 {0x01, 0xd3, 0x7777},
1935 {0x1c, 0x06, 0x3008},
1936 {0x1c, 0x08, 0x2000},
1937
1938 /* Transmit waveform amplitude can be improved (1000BASE-T, 100BASE-TX, 10BASE-Te) */
1939 {0x1c, 0x04, 0x00d0},
1940
1941 /* Register settings are required to meet data sheet supply current specifications */
1942 {0x1c, 0x13, 0x6eff},
1943 {0x1c, 0x14, 0xe6ff},
1944 {0x1c, 0x15, 0x6eff},
1945 {0x1c, 0x16, 0xe6ff},
1946 {0x1c, 0x17, 0x00ff},
1947 {0x1c, 0x18, 0x43ff},
1948 {0x1c, 0x19, 0xc3ff},
1949 {0x1c, 0x1a, 0x6fff},
1950 {0x1c, 0x1b, 0x07ff},
1951 {0x1c, 0x1c, 0x0fff},
1952 {0x1c, 0x1d, 0xe7ff},
1953 {0x1c, 0x1e, 0xefff},
1954 {0x1c, 0x20, 0xeeee},
1955 };
1956
ksz9477_phy_errata(struct phy_device * phydev)1957 static int ksz9477_phy_errata(struct phy_device *phydev)
1958 {
1959 int err;
1960 int i;
1961
1962 /* Apply PHY settings to address errata listed in
1963 * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565
1964 * Silicon Errata and Data Sheet Clarification documents.
1965 *
1966 * Document notes: Before configuring the PHY MMD registers, it is
1967 * necessary to set the PHY to 100 Mbps speed with auto-negotiation
1968 * disabled by writing to register 0xN100-0xN101. After writing the
1969 * MMD registers, and after all errata workarounds that involve PHY
1970 * register settings, write register 0xN100-0xN101 again to enable
1971 * and restart auto-negotiation.
1972 */
1973 err = phy_write(phydev, MII_BMCR, BMCR_SPEED100 | BMCR_FULLDPLX);
1974 if (err)
1975 return err;
1976
1977 for (i = 0; i < ARRAY_SIZE(ksz9477_errata_writes); ++i) {
1978 const struct ksz9477_errata_write *errata = &ksz9477_errata_writes[i];
1979
1980 err = phy_write_mmd(phydev, errata->dev_addr, errata->reg_addr, errata->val);
1981 if (err)
1982 return err;
1983 }
1984
1985 err = genphy_restart_aneg(phydev);
1986 if (err)
1987 return err;
1988
1989 return err;
1990 }
1991
ksz9477_config_init(struct phy_device * phydev)1992 static int ksz9477_config_init(struct phy_device *phydev)
1993 {
1994 int err;
1995
1996 /* Only KSZ9897 family of switches needs this fix. */
1997 if ((phydev->phy_id & 0xf) == 1) {
1998 err = ksz9477_phy_errata(phydev);
1999 if (err)
2000 return err;
2001 }
2002
2003 /* According to KSZ9477 Errata DS80000754C (Module 4) all EEE modes
2004 * in this switch shall be regarded as broken.
2005 */
2006 if (phydev->dev_flags & MICREL_NO_EEE)
2007 phydev->eee_broken_modes = -1;
2008
2009 return kszphy_config_init(phydev);
2010 }
2011
kszphy_get_sset_count(struct phy_device * phydev)2012 static int kszphy_get_sset_count(struct phy_device *phydev)
2013 {
2014 return ARRAY_SIZE(kszphy_hw_stats);
2015 }
2016
kszphy_get_strings(struct phy_device * phydev,u8 * data)2017 static void kszphy_get_strings(struct phy_device *phydev, u8 *data)
2018 {
2019 int i;
2020
2021 for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++) {
2022 strscpy(data + i * ETH_GSTRING_LEN,
2023 kszphy_hw_stats[i].string, ETH_GSTRING_LEN);
2024 }
2025 }
2026
kszphy_get_stat(struct phy_device * phydev,int i)2027 static u64 kszphy_get_stat(struct phy_device *phydev, int i)
2028 {
2029 struct kszphy_hw_stat stat = kszphy_hw_stats[i];
2030 struct kszphy_priv *priv = phydev->priv;
2031 int val;
2032 u64 ret;
2033
2034 val = phy_read(phydev, stat.reg);
2035 if (val < 0) {
2036 ret = U64_MAX;
2037 } else {
2038 val = val & ((1 << stat.bits) - 1);
2039 priv->stats[i] += val;
2040 ret = priv->stats[i];
2041 }
2042
2043 return ret;
2044 }
2045
kszphy_get_stats(struct phy_device * phydev,struct ethtool_stats * stats,u64 * data)2046 static void kszphy_get_stats(struct phy_device *phydev,
2047 struct ethtool_stats *stats, u64 *data)
2048 {
2049 int i;
2050
2051 for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++)
2052 data[i] = kszphy_get_stat(phydev, i);
2053 }
2054
kszphy_suspend(struct phy_device * phydev)2055 static int kszphy_suspend(struct phy_device *phydev)
2056 {
2057 /* Disable PHY Interrupts */
2058 if (phy_interrupt_is_valid(phydev)) {
2059 phydev->interrupts = PHY_INTERRUPT_DISABLED;
2060 if (phydev->drv->config_intr)
2061 phydev->drv->config_intr(phydev);
2062 }
2063
2064 return genphy_suspend(phydev);
2065 }
2066
kszphy_parse_led_mode(struct phy_device * phydev)2067 static void kszphy_parse_led_mode(struct phy_device *phydev)
2068 {
2069 const struct kszphy_type *type = phydev->drv->driver_data;
2070 const struct device_node *np = phydev->mdio.dev.of_node;
2071 struct kszphy_priv *priv = phydev->priv;
2072 int ret;
2073
2074 if (type && type->led_mode_reg) {
2075 ret = of_property_read_u32(np, "micrel,led-mode",
2076 &priv->led_mode);
2077
2078 if (ret)
2079 priv->led_mode = -1;
2080
2081 if (priv->led_mode > 3) {
2082 phydev_err(phydev, "invalid led mode: 0x%02x\n",
2083 priv->led_mode);
2084 priv->led_mode = -1;
2085 }
2086 } else {
2087 priv->led_mode = -1;
2088 }
2089 }
2090
kszphy_resume(struct phy_device * phydev)2091 static int kszphy_resume(struct phy_device *phydev)
2092 {
2093 int ret;
2094
2095 genphy_resume(phydev);
2096
2097 /* After switching from power-down to normal mode, an internal global
2098 * reset is automatically generated. Wait a minimum of 1 ms before
2099 * read/write access to the PHY registers.
2100 */
2101 usleep_range(1000, 2000);
2102
2103 ret = kszphy_config_reset(phydev);
2104 if (ret)
2105 return ret;
2106
2107 /* Enable PHY Interrupts */
2108 if (phy_interrupt_is_valid(phydev)) {
2109 phydev->interrupts = PHY_INTERRUPT_ENABLED;
2110 if (phydev->drv->config_intr)
2111 phydev->drv->config_intr(phydev);
2112 }
2113
2114 return 0;
2115 }
2116
ksz9477_resume(struct phy_device * phydev)2117 static int ksz9477_resume(struct phy_device *phydev)
2118 {
2119 int ret;
2120
2121 /* No need to initialize registers if not powered down. */
2122 ret = phy_read(phydev, MII_BMCR);
2123 if (ret < 0)
2124 return ret;
2125 if (!(ret & BMCR_PDOWN))
2126 return 0;
2127
2128 genphy_resume(phydev);
2129
2130 /* After switching from power-down to normal mode, an internal global
2131 * reset is automatically generated. Wait a minimum of 1 ms before
2132 * read/write access to the PHY registers.
2133 */
2134 usleep_range(1000, 2000);
2135
2136 /* Only KSZ9897 family of switches needs this fix. */
2137 if ((phydev->phy_id & 0xf) == 1) {
2138 ret = ksz9477_phy_errata(phydev);
2139 if (ret)
2140 return ret;
2141 }
2142
2143 /* Enable PHY Interrupts */
2144 if (phy_interrupt_is_valid(phydev)) {
2145 phydev->interrupts = PHY_INTERRUPT_ENABLED;
2146 if (phydev->drv->config_intr)
2147 phydev->drv->config_intr(phydev);
2148 }
2149
2150 return 0;
2151 }
2152
ksz8061_resume(struct phy_device * phydev)2153 static int ksz8061_resume(struct phy_device *phydev)
2154 {
2155 int ret;
2156
2157 /* This function can be called twice when the Ethernet device is on. */
2158 ret = phy_read(phydev, MII_BMCR);
2159 if (ret < 0)
2160 return ret;
2161 if (!(ret & BMCR_PDOWN))
2162 return 0;
2163
2164 genphy_resume(phydev);
2165 usleep_range(1000, 2000);
2166
2167 /* Re-program the value after chip is reset. */
2168 ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A);
2169 if (ret)
2170 return ret;
2171
2172 /* Enable PHY Interrupts */
2173 if (phy_interrupt_is_valid(phydev)) {
2174 phydev->interrupts = PHY_INTERRUPT_ENABLED;
2175 if (phydev->drv->config_intr)
2176 phydev->drv->config_intr(phydev);
2177 }
2178
2179 return 0;
2180 }
2181
kszphy_probe(struct phy_device * phydev)2182 static int kszphy_probe(struct phy_device *phydev)
2183 {
2184 const struct kszphy_type *type = phydev->drv->driver_data;
2185 const struct device_node *np = phydev->mdio.dev.of_node;
2186 struct kszphy_priv *priv;
2187 struct clk *clk;
2188
2189 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
2190 if (!priv)
2191 return -ENOMEM;
2192
2193 phydev->priv = priv;
2194
2195 priv->type = type;
2196
2197 kszphy_parse_led_mode(phydev);
2198
2199 clk = devm_clk_get_optional_enabled(&phydev->mdio.dev, "rmii-ref");
2200 /* NOTE: clk may be NULL if building without CONFIG_HAVE_CLK */
2201 if (!IS_ERR_OR_NULL(clk)) {
2202 unsigned long rate = clk_get_rate(clk);
2203 bool rmii_ref_clk_sel_25_mhz;
2204
2205 if (type)
2206 priv->rmii_ref_clk_sel = type->has_rmii_ref_clk_sel;
2207 rmii_ref_clk_sel_25_mhz = of_property_read_bool(np,
2208 "micrel,rmii-reference-clock-select-25-mhz");
2209
2210 if (rate > 24500000 && rate < 25500000) {
2211 priv->rmii_ref_clk_sel_val = rmii_ref_clk_sel_25_mhz;
2212 } else if (rate > 49500000 && rate < 50500000) {
2213 priv->rmii_ref_clk_sel_val = !rmii_ref_clk_sel_25_mhz;
2214 } else {
2215 phydev_err(phydev, "Clock rate out of range: %ld\n",
2216 rate);
2217 return -EINVAL;
2218 }
2219 } else if (!clk) {
2220 /* unnamed clock from the generic ethernet-phy binding */
2221 clk = devm_clk_get_optional_enabled(&phydev->mdio.dev, NULL);
2222 if (IS_ERR(clk))
2223 return PTR_ERR(clk);
2224 }
2225
2226 if (ksz8041_fiber_mode(phydev))
2227 phydev->port = PORT_FIBRE;
2228
2229 /* Support legacy board-file configuration */
2230 if (phydev->dev_flags & MICREL_PHY_50MHZ_CLK) {
2231 priv->rmii_ref_clk_sel = true;
2232 priv->rmii_ref_clk_sel_val = true;
2233 }
2234
2235 return 0;
2236 }
2237
lan8814_cable_test_start(struct phy_device * phydev)2238 static int lan8814_cable_test_start(struct phy_device *phydev)
2239 {
2240 /* If autoneg is enabled, we won't be able to test cross pair
2241 * short. In this case, the PHY will "detect" a link and
2242 * confuse the internal state machine - disable auto neg here.
2243 * Set the speed to 1000mbit and full duplex.
2244 */
2245 return phy_modify(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100,
2246 BMCR_SPEED1000 | BMCR_FULLDPLX);
2247 }
2248
ksz886x_cable_test_start(struct phy_device * phydev)2249 static int ksz886x_cable_test_start(struct phy_device *phydev)
2250 {
2251 if (phydev->dev_flags & MICREL_KSZ8_P1_ERRATA)
2252 return -EOPNOTSUPP;
2253
2254 /* If autoneg is enabled, we won't be able to test cross pair
2255 * short. In this case, the PHY will "detect" a link and
2256 * confuse the internal state machine - disable auto neg here.
2257 * If autoneg is disabled, we should set the speed to 10mbit.
2258 */
2259 return phy_clear_bits(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100);
2260 }
2261
ksz886x_cable_test_result_trans(u16 status,u16 mask)2262 static __always_inline int ksz886x_cable_test_result_trans(u16 status, u16 mask)
2263 {
2264 switch (FIELD_GET(mask, status)) {
2265 case KSZ8081_LMD_STAT_NORMAL:
2266 return ETHTOOL_A_CABLE_RESULT_CODE_OK;
2267 case KSZ8081_LMD_STAT_SHORT:
2268 return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT;
2269 case KSZ8081_LMD_STAT_OPEN:
2270 return ETHTOOL_A_CABLE_RESULT_CODE_OPEN;
2271 case KSZ8081_LMD_STAT_FAIL:
2272 fallthrough;
2273 default:
2274 return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC;
2275 }
2276 }
2277
ksz886x_cable_test_failed(u16 status,u16 mask)2278 static __always_inline bool ksz886x_cable_test_failed(u16 status, u16 mask)
2279 {
2280 return FIELD_GET(mask, status) ==
2281 KSZ8081_LMD_STAT_FAIL;
2282 }
2283
ksz886x_cable_test_fault_length_valid(u16 status,u16 mask)2284 static __always_inline bool ksz886x_cable_test_fault_length_valid(u16 status, u16 mask)
2285 {
2286 switch (FIELD_GET(mask, status)) {
2287 case KSZ8081_LMD_STAT_OPEN:
2288 fallthrough;
2289 case KSZ8081_LMD_STAT_SHORT:
2290 return true;
2291 }
2292 return false;
2293 }
2294
ksz886x_cable_test_fault_length(struct phy_device * phydev,u16 status,u16 data_mask)2295 static __always_inline int ksz886x_cable_test_fault_length(struct phy_device *phydev,
2296 u16 status, u16 data_mask)
2297 {
2298 int dt;
2299
2300 /* According to the data sheet the distance to the fault is
2301 * DELTA_TIME * 0.4 meters for ksz phys.
2302 * (DELTA_TIME - 22) * 0.8 for lan8814 phy.
2303 */
2304 dt = FIELD_GET(data_mask, status);
2305
2306 if (phydev_id_compare(phydev, PHY_ID_LAN8814))
2307 return ((dt - 22) * 800) / 10;
2308 else
2309 return (dt * 400) / 10;
2310 }
2311
ksz886x_cable_test_wait_for_completion(struct phy_device * phydev)2312 static int ksz886x_cable_test_wait_for_completion(struct phy_device *phydev)
2313 {
2314 const struct kszphy_type *type = phydev->drv->driver_data;
2315 int val, ret;
2316
2317 ret = phy_read_poll_timeout(phydev, type->cable_diag_reg, val,
2318 !(val & KSZ8081_LMD_ENABLE_TEST),
2319 30000, 100000, true);
2320
2321 return ret < 0 ? ret : 0;
2322 }
2323
lan8814_cable_test_one_pair(struct phy_device * phydev,int pair)2324 static int lan8814_cable_test_one_pair(struct phy_device *phydev, int pair)
2325 {
2326 static const int ethtool_pair[] = { ETHTOOL_A_CABLE_PAIR_A,
2327 ETHTOOL_A_CABLE_PAIR_B,
2328 ETHTOOL_A_CABLE_PAIR_C,
2329 ETHTOOL_A_CABLE_PAIR_D,
2330 };
2331 u32 fault_length;
2332 int ret;
2333 int val;
2334
2335 val = KSZ8081_LMD_ENABLE_TEST;
2336 val = val | (pair << LAN8814_PAIR_BIT_SHIFT);
2337
2338 ret = phy_write(phydev, LAN8814_CABLE_DIAG, val);
2339 if (ret < 0)
2340 return ret;
2341
2342 ret = ksz886x_cable_test_wait_for_completion(phydev);
2343 if (ret)
2344 return ret;
2345
2346 val = phy_read(phydev, LAN8814_CABLE_DIAG);
2347 if (val < 0)
2348 return val;
2349
2350 if (ksz886x_cable_test_failed(val, LAN8814_CABLE_DIAG_STAT_MASK))
2351 return -EAGAIN;
2352
2353 ret = ethnl_cable_test_result(phydev, ethtool_pair[pair],
2354 ksz886x_cable_test_result_trans(val,
2355 LAN8814_CABLE_DIAG_STAT_MASK
2356 ));
2357 if (ret)
2358 return ret;
2359
2360 if (!ksz886x_cable_test_fault_length_valid(val, LAN8814_CABLE_DIAG_STAT_MASK))
2361 return 0;
2362
2363 fault_length = ksz886x_cable_test_fault_length(phydev, val,
2364 LAN8814_CABLE_DIAG_VCT_DATA_MASK);
2365
2366 return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length);
2367 }
2368
ksz886x_cable_test_one_pair(struct phy_device * phydev,int pair)2369 static int ksz886x_cable_test_one_pair(struct phy_device *phydev, int pair)
2370 {
2371 static const int ethtool_pair[] = {
2372 ETHTOOL_A_CABLE_PAIR_A,
2373 ETHTOOL_A_CABLE_PAIR_B,
2374 };
2375 int ret, val, mdix;
2376 u32 fault_length;
2377
2378 /* There is no way to choice the pair, like we do one ksz9031.
2379 * We can workaround this limitation by using the MDI-X functionality.
2380 */
2381 if (pair == 0)
2382 mdix = ETH_TP_MDI;
2383 else
2384 mdix = ETH_TP_MDI_X;
2385
2386 switch (phydev->phy_id & MICREL_PHY_ID_MASK) {
2387 case PHY_ID_KSZ8081:
2388 ret = ksz8081_config_mdix(phydev, mdix);
2389 break;
2390 case PHY_ID_KSZ886X:
2391 ret = ksz886x_config_mdix(phydev, mdix);
2392 break;
2393 default:
2394 ret = -ENODEV;
2395 }
2396
2397 if (ret)
2398 return ret;
2399
2400 /* Now we are ready to fire. This command will send a 100ns pulse
2401 * to the pair.
2402 */
2403 ret = phy_write(phydev, KSZ8081_LMD, KSZ8081_LMD_ENABLE_TEST);
2404 if (ret)
2405 return ret;
2406
2407 ret = ksz886x_cable_test_wait_for_completion(phydev);
2408 if (ret)
2409 return ret;
2410
2411 val = phy_read(phydev, KSZ8081_LMD);
2412 if (val < 0)
2413 return val;
2414
2415 if (ksz886x_cable_test_failed(val, KSZ8081_LMD_STAT_MASK))
2416 return -EAGAIN;
2417
2418 ret = ethnl_cable_test_result(phydev, ethtool_pair[pair],
2419 ksz886x_cable_test_result_trans(val, KSZ8081_LMD_STAT_MASK));
2420 if (ret)
2421 return ret;
2422
2423 if (!ksz886x_cable_test_fault_length_valid(val, KSZ8081_LMD_STAT_MASK))
2424 return 0;
2425
2426 fault_length = ksz886x_cable_test_fault_length(phydev, val, KSZ8081_LMD_DELTA_TIME_MASK);
2427
2428 return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length);
2429 }
2430
ksz886x_cable_test_get_status(struct phy_device * phydev,bool * finished)2431 static int ksz886x_cable_test_get_status(struct phy_device *phydev,
2432 bool *finished)
2433 {
2434 const struct kszphy_type *type = phydev->drv->driver_data;
2435 unsigned long pair_mask = type->pair_mask;
2436 int retries = 20;
2437 int ret = 0;
2438 int pair;
2439
2440 *finished = false;
2441
2442 /* Try harder if link partner is active */
2443 while (pair_mask && retries--) {
2444 for_each_set_bit(pair, &pair_mask, 4) {
2445 if (type->cable_diag_reg == LAN8814_CABLE_DIAG)
2446 ret = lan8814_cable_test_one_pair(phydev, pair);
2447 else
2448 ret = ksz886x_cable_test_one_pair(phydev, pair);
2449 if (ret == -EAGAIN)
2450 continue;
2451 if (ret < 0)
2452 return ret;
2453 clear_bit(pair, &pair_mask);
2454 }
2455 /* If link partner is in autonegotiation mode it will send 2ms
2456 * of FLPs with at least 6ms of silence.
2457 * Add 2ms sleep to have better chances to hit this silence.
2458 */
2459 if (pair_mask)
2460 msleep(2);
2461 }
2462
2463 *finished = true;
2464
2465 return ret;
2466 }
2467
2468 #define LAN_EXT_PAGE_ACCESS_CONTROL 0x16
2469 #define LAN_EXT_PAGE_ACCESS_ADDRESS_DATA 0x17
2470 #define LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC 0x4000
2471
2472 #define LAN8814_QSGMII_SOFT_RESET 0x43
2473 #define LAN8814_QSGMII_SOFT_RESET_BIT BIT(0)
2474 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG 0x13
2475 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA BIT(3)
2476 #define LAN8814_ALIGN_SWAP 0x4a
2477 #define LAN8814_ALIGN_TX_A_B_SWAP 0x1
2478 #define LAN8814_ALIGN_TX_A_B_SWAP_MASK GENMASK(2, 0)
2479
2480 #define LAN8804_ALIGN_SWAP 0x4a
2481 #define LAN8804_ALIGN_TX_A_B_SWAP 0x1
2482 #define LAN8804_ALIGN_TX_A_B_SWAP_MASK GENMASK(2, 0)
2483 #define LAN8814_CLOCK_MANAGEMENT 0xd
2484 #define LAN8814_LINK_QUALITY 0x8e
2485
lanphy_read_page_reg(struct phy_device * phydev,int page,u32 addr)2486 static int lanphy_read_page_reg(struct phy_device *phydev, int page, u32 addr)
2487 {
2488 int data;
2489
2490 phy_lock_mdio_bus(phydev);
2491 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page);
2492 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr);
2493 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL,
2494 (page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC));
2495 data = __phy_read(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA);
2496 phy_unlock_mdio_bus(phydev);
2497
2498 return data;
2499 }
2500
lanphy_write_page_reg(struct phy_device * phydev,int page,u16 addr,u16 val)2501 static int lanphy_write_page_reg(struct phy_device *phydev, int page, u16 addr,
2502 u16 val)
2503 {
2504 phy_lock_mdio_bus(phydev);
2505 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page);
2506 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr);
2507 __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL,
2508 page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC);
2509
2510 val = __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, val);
2511 if (val != 0)
2512 phydev_err(phydev, "Error: phy_write has returned error %d\n",
2513 val);
2514 phy_unlock_mdio_bus(phydev);
2515 return val;
2516 }
2517
lan8814_config_ts_intr(struct phy_device * phydev,bool enable)2518 static int lan8814_config_ts_intr(struct phy_device *phydev, bool enable)
2519 {
2520 u16 val = 0;
2521
2522 if (enable)
2523 val = PTP_TSU_INT_EN_PTP_TX_TS_EN_ |
2524 PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ |
2525 PTP_TSU_INT_EN_PTP_RX_TS_EN_ |
2526 PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_;
2527
2528 return lanphy_write_page_reg(phydev, 5, PTP_TSU_INT_EN, val);
2529 }
2530
lan8814_ptp_rx_ts_get(struct phy_device * phydev,u32 * seconds,u32 * nano_seconds,u16 * seq_id)2531 static void lan8814_ptp_rx_ts_get(struct phy_device *phydev,
2532 u32 *seconds, u32 *nano_seconds, u16 *seq_id)
2533 {
2534 *seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_HI);
2535 *seconds = (*seconds << 16) |
2536 lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_LO);
2537
2538 *nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_HI);
2539 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
2540 lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_LO);
2541
2542 *seq_id = lanphy_read_page_reg(phydev, 5, PTP_RX_MSG_HEADER2);
2543 }
2544
lan8814_ptp_tx_ts_get(struct phy_device * phydev,u32 * seconds,u32 * nano_seconds,u16 * seq_id)2545 static void lan8814_ptp_tx_ts_get(struct phy_device *phydev,
2546 u32 *seconds, u32 *nano_seconds, u16 *seq_id)
2547 {
2548 *seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_HI);
2549 *seconds = *seconds << 16 |
2550 lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_LO);
2551
2552 *nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_HI);
2553 *nano_seconds = ((*nano_seconds & 0x3fff) << 16) |
2554 lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_LO);
2555
2556 *seq_id = lanphy_read_page_reg(phydev, 5, PTP_TX_MSG_HEADER2);
2557 }
2558
lan8814_ts_info(struct mii_timestamper * mii_ts,struct kernel_ethtool_ts_info * info)2559 static int lan8814_ts_info(struct mii_timestamper *mii_ts, struct kernel_ethtool_ts_info *info)
2560 {
2561 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2562 struct phy_device *phydev = ptp_priv->phydev;
2563 struct lan8814_shared_priv *shared = phydev->shared->priv;
2564
2565 info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE |
2566 SOF_TIMESTAMPING_RX_HARDWARE |
2567 SOF_TIMESTAMPING_RAW_HARDWARE;
2568
2569 info->phc_index = ptp_clock_index(shared->ptp_clock);
2570
2571 info->tx_types =
2572 (1 << HWTSTAMP_TX_OFF) |
2573 (1 << HWTSTAMP_TX_ON) |
2574 (1 << HWTSTAMP_TX_ONESTEP_SYNC);
2575
2576 info->rx_filters =
2577 (1 << HWTSTAMP_FILTER_NONE) |
2578 (1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
2579 (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
2580 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
2581 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2582
2583 return 0;
2584 }
2585
lan8814_flush_fifo(struct phy_device * phydev,bool egress)2586 static void lan8814_flush_fifo(struct phy_device *phydev, bool egress)
2587 {
2588 int i;
2589
2590 for (i = 0; i < FIFO_SIZE; ++i)
2591 lanphy_read_page_reg(phydev, 5,
2592 egress ? PTP_TX_MSG_HEADER2 : PTP_RX_MSG_HEADER2);
2593
2594 /* Read to clear overflow status bit */
2595 lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS);
2596 }
2597
lan8814_hwtstamp(struct mii_timestamper * mii_ts,struct kernel_hwtstamp_config * config,struct netlink_ext_ack * extack)2598 static int lan8814_hwtstamp(struct mii_timestamper *mii_ts,
2599 struct kernel_hwtstamp_config *config,
2600 struct netlink_ext_ack *extack)
2601 {
2602 struct kszphy_ptp_priv *ptp_priv =
2603 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2604 struct lan8814_ptp_rx_ts *rx_ts, *tmp;
2605 int txcfg = 0, rxcfg = 0;
2606 int pkt_ts_enable;
2607 int tx_mod;
2608
2609 ptp_priv->hwts_tx_type = config->tx_type;
2610 ptp_priv->rx_filter = config->rx_filter;
2611
2612 switch (config->rx_filter) {
2613 case HWTSTAMP_FILTER_NONE:
2614 ptp_priv->layer = 0;
2615 ptp_priv->version = 0;
2616 break;
2617 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2618 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2619 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2620 ptp_priv->layer = PTP_CLASS_L4;
2621 ptp_priv->version = PTP_CLASS_V2;
2622 break;
2623 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2624 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
2625 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
2626 ptp_priv->layer = PTP_CLASS_L2;
2627 ptp_priv->version = PTP_CLASS_V2;
2628 break;
2629 case HWTSTAMP_FILTER_PTP_V2_EVENT:
2630 case HWTSTAMP_FILTER_PTP_V2_SYNC:
2631 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
2632 ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2;
2633 ptp_priv->version = PTP_CLASS_V2;
2634 break;
2635 default:
2636 return -ERANGE;
2637 }
2638
2639 if (ptp_priv->layer & PTP_CLASS_L2) {
2640 rxcfg = PTP_RX_PARSE_CONFIG_LAYER2_EN_;
2641 txcfg = PTP_TX_PARSE_CONFIG_LAYER2_EN_;
2642 } else if (ptp_priv->layer & PTP_CLASS_L4) {
2643 rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_;
2644 txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_;
2645 }
2646 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_PARSE_CONFIG, rxcfg);
2647 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_PARSE_CONFIG, txcfg);
2648
2649 pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ |
2650 PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_;
2651 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_TIMESTAMP_EN, pkt_ts_enable);
2652 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_TIMESTAMP_EN, pkt_ts_enable);
2653
2654 tx_mod = lanphy_read_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD);
2655 if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC) {
2656 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD,
2657 tx_mod | PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_);
2658 } else if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ON) {
2659 lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD,
2660 tx_mod & ~PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_);
2661 }
2662
2663 if (config->rx_filter != HWTSTAMP_FILTER_NONE)
2664 lan8814_config_ts_intr(ptp_priv->phydev, true);
2665 else
2666 lan8814_config_ts_intr(ptp_priv->phydev, false);
2667
2668 /* In case of multiple starts and stops, these needs to be cleared */
2669 list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) {
2670 list_del(&rx_ts->list);
2671 kfree(rx_ts);
2672 }
2673 skb_queue_purge(&ptp_priv->rx_queue);
2674 skb_queue_purge(&ptp_priv->tx_queue);
2675
2676 lan8814_flush_fifo(ptp_priv->phydev, false);
2677 lan8814_flush_fifo(ptp_priv->phydev, true);
2678
2679 return 0;
2680 }
2681
lan8814_txtstamp(struct mii_timestamper * mii_ts,struct sk_buff * skb,int type)2682 static void lan8814_txtstamp(struct mii_timestamper *mii_ts,
2683 struct sk_buff *skb, int type)
2684 {
2685 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2686
2687 switch (ptp_priv->hwts_tx_type) {
2688 case HWTSTAMP_TX_ONESTEP_SYNC:
2689 if (ptp_msg_is_sync(skb, type)) {
2690 kfree_skb(skb);
2691 return;
2692 }
2693 fallthrough;
2694 case HWTSTAMP_TX_ON:
2695 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2696 skb_queue_tail(&ptp_priv->tx_queue, skb);
2697 break;
2698 case HWTSTAMP_TX_OFF:
2699 default:
2700 kfree_skb(skb);
2701 break;
2702 }
2703 }
2704
lan8814_get_sig_rx(struct sk_buff * skb,u16 * sig)2705 static bool lan8814_get_sig_rx(struct sk_buff *skb, u16 *sig)
2706 {
2707 struct ptp_header *ptp_header;
2708 u32 type;
2709
2710 skb_push(skb, ETH_HLEN);
2711 type = ptp_classify_raw(skb);
2712 ptp_header = ptp_parse_header(skb, type);
2713 skb_pull_inline(skb, ETH_HLEN);
2714
2715 if (!ptp_header)
2716 return false;
2717
2718 *sig = (__force u16)(ntohs(ptp_header->sequence_id));
2719 return true;
2720 }
2721
lan8814_match_rx_skb(struct kszphy_ptp_priv * ptp_priv,struct sk_buff * skb)2722 static bool lan8814_match_rx_skb(struct kszphy_ptp_priv *ptp_priv,
2723 struct sk_buff *skb)
2724 {
2725 struct skb_shared_hwtstamps *shhwtstamps;
2726 struct lan8814_ptp_rx_ts *rx_ts, *tmp;
2727 unsigned long flags;
2728 bool ret = false;
2729 u16 skb_sig;
2730
2731 if (!lan8814_get_sig_rx(skb, &skb_sig))
2732 return ret;
2733
2734 /* Iterate over all RX timestamps and match it with the received skbs */
2735 spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags);
2736 list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) {
2737 /* Check if we found the signature we were looking for. */
2738 if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id)))
2739 continue;
2740
2741 shhwtstamps = skb_hwtstamps(skb);
2742 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2743 shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds,
2744 rx_ts->nsec);
2745 list_del(&rx_ts->list);
2746 kfree(rx_ts);
2747
2748 ret = true;
2749 break;
2750 }
2751 spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags);
2752
2753 if (ret)
2754 netif_rx(skb);
2755 return ret;
2756 }
2757
lan8814_rxtstamp(struct mii_timestamper * mii_ts,struct sk_buff * skb,int type)2758 static bool lan8814_rxtstamp(struct mii_timestamper *mii_ts, struct sk_buff *skb, int type)
2759 {
2760 struct kszphy_ptp_priv *ptp_priv =
2761 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
2762
2763 if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE ||
2764 type == PTP_CLASS_NONE)
2765 return false;
2766
2767 if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0)
2768 return false;
2769
2770 /* If we failed to match then add it to the queue for when the timestamp
2771 * will come
2772 */
2773 if (!lan8814_match_rx_skb(ptp_priv, skb))
2774 skb_queue_tail(&ptp_priv->rx_queue, skb);
2775
2776 return true;
2777 }
2778
lan8814_ptp_clock_set(struct phy_device * phydev,time64_t sec,u32 nsec)2779 static void lan8814_ptp_clock_set(struct phy_device *phydev,
2780 time64_t sec, u32 nsec)
2781 {
2782 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_LO, lower_16_bits(sec));
2783 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_MID, upper_16_bits(sec));
2784 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_HI, upper_32_bits(sec));
2785 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_LO, lower_16_bits(nsec));
2786 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_HI, upper_16_bits(nsec));
2787
2788 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_LOAD_);
2789 }
2790
lan8814_ptp_clock_get(struct phy_device * phydev,time64_t * sec,u32 * nsec)2791 static void lan8814_ptp_clock_get(struct phy_device *phydev,
2792 time64_t *sec, u32 *nsec)
2793 {
2794 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_READ_);
2795
2796 *sec = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_HI);
2797 *sec <<= 16;
2798 *sec |= lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_MID);
2799 *sec <<= 16;
2800 *sec |= lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_LO);
2801
2802 *nsec = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_HI);
2803 *nsec <<= 16;
2804 *nsec |= lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_LO);
2805 }
2806
lan8814_ptpci_gettime64(struct ptp_clock_info * ptpci,struct timespec64 * ts)2807 static int lan8814_ptpci_gettime64(struct ptp_clock_info *ptpci,
2808 struct timespec64 *ts)
2809 {
2810 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2811 ptp_clock_info);
2812 struct phy_device *phydev = shared->phydev;
2813 u32 nano_seconds;
2814 time64_t seconds;
2815
2816 mutex_lock(&shared->shared_lock);
2817 lan8814_ptp_clock_get(phydev, &seconds, &nano_seconds);
2818 mutex_unlock(&shared->shared_lock);
2819 ts->tv_sec = seconds;
2820 ts->tv_nsec = nano_seconds;
2821
2822 return 0;
2823 }
2824
lan8814_ptpci_settime64(struct ptp_clock_info * ptpci,const struct timespec64 * ts)2825 static int lan8814_ptpci_settime64(struct ptp_clock_info *ptpci,
2826 const struct timespec64 *ts)
2827 {
2828 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
2829 ptp_clock_info);
2830 struct phy_device *phydev = shared->phydev;
2831
2832 mutex_lock(&shared->shared_lock);
2833 lan8814_ptp_clock_set(phydev, ts->tv_sec, ts->tv_nsec);
2834 mutex_unlock(&shared->shared_lock);
2835
2836 return 0;
2837 }
2838
lan8814_ptp_set_target(struct phy_device * phydev,int event,s64 start_sec,u32 start_nsec)2839 static void lan8814_ptp_set_target(struct phy_device *phydev, int event,
2840 s64 start_sec, u32 start_nsec)
2841 {
2842 /* Set the start time */
2843 lanphy_write_page_reg(phydev, 4, LAN8814_PTP_CLOCK_TARGET_SEC_LO(event),
2844 lower_16_bits(start_sec));
2845 lanphy_write_page_reg(phydev, 4, LAN8814_PTP_CLOCK_TARGET_SEC_HI(event),
2846 upper_16_bits(start_sec));
2847
2848 lanphy_write_page_reg(phydev, 4, LAN8814_PTP_CLOCK_TARGET_NS_LO(event),
2849 lower_16_bits(start_nsec));
2850 lanphy_write_page_reg(phydev, 4, LAN8814_PTP_CLOCK_TARGET_NS_HI(event),
2851 upper_16_bits(start_nsec) & 0x3fff);
2852 }
2853
lan8814_ptp_update_target(struct phy_device * phydev,time64_t sec)2854 static void lan8814_ptp_update_target(struct phy_device *phydev, time64_t sec)
2855 {
2856 lan8814_ptp_set_target(phydev, LAN8814_EVENT_A,
2857 sec + LAN8814_BUFFER_TIME, 0);
2858 lan8814_ptp_set_target(phydev, LAN8814_EVENT_B,
2859 sec + LAN8814_BUFFER_TIME, 0);
2860 }
2861
lan8814_ptp_clock_step(struct phy_device * phydev,s64 time_step_ns)2862 static void lan8814_ptp_clock_step(struct phy_device *phydev,
2863 s64 time_step_ns)
2864 {
2865 u32 nano_seconds_step;
2866 u64 abs_time_step_ns;
2867 time64_t set_seconds;
2868 u32 nano_seconds;
2869 u32 remainder;
2870 s32 seconds;
2871
2872 if (time_step_ns > 15000000000LL) {
2873 /* convert to clock set */
2874 lan8814_ptp_clock_get(phydev, &set_seconds, &nano_seconds);
2875 set_seconds += div_u64_rem(time_step_ns, 1000000000LL,
2876 &remainder);
2877 nano_seconds += remainder;
2878 if (nano_seconds >= 1000000000) {
2879 set_seconds++;
2880 nano_seconds -= 1000000000;
2881 }
2882 lan8814_ptp_clock_set(phydev, set_seconds, nano_seconds);
2883 lan8814_ptp_update_target(phydev, set_seconds);
2884 return;
2885 } else if (time_step_ns < -15000000000LL) {
2886 /* convert to clock set */
2887 time_step_ns = -time_step_ns;
2888
2889 lan8814_ptp_clock_get(phydev, &set_seconds, &nano_seconds);
2890 set_seconds -= div_u64_rem(time_step_ns, 1000000000LL,
2891 &remainder);
2892 nano_seconds_step = remainder;
2893 if (nano_seconds < nano_seconds_step) {
2894 set_seconds--;
2895 nano_seconds += 1000000000;
2896 }
2897 nano_seconds -= nano_seconds_step;
2898 lan8814_ptp_clock_set(phydev, set_seconds, nano_seconds);
2899 lan8814_ptp_update_target(phydev, set_seconds);
2900 return;
2901 }
2902
2903 /* do clock step */
2904 if (time_step_ns >= 0) {
2905 abs_time_step_ns = (u64)time_step_ns;
2906 seconds = (s32)div_u64_rem(abs_time_step_ns, 1000000000,
2907 &remainder);
2908 nano_seconds = remainder;
2909 } else {
2910 abs_time_step_ns = (u64)(-time_step_ns);
2911 seconds = -((s32)div_u64_rem(abs_time_step_ns, 1000000000,
2912 &remainder));
2913 nano_seconds = remainder;
2914 if (nano_seconds > 0) {
2915 /* subtracting nano seconds is not allowed
2916 * convert to subtracting from seconds,
2917 * and adding to nanoseconds
2918 */
2919 seconds--;
2920 nano_seconds = (1000000000 - nano_seconds);
2921 }
2922 }
2923
2924 if (nano_seconds > 0) {
2925 /* add 8 ns to cover the likely normal increment */
2926 nano_seconds += 8;
2927 }
2928
2929 if (nano_seconds >= 1000000000) {
2930 /* carry into seconds */
2931 seconds++;
2932 nano_seconds -= 1000000000;
2933 }
2934
2935 while (seconds) {
2936 u32 nsec;
2937
2938 if (seconds > 0) {
2939 u32 adjustment_value = (u32)seconds;
2940 u16 adjustment_value_lo, adjustment_value_hi;
2941
2942 if (adjustment_value > 0xF)
2943 adjustment_value = 0xF;
2944
2945 adjustment_value_lo = adjustment_value & 0xffff;
2946 adjustment_value_hi = (adjustment_value >> 16) & 0x3fff;
2947
2948 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
2949 adjustment_value_lo);
2950 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
2951 PTP_LTC_STEP_ADJ_DIR_ |
2952 adjustment_value_hi);
2953 seconds -= ((s32)adjustment_value);
2954
2955 lan8814_ptp_clock_get(phydev, &set_seconds, &nsec);
2956 set_seconds -= adjustment_value;
2957 lan8814_ptp_update_target(phydev, set_seconds);
2958 } else {
2959 u32 adjustment_value = (u32)(-seconds);
2960 u16 adjustment_value_lo, adjustment_value_hi;
2961
2962 if (adjustment_value > 0xF)
2963 adjustment_value = 0xF;
2964
2965 adjustment_value_lo = adjustment_value & 0xffff;
2966 adjustment_value_hi = (adjustment_value >> 16) & 0x3fff;
2967
2968 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
2969 adjustment_value_lo);
2970 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
2971 adjustment_value_hi);
2972 seconds += ((s32)adjustment_value);
2973
2974 lan8814_ptp_clock_get(phydev, &set_seconds, &nsec);
2975 set_seconds += adjustment_value;
2976 lan8814_ptp_update_target(phydev, set_seconds);
2977 }
2978 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL,
2979 PTP_CMD_CTL_PTP_LTC_STEP_SEC_);
2980 }
2981 if (nano_seconds) {
2982 u16 nano_seconds_lo;
2983 u16 nano_seconds_hi;
2984
2985 nano_seconds_lo = nano_seconds & 0xffff;
2986 nano_seconds_hi = (nano_seconds >> 16) & 0x3fff;
2987
2988 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO,
2989 nano_seconds_lo);
2990 lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI,
2991 PTP_LTC_STEP_ADJ_DIR_ |
2992 nano_seconds_hi);
2993 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL,
2994 PTP_CMD_CTL_PTP_LTC_STEP_NSEC_);
2995 }
2996 }
2997
lan8814_ptpci_adjtime(struct ptp_clock_info * ptpci,s64 delta)2998 static int lan8814_ptpci_adjtime(struct ptp_clock_info *ptpci, s64 delta)
2999 {
3000 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
3001 ptp_clock_info);
3002 struct phy_device *phydev = shared->phydev;
3003
3004 mutex_lock(&shared->shared_lock);
3005 lan8814_ptp_clock_step(phydev, delta);
3006 mutex_unlock(&shared->shared_lock);
3007
3008 return 0;
3009 }
3010
lan8814_ptpci_adjfine(struct ptp_clock_info * ptpci,long scaled_ppm)3011 static int lan8814_ptpci_adjfine(struct ptp_clock_info *ptpci, long scaled_ppm)
3012 {
3013 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
3014 ptp_clock_info);
3015 struct phy_device *phydev = shared->phydev;
3016 u16 kszphy_rate_adj_lo, kszphy_rate_adj_hi;
3017 bool positive = true;
3018 u32 kszphy_rate_adj;
3019
3020 if (scaled_ppm < 0) {
3021 scaled_ppm = -scaled_ppm;
3022 positive = false;
3023 }
3024
3025 kszphy_rate_adj = LAN8814_1PPM_FORMAT * (scaled_ppm >> 16);
3026 kszphy_rate_adj += (LAN8814_1PPM_FORMAT * (0xffff & scaled_ppm)) >> 16;
3027
3028 kszphy_rate_adj_lo = kszphy_rate_adj & 0xffff;
3029 kszphy_rate_adj_hi = (kszphy_rate_adj >> 16) & 0x3fff;
3030
3031 if (positive)
3032 kszphy_rate_adj_hi |= PTP_CLOCK_RATE_ADJ_DIR_;
3033
3034 mutex_lock(&shared->shared_lock);
3035 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_HI, kszphy_rate_adj_hi);
3036 lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_LO, kszphy_rate_adj_lo);
3037 mutex_unlock(&shared->shared_lock);
3038
3039 return 0;
3040 }
3041
lan8814_ptp_set_reload(struct phy_device * phydev,int event,s64 period_sec,u32 period_nsec)3042 static void lan8814_ptp_set_reload(struct phy_device *phydev, int event,
3043 s64 period_sec, u32 period_nsec)
3044 {
3045 lanphy_write_page_reg(phydev, 4,
3046 LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_LO(event),
3047 lower_16_bits(period_sec));
3048 lanphy_write_page_reg(phydev, 4,
3049 LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_HI(event),
3050 upper_16_bits(period_sec));
3051
3052 lanphy_write_page_reg(phydev, 4,
3053 LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_LO(event),
3054 lower_16_bits(period_nsec));
3055 lanphy_write_page_reg(phydev, 4,
3056 LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_HI(event),
3057 upper_16_bits(period_nsec) & 0x3fff);
3058 }
3059
lan8814_ptp_enable_event(struct phy_device * phydev,int event,int pulse_width)3060 static void lan8814_ptp_enable_event(struct phy_device *phydev, int event,
3061 int pulse_width)
3062 {
3063 u16 val;
3064
3065 val = lanphy_read_page_reg(phydev, 4, LAN8814_PTP_GENERAL_CONFIG);
3066 /* Set the pulse width of the event */
3067 val &= ~(LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_MASK(event));
3068 /* Make sure that the target clock will be incremented each time when
3069 * local time reaches or pass it
3070 */
3071 val |= LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_SET(event, pulse_width);
3072 val &= ~(LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event));
3073 /* Set the polarity high */
3074 val |= LAN8814_PTP_GENERAL_CONFIG_POLARITY_X(event);
3075 lanphy_write_page_reg(phydev, 4, LAN8814_PTP_GENERAL_CONFIG, val);
3076 }
3077
lan8814_ptp_disable_event(struct phy_device * phydev,int event)3078 static void lan8814_ptp_disable_event(struct phy_device *phydev, int event)
3079 {
3080 u16 val;
3081
3082 /* Set target to too far in the future, effectively disabling it */
3083 lan8814_ptp_set_target(phydev, event, 0xFFFFFFFF, 0);
3084
3085 /* And then reload once it recheas the target */
3086 val = lanphy_read_page_reg(phydev, 4, LAN8814_PTP_GENERAL_CONFIG);
3087 val |= LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event);
3088 lanphy_write_page_reg(phydev, 4, LAN8814_PTP_GENERAL_CONFIG, val);
3089 }
3090
lan8814_ptp_perout_off(struct phy_device * phydev,int pin)3091 static void lan8814_ptp_perout_off(struct phy_device *phydev, int pin)
3092 {
3093 u16 val;
3094
3095 /* Disable gpio alternate function,
3096 * 1: select as gpio,
3097 * 0: select alt func
3098 */
3099 val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin));
3100 val |= LAN8814_GPIO_EN_BIT(pin);
3101 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin), val);
3102
3103 val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin));
3104 val &= ~LAN8814_GPIO_DIR_BIT(pin);
3105 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin), val);
3106
3107 val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_BUF_ADDR(pin));
3108 val &= ~LAN8814_GPIO_BUF_BIT(pin);
3109 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_BUF_ADDR(pin), val);
3110 }
3111
lan8814_ptp_perout_on(struct phy_device * phydev,int pin)3112 static void lan8814_ptp_perout_on(struct phy_device *phydev, int pin)
3113 {
3114 int val;
3115
3116 /* Set as gpio output */
3117 val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin));
3118 val |= LAN8814_GPIO_DIR_BIT(pin);
3119 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin), val);
3120
3121 /* Enable gpio 0:for alternate function, 1:gpio */
3122 val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin));
3123 val &= ~LAN8814_GPIO_EN_BIT(pin);
3124 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin), val);
3125
3126 /* Set buffer type to push pull */
3127 val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_BUF_ADDR(pin));
3128 val |= LAN8814_GPIO_BUF_BIT(pin);
3129 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_BUF_ADDR(pin), val);
3130 }
3131
lan8814_ptp_perout(struct ptp_clock_info * ptpci,struct ptp_clock_request * rq,int on)3132 static int lan8814_ptp_perout(struct ptp_clock_info *ptpci,
3133 struct ptp_clock_request *rq, int on)
3134 {
3135 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
3136 ptp_clock_info);
3137 struct phy_device *phydev = shared->phydev;
3138 struct timespec64 ts_on, ts_period;
3139 s64 on_nsec, period_nsec;
3140 int pulse_width;
3141 int pin, event;
3142
3143 /* Reject requests with unsupported flags */
3144 if (rq->perout.flags & ~PTP_PEROUT_DUTY_CYCLE)
3145 return -EOPNOTSUPP;
3146
3147 mutex_lock(&shared->shared_lock);
3148 event = rq->perout.index;
3149 pin = ptp_find_pin(shared->ptp_clock, PTP_PF_PEROUT, event);
3150 if (pin < 0 || pin >= LAN8814_PTP_PEROUT_NUM) {
3151 mutex_unlock(&shared->shared_lock);
3152 return -EBUSY;
3153 }
3154
3155 if (!on) {
3156 lan8814_ptp_perout_off(phydev, pin);
3157 lan8814_ptp_disable_event(phydev, event);
3158 mutex_unlock(&shared->shared_lock);
3159 return 0;
3160 }
3161
3162 ts_on.tv_sec = rq->perout.on.sec;
3163 ts_on.tv_nsec = rq->perout.on.nsec;
3164 on_nsec = timespec64_to_ns(&ts_on);
3165
3166 ts_period.tv_sec = rq->perout.period.sec;
3167 ts_period.tv_nsec = rq->perout.period.nsec;
3168 period_nsec = timespec64_to_ns(&ts_period);
3169
3170 if (period_nsec < 200) {
3171 pr_warn_ratelimited("%s: perout period too small, minimum is 200 nsec\n",
3172 phydev_name(phydev));
3173 mutex_unlock(&shared->shared_lock);
3174 return -EOPNOTSUPP;
3175 }
3176
3177 if (on_nsec >= period_nsec) {
3178 pr_warn_ratelimited("%s: pulse width must be smaller than period\n",
3179 phydev_name(phydev));
3180 mutex_unlock(&shared->shared_lock);
3181 return -EINVAL;
3182 }
3183
3184 switch (on_nsec) {
3185 case 200000000:
3186 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS;
3187 break;
3188 case 100000000:
3189 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS;
3190 break;
3191 case 50000000:
3192 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS;
3193 break;
3194 case 10000000:
3195 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS;
3196 break;
3197 case 5000000:
3198 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS;
3199 break;
3200 case 1000000:
3201 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS;
3202 break;
3203 case 500000:
3204 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US;
3205 break;
3206 case 100000:
3207 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US;
3208 break;
3209 case 50000:
3210 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US;
3211 break;
3212 case 10000:
3213 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US;
3214 break;
3215 case 5000:
3216 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US;
3217 break;
3218 case 1000:
3219 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US;
3220 break;
3221 case 500:
3222 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS;
3223 break;
3224 case 100:
3225 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS;
3226 break;
3227 default:
3228 pr_warn_ratelimited("%s: Use default duty cycle of 100ns\n",
3229 phydev_name(phydev));
3230 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS;
3231 break;
3232 }
3233
3234 /* Configure to pulse every period */
3235 lan8814_ptp_enable_event(phydev, event, pulse_width);
3236 lan8814_ptp_set_target(phydev, event, rq->perout.start.sec,
3237 rq->perout.start.nsec);
3238 lan8814_ptp_set_reload(phydev, event, rq->perout.period.sec,
3239 rq->perout.period.nsec);
3240 lan8814_ptp_perout_on(phydev, pin);
3241 mutex_unlock(&shared->shared_lock);
3242
3243 return 0;
3244 }
3245
lan8814_ptp_extts_on(struct phy_device * phydev,int pin,u32 flags)3246 static void lan8814_ptp_extts_on(struct phy_device *phydev, int pin, u32 flags)
3247 {
3248 u16 tmp;
3249
3250 /* Set as gpio input */
3251 tmp = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin));
3252 tmp &= ~LAN8814_GPIO_DIR_BIT(pin);
3253 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin), tmp);
3254
3255 /* Map the pin to ltc pin 0 of the capture map registers */
3256 tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_MAP_LO);
3257 tmp |= pin;
3258 lanphy_write_page_reg(phydev, 4, PTP_GPIO_CAP_MAP_LO, tmp);
3259
3260 /* Enable capture on the edges of the ltc pin */
3261 tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_EN);
3262 if (flags & PTP_RISING_EDGE)
3263 tmp |= PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(0);
3264 if (flags & PTP_FALLING_EDGE)
3265 tmp |= PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(0);
3266 lanphy_write_page_reg(phydev, 4, PTP_GPIO_CAP_EN, tmp);
3267
3268 /* Enable interrupt top interrupt */
3269 tmp = lanphy_read_page_reg(phydev, 4, PTP_COMMON_INT_ENA);
3270 tmp |= PTP_COMMON_INT_ENA_GPIO_CAP_EN;
3271 lanphy_write_page_reg(phydev, 4, PTP_COMMON_INT_ENA, tmp);
3272 }
3273
lan8814_ptp_extts_off(struct phy_device * phydev,int pin)3274 static void lan8814_ptp_extts_off(struct phy_device *phydev, int pin)
3275 {
3276 u16 tmp;
3277
3278 /* Set as gpio out */
3279 tmp = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin));
3280 tmp |= LAN8814_GPIO_DIR_BIT(pin);
3281 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin), tmp);
3282
3283 /* Enable alternate, 0:for alternate function, 1:gpio */
3284 tmp = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin));
3285 tmp &= ~LAN8814_GPIO_EN_BIT(pin);
3286 lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin), tmp);
3287
3288 /* Clear the mapping of pin to registers 0 of the capture registers */
3289 tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_MAP_LO);
3290 tmp &= ~GENMASK(3, 0);
3291 lanphy_write_page_reg(phydev, 4, PTP_GPIO_CAP_MAP_LO, tmp);
3292
3293 /* Disable capture on both of the edges */
3294 tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_EN);
3295 tmp &= ~PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin);
3296 tmp &= ~PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin);
3297 lanphy_write_page_reg(phydev, 4, PTP_GPIO_CAP_EN, tmp);
3298
3299 /* Disable interrupt top interrupt */
3300 tmp = lanphy_read_page_reg(phydev, 4, PTP_COMMON_INT_ENA);
3301 tmp &= ~PTP_COMMON_INT_ENA_GPIO_CAP_EN;
3302 lanphy_write_page_reg(phydev, 4, PTP_COMMON_INT_ENA, tmp);
3303 }
3304
lan8814_ptp_extts(struct ptp_clock_info * ptpci,struct ptp_clock_request * rq,int on)3305 static int lan8814_ptp_extts(struct ptp_clock_info *ptpci,
3306 struct ptp_clock_request *rq, int on)
3307 {
3308 struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv,
3309 ptp_clock_info);
3310 struct phy_device *phydev = shared->phydev;
3311 int pin;
3312
3313 if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
3314 PTP_EXTTS_EDGES |
3315 PTP_STRICT_FLAGS))
3316 return -EOPNOTSUPP;
3317
3318 pin = ptp_find_pin(shared->ptp_clock, PTP_PF_EXTTS,
3319 rq->extts.index);
3320 if (pin == -1 || pin != LAN8814_PTP_EXTTS_NUM)
3321 return -EINVAL;
3322
3323 mutex_lock(&shared->shared_lock);
3324 if (on)
3325 lan8814_ptp_extts_on(phydev, pin, rq->extts.flags);
3326 else
3327 lan8814_ptp_extts_off(phydev, pin);
3328
3329 mutex_unlock(&shared->shared_lock);
3330
3331 return 0;
3332 }
3333
lan8814_ptpci_enable(struct ptp_clock_info * ptpci,struct ptp_clock_request * rq,int on)3334 static int lan8814_ptpci_enable(struct ptp_clock_info *ptpci,
3335 struct ptp_clock_request *rq, int on)
3336 {
3337 switch (rq->type) {
3338 case PTP_CLK_REQ_PEROUT:
3339 return lan8814_ptp_perout(ptpci, rq, on);
3340 case PTP_CLK_REQ_EXTTS:
3341 return lan8814_ptp_extts(ptpci, rq, on);
3342 default:
3343 return -EINVAL;
3344 }
3345 }
3346
lan8814_ptpci_verify(struct ptp_clock_info * ptp,unsigned int pin,enum ptp_pin_function func,unsigned int chan)3347 static int lan8814_ptpci_verify(struct ptp_clock_info *ptp, unsigned int pin,
3348 enum ptp_pin_function func, unsigned int chan)
3349 {
3350 switch (func) {
3351 case PTP_PF_NONE:
3352 case PTP_PF_PEROUT:
3353 /* Only pins 0 and 1 can generate perout signals. And for pin 0
3354 * there is only chan 0 (event A) and for pin 1 there is only
3355 * chan 1 (event B)
3356 */
3357 if (pin >= LAN8814_PTP_PEROUT_NUM || pin != chan)
3358 return -1;
3359 break;
3360 case PTP_PF_EXTTS:
3361 if (pin != LAN8814_PTP_EXTTS_NUM)
3362 return -1;
3363 break;
3364 default:
3365 return -1;
3366 }
3367
3368 return 0;
3369 }
3370
lan8814_get_sig_tx(struct sk_buff * skb,u16 * sig)3371 static bool lan8814_get_sig_tx(struct sk_buff *skb, u16 *sig)
3372 {
3373 struct ptp_header *ptp_header;
3374 u32 type;
3375
3376 type = ptp_classify_raw(skb);
3377 ptp_header = ptp_parse_header(skb, type);
3378
3379 if (!ptp_header)
3380 return false;
3381
3382 *sig = (__force u16)(ntohs(ptp_header->sequence_id));
3383 return true;
3384 }
3385
lan8814_match_tx_skb(struct kszphy_ptp_priv * ptp_priv,u32 seconds,u32 nsec,u16 seq_id)3386 static void lan8814_match_tx_skb(struct kszphy_ptp_priv *ptp_priv,
3387 u32 seconds, u32 nsec, u16 seq_id)
3388 {
3389 struct skb_shared_hwtstamps shhwtstamps;
3390 struct sk_buff *skb, *skb_tmp;
3391 unsigned long flags;
3392 bool ret = false;
3393 u16 skb_sig;
3394
3395 spin_lock_irqsave(&ptp_priv->tx_queue.lock, flags);
3396 skb_queue_walk_safe(&ptp_priv->tx_queue, skb, skb_tmp) {
3397 if (!lan8814_get_sig_tx(skb, &skb_sig))
3398 continue;
3399
3400 if (memcmp(&skb_sig, &seq_id, sizeof(seq_id)))
3401 continue;
3402
3403 __skb_unlink(skb, &ptp_priv->tx_queue);
3404 ret = true;
3405 break;
3406 }
3407 spin_unlock_irqrestore(&ptp_priv->tx_queue.lock, flags);
3408
3409 if (ret) {
3410 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
3411 shhwtstamps.hwtstamp = ktime_set(seconds, nsec);
3412 skb_complete_tx_timestamp(skb, &shhwtstamps);
3413 }
3414 }
3415
lan8814_dequeue_tx_skb(struct kszphy_ptp_priv * ptp_priv)3416 static void lan8814_dequeue_tx_skb(struct kszphy_ptp_priv *ptp_priv)
3417 {
3418 struct phy_device *phydev = ptp_priv->phydev;
3419 u32 seconds, nsec;
3420 u16 seq_id;
3421
3422 lan8814_ptp_tx_ts_get(phydev, &seconds, &nsec, &seq_id);
3423 lan8814_match_tx_skb(ptp_priv, seconds, nsec, seq_id);
3424 }
3425
lan8814_get_tx_ts(struct kszphy_ptp_priv * ptp_priv)3426 static void lan8814_get_tx_ts(struct kszphy_ptp_priv *ptp_priv)
3427 {
3428 struct phy_device *phydev = ptp_priv->phydev;
3429 u32 reg;
3430
3431 do {
3432 lan8814_dequeue_tx_skb(ptp_priv);
3433
3434 /* If other timestamps are available in the FIFO,
3435 * process them.
3436 */
3437 reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO);
3438 } while (PTP_CAP_INFO_TX_TS_CNT_GET_(reg) > 0);
3439 }
3440
lan8814_match_skb(struct kszphy_ptp_priv * ptp_priv,struct lan8814_ptp_rx_ts * rx_ts)3441 static bool lan8814_match_skb(struct kszphy_ptp_priv *ptp_priv,
3442 struct lan8814_ptp_rx_ts *rx_ts)
3443 {
3444 struct skb_shared_hwtstamps *shhwtstamps;
3445 struct sk_buff *skb, *skb_tmp;
3446 unsigned long flags;
3447 bool ret = false;
3448 u16 skb_sig;
3449
3450 spin_lock_irqsave(&ptp_priv->rx_queue.lock, flags);
3451 skb_queue_walk_safe(&ptp_priv->rx_queue, skb, skb_tmp) {
3452 if (!lan8814_get_sig_rx(skb, &skb_sig))
3453 continue;
3454
3455 if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id)))
3456 continue;
3457
3458 __skb_unlink(skb, &ptp_priv->rx_queue);
3459
3460 ret = true;
3461 break;
3462 }
3463 spin_unlock_irqrestore(&ptp_priv->rx_queue.lock, flags);
3464
3465 if (ret) {
3466 shhwtstamps = skb_hwtstamps(skb);
3467 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
3468 shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, rx_ts->nsec);
3469 netif_rx(skb);
3470 }
3471
3472 return ret;
3473 }
3474
lan8814_match_rx_ts(struct kszphy_ptp_priv * ptp_priv,struct lan8814_ptp_rx_ts * rx_ts)3475 static void lan8814_match_rx_ts(struct kszphy_ptp_priv *ptp_priv,
3476 struct lan8814_ptp_rx_ts *rx_ts)
3477 {
3478 unsigned long flags;
3479
3480 /* If we failed to match the skb add it to the queue for when
3481 * the frame will come
3482 */
3483 if (!lan8814_match_skb(ptp_priv, rx_ts)) {
3484 spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags);
3485 list_add(&rx_ts->list, &ptp_priv->rx_ts_list);
3486 spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags);
3487 } else {
3488 kfree(rx_ts);
3489 }
3490 }
3491
lan8814_get_rx_ts(struct kszphy_ptp_priv * ptp_priv)3492 static void lan8814_get_rx_ts(struct kszphy_ptp_priv *ptp_priv)
3493 {
3494 struct phy_device *phydev = ptp_priv->phydev;
3495 struct lan8814_ptp_rx_ts *rx_ts;
3496 u32 reg;
3497
3498 do {
3499 rx_ts = kzalloc(sizeof(*rx_ts), GFP_KERNEL);
3500 if (!rx_ts)
3501 return;
3502
3503 lan8814_ptp_rx_ts_get(phydev, &rx_ts->seconds, &rx_ts->nsec,
3504 &rx_ts->seq_id);
3505 lan8814_match_rx_ts(ptp_priv, rx_ts);
3506
3507 /* If other timestamps are available in the FIFO,
3508 * process them.
3509 */
3510 reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO);
3511 } while (PTP_CAP_INFO_RX_TS_CNT_GET_(reg) > 0);
3512 }
3513
lan8814_handle_ptp_interrupt(struct phy_device * phydev,u16 status)3514 static void lan8814_handle_ptp_interrupt(struct phy_device *phydev, u16 status)
3515 {
3516 struct kszphy_priv *priv = phydev->priv;
3517 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
3518
3519 if (status & PTP_TSU_INT_STS_PTP_TX_TS_EN_)
3520 lan8814_get_tx_ts(ptp_priv);
3521
3522 if (status & PTP_TSU_INT_STS_PTP_RX_TS_EN_)
3523 lan8814_get_rx_ts(ptp_priv);
3524
3525 if (status & PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_) {
3526 lan8814_flush_fifo(phydev, true);
3527 skb_queue_purge(&ptp_priv->tx_queue);
3528 }
3529
3530 if (status & PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_) {
3531 lan8814_flush_fifo(phydev, false);
3532 skb_queue_purge(&ptp_priv->rx_queue);
3533 }
3534 }
3535
lan8814_gpio_process_cap(struct lan8814_shared_priv * shared)3536 static int lan8814_gpio_process_cap(struct lan8814_shared_priv *shared)
3537 {
3538 struct phy_device *phydev = shared->phydev;
3539 struct ptp_clock_event ptp_event = {0};
3540 unsigned long nsec;
3541 s64 sec;
3542 u16 tmp;
3543
3544 /* This is 0 because whatever was the input pin it was mapped it to
3545 * ltc gpio pin 0
3546 */
3547 tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_SEL);
3548 tmp |= PTP_GPIO_SEL_GPIO_SEL(0);
3549 lanphy_write_page_reg(phydev, 4, PTP_GPIO_SEL, tmp);
3550
3551 tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_STS);
3552 if (!(tmp & PTP_GPIO_CAP_STS_PTP_GPIO_RE_STS(0)) &&
3553 !(tmp & PTP_GPIO_CAP_STS_PTP_GPIO_FE_STS(0)))
3554 return -1;
3555
3556 if (tmp & BIT(0)) {
3557 sec = lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_SEC_HI_CAP);
3558 sec <<= 16;
3559 sec |= lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_SEC_LO_CAP);
3560
3561 nsec = lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_NS_HI_CAP) & 0x3fff;
3562 nsec <<= 16;
3563 nsec |= lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_NS_LO_CAP);
3564 } else {
3565 sec = lanphy_read_page_reg(phydev, 4, PTP_GPIO_FE_LTC_SEC_HI_CAP);
3566 sec <<= 16;
3567 sec |= lanphy_read_page_reg(phydev, 4, PTP_GPIO_FE_LTC_SEC_LO_CAP);
3568
3569 nsec = lanphy_read_page_reg(phydev, 4, PTP_GPIO_FE_LTC_NS_HI_CAP) & 0x3fff;
3570 nsec <<= 16;
3571 nsec |= lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_NS_LO_CAP);
3572 }
3573
3574 ptp_event.index = 0;
3575 ptp_event.timestamp = ktime_set(sec, nsec);
3576 ptp_event.type = PTP_CLOCK_EXTTS;
3577 ptp_clock_event(shared->ptp_clock, &ptp_event);
3578
3579 return 0;
3580 }
3581
lan8814_handle_gpio_interrupt(struct phy_device * phydev,u16 status)3582 static int lan8814_handle_gpio_interrupt(struct phy_device *phydev, u16 status)
3583 {
3584 struct lan8814_shared_priv *shared = phydev->shared->priv;
3585 int ret;
3586
3587 mutex_lock(&shared->shared_lock);
3588 ret = lan8814_gpio_process_cap(shared);
3589 mutex_unlock(&shared->shared_lock);
3590
3591 return ret;
3592 }
3593
lan8804_config_init(struct phy_device * phydev)3594 static int lan8804_config_init(struct phy_device *phydev)
3595 {
3596 int val;
3597
3598 /* MDI-X setting for swap A,B transmit */
3599 val = lanphy_read_page_reg(phydev, 2, LAN8804_ALIGN_SWAP);
3600 val &= ~LAN8804_ALIGN_TX_A_B_SWAP_MASK;
3601 val |= LAN8804_ALIGN_TX_A_B_SWAP;
3602 lanphy_write_page_reg(phydev, 2, LAN8804_ALIGN_SWAP, val);
3603
3604 /* Make sure that the PHY will not stop generating the clock when the
3605 * link partner goes down
3606 */
3607 lanphy_write_page_reg(phydev, 31, LAN8814_CLOCK_MANAGEMENT, 0x27e);
3608 lanphy_read_page_reg(phydev, 1, LAN8814_LINK_QUALITY);
3609
3610 return 0;
3611 }
3612
lan8804_handle_interrupt(struct phy_device * phydev)3613 static irqreturn_t lan8804_handle_interrupt(struct phy_device *phydev)
3614 {
3615 int status;
3616
3617 status = phy_read(phydev, LAN8814_INTS);
3618 if (status < 0) {
3619 phy_error(phydev);
3620 return IRQ_NONE;
3621 }
3622
3623 if (status > 0)
3624 phy_trigger_machine(phydev);
3625
3626 return IRQ_HANDLED;
3627 }
3628
3629 #define LAN8804_OUTPUT_CONTROL 25
3630 #define LAN8804_OUTPUT_CONTROL_INTR_BUFFER BIT(14)
3631 #define LAN8804_CONTROL 31
3632 #define LAN8804_CONTROL_INTR_POLARITY BIT(14)
3633
lan8804_config_intr(struct phy_device * phydev)3634 static int lan8804_config_intr(struct phy_device *phydev)
3635 {
3636 int err;
3637
3638 /* This is an internal PHY of lan966x and is not possible to change the
3639 * polarity on the GIC found in lan966x, therefore change the polarity
3640 * of the interrupt in the PHY from being active low instead of active
3641 * high.
3642 */
3643 phy_write(phydev, LAN8804_CONTROL, LAN8804_CONTROL_INTR_POLARITY);
3644
3645 /* By default interrupt buffer is open-drain in which case the interrupt
3646 * can be active only low. Therefore change the interrupt buffer to be
3647 * push-pull to be able to change interrupt polarity
3648 */
3649 phy_write(phydev, LAN8804_OUTPUT_CONTROL,
3650 LAN8804_OUTPUT_CONTROL_INTR_BUFFER);
3651
3652 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
3653 err = phy_read(phydev, LAN8814_INTS);
3654 if (err < 0)
3655 return err;
3656
3657 err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK);
3658 if (err)
3659 return err;
3660 } else {
3661 err = phy_write(phydev, LAN8814_INTC, 0);
3662 if (err)
3663 return err;
3664
3665 err = phy_read(phydev, LAN8814_INTS);
3666 if (err < 0)
3667 return err;
3668 }
3669
3670 return 0;
3671 }
3672
lan8814_handle_interrupt(struct phy_device * phydev)3673 static irqreturn_t lan8814_handle_interrupt(struct phy_device *phydev)
3674 {
3675 int ret = IRQ_NONE;
3676 int irq_status;
3677
3678 irq_status = phy_read(phydev, LAN8814_INTS);
3679 if (irq_status < 0) {
3680 phy_error(phydev);
3681 return IRQ_NONE;
3682 }
3683
3684 if (irq_status & LAN8814_INT_LINK) {
3685 phy_trigger_machine(phydev);
3686 ret = IRQ_HANDLED;
3687 }
3688
3689 while (true) {
3690 irq_status = lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS);
3691 if (!irq_status)
3692 break;
3693
3694 lan8814_handle_ptp_interrupt(phydev, irq_status);
3695 ret = IRQ_HANDLED;
3696 }
3697
3698 if (!lan8814_handle_gpio_interrupt(phydev, irq_status))
3699 ret = IRQ_HANDLED;
3700
3701 return ret;
3702 }
3703
lan8814_ack_interrupt(struct phy_device * phydev)3704 static int lan8814_ack_interrupt(struct phy_device *phydev)
3705 {
3706 /* bit[12..0] int status, which is a read and clear register. */
3707 int rc;
3708
3709 rc = phy_read(phydev, LAN8814_INTS);
3710
3711 return (rc < 0) ? rc : 0;
3712 }
3713
lan8814_config_intr(struct phy_device * phydev)3714 static int lan8814_config_intr(struct phy_device *phydev)
3715 {
3716 int err;
3717
3718 lanphy_write_page_reg(phydev, 4, LAN8814_INTR_CTRL_REG,
3719 LAN8814_INTR_CTRL_REG_POLARITY |
3720 LAN8814_INTR_CTRL_REG_INTR_ENABLE);
3721
3722 /* enable / disable interrupts */
3723 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
3724 err = lan8814_ack_interrupt(phydev);
3725 if (err)
3726 return err;
3727
3728 err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK);
3729 } else {
3730 err = phy_write(phydev, LAN8814_INTC, 0);
3731 if (err)
3732 return err;
3733
3734 err = lan8814_ack_interrupt(phydev);
3735 }
3736
3737 return err;
3738 }
3739
lan8814_ptp_init(struct phy_device * phydev)3740 static void lan8814_ptp_init(struct phy_device *phydev)
3741 {
3742 struct kszphy_priv *priv = phydev->priv;
3743 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
3744 u32 temp;
3745
3746 if (!IS_ENABLED(CONFIG_PTP_1588_CLOCK) ||
3747 !IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING))
3748 return;
3749
3750 lanphy_write_page_reg(phydev, 5, TSU_HARD_RESET, TSU_HARD_RESET_);
3751
3752 temp = lanphy_read_page_reg(phydev, 5, PTP_TX_MOD);
3753 temp |= PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_;
3754 lanphy_write_page_reg(phydev, 5, PTP_TX_MOD, temp);
3755
3756 temp = lanphy_read_page_reg(phydev, 5, PTP_RX_MOD);
3757 temp |= PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_;
3758 lanphy_write_page_reg(phydev, 5, PTP_RX_MOD, temp);
3759
3760 lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_CONFIG, 0);
3761 lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_CONFIG, 0);
3762
3763 /* Removing default registers configs related to L2 and IP */
3764 lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_L2_ADDR_EN, 0);
3765 lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_L2_ADDR_EN, 0);
3766 lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_IP_ADDR_EN, 0);
3767 lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_IP_ADDR_EN, 0);
3768
3769 /* Disable checking for minorVersionPTP field */
3770 lanphy_write_page_reg(phydev, 5, PTP_RX_VERSION,
3771 PTP_MAX_VERSION(0xff) | PTP_MIN_VERSION(0x0));
3772 lanphy_write_page_reg(phydev, 5, PTP_TX_VERSION,
3773 PTP_MAX_VERSION(0xff) | PTP_MIN_VERSION(0x0));
3774
3775 skb_queue_head_init(&ptp_priv->tx_queue);
3776 skb_queue_head_init(&ptp_priv->rx_queue);
3777 INIT_LIST_HEAD(&ptp_priv->rx_ts_list);
3778 spin_lock_init(&ptp_priv->rx_ts_lock);
3779
3780 ptp_priv->phydev = phydev;
3781
3782 ptp_priv->mii_ts.rxtstamp = lan8814_rxtstamp;
3783 ptp_priv->mii_ts.txtstamp = lan8814_txtstamp;
3784 ptp_priv->mii_ts.hwtstamp = lan8814_hwtstamp;
3785 ptp_priv->mii_ts.ts_info = lan8814_ts_info;
3786
3787 phydev->mii_ts = &ptp_priv->mii_ts;
3788
3789 /* Timestamp selected by default to keep legacy API */
3790 phydev->default_timestamp = true;
3791 }
3792
lan8814_ptp_probe_once(struct phy_device * phydev)3793 static int lan8814_ptp_probe_once(struct phy_device *phydev)
3794 {
3795 struct lan8814_shared_priv *shared = phydev->shared->priv;
3796
3797 /* Initialise shared lock for clock*/
3798 mutex_init(&shared->shared_lock);
3799
3800 shared->pin_config = devm_kmalloc_array(&phydev->mdio.dev,
3801 LAN8814_PTP_GPIO_NUM,
3802 sizeof(*shared->pin_config),
3803 GFP_KERNEL);
3804 if (!shared->pin_config)
3805 return -ENOMEM;
3806
3807 for (int i = 0; i < LAN8814_PTP_GPIO_NUM; i++) {
3808 struct ptp_pin_desc *ptp_pin = &shared->pin_config[i];
3809
3810 memset(ptp_pin, 0, sizeof(*ptp_pin));
3811 snprintf(ptp_pin->name,
3812 sizeof(ptp_pin->name), "lan8814_ptp_pin_%02d", i);
3813 ptp_pin->index = i;
3814 ptp_pin->func = PTP_PF_NONE;
3815 }
3816
3817 shared->ptp_clock_info.owner = THIS_MODULE;
3818 snprintf(shared->ptp_clock_info.name, 30, "%s", phydev->drv->name);
3819 shared->ptp_clock_info.max_adj = 31249999;
3820 shared->ptp_clock_info.n_alarm = 0;
3821 shared->ptp_clock_info.n_ext_ts = LAN8814_PTP_EXTTS_NUM;
3822 shared->ptp_clock_info.n_pins = LAN8814_PTP_GPIO_NUM;
3823 shared->ptp_clock_info.pps = 0;
3824 shared->ptp_clock_info.pin_config = shared->pin_config;
3825 shared->ptp_clock_info.n_per_out = LAN8814_PTP_PEROUT_NUM;
3826 shared->ptp_clock_info.adjfine = lan8814_ptpci_adjfine;
3827 shared->ptp_clock_info.adjtime = lan8814_ptpci_adjtime;
3828 shared->ptp_clock_info.gettime64 = lan8814_ptpci_gettime64;
3829 shared->ptp_clock_info.settime64 = lan8814_ptpci_settime64;
3830 shared->ptp_clock_info.getcrosststamp = NULL;
3831 shared->ptp_clock_info.enable = lan8814_ptpci_enable;
3832 shared->ptp_clock_info.verify = lan8814_ptpci_verify;
3833
3834 shared->ptp_clock = ptp_clock_register(&shared->ptp_clock_info,
3835 &phydev->mdio.dev);
3836 if (IS_ERR(shared->ptp_clock)) {
3837 phydev_err(phydev, "ptp_clock_register failed %lu\n",
3838 PTR_ERR(shared->ptp_clock));
3839 return -EINVAL;
3840 }
3841
3842 /* Check if PHC support is missing at the configuration level */
3843 if (!shared->ptp_clock)
3844 return 0;
3845
3846 phydev_dbg(phydev, "successfully registered ptp clock\n");
3847
3848 shared->phydev = phydev;
3849
3850 /* The EP.4 is shared between all the PHYs in the package and also it
3851 * can be accessed by any of the PHYs
3852 */
3853 lanphy_write_page_reg(phydev, 4, LTC_HARD_RESET, LTC_HARD_RESET_);
3854 lanphy_write_page_reg(phydev, 4, PTP_OPERATING_MODE,
3855 PTP_OPERATING_MODE_STANDALONE_);
3856
3857 /* Enable ptp to run LTC clock for ptp and gpio 1PPS operation */
3858 lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_ENABLE_);
3859
3860 return 0;
3861 }
3862
lan8814_setup_led(struct phy_device * phydev,int val)3863 static void lan8814_setup_led(struct phy_device *phydev, int val)
3864 {
3865 int temp;
3866
3867 temp = lanphy_read_page_reg(phydev, 5, LAN8814_LED_CTRL_1);
3868
3869 if (val)
3870 temp |= LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_;
3871 else
3872 temp &= ~LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_;
3873
3874 lanphy_write_page_reg(phydev, 5, LAN8814_LED_CTRL_1, temp);
3875 }
3876
lan8814_config_init(struct phy_device * phydev)3877 static int lan8814_config_init(struct phy_device *phydev)
3878 {
3879 struct kszphy_priv *lan8814 = phydev->priv;
3880 int val;
3881
3882 /* Reset the PHY */
3883 val = lanphy_read_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET);
3884 val |= LAN8814_QSGMII_SOFT_RESET_BIT;
3885 lanphy_write_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET, val);
3886
3887 /* Disable ANEG with QSGMII PCS Host side */
3888 val = lanphy_read_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG);
3889 val &= ~LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA;
3890 lanphy_write_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG, val);
3891
3892 /* MDI-X setting for swap A,B transmit */
3893 val = lanphy_read_page_reg(phydev, 2, LAN8814_ALIGN_SWAP);
3894 val &= ~LAN8814_ALIGN_TX_A_B_SWAP_MASK;
3895 val |= LAN8814_ALIGN_TX_A_B_SWAP;
3896 lanphy_write_page_reg(phydev, 2, LAN8814_ALIGN_SWAP, val);
3897
3898 if (lan8814->led_mode >= 0)
3899 lan8814_setup_led(phydev, lan8814->led_mode);
3900
3901 return 0;
3902 }
3903
3904 /* It is expected that there will not be any 'lan8814_take_coma_mode'
3905 * function called in suspend. Because the GPIO line can be shared, so if one of
3906 * the phys goes back in coma mode, then all the other PHYs will go, which is
3907 * wrong.
3908 */
lan8814_release_coma_mode(struct phy_device * phydev)3909 static int lan8814_release_coma_mode(struct phy_device *phydev)
3910 {
3911 struct gpio_desc *gpiod;
3912
3913 gpiod = devm_gpiod_get_optional(&phydev->mdio.dev, "coma-mode",
3914 GPIOD_OUT_HIGH_OPEN_DRAIN |
3915 GPIOD_FLAGS_BIT_NONEXCLUSIVE);
3916 if (IS_ERR(gpiod))
3917 return PTR_ERR(gpiod);
3918
3919 gpiod_set_consumer_name(gpiod, "LAN8814 coma mode");
3920 gpiod_set_value_cansleep(gpiod, 0);
3921
3922 return 0;
3923 }
3924
lan8814_clear_2psp_bit(struct phy_device * phydev)3925 static void lan8814_clear_2psp_bit(struct phy_device *phydev)
3926 {
3927 u16 val;
3928
3929 /* It was noticed that when traffic is passing through the PHY and the
3930 * cable is removed then the LED was still one even though there is no
3931 * link
3932 */
3933 val = lanphy_read_page_reg(phydev, 2, LAN8814_EEE_STATE);
3934 val &= ~LAN8814_EEE_STATE_MASK2P5P;
3935 lanphy_write_page_reg(phydev, 2, LAN8814_EEE_STATE, val);
3936 }
3937
lan8814_update_meas_time(struct phy_device * phydev)3938 static void lan8814_update_meas_time(struct phy_device *phydev)
3939 {
3940 u16 val;
3941
3942 /* By setting the measure time to a value of 0xb this will allow cables
3943 * longer than 100m to be used. This configuration can be used
3944 * regardless of the mode of operation of the PHY
3945 */
3946 val = lanphy_read_page_reg(phydev, 1, LAN8814_PD_CONTROLS);
3947 val &= ~LAN8814_PD_CONTROLS_PD_MEAS_TIME_MASK;
3948 val |= LAN8814_PD_CONTROLS_PD_MEAS_TIME_VAL;
3949 lanphy_write_page_reg(phydev, 1, LAN8814_PD_CONTROLS, val);
3950 }
3951
lan8814_probe(struct phy_device * phydev)3952 static int lan8814_probe(struct phy_device *phydev)
3953 {
3954 const struct kszphy_type *type = phydev->drv->driver_data;
3955 struct kszphy_priv *priv;
3956 u16 addr;
3957 int err;
3958
3959 priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
3960 if (!priv)
3961 return -ENOMEM;
3962
3963 phydev->priv = priv;
3964
3965 priv->type = type;
3966
3967 kszphy_parse_led_mode(phydev);
3968
3969 /* Strap-in value for PHY address, below register read gives starting
3970 * phy address value
3971 */
3972 addr = lanphy_read_page_reg(phydev, 4, 0) & 0x1F;
3973 devm_phy_package_join(&phydev->mdio.dev, phydev,
3974 addr, sizeof(struct lan8814_shared_priv));
3975
3976 if (phy_package_init_once(phydev)) {
3977 err = lan8814_release_coma_mode(phydev);
3978 if (err)
3979 return err;
3980
3981 err = lan8814_ptp_probe_once(phydev);
3982 if (err)
3983 return err;
3984 }
3985
3986 lan8814_ptp_init(phydev);
3987
3988 /* Errata workarounds */
3989 lan8814_clear_2psp_bit(phydev);
3990 lan8814_update_meas_time(phydev);
3991
3992 return 0;
3993 }
3994
3995 #define LAN8841_MMD_TIMER_REG 0
3996 #define LAN8841_MMD0_REGISTER_17 17
3997 #define LAN8841_MMD0_REGISTER_17_DROP_OPT(x) ((x) & 0x3)
3998 #define LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS BIT(3)
3999 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG 2
4000 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK BIT(14)
4001 #define LAN8841_MMD_ANALOG_REG 28
4002 #define LAN8841_ANALOG_CONTROL_1 1
4003 #define LAN8841_ANALOG_CONTROL_1_PLL_TRIM(x) (((x) & 0x3) << 5)
4004 #define LAN8841_ANALOG_CONTROL_10 13
4005 #define LAN8841_ANALOG_CONTROL_10_PLL_DIV(x) ((x) & 0x3)
4006 #define LAN8841_ANALOG_CONTROL_11 14
4007 #define LAN8841_ANALOG_CONTROL_11_LDO_REF(x) (((x) & 0x7) << 12)
4008 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT 69
4009 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL 0xbffc
4010 #define LAN8841_BTRX_POWER_DOWN 70
4011 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A BIT(0)
4012 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_A BIT(1)
4013 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B BIT(2)
4014 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_B BIT(3)
4015 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_C BIT(5)
4016 #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_D BIT(7)
4017 #define LAN8841_ADC_CHANNEL_MASK 198
4018 #define LAN8841_PTP_RX_PARSE_L2_ADDR_EN 370
4019 #define LAN8841_PTP_RX_PARSE_IP_ADDR_EN 371
4020 #define LAN8841_PTP_RX_VERSION 374
4021 #define LAN8841_PTP_TX_PARSE_L2_ADDR_EN 434
4022 #define LAN8841_PTP_TX_PARSE_IP_ADDR_EN 435
4023 #define LAN8841_PTP_TX_VERSION 438
4024 #define LAN8841_PTP_CMD_CTL 256
4025 #define LAN8841_PTP_CMD_CTL_PTP_ENABLE BIT(2)
4026 #define LAN8841_PTP_CMD_CTL_PTP_DISABLE BIT(1)
4027 #define LAN8841_PTP_CMD_CTL_PTP_RESET BIT(0)
4028 #define LAN8841_PTP_RX_PARSE_CONFIG 368
4029 #define LAN8841_PTP_TX_PARSE_CONFIG 432
4030 #define LAN8841_PTP_RX_MODE 381
4031 #define LAN8841_PTP_INSERT_TS_EN BIT(0)
4032 #define LAN8841_PTP_INSERT_TS_32BIT BIT(1)
4033
lan8841_config_init(struct phy_device * phydev)4034 static int lan8841_config_init(struct phy_device *phydev)
4035 {
4036 int ret;
4037
4038 ret = ksz9131_config_init(phydev);
4039 if (ret)
4040 return ret;
4041
4042 /* Initialize the HW by resetting everything */
4043 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4044 LAN8841_PTP_CMD_CTL,
4045 LAN8841_PTP_CMD_CTL_PTP_RESET,
4046 LAN8841_PTP_CMD_CTL_PTP_RESET);
4047
4048 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4049 LAN8841_PTP_CMD_CTL,
4050 LAN8841_PTP_CMD_CTL_PTP_ENABLE,
4051 LAN8841_PTP_CMD_CTL_PTP_ENABLE);
4052
4053 /* Don't process any frames */
4054 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4055 LAN8841_PTP_RX_PARSE_CONFIG, 0);
4056 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4057 LAN8841_PTP_TX_PARSE_CONFIG, 0);
4058 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4059 LAN8841_PTP_TX_PARSE_L2_ADDR_EN, 0);
4060 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4061 LAN8841_PTP_RX_PARSE_L2_ADDR_EN, 0);
4062 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4063 LAN8841_PTP_TX_PARSE_IP_ADDR_EN, 0);
4064 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4065 LAN8841_PTP_RX_PARSE_IP_ADDR_EN, 0);
4066
4067 /* Disable checking for minorVersionPTP field */
4068 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4069 LAN8841_PTP_RX_VERSION, 0xff00);
4070 phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4071 LAN8841_PTP_TX_VERSION, 0xff00);
4072
4073 /* 100BT Clause 40 improvenent errata */
4074 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
4075 LAN8841_ANALOG_CONTROL_1,
4076 LAN8841_ANALOG_CONTROL_1_PLL_TRIM(0x2));
4077 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
4078 LAN8841_ANALOG_CONTROL_10,
4079 LAN8841_ANALOG_CONTROL_10_PLL_DIV(0x1));
4080
4081 /* 10M/100M Ethernet Signal Tuning Errata for Shorted-Center Tap
4082 * Magnetics
4083 */
4084 ret = phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4085 LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG);
4086 if (ret & LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK) {
4087 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
4088 LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT,
4089 LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL);
4090 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
4091 LAN8841_BTRX_POWER_DOWN,
4092 LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A |
4093 LAN8841_BTRX_POWER_DOWN_BTRX_CH_A |
4094 LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B |
4095 LAN8841_BTRX_POWER_DOWN_BTRX_CH_B |
4096 LAN8841_BTRX_POWER_DOWN_BTRX_CH_C |
4097 LAN8841_BTRX_POWER_DOWN_BTRX_CH_D);
4098 }
4099
4100 /* LDO Adjustment errata */
4101 phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG,
4102 LAN8841_ANALOG_CONTROL_11,
4103 LAN8841_ANALOG_CONTROL_11_LDO_REF(1));
4104
4105 /* 100BT RGMII latency tuning errata */
4106 phy_write_mmd(phydev, MDIO_MMD_PMAPMD,
4107 LAN8841_ADC_CHANNEL_MASK, 0x0);
4108 phy_write_mmd(phydev, LAN8841_MMD_TIMER_REG,
4109 LAN8841_MMD0_REGISTER_17,
4110 LAN8841_MMD0_REGISTER_17_DROP_OPT(2) |
4111 LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS);
4112
4113 return 0;
4114 }
4115
4116 #define LAN8841_OUTPUT_CTRL 25
4117 #define LAN8841_OUTPUT_CTRL_INT_BUFFER BIT(14)
4118 #define LAN8841_INT_PTP BIT(9)
4119
lan8841_config_intr(struct phy_device * phydev)4120 static int lan8841_config_intr(struct phy_device *phydev)
4121 {
4122 int err;
4123
4124 phy_modify(phydev, LAN8841_OUTPUT_CTRL,
4125 LAN8841_OUTPUT_CTRL_INT_BUFFER, 0);
4126
4127 if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
4128 err = phy_read(phydev, LAN8814_INTS);
4129 if (err < 0)
4130 return err;
4131
4132 /* Enable / disable interrupts. It is OK to enable PTP interrupt
4133 * even if it PTP is not enabled. Because the underneath blocks
4134 * will not enable the PTP so we will never get the PTP
4135 * interrupt.
4136 */
4137 err = phy_write(phydev, LAN8814_INTC,
4138 LAN8814_INT_LINK | LAN8841_INT_PTP);
4139 } else {
4140 err = phy_write(phydev, LAN8814_INTC, 0);
4141 if (err)
4142 return err;
4143
4144 err = phy_read(phydev, LAN8814_INTS);
4145 if (err < 0)
4146 return err;
4147
4148 /* Getting a positive value doesn't mean that is an error, it
4149 * just indicates what was the status. Therefore make sure to
4150 * clear the value and say that there is no error.
4151 */
4152 err = 0;
4153 }
4154
4155 return err;
4156 }
4157
4158 #define LAN8841_PTP_TX_EGRESS_SEC_LO 453
4159 #define LAN8841_PTP_TX_EGRESS_SEC_HI 452
4160 #define LAN8841_PTP_TX_EGRESS_NS_LO 451
4161 #define LAN8841_PTP_TX_EGRESS_NS_HI 450
4162 #define LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID BIT(15)
4163 #define LAN8841_PTP_TX_MSG_HEADER2 455
4164
lan8841_ptp_get_tx_ts(struct kszphy_ptp_priv * ptp_priv,u32 * sec,u32 * nsec,u16 * seq)4165 static bool lan8841_ptp_get_tx_ts(struct kszphy_ptp_priv *ptp_priv,
4166 u32 *sec, u32 *nsec, u16 *seq)
4167 {
4168 struct phy_device *phydev = ptp_priv->phydev;
4169
4170 *nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_HI);
4171 if (!(*nsec & LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID))
4172 return false;
4173
4174 *nsec = ((*nsec & 0x3fff) << 16);
4175 *nsec = *nsec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_LO);
4176
4177 *sec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_HI);
4178 *sec = *sec << 16;
4179 *sec = *sec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_LO);
4180
4181 *seq = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2);
4182
4183 return true;
4184 }
4185
lan8841_ptp_process_tx_ts(struct kszphy_ptp_priv * ptp_priv)4186 static void lan8841_ptp_process_tx_ts(struct kszphy_ptp_priv *ptp_priv)
4187 {
4188 u32 sec, nsec;
4189 u16 seq;
4190
4191 while (lan8841_ptp_get_tx_ts(ptp_priv, &sec, &nsec, &seq))
4192 lan8814_match_tx_skb(ptp_priv, sec, nsec, seq);
4193 }
4194
4195 #define LAN8841_PTP_INT_STS 259
4196 #define LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT BIT(13)
4197 #define LAN8841_PTP_INT_STS_PTP_TX_TS_INT BIT(12)
4198 #define LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT BIT(2)
4199
lan8841_ptp_flush_fifo(struct kszphy_ptp_priv * ptp_priv)4200 static void lan8841_ptp_flush_fifo(struct kszphy_ptp_priv *ptp_priv)
4201 {
4202 struct phy_device *phydev = ptp_priv->phydev;
4203 int i;
4204
4205 for (i = 0; i < FIFO_SIZE; ++i)
4206 phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2);
4207
4208 phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS);
4209 }
4210
4211 #define LAN8841_PTP_GPIO_CAP_STS 506
4212 #define LAN8841_PTP_GPIO_SEL 327
4213 #define LAN8841_PTP_GPIO_SEL_GPIO_SEL(gpio) ((gpio) << 8)
4214 #define LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP 498
4215 #define LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP 499
4216 #define LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP 500
4217 #define LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP 501
4218 #define LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP 502
4219 #define LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP 503
4220 #define LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP 504
4221 #define LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP 505
4222
lan8841_gpio_process_cap(struct kszphy_ptp_priv * ptp_priv)4223 static void lan8841_gpio_process_cap(struct kszphy_ptp_priv *ptp_priv)
4224 {
4225 struct phy_device *phydev = ptp_priv->phydev;
4226 struct ptp_clock_event ptp_event = {0};
4227 int pin, ret, tmp;
4228 s32 sec, nsec;
4229
4230 pin = ptp_find_pin_unlocked(ptp_priv->ptp_clock, PTP_PF_EXTTS, 0);
4231 if (pin == -1)
4232 return;
4233
4234 tmp = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_STS);
4235 if (tmp < 0)
4236 return;
4237
4238 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL,
4239 LAN8841_PTP_GPIO_SEL_GPIO_SEL(pin));
4240 if (ret)
4241 return;
4242
4243 mutex_lock(&ptp_priv->ptp_lock);
4244 if (tmp & BIT(pin)) {
4245 sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP);
4246 sec <<= 16;
4247 sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP);
4248
4249 nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP) & 0x3fff;
4250 nsec <<= 16;
4251 nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP);
4252 } else {
4253 sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP);
4254 sec <<= 16;
4255 sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP);
4256
4257 nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP) & 0x3fff;
4258 nsec <<= 16;
4259 nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP);
4260 }
4261 mutex_unlock(&ptp_priv->ptp_lock);
4262 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL, 0);
4263 if (ret)
4264 return;
4265
4266 ptp_event.index = 0;
4267 ptp_event.timestamp = ktime_set(sec, nsec);
4268 ptp_event.type = PTP_CLOCK_EXTTS;
4269 ptp_clock_event(ptp_priv->ptp_clock, &ptp_event);
4270 }
4271
lan8841_handle_ptp_interrupt(struct phy_device * phydev)4272 static void lan8841_handle_ptp_interrupt(struct phy_device *phydev)
4273 {
4274 struct kszphy_priv *priv = phydev->priv;
4275 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
4276 u16 status;
4277
4278 do {
4279 status = phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS);
4280
4281 if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_INT)
4282 lan8841_ptp_process_tx_ts(ptp_priv);
4283
4284 if (status & LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT)
4285 lan8841_gpio_process_cap(ptp_priv);
4286
4287 if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT) {
4288 lan8841_ptp_flush_fifo(ptp_priv);
4289 skb_queue_purge(&ptp_priv->tx_queue);
4290 }
4291
4292 } while (status & (LAN8841_PTP_INT_STS_PTP_TX_TS_INT |
4293 LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT |
4294 LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT));
4295 }
4296
4297 #define LAN8841_INTS_PTP BIT(9)
4298
lan8841_handle_interrupt(struct phy_device * phydev)4299 static irqreturn_t lan8841_handle_interrupt(struct phy_device *phydev)
4300 {
4301 irqreturn_t ret = IRQ_NONE;
4302 int irq_status;
4303
4304 irq_status = phy_read(phydev, LAN8814_INTS);
4305 if (irq_status < 0) {
4306 phy_error(phydev);
4307 return IRQ_NONE;
4308 }
4309
4310 if (irq_status & LAN8814_INT_LINK) {
4311 phy_trigger_machine(phydev);
4312 ret = IRQ_HANDLED;
4313 }
4314
4315 if (irq_status & LAN8841_INTS_PTP) {
4316 lan8841_handle_ptp_interrupt(phydev);
4317 ret = IRQ_HANDLED;
4318 }
4319
4320 return ret;
4321 }
4322
lan8841_ts_info(struct mii_timestamper * mii_ts,struct kernel_ethtool_ts_info * info)4323 static int lan8841_ts_info(struct mii_timestamper *mii_ts,
4324 struct kernel_ethtool_ts_info *info)
4325 {
4326 struct kszphy_ptp_priv *ptp_priv;
4327
4328 ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
4329
4330 info->phc_index = ptp_priv->ptp_clock ?
4331 ptp_clock_index(ptp_priv->ptp_clock) : -1;
4332 if (info->phc_index == -1)
4333 return 0;
4334
4335 info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE |
4336 SOF_TIMESTAMPING_RX_HARDWARE |
4337 SOF_TIMESTAMPING_RAW_HARDWARE;
4338
4339 info->tx_types = (1 << HWTSTAMP_TX_OFF) |
4340 (1 << HWTSTAMP_TX_ON) |
4341 (1 << HWTSTAMP_TX_ONESTEP_SYNC);
4342
4343 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
4344 (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
4345 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
4346 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
4347
4348 return 0;
4349 }
4350
4351 #define LAN8841_PTP_INT_EN 260
4352 #define LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN BIT(13)
4353 #define LAN8841_PTP_INT_EN_PTP_TX_TS_EN BIT(12)
4354
lan8841_ptp_enable_processing(struct kszphy_ptp_priv * ptp_priv,bool enable)4355 static void lan8841_ptp_enable_processing(struct kszphy_ptp_priv *ptp_priv,
4356 bool enable)
4357 {
4358 struct phy_device *phydev = ptp_priv->phydev;
4359
4360 if (enable) {
4361 /* Enable interrupts on the TX side */
4362 phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
4363 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN |
4364 LAN8841_PTP_INT_EN_PTP_TX_TS_EN,
4365 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN |
4366 LAN8841_PTP_INT_EN_PTP_TX_TS_EN);
4367
4368 /* Enable the modification of the frame on RX side,
4369 * this will add the ns and 2 bits of sec in the reserved field
4370 * of the PTP header
4371 */
4372 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4373 LAN8841_PTP_RX_MODE,
4374 LAN8841_PTP_INSERT_TS_EN |
4375 LAN8841_PTP_INSERT_TS_32BIT,
4376 LAN8841_PTP_INSERT_TS_EN |
4377 LAN8841_PTP_INSERT_TS_32BIT);
4378
4379 ptp_schedule_worker(ptp_priv->ptp_clock, 0);
4380 } else {
4381 /* Disable interrupts on the TX side */
4382 phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
4383 LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN |
4384 LAN8841_PTP_INT_EN_PTP_TX_TS_EN, 0);
4385
4386 /* Disable modification of the RX frames */
4387 phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
4388 LAN8841_PTP_RX_MODE,
4389 LAN8841_PTP_INSERT_TS_EN |
4390 LAN8841_PTP_INSERT_TS_32BIT, 0);
4391
4392 ptp_cancel_worker_sync(ptp_priv->ptp_clock);
4393 }
4394 }
4395
4396 #define LAN8841_PTP_RX_TIMESTAMP_EN 379
4397 #define LAN8841_PTP_TX_TIMESTAMP_EN 443
4398 #define LAN8841_PTP_TX_MOD 445
4399
lan8841_hwtstamp(struct mii_timestamper * mii_ts,struct kernel_hwtstamp_config * config,struct netlink_ext_ack * extack)4400 static int lan8841_hwtstamp(struct mii_timestamper *mii_ts,
4401 struct kernel_hwtstamp_config *config,
4402 struct netlink_ext_ack *extack)
4403 {
4404 struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
4405 struct phy_device *phydev = ptp_priv->phydev;
4406 int txcfg = 0, rxcfg = 0;
4407 int pkt_ts_enable;
4408
4409 ptp_priv->hwts_tx_type = config->tx_type;
4410 ptp_priv->rx_filter = config->rx_filter;
4411
4412 switch (config->rx_filter) {
4413 case HWTSTAMP_FILTER_NONE:
4414 ptp_priv->layer = 0;
4415 ptp_priv->version = 0;
4416 break;
4417 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
4418 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
4419 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
4420 ptp_priv->layer = PTP_CLASS_L4;
4421 ptp_priv->version = PTP_CLASS_V2;
4422 break;
4423 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
4424 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
4425 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
4426 ptp_priv->layer = PTP_CLASS_L2;
4427 ptp_priv->version = PTP_CLASS_V2;
4428 break;
4429 case HWTSTAMP_FILTER_PTP_V2_EVENT:
4430 case HWTSTAMP_FILTER_PTP_V2_SYNC:
4431 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
4432 ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2;
4433 ptp_priv->version = PTP_CLASS_V2;
4434 break;
4435 default:
4436 return -ERANGE;
4437 }
4438
4439 /* Setup parsing of the frames and enable the timestamping for ptp
4440 * frames
4441 */
4442 if (ptp_priv->layer & PTP_CLASS_L2) {
4443 rxcfg |= PTP_RX_PARSE_CONFIG_LAYER2_EN_;
4444 txcfg |= PTP_TX_PARSE_CONFIG_LAYER2_EN_;
4445 } else if (ptp_priv->layer & PTP_CLASS_L4) {
4446 rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_;
4447 txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_;
4448 }
4449
4450 phy_write_mmd(phydev, 2, LAN8841_PTP_RX_PARSE_CONFIG, rxcfg);
4451 phy_write_mmd(phydev, 2, LAN8841_PTP_TX_PARSE_CONFIG, txcfg);
4452
4453 pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ |
4454 PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_;
4455 phy_write_mmd(phydev, 2, LAN8841_PTP_RX_TIMESTAMP_EN, pkt_ts_enable);
4456 phy_write_mmd(phydev, 2, LAN8841_PTP_TX_TIMESTAMP_EN, pkt_ts_enable);
4457
4458 /* Enable / disable of the TX timestamp in the SYNC frames */
4459 phy_modify_mmd(phydev, 2, LAN8841_PTP_TX_MOD,
4460 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_,
4461 ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC ?
4462 PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ : 0);
4463
4464 /* Now enable/disable the timestamping */
4465 lan8841_ptp_enable_processing(ptp_priv,
4466 config->rx_filter != HWTSTAMP_FILTER_NONE);
4467
4468 skb_queue_purge(&ptp_priv->tx_queue);
4469
4470 lan8841_ptp_flush_fifo(ptp_priv);
4471
4472 return 0;
4473 }
4474
lan8841_rxtstamp(struct mii_timestamper * mii_ts,struct sk_buff * skb,int type)4475 static bool lan8841_rxtstamp(struct mii_timestamper *mii_ts,
4476 struct sk_buff *skb, int type)
4477 {
4478 struct kszphy_ptp_priv *ptp_priv =
4479 container_of(mii_ts, struct kszphy_ptp_priv, mii_ts);
4480 struct ptp_header *header = ptp_parse_header(skb, type);
4481 struct skb_shared_hwtstamps *shhwtstamps;
4482 struct timespec64 ts;
4483 unsigned long flags;
4484 u32 ts_header;
4485
4486 if (!header)
4487 return false;
4488
4489 if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE ||
4490 type == PTP_CLASS_NONE)
4491 return false;
4492
4493 if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0)
4494 return false;
4495
4496 spin_lock_irqsave(&ptp_priv->seconds_lock, flags);
4497 ts.tv_sec = ptp_priv->seconds;
4498 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags);
4499 ts_header = __be32_to_cpu(header->reserved2);
4500
4501 shhwtstamps = skb_hwtstamps(skb);
4502 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
4503
4504 /* Check for any wrap arounds for the second part */
4505 if ((ts.tv_sec & GENMASK(1, 0)) == 0 && (ts_header >> 30) == 3)
4506 ts.tv_sec -= GENMASK(1, 0) + 1;
4507 else if ((ts.tv_sec & GENMASK(1, 0)) == 3 && (ts_header >> 30) == 0)
4508 ts.tv_sec += 1;
4509
4510 shhwtstamps->hwtstamp =
4511 ktime_set((ts.tv_sec & ~(GENMASK(1, 0))) | ts_header >> 30,
4512 ts_header & GENMASK(29, 0));
4513 header->reserved2 = 0;
4514
4515 netif_rx(skb);
4516
4517 return true;
4518 }
4519
4520 #define LAN8841_EVENT_A 0
4521 #define LAN8841_EVENT_B 1
4522 #define LAN8841_PTP_LTC_TARGET_SEC_HI(event) ((event) == LAN8841_EVENT_A ? 278 : 288)
4523 #define LAN8841_PTP_LTC_TARGET_SEC_LO(event) ((event) == LAN8841_EVENT_A ? 279 : 289)
4524 #define LAN8841_PTP_LTC_TARGET_NS_HI(event) ((event) == LAN8841_EVENT_A ? 280 : 290)
4525 #define LAN8841_PTP_LTC_TARGET_NS_LO(event) ((event) == LAN8841_EVENT_A ? 281 : 291)
4526
lan8841_ptp_set_target(struct kszphy_ptp_priv * ptp_priv,u8 event,s64 sec,u32 nsec)4527 static int lan8841_ptp_set_target(struct kszphy_ptp_priv *ptp_priv, u8 event,
4528 s64 sec, u32 nsec)
4529 {
4530 struct phy_device *phydev = ptp_priv->phydev;
4531 int ret;
4532
4533 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_HI(event),
4534 upper_16_bits(sec));
4535 if (ret)
4536 return ret;
4537
4538 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_LO(event),
4539 lower_16_bits(sec));
4540 if (ret)
4541 return ret;
4542
4543 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_HI(event) & 0x3fff,
4544 upper_16_bits(nsec));
4545 if (ret)
4546 return ret;
4547
4548 return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_LO(event),
4549 lower_16_bits(nsec));
4550 }
4551
4552 #define LAN8841_BUFFER_TIME 2
4553
lan8841_ptp_update_target(struct kszphy_ptp_priv * ptp_priv,const struct timespec64 * ts)4554 static int lan8841_ptp_update_target(struct kszphy_ptp_priv *ptp_priv,
4555 const struct timespec64 *ts)
4556 {
4557 return lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A,
4558 ts->tv_sec + LAN8841_BUFFER_TIME, 0);
4559 }
4560
4561 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event) ((event) == LAN8841_EVENT_A ? 282 : 292)
4562 #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event) ((event) == LAN8841_EVENT_A ? 283 : 293)
4563 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event) ((event) == LAN8841_EVENT_A ? 284 : 294)
4564 #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event) ((event) == LAN8841_EVENT_A ? 285 : 295)
4565
lan8841_ptp_set_reload(struct kszphy_ptp_priv * ptp_priv,u8 event,s64 sec,u32 nsec)4566 static int lan8841_ptp_set_reload(struct kszphy_ptp_priv *ptp_priv, u8 event,
4567 s64 sec, u32 nsec)
4568 {
4569 struct phy_device *phydev = ptp_priv->phydev;
4570 int ret;
4571
4572 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event),
4573 upper_16_bits(sec));
4574 if (ret)
4575 return ret;
4576
4577 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event),
4578 lower_16_bits(sec));
4579 if (ret)
4580 return ret;
4581
4582 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event) & 0x3fff,
4583 upper_16_bits(nsec));
4584 if (ret)
4585 return ret;
4586
4587 return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event),
4588 lower_16_bits(nsec));
4589 }
4590
4591 #define LAN8841_PTP_LTC_SET_SEC_HI 262
4592 #define LAN8841_PTP_LTC_SET_SEC_MID 263
4593 #define LAN8841_PTP_LTC_SET_SEC_LO 264
4594 #define LAN8841_PTP_LTC_SET_NS_HI 265
4595 #define LAN8841_PTP_LTC_SET_NS_LO 266
4596 #define LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD BIT(4)
4597
lan8841_ptp_settime64(struct ptp_clock_info * ptp,const struct timespec64 * ts)4598 static int lan8841_ptp_settime64(struct ptp_clock_info *ptp,
4599 const struct timespec64 *ts)
4600 {
4601 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4602 ptp_clock_info);
4603 struct phy_device *phydev = ptp_priv->phydev;
4604 unsigned long flags;
4605 int ret;
4606
4607 /* Set the value to be stored */
4608 mutex_lock(&ptp_priv->ptp_lock);
4609 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_LO, lower_16_bits(ts->tv_sec));
4610 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_MID, upper_16_bits(ts->tv_sec));
4611 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_HI, upper_32_bits(ts->tv_sec) & 0xffff);
4612 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_LO, lower_16_bits(ts->tv_nsec));
4613 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_HI, upper_16_bits(ts->tv_nsec) & 0x3fff);
4614
4615 /* Set the command to load the LTC */
4616 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
4617 LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD);
4618 ret = lan8841_ptp_update_target(ptp_priv, ts);
4619 mutex_unlock(&ptp_priv->ptp_lock);
4620
4621 spin_lock_irqsave(&ptp_priv->seconds_lock, flags);
4622 ptp_priv->seconds = ts->tv_sec;
4623 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags);
4624
4625 return ret;
4626 }
4627
4628 #define LAN8841_PTP_LTC_RD_SEC_HI 358
4629 #define LAN8841_PTP_LTC_RD_SEC_MID 359
4630 #define LAN8841_PTP_LTC_RD_SEC_LO 360
4631 #define LAN8841_PTP_LTC_RD_NS_HI 361
4632 #define LAN8841_PTP_LTC_RD_NS_LO 362
4633 #define LAN8841_PTP_CMD_CTL_PTP_LTC_READ BIT(3)
4634
lan8841_ptp_gettime64(struct ptp_clock_info * ptp,struct timespec64 * ts)4635 static int lan8841_ptp_gettime64(struct ptp_clock_info *ptp,
4636 struct timespec64 *ts)
4637 {
4638 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4639 ptp_clock_info);
4640 struct phy_device *phydev = ptp_priv->phydev;
4641 time64_t s;
4642 s64 ns;
4643
4644 mutex_lock(&ptp_priv->ptp_lock);
4645 /* Issue the command to read the LTC */
4646 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
4647 LAN8841_PTP_CMD_CTL_PTP_LTC_READ);
4648
4649 /* Read the LTC */
4650 s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI);
4651 s <<= 16;
4652 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID);
4653 s <<= 16;
4654 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO);
4655
4656 ns = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_HI) & 0x3fff;
4657 ns <<= 16;
4658 ns |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_LO);
4659 mutex_unlock(&ptp_priv->ptp_lock);
4660
4661 set_normalized_timespec64(ts, s, ns);
4662 return 0;
4663 }
4664
lan8841_ptp_getseconds(struct ptp_clock_info * ptp,struct timespec64 * ts)4665 static void lan8841_ptp_getseconds(struct ptp_clock_info *ptp,
4666 struct timespec64 *ts)
4667 {
4668 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4669 ptp_clock_info);
4670 struct phy_device *phydev = ptp_priv->phydev;
4671 time64_t s;
4672
4673 mutex_lock(&ptp_priv->ptp_lock);
4674 /* Issue the command to read the LTC */
4675 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
4676 LAN8841_PTP_CMD_CTL_PTP_LTC_READ);
4677
4678 /* Read the LTC */
4679 s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI);
4680 s <<= 16;
4681 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID);
4682 s <<= 16;
4683 s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO);
4684 mutex_unlock(&ptp_priv->ptp_lock);
4685
4686 set_normalized_timespec64(ts, s, 0);
4687 }
4688
4689 #define LAN8841_PTP_LTC_STEP_ADJ_LO 276
4690 #define LAN8841_PTP_LTC_STEP_ADJ_HI 275
4691 #define LAN8841_PTP_LTC_STEP_ADJ_DIR BIT(15)
4692 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS BIT(5)
4693 #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS BIT(6)
4694
lan8841_ptp_adjtime(struct ptp_clock_info * ptp,s64 delta)4695 static int lan8841_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
4696 {
4697 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4698 ptp_clock_info);
4699 struct phy_device *phydev = ptp_priv->phydev;
4700 struct timespec64 ts;
4701 bool add = true;
4702 u32 nsec;
4703 s32 sec;
4704 int ret;
4705
4706 /* The HW allows up to 15 sec to adjust the time, but here we limit to
4707 * 10 sec the adjustment. The reason is, in case the adjustment is 14
4708 * sec and 999999999 nsec, then we add 8ns to compansate the actual
4709 * increment so the value can be bigger than 15 sec. Therefore limit the
4710 * possible adjustments so we will not have these corner cases
4711 */
4712 if (delta > 10000000000LL || delta < -10000000000LL) {
4713 /* The timeadjustment is too big, so fall back using set time */
4714 u64 now;
4715
4716 ptp->gettime64(ptp, &ts);
4717
4718 now = ktime_to_ns(timespec64_to_ktime(ts));
4719 ts = ns_to_timespec64(now + delta);
4720
4721 ptp->settime64(ptp, &ts);
4722 return 0;
4723 }
4724
4725 sec = div_u64_rem(delta < 0 ? -delta : delta, NSEC_PER_SEC, &nsec);
4726 if (delta < 0 && nsec != 0) {
4727 /* It is not allowed to adjust low the nsec part, therefore
4728 * subtract more from second part and add to nanosecond such
4729 * that would roll over, so the second part will increase
4730 */
4731 sec--;
4732 nsec = NSEC_PER_SEC - nsec;
4733 }
4734
4735 /* Calculate the adjustments and the direction */
4736 if (delta < 0)
4737 add = false;
4738
4739 if (nsec > 0)
4740 /* add 8 ns to cover the likely normal increment */
4741 nsec += 8;
4742
4743 if (nsec >= NSEC_PER_SEC) {
4744 /* carry into seconds */
4745 sec++;
4746 nsec -= NSEC_PER_SEC;
4747 }
4748
4749 mutex_lock(&ptp_priv->ptp_lock);
4750 if (sec) {
4751 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO, sec);
4752 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI,
4753 add ? LAN8841_PTP_LTC_STEP_ADJ_DIR : 0);
4754 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
4755 LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS);
4756 }
4757
4758 if (nsec) {
4759 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO,
4760 nsec & 0xffff);
4761 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI,
4762 (nsec >> 16) & 0x3fff);
4763 phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL,
4764 LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS);
4765 }
4766 mutex_unlock(&ptp_priv->ptp_lock);
4767
4768 /* Update the target clock */
4769 ptp->gettime64(ptp, &ts);
4770 mutex_lock(&ptp_priv->ptp_lock);
4771 ret = lan8841_ptp_update_target(ptp_priv, &ts);
4772 mutex_unlock(&ptp_priv->ptp_lock);
4773
4774 return ret;
4775 }
4776
4777 #define LAN8841_PTP_LTC_RATE_ADJ_HI 269
4778 #define LAN8841_PTP_LTC_RATE_ADJ_HI_DIR BIT(15)
4779 #define LAN8841_PTP_LTC_RATE_ADJ_LO 270
4780
lan8841_ptp_adjfine(struct ptp_clock_info * ptp,long scaled_ppm)4781 static int lan8841_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
4782 {
4783 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4784 ptp_clock_info);
4785 struct phy_device *phydev = ptp_priv->phydev;
4786 bool faster = true;
4787 u32 rate;
4788
4789 if (!scaled_ppm)
4790 return 0;
4791
4792 if (scaled_ppm < 0) {
4793 scaled_ppm = -scaled_ppm;
4794 faster = false;
4795 }
4796
4797 rate = LAN8841_1PPM_FORMAT * (upper_16_bits(scaled_ppm));
4798 rate += (LAN8841_1PPM_FORMAT * (lower_16_bits(scaled_ppm))) >> 16;
4799
4800 mutex_lock(&ptp_priv->ptp_lock);
4801 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_HI,
4802 faster ? LAN8841_PTP_LTC_RATE_ADJ_HI_DIR | (upper_16_bits(rate) & 0x3fff)
4803 : upper_16_bits(rate) & 0x3fff);
4804 phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_LO, lower_16_bits(rate));
4805 mutex_unlock(&ptp_priv->ptp_lock);
4806
4807 return 0;
4808 }
4809
lan8841_ptp_verify(struct ptp_clock_info * ptp,unsigned int pin,enum ptp_pin_function func,unsigned int chan)4810 static int lan8841_ptp_verify(struct ptp_clock_info *ptp, unsigned int pin,
4811 enum ptp_pin_function func, unsigned int chan)
4812 {
4813 switch (func) {
4814 case PTP_PF_NONE:
4815 case PTP_PF_PEROUT:
4816 case PTP_PF_EXTTS:
4817 break;
4818 default:
4819 return -1;
4820 }
4821
4822 return 0;
4823 }
4824
4825 #define LAN8841_PTP_GPIO_NUM 10
4826 #define LAN8841_GPIO_EN 128
4827 #define LAN8841_GPIO_DIR 129
4828 #define LAN8841_GPIO_BUF 130
4829
lan8841_ptp_perout_off(struct kszphy_ptp_priv * ptp_priv,int pin)4830 static int lan8841_ptp_perout_off(struct kszphy_ptp_priv *ptp_priv, int pin)
4831 {
4832 struct phy_device *phydev = ptp_priv->phydev;
4833 int ret;
4834
4835 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
4836 if (ret)
4837 return ret;
4838
4839 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin));
4840 if (ret)
4841 return ret;
4842
4843 return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
4844 }
4845
lan8841_ptp_perout_on(struct kszphy_ptp_priv * ptp_priv,int pin)4846 static int lan8841_ptp_perout_on(struct kszphy_ptp_priv *ptp_priv, int pin)
4847 {
4848 struct phy_device *phydev = ptp_priv->phydev;
4849 int ret;
4850
4851 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
4852 if (ret)
4853 return ret;
4854
4855 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin));
4856 if (ret)
4857 return ret;
4858
4859 return phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
4860 }
4861
4862 #define LAN8841_GPIO_DATA_SEL1 131
4863 #define LAN8841_GPIO_DATA_SEL2 132
4864 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK GENMASK(2, 0)
4865 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A 1
4866 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B 2
4867 #define LAN8841_PTP_GENERAL_CONFIG 257
4868 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A BIT(1)
4869 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B BIT(3)
4870 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK GENMASK(7, 4)
4871 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK GENMASK(11, 8)
4872 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A 4
4873 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B 7
4874
lan8841_ptp_remove_event(struct kszphy_ptp_priv * ptp_priv,int pin,u8 event)4875 static int lan8841_ptp_remove_event(struct kszphy_ptp_priv *ptp_priv, int pin,
4876 u8 event)
4877 {
4878 struct phy_device *phydev = ptp_priv->phydev;
4879 u16 tmp;
4880 int ret;
4881
4882 /* Now remove pin from the event. GPIO_DATA_SEL1 contains the GPIO
4883 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore
4884 * depending on the pin, it requires to read a different register
4885 */
4886 if (pin < 5) {
4887 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * pin);
4888 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1, tmp);
4889 } else {
4890 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * (pin - 5));
4891 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2, tmp);
4892 }
4893 if (ret)
4894 return ret;
4895
4896 /* Disable the event */
4897 if (event == LAN8841_EVENT_A)
4898 tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A |
4899 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK;
4900 else
4901 tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B |
4902 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK;
4903 return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, tmp);
4904 }
4905
lan8841_ptp_enable_event(struct kszphy_ptp_priv * ptp_priv,int pin,u8 event,int pulse_width)4906 static int lan8841_ptp_enable_event(struct kszphy_ptp_priv *ptp_priv, int pin,
4907 u8 event, int pulse_width)
4908 {
4909 struct phy_device *phydev = ptp_priv->phydev;
4910 u16 tmp;
4911 int ret;
4912
4913 /* Enable the event */
4914 if (event == LAN8841_EVENT_A)
4915 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG,
4916 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A |
4917 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK,
4918 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A |
4919 pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A);
4920 else
4921 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG,
4922 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B |
4923 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK,
4924 LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B |
4925 pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B);
4926 if (ret)
4927 return ret;
4928
4929 /* Now connect the pin to the event. GPIO_DATA_SEL1 contains the GPIO
4930 * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore
4931 * depending on the pin, it requires to read a different register
4932 */
4933 if (event == LAN8841_EVENT_A)
4934 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A;
4935 else
4936 tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B;
4937
4938 if (pin < 5)
4939 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1,
4940 tmp << (3 * pin));
4941 else
4942 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2,
4943 tmp << (3 * (pin - 5)));
4944
4945 return ret;
4946 }
4947
4948 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS 13
4949 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS 12
4950 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS 11
4951 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS 10
4952 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS 9
4953 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS 8
4954 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US 7
4955 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US 6
4956 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US 5
4957 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US 4
4958 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US 3
4959 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US 2
4960 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS 1
4961 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS 0
4962
lan8841_ptp_perout(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)4963 static int lan8841_ptp_perout(struct ptp_clock_info *ptp,
4964 struct ptp_clock_request *rq, int on)
4965 {
4966 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
4967 ptp_clock_info);
4968 struct phy_device *phydev = ptp_priv->phydev;
4969 struct timespec64 ts_on, ts_period;
4970 s64 on_nsec, period_nsec;
4971 int pulse_width;
4972 int pin;
4973 int ret;
4974
4975 if (rq->perout.flags & ~PTP_PEROUT_DUTY_CYCLE)
4976 return -EOPNOTSUPP;
4977
4978 pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_PEROUT, rq->perout.index);
4979 if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM)
4980 return -EINVAL;
4981
4982 if (!on) {
4983 ret = lan8841_ptp_perout_off(ptp_priv, pin);
4984 if (ret)
4985 return ret;
4986
4987 return lan8841_ptp_remove_event(ptp_priv, LAN8841_EVENT_A, pin);
4988 }
4989
4990 ts_on.tv_sec = rq->perout.on.sec;
4991 ts_on.tv_nsec = rq->perout.on.nsec;
4992 on_nsec = timespec64_to_ns(&ts_on);
4993
4994 ts_period.tv_sec = rq->perout.period.sec;
4995 ts_period.tv_nsec = rq->perout.period.nsec;
4996 period_nsec = timespec64_to_ns(&ts_period);
4997
4998 if (period_nsec < 200) {
4999 pr_warn_ratelimited("%s: perout period too small, minimum is 200 nsec\n",
5000 phydev_name(phydev));
5001 return -EOPNOTSUPP;
5002 }
5003
5004 if (on_nsec >= period_nsec) {
5005 pr_warn_ratelimited("%s: pulse width must be smaller than period\n",
5006 phydev_name(phydev));
5007 return -EINVAL;
5008 }
5009
5010 switch (on_nsec) {
5011 case 200000000:
5012 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS;
5013 break;
5014 case 100000000:
5015 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS;
5016 break;
5017 case 50000000:
5018 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS;
5019 break;
5020 case 10000000:
5021 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS;
5022 break;
5023 case 5000000:
5024 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS;
5025 break;
5026 case 1000000:
5027 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS;
5028 break;
5029 case 500000:
5030 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US;
5031 break;
5032 case 100000:
5033 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US;
5034 break;
5035 case 50000:
5036 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US;
5037 break;
5038 case 10000:
5039 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US;
5040 break;
5041 case 5000:
5042 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US;
5043 break;
5044 case 1000:
5045 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US;
5046 break;
5047 case 500:
5048 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS;
5049 break;
5050 case 100:
5051 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS;
5052 break;
5053 default:
5054 pr_warn_ratelimited("%s: Use default duty cycle of 100ns\n",
5055 phydev_name(phydev));
5056 pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS;
5057 break;
5058 }
5059
5060 mutex_lock(&ptp_priv->ptp_lock);
5061 ret = lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A, rq->perout.start.sec,
5062 rq->perout.start.nsec);
5063 mutex_unlock(&ptp_priv->ptp_lock);
5064 if (ret)
5065 return ret;
5066
5067 ret = lan8841_ptp_set_reload(ptp_priv, LAN8841_EVENT_A, rq->perout.period.sec,
5068 rq->perout.period.nsec);
5069 if (ret)
5070 return ret;
5071
5072 ret = lan8841_ptp_enable_event(ptp_priv, pin, LAN8841_EVENT_A,
5073 pulse_width);
5074 if (ret)
5075 return ret;
5076
5077 ret = lan8841_ptp_perout_on(ptp_priv, pin);
5078 if (ret)
5079 lan8841_ptp_remove_event(ptp_priv, pin, LAN8841_EVENT_A);
5080
5081 return ret;
5082 }
5083
5084 #define LAN8841_PTP_GPIO_CAP_EN 496
5085 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(gpio) (BIT(gpio))
5086 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(gpio) (BIT(gpio) << 8)
5087 #define LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN BIT(2)
5088
lan8841_ptp_extts_on(struct kszphy_ptp_priv * ptp_priv,int pin,u32 flags)5089 static int lan8841_ptp_extts_on(struct kszphy_ptp_priv *ptp_priv, int pin,
5090 u32 flags)
5091 {
5092 struct phy_device *phydev = ptp_priv->phydev;
5093 u16 tmp = 0;
5094 int ret;
5095
5096 /* Set GPIO to be intput */
5097 ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
5098 if (ret)
5099 return ret;
5100
5101 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
5102 if (ret)
5103 return ret;
5104
5105 /* Enable capture on the edges of the pin */
5106 if (flags & PTP_RISING_EDGE)
5107 tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin);
5108 if (flags & PTP_FALLING_EDGE)
5109 tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin);
5110 ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN, tmp);
5111 if (ret)
5112 return ret;
5113
5114 /* Enable interrupt */
5115 return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
5116 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN,
5117 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN);
5118 }
5119
lan8841_ptp_extts_off(struct kszphy_ptp_priv * ptp_priv,int pin)5120 static int lan8841_ptp_extts_off(struct kszphy_ptp_priv *ptp_priv, int pin)
5121 {
5122 struct phy_device *phydev = ptp_priv->phydev;
5123 int ret;
5124
5125 /* Set GPIO to be output */
5126 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin));
5127 if (ret)
5128 return ret;
5129
5130 ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin));
5131 if (ret)
5132 return ret;
5133
5134 /* Disable capture on both of the edges */
5135 ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN,
5136 LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin) |
5137 LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin),
5138 0);
5139 if (ret)
5140 return ret;
5141
5142 /* Disable interrupt */
5143 return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN,
5144 LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN,
5145 0);
5146 }
5147
lan8841_ptp_extts(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)5148 static int lan8841_ptp_extts(struct ptp_clock_info *ptp,
5149 struct ptp_clock_request *rq, int on)
5150 {
5151 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
5152 ptp_clock_info);
5153 int pin;
5154 int ret;
5155
5156 /* Reject requests with unsupported flags */
5157 if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
5158 PTP_EXTTS_EDGES |
5159 PTP_STRICT_FLAGS))
5160 return -EOPNOTSUPP;
5161
5162 pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_EXTTS, rq->extts.index);
5163 if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM)
5164 return -EINVAL;
5165
5166 mutex_lock(&ptp_priv->ptp_lock);
5167 if (on)
5168 ret = lan8841_ptp_extts_on(ptp_priv, pin, rq->extts.flags);
5169 else
5170 ret = lan8841_ptp_extts_off(ptp_priv, pin);
5171 mutex_unlock(&ptp_priv->ptp_lock);
5172
5173 return ret;
5174 }
5175
lan8841_ptp_enable(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)5176 static int lan8841_ptp_enable(struct ptp_clock_info *ptp,
5177 struct ptp_clock_request *rq, int on)
5178 {
5179 switch (rq->type) {
5180 case PTP_CLK_REQ_EXTTS:
5181 return lan8841_ptp_extts(ptp, rq, on);
5182 case PTP_CLK_REQ_PEROUT:
5183 return lan8841_ptp_perout(ptp, rq, on);
5184 default:
5185 return -EOPNOTSUPP;
5186 }
5187
5188 return 0;
5189 }
5190
lan8841_ptp_do_aux_work(struct ptp_clock_info * ptp)5191 static long lan8841_ptp_do_aux_work(struct ptp_clock_info *ptp)
5192 {
5193 struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv,
5194 ptp_clock_info);
5195 struct timespec64 ts;
5196 unsigned long flags;
5197
5198 lan8841_ptp_getseconds(&ptp_priv->ptp_clock_info, &ts);
5199
5200 spin_lock_irqsave(&ptp_priv->seconds_lock, flags);
5201 ptp_priv->seconds = ts.tv_sec;
5202 spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags);
5203
5204 return nsecs_to_jiffies(LAN8841_GET_SEC_LTC_DELAY);
5205 }
5206
5207 static struct ptp_clock_info lan8841_ptp_clock_info = {
5208 .owner = THIS_MODULE,
5209 .name = "lan8841 ptp",
5210 .max_adj = 31249999,
5211 .gettime64 = lan8841_ptp_gettime64,
5212 .settime64 = lan8841_ptp_settime64,
5213 .adjtime = lan8841_ptp_adjtime,
5214 .adjfine = lan8841_ptp_adjfine,
5215 .verify = lan8841_ptp_verify,
5216 .enable = lan8841_ptp_enable,
5217 .do_aux_work = lan8841_ptp_do_aux_work,
5218 .n_per_out = LAN8841_PTP_GPIO_NUM,
5219 .n_ext_ts = LAN8841_PTP_GPIO_NUM,
5220 .n_pins = LAN8841_PTP_GPIO_NUM,
5221 };
5222
5223 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER 3
5224 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN BIT(0)
5225
lan8841_probe(struct phy_device * phydev)5226 static int lan8841_probe(struct phy_device *phydev)
5227 {
5228 struct kszphy_ptp_priv *ptp_priv;
5229 struct kszphy_priv *priv;
5230 int err;
5231
5232 err = kszphy_probe(phydev);
5233 if (err)
5234 return err;
5235
5236 if (phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG,
5237 LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER) &
5238 LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN)
5239 phydev->interface = PHY_INTERFACE_MODE_RGMII_RXID;
5240
5241 /* Register the clock */
5242 if (!IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING))
5243 return 0;
5244
5245 priv = phydev->priv;
5246 ptp_priv = &priv->ptp_priv;
5247
5248 ptp_priv->pin_config = devm_kcalloc(&phydev->mdio.dev,
5249 LAN8841_PTP_GPIO_NUM,
5250 sizeof(*ptp_priv->pin_config),
5251 GFP_KERNEL);
5252 if (!ptp_priv->pin_config)
5253 return -ENOMEM;
5254
5255 for (int i = 0; i < LAN8841_PTP_GPIO_NUM; ++i) {
5256 struct ptp_pin_desc *p = &ptp_priv->pin_config[i];
5257
5258 snprintf(p->name, sizeof(p->name), "pin%d", i);
5259 p->index = i;
5260 p->func = PTP_PF_NONE;
5261 }
5262
5263 ptp_priv->ptp_clock_info = lan8841_ptp_clock_info;
5264 ptp_priv->ptp_clock_info.pin_config = ptp_priv->pin_config;
5265 ptp_priv->ptp_clock = ptp_clock_register(&ptp_priv->ptp_clock_info,
5266 &phydev->mdio.dev);
5267 if (IS_ERR(ptp_priv->ptp_clock)) {
5268 phydev_err(phydev, "ptp_clock_register failed: %lu\n",
5269 PTR_ERR(ptp_priv->ptp_clock));
5270 return -EINVAL;
5271 }
5272
5273 if (!ptp_priv->ptp_clock)
5274 return 0;
5275
5276 /* Initialize the SW */
5277 skb_queue_head_init(&ptp_priv->tx_queue);
5278 ptp_priv->phydev = phydev;
5279 mutex_init(&ptp_priv->ptp_lock);
5280 spin_lock_init(&ptp_priv->seconds_lock);
5281
5282 ptp_priv->mii_ts.rxtstamp = lan8841_rxtstamp;
5283 ptp_priv->mii_ts.txtstamp = lan8814_txtstamp;
5284 ptp_priv->mii_ts.hwtstamp = lan8841_hwtstamp;
5285 ptp_priv->mii_ts.ts_info = lan8841_ts_info;
5286
5287 phydev->mii_ts = &ptp_priv->mii_ts;
5288
5289 /* Timestamp selected by default to keep legacy API */
5290 phydev->default_timestamp = true;
5291
5292 return 0;
5293 }
5294
lan8841_suspend(struct phy_device * phydev)5295 static int lan8841_suspend(struct phy_device *phydev)
5296 {
5297 struct kszphy_priv *priv = phydev->priv;
5298 struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv;
5299
5300 if (ptp_priv->ptp_clock)
5301 ptp_cancel_worker_sync(ptp_priv->ptp_clock);
5302
5303 return genphy_suspend(phydev);
5304 }
5305
5306 static struct phy_driver ksphy_driver[] = {
5307 {
5308 .phy_id = PHY_ID_KS8737,
5309 .phy_id_mask = MICREL_PHY_ID_MASK,
5310 .name = "Micrel KS8737",
5311 /* PHY_BASIC_FEATURES */
5312 .driver_data = &ks8737_type,
5313 .probe = kszphy_probe,
5314 .config_init = kszphy_config_init,
5315 .config_intr = kszphy_config_intr,
5316 .handle_interrupt = kszphy_handle_interrupt,
5317 .suspend = kszphy_suspend,
5318 .resume = kszphy_resume,
5319 }, {
5320 .phy_id = PHY_ID_KSZ8021,
5321 .phy_id_mask = 0x00ffffff,
5322 .name = "Micrel KSZ8021 or KSZ8031",
5323 /* PHY_BASIC_FEATURES */
5324 .driver_data = &ksz8021_type,
5325 .probe = kszphy_probe,
5326 .config_init = kszphy_config_init,
5327 .config_intr = kszphy_config_intr,
5328 .handle_interrupt = kszphy_handle_interrupt,
5329 .get_sset_count = kszphy_get_sset_count,
5330 .get_strings = kszphy_get_strings,
5331 .get_stats = kszphy_get_stats,
5332 .suspend = kszphy_suspend,
5333 .resume = kszphy_resume,
5334 }, {
5335 .phy_id = PHY_ID_KSZ8031,
5336 .phy_id_mask = 0x00ffffff,
5337 .name = "Micrel KSZ8031",
5338 /* PHY_BASIC_FEATURES */
5339 .driver_data = &ksz8021_type,
5340 .probe = kszphy_probe,
5341 .config_init = kszphy_config_init,
5342 .config_intr = kszphy_config_intr,
5343 .handle_interrupt = kszphy_handle_interrupt,
5344 .get_sset_count = kszphy_get_sset_count,
5345 .get_strings = kszphy_get_strings,
5346 .get_stats = kszphy_get_stats,
5347 .suspend = kszphy_suspend,
5348 .resume = kszphy_resume,
5349 }, {
5350 .phy_id = PHY_ID_KSZ8041,
5351 .phy_id_mask = MICREL_PHY_ID_MASK,
5352 .name = "Micrel KSZ8041",
5353 /* PHY_BASIC_FEATURES */
5354 .driver_data = &ksz8041_type,
5355 .probe = kszphy_probe,
5356 .config_init = ksz8041_config_init,
5357 .config_aneg = ksz8041_config_aneg,
5358 .config_intr = kszphy_config_intr,
5359 .handle_interrupt = kszphy_handle_interrupt,
5360 .get_sset_count = kszphy_get_sset_count,
5361 .get_strings = kszphy_get_strings,
5362 .get_stats = kszphy_get_stats,
5363 /* No suspend/resume callbacks because of errata DS80000700A,
5364 * receiver error following software power down.
5365 */
5366 }, {
5367 .phy_id = PHY_ID_KSZ8041RNLI,
5368 .phy_id_mask = MICREL_PHY_ID_MASK,
5369 .name = "Micrel KSZ8041RNLI",
5370 /* PHY_BASIC_FEATURES */
5371 .driver_data = &ksz8041_type,
5372 .probe = kszphy_probe,
5373 .config_init = kszphy_config_init,
5374 .config_intr = kszphy_config_intr,
5375 .handle_interrupt = kszphy_handle_interrupt,
5376 .get_sset_count = kszphy_get_sset_count,
5377 .get_strings = kszphy_get_strings,
5378 .get_stats = kszphy_get_stats,
5379 .suspend = kszphy_suspend,
5380 .resume = kszphy_resume,
5381 }, {
5382 .name = "Micrel KSZ8051",
5383 /* PHY_BASIC_FEATURES */
5384 .driver_data = &ksz8051_type,
5385 .probe = kszphy_probe,
5386 .config_init = kszphy_config_init,
5387 .config_intr = kszphy_config_intr,
5388 .handle_interrupt = kszphy_handle_interrupt,
5389 .get_sset_count = kszphy_get_sset_count,
5390 .get_strings = kszphy_get_strings,
5391 .get_stats = kszphy_get_stats,
5392 .match_phy_device = ksz8051_match_phy_device,
5393 .suspend = kszphy_suspend,
5394 .resume = kszphy_resume,
5395 }, {
5396 .phy_id = PHY_ID_KSZ8001,
5397 .name = "Micrel KSZ8001 or KS8721",
5398 .phy_id_mask = 0x00fffffc,
5399 /* PHY_BASIC_FEATURES */
5400 .driver_data = &ksz8041_type,
5401 .probe = kszphy_probe,
5402 .config_init = kszphy_config_init,
5403 .config_intr = kszphy_config_intr,
5404 .handle_interrupt = kszphy_handle_interrupt,
5405 .get_sset_count = kszphy_get_sset_count,
5406 .get_strings = kszphy_get_strings,
5407 .get_stats = kszphy_get_stats,
5408 .suspend = kszphy_suspend,
5409 .resume = kszphy_resume,
5410 }, {
5411 .phy_id = PHY_ID_KSZ8081,
5412 .name = "Micrel KSZ8081 or KSZ8091",
5413 .phy_id_mask = MICREL_PHY_ID_MASK,
5414 .flags = PHY_POLL_CABLE_TEST,
5415 /* PHY_BASIC_FEATURES */
5416 .driver_data = &ksz8081_type,
5417 .probe = kszphy_probe,
5418 .config_init = ksz8081_config_init,
5419 .soft_reset = genphy_soft_reset,
5420 .config_aneg = ksz8081_config_aneg,
5421 .read_status = ksz8081_read_status,
5422 .config_intr = kszphy_config_intr,
5423 .handle_interrupt = kszphy_handle_interrupt,
5424 .get_sset_count = kszphy_get_sset_count,
5425 .get_strings = kszphy_get_strings,
5426 .get_stats = kszphy_get_stats,
5427 .suspend = kszphy_suspend,
5428 .resume = kszphy_resume,
5429 .cable_test_start = ksz886x_cable_test_start,
5430 .cable_test_get_status = ksz886x_cable_test_get_status,
5431 }, {
5432 .phy_id = PHY_ID_KSZ8061,
5433 .name = "Micrel KSZ8061",
5434 .phy_id_mask = MICREL_PHY_ID_MASK,
5435 /* PHY_BASIC_FEATURES */
5436 .probe = kszphy_probe,
5437 .config_init = ksz8061_config_init,
5438 .soft_reset = genphy_soft_reset,
5439 .config_intr = kszphy_config_intr,
5440 .handle_interrupt = kszphy_handle_interrupt,
5441 .suspend = kszphy_suspend,
5442 .resume = ksz8061_resume,
5443 }, {
5444 .phy_id = PHY_ID_KSZ9021,
5445 .phy_id_mask = 0x000ffffe,
5446 .name = "Micrel KSZ9021 Gigabit PHY",
5447 /* PHY_GBIT_FEATURES */
5448 .driver_data = &ksz9021_type,
5449 .probe = kszphy_probe,
5450 .get_features = ksz9031_get_features,
5451 .config_init = ksz9021_config_init,
5452 .config_intr = kszphy_config_intr,
5453 .handle_interrupt = kszphy_handle_interrupt,
5454 .get_sset_count = kszphy_get_sset_count,
5455 .get_strings = kszphy_get_strings,
5456 .get_stats = kszphy_get_stats,
5457 .suspend = kszphy_suspend,
5458 .resume = kszphy_resume,
5459 .read_mmd = genphy_read_mmd_unsupported,
5460 .write_mmd = genphy_write_mmd_unsupported,
5461 }, {
5462 .phy_id = PHY_ID_KSZ9031,
5463 .phy_id_mask = MICREL_PHY_ID_MASK,
5464 .name = "Micrel KSZ9031 Gigabit PHY",
5465 .flags = PHY_POLL_CABLE_TEST,
5466 .driver_data = &ksz9021_type,
5467 .probe = kszphy_probe,
5468 .get_features = ksz9031_get_features,
5469 .config_init = ksz9031_config_init,
5470 .soft_reset = genphy_soft_reset,
5471 .read_status = ksz9031_read_status,
5472 .config_intr = kszphy_config_intr,
5473 .handle_interrupt = kszphy_handle_interrupt,
5474 .get_sset_count = kszphy_get_sset_count,
5475 .get_strings = kszphy_get_strings,
5476 .get_stats = kszphy_get_stats,
5477 .suspend = kszphy_suspend,
5478 .resume = kszphy_resume,
5479 .cable_test_start = ksz9x31_cable_test_start,
5480 .cable_test_get_status = ksz9x31_cable_test_get_status,
5481 }, {
5482 .phy_id = PHY_ID_LAN8814,
5483 .phy_id_mask = MICREL_PHY_ID_MASK,
5484 .name = "Microchip INDY Gigabit Quad PHY",
5485 .flags = PHY_POLL_CABLE_TEST,
5486 .config_init = lan8814_config_init,
5487 .driver_data = &lan8814_type,
5488 .probe = lan8814_probe,
5489 .soft_reset = genphy_soft_reset,
5490 .read_status = ksz9031_read_status,
5491 .get_sset_count = kszphy_get_sset_count,
5492 .get_strings = kszphy_get_strings,
5493 .get_stats = kszphy_get_stats,
5494 .suspend = genphy_suspend,
5495 .resume = kszphy_resume,
5496 .config_intr = lan8814_config_intr,
5497 .handle_interrupt = lan8814_handle_interrupt,
5498 .cable_test_start = lan8814_cable_test_start,
5499 .cable_test_get_status = ksz886x_cable_test_get_status,
5500 }, {
5501 .phy_id = PHY_ID_LAN8804,
5502 .phy_id_mask = MICREL_PHY_ID_MASK,
5503 .name = "Microchip LAN966X Gigabit PHY",
5504 .config_init = lan8804_config_init,
5505 .driver_data = &ksz9021_type,
5506 .probe = kszphy_probe,
5507 .soft_reset = genphy_soft_reset,
5508 .read_status = ksz9031_read_status,
5509 .get_sset_count = kszphy_get_sset_count,
5510 .get_strings = kszphy_get_strings,
5511 .get_stats = kszphy_get_stats,
5512 .suspend = genphy_suspend,
5513 .resume = kszphy_resume,
5514 .config_intr = lan8804_config_intr,
5515 .handle_interrupt = lan8804_handle_interrupt,
5516 }, {
5517 .phy_id = PHY_ID_LAN8841,
5518 .phy_id_mask = MICREL_PHY_ID_MASK,
5519 .name = "Microchip LAN8841 Gigabit PHY",
5520 .flags = PHY_POLL_CABLE_TEST,
5521 .driver_data = &lan8841_type,
5522 .config_init = lan8841_config_init,
5523 .probe = lan8841_probe,
5524 .soft_reset = genphy_soft_reset,
5525 .config_intr = lan8841_config_intr,
5526 .handle_interrupt = lan8841_handle_interrupt,
5527 .get_sset_count = kszphy_get_sset_count,
5528 .get_strings = kszphy_get_strings,
5529 .get_stats = kszphy_get_stats,
5530 .suspend = lan8841_suspend,
5531 .resume = genphy_resume,
5532 .cable_test_start = lan8814_cable_test_start,
5533 .cable_test_get_status = ksz886x_cable_test_get_status,
5534 }, {
5535 .phy_id = PHY_ID_KSZ9131,
5536 .phy_id_mask = MICREL_PHY_ID_MASK,
5537 .name = "Microchip KSZ9131 Gigabit PHY",
5538 /* PHY_GBIT_FEATURES */
5539 .flags = PHY_POLL_CABLE_TEST,
5540 .driver_data = &ksz9131_type,
5541 .probe = kszphy_probe,
5542 .soft_reset = genphy_soft_reset,
5543 .config_init = ksz9131_config_init,
5544 .config_intr = kszphy_config_intr,
5545 .config_aneg = ksz9131_config_aneg,
5546 .read_status = ksz9131_read_status,
5547 .handle_interrupt = kszphy_handle_interrupt,
5548 .get_sset_count = kszphy_get_sset_count,
5549 .get_strings = kszphy_get_strings,
5550 .get_stats = kszphy_get_stats,
5551 .suspend = kszphy_suspend,
5552 .resume = kszphy_resume,
5553 .cable_test_start = ksz9x31_cable_test_start,
5554 .cable_test_get_status = ksz9x31_cable_test_get_status,
5555 .get_features = ksz9477_get_features,
5556 }, {
5557 .phy_id = PHY_ID_KSZ8873MLL,
5558 .phy_id_mask = MICREL_PHY_ID_MASK,
5559 .name = "Micrel KSZ8873MLL Switch",
5560 /* PHY_BASIC_FEATURES */
5561 .config_init = kszphy_config_init,
5562 .config_aneg = ksz8873mll_config_aneg,
5563 .read_status = ksz8873mll_read_status,
5564 .suspend = genphy_suspend,
5565 .resume = genphy_resume,
5566 }, {
5567 .phy_id = PHY_ID_KSZ886X,
5568 .phy_id_mask = MICREL_PHY_ID_MASK,
5569 .name = "Micrel KSZ8851 Ethernet MAC or KSZ886X Switch",
5570 .driver_data = &ksz886x_type,
5571 /* PHY_BASIC_FEATURES */
5572 .flags = PHY_POLL_CABLE_TEST,
5573 .config_init = kszphy_config_init,
5574 .config_aneg = ksz886x_config_aneg,
5575 .read_status = ksz886x_read_status,
5576 .suspend = genphy_suspend,
5577 .resume = genphy_resume,
5578 .cable_test_start = ksz886x_cable_test_start,
5579 .cable_test_get_status = ksz886x_cable_test_get_status,
5580 }, {
5581 .name = "Micrel KSZ87XX Switch",
5582 /* PHY_BASIC_FEATURES */
5583 .config_init = kszphy_config_init,
5584 .match_phy_device = ksz8795_match_phy_device,
5585 .suspend = genphy_suspend,
5586 .resume = genphy_resume,
5587 }, {
5588 .phy_id = PHY_ID_KSZ9477,
5589 .phy_id_mask = MICREL_PHY_ID_MASK,
5590 .name = "Microchip KSZ9477",
5591 /* PHY_GBIT_FEATURES */
5592 .config_init = ksz9477_config_init,
5593 .config_intr = kszphy_config_intr,
5594 .handle_interrupt = kszphy_handle_interrupt,
5595 .suspend = genphy_suspend,
5596 .resume = ksz9477_resume,
5597 .get_features = ksz9477_get_features,
5598 } };
5599
5600 module_phy_driver(ksphy_driver);
5601
5602 MODULE_DESCRIPTION("Micrel PHY driver");
5603 MODULE_AUTHOR("David J. Choi");
5604 MODULE_LICENSE("GPL");
5605
5606 static struct mdio_device_id __maybe_unused micrel_tbl[] = {
5607 { PHY_ID_KSZ9021, 0x000ffffe },
5608 { PHY_ID_KSZ9031, MICREL_PHY_ID_MASK },
5609 { PHY_ID_KSZ9131, MICREL_PHY_ID_MASK },
5610 { PHY_ID_KSZ8001, 0x00fffffc },
5611 { PHY_ID_KS8737, MICREL_PHY_ID_MASK },
5612 { PHY_ID_KSZ8021, 0x00ffffff },
5613 { PHY_ID_KSZ8031, 0x00ffffff },
5614 { PHY_ID_KSZ8041, MICREL_PHY_ID_MASK },
5615 { PHY_ID_KSZ8051, MICREL_PHY_ID_MASK },
5616 { PHY_ID_KSZ8061, MICREL_PHY_ID_MASK },
5617 { PHY_ID_KSZ8081, MICREL_PHY_ID_MASK },
5618 { PHY_ID_KSZ8873MLL, MICREL_PHY_ID_MASK },
5619 { PHY_ID_KSZ886X, MICREL_PHY_ID_MASK },
5620 { PHY_ID_KSZ9477, MICREL_PHY_ID_MASK },
5621 { PHY_ID_LAN8814, MICREL_PHY_ID_MASK },
5622 { PHY_ID_LAN8804, MICREL_PHY_ID_MASK },
5623 { PHY_ID_LAN8841, MICREL_PHY_ID_MASK },
5624 { }
5625 };
5626
5627 MODULE_DEVICE_TABLE(mdio, micrel_tbl);
5628