xref: /linux/include/linux/kvm_host.h (revision b1195183ed42f1522fae3fe44ebee3af437aa000)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 #ifndef __KVM_HOST_H
3 #define __KVM_HOST_H
4 
5 #include <linux/entry-virt.h>
6 #include <linux/types.h>
7 #include <linux/hardirq.h>
8 #include <linux/list.h>
9 #include <linux/mutex.h>
10 #include <linux/spinlock.h>
11 #include <linux/signal.h>
12 #include <linux/sched.h>
13 #include <linux/sched/stat.h>
14 #include <linux/bug.h>
15 #include <linux/minmax.h>
16 #include <linux/mm.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/preempt.h>
19 #include <linux/msi.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/rcupdate.h>
23 #include <linux/ratelimit.h>
24 #include <linux/err.h>
25 #include <linux/irqflags.h>
26 #include <linux/context_tracking.h>
27 #include <linux/irqbypass.h>
28 #include <linux/rcuwait.h>
29 #include <linux/refcount.h>
30 #include <linux/nospec.h>
31 #include <linux/notifier.h>
32 #include <linux/ftrace.h>
33 #include <linux/hashtable.h>
34 #include <linux/instrumentation.h>
35 #include <linux/interval_tree.h>
36 #include <linux/rbtree.h>
37 #include <linux/xarray.h>
38 #include <asm/signal.h>
39 
40 #include <linux/kvm.h>
41 #include <linux/kvm_para.h>
42 
43 #include <linux/kvm_types.h>
44 
45 #include <asm/kvm_host.h>
46 #include <linux/kvm_dirty_ring.h>
47 
48 #ifndef KVM_MAX_VCPU_IDS
49 #define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS
50 #endif
51 
52 /*
53  * The bit 16 ~ bit 31 of kvm_userspace_memory_region::flags are internally
54  * used in kvm, other bits are visible for userspace which are defined in
55  * include/uapi/linux/kvm.h.
56  */
57 #define KVM_MEMSLOT_INVALID			(1UL << 16)
58 #define KVM_MEMSLOT_GMEM_ONLY			(1UL << 17)
59 
60 /*
61  * Bit 63 of the memslot generation number is an "update in-progress flag",
62  * e.g. is temporarily set for the duration of kvm_swap_active_memslots().
63  * This flag effectively creates a unique generation number that is used to
64  * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
65  * i.e. may (or may not) have come from the previous memslots generation.
66  *
67  * This is necessary because the actual memslots update is not atomic with
68  * respect to the generation number update.  Updating the generation number
69  * first would allow a vCPU to cache a spte from the old memslots using the
70  * new generation number, and updating the generation number after switching
71  * to the new memslots would allow cache hits using the old generation number
72  * to reference the defunct memslots.
73  *
74  * This mechanism is used to prevent getting hits in KVM's caches while a
75  * memslot update is in-progress, and to prevent cache hits *after* updating
76  * the actual generation number against accesses that were inserted into the
77  * cache *before* the memslots were updated.
78  */
79 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS	BIT_ULL(63)
80 
81 /* Two fragments for cross MMIO pages. */
82 #define KVM_MAX_MMIO_FRAGMENTS	2
83 
84 #ifndef KVM_MAX_NR_ADDRESS_SPACES
85 #define KVM_MAX_NR_ADDRESS_SPACES	1
86 #endif
87 
88 /*
89  * For the normal pfn, the highest 12 bits should be zero,
90  * so we can mask bit 62 ~ bit 52  to indicate the error pfn,
91  * mask bit 63 to indicate the noslot pfn.
92  */
93 #define KVM_PFN_ERR_MASK	(0x7ffULL << 52)
94 #define KVM_PFN_ERR_NOSLOT_MASK	(0xfffULL << 52)
95 #define KVM_PFN_NOSLOT		(0x1ULL << 63)
96 
97 #define KVM_PFN_ERR_FAULT	(KVM_PFN_ERR_MASK)
98 #define KVM_PFN_ERR_HWPOISON	(KVM_PFN_ERR_MASK + 1)
99 #define KVM_PFN_ERR_RO_FAULT	(KVM_PFN_ERR_MASK + 2)
100 #define KVM_PFN_ERR_SIGPENDING	(KVM_PFN_ERR_MASK + 3)
101 #define KVM_PFN_ERR_NEEDS_IO	(KVM_PFN_ERR_MASK + 4)
102 
103 /*
104  * error pfns indicate that the gfn is in slot but faild to
105  * translate it to pfn on host.
106  */
107 static inline bool is_error_pfn(kvm_pfn_t pfn)
108 {
109 	return !!(pfn & KVM_PFN_ERR_MASK);
110 }
111 
112 /*
113  * KVM_PFN_ERR_SIGPENDING indicates that fetching the PFN was interrupted
114  * by a pending signal.  Note, the signal may or may not be fatal.
115  */
116 static inline bool is_sigpending_pfn(kvm_pfn_t pfn)
117 {
118 	return pfn == KVM_PFN_ERR_SIGPENDING;
119 }
120 
121 /*
122  * error_noslot pfns indicate that the gfn can not be
123  * translated to pfn - it is not in slot or failed to
124  * translate it to pfn.
125  */
126 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
127 {
128 	return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
129 }
130 
131 /* noslot pfn indicates that the gfn is not in slot. */
132 static inline bool is_noslot_pfn(kvm_pfn_t pfn)
133 {
134 	return pfn == KVM_PFN_NOSLOT;
135 }
136 
137 /*
138  * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
139  * provide own defines and kvm_is_error_hva
140  */
141 #ifndef KVM_HVA_ERR_BAD
142 
143 #define KVM_HVA_ERR_BAD		(PAGE_OFFSET)
144 #define KVM_HVA_ERR_RO_BAD	(PAGE_OFFSET + PAGE_SIZE)
145 
146 static inline bool kvm_is_error_hva(unsigned long addr)
147 {
148 	return addr >= PAGE_OFFSET;
149 }
150 
151 #endif
152 
153 static inline bool kvm_is_error_gpa(gpa_t gpa)
154 {
155 	return gpa == INVALID_GPA;
156 }
157 
158 #define KVM_REQUEST_MASK           GENMASK(7,0)
159 #define KVM_REQUEST_NO_WAKEUP      BIT(8)
160 #define KVM_REQUEST_WAIT           BIT(9)
161 #define KVM_REQUEST_NO_ACTION      BIT(10)
162 /*
163  * Architecture-independent vcpu->requests bit members
164  * Bits 3-7 are reserved for more arch-independent bits.
165  */
166 #define KVM_REQ_TLB_FLUSH		(0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
167 #define KVM_REQ_VM_DEAD			(1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
168 #define KVM_REQ_UNBLOCK			2
169 #define KVM_REQ_DIRTY_RING_SOFT_FULL	3
170 #define KVM_REQUEST_ARCH_BASE		8
171 
172 /*
173  * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to
174  * OUTSIDE_GUEST_MODE.  KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick"
175  * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing
176  * on.  A kick only guarantees that the vCPU is on its way out, e.g. a previous
177  * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no
178  * guarantee the vCPU received an IPI and has actually exited guest mode.
179  */
180 #define KVM_REQ_OUTSIDE_GUEST_MODE	(KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
181 
182 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
183 	BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
184 	(unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
185 })
186 #define KVM_ARCH_REQ(nr)           KVM_ARCH_REQ_FLAGS(nr, 0)
187 
188 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
189 				 unsigned long *vcpu_bitmap);
190 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
191 
192 #define KVM_USERSPACE_IRQ_SOURCE_ID		0
193 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID	1
194 #define KVM_PIT_IRQ_SOURCE_ID			2
195 
196 extern struct mutex kvm_lock;
197 extern struct list_head vm_list;
198 
199 struct kvm_io_range {
200 	gpa_t addr;
201 	int len;
202 	struct kvm_io_device *dev;
203 };
204 
205 #define NR_IOBUS_DEVS 1000
206 
207 struct kvm_io_bus {
208 	int dev_count;
209 	int ioeventfd_count;
210 	struct rcu_head rcu;
211 	struct kvm_io_range range[];
212 };
213 
214 enum kvm_bus {
215 	KVM_MMIO_BUS,
216 	KVM_PIO_BUS,
217 	KVM_VIRTIO_CCW_NOTIFY_BUS,
218 	KVM_FAST_MMIO_BUS,
219 	KVM_IOCSR_BUS,
220 	KVM_NR_BUSES
221 };
222 
223 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
224 		     int len, const void *val);
225 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
226 			    gpa_t addr, int len, const void *val, long cookie);
227 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
228 		    int len, void *val);
229 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
230 			    int len, struct kvm_io_device *dev);
231 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
232 			      struct kvm_io_device *dev);
233 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
234 					 gpa_t addr);
235 
236 #ifdef CONFIG_KVM_ASYNC_PF
237 struct kvm_async_pf {
238 	struct work_struct work;
239 	struct list_head link;
240 	struct list_head queue;
241 	struct kvm_vcpu *vcpu;
242 	gpa_t cr2_or_gpa;
243 	unsigned long addr;
244 	struct kvm_arch_async_pf arch;
245 	bool   wakeup_all;
246 	bool notpresent_injected;
247 };
248 
249 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
250 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
251 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
252 			unsigned long hva, struct kvm_arch_async_pf *arch);
253 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
254 #endif
255 
256 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
257 union kvm_mmu_notifier_arg {
258 	unsigned long attributes;
259 };
260 
261 enum kvm_gfn_range_filter {
262 	KVM_FILTER_SHARED		= BIT(0),
263 	KVM_FILTER_PRIVATE		= BIT(1),
264 };
265 
266 struct kvm_gfn_range {
267 	struct kvm_memory_slot *slot;
268 	gfn_t start;
269 	gfn_t end;
270 	union kvm_mmu_notifier_arg arg;
271 	enum kvm_gfn_range_filter attr_filter;
272 	bool may_block;
273 	bool lockless;
274 };
275 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
276 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
277 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
278 #endif
279 
280 enum {
281 	OUTSIDE_GUEST_MODE,
282 	IN_GUEST_MODE,
283 	EXITING_GUEST_MODE,
284 	READING_SHADOW_PAGE_TABLES,
285 };
286 
287 struct kvm_host_map {
288 	/*
289 	 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
290 	 * a 'struct page' for it. When using mem= kernel parameter some memory
291 	 * can be used as guest memory but they are not managed by host
292 	 * kernel).
293 	 */
294 	struct page *pinned_page;
295 	struct page *page;
296 	void *hva;
297 	kvm_pfn_t pfn;
298 	kvm_pfn_t gfn;
299 	bool writable;
300 };
301 
302 /*
303  * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
304  * directly to check for that.
305  */
306 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
307 {
308 	return !!map->hva;
309 }
310 
311 static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop)
312 {
313 	return single_task_running() && !need_resched() && ktime_before(cur, stop);
314 }
315 
316 /*
317  * Sometimes a large or cross-page mmio needs to be broken up into separate
318  * exits for userspace servicing.
319  */
320 struct kvm_mmio_fragment {
321 	gpa_t gpa;
322 	void *data;
323 	unsigned len;
324 };
325 
326 struct kvm_vcpu {
327 	struct kvm *kvm;
328 #ifdef CONFIG_PREEMPT_NOTIFIERS
329 	struct preempt_notifier preempt_notifier;
330 #endif
331 	int cpu;
332 	int vcpu_id; /* id given by userspace at creation */
333 	int vcpu_idx; /* index into kvm->vcpu_array */
334 	int ____srcu_idx; /* Don't use this directly.  You've been warned. */
335 #ifdef CONFIG_PROVE_RCU
336 	int srcu_depth;
337 #endif
338 	int mode;
339 	u64 requests;
340 	unsigned long guest_debug;
341 
342 	struct mutex mutex;
343 	struct kvm_run *run;
344 
345 #ifndef __KVM_HAVE_ARCH_WQP
346 	struct rcuwait wait;
347 #endif
348 	struct pid *pid;
349 	rwlock_t pid_lock;
350 	int sigset_active;
351 	sigset_t sigset;
352 	unsigned int halt_poll_ns;
353 	bool valid_wakeup;
354 
355 #ifdef CONFIG_HAS_IOMEM
356 	int mmio_needed;
357 	int mmio_read_completed;
358 	int mmio_is_write;
359 	int mmio_cur_fragment;
360 	int mmio_nr_fragments;
361 	struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
362 #endif
363 
364 #ifdef CONFIG_KVM_ASYNC_PF
365 	struct {
366 		u32 queued;
367 		struct list_head queue;
368 		struct list_head done;
369 		spinlock_t lock;
370 	} async_pf;
371 #endif
372 
373 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
374 	/*
375 	 * Cpu relax intercept or pause loop exit optimization
376 	 * in_spin_loop: set when a vcpu does a pause loop exit
377 	 *  or cpu relax intercepted.
378 	 * dy_eligible: indicates whether vcpu is eligible for directed yield.
379 	 */
380 	struct {
381 		bool in_spin_loop;
382 		bool dy_eligible;
383 	} spin_loop;
384 #endif
385 	bool wants_to_run;
386 	bool preempted;
387 	bool ready;
388 	bool scheduled_out;
389 	struct kvm_vcpu_arch arch;
390 	struct kvm_vcpu_stat stat;
391 	char stats_id[KVM_STATS_NAME_SIZE];
392 	struct kvm_dirty_ring dirty_ring;
393 
394 	/*
395 	 * The most recently used memslot by this vCPU and the slots generation
396 	 * for which it is valid.
397 	 * No wraparound protection is needed since generations won't overflow in
398 	 * thousands of years, even assuming 1M memslot operations per second.
399 	 */
400 	struct kvm_memory_slot *last_used_slot;
401 	u64 last_used_slot_gen;
402 };
403 
404 /*
405  * Start accounting time towards a guest.
406  * Must be called before entering guest context.
407  */
408 static __always_inline void guest_timing_enter_irqoff(void)
409 {
410 	/*
411 	 * This is running in ioctl context so its safe to assume that it's the
412 	 * stime pending cputime to flush.
413 	 */
414 	instrumentation_begin();
415 	vtime_account_guest_enter();
416 	instrumentation_end();
417 }
418 
419 /*
420  * Enter guest context and enter an RCU extended quiescent state.
421  *
422  * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
423  * unsafe to use any code which may directly or indirectly use RCU, tracing
424  * (including IRQ flag tracing), or lockdep. All code in this period must be
425  * non-instrumentable.
426  */
427 static __always_inline void guest_context_enter_irqoff(void)
428 {
429 	/*
430 	 * KVM does not hold any references to rcu protected data when it
431 	 * switches CPU into a guest mode. In fact switching to a guest mode
432 	 * is very similar to exiting to userspace from rcu point of view. In
433 	 * addition CPU may stay in a guest mode for quite a long time (up to
434 	 * one time slice). Lets treat guest mode as quiescent state, just like
435 	 * we do with user-mode execution.
436 	 */
437 	if (!context_tracking_guest_enter()) {
438 		instrumentation_begin();
439 		rcu_virt_note_context_switch();
440 		instrumentation_end();
441 	}
442 }
443 
444 /*
445  * Deprecated. Architectures should move to guest_timing_enter_irqoff() and
446  * guest_state_enter_irqoff().
447  */
448 static __always_inline void guest_enter_irqoff(void)
449 {
450 	guest_timing_enter_irqoff();
451 	guest_context_enter_irqoff();
452 }
453 
454 /**
455  * guest_state_enter_irqoff - Fixup state when entering a guest
456  *
457  * Entry to a guest will enable interrupts, but the kernel state is interrupts
458  * disabled when this is invoked. Also tell RCU about it.
459  *
460  * 1) Trace interrupts on state
461  * 2) Invoke context tracking if enabled to adjust RCU state
462  * 3) Tell lockdep that interrupts are enabled
463  *
464  * Invoked from architecture specific code before entering a guest.
465  * Must be called with interrupts disabled and the caller must be
466  * non-instrumentable.
467  * The caller has to invoke guest_timing_enter_irqoff() before this.
468  *
469  * Note: this is analogous to exit_to_user_mode().
470  */
471 static __always_inline void guest_state_enter_irqoff(void)
472 {
473 	instrumentation_begin();
474 	trace_hardirqs_on_prepare();
475 	lockdep_hardirqs_on_prepare();
476 	instrumentation_end();
477 
478 	guest_context_enter_irqoff();
479 	lockdep_hardirqs_on(CALLER_ADDR0);
480 }
481 
482 /*
483  * Exit guest context and exit an RCU extended quiescent state.
484  *
485  * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
486  * unsafe to use any code which may directly or indirectly use RCU, tracing
487  * (including IRQ flag tracing), or lockdep. All code in this period must be
488  * non-instrumentable.
489  */
490 static __always_inline void guest_context_exit_irqoff(void)
491 {
492 	/*
493 	 * Guest mode is treated as a quiescent state, see
494 	 * guest_context_enter_irqoff() for more details.
495 	 */
496 	if (!context_tracking_guest_exit()) {
497 		instrumentation_begin();
498 		rcu_virt_note_context_switch();
499 		instrumentation_end();
500 	}
501 }
502 
503 /*
504  * Stop accounting time towards a guest.
505  * Must be called after exiting guest context.
506  */
507 static __always_inline void guest_timing_exit_irqoff(void)
508 {
509 	instrumentation_begin();
510 	/* Flush the guest cputime we spent on the guest */
511 	vtime_account_guest_exit();
512 	instrumentation_end();
513 }
514 
515 /*
516  * Deprecated. Architectures should move to guest_state_exit_irqoff() and
517  * guest_timing_exit_irqoff().
518  */
519 static __always_inline void guest_exit_irqoff(void)
520 {
521 	guest_context_exit_irqoff();
522 	guest_timing_exit_irqoff();
523 }
524 
525 static inline void guest_exit(void)
526 {
527 	unsigned long flags;
528 
529 	local_irq_save(flags);
530 	guest_exit_irqoff();
531 	local_irq_restore(flags);
532 }
533 
534 /**
535  * guest_state_exit_irqoff - Establish state when returning from guest mode
536  *
537  * Entry from a guest disables interrupts, but guest mode is traced as
538  * interrupts enabled. Also with NO_HZ_FULL RCU might be idle.
539  *
540  * 1) Tell lockdep that interrupts are disabled
541  * 2) Invoke context tracking if enabled to reactivate RCU
542  * 3) Trace interrupts off state
543  *
544  * Invoked from architecture specific code after exiting a guest.
545  * Must be invoked with interrupts disabled and the caller must be
546  * non-instrumentable.
547  * The caller has to invoke guest_timing_exit_irqoff() after this.
548  *
549  * Note: this is analogous to enter_from_user_mode().
550  */
551 static __always_inline void guest_state_exit_irqoff(void)
552 {
553 	lockdep_hardirqs_off(CALLER_ADDR0);
554 	guest_context_exit_irqoff();
555 
556 	instrumentation_begin();
557 	trace_hardirqs_off_finish();
558 	instrumentation_end();
559 }
560 
561 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
562 {
563 	/*
564 	 * The memory barrier ensures a previous write to vcpu->requests cannot
565 	 * be reordered with the read of vcpu->mode.  It pairs with the general
566 	 * memory barrier following the write of vcpu->mode in VCPU RUN.
567 	 */
568 	smp_mb__before_atomic();
569 	return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
570 }
571 
572 /*
573  * Some of the bitops functions do not support too long bitmaps.
574  * This number must be determined not to exceed such limits.
575  */
576 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
577 
578 /*
579  * Since at idle each memslot belongs to two memslot sets it has to contain
580  * two embedded nodes for each data structure that it forms a part of.
581  *
582  * Two memslot sets (one active and one inactive) are necessary so the VM
583  * continues to run on one memslot set while the other is being modified.
584  *
585  * These two memslot sets normally point to the same set of memslots.
586  * They can, however, be desynchronized when performing a memslot management
587  * operation by replacing the memslot to be modified by its copy.
588  * After the operation is complete, both memslot sets once again point to
589  * the same, common set of memslot data.
590  *
591  * The memslots themselves are independent of each other so they can be
592  * individually added or deleted.
593  */
594 struct kvm_memory_slot {
595 	struct hlist_node id_node[2];
596 	struct interval_tree_node hva_node[2];
597 	struct rb_node gfn_node[2];
598 	gfn_t base_gfn;
599 	unsigned long npages;
600 	unsigned long *dirty_bitmap;
601 	struct kvm_arch_memory_slot arch;
602 	unsigned long userspace_addr;
603 	u32 flags;
604 	short id;
605 	u16 as_id;
606 
607 #ifdef CONFIG_KVM_GUEST_MEMFD
608 	struct {
609 		/*
610 		 * Writes protected by kvm->slots_lock.  Acquiring a
611 		 * reference via kvm_gmem_get_file() is protected by
612 		 * either kvm->slots_lock or kvm->srcu.
613 		 */
614 		struct file *file;
615 		pgoff_t pgoff;
616 	} gmem;
617 #endif
618 };
619 
620 static inline bool kvm_slot_has_gmem(const struct kvm_memory_slot *slot)
621 {
622 	return slot && (slot->flags & KVM_MEM_GUEST_MEMFD);
623 }
624 
625 static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot)
626 {
627 	return slot->flags & KVM_MEM_LOG_DIRTY_PAGES;
628 }
629 
630 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
631 {
632 	return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
633 }
634 
635 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
636 {
637 	unsigned long len = kvm_dirty_bitmap_bytes(memslot);
638 
639 	return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
640 }
641 
642 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS
643 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
644 #endif
645 
646 struct kvm_s390_adapter_int {
647 	u64 ind_addr;
648 	u64 ind_gaddr;
649 	u64 summary_addr;
650 	u64 summary_gaddr;
651 	u64 ind_offset;
652 	u32 summary_offset;
653 	u32 adapter_id;
654 };
655 
656 struct kvm_hv_sint {
657 	u32 vcpu;
658 	u32 sint;
659 };
660 
661 struct kvm_xen_evtchn {
662 	u32 port;
663 	u32 vcpu_id;
664 	int vcpu_idx;
665 	u32 priority;
666 };
667 
668 struct kvm_kernel_irq_routing_entry {
669 	u32 gsi;
670 	u32 type;
671 	int (*set)(struct kvm_kernel_irq_routing_entry *e,
672 		   struct kvm *kvm, int irq_source_id, int level,
673 		   bool line_status);
674 	union {
675 		struct {
676 			unsigned irqchip;
677 			unsigned pin;
678 		} irqchip;
679 		struct {
680 			u32 address_lo;
681 			u32 address_hi;
682 			u32 data;
683 			u32 flags;
684 			u32 devid;
685 		} msi;
686 		struct kvm_s390_adapter_int adapter;
687 		struct kvm_hv_sint hv_sint;
688 		struct kvm_xen_evtchn xen_evtchn;
689 	};
690 	struct hlist_node link;
691 };
692 
693 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
694 struct kvm_irq_routing_table {
695 	int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
696 	u32 nr_rt_entries;
697 	/*
698 	 * Array indexed by gsi. Each entry contains list of irq chips
699 	 * the gsi is connected to.
700 	 */
701 	struct hlist_head map[] __counted_by(nr_rt_entries);
702 };
703 #endif
704 
705 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm);
706 
707 #ifndef KVM_INTERNAL_MEM_SLOTS
708 #define KVM_INTERNAL_MEM_SLOTS 0
709 #endif
710 
711 #define KVM_MEM_SLOTS_NUM SHRT_MAX
712 #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_INTERNAL_MEM_SLOTS)
713 
714 #if KVM_MAX_NR_ADDRESS_SPACES == 1
715 static inline int kvm_arch_nr_memslot_as_ids(struct kvm *kvm)
716 {
717 	return KVM_MAX_NR_ADDRESS_SPACES;
718 }
719 
720 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
721 {
722 	return 0;
723 }
724 #endif
725 
726 #ifndef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
727 static inline bool kvm_arch_has_private_mem(struct kvm *kvm)
728 {
729 	return false;
730 }
731 #endif
732 
733 #ifdef CONFIG_KVM_GUEST_MEMFD
734 bool kvm_arch_supports_gmem_init_shared(struct kvm *kvm);
735 
736 static inline u64 kvm_gmem_get_supported_flags(struct kvm *kvm)
737 {
738 	u64 flags = GUEST_MEMFD_FLAG_MMAP;
739 
740 	if (!kvm || kvm_arch_supports_gmem_init_shared(kvm))
741 		flags |= GUEST_MEMFD_FLAG_INIT_SHARED;
742 
743 	return flags;
744 }
745 #endif
746 
747 #ifndef kvm_arch_has_readonly_mem
748 static inline bool kvm_arch_has_readonly_mem(struct kvm *kvm)
749 {
750 	return IS_ENABLED(CONFIG_HAVE_KVM_READONLY_MEM);
751 }
752 #endif
753 
754 struct kvm_memslots {
755 	u64 generation;
756 	atomic_long_t last_used_slot;
757 	struct rb_root_cached hva_tree;
758 	struct rb_root gfn_tree;
759 	/*
760 	 * The mapping table from slot id to memslot.
761 	 *
762 	 * 7-bit bucket count matches the size of the old id to index array for
763 	 * 512 slots, while giving good performance with this slot count.
764 	 * Higher bucket counts bring only small performance improvements but
765 	 * always result in higher memory usage (even for lower memslot counts).
766 	 */
767 	DECLARE_HASHTABLE(id_hash, 7);
768 	int node_idx;
769 };
770 
771 struct kvm {
772 #ifdef KVM_HAVE_MMU_RWLOCK
773 	rwlock_t mmu_lock;
774 #else
775 	spinlock_t mmu_lock;
776 #endif /* KVM_HAVE_MMU_RWLOCK */
777 
778 	struct mutex slots_lock;
779 
780 	/*
781 	 * Protects the arch-specific fields of struct kvm_memory_slots in
782 	 * use by the VM. To be used under the slots_lock (above) or in a
783 	 * kvm->srcu critical section where acquiring the slots_lock would
784 	 * lead to deadlock with the synchronize_srcu in
785 	 * kvm_swap_active_memslots().
786 	 */
787 	struct mutex slots_arch_lock;
788 	struct mm_struct *mm; /* userspace tied to this vm */
789 	unsigned long nr_memslot_pages;
790 	/* The two memslot sets - active and inactive (per address space) */
791 	struct kvm_memslots __memslots[KVM_MAX_NR_ADDRESS_SPACES][2];
792 	/* The current active memslot set for each address space */
793 	struct kvm_memslots __rcu *memslots[KVM_MAX_NR_ADDRESS_SPACES];
794 	struct xarray vcpu_array;
795 	/*
796 	 * Protected by slots_lock, but can be read outside if an
797 	 * incorrect answer is acceptable.
798 	 */
799 	atomic_t nr_memslots_dirty_logging;
800 
801 	/* Used to wait for completion of MMU notifiers.  */
802 	spinlock_t mn_invalidate_lock;
803 	unsigned long mn_active_invalidate_count;
804 	struct rcuwait mn_memslots_update_rcuwait;
805 
806 	/* For management / invalidation of gfn_to_pfn_caches */
807 	spinlock_t gpc_lock;
808 	struct list_head gpc_list;
809 
810 	/*
811 	 * created_vcpus is protected by kvm->lock, and is incremented
812 	 * at the beginning of KVM_CREATE_VCPU.  online_vcpus is only
813 	 * incremented after storing the kvm_vcpu pointer in vcpus,
814 	 * and is accessed atomically.
815 	 */
816 	atomic_t online_vcpus;
817 	int max_vcpus;
818 	int created_vcpus;
819 	int last_boosted_vcpu;
820 	struct list_head vm_list;
821 	struct mutex lock;
822 	struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
823 #ifdef CONFIG_HAVE_KVM_IRQCHIP
824 	struct {
825 		spinlock_t        lock;
826 		struct list_head  items;
827 		/* resampler_list update side is protected by resampler_lock. */
828 		struct list_head  resampler_list;
829 		struct mutex      resampler_lock;
830 	} irqfds;
831 #endif
832 	struct list_head ioeventfds;
833 	struct kvm_vm_stat stat;
834 	struct kvm_arch arch;
835 	refcount_t users_count;
836 #ifdef CONFIG_KVM_MMIO
837 	struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
838 	spinlock_t ring_lock;
839 	struct list_head coalesced_zones;
840 #endif
841 
842 	struct mutex irq_lock;
843 #ifdef CONFIG_HAVE_KVM_IRQCHIP
844 	/*
845 	 * Update side is protected by irq_lock.
846 	 */
847 	struct kvm_irq_routing_table __rcu *irq_routing;
848 
849 	struct hlist_head irq_ack_notifier_list;
850 #endif
851 
852 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
853 	struct mmu_notifier mmu_notifier;
854 	unsigned long mmu_invalidate_seq;
855 	long mmu_invalidate_in_progress;
856 	gfn_t mmu_invalidate_range_start;
857 	gfn_t mmu_invalidate_range_end;
858 #endif
859 	struct list_head devices;
860 	u64 manual_dirty_log_protect;
861 	struct dentry *debugfs_dentry;
862 	struct kvm_stat_data **debugfs_stat_data;
863 	struct srcu_struct srcu;
864 	struct srcu_struct irq_srcu;
865 	pid_t userspace_pid;
866 	bool override_halt_poll_ns;
867 	unsigned int max_halt_poll_ns;
868 	u32 dirty_ring_size;
869 	bool dirty_ring_with_bitmap;
870 	bool vm_bugged;
871 	bool vm_dead;
872 
873 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
874 	struct notifier_block pm_notifier;
875 #endif
876 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
877 	/* Protected by slots_lock (for writes) and RCU (for reads) */
878 	struct xarray mem_attr_array;
879 #endif
880 	char stats_id[KVM_STATS_NAME_SIZE];
881 };
882 
883 #define kvm_err(fmt, ...) \
884 	pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
885 #define kvm_info(fmt, ...) \
886 	pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
887 #define kvm_debug(fmt, ...) \
888 	pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
889 #define kvm_debug_ratelimited(fmt, ...) \
890 	pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
891 			     ## __VA_ARGS__)
892 #define kvm_pr_unimpl(fmt, ...) \
893 	pr_err_ratelimited("kvm [%i]: " fmt, \
894 			   task_tgid_nr(current), ## __VA_ARGS__)
895 
896 /* The guest did something we don't support. */
897 #define vcpu_unimpl(vcpu, fmt, ...)					\
898 	kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt,			\
899 			(vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
900 
901 #define vcpu_debug(vcpu, fmt, ...)					\
902 	kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
903 #define vcpu_debug_ratelimited(vcpu, fmt, ...)				\
904 	kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id,           \
905 			      ## __VA_ARGS__)
906 #define vcpu_err(vcpu, fmt, ...)					\
907 	kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
908 
909 static inline void kvm_vm_dead(struct kvm *kvm)
910 {
911 	kvm->vm_dead = true;
912 	kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD);
913 }
914 
915 static inline void kvm_vm_bugged(struct kvm *kvm)
916 {
917 	kvm->vm_bugged = true;
918 	kvm_vm_dead(kvm);
919 }
920 
921 
922 #define KVM_BUG(cond, kvm, fmt...)				\
923 ({								\
924 	bool __ret = !!(cond);					\
925 								\
926 	if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt))		\
927 		kvm_vm_bugged(kvm);				\
928 	unlikely(__ret);					\
929 })
930 
931 #define KVM_BUG_ON(cond, kvm)					\
932 ({								\
933 	bool __ret = !!(cond);					\
934 								\
935 	if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged))		\
936 		kvm_vm_bugged(kvm);				\
937 	unlikely(__ret);					\
938 })
939 
940 /*
941  * Note, "data corruption" refers to corruption of host kernel data structures,
942  * not guest data.  Guest data corruption, suspected or confirmed, that is tied
943  * and contained to a single VM should *never* BUG() and potentially panic the
944  * host, i.e. use this variant of KVM_BUG() if and only if a KVM data structure
945  * is corrupted and that corruption can have a cascading effect to other parts
946  * of the hosts and/or to other VMs.
947  */
948 #define KVM_BUG_ON_DATA_CORRUPTION(cond, kvm)			\
949 ({								\
950 	bool __ret = !!(cond);					\
951 								\
952 	if (IS_ENABLED(CONFIG_BUG_ON_DATA_CORRUPTION))		\
953 		BUG_ON(__ret);					\
954 	else if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged))	\
955 		kvm_vm_bugged(kvm);				\
956 	unlikely(__ret);					\
957 })
958 
959 static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu)
960 {
961 #ifdef CONFIG_PROVE_RCU
962 	WARN_ONCE(vcpu->srcu_depth++,
963 		  "KVM: Illegal vCPU srcu_idx LOCK, depth=%d", vcpu->srcu_depth - 1);
964 #endif
965 	vcpu->____srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
966 }
967 
968 static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu)
969 {
970 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->____srcu_idx);
971 
972 #ifdef CONFIG_PROVE_RCU
973 	WARN_ONCE(--vcpu->srcu_depth,
974 		  "KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d", vcpu->srcu_depth);
975 #endif
976 }
977 
978 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
979 {
980 	return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
981 }
982 
983 /*
984  * Get a bus reference under the update-side lock. No long-term SRCU reader
985  * references are permitted, to avoid stale reads vs concurrent IO
986  * registrations.
987  */
988 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
989 {
990 	return rcu_dereference_protected(kvm->buses[idx],
991 					 lockdep_is_held(&kvm->slots_lock));
992 }
993 
994 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
995 {
996 	int num_vcpus = atomic_read(&kvm->online_vcpus);
997 
998 	/*
999 	 * Explicitly verify the target vCPU is online, as the anti-speculation
1000 	 * logic only limits the CPU's ability to speculate, e.g. given a "bad"
1001 	 * index, clamping the index to 0 would return vCPU0, not NULL.
1002 	 */
1003 	if (i >= num_vcpus)
1004 		return NULL;
1005 
1006 	i = array_index_nospec(i, num_vcpus);
1007 
1008 	/* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu.  */
1009 	smp_rmb();
1010 	return xa_load(&kvm->vcpu_array, i);
1011 }
1012 
1013 #define kvm_for_each_vcpu(idx, vcpup, kvm)				\
1014 	if (atomic_read(&kvm->online_vcpus))				\
1015 		xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0,	\
1016 				  (atomic_read(&kvm->online_vcpus) - 1))
1017 
1018 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
1019 {
1020 	struct kvm_vcpu *vcpu = NULL;
1021 	unsigned long i;
1022 
1023 	if (id < 0)
1024 		return NULL;
1025 	if (id < KVM_MAX_VCPUS)
1026 		vcpu = kvm_get_vcpu(kvm, id);
1027 	if (vcpu && vcpu->vcpu_id == id)
1028 		return vcpu;
1029 	kvm_for_each_vcpu(i, vcpu, kvm)
1030 		if (vcpu->vcpu_id == id)
1031 			return vcpu;
1032 	return NULL;
1033 }
1034 
1035 void kvm_destroy_vcpus(struct kvm *kvm);
1036 
1037 int kvm_trylock_all_vcpus(struct kvm *kvm);
1038 int kvm_lock_all_vcpus(struct kvm *kvm);
1039 void kvm_unlock_all_vcpus(struct kvm *kvm);
1040 
1041 void vcpu_load(struct kvm_vcpu *vcpu);
1042 void vcpu_put(struct kvm_vcpu *vcpu);
1043 
1044 #ifdef CONFIG_KVM_IOAPIC
1045 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
1046 #else
1047 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
1048 {
1049 }
1050 #endif
1051 
1052 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1053 int kvm_irqfd_init(void);
1054 void kvm_irqfd_exit(void);
1055 #else
1056 static inline int kvm_irqfd_init(void)
1057 {
1058 	return 0;
1059 }
1060 
1061 static inline void kvm_irqfd_exit(void)
1062 {
1063 }
1064 #endif
1065 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module);
1066 void kvm_exit(void);
1067 
1068 void kvm_get_kvm(struct kvm *kvm);
1069 bool kvm_get_kvm_safe(struct kvm *kvm);
1070 void kvm_put_kvm(struct kvm *kvm);
1071 bool file_is_kvm(struct file *file);
1072 void kvm_put_kvm_no_destroy(struct kvm *kvm);
1073 
1074 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
1075 {
1076 	as_id = array_index_nospec(as_id, KVM_MAX_NR_ADDRESS_SPACES);
1077 	return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
1078 			lockdep_is_held(&kvm->slots_lock) ||
1079 			!refcount_read(&kvm->users_count));
1080 }
1081 
1082 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
1083 {
1084 	return __kvm_memslots(kvm, 0);
1085 }
1086 
1087 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
1088 {
1089 	int as_id = kvm_arch_vcpu_memslots_id(vcpu);
1090 
1091 	return __kvm_memslots(vcpu->kvm, as_id);
1092 }
1093 
1094 static inline bool kvm_memslots_empty(struct kvm_memslots *slots)
1095 {
1096 	return RB_EMPTY_ROOT(&slots->gfn_tree);
1097 }
1098 
1099 bool kvm_are_all_memslots_empty(struct kvm *kvm);
1100 
1101 #define kvm_for_each_memslot(memslot, bkt, slots)			      \
1102 	hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \
1103 		if (WARN_ON_ONCE(!memslot->npages)) {			      \
1104 		} else
1105 
1106 static inline
1107 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
1108 {
1109 	struct kvm_memory_slot *slot;
1110 	int idx = slots->node_idx;
1111 
1112 	hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) {
1113 		if (slot->id == id)
1114 			return slot;
1115 	}
1116 
1117 	return NULL;
1118 }
1119 
1120 /* Iterator used for walking memslots that overlap a gfn range. */
1121 struct kvm_memslot_iter {
1122 	struct kvm_memslots *slots;
1123 	struct rb_node *node;
1124 	struct kvm_memory_slot *slot;
1125 };
1126 
1127 static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter)
1128 {
1129 	iter->node = rb_next(iter->node);
1130 	if (!iter->node)
1131 		return;
1132 
1133 	iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]);
1134 }
1135 
1136 static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter,
1137 					  struct kvm_memslots *slots,
1138 					  gfn_t start)
1139 {
1140 	int idx = slots->node_idx;
1141 	struct rb_node *tmp;
1142 	struct kvm_memory_slot *slot;
1143 
1144 	iter->slots = slots;
1145 
1146 	/*
1147 	 * Find the so called "upper bound" of a key - the first node that has
1148 	 * its key strictly greater than the searched one (the start gfn in our case).
1149 	 */
1150 	iter->node = NULL;
1151 	for (tmp = slots->gfn_tree.rb_node; tmp; ) {
1152 		slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]);
1153 		if (start < slot->base_gfn) {
1154 			iter->node = tmp;
1155 			tmp = tmp->rb_left;
1156 		} else {
1157 			tmp = tmp->rb_right;
1158 		}
1159 	}
1160 
1161 	/*
1162 	 * Find the slot with the lowest gfn that can possibly intersect with
1163 	 * the range, so we'll ideally have slot start <= range start
1164 	 */
1165 	if (iter->node) {
1166 		/*
1167 		 * A NULL previous node means that the very first slot
1168 		 * already has a higher start gfn.
1169 		 * In this case slot start > range start.
1170 		 */
1171 		tmp = rb_prev(iter->node);
1172 		if (tmp)
1173 			iter->node = tmp;
1174 	} else {
1175 		/* a NULL node below means no slots */
1176 		iter->node = rb_last(&slots->gfn_tree);
1177 	}
1178 
1179 	if (iter->node) {
1180 		iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]);
1181 
1182 		/*
1183 		 * It is possible in the slot start < range start case that the
1184 		 * found slot ends before or at range start (slot end <= range start)
1185 		 * and so it does not overlap the requested range.
1186 		 *
1187 		 * In such non-overlapping case the next slot (if it exists) will
1188 		 * already have slot start > range start, otherwise the logic above
1189 		 * would have found it instead of the current slot.
1190 		 */
1191 		if (iter->slot->base_gfn + iter->slot->npages <= start)
1192 			kvm_memslot_iter_next(iter);
1193 	}
1194 }
1195 
1196 static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end)
1197 {
1198 	if (!iter->node)
1199 		return false;
1200 
1201 	/*
1202 	 * If this slot starts beyond or at the end of the range so does
1203 	 * every next one
1204 	 */
1205 	return iter->slot->base_gfn < end;
1206 }
1207 
1208 /* Iterate over each memslot at least partially intersecting [start, end) range */
1209 #define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end)	\
1210 	for (kvm_memslot_iter_start(iter, slots, start);		\
1211 	     kvm_memslot_iter_is_valid(iter, end);			\
1212 	     kvm_memslot_iter_next(iter))
1213 
1214 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
1215 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
1216 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
1217 
1218 /*
1219  * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
1220  * - create a new memory slot
1221  * - delete an existing memory slot
1222  * - modify an existing memory slot
1223  *   -- move it in the guest physical memory space
1224  *   -- just change its flags
1225  *
1226  * Since flags can be changed by some of these operations, the following
1227  * differentiation is the best we can do for kvm_set_memory_region():
1228  */
1229 enum kvm_mr_change {
1230 	KVM_MR_CREATE,
1231 	KVM_MR_DELETE,
1232 	KVM_MR_MOVE,
1233 	KVM_MR_FLAGS_ONLY,
1234 };
1235 
1236 int kvm_set_internal_memslot(struct kvm *kvm,
1237 			     const struct kvm_userspace_memory_region2 *mem);
1238 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
1239 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
1240 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1241 				const struct kvm_memory_slot *old,
1242 				struct kvm_memory_slot *new,
1243 				enum kvm_mr_change change);
1244 void kvm_arch_commit_memory_region(struct kvm *kvm,
1245 				struct kvm_memory_slot *old,
1246 				const struct kvm_memory_slot *new,
1247 				enum kvm_mr_change change);
1248 /* flush all memory translations */
1249 void kvm_arch_flush_shadow_all(struct kvm *kvm);
1250 /* flush memory translations pointing to 'slot' */
1251 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1252 				   struct kvm_memory_slot *slot);
1253 
1254 int kvm_prefetch_pages(struct kvm_memory_slot *slot, gfn_t gfn,
1255 		       struct page **pages, int nr_pages);
1256 
1257 struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn, bool write);
1258 static inline struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1259 {
1260 	return __gfn_to_page(kvm, gfn, true);
1261 }
1262 
1263 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
1264 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
1265 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
1266 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
1267 				      bool *writable);
1268 
1269 static inline void kvm_release_page_unused(struct page *page)
1270 {
1271 	if (!page)
1272 		return;
1273 
1274 	put_page(page);
1275 }
1276 
1277 void kvm_release_page_clean(struct page *page);
1278 void kvm_release_page_dirty(struct page *page);
1279 
1280 static inline void kvm_release_faultin_page(struct kvm *kvm, struct page *page,
1281 					    bool unused, bool dirty)
1282 {
1283 	lockdep_assert_once(lockdep_is_held(&kvm->mmu_lock) || unused);
1284 
1285 	if (!page)
1286 		return;
1287 
1288 	/*
1289 	 * If the page that KVM got from the *primary MMU* is writable, and KVM
1290 	 * installed or reused a SPTE, mark the page/folio dirty.  Note, this
1291 	 * may mark a folio dirty even if KVM created a read-only SPTE, e.g. if
1292 	 * the GFN is write-protected.  Folios can't be safely marked dirty
1293 	 * outside of mmu_lock as doing so could race with writeback on the
1294 	 * folio.  As a result, KVM can't mark folios dirty in the fast page
1295 	 * fault handler, and so KVM must (somewhat) speculatively mark the
1296 	 * folio dirty if KVM could locklessly make the SPTE writable.
1297 	 */
1298 	if (unused)
1299 		kvm_release_page_unused(page);
1300 	else if (dirty)
1301 		kvm_release_page_dirty(page);
1302 	else
1303 		kvm_release_page_clean(page);
1304 }
1305 
1306 kvm_pfn_t __kvm_faultin_pfn(const struct kvm_memory_slot *slot, gfn_t gfn,
1307 			    unsigned int foll, bool *writable,
1308 			    struct page **refcounted_page);
1309 
1310 static inline kvm_pfn_t kvm_faultin_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
1311 					bool write, bool *writable,
1312 					struct page **refcounted_page)
1313 {
1314 	return __kvm_faultin_pfn(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn,
1315 				 write ? FOLL_WRITE : 0, writable, refcounted_page);
1316 }
1317 
1318 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1319 			int len);
1320 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
1321 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1322 			   void *data, unsigned long len);
1323 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1324 				 void *data, unsigned int offset,
1325 				 unsigned long len);
1326 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1327 			 int offset, int len);
1328 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1329 		    unsigned long len);
1330 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1331 			   void *data, unsigned long len);
1332 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1333 				  void *data, unsigned int offset,
1334 				  unsigned long len);
1335 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1336 			      gpa_t gpa, unsigned long len);
1337 
1338 #define __kvm_get_guest(kvm, gfn, offset, v)				\
1339 ({									\
1340 	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
1341 	typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset);	\
1342 	int __ret = -EFAULT;						\
1343 									\
1344 	if (!kvm_is_error_hva(__addr))					\
1345 		__ret = get_user(v, __uaddr);				\
1346 	__ret;								\
1347 })
1348 
1349 #define kvm_get_guest(kvm, gpa, v)					\
1350 ({									\
1351 	gpa_t __gpa = gpa;						\
1352 	struct kvm *__kvm = kvm;					\
1353 									\
1354 	__kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT,			\
1355 			offset_in_page(__gpa), v);			\
1356 })
1357 
1358 #define __kvm_put_guest(kvm, gfn, offset, v)				\
1359 ({									\
1360 	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
1361 	typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset);	\
1362 	int __ret = -EFAULT;						\
1363 									\
1364 	if (!kvm_is_error_hva(__addr))					\
1365 		__ret = put_user(v, __uaddr);				\
1366 	if (!__ret)							\
1367 		mark_page_dirty(kvm, gfn);				\
1368 	__ret;								\
1369 })
1370 
1371 #define kvm_put_guest(kvm, gpa, v)					\
1372 ({									\
1373 	gpa_t __gpa = gpa;						\
1374 	struct kvm *__kvm = kvm;					\
1375 									\
1376 	__kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT,			\
1377 			offset_in_page(__gpa), v);			\
1378 })
1379 
1380 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
1381 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
1382 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1383 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
1384 void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn);
1385 void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
1386 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
1387 
1388 int __kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map,
1389 		   bool writable);
1390 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map);
1391 
1392 static inline int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa,
1393 			       struct kvm_host_map *map)
1394 {
1395 	return __kvm_vcpu_map(vcpu, gpa, map, true);
1396 }
1397 
1398 static inline int kvm_vcpu_map_readonly(struct kvm_vcpu *vcpu, gpa_t gpa,
1399 					struct kvm_host_map *map)
1400 {
1401 	return __kvm_vcpu_map(vcpu, gpa, map, false);
1402 }
1403 
1404 static inline void kvm_vcpu_map_mark_dirty(struct kvm_vcpu *vcpu,
1405 					   struct kvm_host_map *map)
1406 {
1407 	if (kvm_vcpu_mapped(map))
1408 		kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
1409 }
1410 
1411 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
1412 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
1413 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
1414 			     int len);
1415 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1416 			       unsigned long len);
1417 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1418 			unsigned long len);
1419 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
1420 			      int offset, int len);
1421 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1422 			 unsigned long len);
1423 
1424 /**
1425  * kvm_gpc_init - initialize gfn_to_pfn_cache.
1426  *
1427  * @gpc:	   struct gfn_to_pfn_cache object.
1428  * @kvm:	   pointer to kvm instance.
1429  *
1430  * This sets up a gfn_to_pfn_cache by initializing locks and assigning the
1431  * immutable attributes.  Note, the cache must be zero-allocated (or zeroed by
1432  * the caller before init).
1433  */
1434 void kvm_gpc_init(struct gfn_to_pfn_cache *gpc, struct kvm *kvm);
1435 
1436 /**
1437  * kvm_gpc_activate - prepare a cached kernel mapping and HPA for a given guest
1438  *                    physical address.
1439  *
1440  * @gpc:	   struct gfn_to_pfn_cache object.
1441  * @gpa:	   guest physical address to map.
1442  * @len:	   sanity check; the range being access must fit a single page.
1443  *
1444  * @return:	   0 for success.
1445  *		   -EINVAL for a mapping which would cross a page boundary.
1446  *		   -EFAULT for an untranslatable guest physical address.
1447  *
1448  * This primes a gfn_to_pfn_cache and links it into the @gpc->kvm's list for
1449  * invalidations to be processed.  Callers are required to use kvm_gpc_check()
1450  * to ensure that the cache is valid before accessing the target page.
1451  */
1452 int kvm_gpc_activate(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long len);
1453 
1454 /**
1455  * kvm_gpc_activate_hva - prepare a cached kernel mapping and HPA for a given HVA.
1456  *
1457  * @gpc:          struct gfn_to_pfn_cache object.
1458  * @hva:          userspace virtual address to map.
1459  * @len:          sanity check; the range being access must fit a single page.
1460  *
1461  * @return:       0 for success.
1462  *                -EINVAL for a mapping which would cross a page boundary.
1463  *                -EFAULT for an untranslatable guest physical address.
1464  *
1465  * The semantics of this function are the same as those of kvm_gpc_activate(). It
1466  * merely bypasses a layer of address translation.
1467  */
1468 int kvm_gpc_activate_hva(struct gfn_to_pfn_cache *gpc, unsigned long hva, unsigned long len);
1469 
1470 /**
1471  * kvm_gpc_check - check validity of a gfn_to_pfn_cache.
1472  *
1473  * @gpc:	   struct gfn_to_pfn_cache object.
1474  * @len:	   sanity check; the range being access must fit a single page.
1475  *
1476  * @return:	   %true if the cache is still valid and the address matches.
1477  *		   %false if the cache is not valid.
1478  *
1479  * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock
1480  * while calling this function, and then continue to hold the lock until the
1481  * access is complete.
1482  *
1483  * Callers in IN_GUEST_MODE may do so without locking, although they should
1484  * still hold a read lock on kvm->scru for the memslot checks.
1485  */
1486 bool kvm_gpc_check(struct gfn_to_pfn_cache *gpc, unsigned long len);
1487 
1488 /**
1489  * kvm_gpc_refresh - update a previously initialized cache.
1490  *
1491  * @gpc:	   struct gfn_to_pfn_cache object.
1492  * @len:	   sanity check; the range being access must fit a single page.
1493  *
1494  * @return:	   0 for success.
1495  *		   -EINVAL for a mapping which would cross a page boundary.
1496  *		   -EFAULT for an untranslatable guest physical address.
1497  *
1498  * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful
1499  * return from this function does not mean the page can be immediately
1500  * accessed because it may have raced with an invalidation. Callers must
1501  * still lock and check the cache status, as this function does not return
1502  * with the lock still held to permit access.
1503  */
1504 int kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, unsigned long len);
1505 
1506 /**
1507  * kvm_gpc_deactivate - deactivate and unlink a gfn_to_pfn_cache.
1508  *
1509  * @gpc:	   struct gfn_to_pfn_cache object.
1510  *
1511  * This removes a cache from the VM's list to be processed on MMU notifier
1512  * invocation.
1513  */
1514 void kvm_gpc_deactivate(struct gfn_to_pfn_cache *gpc);
1515 
1516 static inline bool kvm_gpc_is_gpa_active(struct gfn_to_pfn_cache *gpc)
1517 {
1518 	return gpc->active && !kvm_is_error_gpa(gpc->gpa);
1519 }
1520 
1521 static inline bool kvm_gpc_is_hva_active(struct gfn_to_pfn_cache *gpc)
1522 {
1523 	return gpc->active && kvm_is_error_gpa(gpc->gpa);
1524 }
1525 
1526 void kvm_sigset_activate(struct kvm_vcpu *vcpu);
1527 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
1528 
1529 void kvm_vcpu_halt(struct kvm_vcpu *vcpu);
1530 bool kvm_vcpu_block(struct kvm_vcpu *vcpu);
1531 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
1532 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
1533 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
1534 
1535 #ifndef CONFIG_S390
1536 void __kvm_vcpu_kick(struct kvm_vcpu *vcpu, bool wait);
1537 
1538 static inline void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1539 {
1540 	__kvm_vcpu_kick(vcpu, false);
1541 }
1542 #endif
1543 
1544 int kvm_vcpu_yield_to(struct kvm_vcpu *target);
1545 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool yield_to_kernel_mode);
1546 
1547 void kvm_flush_remote_tlbs(struct kvm *kvm);
1548 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages);
1549 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
1550 				   const struct kvm_memory_slot *memslot);
1551 
1552 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
1553 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
1554 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min);
1555 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
1556 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
1557 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
1558 #endif
1559 
1560 void kvm_mmu_invalidate_begin(struct kvm *kvm);
1561 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end);
1562 void kvm_mmu_invalidate_end(struct kvm *kvm);
1563 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
1564 
1565 long kvm_arch_dev_ioctl(struct file *filp,
1566 			unsigned int ioctl, unsigned long arg);
1567 long kvm_arch_vcpu_ioctl(struct file *filp,
1568 			 unsigned int ioctl, unsigned long arg);
1569 long kvm_arch_vcpu_unlocked_ioctl(struct file *filp,
1570 				  unsigned int ioctl, unsigned long arg);
1571 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
1572 
1573 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
1574 
1575 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1576 					struct kvm_memory_slot *slot,
1577 					gfn_t gfn_offset,
1578 					unsigned long mask);
1579 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
1580 
1581 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1582 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
1583 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1584 		      int *is_dirty, struct kvm_memory_slot **memslot);
1585 #endif
1586 
1587 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1588 			bool line_status);
1589 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1590 			    struct kvm_enable_cap *cap);
1591 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg);
1592 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
1593 			      unsigned long arg);
1594 
1595 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1596 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1597 
1598 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1599 				    struct kvm_translation *tr);
1600 
1601 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1602 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1603 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1604 				  struct kvm_sregs *sregs);
1605 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1606 				  struct kvm_sregs *sregs);
1607 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1608 				    struct kvm_mp_state *mp_state);
1609 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1610 				    struct kvm_mp_state *mp_state);
1611 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1612 					struct kvm_guest_debug *dbg);
1613 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
1614 
1615 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
1616 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
1617 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
1618 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
1619 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
1620 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
1621 
1622 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
1623 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state);
1624 #endif
1625 
1626 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
1627 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
1628 #else
1629 static inline void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) {}
1630 #endif
1631 
1632 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
1633 /*
1634  * kvm_arch_{enable,disable}_virtualization() are called on one CPU, under
1635  * kvm_usage_lock, immediately after/before 0=>1 and 1=>0 transitions of
1636  * kvm_usage_count, i.e. at the beginning of the generic hardware enabling
1637  * sequence, and at the end of the generic hardware disabling sequence.
1638  */
1639 void kvm_arch_enable_virtualization(void);
1640 void kvm_arch_disable_virtualization(void);
1641 /*
1642  * kvm_arch_{enable,disable}_virtualization_cpu() are called on "every" CPU to
1643  * do the actual twiddling of hardware bits.  The hooks are called on all
1644  * online CPUs when KVM enables/disabled virtualization, and on a single CPU
1645  * when that CPU is onlined/offlined (including for Resume/Suspend).
1646  */
1647 int kvm_arch_enable_virtualization_cpu(void);
1648 void kvm_arch_disable_virtualization_cpu(void);
1649 #endif
1650 bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu);
1651 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
1652 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
1653 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
1654 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
1655 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu);
1656 bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu);
1657 void kvm_arch_pre_destroy_vm(struct kvm *kvm);
1658 void kvm_arch_create_vm_debugfs(struct kvm *kvm);
1659 
1660 #ifndef __KVM_HAVE_ARCH_VM_ALLOC
1661 /*
1662  * All architectures that want to use vzalloc currently also
1663  * need their own kvm_arch_alloc_vm implementation.
1664  */
1665 static inline struct kvm *kvm_arch_alloc_vm(void)
1666 {
1667 	return kzalloc(sizeof(struct kvm), GFP_KERNEL_ACCOUNT);
1668 }
1669 #endif
1670 
1671 static inline void __kvm_arch_free_vm(struct kvm *kvm)
1672 {
1673 	kvfree(kvm);
1674 }
1675 
1676 #ifndef __KVM_HAVE_ARCH_VM_FREE
1677 static inline void kvm_arch_free_vm(struct kvm *kvm)
1678 {
1679 	__kvm_arch_free_vm(kvm);
1680 }
1681 #endif
1682 
1683 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
1684 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
1685 {
1686 	return -ENOTSUPP;
1687 }
1688 #else
1689 int kvm_arch_flush_remote_tlbs(struct kvm *kvm);
1690 #endif
1691 
1692 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
1693 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm,
1694 						    gfn_t gfn, u64 nr_pages)
1695 {
1696 	return -EOPNOTSUPP;
1697 }
1698 #else
1699 int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages);
1700 #endif
1701 
1702 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
1703 void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
1704 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
1705 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
1706 #else
1707 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
1708 {
1709 }
1710 
1711 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
1712 {
1713 }
1714 
1715 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
1716 {
1717 	return false;
1718 }
1719 #endif
1720 
1721 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
1722 {
1723 #ifdef __KVM_HAVE_ARCH_WQP
1724 	return vcpu->arch.waitp;
1725 #else
1726 	return &vcpu->wait;
1727 #endif
1728 }
1729 
1730 /*
1731  * Wake a vCPU if necessary, but don't do any stats/metadata updates.  Returns
1732  * true if the vCPU was blocking and was awakened, false otherwise.
1733  */
1734 static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
1735 {
1736 	return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
1737 }
1738 
1739 static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu)
1740 {
1741 	return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu));
1742 }
1743 
1744 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
1745 /*
1746  * returns true if the virtual interrupt controller is initialized and
1747  * ready to accept virtual IRQ. On some architectures the virtual interrupt
1748  * controller is dynamically instantiated and this is not always true.
1749  */
1750 bool kvm_arch_intc_initialized(struct kvm *kvm);
1751 #else
1752 static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
1753 {
1754 	return true;
1755 }
1756 #endif
1757 
1758 #ifdef CONFIG_GUEST_PERF_EVENTS
1759 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu);
1760 
1761 void __kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void),
1762 				   void (*mediated_pmi_handler)(void));
1763 
1764 static inline void kvm_register_perf_callbacks(void)
1765 {
1766 	__kvm_register_perf_callbacks(NULL, NULL);
1767 }
1768 
1769 void kvm_unregister_perf_callbacks(void);
1770 #else
1771 static inline void kvm_register_perf_callbacks(void) {}
1772 static inline void kvm_unregister_perf_callbacks(void) {}
1773 #endif /* CONFIG_GUEST_PERF_EVENTS */
1774 
1775 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
1776 void kvm_arch_destroy_vm(struct kvm *kvm);
1777 
1778 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
1779 
1780 struct kvm_irq_ack_notifier {
1781 	struct hlist_node link;
1782 	unsigned gsi;
1783 	void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1784 };
1785 
1786 int kvm_irq_map_gsi(struct kvm *kvm,
1787 		    struct kvm_kernel_irq_routing_entry *entries, int gsi);
1788 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1789 
1790 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1791 		bool line_status);
1792 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1793 		int irq_source_id, int level, bool line_status);
1794 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1795 			       struct kvm *kvm, int irq_source_id,
1796 			       int level, bool line_status);
1797 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1798 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1799 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1800 void kvm_register_irq_ack_notifier(struct kvm *kvm,
1801 				   struct kvm_irq_ack_notifier *kian);
1802 void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1803 				   struct kvm_irq_ack_notifier *kian);
1804 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1805 
1806 /*
1807  * Returns a pointer to the memslot if it contains gfn.
1808  * Otherwise returns NULL.
1809  */
1810 static inline struct kvm_memory_slot *
1811 try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1812 {
1813 	if (!slot)
1814 		return NULL;
1815 
1816 	if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages)
1817 		return slot;
1818 	else
1819 		return NULL;
1820 }
1821 
1822 /*
1823  * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL.
1824  *
1825  * With "approx" set returns the memslot also when the address falls
1826  * in a hole. In that case one of the memslots bordering the hole is
1827  * returned.
1828  */
1829 static inline struct kvm_memory_slot *
1830 search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1831 {
1832 	struct kvm_memory_slot *slot;
1833 	struct rb_node *node;
1834 	int idx = slots->node_idx;
1835 
1836 	slot = NULL;
1837 	for (node = slots->gfn_tree.rb_node; node; ) {
1838 		slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]);
1839 		if (gfn >= slot->base_gfn) {
1840 			if (gfn < slot->base_gfn + slot->npages)
1841 				return slot;
1842 			node = node->rb_right;
1843 		} else
1844 			node = node->rb_left;
1845 	}
1846 
1847 	return approx ? slot : NULL;
1848 }
1849 
1850 static inline struct kvm_memory_slot *
1851 ____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1852 {
1853 	struct kvm_memory_slot *slot;
1854 
1855 	slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot);
1856 	slot = try_get_memslot(slot, gfn);
1857 	if (slot)
1858 		return slot;
1859 
1860 	slot = search_memslots(slots, gfn, approx);
1861 	if (slot) {
1862 		atomic_long_set(&slots->last_used_slot, (unsigned long)slot);
1863 		return slot;
1864 	}
1865 
1866 	return NULL;
1867 }
1868 
1869 /*
1870  * __gfn_to_memslot() and its descendants are here to allow arch code to inline
1871  * the lookups in hot paths.  gfn_to_memslot() itself isn't here as an inline
1872  * because that would bloat other code too much.
1873  */
1874 static inline struct kvm_memory_slot *
1875 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1876 {
1877 	return ____gfn_to_memslot(slots, gfn, false);
1878 }
1879 
1880 static inline unsigned long
1881 __gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
1882 {
1883 	/*
1884 	 * The index was checked originally in search_memslots.  To avoid
1885 	 * that a malicious guest builds a Spectre gadget out of e.g. page
1886 	 * table walks, do not let the processor speculate loads outside
1887 	 * the guest's registered memslots.
1888 	 */
1889 	unsigned long offset = gfn - slot->base_gfn;
1890 	offset = array_index_nospec(offset, slot->npages);
1891 	return slot->userspace_addr + offset * PAGE_SIZE;
1892 }
1893 
1894 static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1895 {
1896 	return gfn_to_memslot(kvm, gfn)->id;
1897 }
1898 
1899 static inline gfn_t
1900 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1901 {
1902 	gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1903 
1904 	return slot->base_gfn + gfn_offset;
1905 }
1906 
1907 static inline gpa_t gfn_to_gpa(gfn_t gfn)
1908 {
1909 	return (gpa_t)gfn << PAGE_SHIFT;
1910 }
1911 
1912 static inline gfn_t gpa_to_gfn(gpa_t gpa)
1913 {
1914 	return (gfn_t)(gpa >> PAGE_SHIFT);
1915 }
1916 
1917 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1918 {
1919 	return (hpa_t)pfn << PAGE_SHIFT;
1920 }
1921 
1922 static inline bool kvm_is_gpa_in_memslot(struct kvm *kvm, gpa_t gpa)
1923 {
1924 	unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1925 
1926 	return !kvm_is_error_hva(hva);
1927 }
1928 
1929 static inline void kvm_gpc_mark_dirty_in_slot(struct gfn_to_pfn_cache *gpc)
1930 {
1931 	lockdep_assert_held(&gpc->lock);
1932 
1933 	if (!gpc->memslot)
1934 		return;
1935 
1936 	mark_page_dirty_in_slot(gpc->kvm, gpc->memslot, gpa_to_gfn(gpc->gpa));
1937 }
1938 
1939 enum kvm_stat_kind {
1940 	KVM_STAT_VM,
1941 	KVM_STAT_VCPU,
1942 };
1943 
1944 struct kvm_stat_data {
1945 	struct kvm *kvm;
1946 	const struct _kvm_stats_desc *desc;
1947 	enum kvm_stat_kind kind;
1948 };
1949 
1950 struct _kvm_stats_desc {
1951 	struct kvm_stats_desc desc;
1952 	char name[KVM_STATS_NAME_SIZE];
1953 };
1954 
1955 #define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz)		       \
1956 	.flags = type | unit | base |					       \
1957 		 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) |	       \
1958 		 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) |	       \
1959 		 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK),	       \
1960 	.exponent = exp,						       \
1961 	.size = sz,							       \
1962 	.bucket_size = bsz
1963 
1964 #define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz)	       \
1965 	{								       \
1966 		{							       \
1967 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1968 			.offset = offsetof(struct kvm_vm_stat, generic.stat)   \
1969 		},							       \
1970 		.name = #stat,						       \
1971 	}
1972 #define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz)	       \
1973 	{								       \
1974 		{							       \
1975 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1976 			.offset = offsetof(struct kvm_vcpu_stat, generic.stat) \
1977 		},							       \
1978 		.name = #stat,						       \
1979 	}
1980 #define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz)		       \
1981 	{								       \
1982 		{							       \
1983 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1984 			.offset = offsetof(struct kvm_vm_stat, stat)	       \
1985 		},							       \
1986 		.name = #stat,						       \
1987 	}
1988 #define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz)		       \
1989 	{								       \
1990 		{							       \
1991 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1992 			.offset = offsetof(struct kvm_vcpu_stat, stat)	       \
1993 		},							       \
1994 		.name = #stat,						       \
1995 	}
1996 /* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */
1997 #define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz)		       \
1998 	SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz)
1999 
2000 #define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent)	       \
2001 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE,		       \
2002 		unit, base, exponent, 1, 0)
2003 #define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent)		       \
2004 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT,			       \
2005 		unit, base, exponent, 1, 0)
2006 #define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent)		       \
2007 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK,			       \
2008 		unit, base, exponent, 1, 0)
2009 #define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz)     \
2010 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST,		       \
2011 		unit, base, exponent, sz, bsz)
2012 #define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz)	       \
2013 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST,		       \
2014 		unit, base, exponent, sz, 0)
2015 
2016 /* Cumulative counter, read/write */
2017 #define STATS_DESC_COUNTER(SCOPE, name)					       \
2018 	STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
2019 		KVM_STATS_BASE_POW10, 0)
2020 /* Instantaneous counter, read only */
2021 #define STATS_DESC_ICOUNTER(SCOPE, name)				       \
2022 	STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
2023 		KVM_STATS_BASE_POW10, 0)
2024 /* Peak counter, read/write */
2025 #define STATS_DESC_PCOUNTER(SCOPE, name)				       \
2026 	STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
2027 		KVM_STATS_BASE_POW10, 0)
2028 
2029 /* Instantaneous boolean value, read only */
2030 #define STATS_DESC_IBOOLEAN(SCOPE, name)				       \
2031 	STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_BOOLEAN,		       \
2032 		KVM_STATS_BASE_POW10, 0)
2033 /* Peak (sticky) boolean value, read/write */
2034 #define STATS_DESC_PBOOLEAN(SCOPE, name)				       \
2035 	STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_BOOLEAN,		       \
2036 		KVM_STATS_BASE_POW10, 0)
2037 
2038 /* Cumulative time in nanosecond */
2039 #define STATS_DESC_TIME_NSEC(SCOPE, name)				       \
2040 	STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
2041 		KVM_STATS_BASE_POW10, -9)
2042 /* Linear histogram for time in nanosecond */
2043 #define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz)		       \
2044 	STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
2045 		KVM_STATS_BASE_POW10, -9, sz, bsz)
2046 /* Logarithmic histogram for time in nanosecond */
2047 #define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz)			       \
2048 	STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
2049 		KVM_STATS_BASE_POW10, -9, sz)
2050 
2051 #define KVM_GENERIC_VM_STATS()						       \
2052 	STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush),		       \
2053 	STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests)
2054 
2055 #define KVM_GENERIC_VCPU_STATS()					       \
2056 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll),		       \
2057 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll),		       \
2058 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid),		       \
2059 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup),			       \
2060 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns),	       \
2061 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns),		       \
2062 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns),		       \
2063 	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist,     \
2064 			HALT_POLL_HIST_COUNT),				       \
2065 	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist,	       \
2066 			HALT_POLL_HIST_COUNT),				       \
2067 	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist,	       \
2068 			HALT_POLL_HIST_COUNT),				       \
2069 	STATS_DESC_IBOOLEAN(VCPU_GENERIC, blocking)
2070 
2071 ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header,
2072 		       const struct _kvm_stats_desc *desc,
2073 		       void *stats, size_t size_stats,
2074 		       char __user *user_buffer, size_t size, loff_t *offset);
2075 
2076 /**
2077  * kvm_stats_linear_hist_update() - Update bucket value for linear histogram
2078  * statistics data.
2079  *
2080  * @data: start address of the stats data
2081  * @size: the number of bucket of the stats data
2082  * @value: the new value used to update the linear histogram's bucket
2083  * @bucket_size: the size (width) of a bucket
2084  */
2085 static inline void kvm_stats_linear_hist_update(u64 *data, size_t size,
2086 						u64 value, size_t bucket_size)
2087 {
2088 	size_t index = div64_u64(value, bucket_size);
2089 
2090 	index = min(index, size - 1);
2091 	++data[index];
2092 }
2093 
2094 /**
2095  * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram
2096  * statistics data.
2097  *
2098  * @data: start address of the stats data
2099  * @size: the number of bucket of the stats data
2100  * @value: the new value used to update the logarithmic histogram's bucket
2101  */
2102 static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value)
2103 {
2104 	size_t index = fls64(value);
2105 
2106 	index = min(index, size - 1);
2107 	++data[index];
2108 }
2109 
2110 #define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize)		       \
2111 	kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize)
2112 #define KVM_STATS_LOG_HIST_UPDATE(array, value)				       \
2113 	kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value)
2114 
2115 
2116 extern const struct kvm_stats_header kvm_vm_stats_header;
2117 extern const struct _kvm_stats_desc kvm_vm_stats_desc[];
2118 extern const struct kvm_stats_header kvm_vcpu_stats_header;
2119 extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[];
2120 
2121 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
2122 static inline int mmu_invalidate_retry(struct kvm *kvm, unsigned long mmu_seq)
2123 {
2124 	if (unlikely(kvm->mmu_invalidate_in_progress))
2125 		return 1;
2126 	/*
2127 	 * Ensure the read of mmu_invalidate_in_progress happens before
2128 	 * the read of mmu_invalidate_seq.  This interacts with the
2129 	 * smp_wmb() in mmu_notifier_invalidate_range_end to make sure
2130 	 * that the caller either sees the old (non-zero) value of
2131 	 * mmu_invalidate_in_progress or the new (incremented) value of
2132 	 * mmu_invalidate_seq.
2133 	 *
2134 	 * PowerPC Book3s HV KVM calls this under a per-page lock rather
2135 	 * than under kvm->mmu_lock, for scalability, so can't rely on
2136 	 * kvm->mmu_lock to keep things ordered.
2137 	 */
2138 	smp_rmb();
2139 	if (kvm->mmu_invalidate_seq != mmu_seq)
2140 		return 1;
2141 	return 0;
2142 }
2143 
2144 static inline int mmu_invalidate_retry_gfn(struct kvm *kvm,
2145 					   unsigned long mmu_seq,
2146 					   gfn_t gfn)
2147 {
2148 	lockdep_assert_held(&kvm->mmu_lock);
2149 	/*
2150 	 * If mmu_invalidate_in_progress is non-zero, then the range maintained
2151 	 * by kvm_mmu_notifier_invalidate_range_start contains all addresses
2152 	 * that might be being invalidated. Note that it may include some false
2153 	 * positives, due to shortcuts when handing concurrent invalidations.
2154 	 */
2155 	if (unlikely(kvm->mmu_invalidate_in_progress)) {
2156 		/*
2157 		 * Dropping mmu_lock after bumping mmu_invalidate_in_progress
2158 		 * but before updating the range is a KVM bug.
2159 		 */
2160 		if (WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA ||
2161 				 kvm->mmu_invalidate_range_end == INVALID_GPA))
2162 			return 1;
2163 
2164 		if (gfn >= kvm->mmu_invalidate_range_start &&
2165 		    gfn < kvm->mmu_invalidate_range_end)
2166 			return 1;
2167 	}
2168 
2169 	if (kvm->mmu_invalidate_seq != mmu_seq)
2170 		return 1;
2171 	return 0;
2172 }
2173 
2174 /*
2175  * This lockless version of the range-based retry check *must* be paired with a
2176  * call to the locked version after acquiring mmu_lock, i.e. this is safe to
2177  * use only as a pre-check to avoid contending mmu_lock.  This version *will*
2178  * get false negatives and false positives.
2179  */
2180 static inline bool mmu_invalidate_retry_gfn_unsafe(struct kvm *kvm,
2181 						   unsigned long mmu_seq,
2182 						   gfn_t gfn)
2183 {
2184 	/*
2185 	 * Use READ_ONCE() to ensure the in-progress flag and sequence counter
2186 	 * are always read from memory, e.g. so that checking for retry in a
2187 	 * loop won't result in an infinite retry loop.  Don't force loads for
2188 	 * start+end, as the key to avoiding infinite retry loops is observing
2189 	 * the 1=>0 transition of in-progress, i.e. getting false negatives
2190 	 * due to stale start+end values is acceptable.
2191 	 */
2192 	if (unlikely(READ_ONCE(kvm->mmu_invalidate_in_progress)) &&
2193 	    gfn >= kvm->mmu_invalidate_range_start &&
2194 	    gfn < kvm->mmu_invalidate_range_end)
2195 		return true;
2196 
2197 	return READ_ONCE(kvm->mmu_invalidate_seq) != mmu_seq;
2198 }
2199 #endif
2200 
2201 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2202 
2203 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
2204 
2205 bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
2206 int kvm_set_irq_routing(struct kvm *kvm,
2207 			const struct kvm_irq_routing_entry *entries,
2208 			unsigned nr,
2209 			unsigned flags);
2210 int kvm_init_irq_routing(struct kvm *kvm);
2211 int kvm_set_routing_entry(struct kvm *kvm,
2212 			  struct kvm_kernel_irq_routing_entry *e,
2213 			  const struct kvm_irq_routing_entry *ue);
2214 void kvm_free_irq_routing(struct kvm *kvm);
2215 
2216 #else
2217 
2218 static inline void kvm_free_irq_routing(struct kvm *kvm) {}
2219 
2220 static inline int kvm_init_irq_routing(struct kvm *kvm)
2221 {
2222 	return 0;
2223 }
2224 
2225 #endif
2226 
2227 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
2228 
2229 void kvm_eventfd_init(struct kvm *kvm);
2230 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
2231 
2232 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2233 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
2234 void kvm_irqfd_release(struct kvm *kvm);
2235 bool kvm_notify_irqfd_resampler(struct kvm *kvm,
2236 				unsigned int irqchip,
2237 				unsigned int pin);
2238 void kvm_irq_routing_update(struct kvm *);
2239 #else
2240 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
2241 {
2242 	return -EINVAL;
2243 }
2244 
2245 static inline void kvm_irqfd_release(struct kvm *kvm) {}
2246 
2247 static inline bool kvm_notify_irqfd_resampler(struct kvm *kvm,
2248 					      unsigned int irqchip,
2249 					      unsigned int pin)
2250 {
2251 	return false;
2252 }
2253 #endif /* CONFIG_HAVE_KVM_IRQCHIP */
2254 
2255 void kvm_arch_irq_routing_update(struct kvm *kvm);
2256 
2257 static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu)
2258 {
2259 	/*
2260 	 * Ensure the rest of the request is published to kvm_check_request's
2261 	 * caller.  Paired with the smp_mb__after_atomic in kvm_check_request.
2262 	 */
2263 	smp_wmb();
2264 	set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2265 }
2266 
2267 static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
2268 {
2269 	/*
2270 	 * Request that don't require vCPU action should never be logged in
2271 	 * vcpu->requests.  The vCPU won't clear the request, so it will stay
2272 	 * logged indefinitely and prevent the vCPU from entering the guest.
2273 	 */
2274 	BUILD_BUG_ON(!__builtin_constant_p(req) ||
2275 		     (req & KVM_REQUEST_NO_ACTION));
2276 
2277 	__kvm_make_request(req, vcpu);
2278 }
2279 
2280 #ifndef CONFIG_S390
2281 static inline void kvm_make_request_and_kick(int req, struct kvm_vcpu *vcpu)
2282 {
2283 	kvm_make_request(req, vcpu);
2284 	__kvm_vcpu_kick(vcpu, req & KVM_REQUEST_WAIT);
2285 }
2286 #endif
2287 
2288 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
2289 {
2290 	return READ_ONCE(vcpu->requests);
2291 }
2292 
2293 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
2294 {
2295 	return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2296 }
2297 
2298 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
2299 {
2300 	clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2301 }
2302 
2303 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
2304 {
2305 	if (kvm_test_request(req, vcpu)) {
2306 		kvm_clear_request(req, vcpu);
2307 
2308 		/*
2309 		 * Ensure the rest of the request is visible to kvm_check_request's
2310 		 * caller.  Paired with the smp_wmb in kvm_make_request.
2311 		 */
2312 		smp_mb__after_atomic();
2313 		return true;
2314 	} else {
2315 		return false;
2316 	}
2317 }
2318 
2319 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
2320 extern bool enable_virt_at_load;
2321 extern bool kvm_rebooting;
2322 #endif
2323 
2324 extern unsigned int halt_poll_ns;
2325 extern unsigned int halt_poll_ns_grow;
2326 extern unsigned int halt_poll_ns_grow_start;
2327 extern unsigned int halt_poll_ns_shrink;
2328 
2329 struct kvm_device {
2330 	const struct kvm_device_ops *ops;
2331 	struct kvm *kvm;
2332 	void *private;
2333 	struct list_head vm_node;
2334 };
2335 
2336 /* create, destroy, and name are mandatory */
2337 struct kvm_device_ops {
2338 	const char *name;
2339 
2340 	/*
2341 	 * create is called holding kvm->lock and any operations not suitable
2342 	 * to do while holding the lock should be deferred to init (see
2343 	 * below).
2344 	 */
2345 	int (*create)(struct kvm_device *dev, u32 type);
2346 
2347 	/*
2348 	 * init is called after create if create is successful and is called
2349 	 * outside of holding kvm->lock.
2350 	 */
2351 	void (*init)(struct kvm_device *dev);
2352 
2353 	/*
2354 	 * Destroy is responsible for freeing dev.
2355 	 *
2356 	 * Destroy may be called before or after destructors are called
2357 	 * on emulated I/O regions, depending on whether a reference is
2358 	 * held by a vcpu or other kvm component that gets destroyed
2359 	 * after the emulated I/O.
2360 	 */
2361 	void (*destroy)(struct kvm_device *dev);
2362 
2363 	/*
2364 	 * Release is an alternative method to free the device. It is
2365 	 * called when the device file descriptor is closed. Once
2366 	 * release is called, the destroy method will not be called
2367 	 * anymore as the device is removed from the device list of
2368 	 * the VM. kvm->lock is held.
2369 	 */
2370 	void (*release)(struct kvm_device *dev);
2371 
2372 	int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2373 	int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2374 	int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2375 	long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
2376 		      unsigned long arg);
2377 	int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
2378 };
2379 
2380 struct kvm_device *kvm_device_from_filp(struct file *filp);
2381 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
2382 void kvm_unregister_device_ops(u32 type);
2383 
2384 extern struct kvm_device_ops kvm_mpic_ops;
2385 extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
2386 extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
2387 
2388 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2389 
2390 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2391 {
2392 	vcpu->spin_loop.in_spin_loop = val;
2393 }
2394 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2395 {
2396 	vcpu->spin_loop.dy_eligible = val;
2397 }
2398 
2399 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2400 
2401 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2402 {
2403 }
2404 
2405 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2406 {
2407 }
2408 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2409 
2410 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
2411 {
2412 	return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
2413 		!(memslot->flags & KVM_MEMSLOT_INVALID));
2414 }
2415 
2416 struct kvm_vcpu *kvm_get_running_vcpu(void);
2417 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
2418 
2419 #if IS_ENABLED(CONFIG_HAVE_KVM_IRQ_BYPASS)
2420 struct kvm_kernel_irqfd;
2421 
2422 bool kvm_arch_has_irq_bypass(void);
2423 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
2424 			   struct irq_bypass_producer *);
2425 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
2426 			   struct irq_bypass_producer *);
2427 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
2428 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
2429 void kvm_arch_update_irqfd_routing(struct kvm_kernel_irqfd *irqfd,
2430 				   struct kvm_kernel_irq_routing_entry *old,
2431 				   struct kvm_kernel_irq_routing_entry *new);
2432 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
2433 
2434 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
2435 /* If we wakeup during the poll time, was it a sucessful poll? */
2436 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2437 {
2438 	return vcpu->valid_wakeup;
2439 }
2440 
2441 #else
2442 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2443 {
2444 	return true;
2445 }
2446 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
2447 
2448 #ifdef CONFIG_HAVE_KVM_NO_POLL
2449 /* Callback that tells if we must not poll */
2450 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
2451 #else
2452 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
2453 {
2454 	return false;
2455 }
2456 #endif /* CONFIG_HAVE_KVM_NO_POLL */
2457 
2458 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm);
2459 
2460 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
2461 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
2462 #else
2463 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
2464 {
2465 	return 0;
2466 }
2467 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
2468 
2469 #ifdef CONFIG_VIRT_XFER_TO_GUEST_WORK
2470 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
2471 {
2472 	vcpu->run->exit_reason = KVM_EXIT_INTR;
2473 	vcpu->stat.signal_exits++;
2474 }
2475 
2476 static inline int kvm_xfer_to_guest_mode_handle_work(struct kvm_vcpu *vcpu)
2477 {
2478 	int r = xfer_to_guest_mode_handle_work();
2479 
2480 	if (r) {
2481 		WARN_ON_ONCE(r != -EINTR);
2482 		kvm_handle_signal_exit(vcpu);
2483 	}
2484 	return r;
2485 }
2486 #endif /* CONFIG_VIRT_XFER_TO_GUEST_WORK */
2487 
2488 /*
2489  * If more than one page is being (un)accounted, @virt must be the address of
2490  * the first page of a block of pages what were allocated together (i.e
2491  * accounted together).
2492  *
2493  * kvm_account_pgtable_pages() is thread-safe because mod_lruvec_page_state()
2494  * is thread-safe.
2495  */
2496 static inline void kvm_account_pgtable_pages(void *virt, int nr)
2497 {
2498 	mod_lruvec_page_state(virt_to_page(virt), NR_SECONDARY_PAGETABLE, nr);
2499 }
2500 
2501 /*
2502  * This defines how many reserved entries we want to keep before we
2503  * kick the vcpu to the userspace to avoid dirty ring full.  This
2504  * value can be tuned to higher if e.g. PML is enabled on the host.
2505  */
2506 #define  KVM_DIRTY_RING_RSVD_ENTRIES  64
2507 
2508 /* Max number of entries allowed for each kvm dirty ring */
2509 #define  KVM_DIRTY_RING_MAX_ENTRIES  65536
2510 
2511 static inline void kvm_prepare_memory_fault_exit(struct kvm_vcpu *vcpu,
2512 						 gpa_t gpa, gpa_t size,
2513 						 bool is_write, bool is_exec,
2514 						 bool is_private)
2515 {
2516 	vcpu->run->exit_reason = KVM_EXIT_MEMORY_FAULT;
2517 	vcpu->run->memory_fault.gpa = gpa;
2518 	vcpu->run->memory_fault.size = size;
2519 
2520 	/* RWX flags are not (yet) defined or communicated to userspace. */
2521 	vcpu->run->memory_fault.flags = 0;
2522 	if (is_private)
2523 		vcpu->run->memory_fault.flags |= KVM_MEMORY_EXIT_FLAG_PRIVATE;
2524 }
2525 
2526 static inline bool kvm_memslot_is_gmem_only(const struct kvm_memory_slot *slot)
2527 {
2528 	if (!IS_ENABLED(CONFIG_KVM_GUEST_MEMFD))
2529 		return false;
2530 
2531 	return slot->flags & KVM_MEMSLOT_GMEM_ONLY;
2532 }
2533 
2534 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
2535 static inline unsigned long kvm_get_memory_attributes(struct kvm *kvm, gfn_t gfn)
2536 {
2537 	return xa_to_value(xa_load(&kvm->mem_attr_array, gfn));
2538 }
2539 
2540 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2541 				     unsigned long mask, unsigned long attrs);
2542 bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm,
2543 					struct kvm_gfn_range *range);
2544 bool kvm_arch_post_set_memory_attributes(struct kvm *kvm,
2545 					 struct kvm_gfn_range *range);
2546 
2547 static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn)
2548 {
2549 	return kvm_get_memory_attributes(kvm, gfn) & KVM_MEMORY_ATTRIBUTE_PRIVATE;
2550 }
2551 #else
2552 static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn)
2553 {
2554 	return false;
2555 }
2556 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
2557 
2558 #ifdef CONFIG_KVM_GUEST_MEMFD
2559 int kvm_gmem_get_pfn(struct kvm *kvm, struct kvm_memory_slot *slot,
2560 		     gfn_t gfn, kvm_pfn_t *pfn, struct page **page,
2561 		     int *max_order);
2562 #else
2563 static inline int kvm_gmem_get_pfn(struct kvm *kvm,
2564 				   struct kvm_memory_slot *slot, gfn_t gfn,
2565 				   kvm_pfn_t *pfn, struct page **page,
2566 				   int *max_order)
2567 {
2568 	KVM_BUG_ON(1, kvm);
2569 	return -EIO;
2570 }
2571 #endif /* CONFIG_KVM_GUEST_MEMFD */
2572 
2573 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE
2574 int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order);
2575 #endif
2576 
2577 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_POPULATE
2578 /**
2579  * kvm_gmem_populate() - Populate/prepare a GPA range with guest data
2580  *
2581  * @kvm: KVM instance
2582  * @gfn: starting GFN to be populated
2583  * @src: userspace-provided buffer containing data to copy into GFN range
2584  *       (passed to @post_populate, and incremented on each iteration
2585  *       if not NULL). Must be page-aligned.
2586  * @npages: number of pages to copy from userspace-buffer
2587  * @post_populate: callback to issue for each gmem page that backs the GPA
2588  *                 range
2589  * @opaque: opaque data to pass to @post_populate callback
2590  *
2591  * This is primarily intended for cases where a gmem-backed GPA range needs
2592  * to be initialized with userspace-provided data prior to being mapped into
2593  * the guest as a private page. This should be called with the slots->lock
2594  * held so that caller-enforced invariants regarding the expected memory
2595  * attributes of the GPA range do not race with KVM_SET_MEMORY_ATTRIBUTES.
2596  *
2597  * Returns the number of pages that were populated.
2598  */
2599 typedef int (*kvm_gmem_populate_cb)(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2600 				    struct page *page, void *opaque);
2601 
2602 long kvm_gmem_populate(struct kvm *kvm, gfn_t gfn, void __user *src, long npages,
2603 		       kvm_gmem_populate_cb post_populate, void *opaque);
2604 #endif
2605 
2606 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE
2607 void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end);
2608 #endif
2609 
2610 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY
2611 long kvm_arch_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu,
2612 				    struct kvm_pre_fault_memory *range);
2613 #endif
2614 
2615 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
2616 int kvm_enable_virtualization(void);
2617 void kvm_disable_virtualization(void);
2618 #else
2619 static inline int kvm_enable_virtualization(void) { return 0; }
2620 static inline void kvm_disable_virtualization(void) { }
2621 #endif
2622 
2623 #endif
2624