1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5 */
6
7 #include <linux/acpi.h>
8 #include <linux/mman.h>
9 #include <linux/kvm_host.h>
10 #include <linux/io.h>
11 #include <linux/hugetlb.h>
12 #include <linux/sched/signal.h>
13 #include <trace/events/kvm.h>
14 #include <asm/acpi.h>
15 #include <asm/pgalloc.h>
16 #include <asm/cacheflush.h>
17 #include <asm/kvm_arm.h>
18 #include <asm/kvm_mmu.h>
19 #include <asm/kvm_pgtable.h>
20 #include <asm/kvm_pkvm.h>
21 #include <asm/kvm_asm.h>
22 #include <asm/kvm_emulate.h>
23 #include <asm/virt.h>
24
25 #include "trace.h"
26
27 static struct kvm_pgtable *hyp_pgtable;
28 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
29
30 static unsigned long __ro_after_init hyp_idmap_start;
31 static unsigned long __ro_after_init hyp_idmap_end;
32 static phys_addr_t __ro_after_init hyp_idmap_vector;
33
34 u32 __ro_after_init __hyp_va_bits;
35
36 static unsigned long __ro_after_init io_map_base;
37
38 #define KVM_PGT_FN(fn) (!is_protected_kvm_enabled() ? fn : p ## fn)
39
__stage2_range_addr_end(phys_addr_t addr,phys_addr_t end,phys_addr_t size)40 static phys_addr_t __stage2_range_addr_end(phys_addr_t addr, phys_addr_t end,
41 phys_addr_t size)
42 {
43 phys_addr_t boundary = ALIGN_DOWN(addr + size, size);
44
45 return (boundary - 1 < end - 1) ? boundary : end;
46 }
47
stage2_range_addr_end(phys_addr_t addr,phys_addr_t end)48 static phys_addr_t stage2_range_addr_end(phys_addr_t addr, phys_addr_t end)
49 {
50 phys_addr_t size = kvm_granule_size(KVM_PGTABLE_MIN_BLOCK_LEVEL);
51
52 return __stage2_range_addr_end(addr, end, size);
53 }
54
55 /*
56 * Release kvm_mmu_lock periodically if the memory region is large. Otherwise,
57 * we may see kernel panics with CONFIG_DETECT_HUNG_TASK,
58 * CONFIG_LOCKUP_DETECTOR, CONFIG_LOCKDEP. Additionally, holding the lock too
59 * long will also starve other vCPUs. We have to also make sure that the page
60 * tables are not freed while we released the lock.
61 */
stage2_apply_range(struct kvm_s2_mmu * mmu,phys_addr_t addr,phys_addr_t end,int (* fn)(struct kvm_pgtable *,u64,u64),bool resched)62 static int stage2_apply_range(struct kvm_s2_mmu *mmu, phys_addr_t addr,
63 phys_addr_t end,
64 int (*fn)(struct kvm_pgtable *, u64, u64),
65 bool resched)
66 {
67 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
68 int ret;
69 u64 next;
70
71 do {
72 struct kvm_pgtable *pgt = mmu->pgt;
73 if (!pgt)
74 return -EINVAL;
75
76 next = stage2_range_addr_end(addr, end);
77 ret = fn(pgt, addr, next - addr);
78 if (ret)
79 break;
80
81 if (resched && next != end)
82 cond_resched_rwlock_write(&kvm->mmu_lock);
83 } while (addr = next, addr != end);
84
85 return ret;
86 }
87
88 #define stage2_apply_range_resched(mmu, addr, end, fn) \
89 stage2_apply_range(mmu, addr, end, fn, true)
90
91 /*
92 * Get the maximum number of page-tables pages needed to split a range
93 * of blocks into PAGE_SIZE PTEs. It assumes the range is already
94 * mapped at level 2, or at level 1 if allowed.
95 */
kvm_mmu_split_nr_page_tables(u64 range)96 static int kvm_mmu_split_nr_page_tables(u64 range)
97 {
98 int n = 0;
99
100 if (KVM_PGTABLE_MIN_BLOCK_LEVEL < 2)
101 n += DIV_ROUND_UP(range, PUD_SIZE);
102 n += DIV_ROUND_UP(range, PMD_SIZE);
103 return n;
104 }
105
need_split_memcache_topup_or_resched(struct kvm * kvm)106 static bool need_split_memcache_topup_or_resched(struct kvm *kvm)
107 {
108 struct kvm_mmu_memory_cache *cache;
109 u64 chunk_size, min;
110
111 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock))
112 return true;
113
114 chunk_size = kvm->arch.mmu.split_page_chunk_size;
115 min = kvm_mmu_split_nr_page_tables(chunk_size);
116 cache = &kvm->arch.mmu.split_page_cache;
117 return kvm_mmu_memory_cache_nr_free_objects(cache) < min;
118 }
119
kvm_mmu_split_huge_pages(struct kvm * kvm,phys_addr_t addr,phys_addr_t end)120 static int kvm_mmu_split_huge_pages(struct kvm *kvm, phys_addr_t addr,
121 phys_addr_t end)
122 {
123 struct kvm_mmu_memory_cache *cache;
124 struct kvm_pgtable *pgt;
125 int ret, cache_capacity;
126 u64 next, chunk_size;
127
128 lockdep_assert_held_write(&kvm->mmu_lock);
129
130 chunk_size = kvm->arch.mmu.split_page_chunk_size;
131 cache_capacity = kvm_mmu_split_nr_page_tables(chunk_size);
132
133 if (chunk_size == 0)
134 return 0;
135
136 cache = &kvm->arch.mmu.split_page_cache;
137
138 do {
139 if (need_split_memcache_topup_or_resched(kvm)) {
140 write_unlock(&kvm->mmu_lock);
141 cond_resched();
142 /* Eager page splitting is best-effort. */
143 ret = __kvm_mmu_topup_memory_cache(cache,
144 cache_capacity,
145 cache_capacity);
146 write_lock(&kvm->mmu_lock);
147 if (ret)
148 break;
149 }
150
151 pgt = kvm->arch.mmu.pgt;
152 if (!pgt)
153 return -EINVAL;
154
155 next = __stage2_range_addr_end(addr, end, chunk_size);
156 ret = KVM_PGT_FN(kvm_pgtable_stage2_split)(pgt, addr, next - addr, cache);
157 if (ret)
158 break;
159 } while (addr = next, addr != end);
160
161 return ret;
162 }
163
memslot_is_logging(struct kvm_memory_slot * memslot)164 static bool memslot_is_logging(struct kvm_memory_slot *memslot)
165 {
166 return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
167 }
168
169 /**
170 * kvm_arch_flush_remote_tlbs() - flush all VM TLB entries for v7/8
171 * @kvm: pointer to kvm structure.
172 *
173 * Interface to HYP function to flush all VM TLB entries
174 */
kvm_arch_flush_remote_tlbs(struct kvm * kvm)175 int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
176 {
177 if (is_protected_kvm_enabled())
178 kvm_call_hyp_nvhe(__pkvm_tlb_flush_vmid, kvm->arch.pkvm.handle);
179 else
180 kvm_call_hyp(__kvm_tlb_flush_vmid, &kvm->arch.mmu);
181 return 0;
182 }
183
kvm_arch_flush_remote_tlbs_range(struct kvm * kvm,gfn_t gfn,u64 nr_pages)184 int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm,
185 gfn_t gfn, u64 nr_pages)
186 {
187 u64 size = nr_pages << PAGE_SHIFT;
188 u64 addr = gfn << PAGE_SHIFT;
189
190 if (is_protected_kvm_enabled())
191 kvm_call_hyp_nvhe(__pkvm_tlb_flush_vmid, kvm->arch.pkvm.handle);
192 else
193 kvm_tlb_flush_vmid_range(&kvm->arch.mmu, addr, size);
194 return 0;
195 }
196
stage2_memcache_zalloc_page(void * arg)197 static void *stage2_memcache_zalloc_page(void *arg)
198 {
199 struct kvm_mmu_memory_cache *mc = arg;
200 void *virt;
201
202 /* Allocated with __GFP_ZERO, so no need to zero */
203 virt = kvm_mmu_memory_cache_alloc(mc);
204 if (virt)
205 kvm_account_pgtable_pages(virt, 1);
206 return virt;
207 }
208
kvm_host_zalloc_pages_exact(size_t size)209 static void *kvm_host_zalloc_pages_exact(size_t size)
210 {
211 return alloc_pages_exact(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
212 }
213
kvm_s2_zalloc_pages_exact(size_t size)214 static void *kvm_s2_zalloc_pages_exact(size_t size)
215 {
216 void *virt = kvm_host_zalloc_pages_exact(size);
217
218 if (virt)
219 kvm_account_pgtable_pages(virt, (size >> PAGE_SHIFT));
220 return virt;
221 }
222
kvm_s2_free_pages_exact(void * virt,size_t size)223 static void kvm_s2_free_pages_exact(void *virt, size_t size)
224 {
225 kvm_account_pgtable_pages(virt, -(size >> PAGE_SHIFT));
226 free_pages_exact(virt, size);
227 }
228
229 static struct kvm_pgtable_mm_ops kvm_s2_mm_ops;
230
stage2_free_unlinked_table_rcu_cb(struct rcu_head * head)231 static void stage2_free_unlinked_table_rcu_cb(struct rcu_head *head)
232 {
233 struct page *page = container_of(head, struct page, rcu_head);
234 void *pgtable = page_to_virt(page);
235 s8 level = page_private(page);
236
237 KVM_PGT_FN(kvm_pgtable_stage2_free_unlinked)(&kvm_s2_mm_ops, pgtable, level);
238 }
239
stage2_free_unlinked_table(void * addr,s8 level)240 static void stage2_free_unlinked_table(void *addr, s8 level)
241 {
242 struct page *page = virt_to_page(addr);
243
244 set_page_private(page, (unsigned long)level);
245 call_rcu(&page->rcu_head, stage2_free_unlinked_table_rcu_cb);
246 }
247
kvm_host_get_page(void * addr)248 static void kvm_host_get_page(void *addr)
249 {
250 get_page(virt_to_page(addr));
251 }
252
kvm_host_put_page(void * addr)253 static void kvm_host_put_page(void *addr)
254 {
255 put_page(virt_to_page(addr));
256 }
257
kvm_s2_put_page(void * addr)258 static void kvm_s2_put_page(void *addr)
259 {
260 struct page *p = virt_to_page(addr);
261 /* Dropping last refcount, the page will be freed */
262 if (page_count(p) == 1)
263 kvm_account_pgtable_pages(addr, -1);
264 put_page(p);
265 }
266
kvm_host_page_count(void * addr)267 static int kvm_host_page_count(void *addr)
268 {
269 return page_count(virt_to_page(addr));
270 }
271
kvm_host_pa(void * addr)272 static phys_addr_t kvm_host_pa(void *addr)
273 {
274 return __pa(addr);
275 }
276
kvm_host_va(phys_addr_t phys)277 static void *kvm_host_va(phys_addr_t phys)
278 {
279 return __va(phys);
280 }
281
clean_dcache_guest_page(void * va,size_t size)282 static void clean_dcache_guest_page(void *va, size_t size)
283 {
284 __clean_dcache_guest_page(va, size);
285 }
286
invalidate_icache_guest_page(void * va,size_t size)287 static void invalidate_icache_guest_page(void *va, size_t size)
288 {
289 __invalidate_icache_guest_page(va, size);
290 }
291
292 /*
293 * Unmapping vs dcache management:
294 *
295 * If a guest maps certain memory pages as uncached, all writes will
296 * bypass the data cache and go directly to RAM. However, the CPUs
297 * can still speculate reads (not writes) and fill cache lines with
298 * data.
299 *
300 * Those cache lines will be *clean* cache lines though, so a
301 * clean+invalidate operation is equivalent to an invalidate
302 * operation, because no cache lines are marked dirty.
303 *
304 * Those clean cache lines could be filled prior to an uncached write
305 * by the guest, and the cache coherent IO subsystem would therefore
306 * end up writing old data to disk.
307 *
308 * This is why right after unmapping a page/section and invalidating
309 * the corresponding TLBs, we flush to make sure the IO subsystem will
310 * never hit in the cache.
311 *
312 * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
313 * we then fully enforce cacheability of RAM, no matter what the guest
314 * does.
315 */
316 /**
317 * __unmap_stage2_range -- Clear stage2 page table entries to unmap a range
318 * @mmu: The KVM stage-2 MMU pointer
319 * @start: The intermediate physical base address of the range to unmap
320 * @size: The size of the area to unmap
321 * @may_block: Whether or not we are permitted to block
322 *
323 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must
324 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
325 * destroying the VM), otherwise another faulting VCPU may come in and mess
326 * with things behind our backs.
327 */
__unmap_stage2_range(struct kvm_s2_mmu * mmu,phys_addr_t start,u64 size,bool may_block)328 static void __unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size,
329 bool may_block)
330 {
331 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
332 phys_addr_t end = start + size;
333
334 lockdep_assert_held_write(&kvm->mmu_lock);
335 WARN_ON(size & ~PAGE_MASK);
336 WARN_ON(stage2_apply_range(mmu, start, end, KVM_PGT_FN(kvm_pgtable_stage2_unmap),
337 may_block));
338 }
339
kvm_stage2_unmap_range(struct kvm_s2_mmu * mmu,phys_addr_t start,u64 size,bool may_block)340 void kvm_stage2_unmap_range(struct kvm_s2_mmu *mmu, phys_addr_t start,
341 u64 size, bool may_block)
342 {
343 __unmap_stage2_range(mmu, start, size, may_block);
344 }
345
kvm_stage2_flush_range(struct kvm_s2_mmu * mmu,phys_addr_t addr,phys_addr_t end)346 void kvm_stage2_flush_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end)
347 {
348 stage2_apply_range_resched(mmu, addr, end, KVM_PGT_FN(kvm_pgtable_stage2_flush));
349 }
350
stage2_flush_memslot(struct kvm * kvm,struct kvm_memory_slot * memslot)351 static void stage2_flush_memslot(struct kvm *kvm,
352 struct kvm_memory_slot *memslot)
353 {
354 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
355 phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
356
357 kvm_stage2_flush_range(&kvm->arch.mmu, addr, end);
358 }
359
360 /**
361 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
362 * @kvm: The struct kvm pointer
363 *
364 * Go through the stage 2 page tables and invalidate any cache lines
365 * backing memory already mapped to the VM.
366 */
stage2_flush_vm(struct kvm * kvm)367 static void stage2_flush_vm(struct kvm *kvm)
368 {
369 struct kvm_memslots *slots;
370 struct kvm_memory_slot *memslot;
371 int idx, bkt;
372
373 idx = srcu_read_lock(&kvm->srcu);
374 write_lock(&kvm->mmu_lock);
375
376 slots = kvm_memslots(kvm);
377 kvm_for_each_memslot(memslot, bkt, slots)
378 stage2_flush_memslot(kvm, memslot);
379
380 kvm_nested_s2_flush(kvm);
381
382 write_unlock(&kvm->mmu_lock);
383 srcu_read_unlock(&kvm->srcu, idx);
384 }
385
386 /**
387 * free_hyp_pgds - free Hyp-mode page tables
388 */
free_hyp_pgds(void)389 void __init free_hyp_pgds(void)
390 {
391 mutex_lock(&kvm_hyp_pgd_mutex);
392 if (hyp_pgtable) {
393 kvm_pgtable_hyp_destroy(hyp_pgtable);
394 kfree(hyp_pgtable);
395 hyp_pgtable = NULL;
396 }
397 mutex_unlock(&kvm_hyp_pgd_mutex);
398 }
399
kvm_host_owns_hyp_mappings(void)400 static bool kvm_host_owns_hyp_mappings(void)
401 {
402 if (is_kernel_in_hyp_mode())
403 return false;
404
405 if (static_branch_likely(&kvm_protected_mode_initialized))
406 return false;
407
408 /*
409 * This can happen at boot time when __create_hyp_mappings() is called
410 * after the hyp protection has been enabled, but the static key has
411 * not been flipped yet.
412 */
413 if (!hyp_pgtable && is_protected_kvm_enabled())
414 return false;
415
416 WARN_ON(!hyp_pgtable);
417
418 return true;
419 }
420
__create_hyp_mappings(unsigned long start,unsigned long size,unsigned long phys,enum kvm_pgtable_prot prot)421 int __create_hyp_mappings(unsigned long start, unsigned long size,
422 unsigned long phys, enum kvm_pgtable_prot prot)
423 {
424 int err;
425
426 if (WARN_ON(!kvm_host_owns_hyp_mappings()))
427 return -EINVAL;
428
429 mutex_lock(&kvm_hyp_pgd_mutex);
430 err = kvm_pgtable_hyp_map(hyp_pgtable, start, size, phys, prot);
431 mutex_unlock(&kvm_hyp_pgd_mutex);
432
433 return err;
434 }
435
kvm_kaddr_to_phys(void * kaddr)436 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
437 {
438 if (!is_vmalloc_addr(kaddr)) {
439 BUG_ON(!virt_addr_valid(kaddr));
440 return __pa(kaddr);
441 } else {
442 return page_to_phys(vmalloc_to_page(kaddr)) +
443 offset_in_page(kaddr);
444 }
445 }
446
447 struct hyp_shared_pfn {
448 u64 pfn;
449 int count;
450 struct rb_node node;
451 };
452
453 static DEFINE_MUTEX(hyp_shared_pfns_lock);
454 static struct rb_root hyp_shared_pfns = RB_ROOT;
455
find_shared_pfn(u64 pfn,struct rb_node *** node,struct rb_node ** parent)456 static struct hyp_shared_pfn *find_shared_pfn(u64 pfn, struct rb_node ***node,
457 struct rb_node **parent)
458 {
459 struct hyp_shared_pfn *this;
460
461 *node = &hyp_shared_pfns.rb_node;
462 *parent = NULL;
463 while (**node) {
464 this = container_of(**node, struct hyp_shared_pfn, node);
465 *parent = **node;
466 if (this->pfn < pfn)
467 *node = &((**node)->rb_left);
468 else if (this->pfn > pfn)
469 *node = &((**node)->rb_right);
470 else
471 return this;
472 }
473
474 return NULL;
475 }
476
share_pfn_hyp(u64 pfn)477 static int share_pfn_hyp(u64 pfn)
478 {
479 struct rb_node **node, *parent;
480 struct hyp_shared_pfn *this;
481 int ret = 0;
482
483 mutex_lock(&hyp_shared_pfns_lock);
484 this = find_shared_pfn(pfn, &node, &parent);
485 if (this) {
486 this->count++;
487 goto unlock;
488 }
489
490 this = kzalloc(sizeof(*this), GFP_KERNEL);
491 if (!this) {
492 ret = -ENOMEM;
493 goto unlock;
494 }
495
496 this->pfn = pfn;
497 this->count = 1;
498 rb_link_node(&this->node, parent, node);
499 rb_insert_color(&this->node, &hyp_shared_pfns);
500 ret = kvm_call_hyp_nvhe(__pkvm_host_share_hyp, pfn, 1);
501 unlock:
502 mutex_unlock(&hyp_shared_pfns_lock);
503
504 return ret;
505 }
506
unshare_pfn_hyp(u64 pfn)507 static int unshare_pfn_hyp(u64 pfn)
508 {
509 struct rb_node **node, *parent;
510 struct hyp_shared_pfn *this;
511 int ret = 0;
512
513 mutex_lock(&hyp_shared_pfns_lock);
514 this = find_shared_pfn(pfn, &node, &parent);
515 if (WARN_ON(!this)) {
516 ret = -ENOENT;
517 goto unlock;
518 }
519
520 this->count--;
521 if (this->count)
522 goto unlock;
523
524 rb_erase(&this->node, &hyp_shared_pfns);
525 kfree(this);
526 ret = kvm_call_hyp_nvhe(__pkvm_host_unshare_hyp, pfn, 1);
527 unlock:
528 mutex_unlock(&hyp_shared_pfns_lock);
529
530 return ret;
531 }
532
kvm_share_hyp(void * from,void * to)533 int kvm_share_hyp(void *from, void *to)
534 {
535 phys_addr_t start, end, cur;
536 u64 pfn;
537 int ret;
538
539 if (is_kernel_in_hyp_mode())
540 return 0;
541
542 /*
543 * The share hcall maps things in the 'fixed-offset' region of the hyp
544 * VA space, so we can only share physically contiguous data-structures
545 * for now.
546 */
547 if (is_vmalloc_or_module_addr(from) || is_vmalloc_or_module_addr(to))
548 return -EINVAL;
549
550 if (kvm_host_owns_hyp_mappings())
551 return create_hyp_mappings(from, to, PAGE_HYP);
552
553 start = ALIGN_DOWN(__pa(from), PAGE_SIZE);
554 end = PAGE_ALIGN(__pa(to));
555 for (cur = start; cur < end; cur += PAGE_SIZE) {
556 pfn = __phys_to_pfn(cur);
557 ret = share_pfn_hyp(pfn);
558 if (ret)
559 return ret;
560 }
561
562 return 0;
563 }
564
kvm_unshare_hyp(void * from,void * to)565 void kvm_unshare_hyp(void *from, void *to)
566 {
567 phys_addr_t start, end, cur;
568 u64 pfn;
569
570 if (is_kernel_in_hyp_mode() || kvm_host_owns_hyp_mappings() || !from)
571 return;
572
573 start = ALIGN_DOWN(__pa(from), PAGE_SIZE);
574 end = PAGE_ALIGN(__pa(to));
575 for (cur = start; cur < end; cur += PAGE_SIZE) {
576 pfn = __phys_to_pfn(cur);
577 WARN_ON(unshare_pfn_hyp(pfn));
578 }
579 }
580
581 /**
582 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
583 * @from: The virtual kernel start address of the range
584 * @to: The virtual kernel end address of the range (exclusive)
585 * @prot: The protection to be applied to this range
586 *
587 * The same virtual address as the kernel virtual address is also used
588 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
589 * physical pages.
590 */
create_hyp_mappings(void * from,void * to,enum kvm_pgtable_prot prot)591 int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot)
592 {
593 phys_addr_t phys_addr;
594 unsigned long virt_addr;
595 unsigned long start = kern_hyp_va((unsigned long)from);
596 unsigned long end = kern_hyp_va((unsigned long)to);
597
598 if (is_kernel_in_hyp_mode())
599 return 0;
600
601 if (!kvm_host_owns_hyp_mappings())
602 return -EPERM;
603
604 start = start & PAGE_MASK;
605 end = PAGE_ALIGN(end);
606
607 for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
608 int err;
609
610 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
611 err = __create_hyp_mappings(virt_addr, PAGE_SIZE, phys_addr,
612 prot);
613 if (err)
614 return err;
615 }
616
617 return 0;
618 }
619
__hyp_alloc_private_va_range(unsigned long base)620 static int __hyp_alloc_private_va_range(unsigned long base)
621 {
622 lockdep_assert_held(&kvm_hyp_pgd_mutex);
623
624 if (!PAGE_ALIGNED(base))
625 return -EINVAL;
626
627 /*
628 * Verify that BIT(VA_BITS - 1) hasn't been flipped by
629 * allocating the new area, as it would indicate we've
630 * overflowed the idmap/IO address range.
631 */
632 if ((base ^ io_map_base) & BIT(VA_BITS - 1))
633 return -ENOMEM;
634
635 io_map_base = base;
636
637 return 0;
638 }
639
640 /**
641 * hyp_alloc_private_va_range - Allocates a private VA range.
642 * @size: The size of the VA range to reserve.
643 * @haddr: The hypervisor virtual start address of the allocation.
644 *
645 * The private virtual address (VA) range is allocated below io_map_base
646 * and aligned based on the order of @size.
647 *
648 * Return: 0 on success or negative error code on failure.
649 */
hyp_alloc_private_va_range(size_t size,unsigned long * haddr)650 int hyp_alloc_private_va_range(size_t size, unsigned long *haddr)
651 {
652 unsigned long base;
653 int ret = 0;
654
655 mutex_lock(&kvm_hyp_pgd_mutex);
656
657 /*
658 * This assumes that we have enough space below the idmap
659 * page to allocate our VAs. If not, the check in
660 * __hyp_alloc_private_va_range() will kick. A potential
661 * alternative would be to detect that overflow and switch
662 * to an allocation above the idmap.
663 *
664 * The allocated size is always a multiple of PAGE_SIZE.
665 */
666 size = PAGE_ALIGN(size);
667 base = io_map_base - size;
668 ret = __hyp_alloc_private_va_range(base);
669
670 mutex_unlock(&kvm_hyp_pgd_mutex);
671
672 if (!ret)
673 *haddr = base;
674
675 return ret;
676 }
677
__create_hyp_private_mapping(phys_addr_t phys_addr,size_t size,unsigned long * haddr,enum kvm_pgtable_prot prot)678 static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
679 unsigned long *haddr,
680 enum kvm_pgtable_prot prot)
681 {
682 unsigned long addr;
683 int ret = 0;
684
685 if (!kvm_host_owns_hyp_mappings()) {
686 addr = kvm_call_hyp_nvhe(__pkvm_create_private_mapping,
687 phys_addr, size, prot);
688 if (IS_ERR_VALUE(addr))
689 return addr;
690 *haddr = addr;
691
692 return 0;
693 }
694
695 size = PAGE_ALIGN(size + offset_in_page(phys_addr));
696 ret = hyp_alloc_private_va_range(size, &addr);
697 if (ret)
698 return ret;
699
700 ret = __create_hyp_mappings(addr, size, phys_addr, prot);
701 if (ret)
702 return ret;
703
704 *haddr = addr + offset_in_page(phys_addr);
705 return ret;
706 }
707
create_hyp_stack(phys_addr_t phys_addr,unsigned long * haddr)708 int create_hyp_stack(phys_addr_t phys_addr, unsigned long *haddr)
709 {
710 unsigned long base;
711 size_t size;
712 int ret;
713
714 mutex_lock(&kvm_hyp_pgd_mutex);
715 /*
716 * Efficient stack verification using the NVHE_STACK_SHIFT bit implies
717 * an alignment of our allocation on the order of the size.
718 */
719 size = NVHE_STACK_SIZE * 2;
720 base = ALIGN_DOWN(io_map_base - size, size);
721
722 ret = __hyp_alloc_private_va_range(base);
723
724 mutex_unlock(&kvm_hyp_pgd_mutex);
725
726 if (ret) {
727 kvm_err("Cannot allocate hyp stack guard page\n");
728 return ret;
729 }
730
731 /*
732 * Since the stack grows downwards, map the stack to the page
733 * at the higher address and leave the lower guard page
734 * unbacked.
735 *
736 * Any valid stack address now has the NVHE_STACK_SHIFT bit as 1
737 * and addresses corresponding to the guard page have the
738 * NVHE_STACK_SHIFT bit as 0 - this is used for overflow detection.
739 */
740 ret = __create_hyp_mappings(base + NVHE_STACK_SIZE, NVHE_STACK_SIZE,
741 phys_addr, PAGE_HYP);
742 if (ret)
743 kvm_err("Cannot map hyp stack\n");
744
745 *haddr = base + size;
746
747 return ret;
748 }
749
750 /**
751 * create_hyp_io_mappings - Map IO into both kernel and HYP
752 * @phys_addr: The physical start address which gets mapped
753 * @size: Size of the region being mapped
754 * @kaddr: Kernel VA for this mapping
755 * @haddr: HYP VA for this mapping
756 */
create_hyp_io_mappings(phys_addr_t phys_addr,size_t size,void __iomem ** kaddr,void __iomem ** haddr)757 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
758 void __iomem **kaddr,
759 void __iomem **haddr)
760 {
761 unsigned long addr;
762 int ret;
763
764 if (is_protected_kvm_enabled())
765 return -EPERM;
766
767 *kaddr = ioremap(phys_addr, size);
768 if (!*kaddr)
769 return -ENOMEM;
770
771 if (is_kernel_in_hyp_mode()) {
772 *haddr = *kaddr;
773 return 0;
774 }
775
776 ret = __create_hyp_private_mapping(phys_addr, size,
777 &addr, PAGE_HYP_DEVICE);
778 if (ret) {
779 iounmap(*kaddr);
780 *kaddr = NULL;
781 *haddr = NULL;
782 return ret;
783 }
784
785 *haddr = (void __iomem *)addr;
786 return 0;
787 }
788
789 /**
790 * create_hyp_exec_mappings - Map an executable range into HYP
791 * @phys_addr: The physical start address which gets mapped
792 * @size: Size of the region being mapped
793 * @haddr: HYP VA for this mapping
794 */
create_hyp_exec_mappings(phys_addr_t phys_addr,size_t size,void ** haddr)795 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
796 void **haddr)
797 {
798 unsigned long addr;
799 int ret;
800
801 BUG_ON(is_kernel_in_hyp_mode());
802
803 ret = __create_hyp_private_mapping(phys_addr, size,
804 &addr, PAGE_HYP_EXEC);
805 if (ret) {
806 *haddr = NULL;
807 return ret;
808 }
809
810 *haddr = (void *)addr;
811 return 0;
812 }
813
814 static struct kvm_pgtable_mm_ops kvm_user_mm_ops = {
815 /* We shouldn't need any other callback to walk the PT */
816 .phys_to_virt = kvm_host_va,
817 };
818
get_user_mapping_size(struct kvm * kvm,u64 addr)819 static int get_user_mapping_size(struct kvm *kvm, u64 addr)
820 {
821 struct kvm_pgtable pgt = {
822 .pgd = (kvm_pteref_t)kvm->mm->pgd,
823 .ia_bits = vabits_actual,
824 .start_level = (KVM_PGTABLE_LAST_LEVEL -
825 ARM64_HW_PGTABLE_LEVELS(pgt.ia_bits) + 1),
826 .mm_ops = &kvm_user_mm_ops,
827 };
828 unsigned long flags;
829 kvm_pte_t pte = 0; /* Keep GCC quiet... */
830 s8 level = S8_MAX;
831 int ret;
832
833 /*
834 * Disable IRQs so that we hazard against a concurrent
835 * teardown of the userspace page tables (which relies on
836 * IPI-ing threads).
837 */
838 local_irq_save(flags);
839 ret = kvm_pgtable_get_leaf(&pgt, addr, &pte, &level);
840 local_irq_restore(flags);
841
842 if (ret)
843 return ret;
844
845 /*
846 * Not seeing an error, but not updating level? Something went
847 * deeply wrong...
848 */
849 if (WARN_ON(level > KVM_PGTABLE_LAST_LEVEL))
850 return -EFAULT;
851 if (WARN_ON(level < KVM_PGTABLE_FIRST_LEVEL))
852 return -EFAULT;
853
854 /* Oops, the userspace PTs are gone... Replay the fault */
855 if (!kvm_pte_valid(pte))
856 return -EAGAIN;
857
858 return BIT(ARM64_HW_PGTABLE_LEVEL_SHIFT(level));
859 }
860
861 static struct kvm_pgtable_mm_ops kvm_s2_mm_ops = {
862 .zalloc_page = stage2_memcache_zalloc_page,
863 .zalloc_pages_exact = kvm_s2_zalloc_pages_exact,
864 .free_pages_exact = kvm_s2_free_pages_exact,
865 .free_unlinked_table = stage2_free_unlinked_table,
866 .get_page = kvm_host_get_page,
867 .put_page = kvm_s2_put_page,
868 .page_count = kvm_host_page_count,
869 .phys_to_virt = kvm_host_va,
870 .virt_to_phys = kvm_host_pa,
871 .dcache_clean_inval_poc = clean_dcache_guest_page,
872 .icache_inval_pou = invalidate_icache_guest_page,
873 };
874
kvm_init_ipa_range(struct kvm_s2_mmu * mmu,unsigned long type)875 static int kvm_init_ipa_range(struct kvm_s2_mmu *mmu, unsigned long type)
876 {
877 u32 kvm_ipa_limit = get_kvm_ipa_limit();
878 u64 mmfr0, mmfr1;
879 u32 phys_shift;
880
881 if (type & ~KVM_VM_TYPE_ARM_IPA_SIZE_MASK)
882 return -EINVAL;
883
884 phys_shift = KVM_VM_TYPE_ARM_IPA_SIZE(type);
885 if (is_protected_kvm_enabled()) {
886 phys_shift = kvm_ipa_limit;
887 } else if (phys_shift) {
888 if (phys_shift > kvm_ipa_limit ||
889 phys_shift < ARM64_MIN_PARANGE_BITS)
890 return -EINVAL;
891 } else {
892 phys_shift = KVM_PHYS_SHIFT;
893 if (phys_shift > kvm_ipa_limit) {
894 pr_warn_once("%s using unsupported default IPA limit, upgrade your VMM\n",
895 current->comm);
896 return -EINVAL;
897 }
898 }
899
900 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
901 mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
902 mmu->vtcr = kvm_get_vtcr(mmfr0, mmfr1, phys_shift);
903
904 return 0;
905 }
906
907 /*
908 * Assume that @pgt is valid and unlinked from the KVM MMU to free the
909 * page-table without taking the kvm_mmu_lock and without performing any
910 * TLB invalidations.
911 *
912 * Also, the range of addresses can be large enough to cause need_resched
913 * warnings, for instance on CONFIG_PREEMPT_NONE kernels. Hence, invoke
914 * cond_resched() periodically to prevent hogging the CPU for a long time
915 * and schedule something else, if required.
916 */
stage2_destroy_range(struct kvm_pgtable * pgt,phys_addr_t addr,phys_addr_t end)917 static void stage2_destroy_range(struct kvm_pgtable *pgt, phys_addr_t addr,
918 phys_addr_t end)
919 {
920 u64 next;
921
922 do {
923 next = stage2_range_addr_end(addr, end);
924 KVM_PGT_FN(kvm_pgtable_stage2_destroy_range)(pgt, addr,
925 next - addr);
926 if (next != end)
927 cond_resched();
928 } while (addr = next, addr != end);
929 }
930
kvm_stage2_destroy(struct kvm_pgtable * pgt)931 static void kvm_stage2_destroy(struct kvm_pgtable *pgt)
932 {
933 unsigned int ia_bits = VTCR_EL2_IPA(pgt->mmu->vtcr);
934
935 stage2_destroy_range(pgt, 0, BIT(ia_bits));
936 KVM_PGT_FN(kvm_pgtable_stage2_destroy_pgd)(pgt);
937 }
938
939 /**
940 * kvm_init_stage2_mmu - Initialise a S2 MMU structure
941 * @kvm: The pointer to the KVM structure
942 * @mmu: The pointer to the s2 MMU structure
943 * @type: The machine type of the virtual machine
944 *
945 * Allocates only the stage-2 HW PGD level table(s).
946 * Note we don't need locking here as this is only called in two cases:
947 *
948 * - when the VM is created, which can't race against anything
949 *
950 * - when secondary kvm_s2_mmu structures are initialised for NV
951 * guests, and the caller must hold kvm->lock as this is called on a
952 * per-vcpu basis.
953 */
kvm_init_stage2_mmu(struct kvm * kvm,struct kvm_s2_mmu * mmu,unsigned long type)954 int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu, unsigned long type)
955 {
956 int cpu, err;
957 struct kvm_pgtable *pgt;
958
959 /*
960 * If we already have our page tables in place, and that the
961 * MMU context is the canonical one, we have a bug somewhere,
962 * as this is only supposed to ever happen once per VM.
963 *
964 * Otherwise, we're building nested page tables, and that's
965 * probably because userspace called KVM_ARM_VCPU_INIT more
966 * than once on the same vcpu. Since that's actually legal,
967 * don't kick a fuss and leave gracefully.
968 */
969 if (mmu->pgt != NULL) {
970 if (kvm_is_nested_s2_mmu(kvm, mmu))
971 return 0;
972
973 kvm_err("kvm_arch already initialized?\n");
974 return -EINVAL;
975 }
976
977 err = kvm_init_ipa_range(mmu, type);
978 if (err)
979 return err;
980
981 pgt = kzalloc(sizeof(*pgt), GFP_KERNEL_ACCOUNT);
982 if (!pgt)
983 return -ENOMEM;
984
985 mmu->arch = &kvm->arch;
986 err = KVM_PGT_FN(kvm_pgtable_stage2_init)(pgt, mmu, &kvm_s2_mm_ops);
987 if (err)
988 goto out_free_pgtable;
989
990 mmu->pgt = pgt;
991 if (is_protected_kvm_enabled())
992 return 0;
993
994 mmu->last_vcpu_ran = alloc_percpu(typeof(*mmu->last_vcpu_ran));
995 if (!mmu->last_vcpu_ran) {
996 err = -ENOMEM;
997 goto out_destroy_pgtable;
998 }
999
1000 for_each_possible_cpu(cpu)
1001 *per_cpu_ptr(mmu->last_vcpu_ran, cpu) = -1;
1002
1003 /* The eager page splitting is disabled by default */
1004 mmu->split_page_chunk_size = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT;
1005 mmu->split_page_cache.gfp_zero = __GFP_ZERO;
1006
1007 mmu->pgd_phys = __pa(pgt->pgd);
1008
1009 if (kvm_is_nested_s2_mmu(kvm, mmu))
1010 kvm_init_nested_s2_mmu(mmu);
1011
1012 return 0;
1013
1014 out_destroy_pgtable:
1015 kvm_stage2_destroy(pgt);
1016 out_free_pgtable:
1017 kfree(pgt);
1018 return err;
1019 }
1020
kvm_uninit_stage2_mmu(struct kvm * kvm)1021 void kvm_uninit_stage2_mmu(struct kvm *kvm)
1022 {
1023 kvm_free_stage2_pgd(&kvm->arch.mmu);
1024 kvm_mmu_free_memory_cache(&kvm->arch.mmu.split_page_cache);
1025 }
1026
stage2_unmap_memslot(struct kvm * kvm,struct kvm_memory_slot * memslot)1027 static void stage2_unmap_memslot(struct kvm *kvm,
1028 struct kvm_memory_slot *memslot)
1029 {
1030 hva_t hva = memslot->userspace_addr;
1031 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
1032 phys_addr_t size = PAGE_SIZE * memslot->npages;
1033 hva_t reg_end = hva + size;
1034
1035 /*
1036 * A memory region could potentially cover multiple VMAs, and any holes
1037 * between them, so iterate over all of them to find out if we should
1038 * unmap any of them.
1039 *
1040 * +--------------------------------------------+
1041 * +---------------+----------------+ +----------------+
1042 * | : VMA 1 | VMA 2 | | VMA 3 : |
1043 * +---------------+----------------+ +----------------+
1044 * | memory region |
1045 * +--------------------------------------------+
1046 */
1047 do {
1048 struct vm_area_struct *vma;
1049 hva_t vm_start, vm_end;
1050
1051 vma = find_vma_intersection(current->mm, hva, reg_end);
1052 if (!vma)
1053 break;
1054
1055 /*
1056 * Take the intersection of this VMA with the memory region
1057 */
1058 vm_start = max(hva, vma->vm_start);
1059 vm_end = min(reg_end, vma->vm_end);
1060
1061 if (!(vma->vm_flags & VM_PFNMAP)) {
1062 gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
1063 kvm_stage2_unmap_range(&kvm->arch.mmu, gpa, vm_end - vm_start, true);
1064 }
1065 hva = vm_end;
1066 } while (hva < reg_end);
1067 }
1068
1069 /**
1070 * stage2_unmap_vm - Unmap Stage-2 RAM mappings
1071 * @kvm: The struct kvm pointer
1072 *
1073 * Go through the memregions and unmap any regular RAM
1074 * backing memory already mapped to the VM.
1075 */
stage2_unmap_vm(struct kvm * kvm)1076 void stage2_unmap_vm(struct kvm *kvm)
1077 {
1078 struct kvm_memslots *slots;
1079 struct kvm_memory_slot *memslot;
1080 int idx, bkt;
1081
1082 idx = srcu_read_lock(&kvm->srcu);
1083 mmap_read_lock(current->mm);
1084 write_lock(&kvm->mmu_lock);
1085
1086 slots = kvm_memslots(kvm);
1087 kvm_for_each_memslot(memslot, bkt, slots)
1088 stage2_unmap_memslot(kvm, memslot);
1089
1090 kvm_nested_s2_unmap(kvm, true);
1091
1092 write_unlock(&kvm->mmu_lock);
1093 mmap_read_unlock(current->mm);
1094 srcu_read_unlock(&kvm->srcu, idx);
1095 }
1096
kvm_free_stage2_pgd(struct kvm_s2_mmu * mmu)1097 void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu)
1098 {
1099 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
1100 struct kvm_pgtable *pgt = NULL;
1101
1102 write_lock(&kvm->mmu_lock);
1103 pgt = mmu->pgt;
1104 if (pgt) {
1105 mmu->pgd_phys = 0;
1106 mmu->pgt = NULL;
1107 free_percpu(mmu->last_vcpu_ran);
1108 }
1109
1110 if (kvm_is_nested_s2_mmu(kvm, mmu))
1111 kvm_init_nested_s2_mmu(mmu);
1112
1113 write_unlock(&kvm->mmu_lock);
1114
1115 if (pgt) {
1116 kvm_stage2_destroy(pgt);
1117 kfree(pgt);
1118 }
1119 }
1120
hyp_mc_free_fn(void * addr,void * mc)1121 static void hyp_mc_free_fn(void *addr, void *mc)
1122 {
1123 struct kvm_hyp_memcache *memcache = mc;
1124
1125 if (memcache->flags & HYP_MEMCACHE_ACCOUNT_STAGE2)
1126 kvm_account_pgtable_pages(addr, -1);
1127
1128 free_page((unsigned long)addr);
1129 }
1130
hyp_mc_alloc_fn(void * mc)1131 static void *hyp_mc_alloc_fn(void *mc)
1132 {
1133 struct kvm_hyp_memcache *memcache = mc;
1134 void *addr;
1135
1136 addr = (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
1137 if (addr && memcache->flags & HYP_MEMCACHE_ACCOUNT_STAGE2)
1138 kvm_account_pgtable_pages(addr, 1);
1139
1140 return addr;
1141 }
1142
free_hyp_memcache(struct kvm_hyp_memcache * mc)1143 void free_hyp_memcache(struct kvm_hyp_memcache *mc)
1144 {
1145 if (!is_protected_kvm_enabled())
1146 return;
1147
1148 kfree(mc->mapping);
1149 __free_hyp_memcache(mc, hyp_mc_free_fn, kvm_host_va, mc);
1150 }
1151
topup_hyp_memcache(struct kvm_hyp_memcache * mc,unsigned long min_pages)1152 int topup_hyp_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages)
1153 {
1154 if (!is_protected_kvm_enabled())
1155 return 0;
1156
1157 if (!mc->mapping) {
1158 mc->mapping = kzalloc(sizeof(struct pkvm_mapping), GFP_KERNEL_ACCOUNT);
1159 if (!mc->mapping)
1160 return -ENOMEM;
1161 }
1162
1163 return __topup_hyp_memcache(mc, min_pages, hyp_mc_alloc_fn,
1164 kvm_host_pa, mc);
1165 }
1166
1167 /**
1168 * kvm_phys_addr_ioremap - map a device range to guest IPA
1169 *
1170 * @kvm: The KVM pointer
1171 * @guest_ipa: The IPA at which to insert the mapping
1172 * @pa: The physical address of the device
1173 * @size: The size of the mapping
1174 * @writable: Whether or not to create a writable mapping
1175 */
kvm_phys_addr_ioremap(struct kvm * kvm,phys_addr_t guest_ipa,phys_addr_t pa,unsigned long size,bool writable)1176 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
1177 phys_addr_t pa, unsigned long size, bool writable)
1178 {
1179 phys_addr_t addr;
1180 int ret = 0;
1181 struct kvm_mmu_memory_cache cache = { .gfp_zero = __GFP_ZERO };
1182 struct kvm_s2_mmu *mmu = &kvm->arch.mmu;
1183 struct kvm_pgtable *pgt = mmu->pgt;
1184 enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_DEVICE |
1185 KVM_PGTABLE_PROT_R |
1186 (writable ? KVM_PGTABLE_PROT_W : 0);
1187
1188 if (is_protected_kvm_enabled())
1189 return -EPERM;
1190
1191 size += offset_in_page(guest_ipa);
1192 guest_ipa &= PAGE_MASK;
1193
1194 for (addr = guest_ipa; addr < guest_ipa + size; addr += PAGE_SIZE) {
1195 ret = kvm_mmu_topup_memory_cache(&cache,
1196 kvm_mmu_cache_min_pages(mmu));
1197 if (ret)
1198 break;
1199
1200 write_lock(&kvm->mmu_lock);
1201 ret = KVM_PGT_FN(kvm_pgtable_stage2_map)(pgt, addr, PAGE_SIZE,
1202 pa, prot, &cache, 0);
1203 write_unlock(&kvm->mmu_lock);
1204 if (ret)
1205 break;
1206
1207 pa += PAGE_SIZE;
1208 }
1209
1210 kvm_mmu_free_memory_cache(&cache);
1211 return ret;
1212 }
1213
1214 /**
1215 * kvm_stage2_wp_range() - write protect stage2 memory region range
1216 * @mmu: The KVM stage-2 MMU pointer
1217 * @addr: Start address of range
1218 * @end: End address of range
1219 */
kvm_stage2_wp_range(struct kvm_s2_mmu * mmu,phys_addr_t addr,phys_addr_t end)1220 void kvm_stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end)
1221 {
1222 stage2_apply_range_resched(mmu, addr, end, KVM_PGT_FN(kvm_pgtable_stage2_wrprotect));
1223 }
1224
1225 /**
1226 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1227 * @kvm: The KVM pointer
1228 * @slot: The memory slot to write protect
1229 *
1230 * Called to start logging dirty pages after memory region
1231 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1232 * all present PUD, PMD and PTEs are write protected in the memory region.
1233 * Afterwards read of dirty page log can be called.
1234 *
1235 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1236 * serializing operations for VM memory regions.
1237 */
kvm_mmu_wp_memory_region(struct kvm * kvm,int slot)1238 static void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
1239 {
1240 struct kvm_memslots *slots = kvm_memslots(kvm);
1241 struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1242 phys_addr_t start, end;
1243
1244 if (WARN_ON_ONCE(!memslot))
1245 return;
1246
1247 start = memslot->base_gfn << PAGE_SHIFT;
1248 end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1249
1250 write_lock(&kvm->mmu_lock);
1251 kvm_stage2_wp_range(&kvm->arch.mmu, start, end);
1252 kvm_nested_s2_wp(kvm);
1253 write_unlock(&kvm->mmu_lock);
1254 kvm_flush_remote_tlbs_memslot(kvm, memslot);
1255 }
1256
1257 /**
1258 * kvm_mmu_split_memory_region() - split the stage 2 blocks into PAGE_SIZE
1259 * pages for memory slot
1260 * @kvm: The KVM pointer
1261 * @slot: The memory slot to split
1262 *
1263 * Acquires kvm->mmu_lock. Called with kvm->slots_lock mutex acquired,
1264 * serializing operations for VM memory regions.
1265 */
kvm_mmu_split_memory_region(struct kvm * kvm,int slot)1266 static void kvm_mmu_split_memory_region(struct kvm *kvm, int slot)
1267 {
1268 struct kvm_memslots *slots;
1269 struct kvm_memory_slot *memslot;
1270 phys_addr_t start, end;
1271
1272 lockdep_assert_held(&kvm->slots_lock);
1273
1274 slots = kvm_memslots(kvm);
1275 memslot = id_to_memslot(slots, slot);
1276
1277 start = memslot->base_gfn << PAGE_SHIFT;
1278 end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1279
1280 write_lock(&kvm->mmu_lock);
1281 kvm_mmu_split_huge_pages(kvm, start, end);
1282 write_unlock(&kvm->mmu_lock);
1283 }
1284
1285 /*
1286 * kvm_arch_mmu_enable_log_dirty_pt_masked() - enable dirty logging for selected pages.
1287 * @kvm: The KVM pointer
1288 * @slot: The memory slot associated with mask
1289 * @gfn_offset: The gfn offset in memory slot
1290 * @mask: The mask of pages at offset 'gfn_offset' in this memory
1291 * slot to enable dirty logging on
1292 *
1293 * Writes protect selected pages to enable dirty logging, and then
1294 * splits them to PAGE_SIZE. Caller must acquire kvm->mmu_lock.
1295 */
kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1296 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1297 struct kvm_memory_slot *slot,
1298 gfn_t gfn_offset, unsigned long mask)
1299 {
1300 phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
1301 phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT;
1302 phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
1303
1304 lockdep_assert_held_write(&kvm->mmu_lock);
1305
1306 kvm_stage2_wp_range(&kvm->arch.mmu, start, end);
1307
1308 /*
1309 * Eager-splitting is done when manual-protect is set. We
1310 * also check for initially-all-set because we can avoid
1311 * eager-splitting if initially-all-set is false.
1312 * Initially-all-set equal false implies that huge-pages were
1313 * already split when enabling dirty logging: no need to do it
1314 * again.
1315 */
1316 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1317 kvm_mmu_split_huge_pages(kvm, start, end);
1318
1319 kvm_nested_s2_wp(kvm);
1320 }
1321
kvm_send_hwpoison_signal(unsigned long address,short lsb)1322 static void kvm_send_hwpoison_signal(unsigned long address, short lsb)
1323 {
1324 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current);
1325 }
1326
fault_supports_stage2_huge_mapping(struct kvm_memory_slot * memslot,unsigned long hva,unsigned long map_size)1327 static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot,
1328 unsigned long hva,
1329 unsigned long map_size)
1330 {
1331 gpa_t gpa_start;
1332 hva_t uaddr_start, uaddr_end;
1333 size_t size;
1334
1335 /* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */
1336 if (map_size == PAGE_SIZE)
1337 return true;
1338
1339 /* pKVM only supports PMD_SIZE huge-mappings */
1340 if (is_protected_kvm_enabled() && map_size != PMD_SIZE)
1341 return false;
1342
1343 size = memslot->npages * PAGE_SIZE;
1344
1345 gpa_start = memslot->base_gfn << PAGE_SHIFT;
1346
1347 uaddr_start = memslot->userspace_addr;
1348 uaddr_end = uaddr_start + size;
1349
1350 /*
1351 * Pages belonging to memslots that don't have the same alignment
1352 * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2
1353 * PMD/PUD entries, because we'll end up mapping the wrong pages.
1354 *
1355 * Consider a layout like the following:
1356 *
1357 * memslot->userspace_addr:
1358 * +-----+--------------------+--------------------+---+
1359 * |abcde|fgh Stage-1 block | Stage-1 block tv|xyz|
1360 * +-----+--------------------+--------------------+---+
1361 *
1362 * memslot->base_gfn << PAGE_SHIFT:
1363 * +---+--------------------+--------------------+-----+
1364 * |abc|def Stage-2 block | Stage-2 block |tvxyz|
1365 * +---+--------------------+--------------------+-----+
1366 *
1367 * If we create those stage-2 blocks, we'll end up with this incorrect
1368 * mapping:
1369 * d -> f
1370 * e -> g
1371 * f -> h
1372 */
1373 if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1)))
1374 return false;
1375
1376 /*
1377 * Next, let's make sure we're not trying to map anything not covered
1378 * by the memslot. This means we have to prohibit block size mappings
1379 * for the beginning and end of a non-block aligned and non-block sized
1380 * memory slot (illustrated by the head and tail parts of the
1381 * userspace view above containing pages 'abcde' and 'xyz',
1382 * respectively).
1383 *
1384 * Note that it doesn't matter if we do the check using the
1385 * userspace_addr or the base_gfn, as both are equally aligned (per
1386 * the check above) and equally sized.
1387 */
1388 return (hva & ~(map_size - 1)) >= uaddr_start &&
1389 (hva & ~(map_size - 1)) + map_size <= uaddr_end;
1390 }
1391
1392 /*
1393 * Check if the given hva is backed by a transparent huge page (THP) and
1394 * whether it can be mapped using block mapping in stage2. If so, adjust
1395 * the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently
1396 * supported. This will need to be updated to support other THP sizes.
1397 *
1398 * Returns the size of the mapping.
1399 */
1400 static long
transparent_hugepage_adjust(struct kvm * kvm,struct kvm_memory_slot * memslot,unsigned long hva,kvm_pfn_t * pfnp,phys_addr_t * ipap)1401 transparent_hugepage_adjust(struct kvm *kvm, struct kvm_memory_slot *memslot,
1402 unsigned long hva, kvm_pfn_t *pfnp,
1403 phys_addr_t *ipap)
1404 {
1405 kvm_pfn_t pfn = *pfnp;
1406
1407 /*
1408 * Make sure the adjustment is done only for THP pages. Also make
1409 * sure that the HVA and IPA are sufficiently aligned and that the
1410 * block map is contained within the memslot.
1411 */
1412 if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) {
1413 int sz = get_user_mapping_size(kvm, hva);
1414
1415 if (sz < 0)
1416 return sz;
1417
1418 if (sz < PMD_SIZE)
1419 return PAGE_SIZE;
1420
1421 *ipap &= PMD_MASK;
1422 pfn &= ~(PTRS_PER_PMD - 1);
1423 *pfnp = pfn;
1424
1425 return PMD_SIZE;
1426 }
1427
1428 /* Use page mapping if we cannot use block mapping. */
1429 return PAGE_SIZE;
1430 }
1431
get_vma_page_shift(struct vm_area_struct * vma,unsigned long hva)1432 static int get_vma_page_shift(struct vm_area_struct *vma, unsigned long hva)
1433 {
1434 unsigned long pa;
1435
1436 if (is_vm_hugetlb_page(vma) && !(vma->vm_flags & VM_PFNMAP))
1437 return huge_page_shift(hstate_vma(vma));
1438
1439 if (!(vma->vm_flags & VM_PFNMAP))
1440 return PAGE_SHIFT;
1441
1442 VM_BUG_ON(is_vm_hugetlb_page(vma));
1443
1444 pa = (vma->vm_pgoff << PAGE_SHIFT) + (hva - vma->vm_start);
1445
1446 #ifndef __PAGETABLE_PMD_FOLDED
1447 if ((hva & (PUD_SIZE - 1)) == (pa & (PUD_SIZE - 1)) &&
1448 ALIGN_DOWN(hva, PUD_SIZE) >= vma->vm_start &&
1449 ALIGN(hva, PUD_SIZE) <= vma->vm_end)
1450 return PUD_SHIFT;
1451 #endif
1452
1453 if ((hva & (PMD_SIZE - 1)) == (pa & (PMD_SIZE - 1)) &&
1454 ALIGN_DOWN(hva, PMD_SIZE) >= vma->vm_start &&
1455 ALIGN(hva, PMD_SIZE) <= vma->vm_end)
1456 return PMD_SHIFT;
1457
1458 return PAGE_SHIFT;
1459 }
1460
1461 /*
1462 * The page will be mapped in stage 2 as Normal Cacheable, so the VM will be
1463 * able to see the page's tags and therefore they must be initialised first. If
1464 * PG_mte_tagged is set, tags have already been initialised.
1465 *
1466 * Must be called with kvm->mmu_lock held to ensure the memory remains mapped
1467 * while the tags are zeroed.
1468 */
sanitise_mte_tags(struct kvm * kvm,kvm_pfn_t pfn,unsigned long size)1469 static void sanitise_mte_tags(struct kvm *kvm, kvm_pfn_t pfn,
1470 unsigned long size)
1471 {
1472 unsigned long i, nr_pages = size >> PAGE_SHIFT;
1473 struct page *page = pfn_to_page(pfn);
1474 struct folio *folio = page_folio(page);
1475
1476 if (!kvm_has_mte(kvm))
1477 return;
1478
1479 if (folio_test_hugetlb(folio)) {
1480 /* Hugetlb has MTE flags set on head page only */
1481 if (folio_try_hugetlb_mte_tagging(folio)) {
1482 for (i = 0; i < nr_pages; i++, page++)
1483 mte_clear_page_tags(page_address(page));
1484 folio_set_hugetlb_mte_tagged(folio);
1485 }
1486 return;
1487 }
1488
1489 for (i = 0; i < nr_pages; i++, page++) {
1490 if (try_page_mte_tagging(page)) {
1491 mte_clear_page_tags(page_address(page));
1492 set_page_mte_tagged(page);
1493 }
1494 }
1495 }
1496
kvm_vma_mte_allowed(struct vm_area_struct * vma)1497 static bool kvm_vma_mte_allowed(struct vm_area_struct *vma)
1498 {
1499 return vma->vm_flags & VM_MTE_ALLOWED;
1500 }
1501
kvm_vma_is_cacheable(struct vm_area_struct * vma)1502 static bool kvm_vma_is_cacheable(struct vm_area_struct *vma)
1503 {
1504 switch (FIELD_GET(PTE_ATTRINDX_MASK, pgprot_val(vma->vm_page_prot))) {
1505 case MT_NORMAL_NC:
1506 case MT_DEVICE_nGnRnE:
1507 case MT_DEVICE_nGnRE:
1508 return false;
1509 default:
1510 return true;
1511 }
1512 }
1513
prepare_mmu_memcache(struct kvm_vcpu * vcpu,bool topup_memcache,void ** memcache)1514 static int prepare_mmu_memcache(struct kvm_vcpu *vcpu, bool topup_memcache,
1515 void **memcache)
1516 {
1517 int min_pages;
1518
1519 if (!is_protected_kvm_enabled())
1520 *memcache = &vcpu->arch.mmu_page_cache;
1521 else
1522 *memcache = &vcpu->arch.pkvm_memcache;
1523
1524 if (!topup_memcache)
1525 return 0;
1526
1527 min_pages = kvm_mmu_cache_min_pages(vcpu->arch.hw_mmu);
1528
1529 if (!is_protected_kvm_enabled())
1530 return kvm_mmu_topup_memory_cache(*memcache, min_pages);
1531
1532 return topup_hyp_memcache(*memcache, min_pages);
1533 }
1534
1535 /*
1536 * Potentially reduce shadow S2 permissions to match the guest's own S2. For
1537 * exec faults, we'd only reach this point if the guest actually allowed it (see
1538 * kvm_s2_handle_perm_fault).
1539 *
1540 * Also encode the level of the original translation in the SW bits of the leaf
1541 * entry as a proxy for the span of that translation. This will be retrieved on
1542 * TLB invalidation from the guest and used to limit the invalidation scope if a
1543 * TTL hint or a range isn't provided.
1544 */
adjust_nested_fault_perms(struct kvm_s2_trans * nested,enum kvm_pgtable_prot * prot,bool * writable)1545 static void adjust_nested_fault_perms(struct kvm_s2_trans *nested,
1546 enum kvm_pgtable_prot *prot,
1547 bool *writable)
1548 {
1549 *writable &= kvm_s2_trans_writable(nested);
1550 if (!kvm_s2_trans_readable(nested))
1551 *prot &= ~KVM_PGTABLE_PROT_R;
1552
1553 *prot |= kvm_encode_nested_level(nested);
1554 }
1555
adjust_nested_exec_perms(struct kvm * kvm,struct kvm_s2_trans * nested,enum kvm_pgtable_prot * prot)1556 static void adjust_nested_exec_perms(struct kvm *kvm,
1557 struct kvm_s2_trans *nested,
1558 enum kvm_pgtable_prot *prot)
1559 {
1560 if (!kvm_s2_trans_exec_el0(kvm, nested))
1561 *prot &= ~KVM_PGTABLE_PROT_UX;
1562 if (!kvm_s2_trans_exec_el1(kvm, nested))
1563 *prot &= ~KVM_PGTABLE_PROT_PX;
1564 }
1565
1566 #define KVM_PGTABLE_WALK_MEMABORT_FLAGS (KVM_PGTABLE_WALK_HANDLE_FAULT | KVM_PGTABLE_WALK_SHARED)
1567
gmem_abort(struct kvm_vcpu * vcpu,phys_addr_t fault_ipa,struct kvm_s2_trans * nested,struct kvm_memory_slot * memslot,bool is_perm)1568 static int gmem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1569 struct kvm_s2_trans *nested,
1570 struct kvm_memory_slot *memslot, bool is_perm)
1571 {
1572 bool write_fault, exec_fault, writable;
1573 enum kvm_pgtable_walk_flags flags = KVM_PGTABLE_WALK_MEMABORT_FLAGS;
1574 enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_R;
1575 struct kvm_pgtable *pgt = vcpu->arch.hw_mmu->pgt;
1576 unsigned long mmu_seq;
1577 struct page *page;
1578 struct kvm *kvm = vcpu->kvm;
1579 void *memcache;
1580 kvm_pfn_t pfn;
1581 gfn_t gfn;
1582 int ret;
1583
1584 ret = prepare_mmu_memcache(vcpu, true, &memcache);
1585 if (ret)
1586 return ret;
1587
1588 if (nested)
1589 gfn = kvm_s2_trans_output(nested) >> PAGE_SHIFT;
1590 else
1591 gfn = fault_ipa >> PAGE_SHIFT;
1592
1593 write_fault = kvm_is_write_fault(vcpu);
1594 exec_fault = kvm_vcpu_trap_is_exec_fault(vcpu);
1595
1596 VM_WARN_ON_ONCE(write_fault && exec_fault);
1597
1598 mmu_seq = kvm->mmu_invalidate_seq;
1599 /* Pairs with the smp_wmb() in kvm_mmu_invalidate_end(). */
1600 smp_rmb();
1601
1602 ret = kvm_gmem_get_pfn(kvm, memslot, gfn, &pfn, &page, NULL);
1603 if (ret) {
1604 kvm_prepare_memory_fault_exit(vcpu, fault_ipa, PAGE_SIZE,
1605 write_fault, exec_fault, false);
1606 return ret;
1607 }
1608
1609 writable = !(memslot->flags & KVM_MEM_READONLY);
1610
1611 if (nested)
1612 adjust_nested_fault_perms(nested, &prot, &writable);
1613
1614 if (writable)
1615 prot |= KVM_PGTABLE_PROT_W;
1616
1617 if (exec_fault || cpus_have_final_cap(ARM64_HAS_CACHE_DIC))
1618 prot |= KVM_PGTABLE_PROT_X;
1619
1620 if (nested)
1621 adjust_nested_exec_perms(kvm, nested, &prot);
1622
1623 kvm_fault_lock(kvm);
1624 if (mmu_invalidate_retry(kvm, mmu_seq)) {
1625 ret = -EAGAIN;
1626 goto out_unlock;
1627 }
1628
1629 ret = KVM_PGT_FN(kvm_pgtable_stage2_map)(pgt, fault_ipa, PAGE_SIZE,
1630 __pfn_to_phys(pfn), prot,
1631 memcache, flags);
1632
1633 out_unlock:
1634 kvm_release_faultin_page(kvm, page, !!ret, writable);
1635 kvm_fault_unlock(kvm);
1636
1637 if (writable && !ret)
1638 mark_page_dirty_in_slot(kvm, memslot, gfn);
1639
1640 return ret != -EAGAIN ? ret : 0;
1641 }
1642
user_mem_abort(struct kvm_vcpu * vcpu,phys_addr_t fault_ipa,struct kvm_s2_trans * nested,struct kvm_memory_slot * memslot,unsigned long hva,bool fault_is_perm)1643 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1644 struct kvm_s2_trans *nested,
1645 struct kvm_memory_slot *memslot, unsigned long hva,
1646 bool fault_is_perm)
1647 {
1648 int ret = 0;
1649 bool topup_memcache;
1650 bool write_fault, writable;
1651 bool exec_fault, mte_allowed, is_vma_cacheable;
1652 bool s2_force_noncacheable = false, vfio_allow_any_uc = false;
1653 unsigned long mmu_seq;
1654 phys_addr_t ipa = fault_ipa;
1655 struct kvm *kvm = vcpu->kvm;
1656 struct vm_area_struct *vma;
1657 short vma_shift;
1658 void *memcache;
1659 gfn_t gfn;
1660 kvm_pfn_t pfn;
1661 bool logging_active = memslot_is_logging(memslot);
1662 bool force_pte = logging_active;
1663 long vma_pagesize, fault_granule;
1664 enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_R;
1665 struct kvm_pgtable *pgt;
1666 struct page *page;
1667 vm_flags_t vm_flags;
1668 enum kvm_pgtable_walk_flags flags = KVM_PGTABLE_WALK_MEMABORT_FLAGS;
1669
1670 if (fault_is_perm)
1671 fault_granule = kvm_vcpu_trap_get_perm_fault_granule(vcpu);
1672 write_fault = kvm_is_write_fault(vcpu);
1673 exec_fault = kvm_vcpu_trap_is_exec_fault(vcpu);
1674 VM_WARN_ON_ONCE(write_fault && exec_fault);
1675
1676 /*
1677 * Permission faults just need to update the existing leaf entry,
1678 * and so normally don't require allocations from the memcache. The
1679 * only exception to this is when dirty logging is enabled at runtime
1680 * and a write fault needs to collapse a block entry into a table.
1681 */
1682 topup_memcache = !fault_is_perm || (logging_active && write_fault);
1683 ret = prepare_mmu_memcache(vcpu, topup_memcache, &memcache);
1684 if (ret)
1685 return ret;
1686
1687 /*
1688 * Let's check if we will get back a huge page backed by hugetlbfs, or
1689 * get block mapping for device MMIO region.
1690 */
1691 mmap_read_lock(current->mm);
1692 vma = vma_lookup(current->mm, hva);
1693 if (unlikely(!vma)) {
1694 kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1695 mmap_read_unlock(current->mm);
1696 return -EFAULT;
1697 }
1698
1699 if (force_pte)
1700 vma_shift = PAGE_SHIFT;
1701 else
1702 vma_shift = get_vma_page_shift(vma, hva);
1703
1704 switch (vma_shift) {
1705 #ifndef __PAGETABLE_PMD_FOLDED
1706 case PUD_SHIFT:
1707 if (fault_supports_stage2_huge_mapping(memslot, hva, PUD_SIZE))
1708 break;
1709 fallthrough;
1710 #endif
1711 case CONT_PMD_SHIFT:
1712 vma_shift = PMD_SHIFT;
1713 fallthrough;
1714 case PMD_SHIFT:
1715 if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE))
1716 break;
1717 fallthrough;
1718 case CONT_PTE_SHIFT:
1719 vma_shift = PAGE_SHIFT;
1720 force_pte = true;
1721 fallthrough;
1722 case PAGE_SHIFT:
1723 break;
1724 default:
1725 WARN_ONCE(1, "Unknown vma_shift %d", vma_shift);
1726 }
1727
1728 vma_pagesize = 1UL << vma_shift;
1729
1730 if (nested) {
1731 unsigned long max_map_size;
1732
1733 max_map_size = force_pte ? PAGE_SIZE : PUD_SIZE;
1734
1735 ipa = kvm_s2_trans_output(nested);
1736
1737 /*
1738 * If we're about to create a shadow stage 2 entry, then we
1739 * can only create a block mapping if the guest stage 2 page
1740 * table uses at least as big a mapping.
1741 */
1742 max_map_size = min(kvm_s2_trans_size(nested), max_map_size);
1743
1744 /*
1745 * Be careful that if the mapping size falls between
1746 * two host sizes, take the smallest of the two.
1747 */
1748 if (max_map_size >= PMD_SIZE && max_map_size < PUD_SIZE)
1749 max_map_size = PMD_SIZE;
1750 else if (max_map_size >= PAGE_SIZE && max_map_size < PMD_SIZE)
1751 max_map_size = PAGE_SIZE;
1752
1753 force_pte = (max_map_size == PAGE_SIZE);
1754 vma_pagesize = min_t(long, vma_pagesize, max_map_size);
1755 }
1756
1757 /*
1758 * Both the canonical IPA and fault IPA must be hugepage-aligned to
1759 * ensure we find the right PFN and lay down the mapping in the right
1760 * place.
1761 */
1762 if (vma_pagesize == PMD_SIZE || vma_pagesize == PUD_SIZE) {
1763 fault_ipa &= ~(vma_pagesize - 1);
1764 ipa &= ~(vma_pagesize - 1);
1765 }
1766
1767 gfn = ipa >> PAGE_SHIFT;
1768 mte_allowed = kvm_vma_mte_allowed(vma);
1769
1770 vfio_allow_any_uc = vma->vm_flags & VM_ALLOW_ANY_UNCACHED;
1771
1772 vm_flags = vma->vm_flags;
1773
1774 is_vma_cacheable = kvm_vma_is_cacheable(vma);
1775
1776 /* Don't use the VMA after the unlock -- it may have vanished */
1777 vma = NULL;
1778
1779 /*
1780 * Read mmu_invalidate_seq so that KVM can detect if the results of
1781 * vma_lookup() or __kvm_faultin_pfn() become stale prior to
1782 * acquiring kvm->mmu_lock.
1783 *
1784 * Rely on mmap_read_unlock() for an implicit smp_rmb(), which pairs
1785 * with the smp_wmb() in kvm_mmu_invalidate_end().
1786 */
1787 mmu_seq = kvm->mmu_invalidate_seq;
1788 mmap_read_unlock(current->mm);
1789
1790 pfn = __kvm_faultin_pfn(memslot, gfn, write_fault ? FOLL_WRITE : 0,
1791 &writable, &page);
1792 if (pfn == KVM_PFN_ERR_HWPOISON) {
1793 kvm_send_hwpoison_signal(hva, vma_shift);
1794 return 0;
1795 }
1796 if (is_error_noslot_pfn(pfn))
1797 return -EFAULT;
1798
1799 /*
1800 * Check if this is non-struct page memory PFN, and cannot support
1801 * CMOs. It could potentially be unsafe to access as cacheable.
1802 */
1803 if (vm_flags & (VM_PFNMAP | VM_MIXEDMAP) && !pfn_is_map_memory(pfn)) {
1804 if (is_vma_cacheable) {
1805 /*
1806 * Whilst the VMA owner expects cacheable mapping to this
1807 * PFN, hardware also has to support the FWB and CACHE DIC
1808 * features.
1809 *
1810 * ARM64 KVM relies on kernel VA mapping to the PFN to
1811 * perform cache maintenance as the CMO instructions work on
1812 * virtual addresses. VM_PFNMAP region are not necessarily
1813 * mapped to a KVA and hence the presence of hardware features
1814 * S2FWB and CACHE DIC are mandatory to avoid the need for
1815 * cache maintenance.
1816 */
1817 if (!kvm_supports_cacheable_pfnmap())
1818 ret = -EFAULT;
1819 } else {
1820 /*
1821 * If the page was identified as device early by looking at
1822 * the VMA flags, vma_pagesize is already representing the
1823 * largest quantity we can map. If instead it was mapped
1824 * via __kvm_faultin_pfn(), vma_pagesize is set to PAGE_SIZE
1825 * and must not be upgraded.
1826 *
1827 * In both cases, we don't let transparent_hugepage_adjust()
1828 * change things at the last minute.
1829 */
1830 s2_force_noncacheable = true;
1831 }
1832 } else if (logging_active && !write_fault) {
1833 /*
1834 * Only actually map the page as writable if this was a write
1835 * fault.
1836 */
1837 writable = false;
1838 }
1839
1840 if (exec_fault && s2_force_noncacheable)
1841 ret = -ENOEXEC;
1842
1843 if (ret) {
1844 kvm_release_page_unused(page);
1845 return ret;
1846 }
1847
1848 if (nested)
1849 adjust_nested_fault_perms(nested, &prot, &writable);
1850
1851 kvm_fault_lock(kvm);
1852 pgt = vcpu->arch.hw_mmu->pgt;
1853 if (mmu_invalidate_retry(kvm, mmu_seq)) {
1854 ret = -EAGAIN;
1855 goto out_unlock;
1856 }
1857
1858 /*
1859 * If we are not forced to use page mapping, check if we are
1860 * backed by a THP and thus use block mapping if possible.
1861 */
1862 if (vma_pagesize == PAGE_SIZE && !(force_pte || s2_force_noncacheable)) {
1863 if (fault_is_perm && fault_granule > PAGE_SIZE)
1864 vma_pagesize = fault_granule;
1865 else
1866 vma_pagesize = transparent_hugepage_adjust(kvm, memslot,
1867 hva, &pfn,
1868 &fault_ipa);
1869
1870 if (vma_pagesize < 0) {
1871 ret = vma_pagesize;
1872 goto out_unlock;
1873 }
1874 }
1875
1876 if (!fault_is_perm && !s2_force_noncacheable && kvm_has_mte(kvm)) {
1877 /* Check the VMM hasn't introduced a new disallowed VMA */
1878 if (mte_allowed) {
1879 sanitise_mte_tags(kvm, pfn, vma_pagesize);
1880 } else {
1881 ret = -EFAULT;
1882 goto out_unlock;
1883 }
1884 }
1885
1886 if (writable)
1887 prot |= KVM_PGTABLE_PROT_W;
1888
1889 if (exec_fault)
1890 prot |= KVM_PGTABLE_PROT_X;
1891
1892 if (s2_force_noncacheable) {
1893 if (vfio_allow_any_uc)
1894 prot |= KVM_PGTABLE_PROT_NORMAL_NC;
1895 else
1896 prot |= KVM_PGTABLE_PROT_DEVICE;
1897 } else if (cpus_have_final_cap(ARM64_HAS_CACHE_DIC)) {
1898 prot |= KVM_PGTABLE_PROT_X;
1899 }
1900
1901 if (nested)
1902 adjust_nested_exec_perms(kvm, nested, &prot);
1903
1904 /*
1905 * Under the premise of getting a FSC_PERM fault, we just need to relax
1906 * permissions only if vma_pagesize equals fault_granule. Otherwise,
1907 * kvm_pgtable_stage2_map() should be called to change block size.
1908 */
1909 if (fault_is_perm && vma_pagesize == fault_granule) {
1910 /*
1911 * Drop the SW bits in favour of those stored in the
1912 * PTE, which will be preserved.
1913 */
1914 prot &= ~KVM_NV_GUEST_MAP_SZ;
1915 ret = KVM_PGT_FN(kvm_pgtable_stage2_relax_perms)(pgt, fault_ipa, prot, flags);
1916 } else {
1917 ret = KVM_PGT_FN(kvm_pgtable_stage2_map)(pgt, fault_ipa, vma_pagesize,
1918 __pfn_to_phys(pfn), prot,
1919 memcache, flags);
1920 }
1921
1922 out_unlock:
1923 kvm_release_faultin_page(kvm, page, !!ret, writable);
1924 kvm_fault_unlock(kvm);
1925
1926 /* Mark the page dirty only if the fault is handled successfully */
1927 if (writable && !ret)
1928 mark_page_dirty_in_slot(kvm, memslot, gfn);
1929
1930 return ret != -EAGAIN ? ret : 0;
1931 }
1932
1933 /* Resolve the access fault by making the page young again. */
handle_access_fault(struct kvm_vcpu * vcpu,phys_addr_t fault_ipa)1934 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1935 {
1936 enum kvm_pgtable_walk_flags flags = KVM_PGTABLE_WALK_HANDLE_FAULT | KVM_PGTABLE_WALK_SHARED;
1937 struct kvm_s2_mmu *mmu;
1938
1939 trace_kvm_access_fault(fault_ipa);
1940
1941 read_lock(&vcpu->kvm->mmu_lock);
1942 mmu = vcpu->arch.hw_mmu;
1943 KVM_PGT_FN(kvm_pgtable_stage2_mkyoung)(mmu->pgt, fault_ipa, flags);
1944 read_unlock(&vcpu->kvm->mmu_lock);
1945 }
1946
1947 /*
1948 * Returns true if the SEA should be handled locally within KVM if the abort
1949 * is caused by a kernel memory allocation (e.g. stage-2 table memory).
1950 */
host_owns_sea(struct kvm_vcpu * vcpu,u64 esr)1951 static bool host_owns_sea(struct kvm_vcpu *vcpu, u64 esr)
1952 {
1953 /*
1954 * Without FEAT_RAS HCR_EL2.TEA is RES0, meaning any external abort
1955 * taken from a guest EL to EL2 is due to a host-imposed access (e.g.
1956 * stage-2 PTW).
1957 */
1958 if (!cpus_have_final_cap(ARM64_HAS_RAS_EXTN))
1959 return true;
1960
1961 /* KVM owns the VNCR when the vCPU isn't in a nested context. */
1962 if (is_hyp_ctxt(vcpu) && !kvm_vcpu_trap_is_iabt(vcpu) && (esr & ESR_ELx_VNCR))
1963 return true;
1964
1965 /*
1966 * Determining if an external abort during a table walk happened at
1967 * stage-2 is only possible with S1PTW is set. Otherwise, since KVM
1968 * sets HCR_EL2.TEA, SEAs due to a stage-1 walk (i.e. accessing the
1969 * PA of the stage-1 descriptor) can reach here and are reported
1970 * with a TTW ESR value.
1971 */
1972 return (esr_fsc_is_sea_ttw(esr) && (esr & ESR_ELx_S1PTW));
1973 }
1974
kvm_handle_guest_sea(struct kvm_vcpu * vcpu)1975 int kvm_handle_guest_sea(struct kvm_vcpu *vcpu)
1976 {
1977 struct kvm *kvm = vcpu->kvm;
1978 struct kvm_run *run = vcpu->run;
1979 u64 esr = kvm_vcpu_get_esr(vcpu);
1980 u64 esr_mask = ESR_ELx_EC_MASK |
1981 ESR_ELx_IL |
1982 ESR_ELx_FnV |
1983 ESR_ELx_EA |
1984 ESR_ELx_CM |
1985 ESR_ELx_WNR |
1986 ESR_ELx_FSC;
1987 u64 ipa;
1988
1989 /*
1990 * Give APEI the opportunity to claim the abort before handling it
1991 * within KVM. apei_claim_sea() expects to be called with IRQs enabled.
1992 */
1993 lockdep_assert_irqs_enabled();
1994 if (apei_claim_sea(NULL) == 0)
1995 return 1;
1996
1997 if (host_owns_sea(vcpu, esr) ||
1998 !test_bit(KVM_ARCH_FLAG_EXIT_SEA, &vcpu->kvm->arch.flags))
1999 return kvm_inject_serror(vcpu);
2000
2001 /* ESR_ELx.SET is RES0 when FEAT_RAS isn't implemented. */
2002 if (kvm_has_ras(kvm))
2003 esr_mask |= ESR_ELx_SET_MASK;
2004
2005 /*
2006 * Exit to userspace, and provide faulting guest virtual and physical
2007 * addresses in case userspace wants to emulate SEA to guest by
2008 * writing to FAR_ELx and HPFAR_ELx registers.
2009 */
2010 memset(&run->arm_sea, 0, sizeof(run->arm_sea));
2011 run->exit_reason = KVM_EXIT_ARM_SEA;
2012 run->arm_sea.esr = esr & esr_mask;
2013
2014 if (!(esr & ESR_ELx_FnV))
2015 run->arm_sea.gva = kvm_vcpu_get_hfar(vcpu);
2016
2017 ipa = kvm_vcpu_get_fault_ipa(vcpu);
2018 if (ipa != INVALID_GPA) {
2019 run->arm_sea.flags |= KVM_EXIT_ARM_SEA_FLAG_GPA_VALID;
2020 run->arm_sea.gpa = ipa;
2021 }
2022
2023 return 0;
2024 }
2025
2026 /**
2027 * kvm_handle_guest_abort - handles all 2nd stage aborts
2028 * @vcpu: the VCPU pointer
2029 *
2030 * Any abort that gets to the host is almost guaranteed to be caused by a
2031 * missing second stage translation table entry, which can mean that either the
2032 * guest simply needs more memory and we must allocate an appropriate page or it
2033 * can mean that the guest tried to access I/O memory, which is emulated by user
2034 * space. The distinction is based on the IPA causing the fault and whether this
2035 * memory region has been registered as standard RAM by user space.
2036 */
kvm_handle_guest_abort(struct kvm_vcpu * vcpu)2037 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu)
2038 {
2039 struct kvm_s2_trans nested_trans, *nested = NULL;
2040 unsigned long esr;
2041 phys_addr_t fault_ipa; /* The address we faulted on */
2042 phys_addr_t ipa; /* Always the IPA in the L1 guest phys space */
2043 struct kvm_memory_slot *memslot;
2044 unsigned long hva;
2045 bool is_iabt, write_fault, writable;
2046 gfn_t gfn;
2047 int ret, idx;
2048
2049 if (kvm_vcpu_abt_issea(vcpu))
2050 return kvm_handle_guest_sea(vcpu);
2051
2052 esr = kvm_vcpu_get_esr(vcpu);
2053
2054 /*
2055 * The fault IPA should be reliable at this point as we're not dealing
2056 * with an SEA.
2057 */
2058 ipa = fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
2059 if (KVM_BUG_ON(ipa == INVALID_GPA, vcpu->kvm))
2060 return -EFAULT;
2061
2062 is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
2063
2064 if (esr_fsc_is_translation_fault(esr)) {
2065 /* Beyond sanitised PARange (which is the IPA limit) */
2066 if (fault_ipa >= BIT_ULL(get_kvm_ipa_limit())) {
2067 kvm_inject_size_fault(vcpu);
2068 return 1;
2069 }
2070
2071 /* Falls between the IPA range and the PARange? */
2072 if (fault_ipa >= BIT_ULL(VTCR_EL2_IPA(vcpu->arch.hw_mmu->vtcr))) {
2073 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & GENMASK(11, 0);
2074
2075 return kvm_inject_sea(vcpu, is_iabt, fault_ipa);
2076 }
2077 }
2078
2079 trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_esr(vcpu),
2080 kvm_vcpu_get_hfar(vcpu), fault_ipa);
2081
2082 /* Check the stage-2 fault is trans. fault or write fault */
2083 if (!esr_fsc_is_translation_fault(esr) &&
2084 !esr_fsc_is_permission_fault(esr) &&
2085 !esr_fsc_is_access_flag_fault(esr)) {
2086 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
2087 kvm_vcpu_trap_get_class(vcpu),
2088 (unsigned long)kvm_vcpu_trap_get_fault(vcpu),
2089 (unsigned long)kvm_vcpu_get_esr(vcpu));
2090 return -EFAULT;
2091 }
2092
2093 idx = srcu_read_lock(&vcpu->kvm->srcu);
2094
2095 /*
2096 * We may have faulted on a shadow stage 2 page table if we are
2097 * running a nested guest. In this case, we have to resolve the L2
2098 * IPA to the L1 IPA first, before knowing what kind of memory should
2099 * back the L1 IPA.
2100 *
2101 * If the shadow stage 2 page table walk faults, then we simply inject
2102 * this to the guest and carry on.
2103 *
2104 * If there are no shadow S2 PTs because S2 is disabled, there is
2105 * nothing to walk and we treat it as a 1:1 before going through the
2106 * canonical translation.
2107 */
2108 if (kvm_is_nested_s2_mmu(vcpu->kvm,vcpu->arch.hw_mmu) &&
2109 vcpu->arch.hw_mmu->nested_stage2_enabled) {
2110 u32 esr;
2111
2112 ret = kvm_walk_nested_s2(vcpu, fault_ipa, &nested_trans);
2113 if (ret == -EAGAIN) {
2114 ret = 1;
2115 goto out_unlock;
2116 }
2117
2118 if (ret) {
2119 esr = kvm_s2_trans_esr(&nested_trans);
2120 kvm_inject_s2_fault(vcpu, esr);
2121 goto out_unlock;
2122 }
2123
2124 ret = kvm_s2_handle_perm_fault(vcpu, &nested_trans);
2125 if (ret) {
2126 esr = kvm_s2_trans_esr(&nested_trans);
2127 kvm_inject_s2_fault(vcpu, esr);
2128 goto out_unlock;
2129 }
2130
2131 ipa = kvm_s2_trans_output(&nested_trans);
2132 nested = &nested_trans;
2133 }
2134
2135 gfn = ipa >> PAGE_SHIFT;
2136 memslot = gfn_to_memslot(vcpu->kvm, gfn);
2137 hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
2138 write_fault = kvm_is_write_fault(vcpu);
2139 if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
2140 /*
2141 * The guest has put either its instructions or its page-tables
2142 * somewhere it shouldn't have. Userspace won't be able to do
2143 * anything about this (there's no syndrome for a start), so
2144 * re-inject the abort back into the guest.
2145 */
2146 if (is_iabt) {
2147 ret = -ENOEXEC;
2148 goto out;
2149 }
2150
2151 if (kvm_vcpu_abt_iss1tw(vcpu)) {
2152 ret = kvm_inject_sea_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
2153 goto out_unlock;
2154 }
2155
2156 /*
2157 * Check for a cache maintenance operation. Since we
2158 * ended-up here, we know it is outside of any memory
2159 * slot. But we can't find out if that is for a device,
2160 * or if the guest is just being stupid. The only thing
2161 * we know for sure is that this range cannot be cached.
2162 *
2163 * So let's assume that the guest is just being
2164 * cautious, and skip the instruction.
2165 */
2166 if (kvm_is_error_hva(hva) && kvm_vcpu_dabt_is_cm(vcpu)) {
2167 kvm_incr_pc(vcpu);
2168 ret = 1;
2169 goto out_unlock;
2170 }
2171
2172 /*
2173 * The IPA is reported as [MAX:12], so we need to
2174 * complement it with the bottom 12 bits from the
2175 * faulting VA. This is always 12 bits, irrespective
2176 * of the page size.
2177 */
2178 ipa |= kvm_vcpu_get_hfar(vcpu) & GENMASK(11, 0);
2179 ret = io_mem_abort(vcpu, ipa);
2180 goto out_unlock;
2181 }
2182
2183 /* Userspace should not be able to register out-of-bounds IPAs */
2184 VM_BUG_ON(ipa >= kvm_phys_size(vcpu->arch.hw_mmu));
2185
2186 if (esr_fsc_is_access_flag_fault(esr)) {
2187 handle_access_fault(vcpu, fault_ipa);
2188 ret = 1;
2189 goto out_unlock;
2190 }
2191
2192 VM_WARN_ON_ONCE(kvm_vcpu_trap_is_permission_fault(vcpu) &&
2193 !write_fault && !kvm_vcpu_trap_is_exec_fault(vcpu));
2194
2195 if (kvm_slot_has_gmem(memslot))
2196 ret = gmem_abort(vcpu, fault_ipa, nested, memslot,
2197 esr_fsc_is_permission_fault(esr));
2198 else
2199 ret = user_mem_abort(vcpu, fault_ipa, nested, memslot, hva,
2200 esr_fsc_is_permission_fault(esr));
2201 if (ret == 0)
2202 ret = 1;
2203 out:
2204 if (ret == -ENOEXEC)
2205 ret = kvm_inject_sea_iabt(vcpu, kvm_vcpu_get_hfar(vcpu));
2206 out_unlock:
2207 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2208 return ret;
2209 }
2210
kvm_unmap_gfn_range(struct kvm * kvm,struct kvm_gfn_range * range)2211 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
2212 {
2213 if (!kvm->arch.mmu.pgt)
2214 return false;
2215
2216 __unmap_stage2_range(&kvm->arch.mmu, range->start << PAGE_SHIFT,
2217 (range->end - range->start) << PAGE_SHIFT,
2218 range->may_block);
2219
2220 kvm_nested_s2_unmap(kvm, range->may_block);
2221 return false;
2222 }
2223
kvm_age_gfn(struct kvm * kvm,struct kvm_gfn_range * range)2224 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
2225 {
2226 u64 size = (range->end - range->start) << PAGE_SHIFT;
2227
2228 if (!kvm->arch.mmu.pgt)
2229 return false;
2230
2231 return KVM_PGT_FN(kvm_pgtable_stage2_test_clear_young)(kvm->arch.mmu.pgt,
2232 range->start << PAGE_SHIFT,
2233 size, true);
2234 /*
2235 * TODO: Handle nested_mmu structures here using the reverse mapping in
2236 * a later version of patch series.
2237 */
2238 }
2239
kvm_test_age_gfn(struct kvm * kvm,struct kvm_gfn_range * range)2240 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
2241 {
2242 u64 size = (range->end - range->start) << PAGE_SHIFT;
2243
2244 if (!kvm->arch.mmu.pgt)
2245 return false;
2246
2247 return KVM_PGT_FN(kvm_pgtable_stage2_test_clear_young)(kvm->arch.mmu.pgt,
2248 range->start << PAGE_SHIFT,
2249 size, false);
2250 }
2251
kvm_mmu_get_httbr(void)2252 phys_addr_t kvm_mmu_get_httbr(void)
2253 {
2254 return __pa(hyp_pgtable->pgd);
2255 }
2256
kvm_get_idmap_vector(void)2257 phys_addr_t kvm_get_idmap_vector(void)
2258 {
2259 return hyp_idmap_vector;
2260 }
2261
kvm_map_idmap_text(void)2262 static int kvm_map_idmap_text(void)
2263 {
2264 unsigned long size = hyp_idmap_end - hyp_idmap_start;
2265 int err = __create_hyp_mappings(hyp_idmap_start, size, hyp_idmap_start,
2266 PAGE_HYP_EXEC);
2267 if (err)
2268 kvm_err("Failed to idmap %lx-%lx\n",
2269 hyp_idmap_start, hyp_idmap_end);
2270
2271 return err;
2272 }
2273
kvm_hyp_zalloc_page(void * arg)2274 static void *kvm_hyp_zalloc_page(void *arg)
2275 {
2276 return (void *)get_zeroed_page(GFP_KERNEL);
2277 }
2278
2279 static struct kvm_pgtable_mm_ops kvm_hyp_mm_ops = {
2280 .zalloc_page = kvm_hyp_zalloc_page,
2281 .get_page = kvm_host_get_page,
2282 .put_page = kvm_host_put_page,
2283 .phys_to_virt = kvm_host_va,
2284 .virt_to_phys = kvm_host_pa,
2285 };
2286
kvm_mmu_init(u32 * hyp_va_bits)2287 int __init kvm_mmu_init(u32 *hyp_va_bits)
2288 {
2289 int err;
2290 u32 idmap_bits;
2291 u32 kernel_bits;
2292
2293 hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start);
2294 hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
2295 hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end);
2296 hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
2297 hyp_idmap_vector = __pa_symbol(__kvm_hyp_init);
2298
2299 /*
2300 * We rely on the linker script to ensure at build time that the HYP
2301 * init code does not cross a page boundary.
2302 */
2303 BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
2304
2305 /*
2306 * The ID map is always configured for 48 bits of translation, which
2307 * may be fewer than the number of VA bits used by the regular kernel
2308 * stage 1, when VA_BITS=52.
2309 *
2310 * At EL2, there is only one TTBR register, and we can't switch between
2311 * translation tables *and* update TCR_EL2.T0SZ at the same time. Bottom
2312 * line: we need to use the extended range with *both* our translation
2313 * tables.
2314 *
2315 * So use the maximum of the idmap VA bits and the regular kernel stage
2316 * 1 VA bits to assure that the hypervisor can both ID map its code page
2317 * and map any kernel memory.
2318 */
2319 idmap_bits = IDMAP_VA_BITS;
2320 kernel_bits = vabits_actual;
2321 *hyp_va_bits = max(idmap_bits, kernel_bits);
2322
2323 kvm_debug("Using %u-bit virtual addresses at EL2\n", *hyp_va_bits);
2324 kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
2325 kvm_debug("HYP VA range: %lx:%lx\n",
2326 kern_hyp_va(PAGE_OFFSET),
2327 kern_hyp_va((unsigned long)high_memory - 1));
2328
2329 if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
2330 hyp_idmap_start < kern_hyp_va((unsigned long)high_memory - 1) &&
2331 hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
2332 /*
2333 * The idmap page is intersecting with the VA space,
2334 * it is not safe to continue further.
2335 */
2336 kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
2337 err = -EINVAL;
2338 goto out;
2339 }
2340
2341 hyp_pgtable = kzalloc(sizeof(*hyp_pgtable), GFP_KERNEL);
2342 if (!hyp_pgtable) {
2343 kvm_err("Hyp mode page-table not allocated\n");
2344 err = -ENOMEM;
2345 goto out;
2346 }
2347
2348 err = kvm_pgtable_hyp_init(hyp_pgtable, *hyp_va_bits, &kvm_hyp_mm_ops);
2349 if (err)
2350 goto out_free_pgtable;
2351
2352 err = kvm_map_idmap_text();
2353 if (err)
2354 goto out_destroy_pgtable;
2355
2356 io_map_base = hyp_idmap_start;
2357 __hyp_va_bits = *hyp_va_bits;
2358 return 0;
2359
2360 out_destroy_pgtable:
2361 kvm_pgtable_hyp_destroy(hyp_pgtable);
2362 out_free_pgtable:
2363 kfree(hyp_pgtable);
2364 hyp_pgtable = NULL;
2365 out:
2366 return err;
2367 }
2368
kvm_arch_commit_memory_region(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)2369 void kvm_arch_commit_memory_region(struct kvm *kvm,
2370 struct kvm_memory_slot *old,
2371 const struct kvm_memory_slot *new,
2372 enum kvm_mr_change change)
2373 {
2374 bool log_dirty_pages = new && new->flags & KVM_MEM_LOG_DIRTY_PAGES;
2375
2376 /*
2377 * At this point memslot has been committed and there is an
2378 * allocated dirty_bitmap[], dirty pages will be tracked while the
2379 * memory slot is write protected.
2380 */
2381 if (log_dirty_pages) {
2382
2383 if (change == KVM_MR_DELETE)
2384 return;
2385
2386 /*
2387 * Huge and normal pages are write-protected and split
2388 * on either of these two cases:
2389 *
2390 * 1. with initial-all-set: gradually with CLEAR ioctls,
2391 */
2392 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
2393 return;
2394 /*
2395 * or
2396 * 2. without initial-all-set: all in one shot when
2397 * enabling dirty logging.
2398 */
2399 kvm_mmu_wp_memory_region(kvm, new->id);
2400 kvm_mmu_split_memory_region(kvm, new->id);
2401 } else {
2402 /*
2403 * Free any leftovers from the eager page splitting cache. Do
2404 * this when deleting, moving, disabling dirty logging, or
2405 * creating the memslot (a nop). Doing it for deletes makes
2406 * sure we don't leak memory, and there's no need to keep the
2407 * cache around for any of the other cases.
2408 */
2409 kvm_mmu_free_memory_cache(&kvm->arch.mmu.split_page_cache);
2410 }
2411 }
2412
kvm_arch_prepare_memory_region(struct kvm * kvm,const struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)2413 int kvm_arch_prepare_memory_region(struct kvm *kvm,
2414 const struct kvm_memory_slot *old,
2415 struct kvm_memory_slot *new,
2416 enum kvm_mr_change change)
2417 {
2418 hva_t hva, reg_end;
2419 int ret = 0;
2420
2421 if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
2422 change != KVM_MR_FLAGS_ONLY)
2423 return 0;
2424
2425 /*
2426 * Prevent userspace from creating a memory region outside of the IPA
2427 * space addressable by the KVM guest IPA space.
2428 */
2429 if ((new->base_gfn + new->npages) > (kvm_phys_size(&kvm->arch.mmu) >> PAGE_SHIFT))
2430 return -EFAULT;
2431
2432 /*
2433 * Only support guest_memfd backed memslots with mappable memory, since
2434 * there aren't any CoCo VMs that support only private memory on arm64.
2435 */
2436 if (kvm_slot_has_gmem(new) && !kvm_memslot_is_gmem_only(new))
2437 return -EINVAL;
2438
2439 hva = new->userspace_addr;
2440 reg_end = hva + (new->npages << PAGE_SHIFT);
2441
2442 mmap_read_lock(current->mm);
2443 /*
2444 * A memory region could potentially cover multiple VMAs, and any holes
2445 * between them, so iterate over all of them.
2446 *
2447 * +--------------------------------------------+
2448 * +---------------+----------------+ +----------------+
2449 * | : VMA 1 | VMA 2 | | VMA 3 : |
2450 * +---------------+----------------+ +----------------+
2451 * | memory region |
2452 * +--------------------------------------------+
2453 */
2454 do {
2455 struct vm_area_struct *vma;
2456
2457 vma = find_vma_intersection(current->mm, hva, reg_end);
2458 if (!vma)
2459 break;
2460
2461 if (kvm_has_mte(kvm) && !kvm_vma_mte_allowed(vma)) {
2462 ret = -EINVAL;
2463 break;
2464 }
2465
2466 if (vma->vm_flags & VM_PFNMAP) {
2467 /* IO region dirty page logging not allowed */
2468 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
2469 ret = -EINVAL;
2470 break;
2471 }
2472
2473 /*
2474 * Cacheable PFNMAP is allowed only if the hardware
2475 * supports it.
2476 */
2477 if (kvm_vma_is_cacheable(vma) && !kvm_supports_cacheable_pfnmap()) {
2478 ret = -EINVAL;
2479 break;
2480 }
2481 }
2482 hva = min(reg_end, vma->vm_end);
2483 } while (hva < reg_end);
2484
2485 mmap_read_unlock(current->mm);
2486 return ret;
2487 }
2488
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)2489 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
2490 {
2491 }
2492
kvm_arch_memslots_updated(struct kvm * kvm,u64 gen)2493 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
2494 {
2495 }
2496
kvm_arch_flush_shadow_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)2497 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
2498 struct kvm_memory_slot *slot)
2499 {
2500 gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
2501 phys_addr_t size = slot->npages << PAGE_SHIFT;
2502
2503 write_lock(&kvm->mmu_lock);
2504 kvm_stage2_unmap_range(&kvm->arch.mmu, gpa, size, true);
2505 kvm_nested_s2_unmap(kvm, true);
2506 write_unlock(&kvm->mmu_lock);
2507 }
2508
2509 /*
2510 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
2511 *
2512 * Main problems:
2513 * - S/W ops are local to a CPU (not broadcast)
2514 * - We have line migration behind our back (speculation)
2515 * - System caches don't support S/W at all (damn!)
2516 *
2517 * In the face of the above, the best we can do is to try and convert
2518 * S/W ops to VA ops. Because the guest is not allowed to infer the
2519 * S/W to PA mapping, it can only use S/W to nuke the whole cache,
2520 * which is a rather good thing for us.
2521 *
2522 * Also, it is only used when turning caches on/off ("The expected
2523 * usage of the cache maintenance instructions that operate by set/way
2524 * is associated with the cache maintenance instructions associated
2525 * with the powerdown and powerup of caches, if this is required by
2526 * the implementation.").
2527 *
2528 * We use the following policy:
2529 *
2530 * - If we trap a S/W operation, we enable VM trapping to detect
2531 * caches being turned on/off, and do a full clean.
2532 *
2533 * - We flush the caches on both caches being turned on and off.
2534 *
2535 * - Once the caches are enabled, we stop trapping VM ops.
2536 */
kvm_set_way_flush(struct kvm_vcpu * vcpu)2537 void kvm_set_way_flush(struct kvm_vcpu *vcpu)
2538 {
2539 unsigned long hcr = *vcpu_hcr(vcpu);
2540
2541 /*
2542 * If this is the first time we do a S/W operation
2543 * (i.e. HCR_TVM not set) flush the whole memory, and set the
2544 * VM trapping.
2545 *
2546 * Otherwise, rely on the VM trapping to wait for the MMU +
2547 * Caches to be turned off. At that point, we'll be able to
2548 * clean the caches again.
2549 */
2550 if (!(hcr & HCR_TVM)) {
2551 trace_kvm_set_way_flush(*vcpu_pc(vcpu),
2552 vcpu_has_cache_enabled(vcpu));
2553 stage2_flush_vm(vcpu->kvm);
2554 *vcpu_hcr(vcpu) = hcr | HCR_TVM;
2555 }
2556 }
2557
kvm_toggle_cache(struct kvm_vcpu * vcpu,bool was_enabled)2558 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
2559 {
2560 bool now_enabled = vcpu_has_cache_enabled(vcpu);
2561
2562 /*
2563 * If switching the MMU+caches on, need to invalidate the caches.
2564 * If switching it off, need to clean the caches.
2565 * Clean + invalidate does the trick always.
2566 */
2567 if (now_enabled != was_enabled)
2568 stage2_flush_vm(vcpu->kvm);
2569
2570 /* Caches are now on, stop trapping VM ops (until a S/W op) */
2571 if (now_enabled)
2572 *vcpu_hcr(vcpu) &= ~HCR_TVM;
2573
2574 trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
2575 }
2576