xref: /linux/arch/x86/kvm/x86.h (revision 63eb28bb1402891b1ad2be02a530f29a9dd7f1cd)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef ARCH_X86_KVM_X86_H
3 #define ARCH_X86_KVM_X86_H
4 
5 #include <linux/kvm_host.h>
6 #include <asm/fpu/xstate.h>
7 #include <asm/mce.h>
8 #include <asm/pvclock.h>
9 #include "kvm_cache_regs.h"
10 #include "kvm_emulate.h"
11 #include "cpuid.h"
12 
13 #define KVM_MAX_MCE_BANKS 32
14 
15 struct kvm_caps {
16 	/* control of guest tsc rate supported? */
17 	bool has_tsc_control;
18 	/* maximum supported tsc_khz for guests */
19 	u32  max_guest_tsc_khz;
20 	/* number of bits of the fractional part of the TSC scaling ratio */
21 	u8   tsc_scaling_ratio_frac_bits;
22 	/* maximum allowed value of TSC scaling ratio */
23 	u64  max_tsc_scaling_ratio;
24 	/* 1ull << kvm_caps.tsc_scaling_ratio_frac_bits */
25 	u64  default_tsc_scaling_ratio;
26 	/* bus lock detection supported? */
27 	bool has_bus_lock_exit;
28 	/* notify VM exit supported? */
29 	bool has_notify_vmexit;
30 	/* bit mask of VM types */
31 	u32 supported_vm_types;
32 
33 	u64 supported_mce_cap;
34 	u64 supported_xcr0;
35 	u64 supported_xss;
36 	u64 supported_perf_cap;
37 
38 	u64 supported_quirks;
39 	u64 inapplicable_quirks;
40 };
41 
42 struct kvm_host_values {
43 	/*
44 	 * The host's raw MAXPHYADDR, i.e. the number of non-reserved physical
45 	 * address bits irrespective of features that repurpose legal bits,
46 	 * e.g. MKTME.
47 	 */
48 	u8 maxphyaddr;
49 
50 	u64 efer;
51 	u64 xcr0;
52 	u64 xss;
53 	u64 arch_capabilities;
54 };
55 
56 void kvm_spurious_fault(void);
57 
58 #define SIZE_OF_MEMSLOTS_HASHTABLE \
59 	(sizeof(((struct kvm_memslots *)0)->id_hash) * 2 * KVM_MAX_NR_ADDRESS_SPACES)
60 
61 /* Sanity check the size of the memslot hash tables. */
62 static_assert(SIZE_OF_MEMSLOTS_HASHTABLE ==
63 	      (1024 * (1 + IS_ENABLED(CONFIG_X86_64)) * (1 + IS_ENABLED(CONFIG_KVM_SMM))));
64 
65 /*
66  * Assert that "struct kvm_{svm,vmx,tdx}" is an order-0 or order-1 allocation.
67  * Spilling over to an order-2 allocation isn't fundamentally problematic, but
68  * isn't expected to happen in the foreseeable future (O(years)).  Assert that
69  * the size is an order-0 allocation when ignoring the memslot hash tables, to
70  * help detect and debug unexpected size increases.
71  */
72 #define KVM_SANITY_CHECK_VM_STRUCT_SIZE(x)						\
73 do {											\
74 	BUILD_BUG_ON(get_order(sizeof(struct x) - SIZE_OF_MEMSLOTS_HASHTABLE) &&	\
75 		     !IS_ENABLED(CONFIG_DEBUG_KERNEL) && !IS_ENABLED(CONFIG_KASAN));	\
76 	BUILD_BUG_ON(get_order(sizeof(struct x)) > 1 &&					\
77 		     !IS_ENABLED(CONFIG_DEBUG_KERNEL) && !IS_ENABLED(CONFIG_KASAN));	\
78 } while (0)
79 
80 #define KVM_NESTED_VMENTER_CONSISTENCY_CHECK(consistency_check)		\
81 ({									\
82 	bool failed = (consistency_check);				\
83 	if (failed)							\
84 		trace_kvm_nested_vmenter_failed(#consistency_check, 0);	\
85 	failed;								\
86 })
87 
88 /*
89  * The first...last VMX feature MSRs that are emulated by KVM.  This may or may
90  * not cover all known VMX MSRs, as KVM doesn't emulate an MSR until there's an
91  * associated feature that KVM supports for nested virtualization.
92  */
93 #define KVM_FIRST_EMULATED_VMX_MSR	MSR_IA32_VMX_BASIC
94 #define KVM_LAST_EMULATED_VMX_MSR	MSR_IA32_VMX_VMFUNC
95 
96 #define KVM_DEFAULT_PLE_GAP		128
97 #define KVM_VMX_DEFAULT_PLE_WINDOW	4096
98 #define KVM_DEFAULT_PLE_WINDOW_GROW	2
99 #define KVM_DEFAULT_PLE_WINDOW_SHRINK	0
100 #define KVM_VMX_DEFAULT_PLE_WINDOW_MAX	UINT_MAX
101 #define KVM_SVM_DEFAULT_PLE_WINDOW_MAX	USHRT_MAX
102 #define KVM_SVM_DEFAULT_PLE_WINDOW	3000
103 
__grow_ple_window(unsigned int val,unsigned int base,unsigned int modifier,unsigned int max)104 static inline unsigned int __grow_ple_window(unsigned int val,
105 		unsigned int base, unsigned int modifier, unsigned int max)
106 {
107 	u64 ret = val;
108 
109 	if (modifier < 1)
110 		return base;
111 
112 	if (modifier < base)
113 		ret *= modifier;
114 	else
115 		ret += modifier;
116 
117 	return min(ret, (u64)max);
118 }
119 
__shrink_ple_window(unsigned int val,unsigned int base,unsigned int modifier,unsigned int min)120 static inline unsigned int __shrink_ple_window(unsigned int val,
121 		unsigned int base, unsigned int modifier, unsigned int min)
122 {
123 	if (modifier < 1)
124 		return base;
125 
126 	if (modifier < base)
127 		val /= modifier;
128 	else
129 		val -= modifier;
130 
131 	return max(val, min);
132 }
133 
134 #define MSR_IA32_CR_PAT_DEFAULT	\
135 	PAT_VALUE(WB, WT, UC_MINUS, UC, WB, WT, UC_MINUS, UC)
136 
137 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu);
138 int kvm_check_nested_events(struct kvm_vcpu *vcpu);
139 
140 /* Forcibly leave the nested mode in cases like a vCPU reset */
kvm_leave_nested(struct kvm_vcpu * vcpu)141 static inline void kvm_leave_nested(struct kvm_vcpu *vcpu)
142 {
143 	kvm_x86_ops.nested_ops->leave_nested(vcpu);
144 }
145 
146 /*
147  * If IBRS is advertised to the vCPU, KVM must flush the indirect branch
148  * predictors when transitioning from L2 to L1, as L1 expects hardware (KVM in
149  * this case) to provide separate predictor modes.  Bare metal isolates the host
150  * from the guest, but doesn't isolate different guests from one another (in
151  * this case L1 and L2). The exception is if bare metal supports same mode IBRS,
152  * which offers protection within the same mode, and hence protects L1 from L2.
153  */
kvm_nested_vmexit_handle_ibrs(struct kvm_vcpu * vcpu)154 static inline void kvm_nested_vmexit_handle_ibrs(struct kvm_vcpu *vcpu)
155 {
156 	if (cpu_feature_enabled(X86_FEATURE_AMD_IBRS_SAME_MODE))
157 		return;
158 
159 	if (guest_cpu_cap_has(vcpu, X86_FEATURE_SPEC_CTRL) ||
160 	    guest_cpu_cap_has(vcpu, X86_FEATURE_AMD_IBRS))
161 		indirect_branch_prediction_barrier();
162 }
163 
kvm_vcpu_has_run(struct kvm_vcpu * vcpu)164 static inline bool kvm_vcpu_has_run(struct kvm_vcpu *vcpu)
165 {
166 	return vcpu->arch.last_vmentry_cpu != -1;
167 }
168 
kvm_set_mp_state(struct kvm_vcpu * vcpu,int mp_state)169 static inline void kvm_set_mp_state(struct kvm_vcpu *vcpu, int mp_state)
170 {
171 	vcpu->arch.mp_state = mp_state;
172 	if (mp_state == KVM_MP_STATE_RUNNABLE)
173 		vcpu->arch.pv.pv_unhalted = false;
174 }
175 
kvm_is_exception_pending(struct kvm_vcpu * vcpu)176 static inline bool kvm_is_exception_pending(struct kvm_vcpu *vcpu)
177 {
178 	return vcpu->arch.exception.pending ||
179 	       vcpu->arch.exception_vmexit.pending ||
180 	       kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
181 }
182 
kvm_clear_exception_queue(struct kvm_vcpu * vcpu)183 static inline void kvm_clear_exception_queue(struct kvm_vcpu *vcpu)
184 {
185 	vcpu->arch.exception.pending = false;
186 	vcpu->arch.exception.injected = false;
187 	vcpu->arch.exception_vmexit.pending = false;
188 }
189 
kvm_queue_interrupt(struct kvm_vcpu * vcpu,u8 vector,bool soft)190 static inline void kvm_queue_interrupt(struct kvm_vcpu *vcpu, u8 vector,
191 	bool soft)
192 {
193 	vcpu->arch.interrupt.injected = true;
194 	vcpu->arch.interrupt.soft = soft;
195 	vcpu->arch.interrupt.nr = vector;
196 }
197 
kvm_clear_interrupt_queue(struct kvm_vcpu * vcpu)198 static inline void kvm_clear_interrupt_queue(struct kvm_vcpu *vcpu)
199 {
200 	vcpu->arch.interrupt.injected = false;
201 }
202 
kvm_event_needs_reinjection(struct kvm_vcpu * vcpu)203 static inline bool kvm_event_needs_reinjection(struct kvm_vcpu *vcpu)
204 {
205 	return vcpu->arch.exception.injected || vcpu->arch.interrupt.injected ||
206 		vcpu->arch.nmi_injected;
207 }
208 
kvm_exception_is_soft(unsigned int nr)209 static inline bool kvm_exception_is_soft(unsigned int nr)
210 {
211 	return (nr == BP_VECTOR) || (nr == OF_VECTOR);
212 }
213 
is_protmode(struct kvm_vcpu * vcpu)214 static inline bool is_protmode(struct kvm_vcpu *vcpu)
215 {
216 	return kvm_is_cr0_bit_set(vcpu, X86_CR0_PE);
217 }
218 
is_long_mode(struct kvm_vcpu * vcpu)219 static inline bool is_long_mode(struct kvm_vcpu *vcpu)
220 {
221 #ifdef CONFIG_X86_64
222 	return !!(vcpu->arch.efer & EFER_LMA);
223 #else
224 	return false;
225 #endif
226 }
227 
is_64_bit_mode(struct kvm_vcpu * vcpu)228 static inline bool is_64_bit_mode(struct kvm_vcpu *vcpu)
229 {
230 	int cs_db, cs_l;
231 
232 	WARN_ON_ONCE(vcpu->arch.guest_state_protected);
233 
234 	if (!is_long_mode(vcpu))
235 		return false;
236 	kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
237 	return cs_l;
238 }
239 
is_64_bit_hypercall(struct kvm_vcpu * vcpu)240 static inline bool is_64_bit_hypercall(struct kvm_vcpu *vcpu)
241 {
242 	/*
243 	 * If running with protected guest state, the CS register is not
244 	 * accessible. The hypercall register values will have had to been
245 	 * provided in 64-bit mode, so assume the guest is in 64-bit.
246 	 */
247 	return vcpu->arch.guest_state_protected || is_64_bit_mode(vcpu);
248 }
249 
x86_exception_has_error_code(unsigned int vector)250 static inline bool x86_exception_has_error_code(unsigned int vector)
251 {
252 	static u32 exception_has_error_code = BIT(DF_VECTOR) | BIT(TS_VECTOR) |
253 			BIT(NP_VECTOR) | BIT(SS_VECTOR) | BIT(GP_VECTOR) |
254 			BIT(PF_VECTOR) | BIT(AC_VECTOR);
255 
256 	return (1U << vector) & exception_has_error_code;
257 }
258 
mmu_is_nested(struct kvm_vcpu * vcpu)259 static inline bool mmu_is_nested(struct kvm_vcpu *vcpu)
260 {
261 	return vcpu->arch.walk_mmu == &vcpu->arch.nested_mmu;
262 }
263 
is_pae(struct kvm_vcpu * vcpu)264 static inline bool is_pae(struct kvm_vcpu *vcpu)
265 {
266 	return kvm_is_cr4_bit_set(vcpu, X86_CR4_PAE);
267 }
268 
is_pse(struct kvm_vcpu * vcpu)269 static inline bool is_pse(struct kvm_vcpu *vcpu)
270 {
271 	return kvm_is_cr4_bit_set(vcpu, X86_CR4_PSE);
272 }
273 
is_paging(struct kvm_vcpu * vcpu)274 static inline bool is_paging(struct kvm_vcpu *vcpu)
275 {
276 	return likely(kvm_is_cr0_bit_set(vcpu, X86_CR0_PG));
277 }
278 
is_pae_paging(struct kvm_vcpu * vcpu)279 static inline bool is_pae_paging(struct kvm_vcpu *vcpu)
280 {
281 	return !is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu);
282 }
283 
vcpu_virt_addr_bits(struct kvm_vcpu * vcpu)284 static inline u8 vcpu_virt_addr_bits(struct kvm_vcpu *vcpu)
285 {
286 	return kvm_is_cr4_bit_set(vcpu, X86_CR4_LA57) ? 57 : 48;
287 }
288 
max_host_virt_addr_bits(void)289 static inline u8 max_host_virt_addr_bits(void)
290 {
291 	return kvm_cpu_cap_has(X86_FEATURE_LA57) ? 57 : 48;
292 }
293 
294 /*
295  * x86 MSRs which contain linear addresses, x86 hidden segment bases, and
296  * IDT/GDT bases have static canonicality checks, the size of which depends
297  * only on the CPU's support for 5-level paging, rather than on the state of
298  * CR4.LA57.  This applies to both WRMSR and to other instructions that set
299  * their values, e.g. SGDT.
300  *
301  * KVM passes through most of these MSRS and also doesn't intercept the
302  * instructions that set the hidden segment bases.
303  *
304  * Because of this, to be consistent with hardware, even if the guest doesn't
305  * have LA57 enabled in its CPUID, perform canonicality checks based on *host*
306  * support for 5 level paging.
307  *
308  * Finally, instructions which are related to MMU invalidation of a given
309  * linear address, also have a similar static canonical check on address.
310  * This allows for example to invalidate 5-level addresses of a guest from a
311  * host which uses 4-level paging.
312  */
is_noncanonical_address(u64 la,struct kvm_vcpu * vcpu,unsigned int flags)313 static inline bool is_noncanonical_address(u64 la, struct kvm_vcpu *vcpu,
314 					   unsigned int flags)
315 {
316 	if (flags & (X86EMUL_F_INVLPG | X86EMUL_F_MSR | X86EMUL_F_DT_LOAD))
317 		return !__is_canonical_address(la, max_host_virt_addr_bits());
318 	else
319 		return !__is_canonical_address(la, vcpu_virt_addr_bits(vcpu));
320 }
321 
is_noncanonical_msr_address(u64 la,struct kvm_vcpu * vcpu)322 static inline bool is_noncanonical_msr_address(u64 la, struct kvm_vcpu *vcpu)
323 {
324 	return is_noncanonical_address(la, vcpu, X86EMUL_F_MSR);
325 }
326 
is_noncanonical_base_address(u64 la,struct kvm_vcpu * vcpu)327 static inline bool is_noncanonical_base_address(u64 la, struct kvm_vcpu *vcpu)
328 {
329 	return is_noncanonical_address(la, vcpu, X86EMUL_F_DT_LOAD);
330 }
331 
is_noncanonical_invlpg_address(u64 la,struct kvm_vcpu * vcpu)332 static inline bool is_noncanonical_invlpg_address(u64 la, struct kvm_vcpu *vcpu)
333 {
334 	return is_noncanonical_address(la, vcpu, X86EMUL_F_INVLPG);
335 }
336 
vcpu_cache_mmio_info(struct kvm_vcpu * vcpu,gva_t gva,gfn_t gfn,unsigned access)337 static inline void vcpu_cache_mmio_info(struct kvm_vcpu *vcpu,
338 					gva_t gva, gfn_t gfn, unsigned access)
339 {
340 	u64 gen = kvm_memslots(vcpu->kvm)->generation;
341 
342 	if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
343 		return;
344 
345 	/*
346 	 * If this is a shadow nested page table, the "GVA" is
347 	 * actually a nGPA.
348 	 */
349 	vcpu->arch.mmio_gva = mmu_is_nested(vcpu) ? 0 : gva & PAGE_MASK;
350 	vcpu->arch.mmio_access = access;
351 	vcpu->arch.mmio_gfn = gfn;
352 	vcpu->arch.mmio_gen = gen;
353 }
354 
vcpu_match_mmio_gen(struct kvm_vcpu * vcpu)355 static inline bool vcpu_match_mmio_gen(struct kvm_vcpu *vcpu)
356 {
357 	return vcpu->arch.mmio_gen == kvm_memslots(vcpu->kvm)->generation;
358 }
359 
360 /*
361  * Clear the mmio cache info for the given gva. If gva is MMIO_GVA_ANY, we
362  * clear all mmio cache info.
363  */
364 #define MMIO_GVA_ANY (~(gva_t)0)
365 
vcpu_clear_mmio_info(struct kvm_vcpu * vcpu,gva_t gva)366 static inline void vcpu_clear_mmio_info(struct kvm_vcpu *vcpu, gva_t gva)
367 {
368 	if (gva != MMIO_GVA_ANY && vcpu->arch.mmio_gva != (gva & PAGE_MASK))
369 		return;
370 
371 	vcpu->arch.mmio_gva = 0;
372 }
373 
vcpu_match_mmio_gva(struct kvm_vcpu * vcpu,unsigned long gva)374 static inline bool vcpu_match_mmio_gva(struct kvm_vcpu *vcpu, unsigned long gva)
375 {
376 	if (vcpu_match_mmio_gen(vcpu) && vcpu->arch.mmio_gva &&
377 	      vcpu->arch.mmio_gva == (gva & PAGE_MASK))
378 		return true;
379 
380 	return false;
381 }
382 
vcpu_match_mmio_gpa(struct kvm_vcpu * vcpu,gpa_t gpa)383 static inline bool vcpu_match_mmio_gpa(struct kvm_vcpu *vcpu, gpa_t gpa)
384 {
385 	if (vcpu_match_mmio_gen(vcpu) && vcpu->arch.mmio_gfn &&
386 	      vcpu->arch.mmio_gfn == gpa >> PAGE_SHIFT)
387 		return true;
388 
389 	return false;
390 }
391 
kvm_register_read(struct kvm_vcpu * vcpu,int reg)392 static inline unsigned long kvm_register_read(struct kvm_vcpu *vcpu, int reg)
393 {
394 	unsigned long val = kvm_register_read_raw(vcpu, reg);
395 
396 	return is_64_bit_mode(vcpu) ? val : (u32)val;
397 }
398 
kvm_register_write(struct kvm_vcpu * vcpu,int reg,unsigned long val)399 static inline void kvm_register_write(struct kvm_vcpu *vcpu,
400 				       int reg, unsigned long val)
401 {
402 	if (!is_64_bit_mode(vcpu))
403 		val = (u32)val;
404 	return kvm_register_write_raw(vcpu, reg, val);
405 }
406 
kvm_check_has_quirk(struct kvm * kvm,u64 quirk)407 static inline bool kvm_check_has_quirk(struct kvm *kvm, u64 quirk)
408 {
409 	return !(kvm->arch.disabled_quirks & quirk);
410 }
411 
412 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip);
413 
414 u64 get_kvmclock_ns(struct kvm *kvm);
415 uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm);
416 bool kvm_get_monotonic_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp);
417 int kvm_guest_time_update(struct kvm_vcpu *v);
418 
419 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
420 	gva_t addr, void *val, unsigned int bytes,
421 	struct x86_exception *exception);
422 
423 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu,
424 	gva_t addr, void *val, unsigned int bytes,
425 	struct x86_exception *exception);
426 
427 int handle_ud(struct kvm_vcpu *vcpu);
428 
429 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
430 				   struct kvm_queued_exception *ex);
431 
432 int kvm_mtrr_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data);
433 int kvm_mtrr_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata);
434 bool kvm_vector_hashing_enabled(void);
435 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code);
436 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
437 				    void *insn, int insn_len);
438 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
439 			    int emulation_type, void *insn, int insn_len);
440 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu);
441 fastpath_t handle_fastpath_hlt(struct kvm_vcpu *vcpu);
442 
443 extern struct kvm_caps kvm_caps;
444 extern struct kvm_host_values kvm_host;
445 
446 extern bool enable_pmu;
447 
448 /*
449  * Get a filtered version of KVM's supported XCR0 that strips out dynamic
450  * features for which the current process doesn't (yet) have permission to use.
451  * This is intended to be used only when enumerating support to userspace,
452  * e.g. in KVM_GET_SUPPORTED_CPUID and KVM_CAP_XSAVE2, it does NOT need to be
453  * used to check/restrict guest behavior as KVM rejects KVM_SET_CPUID{2} if
454  * userspace attempts to enable unpermitted features.
455  */
kvm_get_filtered_xcr0(void)456 static inline u64 kvm_get_filtered_xcr0(void)
457 {
458 	u64 permitted_xcr0 = kvm_caps.supported_xcr0;
459 
460 	BUILD_BUG_ON(XFEATURE_MASK_USER_DYNAMIC != XFEATURE_MASK_XTILE_DATA);
461 
462 	if (permitted_xcr0 & XFEATURE_MASK_USER_DYNAMIC) {
463 		permitted_xcr0 &= xstate_get_guest_group_perm();
464 
465 		/*
466 		 * Treat XTILE_CFG as unsupported if the current process isn't
467 		 * allowed to use XTILE_DATA, as attempting to set XTILE_CFG in
468 		 * XCR0 without setting XTILE_DATA is architecturally illegal.
469 		 */
470 		if (!(permitted_xcr0 & XFEATURE_MASK_XTILE_DATA))
471 			permitted_xcr0 &= ~XFEATURE_MASK_XTILE_CFG;
472 	}
473 	return permitted_xcr0;
474 }
475 
kvm_mpx_supported(void)476 static inline bool kvm_mpx_supported(void)
477 {
478 	return (kvm_caps.supported_xcr0 & (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR))
479 		== (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
480 }
481 
482 extern unsigned int min_timer_period_us;
483 
484 extern bool enable_vmware_backdoor;
485 
486 extern int pi_inject_timer;
487 
488 extern bool report_ignored_msrs;
489 
490 extern bool eager_page_split;
491 
kvm_pr_unimpl_wrmsr(struct kvm_vcpu * vcpu,u32 msr,u64 data)492 static inline void kvm_pr_unimpl_wrmsr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
493 {
494 	if (report_ignored_msrs)
495 		vcpu_unimpl(vcpu, "Unhandled WRMSR(0x%x) = 0x%llx\n", msr, data);
496 }
497 
kvm_pr_unimpl_rdmsr(struct kvm_vcpu * vcpu,u32 msr)498 static inline void kvm_pr_unimpl_rdmsr(struct kvm_vcpu *vcpu, u32 msr)
499 {
500 	if (report_ignored_msrs)
501 		vcpu_unimpl(vcpu, "Unhandled RDMSR(0x%x)\n", msr);
502 }
503 
nsec_to_cycles(struct kvm_vcpu * vcpu,u64 nsec)504 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
505 {
506 	return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
507 				   vcpu->arch.virtual_tsc_shift);
508 }
509 
510 /* Same "calling convention" as do_div:
511  * - divide (n << 32) by base
512  * - put result in n
513  * - return remainder
514  */
515 #define do_shl32_div32(n, base)					\
516 	({							\
517 	    u32 __quot, __rem;					\
518 	    asm("divl %2" : "=a" (__quot), "=d" (__rem)		\
519 			: "rm" (base), "0" (0), "1" ((u32) n));	\
520 	    n = __quot;						\
521 	    __rem;						\
522 	 })
523 
kvm_disable_exits(struct kvm * kvm,u64 mask)524 static inline void kvm_disable_exits(struct kvm *kvm, u64 mask)
525 {
526 	kvm->arch.disabled_exits |= mask;
527 }
528 
kvm_mwait_in_guest(struct kvm * kvm)529 static inline bool kvm_mwait_in_guest(struct kvm *kvm)
530 {
531 	return kvm->arch.disabled_exits & KVM_X86_DISABLE_EXITS_MWAIT;
532 }
533 
kvm_hlt_in_guest(struct kvm * kvm)534 static inline bool kvm_hlt_in_guest(struct kvm *kvm)
535 {
536 	return kvm->arch.disabled_exits & KVM_X86_DISABLE_EXITS_HLT;
537 }
538 
kvm_pause_in_guest(struct kvm * kvm)539 static inline bool kvm_pause_in_guest(struct kvm *kvm)
540 {
541 	return kvm->arch.disabled_exits & KVM_X86_DISABLE_EXITS_PAUSE;
542 }
543 
kvm_cstate_in_guest(struct kvm * kvm)544 static inline bool kvm_cstate_in_guest(struct kvm *kvm)
545 {
546 	return kvm->arch.disabled_exits & KVM_X86_DISABLE_EXITS_CSTATE;
547 }
548 
kvm_aperfmperf_in_guest(struct kvm * kvm)549 static inline bool kvm_aperfmperf_in_guest(struct kvm *kvm)
550 {
551 	return kvm->arch.disabled_exits & KVM_X86_DISABLE_EXITS_APERFMPERF;
552 }
553 
kvm_notify_vmexit_enabled(struct kvm * kvm)554 static inline bool kvm_notify_vmexit_enabled(struct kvm *kvm)
555 {
556 	return kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_ENABLED;
557 }
558 
kvm_before_interrupt(struct kvm_vcpu * vcpu,enum kvm_intr_type intr)559 static __always_inline void kvm_before_interrupt(struct kvm_vcpu *vcpu,
560 						 enum kvm_intr_type intr)
561 {
562 	WRITE_ONCE(vcpu->arch.handling_intr_from_guest, (u8)intr);
563 }
564 
kvm_after_interrupt(struct kvm_vcpu * vcpu)565 static __always_inline void kvm_after_interrupt(struct kvm_vcpu *vcpu)
566 {
567 	WRITE_ONCE(vcpu->arch.handling_intr_from_guest, 0);
568 }
569 
kvm_handling_nmi_from_guest(struct kvm_vcpu * vcpu)570 static inline bool kvm_handling_nmi_from_guest(struct kvm_vcpu *vcpu)
571 {
572 	return vcpu->arch.handling_intr_from_guest == KVM_HANDLING_NMI;
573 }
574 
kvm_pat_valid(u64 data)575 static inline bool kvm_pat_valid(u64 data)
576 {
577 	if (data & 0xF8F8F8F8F8F8F8F8ull)
578 		return false;
579 	/* 0, 1, 4, 5, 6, 7 are valid values.  */
580 	return (data | ((data & 0x0202020202020202ull) << 1)) == data;
581 }
582 
kvm_dr7_valid(u64 data)583 static inline bool kvm_dr7_valid(u64 data)
584 {
585 	/* Bits [63:32] are reserved */
586 	return !(data >> 32);
587 }
kvm_dr6_valid(u64 data)588 static inline bool kvm_dr6_valid(u64 data)
589 {
590 	/* Bits [63:32] are reserved */
591 	return !(data >> 32);
592 }
593 
594 /*
595  * Trigger machine check on the host. We assume all the MSRs are already set up
596  * by the CPU and that we still run on the same CPU as the MCE occurred on.
597  * We pass a fake environment to the machine check handler because we want
598  * the guest to be always treated like user space, no matter what context
599  * it used internally.
600  */
kvm_machine_check(void)601 static inline void kvm_machine_check(void)
602 {
603 #if defined(CONFIG_X86_MCE)
604 	struct pt_regs regs = {
605 		.cs = 3, /* Fake ring 3 no matter what the guest ran on */
606 		.flags = X86_EFLAGS_IF,
607 	};
608 
609 	do_machine_check(&regs);
610 #endif
611 }
612 
613 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu);
614 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu);
615 int kvm_spec_ctrl_test_value(u64 value);
616 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
617 			      struct x86_exception *e);
618 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva);
619 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type);
620 
621 enum kvm_msr_access {
622 	MSR_TYPE_R	= BIT(0),
623 	MSR_TYPE_W	= BIT(1),
624 	MSR_TYPE_RW	= MSR_TYPE_R | MSR_TYPE_W,
625 };
626 
627 /*
628  * Internal error codes that are used to indicate that MSR emulation encountered
629  * an error that should result in #GP in the guest, unless userspace handles it.
630  * Note, '1', '0', and negative numbers are off limits, as they are used by KVM
631  * as part of KVM's lightly documented internal KVM_RUN return codes.
632  *
633  * UNSUPPORTED	- The MSR isn't supported, either because it is completely
634  *		  unknown to KVM, or because the MSR should not exist according
635  *		  to the vCPU model.
636  *
637  * FILTERED	- Access to the MSR is denied by a userspace MSR filter.
638  */
639 #define  KVM_MSR_RET_UNSUPPORTED	2
640 #define  KVM_MSR_RET_FILTERED		3
641 
__kvm_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)642 static inline bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
643 {
644 	return !(cr4 & vcpu->arch.cr4_guest_rsvd_bits);
645 }
646 
647 #define __cr4_reserved_bits(__cpu_has, __c)             \
648 ({                                                      \
649 	u64 __reserved_bits = CR4_RESERVED_BITS;        \
650                                                         \
651 	if (!__cpu_has(__c, X86_FEATURE_XSAVE))         \
652 		__reserved_bits |= X86_CR4_OSXSAVE;     \
653 	if (!__cpu_has(__c, X86_FEATURE_SMEP))          \
654 		__reserved_bits |= X86_CR4_SMEP;        \
655 	if (!__cpu_has(__c, X86_FEATURE_SMAP))          \
656 		__reserved_bits |= X86_CR4_SMAP;        \
657 	if (!__cpu_has(__c, X86_FEATURE_FSGSBASE))      \
658 		__reserved_bits |= X86_CR4_FSGSBASE;    \
659 	if (!__cpu_has(__c, X86_FEATURE_PKU))           \
660 		__reserved_bits |= X86_CR4_PKE;         \
661 	if (!__cpu_has(__c, X86_FEATURE_LA57))          \
662 		__reserved_bits |= X86_CR4_LA57;        \
663 	if (!__cpu_has(__c, X86_FEATURE_UMIP))          \
664 		__reserved_bits |= X86_CR4_UMIP;        \
665 	if (!__cpu_has(__c, X86_FEATURE_VMX))           \
666 		__reserved_bits |= X86_CR4_VMXE;        \
667 	if (!__cpu_has(__c, X86_FEATURE_PCID))          \
668 		__reserved_bits |= X86_CR4_PCIDE;       \
669 	if (!__cpu_has(__c, X86_FEATURE_LAM))           \
670 		__reserved_bits |= X86_CR4_LAM_SUP;     \
671 	__reserved_bits;                                \
672 })
673 
674 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t src, unsigned int bytes,
675 			  void *dst);
676 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t src, unsigned int bytes,
677 			 void *dst);
678 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
679 			 unsigned int port, void *data,  unsigned int count,
680 			 int in);
681 
user_exit_on_hypercall(struct kvm * kvm,unsigned long hc_nr)682 static inline bool user_exit_on_hypercall(struct kvm *kvm, unsigned long hc_nr)
683 {
684 	return kvm->arch.hypercall_exit_enabled & BIT(hc_nr);
685 }
686 
687 int ____kvm_emulate_hypercall(struct kvm_vcpu *vcpu, int cpl,
688 			      int (*complete_hypercall)(struct kvm_vcpu *));
689 
690 #define __kvm_emulate_hypercall(_vcpu, cpl, complete_hypercall)			\
691 ({										\
692 	int __ret;								\
693 	__ret = ____kvm_emulate_hypercall(_vcpu, cpl, complete_hypercall);	\
694 										\
695 	if (__ret > 0)								\
696 		__ret = complete_hypercall(_vcpu);				\
697 	__ret;									\
698 })
699 
700 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu);
701 
702 #endif
703