xref: /linux/arch/x86/include/asm/kvm_host.h (revision 63eb28bb1402891b1ad2be02a530f29a9dd7f1cd)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This header defines architecture specific interfaces, x86 version
6  */
7 
8 #ifndef _ASM_X86_KVM_HOST_H
9 #define _ASM_X86_KVM_HOST_H
10 
11 #include <linux/types.h>
12 #include <linux/mm.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/tracepoint.h>
15 #include <linux/cpumask.h>
16 #include <linux/irq_work.h>
17 #include <linux/irq.h>
18 #include <linux/workqueue.h>
19 
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
22 #include <linux/kvm_types.h>
23 #include <linux/perf_event.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/clocksource.h>
26 #include <linux/irqbypass.h>
27 #include <linux/kfifo.h>
28 #include <linux/sched/vhost_task.h>
29 #include <linux/call_once.h>
30 #include <linux/atomic.h>
31 
32 #include <asm/apic.h>
33 #include <asm/pvclock-abi.h>
34 #include <asm/debugreg.h>
35 #include <asm/desc.h>
36 #include <asm/mtrr.h>
37 #include <asm/msr-index.h>
38 #include <asm/msr.h>
39 #include <asm/asm.h>
40 #include <asm/irq_remapping.h>
41 #include <asm/kvm_page_track.h>
42 #include <asm/kvm_vcpu_regs.h>
43 #include <asm/reboot.h>
44 #include <hyperv/hvhdk.h>
45 
46 #define __KVM_HAVE_ARCH_VCPU_DEBUGFS
47 
48 /*
49  * CONFIG_KVM_MAX_NR_VCPUS is defined iff CONFIG_KVM!=n, provide a dummy max if
50  * KVM is disabled (arbitrarily use the default from CONFIG_KVM_MAX_NR_VCPUS).
51  */
52 #ifdef CONFIG_KVM_MAX_NR_VCPUS
53 #define KVM_MAX_VCPUS CONFIG_KVM_MAX_NR_VCPUS
54 #else
55 #define KVM_MAX_VCPUS 1024
56 #endif
57 
58 /*
59  * In x86, the VCPU ID corresponds to the APIC ID, and APIC IDs
60  * might be larger than the actual number of VCPUs because the
61  * APIC ID encodes CPU topology information.
62  *
63  * In the worst case, we'll need less than one extra bit for the
64  * Core ID, and less than one extra bit for the Package (Die) ID,
65  * so ratio of 4 should be enough.
66  */
67 #define KVM_VCPU_ID_RATIO 4
68 #define KVM_MAX_VCPU_IDS (KVM_MAX_VCPUS * KVM_VCPU_ID_RATIO)
69 
70 /* memory slots that are not exposed to userspace */
71 #define KVM_INTERNAL_MEM_SLOTS 3
72 
73 #define KVM_HALT_POLL_NS_DEFAULT 200000
74 
75 #define KVM_IRQCHIP_NUM_PINS  KVM_IOAPIC_NUM_PINS
76 
77 #define KVM_DIRTY_LOG_MANUAL_CAPS   (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
78 					KVM_DIRTY_LOG_INITIALLY_SET)
79 
80 #define KVM_BUS_LOCK_DETECTION_VALID_MODE	(KVM_BUS_LOCK_DETECTION_OFF | \
81 						 KVM_BUS_LOCK_DETECTION_EXIT)
82 
83 #define KVM_X86_NOTIFY_VMEXIT_VALID_BITS	(KVM_X86_NOTIFY_VMEXIT_ENABLED | \
84 						 KVM_X86_NOTIFY_VMEXIT_USER)
85 
86 /* x86-specific vcpu->requests bit members */
87 #define KVM_REQ_MIGRATE_TIMER		KVM_ARCH_REQ(0)
88 #define KVM_REQ_REPORT_TPR_ACCESS	KVM_ARCH_REQ(1)
89 #define KVM_REQ_TRIPLE_FAULT		KVM_ARCH_REQ(2)
90 #define KVM_REQ_MMU_SYNC		KVM_ARCH_REQ(3)
91 #define KVM_REQ_CLOCK_UPDATE		KVM_ARCH_REQ(4)
92 #define KVM_REQ_LOAD_MMU_PGD		KVM_ARCH_REQ(5)
93 #define KVM_REQ_EVENT			KVM_ARCH_REQ(6)
94 #define KVM_REQ_APF_HALT		KVM_ARCH_REQ(7)
95 #define KVM_REQ_STEAL_UPDATE		KVM_ARCH_REQ(8)
96 #define KVM_REQ_NMI			KVM_ARCH_REQ(9)
97 #define KVM_REQ_PMU			KVM_ARCH_REQ(10)
98 #define KVM_REQ_PMI			KVM_ARCH_REQ(11)
99 #ifdef CONFIG_KVM_SMM
100 #define KVM_REQ_SMI			KVM_ARCH_REQ(12)
101 #endif
102 #define KVM_REQ_MASTERCLOCK_UPDATE	KVM_ARCH_REQ(13)
103 #define KVM_REQ_MCLOCK_INPROGRESS \
104 	KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
105 #define KVM_REQ_SCAN_IOAPIC \
106 	KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
107 #define KVM_REQ_GLOBAL_CLOCK_UPDATE	KVM_ARCH_REQ(16)
108 #define KVM_REQ_APIC_PAGE_RELOAD \
109 	KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
110 #define KVM_REQ_HV_CRASH		KVM_ARCH_REQ(18)
111 #define KVM_REQ_IOAPIC_EOI_EXIT		KVM_ARCH_REQ(19)
112 #define KVM_REQ_HV_RESET		KVM_ARCH_REQ(20)
113 #define KVM_REQ_HV_EXIT			KVM_ARCH_REQ(21)
114 #define KVM_REQ_HV_STIMER		KVM_ARCH_REQ(22)
115 #define KVM_REQ_LOAD_EOI_EXITMAP	KVM_ARCH_REQ(23)
116 #define KVM_REQ_GET_NESTED_STATE_PAGES	KVM_ARCH_REQ(24)
117 #define KVM_REQ_APICV_UPDATE \
118 	KVM_ARCH_REQ_FLAGS(25, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
119 #define KVM_REQ_TLB_FLUSH_CURRENT	KVM_ARCH_REQ(26)
120 #define KVM_REQ_TLB_FLUSH_GUEST \
121 	KVM_ARCH_REQ_FLAGS(27, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
122 #define KVM_REQ_APF_READY		KVM_ARCH_REQ(28)
123 #define KVM_REQ_MSR_FILTER_CHANGED	KVM_ARCH_REQ(29)
124 #define KVM_REQ_UPDATE_CPU_DIRTY_LOGGING \
125 	KVM_ARCH_REQ_FLAGS(30, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
126 #define KVM_REQ_MMU_FREE_OBSOLETE_ROOTS \
127 	KVM_ARCH_REQ_FLAGS(31, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
128 #define KVM_REQ_HV_TLB_FLUSH \
129 	KVM_ARCH_REQ_FLAGS(32, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
130 #define KVM_REQ_UPDATE_PROTECTED_GUEST_STATE \
131 	KVM_ARCH_REQ_FLAGS(34, KVM_REQUEST_WAIT)
132 
133 #define CR0_RESERVED_BITS                                               \
134 	(~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
135 			  | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
136 			  | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
137 
138 #define CR4_RESERVED_BITS                                               \
139 	(~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
140 			  | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
141 			  | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \
142 			  | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \
143 			  | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \
144 			  | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP \
145 			  | X86_CR4_LAM_SUP))
146 
147 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
148 
149 
150 
151 #define INVALID_PAGE (~(hpa_t)0)
152 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
153 
154 /* KVM Hugepage definitions for x86 */
155 #define KVM_MAX_HUGEPAGE_LEVEL	PG_LEVEL_1G
156 #define KVM_NR_PAGE_SIZES	(KVM_MAX_HUGEPAGE_LEVEL - PG_LEVEL_4K + 1)
157 #define KVM_HPAGE_GFN_SHIFT(x)	(((x) - 1) * 9)
158 #define KVM_HPAGE_SHIFT(x)	(PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x))
159 #define KVM_HPAGE_SIZE(x)	(1UL << KVM_HPAGE_SHIFT(x))
160 #define KVM_HPAGE_MASK(x)	(~(KVM_HPAGE_SIZE(x) - 1))
161 #define KVM_PAGES_PER_HPAGE(x)	(KVM_HPAGE_SIZE(x) / PAGE_SIZE)
162 
163 #define KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO 50
164 #define KVM_MIN_ALLOC_MMU_PAGES 64UL
165 #define KVM_MMU_HASH_SHIFT 12
166 #define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT)
167 #define KVM_MIN_FREE_MMU_PAGES 5
168 #define KVM_REFILL_PAGES 25
169 #define KVM_MAX_CPUID_ENTRIES 256
170 #define KVM_NR_VAR_MTRR 8
171 
172 #define ASYNC_PF_PER_VCPU 64
173 
174 enum kvm_reg {
175 	VCPU_REGS_RAX = __VCPU_REGS_RAX,
176 	VCPU_REGS_RCX = __VCPU_REGS_RCX,
177 	VCPU_REGS_RDX = __VCPU_REGS_RDX,
178 	VCPU_REGS_RBX = __VCPU_REGS_RBX,
179 	VCPU_REGS_RSP = __VCPU_REGS_RSP,
180 	VCPU_REGS_RBP = __VCPU_REGS_RBP,
181 	VCPU_REGS_RSI = __VCPU_REGS_RSI,
182 	VCPU_REGS_RDI = __VCPU_REGS_RDI,
183 #ifdef CONFIG_X86_64
184 	VCPU_REGS_R8  = __VCPU_REGS_R8,
185 	VCPU_REGS_R9  = __VCPU_REGS_R9,
186 	VCPU_REGS_R10 = __VCPU_REGS_R10,
187 	VCPU_REGS_R11 = __VCPU_REGS_R11,
188 	VCPU_REGS_R12 = __VCPU_REGS_R12,
189 	VCPU_REGS_R13 = __VCPU_REGS_R13,
190 	VCPU_REGS_R14 = __VCPU_REGS_R14,
191 	VCPU_REGS_R15 = __VCPU_REGS_R15,
192 #endif
193 	VCPU_REGS_RIP,
194 	NR_VCPU_REGS,
195 
196 	VCPU_EXREG_PDPTR = NR_VCPU_REGS,
197 	VCPU_EXREG_CR0,
198 	VCPU_EXREG_CR3,
199 	VCPU_EXREG_CR4,
200 	VCPU_EXREG_RFLAGS,
201 	VCPU_EXREG_SEGMENTS,
202 	VCPU_EXREG_EXIT_INFO_1,
203 	VCPU_EXREG_EXIT_INFO_2,
204 };
205 
206 enum {
207 	VCPU_SREG_ES,
208 	VCPU_SREG_CS,
209 	VCPU_SREG_SS,
210 	VCPU_SREG_DS,
211 	VCPU_SREG_FS,
212 	VCPU_SREG_GS,
213 	VCPU_SREG_TR,
214 	VCPU_SREG_LDTR,
215 };
216 
217 enum exit_fastpath_completion {
218 	EXIT_FASTPATH_NONE,
219 	EXIT_FASTPATH_REENTER_GUEST,
220 	EXIT_FASTPATH_EXIT_HANDLED,
221 	EXIT_FASTPATH_EXIT_USERSPACE,
222 };
223 typedef enum exit_fastpath_completion fastpath_t;
224 
225 struct x86_emulate_ctxt;
226 struct x86_exception;
227 union kvm_smram;
228 enum x86_intercept;
229 enum x86_intercept_stage;
230 
231 #define KVM_NR_DB_REGS	4
232 
233 #define DR6_BUS_LOCK   (1 << 11)
234 #define DR6_BD		(1 << 13)
235 #define DR6_BS		(1 << 14)
236 #define DR6_BT		(1 << 15)
237 #define DR6_RTM		(1 << 16)
238 /*
239  * DR6_ACTIVE_LOW combines fixed-1 and active-low bits.
240  * We can regard all the bits in DR6_FIXED_1 as active_low bits;
241  * they will never be 0 for now, but when they are defined
242  * in the future it will require no code change.
243  *
244  * DR6_ACTIVE_LOW is also used as the init/reset value for DR6.
245  */
246 #define DR6_ACTIVE_LOW	0xffff0ff0
247 #define DR6_VOLATILE	0x0001e80f
248 #define DR6_FIXED_1	(DR6_ACTIVE_LOW & ~DR6_VOLATILE)
249 
250 #define DR7_BP_EN_MASK	0x000000ff
251 #define DR7_GE		(1 << 9)
252 #define DR7_GD		(1 << 13)
253 #define DR7_VOLATILE	0xffff2bff
254 
255 #define KVM_GUESTDBG_VALID_MASK \
256 	(KVM_GUESTDBG_ENABLE | \
257 	KVM_GUESTDBG_SINGLESTEP | \
258 	KVM_GUESTDBG_USE_HW_BP | \
259 	KVM_GUESTDBG_USE_SW_BP | \
260 	KVM_GUESTDBG_INJECT_BP | \
261 	KVM_GUESTDBG_INJECT_DB | \
262 	KVM_GUESTDBG_BLOCKIRQ)
263 
264 #define PFERR_PRESENT_MASK	BIT(0)
265 #define PFERR_WRITE_MASK	BIT(1)
266 #define PFERR_USER_MASK		BIT(2)
267 #define PFERR_RSVD_MASK		BIT(3)
268 #define PFERR_FETCH_MASK	BIT(4)
269 #define PFERR_PK_MASK		BIT(5)
270 #define PFERR_SGX_MASK		BIT(15)
271 #define PFERR_GUEST_RMP_MASK	BIT_ULL(31)
272 #define PFERR_GUEST_FINAL_MASK	BIT_ULL(32)
273 #define PFERR_GUEST_PAGE_MASK	BIT_ULL(33)
274 #define PFERR_GUEST_ENC_MASK	BIT_ULL(34)
275 #define PFERR_GUEST_SIZEM_MASK	BIT_ULL(35)
276 #define PFERR_GUEST_VMPL_MASK	BIT_ULL(36)
277 
278 /*
279  * IMPLICIT_ACCESS is a KVM-defined flag used to correctly perform SMAP checks
280  * when emulating instructions that triggers implicit access.
281  */
282 #define PFERR_IMPLICIT_ACCESS	BIT_ULL(48)
283 /*
284  * PRIVATE_ACCESS is a KVM-defined flag us to indicate that a fault occurred
285  * when the guest was accessing private memory.
286  */
287 #define PFERR_PRIVATE_ACCESS   BIT_ULL(49)
288 #define PFERR_SYNTHETIC_MASK   (PFERR_IMPLICIT_ACCESS | PFERR_PRIVATE_ACCESS)
289 
290 /* apic attention bits */
291 #define KVM_APIC_CHECK_VAPIC	0
292 /*
293  * The following bit is set with PV-EOI, unset on EOI.
294  * We detect PV-EOI changes by guest by comparing
295  * this bit with PV-EOI in guest memory.
296  * See the implementation in apic_update_pv_eoi.
297  */
298 #define KVM_APIC_PV_EOI_PENDING	1
299 
300 struct kvm_kernel_irqfd;
301 struct kvm_kernel_irq_routing_entry;
302 
303 /*
304  * kvm_mmu_page_role tracks the properties of a shadow page (where shadow page
305  * also includes TDP pages) to determine whether or not a page can be used in
306  * the given MMU context.  This is a subset of the overall kvm_cpu_role to
307  * minimize the size of kvm_memory_slot.arch.gfn_write_track, i.e. allows
308  * allocating 2 bytes per gfn instead of 4 bytes per gfn.
309  *
310  * Upper-level shadow pages having gptes are tracked for write-protection via
311  * gfn_write_track.  As above, gfn_write_track is a 16 bit counter, so KVM must
312  * not create more than 2^16-1 upper-level shadow pages at a single gfn,
313  * otherwise gfn_write_track will overflow and explosions will ensue.
314  *
315  * A unique shadow page (SP) for a gfn is created if and only if an existing SP
316  * cannot be reused.  The ability to reuse a SP is tracked by its role, which
317  * incorporates various mode bits and properties of the SP.  Roughly speaking,
318  * the number of unique SPs that can theoretically be created is 2^n, where n
319  * is the number of bits that are used to compute the role.
320  *
321  * But, even though there are 20 bits in the mask below, not all combinations
322  * of modes and flags are possible:
323  *
324  *   - invalid shadow pages are not accounted, mirror pages are not shadowed,
325  *     so the bits are effectively 18.
326  *
327  *   - quadrant will only be used if has_4_byte_gpte=1 (non-PAE paging);
328  *     execonly and ad_disabled are only used for nested EPT which has
329  *     has_4_byte_gpte=0.  Therefore, 2 bits are always unused.
330  *
331  *   - the 4 bits of level are effectively limited to the values 2/3/4/5,
332  *     as 4k SPs are not tracked (allowed to go unsync).  In addition non-PAE
333  *     paging has exactly one upper level, making level completely redundant
334  *     when has_4_byte_gpte=1.
335  *
336  *   - on top of this, smep_andnot_wp and smap_andnot_wp are only set if
337  *     cr0_wp=0, therefore these three bits only give rise to 5 possibilities.
338  *
339  * Therefore, the maximum number of possible upper-level shadow pages for a
340  * single gfn is a bit less than 2^13.
341  */
342 union kvm_mmu_page_role {
343 	u32 word;
344 	struct {
345 		unsigned level:4;
346 		unsigned has_4_byte_gpte:1;
347 		unsigned quadrant:2;
348 		unsigned direct:1;
349 		unsigned access:3;
350 		unsigned invalid:1;
351 		unsigned efer_nx:1;
352 		unsigned cr0_wp:1;
353 		unsigned smep_andnot_wp:1;
354 		unsigned smap_andnot_wp:1;
355 		unsigned ad_disabled:1;
356 		unsigned guest_mode:1;
357 		unsigned passthrough:1;
358 		unsigned is_mirror:1;
359 		unsigned :4;
360 
361 		/*
362 		 * This is left at the top of the word so that
363 		 * kvm_memslots_for_spte_role can extract it with a
364 		 * simple shift.  While there is room, give it a whole
365 		 * byte so it is also faster to load it from memory.
366 		 */
367 		unsigned smm:8;
368 	};
369 };
370 
371 /*
372  * kvm_mmu_extended_role complements kvm_mmu_page_role, tracking properties
373  * relevant to the current MMU configuration.   When loading CR0, CR4, or EFER,
374  * including on nested transitions, if nothing in the full role changes then
375  * MMU re-configuration can be skipped. @valid bit is set on first usage so we
376  * don't treat all-zero structure as valid data.
377  *
378  * The properties that are tracked in the extended role but not the page role
379  * are for things that either (a) do not affect the validity of the shadow page
380  * or (b) are indirectly reflected in the shadow page's role.  For example,
381  * CR4.PKE only affects permission checks for software walks of the guest page
382  * tables (because KVM doesn't support Protection Keys with shadow paging), and
383  * CR0.PG, CR4.PAE, and CR4.PSE are indirectly reflected in role.level.
384  *
385  * Note, SMEP and SMAP are not redundant with sm*p_andnot_wp in the page role.
386  * If CR0.WP=1, KVM can reuse shadow pages for the guest regardless of SMEP and
387  * SMAP, but the MMU's permission checks for software walks need to be SMEP and
388  * SMAP aware regardless of CR0.WP.
389  */
390 union kvm_mmu_extended_role {
391 	u32 word;
392 	struct {
393 		unsigned int valid:1;
394 		unsigned int execonly:1;
395 		unsigned int cr4_pse:1;
396 		unsigned int cr4_pke:1;
397 		unsigned int cr4_smap:1;
398 		unsigned int cr4_smep:1;
399 		unsigned int cr4_la57:1;
400 		unsigned int efer_lma:1;
401 	};
402 };
403 
404 union kvm_cpu_role {
405 	u64 as_u64;
406 	struct {
407 		union kvm_mmu_page_role base;
408 		union kvm_mmu_extended_role ext;
409 	};
410 };
411 
412 struct kvm_rmap_head {
413 	atomic_long_t val;
414 };
415 
416 struct kvm_pio_request {
417 	unsigned long count;
418 	int in;
419 	int port;
420 	int size;
421 };
422 
423 #define PT64_ROOT_MAX_LEVEL 5
424 
425 struct rsvd_bits_validate {
426 	u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL];
427 	u64 bad_mt_xwr;
428 };
429 
430 struct kvm_mmu_root_info {
431 	gpa_t pgd;
432 	hpa_t hpa;
433 };
434 
435 #define KVM_MMU_ROOT_INFO_INVALID \
436 	((struct kvm_mmu_root_info) { .pgd = INVALID_PAGE, .hpa = INVALID_PAGE })
437 
438 #define KVM_MMU_NUM_PREV_ROOTS 3
439 
440 #define KVM_MMU_ROOT_CURRENT		BIT(0)
441 #define KVM_MMU_ROOT_PREVIOUS(i)	BIT(1+i)
442 #define KVM_MMU_ROOTS_ALL		(BIT(1 + KVM_MMU_NUM_PREV_ROOTS) - 1)
443 
444 #define KVM_HAVE_MMU_RWLOCK
445 
446 struct kvm_mmu_page;
447 struct kvm_page_fault;
448 
449 /*
450  * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit,
451  * and 2-level 32-bit).  The kvm_mmu structure abstracts the details of the
452  * current mmu mode.
453  */
454 struct kvm_mmu {
455 	unsigned long (*get_guest_pgd)(struct kvm_vcpu *vcpu);
456 	u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index);
457 	int (*page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault);
458 	void (*inject_page_fault)(struct kvm_vcpu *vcpu,
459 				  struct x86_exception *fault);
460 	gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
461 			    gpa_t gva_or_gpa, u64 access,
462 			    struct x86_exception *exception);
463 	int (*sync_spte)(struct kvm_vcpu *vcpu,
464 			 struct kvm_mmu_page *sp, int i);
465 	struct kvm_mmu_root_info root;
466 	hpa_t mirror_root_hpa;
467 	union kvm_cpu_role cpu_role;
468 	union kvm_mmu_page_role root_role;
469 
470 	/*
471 	* The pkru_mask indicates if protection key checks are needed.  It
472 	* consists of 16 domains indexed by page fault error code bits [4:1],
473 	* with PFEC.RSVD replaced by ACC_USER_MASK from the page tables.
474 	* Each domain has 2 bits which are ANDed with AD and WD from PKRU.
475 	*/
476 	u32 pkru_mask;
477 
478 	struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS];
479 
480 	/*
481 	 * Bitmap; bit set = permission fault
482 	 * Byte index: page fault error code [4:1]
483 	 * Bit index: pte permissions in ACC_* format
484 	 */
485 	u8 permissions[16];
486 
487 	u64 *pae_root;
488 	u64 *pml4_root;
489 	u64 *pml5_root;
490 
491 	/*
492 	 * check zero bits on shadow page table entries, these
493 	 * bits include not only hardware reserved bits but also
494 	 * the bits spte never used.
495 	 */
496 	struct rsvd_bits_validate shadow_zero_check;
497 
498 	struct rsvd_bits_validate guest_rsvd_check;
499 
500 	u64 pdptrs[4]; /* pae */
501 };
502 
503 enum pmc_type {
504 	KVM_PMC_GP = 0,
505 	KVM_PMC_FIXED,
506 };
507 
508 struct kvm_pmc {
509 	enum pmc_type type;
510 	u8 idx;
511 	bool is_paused;
512 	bool intr;
513 	/*
514 	 * Base value of the PMC counter, relative to the *consumed* count in
515 	 * the associated perf_event.  This value includes counter updates from
516 	 * the perf_event and emulated_count since the last time the counter
517 	 * was reprogrammed, but it is *not* the current value as seen by the
518 	 * guest or userspace.
519 	 *
520 	 * The count is relative to the associated perf_event so that KVM
521 	 * doesn't need to reprogram the perf_event every time the guest writes
522 	 * to the counter.
523 	 */
524 	u64 counter;
525 	/*
526 	 * PMC events triggered by KVM emulation that haven't been fully
527 	 * processed, i.e. haven't undergone overflow detection.
528 	 */
529 	u64 emulated_counter;
530 	u64 eventsel;
531 	struct perf_event *perf_event;
532 	struct kvm_vcpu *vcpu;
533 	/*
534 	 * only for creating or reusing perf_event,
535 	 * eventsel value for general purpose counters,
536 	 * ctrl value for fixed counters.
537 	 */
538 	u64 current_config;
539 };
540 
541 /* More counters may conflict with other existing Architectural MSRs */
542 #define KVM_MAX(a, b)	((a) >= (b) ? (a) : (b))
543 #define KVM_MAX_NR_INTEL_GP_COUNTERS	8
544 #define KVM_MAX_NR_AMD_GP_COUNTERS	6
545 #define KVM_MAX_NR_GP_COUNTERS		KVM_MAX(KVM_MAX_NR_INTEL_GP_COUNTERS, \
546 						KVM_MAX_NR_AMD_GP_COUNTERS)
547 
548 #define KVM_MAX_NR_INTEL_FIXED_COUTNERS	3
549 #define KVM_MAX_NR_AMD_FIXED_COUTNERS	0
550 #define KVM_MAX_NR_FIXED_COUNTERS	KVM_MAX(KVM_MAX_NR_INTEL_FIXED_COUTNERS, \
551 						KVM_MAX_NR_AMD_FIXED_COUTNERS)
552 
553 struct kvm_pmu {
554 	u8 version;
555 	unsigned nr_arch_gp_counters;
556 	unsigned nr_arch_fixed_counters;
557 	unsigned available_event_types;
558 	u64 fixed_ctr_ctrl;
559 	u64 fixed_ctr_ctrl_rsvd;
560 	u64 global_ctrl;
561 	u64 global_status;
562 	u64 counter_bitmask[2];
563 	u64 global_ctrl_rsvd;
564 	u64 global_status_rsvd;
565 	u64 reserved_bits;
566 	u64 raw_event_mask;
567 	struct kvm_pmc gp_counters[KVM_MAX_NR_GP_COUNTERS];
568 	struct kvm_pmc fixed_counters[KVM_MAX_NR_FIXED_COUNTERS];
569 
570 	/*
571 	 * Overlay the bitmap with a 64-bit atomic so that all bits can be
572 	 * set in a single access, e.g. to reprogram all counters when the PMU
573 	 * filter changes.
574 	 */
575 	union {
576 		DECLARE_BITMAP(reprogram_pmi, X86_PMC_IDX_MAX);
577 		atomic64_t __reprogram_pmi;
578 	};
579 	DECLARE_BITMAP(all_valid_pmc_idx, X86_PMC_IDX_MAX);
580 	DECLARE_BITMAP(pmc_in_use, X86_PMC_IDX_MAX);
581 
582 	u64 ds_area;
583 	u64 pebs_enable;
584 	u64 pebs_enable_rsvd;
585 	u64 pebs_data_cfg;
586 	u64 pebs_data_cfg_rsvd;
587 
588 	/*
589 	 * If a guest counter is cross-mapped to host counter with different
590 	 * index, its PEBS capability will be temporarily disabled.
591 	 *
592 	 * The user should make sure that this mask is updated
593 	 * after disabling interrupts and before perf_guest_get_msrs();
594 	 */
595 	u64 host_cross_mapped_mask;
596 
597 	/*
598 	 * The gate to release perf_events not marked in
599 	 * pmc_in_use only once in a vcpu time slice.
600 	 */
601 	bool need_cleanup;
602 
603 	/*
604 	 * The total number of programmed perf_events and it helps to avoid
605 	 * redundant check before cleanup if guest don't use vPMU at all.
606 	 */
607 	u8 event_count;
608 };
609 
610 struct kvm_pmu_ops;
611 
612 enum {
613 	KVM_DEBUGREG_BP_ENABLED		= BIT(0),
614 	KVM_DEBUGREG_WONT_EXIT		= BIT(1),
615 	/*
616 	 * Guest debug registers (DR0-3, DR6 and DR7) are saved/restored by
617 	 * hardware on exit from or enter to guest. KVM needn't switch them.
618 	 * DR0-3, DR6 and DR7 are set to their architectural INIT value on VM
619 	 * exit, host values need to be restored.
620 	 */
621 	KVM_DEBUGREG_AUTO_SWITCH	= BIT(2),
622 };
623 
624 struct kvm_mtrr {
625 	u64 var[KVM_NR_VAR_MTRR * 2];
626 	u64 fixed_64k;
627 	u64 fixed_16k[2];
628 	u64 fixed_4k[8];
629 	u64 deftype;
630 };
631 
632 /* Hyper-V SynIC timer */
633 struct kvm_vcpu_hv_stimer {
634 	struct hrtimer timer;
635 	int index;
636 	union hv_stimer_config config;
637 	u64 count;
638 	u64 exp_time;
639 	struct hv_message msg;
640 	bool msg_pending;
641 };
642 
643 /* Hyper-V synthetic interrupt controller (SynIC)*/
644 struct kvm_vcpu_hv_synic {
645 	u64 version;
646 	u64 control;
647 	u64 msg_page;
648 	u64 evt_page;
649 	atomic64_t sint[HV_SYNIC_SINT_COUNT];
650 	atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT];
651 	DECLARE_BITMAP(auto_eoi_bitmap, 256);
652 	DECLARE_BITMAP(vec_bitmap, 256);
653 	bool active;
654 	bool dont_zero_synic_pages;
655 };
656 
657 /* The maximum number of entries on the TLB flush fifo. */
658 #define KVM_HV_TLB_FLUSH_FIFO_SIZE (16)
659 /*
660  * Note: the following 'magic' entry is made up by KVM to avoid putting
661  * anything besides GVA on the TLB flush fifo. It is theoretically possible
662  * to observe a request to flush 4095 PFNs starting from 0xfffffffffffff000
663  * which will look identical. KVM's action to 'flush everything' instead of
664  * flushing these particular addresses is, however, fully legitimate as
665  * flushing more than requested is always OK.
666  */
667 #define KVM_HV_TLB_FLUSHALL_ENTRY  ((u64)-1)
668 
669 enum hv_tlb_flush_fifos {
670 	HV_L1_TLB_FLUSH_FIFO,
671 	HV_L2_TLB_FLUSH_FIFO,
672 	HV_NR_TLB_FLUSH_FIFOS,
673 };
674 
675 struct kvm_vcpu_hv_tlb_flush_fifo {
676 	spinlock_t write_lock;
677 	DECLARE_KFIFO(entries, u64, KVM_HV_TLB_FLUSH_FIFO_SIZE);
678 };
679 
680 /* Hyper-V per vcpu emulation context */
681 struct kvm_vcpu_hv {
682 	struct kvm_vcpu *vcpu;
683 	u32 vp_index;
684 	u64 hv_vapic;
685 	s64 runtime_offset;
686 	struct kvm_vcpu_hv_synic synic;
687 	struct kvm_hyperv_exit exit;
688 	struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT];
689 	DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
690 	bool enforce_cpuid;
691 	struct {
692 		u32 features_eax; /* HYPERV_CPUID_FEATURES.EAX */
693 		u32 features_ebx; /* HYPERV_CPUID_FEATURES.EBX */
694 		u32 features_edx; /* HYPERV_CPUID_FEATURES.EDX */
695 		u32 enlightenments_eax; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EAX */
696 		u32 enlightenments_ebx; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EBX */
697 		u32 syndbg_cap_eax; /* HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES.EAX */
698 		u32 nested_eax; /* HYPERV_CPUID_NESTED_FEATURES.EAX */
699 		u32 nested_ebx; /* HYPERV_CPUID_NESTED_FEATURES.EBX */
700 	} cpuid_cache;
701 
702 	struct kvm_vcpu_hv_tlb_flush_fifo tlb_flush_fifo[HV_NR_TLB_FLUSH_FIFOS];
703 
704 	/*
705 	 * Preallocated buffers for handling hypercalls that pass sparse vCPU
706 	 * sets (for high vCPU counts, they're too large to comfortably fit on
707 	 * the stack).
708 	 */
709 	u64 sparse_banks[HV_MAX_SPARSE_VCPU_BANKS];
710 	DECLARE_BITMAP(vcpu_mask, KVM_MAX_VCPUS);
711 
712 	struct hv_vp_assist_page vp_assist_page;
713 
714 	struct {
715 		u64 pa_page_gpa;
716 		u64 vm_id;
717 		u32 vp_id;
718 	} nested;
719 };
720 
721 struct kvm_hypervisor_cpuid {
722 	u32 base;
723 	u32 limit;
724 };
725 
726 #ifdef CONFIG_KVM_XEN
727 /* Xen HVM per vcpu emulation context */
728 struct kvm_vcpu_xen {
729 	u64 hypercall_rip;
730 	u32 current_runstate;
731 	u8 upcall_vector;
732 	struct gfn_to_pfn_cache vcpu_info_cache;
733 	struct gfn_to_pfn_cache vcpu_time_info_cache;
734 	struct gfn_to_pfn_cache runstate_cache;
735 	struct gfn_to_pfn_cache runstate2_cache;
736 	u64 last_steal;
737 	u64 runstate_entry_time;
738 	u64 runstate_times[4];
739 	unsigned long evtchn_pending_sel;
740 	u32 vcpu_id; /* The Xen / ACPI vCPU ID */
741 	u32 timer_virq;
742 	u64 timer_expires; /* In guest epoch */
743 	atomic_t timer_pending;
744 	struct hrtimer timer;
745 	int poll_evtchn;
746 	struct timer_list poll_timer;
747 	struct kvm_hypervisor_cpuid cpuid;
748 };
749 #endif
750 
751 struct kvm_queued_exception {
752 	bool pending;
753 	bool injected;
754 	bool has_error_code;
755 	u8 vector;
756 	u32 error_code;
757 	unsigned long payload;
758 	bool has_payload;
759 };
760 
761 /*
762  * Hardware-defined CPUID leafs that are either scattered by the kernel or are
763  * unknown to the kernel, but need to be directly used by KVM.  Note, these
764  * word values conflict with the kernel's "bug" caps, but KVM doesn't use those.
765  */
766 enum kvm_only_cpuid_leafs {
767 	CPUID_12_EAX	 = NCAPINTS,
768 	CPUID_7_1_EDX,
769 	CPUID_8000_0007_EDX,
770 	CPUID_8000_0022_EAX,
771 	CPUID_7_2_EDX,
772 	CPUID_24_0_EBX,
773 	CPUID_8000_0021_ECX,
774 	NR_KVM_CPU_CAPS,
775 
776 	NKVMCAPINTS = NR_KVM_CPU_CAPS - NCAPINTS,
777 };
778 
779 struct kvm_vcpu_arch {
780 	/*
781 	 * rip and regs accesses must go through
782 	 * kvm_{register,rip}_{read,write} functions.
783 	 */
784 	unsigned long regs[NR_VCPU_REGS];
785 	u32 regs_avail;
786 	u32 regs_dirty;
787 
788 	unsigned long cr0;
789 	unsigned long cr0_guest_owned_bits;
790 	unsigned long cr2;
791 	unsigned long cr3;
792 	unsigned long cr4;
793 	unsigned long cr4_guest_owned_bits;
794 	unsigned long cr4_guest_rsvd_bits;
795 	unsigned long cr8;
796 	u32 host_pkru;
797 	u32 pkru;
798 	u32 hflags;
799 	u64 efer;
800 	u64 host_debugctl;
801 	u64 apic_base;
802 	struct kvm_lapic *apic;    /* kernel irqchip context */
803 	bool load_eoi_exitmap_pending;
804 	DECLARE_BITMAP(ioapic_handled_vectors, 256);
805 	unsigned long apic_attention;
806 	int32_t apic_arb_prio;
807 	int mp_state;
808 	u64 ia32_misc_enable_msr;
809 	u64 smbase;
810 	u64 smi_count;
811 	bool at_instruction_boundary;
812 	bool tpr_access_reporting;
813 	bool xfd_no_write_intercept;
814 	u64 ia32_xss;
815 	u64 microcode_version;
816 	u64 arch_capabilities;
817 	u64 perf_capabilities;
818 
819 	/*
820 	 * Paging state of the vcpu
821 	 *
822 	 * If the vcpu runs in guest mode with two level paging this still saves
823 	 * the paging mode of the l1 guest. This context is always used to
824 	 * handle faults.
825 	 */
826 	struct kvm_mmu *mmu;
827 
828 	/* Non-nested MMU for L1 */
829 	struct kvm_mmu root_mmu;
830 
831 	/* L1 MMU when running nested */
832 	struct kvm_mmu guest_mmu;
833 
834 	/*
835 	 * Paging state of an L2 guest (used for nested npt)
836 	 *
837 	 * This context will save all necessary information to walk page tables
838 	 * of an L2 guest. This context is only initialized for page table
839 	 * walking and not for faulting since we never handle l2 page faults on
840 	 * the host.
841 	 */
842 	struct kvm_mmu nested_mmu;
843 
844 	/*
845 	 * Pointer to the mmu context currently used for
846 	 * gva_to_gpa translations.
847 	 */
848 	struct kvm_mmu *walk_mmu;
849 
850 	struct kvm_mmu_memory_cache mmu_pte_list_desc_cache;
851 	struct kvm_mmu_memory_cache mmu_shadow_page_cache;
852 	struct kvm_mmu_memory_cache mmu_shadowed_info_cache;
853 	struct kvm_mmu_memory_cache mmu_page_header_cache;
854 	/*
855 	 * This cache is to allocate external page table. E.g. private EPT used
856 	 * by the TDX module.
857 	 */
858 	struct kvm_mmu_memory_cache mmu_external_spt_cache;
859 
860 	/*
861 	 * QEMU userspace and the guest each have their own FPU state.
862 	 * In vcpu_run, we switch between the user and guest FPU contexts.
863 	 * While running a VCPU, the VCPU thread will have the guest FPU
864 	 * context.
865 	 *
866 	 * Note that while the PKRU state lives inside the fpu registers,
867 	 * it is switched out separately at VMENTER and VMEXIT time. The
868 	 * "guest_fpstate" state here contains the guest FPU context, with the
869 	 * host PRKU bits.
870 	 */
871 	struct fpu_guest guest_fpu;
872 
873 	u64 xcr0;
874 	u64 guest_supported_xcr0;
875 
876 	struct kvm_pio_request pio;
877 	void *pio_data;
878 	void *sev_pio_data;
879 	unsigned sev_pio_count;
880 
881 	u8 event_exit_inst_len;
882 
883 	bool exception_from_userspace;
884 
885 	/* Exceptions to be injected to the guest. */
886 	struct kvm_queued_exception exception;
887 	/* Exception VM-Exits to be synthesized to L1. */
888 	struct kvm_queued_exception exception_vmexit;
889 
890 	struct kvm_queued_interrupt {
891 		bool injected;
892 		bool soft;
893 		u8 nr;
894 	} interrupt;
895 
896 	int halt_request; /* real mode on Intel only */
897 
898 	int cpuid_nent;
899 	struct kvm_cpuid_entry2 *cpuid_entries;
900 	bool cpuid_dynamic_bits_dirty;
901 	bool is_amd_compatible;
902 
903 	/*
904 	 * cpu_caps holds the effective guest capabilities, i.e. the features
905 	 * the vCPU is allowed to use.  Typically, but not always, features can
906 	 * be used by the guest if and only if both KVM and userspace want to
907 	 * expose the feature to the guest.
908 	 *
909 	 * A common exception is for virtualization holes, i.e. when KVM can't
910 	 * prevent the guest from using a feature, in which case the vCPU "has"
911 	 * the feature regardless of what KVM or userspace desires.
912 	 *
913 	 * Note, features that don't require KVM involvement in any way are
914 	 * NOT enforced/sanitized by KVM, i.e. are taken verbatim from the
915 	 * guest CPUID provided by userspace.
916 	 */
917 	u32 cpu_caps[NR_KVM_CPU_CAPS];
918 
919 	u64 reserved_gpa_bits;
920 	int maxphyaddr;
921 
922 	/* emulate context */
923 
924 	struct x86_emulate_ctxt *emulate_ctxt;
925 	bool emulate_regs_need_sync_to_vcpu;
926 	bool emulate_regs_need_sync_from_vcpu;
927 	int (*complete_userspace_io)(struct kvm_vcpu *vcpu);
928 	unsigned long cui_linear_rip;
929 
930 	gpa_t time;
931 	s8  pvclock_tsc_shift;
932 	u32 pvclock_tsc_mul;
933 	unsigned int hw_tsc_khz;
934 	struct gfn_to_pfn_cache pv_time;
935 	/* set guest stopped flag in pvclock flags field */
936 	bool pvclock_set_guest_stopped_request;
937 
938 	struct {
939 		u8 preempted;
940 		u64 msr_val;
941 		u64 last_steal;
942 		struct gfn_to_hva_cache cache;
943 	} st;
944 
945 	u64 l1_tsc_offset;
946 	u64 tsc_offset; /* current tsc offset */
947 	u64 last_guest_tsc;
948 	u64 last_host_tsc;
949 	u64 tsc_offset_adjustment;
950 	u64 this_tsc_nsec;
951 	u64 this_tsc_write;
952 	u64 this_tsc_generation;
953 	bool tsc_catchup;
954 	bool tsc_always_catchup;
955 	s8 virtual_tsc_shift;
956 	u32 virtual_tsc_mult;
957 	u32 virtual_tsc_khz;
958 	s64 ia32_tsc_adjust_msr;
959 	u64 msr_ia32_power_ctl;
960 	u64 l1_tsc_scaling_ratio;
961 	u64 tsc_scaling_ratio; /* current scaling ratio */
962 
963 	atomic_t nmi_queued;  /* unprocessed asynchronous NMIs */
964 	/* Number of NMIs pending injection, not including hardware vNMIs. */
965 	unsigned int nmi_pending;
966 	bool nmi_injected;    /* Trying to inject an NMI this entry */
967 	bool smi_pending;    /* SMI queued after currently running handler */
968 	u8 handling_intr_from_guest;
969 
970 	struct kvm_mtrr mtrr_state;
971 	u64 pat;
972 
973 	unsigned switch_db_regs;
974 	unsigned long db[KVM_NR_DB_REGS];
975 	unsigned long dr6;
976 	unsigned long dr7;
977 	unsigned long eff_db[KVM_NR_DB_REGS];
978 	unsigned long guest_debug_dr7;
979 	u64 msr_platform_info;
980 	u64 msr_misc_features_enables;
981 
982 	u64 mcg_cap;
983 	u64 mcg_status;
984 	u64 mcg_ctl;
985 	u64 mcg_ext_ctl;
986 	u64 *mce_banks;
987 	u64 *mci_ctl2_banks;
988 
989 	/* Cache MMIO info */
990 	u64 mmio_gva;
991 	unsigned mmio_access;
992 	gfn_t mmio_gfn;
993 	u64 mmio_gen;
994 
995 	struct kvm_pmu pmu;
996 
997 	/* used for guest single stepping over the given code position */
998 	unsigned long singlestep_rip;
999 
1000 #ifdef CONFIG_KVM_HYPERV
1001 	bool hyperv_enabled;
1002 	struct kvm_vcpu_hv *hyperv;
1003 #endif
1004 #ifdef CONFIG_KVM_XEN
1005 	struct kvm_vcpu_xen xen;
1006 #endif
1007 	cpumask_var_t wbinvd_dirty_mask;
1008 
1009 	unsigned long last_retry_eip;
1010 	unsigned long last_retry_addr;
1011 
1012 	struct {
1013 		bool halted;
1014 		gfn_t gfns[ASYNC_PF_PER_VCPU];
1015 		struct gfn_to_hva_cache data;
1016 		u64 msr_en_val; /* MSR_KVM_ASYNC_PF_EN */
1017 		u64 msr_int_val; /* MSR_KVM_ASYNC_PF_INT */
1018 		u16 vec;
1019 		u32 id;
1020 		u32 host_apf_flags;
1021 		bool send_always;
1022 		bool delivery_as_pf_vmexit;
1023 		bool pageready_pending;
1024 	} apf;
1025 
1026 	/* OSVW MSRs (AMD only) */
1027 	struct {
1028 		u64 length;
1029 		u64 status;
1030 	} osvw;
1031 
1032 	struct {
1033 		u64 msr_val;
1034 		struct gfn_to_hva_cache data;
1035 	} pv_eoi;
1036 
1037 	u64 msr_kvm_poll_control;
1038 
1039 	/* pv related host specific info */
1040 	struct {
1041 		bool pv_unhalted;
1042 	} pv;
1043 
1044 	int pending_ioapic_eoi;
1045 	int pending_external_vector;
1046 	int highest_stale_pending_ioapic_eoi;
1047 
1048 	/* be preempted when it's in kernel-mode(cpl=0) */
1049 	bool preempted_in_kernel;
1050 
1051 	/* Flush the L1 Data cache for L1TF mitigation on VMENTER */
1052 	bool l1tf_flush_l1d;
1053 
1054 	/* Host CPU on which VM-entry was most recently attempted */
1055 	int last_vmentry_cpu;
1056 
1057 	/* AMD MSRC001_0015 Hardware Configuration */
1058 	u64 msr_hwcr;
1059 
1060 	/* pv related cpuid info */
1061 	struct {
1062 		/*
1063 		 * value of the eax register in the KVM_CPUID_FEATURES CPUID
1064 		 * leaf.
1065 		 */
1066 		u32 features;
1067 
1068 		/*
1069 		 * indicates whether pv emulation should be disabled if features
1070 		 * are not present in the guest's cpuid
1071 		 */
1072 		bool enforce;
1073 	} pv_cpuid;
1074 
1075 	/* Protected Guests */
1076 	bool guest_state_protected;
1077 	bool guest_tsc_protected;
1078 
1079 	/*
1080 	 * Set when PDPTS were loaded directly by the userspace without
1081 	 * reading the guest memory
1082 	 */
1083 	bool pdptrs_from_userspace;
1084 
1085 #if IS_ENABLED(CONFIG_HYPERV)
1086 	hpa_t hv_root_tdp;
1087 #endif
1088 };
1089 
1090 struct kvm_lpage_info {
1091 	int disallow_lpage;
1092 };
1093 
1094 struct kvm_arch_memory_slot {
1095 	struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES];
1096 	struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1];
1097 	unsigned short *gfn_write_track;
1098 };
1099 
1100 /*
1101  * Track the mode of the optimized logical map, as the rules for decoding the
1102  * destination vary per mode.  Enabling the optimized logical map requires all
1103  * software-enabled local APIs to be in the same mode, each addressable APIC to
1104  * be mapped to only one MDA, and each MDA to map to at most one APIC.
1105  */
1106 enum kvm_apic_logical_mode {
1107 	/* All local APICs are software disabled. */
1108 	KVM_APIC_MODE_SW_DISABLED,
1109 	/* All software enabled local APICs in xAPIC cluster addressing mode. */
1110 	KVM_APIC_MODE_XAPIC_CLUSTER,
1111 	/* All software enabled local APICs in xAPIC flat addressing mode. */
1112 	KVM_APIC_MODE_XAPIC_FLAT,
1113 	/* All software enabled local APICs in x2APIC mode. */
1114 	KVM_APIC_MODE_X2APIC,
1115 	/*
1116 	 * Optimized map disabled, e.g. not all local APICs in the same logical
1117 	 * mode, same logical ID assigned to multiple APICs, etc.
1118 	 */
1119 	KVM_APIC_MODE_MAP_DISABLED,
1120 };
1121 
1122 struct kvm_apic_map {
1123 	struct rcu_head rcu;
1124 	enum kvm_apic_logical_mode logical_mode;
1125 	u32 max_apic_id;
1126 	union {
1127 		struct kvm_lapic *xapic_flat_map[8];
1128 		struct kvm_lapic *xapic_cluster_map[16][4];
1129 	};
1130 	struct kvm_lapic *phys_map[];
1131 };
1132 
1133 /* Hyper-V synthetic debugger (SynDbg)*/
1134 struct kvm_hv_syndbg {
1135 	struct {
1136 		u64 control;
1137 		u64 status;
1138 		u64 send_page;
1139 		u64 recv_page;
1140 		u64 pending_page;
1141 	} control;
1142 	u64 options;
1143 };
1144 
1145 /* Current state of Hyper-V TSC page clocksource */
1146 enum hv_tsc_page_status {
1147 	/* TSC page was not set up or disabled */
1148 	HV_TSC_PAGE_UNSET = 0,
1149 	/* TSC page MSR was written by the guest, update pending */
1150 	HV_TSC_PAGE_GUEST_CHANGED,
1151 	/* TSC page update was triggered from the host side */
1152 	HV_TSC_PAGE_HOST_CHANGED,
1153 	/* TSC page was properly set up and is currently active  */
1154 	HV_TSC_PAGE_SET,
1155 	/* TSC page was set up with an inaccessible GPA */
1156 	HV_TSC_PAGE_BROKEN,
1157 };
1158 
1159 #ifdef CONFIG_KVM_HYPERV
1160 /* Hyper-V emulation context */
1161 struct kvm_hv {
1162 	struct mutex hv_lock;
1163 	u64 hv_guest_os_id;
1164 	u64 hv_hypercall;
1165 	u64 hv_tsc_page;
1166 	enum hv_tsc_page_status hv_tsc_page_status;
1167 
1168 	/* Hyper-v based guest crash (NT kernel bugcheck) parameters */
1169 	u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS];
1170 	u64 hv_crash_ctl;
1171 
1172 	struct ms_hyperv_tsc_page tsc_ref;
1173 
1174 	struct idr conn_to_evt;
1175 
1176 	u64 hv_reenlightenment_control;
1177 	u64 hv_tsc_emulation_control;
1178 	u64 hv_tsc_emulation_status;
1179 	u64 hv_invtsc_control;
1180 
1181 	/* How many vCPUs have VP index != vCPU index */
1182 	atomic_t num_mismatched_vp_indexes;
1183 
1184 	/*
1185 	 * How many SynICs use 'AutoEOI' feature
1186 	 * (protected by arch.apicv_update_lock)
1187 	 */
1188 	unsigned int synic_auto_eoi_used;
1189 
1190 	struct kvm_hv_syndbg hv_syndbg;
1191 
1192 	bool xsaves_xsavec_checked;
1193 };
1194 #endif
1195 
1196 struct msr_bitmap_range {
1197 	u32 flags;
1198 	u32 nmsrs;
1199 	u32 base;
1200 	unsigned long *bitmap;
1201 };
1202 
1203 #ifdef CONFIG_KVM_XEN
1204 /* Xen emulation context */
1205 struct kvm_xen {
1206 	struct mutex xen_lock;
1207 	u32 xen_version;
1208 	bool long_mode;
1209 	bool runstate_update_flag;
1210 	u8 upcall_vector;
1211 	struct gfn_to_pfn_cache shinfo_cache;
1212 	struct idr evtchn_ports;
1213 	unsigned long poll_mask[BITS_TO_LONGS(KVM_MAX_VCPUS)];
1214 
1215 	struct kvm_xen_hvm_config hvm_config;
1216 };
1217 #endif
1218 
1219 enum kvm_irqchip_mode {
1220 	KVM_IRQCHIP_NONE,
1221 	KVM_IRQCHIP_KERNEL,       /* created with KVM_CREATE_IRQCHIP */
1222 	KVM_IRQCHIP_SPLIT,        /* created with KVM_CAP_SPLIT_IRQCHIP */
1223 };
1224 
1225 struct kvm_x86_msr_filter {
1226 	u8 count;
1227 	bool default_allow:1;
1228 	struct msr_bitmap_range ranges[16];
1229 };
1230 
1231 struct kvm_x86_pmu_event_filter {
1232 	__u32 action;
1233 	__u32 nevents;
1234 	__u32 fixed_counter_bitmap;
1235 	__u32 flags;
1236 	__u32 nr_includes;
1237 	__u32 nr_excludes;
1238 	__u64 *includes;
1239 	__u64 *excludes;
1240 	__u64 events[];
1241 };
1242 
1243 enum kvm_apicv_inhibit {
1244 
1245 	/********************************************************************/
1246 	/* INHIBITs that are relevant to both Intel's APICv and AMD's AVIC. */
1247 	/********************************************************************/
1248 
1249 	/*
1250 	 * APIC acceleration is disabled by a module parameter
1251 	 * and/or not supported in hardware.
1252 	 */
1253 	APICV_INHIBIT_REASON_DISABLED,
1254 
1255 	/*
1256 	 * APIC acceleration is inhibited because AutoEOI feature is
1257 	 * being used by a HyperV guest.
1258 	 */
1259 	APICV_INHIBIT_REASON_HYPERV,
1260 
1261 	/*
1262 	 * APIC acceleration is inhibited because the userspace didn't yet
1263 	 * enable the kernel/split irqchip.
1264 	 */
1265 	APICV_INHIBIT_REASON_ABSENT,
1266 
1267 	/* APIC acceleration is inhibited because KVM_GUESTDBG_BLOCKIRQ
1268 	 * (out of band, debug measure of blocking all interrupts on this vCPU)
1269 	 * was enabled, to avoid AVIC/APICv bypassing it.
1270 	 */
1271 	APICV_INHIBIT_REASON_BLOCKIRQ,
1272 
1273 	/*
1274 	 * APICv is disabled because not all vCPUs have a 1:1 mapping between
1275 	 * APIC ID and vCPU, _and_ KVM is not applying its x2APIC hotplug hack.
1276 	 */
1277 	APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED,
1278 
1279 	/*
1280 	 * For simplicity, the APIC acceleration is inhibited
1281 	 * first time either APIC ID or APIC base are changed by the guest
1282 	 * from their reset values.
1283 	 */
1284 	APICV_INHIBIT_REASON_APIC_ID_MODIFIED,
1285 	APICV_INHIBIT_REASON_APIC_BASE_MODIFIED,
1286 
1287 	/******************************************************/
1288 	/* INHIBITs that are relevant only to the AMD's AVIC. */
1289 	/******************************************************/
1290 
1291 	/*
1292 	 * AVIC is inhibited on a vCPU because it runs a nested guest.
1293 	 *
1294 	 * This is needed because unlike APICv, the peers of this vCPU
1295 	 * cannot use the doorbell mechanism to signal interrupts via AVIC when
1296 	 * a vCPU runs nested.
1297 	 */
1298 	APICV_INHIBIT_REASON_NESTED,
1299 
1300 	/*
1301 	 * On SVM, the wait for the IRQ window is implemented with pending vIRQ,
1302 	 * which cannot be injected when the AVIC is enabled, thus AVIC
1303 	 * is inhibited while KVM waits for IRQ window.
1304 	 */
1305 	APICV_INHIBIT_REASON_IRQWIN,
1306 
1307 	/*
1308 	 * PIT (i8254) 're-inject' mode, relies on EOI intercept,
1309 	 * which AVIC doesn't support for edge triggered interrupts.
1310 	 */
1311 	APICV_INHIBIT_REASON_PIT_REINJ,
1312 
1313 	/*
1314 	 * AVIC is disabled because SEV doesn't support it.
1315 	 */
1316 	APICV_INHIBIT_REASON_SEV,
1317 
1318 	/*
1319 	 * AVIC is disabled because not all vCPUs with a valid LDR have a 1:1
1320 	 * mapping between logical ID and vCPU.
1321 	 */
1322 	APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED,
1323 
1324 	/*
1325 	 * AVIC is disabled because the vCPU's APIC ID is beyond the max
1326 	 * supported by AVIC/x2AVIC, i.e. the vCPU is unaddressable.
1327 	 */
1328 	APICV_INHIBIT_REASON_PHYSICAL_ID_TOO_BIG,
1329 
1330 	NR_APICV_INHIBIT_REASONS,
1331 };
1332 
1333 #define __APICV_INHIBIT_REASON(reason)			\
1334 	{ BIT(APICV_INHIBIT_REASON_##reason), #reason }
1335 
1336 #define APICV_INHIBIT_REASONS				\
1337 	__APICV_INHIBIT_REASON(DISABLED),		\
1338 	__APICV_INHIBIT_REASON(HYPERV),			\
1339 	__APICV_INHIBIT_REASON(ABSENT),			\
1340 	__APICV_INHIBIT_REASON(BLOCKIRQ),		\
1341 	__APICV_INHIBIT_REASON(PHYSICAL_ID_ALIASED),	\
1342 	__APICV_INHIBIT_REASON(APIC_ID_MODIFIED),	\
1343 	__APICV_INHIBIT_REASON(APIC_BASE_MODIFIED),	\
1344 	__APICV_INHIBIT_REASON(NESTED),			\
1345 	__APICV_INHIBIT_REASON(IRQWIN),			\
1346 	__APICV_INHIBIT_REASON(PIT_REINJ),		\
1347 	__APICV_INHIBIT_REASON(SEV),			\
1348 	__APICV_INHIBIT_REASON(LOGICAL_ID_ALIASED),	\
1349 	__APICV_INHIBIT_REASON(PHYSICAL_ID_TOO_BIG)
1350 
1351 struct kvm_arch {
1352 	unsigned long n_used_mmu_pages;
1353 	unsigned long n_requested_mmu_pages;
1354 	unsigned long n_max_mmu_pages;
1355 	unsigned int indirect_shadow_pages;
1356 	u8 mmu_valid_gen;
1357 	u8 vm_type;
1358 	bool has_private_mem;
1359 	bool has_protected_state;
1360 	bool pre_fault_allowed;
1361 	struct hlist_head *mmu_page_hash;
1362 	struct list_head active_mmu_pages;
1363 	/*
1364 	 * A list of kvm_mmu_page structs that, if zapped, could possibly be
1365 	 * replaced by an NX huge page.  A shadow page is on this list if its
1366 	 * existence disallows an NX huge page (nx_huge_page_disallowed is set)
1367 	 * and there are no other conditions that prevent a huge page, e.g.
1368 	 * the backing host page is huge, dirtly logging is not enabled for its
1369 	 * memslot, etc...  Note, zapping shadow pages on this list doesn't
1370 	 * guarantee an NX huge page will be created in its stead, e.g. if the
1371 	 * guest attempts to execute from the region then KVM obviously can't
1372 	 * create an NX huge page (without hanging the guest).
1373 	 */
1374 	struct list_head possible_nx_huge_pages;
1375 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING
1376 	struct kvm_page_track_notifier_head track_notifier_head;
1377 #endif
1378 	/*
1379 	 * Protects marking pages unsync during page faults, as TDP MMU page
1380 	 * faults only take mmu_lock for read.  For simplicity, the unsync
1381 	 * pages lock is always taken when marking pages unsync regardless of
1382 	 * whether mmu_lock is held for read or write.
1383 	 */
1384 	spinlock_t mmu_unsync_pages_lock;
1385 
1386 	u64 shadow_mmio_value;
1387 
1388 #define __KVM_HAVE_ARCH_NONCOHERENT_DMA
1389 	atomic_t noncoherent_dma_count;
1390 	unsigned long nr_possible_bypass_irqs;
1391 
1392 #ifdef CONFIG_KVM_IOAPIC
1393 	struct kvm_pic *vpic;
1394 	struct kvm_ioapic *vioapic;
1395 	struct kvm_pit *vpit;
1396 #endif
1397 	atomic_t vapics_in_nmi_mode;
1398 	struct mutex apic_map_lock;
1399 	struct kvm_apic_map __rcu *apic_map;
1400 	atomic_t apic_map_dirty;
1401 
1402 	bool apic_access_memslot_enabled;
1403 	bool apic_access_memslot_inhibited;
1404 
1405 	/* Protects apicv_inhibit_reasons */
1406 	struct rw_semaphore apicv_update_lock;
1407 	unsigned long apicv_inhibit_reasons;
1408 
1409 	gpa_t wall_clock;
1410 
1411 	u64 disabled_exits;
1412 
1413 	s64 kvmclock_offset;
1414 
1415 	/*
1416 	 * This also protects nr_vcpus_matched_tsc which is read from a
1417 	 * preemption-disabled region, so it must be a raw spinlock.
1418 	 */
1419 	raw_spinlock_t tsc_write_lock;
1420 	u64 last_tsc_nsec;
1421 	u64 last_tsc_write;
1422 	u32 last_tsc_khz;
1423 	u64 last_tsc_offset;
1424 	u64 cur_tsc_nsec;
1425 	u64 cur_tsc_write;
1426 	u64 cur_tsc_offset;
1427 	u64 cur_tsc_generation;
1428 	int nr_vcpus_matched_tsc;
1429 
1430 	u32 default_tsc_khz;
1431 	bool user_set_tsc;
1432 	u64 apic_bus_cycle_ns;
1433 
1434 	seqcount_raw_spinlock_t pvclock_sc;
1435 	bool use_master_clock;
1436 	u64 master_kernel_ns;
1437 	u64 master_cycle_now;
1438 	struct delayed_work kvmclock_update_work;
1439 	struct delayed_work kvmclock_sync_work;
1440 
1441 #ifdef CONFIG_KVM_HYPERV
1442 	struct kvm_hv hyperv;
1443 #endif
1444 
1445 #ifdef CONFIG_KVM_XEN
1446 	struct kvm_xen xen;
1447 #endif
1448 
1449 	bool backwards_tsc_observed;
1450 	bool boot_vcpu_runs_old_kvmclock;
1451 	u32 bsp_vcpu_id;
1452 
1453 	u64 disabled_quirks;
1454 
1455 	enum kvm_irqchip_mode irqchip_mode;
1456 	u8 nr_reserved_ioapic_pins;
1457 
1458 	bool disabled_lapic_found;
1459 
1460 	bool x2apic_format;
1461 	bool x2apic_broadcast_quirk_disabled;
1462 
1463 	bool has_mapped_host_mmio;
1464 	bool guest_can_read_msr_platform_info;
1465 	bool exception_payload_enabled;
1466 
1467 	bool triple_fault_event;
1468 
1469 	bool bus_lock_detection_enabled;
1470 	bool enable_pmu;
1471 
1472 	u32 notify_window;
1473 	u32 notify_vmexit_flags;
1474 	/*
1475 	 * If exit_on_emulation_error is set, and the in-kernel instruction
1476 	 * emulator fails to emulate an instruction, allow userspace
1477 	 * the opportunity to look at it.
1478 	 */
1479 	bool exit_on_emulation_error;
1480 
1481 	/* Deflect RDMSR and WRMSR to user space when they trigger a #GP */
1482 	u32 user_space_msr_mask;
1483 	struct kvm_x86_msr_filter __rcu *msr_filter;
1484 
1485 	u32 hypercall_exit_enabled;
1486 
1487 	/* Guest can access the SGX PROVISIONKEY. */
1488 	bool sgx_provisioning_allowed;
1489 
1490 	struct kvm_x86_pmu_event_filter __rcu *pmu_event_filter;
1491 	struct vhost_task *nx_huge_page_recovery_thread;
1492 	u64 nx_huge_page_last;
1493 	struct once nx_once;
1494 
1495 #ifdef CONFIG_X86_64
1496 #ifdef CONFIG_KVM_PROVE_MMU
1497 	/*
1498 	 * The number of TDP MMU pages across all roots.  Used only to sanity
1499 	 * check that KVM isn't leaking TDP MMU pages.
1500 	 */
1501 	atomic64_t tdp_mmu_pages;
1502 #endif
1503 
1504 	/*
1505 	 * List of struct kvm_mmu_pages being used as roots.
1506 	 * All struct kvm_mmu_pages in the list should have
1507 	 * tdp_mmu_page set.
1508 	 *
1509 	 * For reads, this list is protected by:
1510 	 *	RCU alone or
1511 	 *	the MMU lock in read mode + RCU or
1512 	 *	the MMU lock in write mode
1513 	 *
1514 	 * For writes, this list is protected by tdp_mmu_pages_lock; see
1515 	 * below for the details.
1516 	 *
1517 	 * Roots will remain in the list until their tdp_mmu_root_count
1518 	 * drops to zero, at which point the thread that decremented the
1519 	 * count to zero should removed the root from the list and clean
1520 	 * it up, freeing the root after an RCU grace period.
1521 	 */
1522 	struct list_head tdp_mmu_roots;
1523 
1524 	/*
1525 	 * Protects accesses to the following fields when the MMU lock
1526 	 * is held in read mode:
1527 	 *  - tdp_mmu_roots (above)
1528 	 *  - the link field of kvm_mmu_page structs used by the TDP MMU
1529 	 *  - possible_nx_huge_pages;
1530 	 *  - the possible_nx_huge_page_link field of kvm_mmu_page structs used
1531 	 *    by the TDP MMU
1532 	 * Because the lock is only taken within the MMU lock, strictly
1533 	 * speaking it is redundant to acquire this lock when the thread
1534 	 * holds the MMU lock in write mode.  However it often simplifies
1535 	 * the code to do so.
1536 	 */
1537 	spinlock_t tdp_mmu_pages_lock;
1538 #endif /* CONFIG_X86_64 */
1539 
1540 	/*
1541 	 * If set, at least one shadow root has been allocated. This flag
1542 	 * is used as one input when determining whether certain memslot
1543 	 * related allocations are necessary.
1544 	 */
1545 	bool shadow_root_allocated;
1546 
1547 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING
1548 	/*
1549 	 * If set, the VM has (or had) an external write tracking user, and
1550 	 * thus all write tracking metadata has been allocated, even if KVM
1551 	 * itself isn't using write tracking.
1552 	 */
1553 	bool external_write_tracking_enabled;
1554 #endif
1555 
1556 #if IS_ENABLED(CONFIG_HYPERV)
1557 	hpa_t	hv_root_tdp;
1558 	spinlock_t hv_root_tdp_lock;
1559 	struct hv_partition_assist_pg *hv_pa_pg;
1560 #endif
1561 	/*
1562 	 * VM-scope maximum vCPU ID. Used to determine the size of structures
1563 	 * that increase along with the maximum vCPU ID, in which case, using
1564 	 * the global KVM_MAX_VCPU_IDS may lead to significant memory waste.
1565 	 */
1566 	u32 max_vcpu_ids;
1567 
1568 	bool disable_nx_huge_pages;
1569 
1570 	/*
1571 	 * Memory caches used to allocate shadow pages when performing eager
1572 	 * page splitting. No need for a shadowed_info_cache since eager page
1573 	 * splitting only allocates direct shadow pages.
1574 	 *
1575 	 * Protected by kvm->slots_lock.
1576 	 */
1577 	struct kvm_mmu_memory_cache split_shadow_page_cache;
1578 	struct kvm_mmu_memory_cache split_page_header_cache;
1579 
1580 	/*
1581 	 * Memory cache used to allocate pte_list_desc structs while splitting
1582 	 * huge pages. In the worst case, to split one huge page, 512
1583 	 * pte_list_desc structs are needed to add each lower level leaf sptep
1584 	 * to the rmap plus 1 to extend the parent_ptes rmap of the lower level
1585 	 * page table.
1586 	 *
1587 	 * Protected by kvm->slots_lock.
1588 	 */
1589 #define SPLIT_DESC_CACHE_MIN_NR_OBJECTS (SPTE_ENT_PER_PAGE + 1)
1590 	struct kvm_mmu_memory_cache split_desc_cache;
1591 
1592 	gfn_t gfn_direct_bits;
1593 
1594 	/*
1595 	 * Size of the CPU's dirty log buffer, i.e. VMX's PML buffer. A Zero
1596 	 * value indicates CPU dirty logging is unsupported or disabled in
1597 	 * current VM.
1598 	 */
1599 	int cpu_dirty_log_size;
1600 };
1601 
1602 struct kvm_vm_stat {
1603 	struct kvm_vm_stat_generic generic;
1604 	u64 mmu_shadow_zapped;
1605 	u64 mmu_pte_write;
1606 	u64 mmu_pde_zapped;
1607 	u64 mmu_flooded;
1608 	u64 mmu_recycled;
1609 	u64 mmu_cache_miss;
1610 	u64 mmu_unsync;
1611 	union {
1612 		struct {
1613 			atomic64_t pages_4k;
1614 			atomic64_t pages_2m;
1615 			atomic64_t pages_1g;
1616 		};
1617 		atomic64_t pages[KVM_NR_PAGE_SIZES];
1618 	};
1619 	u64 nx_lpage_splits;
1620 	u64 max_mmu_page_hash_collisions;
1621 	u64 max_mmu_rmap_size;
1622 };
1623 
1624 struct kvm_vcpu_stat {
1625 	struct kvm_vcpu_stat_generic generic;
1626 	u64 pf_taken;
1627 	u64 pf_fixed;
1628 	u64 pf_emulate;
1629 	u64 pf_spurious;
1630 	u64 pf_fast;
1631 	u64 pf_mmio_spte_created;
1632 	u64 pf_guest;
1633 	u64 tlb_flush;
1634 	u64 invlpg;
1635 
1636 	u64 exits;
1637 	u64 io_exits;
1638 	u64 mmio_exits;
1639 	u64 signal_exits;
1640 	u64 irq_window_exits;
1641 	u64 nmi_window_exits;
1642 	u64 l1d_flush;
1643 	u64 halt_exits;
1644 	u64 request_irq_exits;
1645 	u64 irq_exits;
1646 	u64 host_state_reload;
1647 	u64 fpu_reload;
1648 	u64 insn_emulation;
1649 	u64 insn_emulation_fail;
1650 	u64 hypercalls;
1651 	u64 irq_injections;
1652 	u64 nmi_injections;
1653 	u64 req_event;
1654 	u64 nested_run;
1655 	u64 directed_yield_attempted;
1656 	u64 directed_yield_successful;
1657 	u64 preemption_reported;
1658 	u64 preemption_other;
1659 	u64 guest_mode;
1660 	u64 notify_window_exits;
1661 };
1662 
1663 struct x86_instruction_info;
1664 
1665 struct msr_data {
1666 	bool host_initiated;
1667 	u32 index;
1668 	u64 data;
1669 };
1670 
1671 struct kvm_lapic_irq {
1672 	u32 vector;
1673 	u16 delivery_mode;
1674 	u16 dest_mode;
1675 	bool level;
1676 	u16 trig_mode;
1677 	u32 shorthand;
1678 	u32 dest_id;
1679 	bool msi_redir_hint;
1680 };
1681 
kvm_lapic_irq_dest_mode(bool dest_mode_logical)1682 static inline u16 kvm_lapic_irq_dest_mode(bool dest_mode_logical)
1683 {
1684 	return dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL;
1685 }
1686 
1687 enum kvm_x86_run_flags {
1688 	KVM_RUN_FORCE_IMMEDIATE_EXIT	= BIT(0),
1689 	KVM_RUN_LOAD_GUEST_DR6		= BIT(1),
1690 	KVM_RUN_LOAD_DEBUGCTL		= BIT(2),
1691 };
1692 
1693 struct kvm_x86_ops {
1694 	const char *name;
1695 
1696 	int (*check_processor_compatibility)(void);
1697 
1698 	int (*enable_virtualization_cpu)(void);
1699 	void (*disable_virtualization_cpu)(void);
1700 	cpu_emergency_virt_cb *emergency_disable_virtualization_cpu;
1701 
1702 	void (*hardware_unsetup)(void);
1703 	bool (*has_emulated_msr)(struct kvm *kvm, u32 index);
1704 	void (*vcpu_after_set_cpuid)(struct kvm_vcpu *vcpu);
1705 
1706 	unsigned int vm_size;
1707 	int (*vm_init)(struct kvm *kvm);
1708 	void (*vm_destroy)(struct kvm *kvm);
1709 	void (*vm_pre_destroy)(struct kvm *kvm);
1710 
1711 	/* Create, but do not attach this VCPU */
1712 	int (*vcpu_precreate)(struct kvm *kvm);
1713 	int (*vcpu_create)(struct kvm_vcpu *vcpu);
1714 	void (*vcpu_free)(struct kvm_vcpu *vcpu);
1715 	void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event);
1716 
1717 	void (*prepare_switch_to_guest)(struct kvm_vcpu *vcpu);
1718 	void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu);
1719 	void (*vcpu_put)(struct kvm_vcpu *vcpu);
1720 
1721 	/*
1722 	 * Mask of DEBUGCTL bits that are owned by the host, i.e. that need to
1723 	 * match the host's value even while the guest is active.
1724 	 */
1725 	const u64 HOST_OWNED_DEBUGCTL;
1726 
1727 	void (*update_exception_bitmap)(struct kvm_vcpu *vcpu);
1728 	int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1729 	int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1730 	u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg);
1731 	void (*get_segment)(struct kvm_vcpu *vcpu,
1732 			    struct kvm_segment *var, int seg);
1733 	int (*get_cpl)(struct kvm_vcpu *vcpu);
1734 	int (*get_cpl_no_cache)(struct kvm_vcpu *vcpu);
1735 	void (*set_segment)(struct kvm_vcpu *vcpu,
1736 			    struct kvm_segment *var, int seg);
1737 	void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l);
1738 	bool (*is_valid_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
1739 	void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
1740 	void (*post_set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3);
1741 	bool (*is_valid_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
1742 	void (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
1743 	int (*set_efer)(struct kvm_vcpu *vcpu, u64 efer);
1744 	void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1745 	void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1746 	void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1747 	void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1748 	void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu);
1749 	void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value);
1750 	void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg);
1751 	unsigned long (*get_rflags)(struct kvm_vcpu *vcpu);
1752 	void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags);
1753 	bool (*get_if_flag)(struct kvm_vcpu *vcpu);
1754 
1755 	void (*flush_tlb_all)(struct kvm_vcpu *vcpu);
1756 	void (*flush_tlb_current)(struct kvm_vcpu *vcpu);
1757 #if IS_ENABLED(CONFIG_HYPERV)
1758 	int  (*flush_remote_tlbs)(struct kvm *kvm);
1759 	int  (*flush_remote_tlbs_range)(struct kvm *kvm, gfn_t gfn,
1760 					gfn_t nr_pages);
1761 #endif
1762 
1763 	/*
1764 	 * Flush any TLB entries associated with the given GVA.
1765 	 * Does not need to flush GPA->HPA mappings.
1766 	 * Can potentially get non-canonical addresses through INVLPGs, which
1767 	 * the implementation may choose to ignore if appropriate.
1768 	 */
1769 	void (*flush_tlb_gva)(struct kvm_vcpu *vcpu, gva_t addr);
1770 
1771 	/*
1772 	 * Flush any TLB entries created by the guest.  Like tlb_flush_gva(),
1773 	 * does not need to flush GPA->HPA mappings.
1774 	 */
1775 	void (*flush_tlb_guest)(struct kvm_vcpu *vcpu);
1776 
1777 	int (*vcpu_pre_run)(struct kvm_vcpu *vcpu);
1778 	enum exit_fastpath_completion (*vcpu_run)(struct kvm_vcpu *vcpu,
1779 						  u64 run_flags);
1780 	int (*handle_exit)(struct kvm_vcpu *vcpu,
1781 		enum exit_fastpath_completion exit_fastpath);
1782 	int (*skip_emulated_instruction)(struct kvm_vcpu *vcpu);
1783 	void (*update_emulated_instruction)(struct kvm_vcpu *vcpu);
1784 	void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask);
1785 	u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu);
1786 	void (*patch_hypercall)(struct kvm_vcpu *vcpu,
1787 				unsigned char *hypercall_addr);
1788 	void (*inject_irq)(struct kvm_vcpu *vcpu, bool reinjected);
1789 	void (*inject_nmi)(struct kvm_vcpu *vcpu);
1790 	void (*inject_exception)(struct kvm_vcpu *vcpu);
1791 	void (*cancel_injection)(struct kvm_vcpu *vcpu);
1792 	int (*interrupt_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1793 	int (*nmi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1794 	bool (*get_nmi_mask)(struct kvm_vcpu *vcpu);
1795 	void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked);
1796 	/* Whether or not a virtual NMI is pending in hardware. */
1797 	bool (*is_vnmi_pending)(struct kvm_vcpu *vcpu);
1798 	/*
1799 	 * Attempt to pend a virtual NMI in hardware.  Returns %true on success
1800 	 * to allow using static_call_ret0 as the fallback.
1801 	 */
1802 	bool (*set_vnmi_pending)(struct kvm_vcpu *vcpu);
1803 	void (*enable_nmi_window)(struct kvm_vcpu *vcpu);
1804 	void (*enable_irq_window)(struct kvm_vcpu *vcpu);
1805 	void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr);
1806 
1807 	const bool x2apic_icr_is_split;
1808 	const unsigned long required_apicv_inhibits;
1809 	bool allow_apicv_in_x2apic_without_x2apic_virtualization;
1810 	void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu);
1811 	void (*hwapic_isr_update)(struct kvm_vcpu *vcpu, int isr);
1812 	void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap);
1813 	void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu);
1814 	void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu);
1815 	void (*deliver_interrupt)(struct kvm_lapic *apic, int delivery_mode,
1816 				  int trig_mode, int vector);
1817 	int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu);
1818 	int (*set_tss_addr)(struct kvm *kvm, unsigned int addr);
1819 	int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr);
1820 	u8 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio);
1821 
1822 	void (*load_mmu_pgd)(struct kvm_vcpu *vcpu, hpa_t root_hpa,
1823 			     int root_level);
1824 
1825 	/* Update external mapping with page table link. */
1826 	int (*link_external_spt)(struct kvm *kvm, gfn_t gfn, enum pg_level level,
1827 				void *external_spt);
1828 	/* Update the external page table from spte getting set. */
1829 	int (*set_external_spte)(struct kvm *kvm, gfn_t gfn, enum pg_level level,
1830 				 kvm_pfn_t pfn_for_gfn);
1831 
1832 	/* Update external page tables for page table about to be freed. */
1833 	int (*free_external_spt)(struct kvm *kvm, gfn_t gfn, enum pg_level level,
1834 				 void *external_spt);
1835 
1836 	/* Update external page table from spte getting removed, and flush TLB. */
1837 	int (*remove_external_spte)(struct kvm *kvm, gfn_t gfn, enum pg_level level,
1838 				    kvm_pfn_t pfn_for_gfn);
1839 
1840 	bool (*has_wbinvd_exit)(void);
1841 
1842 	u64 (*get_l2_tsc_offset)(struct kvm_vcpu *vcpu);
1843 	u64 (*get_l2_tsc_multiplier)(struct kvm_vcpu *vcpu);
1844 	void (*write_tsc_offset)(struct kvm_vcpu *vcpu);
1845 	void (*write_tsc_multiplier)(struct kvm_vcpu *vcpu);
1846 
1847 	/*
1848 	 * Retrieve somewhat arbitrary exit/entry information.  Intended to
1849 	 * be used only from within tracepoints or error paths.
1850 	 */
1851 	void (*get_exit_info)(struct kvm_vcpu *vcpu, u32 *reason,
1852 			      u64 *info1, u64 *info2,
1853 			      u32 *intr_info, u32 *error_code);
1854 
1855 	void (*get_entry_info)(struct kvm_vcpu *vcpu,
1856 			       u32 *intr_info, u32 *error_code);
1857 
1858 	int (*check_intercept)(struct kvm_vcpu *vcpu,
1859 			       struct x86_instruction_info *info,
1860 			       enum x86_intercept_stage stage,
1861 			       struct x86_exception *exception);
1862 	void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu);
1863 
1864 	void (*update_cpu_dirty_logging)(struct kvm_vcpu *vcpu);
1865 
1866 	const struct kvm_x86_nested_ops *nested_ops;
1867 
1868 	void (*vcpu_blocking)(struct kvm_vcpu *vcpu);
1869 	void (*vcpu_unblocking)(struct kvm_vcpu *vcpu);
1870 
1871 	int (*pi_update_irte)(struct kvm_kernel_irqfd *irqfd, struct kvm *kvm,
1872 			      unsigned int host_irq, uint32_t guest_irq,
1873 			      struct kvm_vcpu *vcpu, u32 vector);
1874 	void (*pi_start_bypass)(struct kvm *kvm);
1875 	void (*apicv_pre_state_restore)(struct kvm_vcpu *vcpu);
1876 	void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu);
1877 	bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu);
1878 	bool (*protected_apic_has_interrupt)(struct kvm_vcpu *vcpu);
1879 
1880 	int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
1881 			    bool *expired);
1882 	void (*cancel_hv_timer)(struct kvm_vcpu *vcpu);
1883 
1884 	void (*setup_mce)(struct kvm_vcpu *vcpu);
1885 
1886 #ifdef CONFIG_KVM_SMM
1887 	int (*smi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1888 	int (*enter_smm)(struct kvm_vcpu *vcpu, union kvm_smram *smram);
1889 	int (*leave_smm)(struct kvm_vcpu *vcpu, const union kvm_smram *smram);
1890 	void (*enable_smi_window)(struct kvm_vcpu *vcpu);
1891 #endif
1892 
1893 	int (*dev_get_attr)(u32 group, u64 attr, u64 *val);
1894 	int (*mem_enc_ioctl)(struct kvm *kvm, void __user *argp);
1895 	int (*vcpu_mem_enc_ioctl)(struct kvm_vcpu *vcpu, void __user *argp);
1896 	int (*mem_enc_register_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1897 	int (*mem_enc_unregister_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1898 	int (*vm_copy_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1899 	int (*vm_move_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1900 	void (*guest_memory_reclaimed)(struct kvm *kvm);
1901 
1902 	int (*get_feature_msr)(u32 msr, u64 *data);
1903 
1904 	int (*check_emulate_instruction)(struct kvm_vcpu *vcpu, int emul_type,
1905 					 void *insn, int insn_len);
1906 
1907 	bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu);
1908 	int (*enable_l2_tlb_flush)(struct kvm_vcpu *vcpu);
1909 
1910 	void (*migrate_timers)(struct kvm_vcpu *vcpu);
1911 	void (*recalc_msr_intercepts)(struct kvm_vcpu *vcpu);
1912 	int (*complete_emulated_msr)(struct kvm_vcpu *vcpu, int err);
1913 
1914 	void (*vcpu_deliver_sipi_vector)(struct kvm_vcpu *vcpu, u8 vector);
1915 
1916 	/*
1917 	 * Returns vCPU specific APICv inhibit reasons
1918 	 */
1919 	unsigned long (*vcpu_get_apicv_inhibit_reasons)(struct kvm_vcpu *vcpu);
1920 
1921 	gva_t (*get_untagged_addr)(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags);
1922 	void *(*alloc_apic_backing_page)(struct kvm_vcpu *vcpu);
1923 	int (*gmem_prepare)(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order);
1924 	void (*gmem_invalidate)(kvm_pfn_t start, kvm_pfn_t end);
1925 	int (*private_max_mapping_level)(struct kvm *kvm, kvm_pfn_t pfn);
1926 };
1927 
1928 struct kvm_x86_nested_ops {
1929 	void (*leave_nested)(struct kvm_vcpu *vcpu);
1930 	bool (*is_exception_vmexit)(struct kvm_vcpu *vcpu, u8 vector,
1931 				    u32 error_code);
1932 	int (*check_events)(struct kvm_vcpu *vcpu);
1933 	bool (*has_events)(struct kvm_vcpu *vcpu, bool for_injection);
1934 	void (*triple_fault)(struct kvm_vcpu *vcpu);
1935 	int (*get_state)(struct kvm_vcpu *vcpu,
1936 			 struct kvm_nested_state __user *user_kvm_nested_state,
1937 			 unsigned user_data_size);
1938 	int (*set_state)(struct kvm_vcpu *vcpu,
1939 			 struct kvm_nested_state __user *user_kvm_nested_state,
1940 			 struct kvm_nested_state *kvm_state);
1941 	bool (*get_nested_state_pages)(struct kvm_vcpu *vcpu);
1942 	int (*write_log_dirty)(struct kvm_vcpu *vcpu, gpa_t l2_gpa);
1943 
1944 	int (*enable_evmcs)(struct kvm_vcpu *vcpu,
1945 			    uint16_t *vmcs_version);
1946 	uint16_t (*get_evmcs_version)(struct kvm_vcpu *vcpu);
1947 	void (*hv_inject_synthetic_vmexit_post_tlb_flush)(struct kvm_vcpu *vcpu);
1948 };
1949 
1950 struct kvm_x86_init_ops {
1951 	int (*hardware_setup)(void);
1952 	unsigned int (*handle_intel_pt_intr)(void);
1953 
1954 	struct kvm_x86_ops *runtime_ops;
1955 	struct kvm_pmu_ops *pmu_ops;
1956 };
1957 
1958 struct kvm_arch_async_pf {
1959 	u32 token;
1960 	gfn_t gfn;
1961 	unsigned long cr3;
1962 	bool direct_map;
1963 	u64 error_code;
1964 };
1965 
1966 extern u32 __read_mostly kvm_nr_uret_msrs;
1967 extern bool __read_mostly allow_smaller_maxphyaddr;
1968 extern bool __read_mostly enable_apicv;
1969 extern bool __read_mostly enable_ipiv;
1970 extern bool __read_mostly enable_device_posted_irqs;
1971 extern struct kvm_x86_ops kvm_x86_ops;
1972 
1973 #define kvm_x86_call(func) static_call(kvm_x86_##func)
1974 #define kvm_pmu_call(func) static_call(kvm_x86_pmu_##func)
1975 
1976 #define KVM_X86_OP(func) \
1977 	DECLARE_STATIC_CALL(kvm_x86_##func, *(((struct kvm_x86_ops *)0)->func));
1978 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
1979 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
1980 #include <asm/kvm-x86-ops.h>
1981 
1982 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops);
1983 void kvm_x86_vendor_exit(void);
1984 
1985 #define __KVM_HAVE_ARCH_VM_ALLOC
kvm_arch_alloc_vm(void)1986 static inline struct kvm *kvm_arch_alloc_vm(void)
1987 {
1988 	return kvzalloc(kvm_x86_ops.vm_size, GFP_KERNEL_ACCOUNT);
1989 }
1990 
1991 #define __KVM_HAVE_ARCH_VM_FREE
1992 void kvm_arch_free_vm(struct kvm *kvm);
1993 
1994 #if IS_ENABLED(CONFIG_HYPERV)
1995 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
kvm_arch_flush_remote_tlbs(struct kvm * kvm)1996 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
1997 {
1998 	if (kvm_x86_ops.flush_remote_tlbs &&
1999 	    !kvm_x86_call(flush_remote_tlbs)(kvm))
2000 		return 0;
2001 	else
2002 		return -ENOTSUPP;
2003 }
2004 
2005 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
kvm_arch_flush_remote_tlbs_range(struct kvm * kvm,gfn_t gfn,u64 nr_pages)2006 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn,
2007 						   u64 nr_pages)
2008 {
2009 	if (!kvm_x86_ops.flush_remote_tlbs_range)
2010 		return -EOPNOTSUPP;
2011 
2012 	return kvm_x86_call(flush_remote_tlbs_range)(kvm, gfn, nr_pages);
2013 }
2014 #endif /* CONFIG_HYPERV */
2015 
2016 enum kvm_intr_type {
2017 	/* Values are arbitrary, but must be non-zero. */
2018 	KVM_HANDLING_IRQ = 1,
2019 	KVM_HANDLING_NMI,
2020 };
2021 
2022 /* Enable perf NMI and timer modes to work, and minimise false positives. */
2023 #define kvm_arch_pmi_in_guest(vcpu) \
2024 	((vcpu) && (vcpu)->arch.handling_intr_from_guest && \
2025 	 (!!in_nmi() == ((vcpu)->arch.handling_intr_from_guest == KVM_HANDLING_NMI)))
2026 
2027 void __init kvm_mmu_x86_module_init(void);
2028 int kvm_mmu_vendor_module_init(void);
2029 void kvm_mmu_vendor_module_exit(void);
2030 
2031 void kvm_mmu_destroy(struct kvm_vcpu *vcpu);
2032 int kvm_mmu_create(struct kvm_vcpu *vcpu);
2033 int kvm_mmu_init_vm(struct kvm *kvm);
2034 void kvm_mmu_uninit_vm(struct kvm *kvm);
2035 
2036 void kvm_mmu_init_memslot_memory_attributes(struct kvm *kvm,
2037 					    struct kvm_memory_slot *slot);
2038 
2039 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu);
2040 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu);
2041 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
2042 				      const struct kvm_memory_slot *memslot,
2043 				      int start_level);
2044 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm,
2045 				       const struct kvm_memory_slot *memslot,
2046 				       int target_level);
2047 void kvm_mmu_try_split_huge_pages(struct kvm *kvm,
2048 				  const struct kvm_memory_slot *memslot,
2049 				  u64 start, u64 end,
2050 				  int target_level);
2051 void kvm_mmu_recover_huge_pages(struct kvm *kvm,
2052 				const struct kvm_memory_slot *memslot);
2053 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
2054 				   const struct kvm_memory_slot *memslot);
2055 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen);
2056 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages);
2057 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end);
2058 
2059 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3);
2060 
2061 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
2062 			  const void *val, int bytes);
2063 
2064 extern bool tdp_enabled;
2065 
2066 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu);
2067 
2068 /*
2069  * EMULTYPE_NO_DECODE - Set when re-emulating an instruction (after completing
2070  *			userspace I/O) to indicate that the emulation context
2071  *			should be reused as is, i.e. skip initialization of
2072  *			emulation context, instruction fetch and decode.
2073  *
2074  * EMULTYPE_TRAP_UD - Set when emulating an intercepted #UD from hardware.
2075  *		      Indicates that only select instructions (tagged with
2076  *		      EmulateOnUD) should be emulated (to minimize the emulator
2077  *		      attack surface).  See also EMULTYPE_TRAP_UD_FORCED.
2078  *
2079  * EMULTYPE_SKIP - Set when emulating solely to skip an instruction, i.e. to
2080  *		   decode the instruction length.  For use *only* by
2081  *		   kvm_x86_ops.skip_emulated_instruction() implementations if
2082  *		   EMULTYPE_COMPLETE_USER_EXIT is not set.
2083  *
2084  * EMULTYPE_ALLOW_RETRY_PF - Set when the emulator should resume the guest to
2085  *			     retry native execution under certain conditions,
2086  *			     Can only be set in conjunction with EMULTYPE_PF.
2087  *
2088  * EMULTYPE_TRAP_UD_FORCED - Set when emulating an intercepted #UD that was
2089  *			     triggered by KVM's magic "force emulation" prefix,
2090  *			     which is opt in via module param (off by default).
2091  *			     Bypasses EmulateOnUD restriction despite emulating
2092  *			     due to an intercepted #UD (see EMULTYPE_TRAP_UD).
2093  *			     Used to test the full emulator from userspace.
2094  *
2095  * EMULTYPE_VMWARE_GP - Set when emulating an intercepted #GP for VMware
2096  *			backdoor emulation, which is opt in via module param.
2097  *			VMware backdoor emulation handles select instructions
2098  *			and reinjects the #GP for all other cases.
2099  *
2100  * EMULTYPE_PF - Set when an intercepted #PF triggers the emulation, in which case
2101  *		 the CR2/GPA value pass on the stack is valid.
2102  *
2103  * EMULTYPE_COMPLETE_USER_EXIT - Set when the emulator should update interruptibility
2104  *				 state and inject single-step #DBs after skipping
2105  *				 an instruction (after completing userspace I/O).
2106  *
2107  * EMULTYPE_WRITE_PF_TO_SP - Set when emulating an intercepted page fault that
2108  *			     is attempting to write a gfn that contains one or
2109  *			     more of the PTEs used to translate the write itself,
2110  *			     and the owning page table is being shadowed by KVM.
2111  *			     If emulation of the faulting instruction fails and
2112  *			     this flag is set, KVM will exit to userspace instead
2113  *			     of retrying emulation as KVM cannot make forward
2114  *			     progress.
2115  *
2116  *			     If emulation fails for a write to guest page tables,
2117  *			     KVM unprotects (zaps) the shadow page for the target
2118  *			     gfn and resumes the guest to retry the non-emulatable
2119  *			     instruction (on hardware).  Unprotecting the gfn
2120  *			     doesn't allow forward progress for a self-changing
2121  *			     access because doing so also zaps the translation for
2122  *			     the gfn, i.e. retrying the instruction will hit a
2123  *			     !PRESENT fault, which results in a new shadow page
2124  *			     and sends KVM back to square one.
2125  */
2126 #define EMULTYPE_NO_DECODE	    (1 << 0)
2127 #define EMULTYPE_TRAP_UD	    (1 << 1)
2128 #define EMULTYPE_SKIP		    (1 << 2)
2129 #define EMULTYPE_ALLOW_RETRY_PF	    (1 << 3)
2130 #define EMULTYPE_TRAP_UD_FORCED	    (1 << 4)
2131 #define EMULTYPE_VMWARE_GP	    (1 << 5)
2132 #define EMULTYPE_PF		    (1 << 6)
2133 #define EMULTYPE_COMPLETE_USER_EXIT (1 << 7)
2134 #define EMULTYPE_WRITE_PF_TO_SP	    (1 << 8)
2135 
kvm_can_emulate_event_vectoring(int emul_type)2136 static inline bool kvm_can_emulate_event_vectoring(int emul_type)
2137 {
2138 	return !(emul_type & EMULTYPE_PF);
2139 }
2140 
2141 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type);
2142 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
2143 					void *insn, int insn_len);
2144 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu,
2145 					  u64 *data, u8 ndata);
2146 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu);
2147 
2148 void kvm_prepare_event_vectoring_exit(struct kvm_vcpu *vcpu, gpa_t gpa);
2149 
2150 void kvm_enable_efer_bits(u64);
2151 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer);
2152 int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data);
2153 int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data);
2154 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, bool host_initiated);
2155 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data);
2156 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data);
2157 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu);
2158 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu);
2159 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu);
2160 int kvm_emulate_invd(struct kvm_vcpu *vcpu);
2161 int kvm_emulate_mwait(struct kvm_vcpu *vcpu);
2162 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu);
2163 int kvm_emulate_monitor(struct kvm_vcpu *vcpu);
2164 
2165 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in);
2166 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu);
2167 int kvm_emulate_halt(struct kvm_vcpu *vcpu);
2168 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu);
2169 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu);
2170 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu);
2171 
2172 void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
2173 void kvm_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
2174 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg);
2175 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector);
2176 
2177 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
2178 		    int reason, bool has_error_code, u32 error_code);
2179 
2180 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0);
2181 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4);
2182 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
2183 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
2184 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
2185 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8);
2186 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val);
2187 unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr);
2188 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu);
2189 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw);
2190 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu);
2191 
2192 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
2193 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
2194 
2195 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu);
2196 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
2197 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu);
2198 
2199 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr);
2200 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
2201 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload);
2202 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned int nr,
2203 			   bool has_error_code, u32 error_code);
2204 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault);
2205 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
2206 				    struct x86_exception *fault);
2207 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl);
2208 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr);
2209 
__kvm_irq_line_state(unsigned long * irq_state,int irq_source_id,int level)2210 static inline int __kvm_irq_line_state(unsigned long *irq_state,
2211 				       int irq_source_id, int level)
2212 {
2213 	/* Logical OR for level trig interrupt */
2214 	if (level)
2215 		__set_bit(irq_source_id, irq_state);
2216 	else
2217 		__clear_bit(irq_source_id, irq_state);
2218 
2219 	return !!(*irq_state);
2220 }
2221 
2222 void kvm_inject_nmi(struct kvm_vcpu *vcpu);
2223 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu);
2224 
2225 void kvm_update_dr7(struct kvm_vcpu *vcpu);
2226 
2227 bool __kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
2228 				       bool always_retry);
2229 
kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa)2230 static inline bool kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu,
2231 						   gpa_t cr2_or_gpa)
2232 {
2233 	return __kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa, false);
2234 }
2235 
2236 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu,
2237 			ulong roots_to_free);
2238 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu);
2239 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
2240 			      struct x86_exception *exception);
2241 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
2242 			       struct x86_exception *exception);
2243 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
2244 				struct x86_exception *exception);
2245 
2246 bool kvm_apicv_activated(struct kvm *kvm);
2247 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu);
2248 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu);
2249 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
2250 				      enum kvm_apicv_inhibit reason, bool set);
2251 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
2252 				    enum kvm_apicv_inhibit reason, bool set);
2253 
kvm_set_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason)2254 static inline void kvm_set_apicv_inhibit(struct kvm *kvm,
2255 					 enum kvm_apicv_inhibit reason)
2256 {
2257 	kvm_set_or_clear_apicv_inhibit(kvm, reason, true);
2258 }
2259 
kvm_clear_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason)2260 static inline void kvm_clear_apicv_inhibit(struct kvm *kvm,
2261 					   enum kvm_apicv_inhibit reason)
2262 {
2263 	kvm_set_or_clear_apicv_inhibit(kvm, reason, false);
2264 }
2265 
2266 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
2267 		       void *insn, int insn_len);
2268 void kvm_mmu_print_sptes(struct kvm_vcpu *vcpu, gpa_t gpa, const char *msg);
2269 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva);
2270 void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
2271 			     u64 addr, unsigned long roots);
2272 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid);
2273 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd);
2274 
2275 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
2276 		       int tdp_max_root_level, int tdp_huge_page_level);
2277 
2278 
2279 #ifdef CONFIG_KVM_PRIVATE_MEM
2280 #define kvm_arch_has_private_mem(kvm) ((kvm)->arch.has_private_mem)
2281 #else
2282 #define kvm_arch_has_private_mem(kvm) false
2283 #endif
2284 
2285 #define kvm_arch_has_readonly_mem(kvm) (!(kvm)->arch.has_protected_state)
2286 
kvm_read_ldt(void)2287 static inline u16 kvm_read_ldt(void)
2288 {
2289 	u16 ldt;
2290 	asm("sldt %0" : "=g"(ldt));
2291 	return ldt;
2292 }
2293 
kvm_load_ldt(u16 sel)2294 static inline void kvm_load_ldt(u16 sel)
2295 {
2296 	asm("lldt %0" : : "rm"(sel));
2297 }
2298 
2299 #ifdef CONFIG_X86_64
read_msr(unsigned long msr)2300 static inline unsigned long read_msr(unsigned long msr)
2301 {
2302 	u64 value;
2303 
2304 	rdmsrq(msr, value);
2305 	return value;
2306 }
2307 #endif
2308 
kvm_inject_gp(struct kvm_vcpu * vcpu,u32 error_code)2309 static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code)
2310 {
2311 	kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2312 }
2313 
2314 #define TSS_IOPB_BASE_OFFSET 0x66
2315 #define TSS_BASE_SIZE 0x68
2316 #define TSS_IOPB_SIZE (65536 / 8)
2317 #define TSS_REDIRECTION_SIZE (256 / 8)
2318 #define RMODE_TSS_SIZE							\
2319 	(TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1)
2320 
2321 enum {
2322 	TASK_SWITCH_CALL = 0,
2323 	TASK_SWITCH_IRET = 1,
2324 	TASK_SWITCH_JMP = 2,
2325 	TASK_SWITCH_GATE = 3,
2326 };
2327 
2328 #define HF_GUEST_MASK		(1 << 0) /* VCPU is in guest-mode */
2329 
2330 #ifdef CONFIG_KVM_SMM
2331 #define HF_SMM_MASK		(1 << 1)
2332 #define HF_SMM_INSIDE_NMI_MASK	(1 << 2)
2333 
2334 # define KVM_MAX_NR_ADDRESS_SPACES	2
2335 /* SMM is currently unsupported for guests with private memory. */
2336 # define kvm_arch_nr_memslot_as_ids(kvm) (kvm_arch_has_private_mem(kvm) ? 1 : 2)
2337 # define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0)
2338 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm)
2339 #else
2340 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, 0)
2341 #endif
2342 
2343 int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v);
2344 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu);
2345 int kvm_cpu_has_extint(struct kvm_vcpu *v);
2346 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu);
2347 int kvm_cpu_get_extint(struct kvm_vcpu *v);
2348 int kvm_cpu_get_interrupt(struct kvm_vcpu *v);
2349 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event);
2350 
2351 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
2352 		    unsigned long ipi_bitmap_high, u32 min,
2353 		    unsigned long icr, int op_64_bit);
2354 
2355 int kvm_add_user_return_msr(u32 msr);
2356 int kvm_find_user_return_msr(u32 msr);
2357 int kvm_set_user_return_msr(unsigned index, u64 val, u64 mask);
2358 void kvm_user_return_msr_update_cache(unsigned int index, u64 val);
2359 
kvm_is_supported_user_return_msr(u32 msr)2360 static inline bool kvm_is_supported_user_return_msr(u32 msr)
2361 {
2362 	return kvm_find_user_return_msr(msr) >= 0;
2363 }
2364 
2365 u64 kvm_scale_tsc(u64 tsc, u64 ratio);
2366 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc);
2367 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier);
2368 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier);
2369 
2370 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu);
2371 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip);
2372 
2373 void kvm_make_scan_ioapic_request(struct kvm *kvm);
2374 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
2375 				       unsigned long *vcpu_bitmap);
2376 
2377 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
2378 				     struct kvm_async_pf *work);
2379 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
2380 				 struct kvm_async_pf *work);
2381 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
2382 			       struct kvm_async_pf *work);
2383 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu);
2384 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu);
2385 extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
2386 
2387 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu);
2388 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err);
2389 
2390 void __user *__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
2391 				     u32 size);
2392 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu);
2393 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu);
2394 
2395 bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq,
2396 			     struct kvm_vcpu **dest_vcpu);
2397 
kvm_irq_is_postable(struct kvm_lapic_irq * irq)2398 static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq)
2399 {
2400 	/* We can only post Fixed and LowPrio IRQs */
2401 	return (irq->delivery_mode == APIC_DM_FIXED ||
2402 		irq->delivery_mode == APIC_DM_LOWEST);
2403 }
2404 
kvm_arch_vcpu_blocking(struct kvm_vcpu * vcpu)2405 static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
2406 {
2407 	kvm_x86_call(vcpu_blocking)(vcpu);
2408 }
2409 
kvm_arch_vcpu_unblocking(struct kvm_vcpu * vcpu)2410 static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
2411 {
2412 	kvm_x86_call(vcpu_unblocking)(vcpu);
2413 }
2414 
kvm_cpu_get_apicid(int mps_cpu)2415 static inline int kvm_cpu_get_apicid(int mps_cpu)
2416 {
2417 #ifdef CONFIG_X86_LOCAL_APIC
2418 	return default_cpu_present_to_apicid(mps_cpu);
2419 #else
2420 	WARN_ON_ONCE(1);
2421 	return BAD_APICID;
2422 #endif
2423 }
2424 
2425 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages);
2426 
2427 #define KVM_CLOCK_VALID_FLAGS						\
2428 	(KVM_CLOCK_TSC_STABLE | KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC)
2429 
2430 #define KVM_X86_VALID_QUIRKS			\
2431 	(KVM_X86_QUIRK_LINT0_REENABLED |	\
2432 	 KVM_X86_QUIRK_CD_NW_CLEARED |		\
2433 	 KVM_X86_QUIRK_LAPIC_MMIO_HOLE |	\
2434 	 KVM_X86_QUIRK_OUT_7E_INC_RIP |		\
2435 	 KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT |	\
2436 	 KVM_X86_QUIRK_FIX_HYPERCALL_INSN |	\
2437 	 KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS |	\
2438 	 KVM_X86_QUIRK_SLOT_ZAP_ALL |		\
2439 	 KVM_X86_QUIRK_STUFF_FEATURE_MSRS |	\
2440 	 KVM_X86_QUIRK_IGNORE_GUEST_PAT)
2441 
2442 #define KVM_X86_CONDITIONAL_QUIRKS		\
2443 	(KVM_X86_QUIRK_CD_NW_CLEARED |		\
2444 	 KVM_X86_QUIRK_IGNORE_GUEST_PAT)
2445 
2446 /*
2447  * KVM previously used a u32 field in kvm_run to indicate the hypercall was
2448  * initiated from long mode. KVM now sets bit 0 to indicate long mode, but the
2449  * remaining 31 lower bits must be 0 to preserve ABI.
2450  */
2451 #define KVM_EXIT_HYPERCALL_MBZ		GENMASK_ULL(31, 1)
2452 
kvm_arch_has_irq_bypass(void)2453 static inline bool kvm_arch_has_irq_bypass(void)
2454 {
2455 	return enable_device_posted_irqs;
2456 }
2457 
2458 #endif /* _ASM_X86_KVM_HOST_H */
2459