xref: /linux/include/linux/slab.h (revision e06635e26cd8144eee17e9f256e8fde8aed3ba4f)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
4  *
5  * (C) SGI 2006, Christoph Lameter
6  * 	Cleaned up and restructured to ease the addition of alternative
7  * 	implementations of SLAB allocators.
8  * (C) Linux Foundation 2008-2013
9  *      Unified interface for all slab allocators
10  */
11 
12 #ifndef _LINUX_SLAB_H
13 #define	_LINUX_SLAB_H
14 
15 #include <linux/cache.h>
16 #include <linux/gfp.h>
17 #include <linux/overflow.h>
18 #include <linux/types.h>
19 #include <linux/workqueue.h>
20 #include <linux/percpu-refcount.h>
21 #include <linux/cleanup.h>
22 #include <linux/hash.h>
23 
24 enum _slab_flag_bits {
25 	_SLAB_CONSISTENCY_CHECKS,
26 	_SLAB_RED_ZONE,
27 	_SLAB_POISON,
28 	_SLAB_KMALLOC,
29 	_SLAB_HWCACHE_ALIGN,
30 	_SLAB_CACHE_DMA,
31 	_SLAB_CACHE_DMA32,
32 	_SLAB_STORE_USER,
33 	_SLAB_PANIC,
34 	_SLAB_TYPESAFE_BY_RCU,
35 	_SLAB_TRACE,
36 #ifdef CONFIG_DEBUG_OBJECTS
37 	_SLAB_DEBUG_OBJECTS,
38 #endif
39 	_SLAB_NOLEAKTRACE,
40 	_SLAB_NO_MERGE,
41 #ifdef CONFIG_FAILSLAB
42 	_SLAB_FAILSLAB,
43 #endif
44 #ifdef CONFIG_MEMCG
45 	_SLAB_ACCOUNT,
46 #endif
47 #ifdef CONFIG_KASAN_GENERIC
48 	_SLAB_KASAN,
49 #endif
50 	_SLAB_NO_USER_FLAGS,
51 #ifdef CONFIG_KFENCE
52 	_SLAB_SKIP_KFENCE,
53 #endif
54 #ifndef CONFIG_SLUB_TINY
55 	_SLAB_RECLAIM_ACCOUNT,
56 #endif
57 	_SLAB_OBJECT_POISON,
58 	_SLAB_CMPXCHG_DOUBLE,
59 #ifdef CONFIG_SLAB_OBJ_EXT
60 	_SLAB_NO_OBJ_EXT,
61 #endif
62 	_SLAB_FLAGS_LAST_BIT
63 };
64 
65 #define __SLAB_FLAG_BIT(nr)	((slab_flags_t __force)(1U << (nr)))
66 #define __SLAB_FLAG_UNUSED	((slab_flags_t __force)(0U))
67 
68 /*
69  * Flags to pass to kmem_cache_create().
70  * The ones marked DEBUG need CONFIG_SLUB_DEBUG enabled, otherwise are no-op
71  */
72 /* DEBUG: Perform (expensive) checks on alloc/free */
73 #define SLAB_CONSISTENCY_CHECKS	__SLAB_FLAG_BIT(_SLAB_CONSISTENCY_CHECKS)
74 /* DEBUG: Red zone objs in a cache */
75 #define SLAB_RED_ZONE		__SLAB_FLAG_BIT(_SLAB_RED_ZONE)
76 /* DEBUG: Poison objects */
77 #define SLAB_POISON		__SLAB_FLAG_BIT(_SLAB_POISON)
78 /* Indicate a kmalloc slab */
79 #define SLAB_KMALLOC		__SLAB_FLAG_BIT(_SLAB_KMALLOC)
80 /**
81  * define SLAB_HWCACHE_ALIGN - Align objects on cache line boundaries.
82  *
83  * Sufficiently large objects are aligned on cache line boundary. For object
84  * size smaller than a half of cache line size, the alignment is on the half of
85  * cache line size. In general, if object size is smaller than 1/2^n of cache
86  * line size, the alignment is adjusted to 1/2^n.
87  *
88  * If explicit alignment is also requested by the respective
89  * &struct kmem_cache_args field, the greater of both is alignments is applied.
90  */
91 #define SLAB_HWCACHE_ALIGN	__SLAB_FLAG_BIT(_SLAB_HWCACHE_ALIGN)
92 /* Use GFP_DMA memory */
93 #define SLAB_CACHE_DMA		__SLAB_FLAG_BIT(_SLAB_CACHE_DMA)
94 /* Use GFP_DMA32 memory */
95 #define SLAB_CACHE_DMA32	__SLAB_FLAG_BIT(_SLAB_CACHE_DMA32)
96 /* DEBUG: Store the last owner for bug hunting */
97 #define SLAB_STORE_USER		__SLAB_FLAG_BIT(_SLAB_STORE_USER)
98 /* Panic if kmem_cache_create() fails */
99 #define SLAB_PANIC		__SLAB_FLAG_BIT(_SLAB_PANIC)
100 /**
101  * define SLAB_TYPESAFE_BY_RCU - **WARNING** READ THIS!
102  *
103  * This delays freeing the SLAB page by a grace period, it does _NOT_
104  * delay object freeing. This means that if you do kmem_cache_free()
105  * that memory location is free to be reused at any time. Thus it may
106  * be possible to see another object there in the same RCU grace period.
107  *
108  * This feature only ensures the memory location backing the object
109  * stays valid, the trick to using this is relying on an independent
110  * object validation pass. Something like:
111  *
112  * ::
113  *
114  *  begin:
115  *   rcu_read_lock();
116  *   obj = lockless_lookup(key);
117  *   if (obj) {
118  *     if (!try_get_ref(obj)) // might fail for free objects
119  *       rcu_read_unlock();
120  *       goto begin;
121  *
122  *     if (obj->key != key) { // not the object we expected
123  *       put_ref(obj);
124  *       rcu_read_unlock();
125  *       goto begin;
126  *     }
127  *   }
128  *  rcu_read_unlock();
129  *
130  * This is useful if we need to approach a kernel structure obliquely,
131  * from its address obtained without the usual locking. We can lock
132  * the structure to stabilize it and check it's still at the given address,
133  * only if we can be sure that the memory has not been meanwhile reused
134  * for some other kind of object (which our subsystem's lock might corrupt).
135  *
136  * rcu_read_lock before reading the address, then rcu_read_unlock after
137  * taking the spinlock within the structure expected at that address.
138  *
139  * Note that it is not possible to acquire a lock within a structure
140  * allocated with SLAB_TYPESAFE_BY_RCU without first acquiring a reference
141  * as described above.  The reason is that SLAB_TYPESAFE_BY_RCU pages
142  * are not zeroed before being given to the slab, which means that any
143  * locks must be initialized after each and every kmem_struct_alloc().
144  * Alternatively, make the ctor passed to kmem_cache_create() initialize
145  * the locks at page-allocation time, as is done in __i915_request_ctor(),
146  * sighand_ctor(), and anon_vma_ctor().  Such a ctor permits readers
147  * to safely acquire those ctor-initialized locks under rcu_read_lock()
148  * protection.
149  *
150  * Note that SLAB_TYPESAFE_BY_RCU was originally named SLAB_DESTROY_BY_RCU.
151  */
152 #define SLAB_TYPESAFE_BY_RCU	__SLAB_FLAG_BIT(_SLAB_TYPESAFE_BY_RCU)
153 /* Trace allocations and frees */
154 #define SLAB_TRACE		__SLAB_FLAG_BIT(_SLAB_TRACE)
155 
156 /* Flag to prevent checks on free */
157 #ifdef CONFIG_DEBUG_OBJECTS
158 # define SLAB_DEBUG_OBJECTS	__SLAB_FLAG_BIT(_SLAB_DEBUG_OBJECTS)
159 #else
160 # define SLAB_DEBUG_OBJECTS	__SLAB_FLAG_UNUSED
161 #endif
162 
163 /* Avoid kmemleak tracing */
164 #define SLAB_NOLEAKTRACE	__SLAB_FLAG_BIT(_SLAB_NOLEAKTRACE)
165 
166 /*
167  * Prevent merging with compatible kmem caches. This flag should be used
168  * cautiously. Valid use cases:
169  *
170  * - caches created for self-tests (e.g. kunit)
171  * - general caches created and used by a subsystem, only when a
172  *   (subsystem-specific) debug option is enabled
173  * - performance critical caches, should be very rare and consulted with slab
174  *   maintainers, and not used together with CONFIG_SLUB_TINY
175  */
176 #define SLAB_NO_MERGE		__SLAB_FLAG_BIT(_SLAB_NO_MERGE)
177 
178 /* Fault injection mark */
179 #ifdef CONFIG_FAILSLAB
180 # define SLAB_FAILSLAB		__SLAB_FLAG_BIT(_SLAB_FAILSLAB)
181 #else
182 # define SLAB_FAILSLAB		__SLAB_FLAG_UNUSED
183 #endif
184 /**
185  * define SLAB_ACCOUNT - Account allocations to memcg.
186  *
187  * All object allocations from this cache will be memcg accounted, regardless of
188  * __GFP_ACCOUNT being or not being passed to individual allocations.
189  */
190 #ifdef CONFIG_MEMCG
191 # define SLAB_ACCOUNT		__SLAB_FLAG_BIT(_SLAB_ACCOUNT)
192 #else
193 # define SLAB_ACCOUNT		__SLAB_FLAG_UNUSED
194 #endif
195 
196 #ifdef CONFIG_KASAN_GENERIC
197 #define SLAB_KASAN		__SLAB_FLAG_BIT(_SLAB_KASAN)
198 #else
199 #define SLAB_KASAN		__SLAB_FLAG_UNUSED
200 #endif
201 
202 /*
203  * Ignore user specified debugging flags.
204  * Intended for caches created for self-tests so they have only flags
205  * specified in the code and other flags are ignored.
206  */
207 #define SLAB_NO_USER_FLAGS	__SLAB_FLAG_BIT(_SLAB_NO_USER_FLAGS)
208 
209 #ifdef CONFIG_KFENCE
210 #define SLAB_SKIP_KFENCE	__SLAB_FLAG_BIT(_SLAB_SKIP_KFENCE)
211 #else
212 #define SLAB_SKIP_KFENCE	__SLAB_FLAG_UNUSED
213 #endif
214 
215 /* The following flags affect the page allocator grouping pages by mobility */
216 /**
217  * define SLAB_RECLAIM_ACCOUNT - Objects are reclaimable.
218  *
219  * Use this flag for caches that have an associated shrinker. As a result, slab
220  * pages are allocated with __GFP_RECLAIMABLE, which affects grouping pages by
221  * mobility, and are accounted in SReclaimable counter in /proc/meminfo
222  */
223 #ifndef CONFIG_SLUB_TINY
224 #define SLAB_RECLAIM_ACCOUNT	__SLAB_FLAG_BIT(_SLAB_RECLAIM_ACCOUNT)
225 #else
226 #define SLAB_RECLAIM_ACCOUNT	__SLAB_FLAG_UNUSED
227 #endif
228 #define SLAB_TEMPORARY		SLAB_RECLAIM_ACCOUNT	/* Objects are short-lived */
229 
230 /* Slab created using create_boot_cache */
231 #ifdef CONFIG_SLAB_OBJ_EXT
232 #define SLAB_NO_OBJ_EXT		__SLAB_FLAG_BIT(_SLAB_NO_OBJ_EXT)
233 #else
234 #define SLAB_NO_OBJ_EXT		__SLAB_FLAG_UNUSED
235 #endif
236 
237 /*
238  * freeptr_t represents a SLUB freelist pointer, which might be encoded
239  * and not dereferenceable if CONFIG_SLAB_FREELIST_HARDENED is enabled.
240  */
241 typedef struct { unsigned long v; } freeptr_t;
242 
243 /*
244  * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
245  *
246  * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
247  *
248  * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
249  * Both make kfree a no-op.
250  */
251 #define ZERO_SIZE_PTR ((void *)16)
252 
253 #define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
254 				(unsigned long)ZERO_SIZE_PTR)
255 
256 #include <linux/kasan.h>
257 
258 struct list_lru;
259 struct mem_cgroup;
260 /*
261  * struct kmem_cache related prototypes
262  */
263 bool slab_is_available(void);
264 
265 /**
266  * struct kmem_cache_args - Less common arguments for kmem_cache_create()
267  *
268  * Any uninitialized fields of the structure are interpreted as unused. The
269  * exception is @freeptr_offset where %0 is a valid value, so
270  * @use_freeptr_offset must be also set to %true in order to interpret the field
271  * as used. For @useroffset %0 is also valid, but only with non-%0
272  * @usersize.
273  *
274  * When %NULL args is passed to kmem_cache_create(), it is equivalent to all
275  * fields unused.
276  */
277 struct kmem_cache_args {
278 	/**
279 	 * @align: The required alignment for the objects.
280 	 *
281 	 * %0 means no specific alignment is requested.
282 	 */
283 	unsigned int align;
284 	/**
285 	 * @useroffset: Usercopy region offset.
286 	 *
287 	 * %0 is a valid offset, when @usersize is non-%0
288 	 */
289 	unsigned int useroffset;
290 	/**
291 	 * @usersize: Usercopy region size.
292 	 *
293 	 * %0 means no usercopy region is specified.
294 	 */
295 	unsigned int usersize;
296 	/**
297 	 * @freeptr_offset: Custom offset for the free pointer
298 	 * in &SLAB_TYPESAFE_BY_RCU caches
299 	 *
300 	 * By default &SLAB_TYPESAFE_BY_RCU caches place the free pointer
301 	 * outside of the object. This might cause the object to grow in size.
302 	 * Cache creators that have a reason to avoid this can specify a custom
303 	 * free pointer offset in their struct where the free pointer will be
304 	 * placed.
305 	 *
306 	 * Note that placing the free pointer inside the object requires the
307 	 * caller to ensure that no fields are invalidated that are required to
308 	 * guard against object recycling (See &SLAB_TYPESAFE_BY_RCU for
309 	 * details).
310 	 *
311 	 * Using %0 as a value for @freeptr_offset is valid. If @freeptr_offset
312 	 * is specified, %use_freeptr_offset must be set %true.
313 	 *
314 	 * Note that @ctor currently isn't supported with custom free pointers
315 	 * as a @ctor requires an external free pointer.
316 	 */
317 	unsigned int freeptr_offset;
318 	/**
319 	 * @use_freeptr_offset: Whether a @freeptr_offset is used.
320 	 */
321 	bool use_freeptr_offset;
322 	/**
323 	 * @ctor: A constructor for the objects.
324 	 *
325 	 * The constructor is invoked for each object in a newly allocated slab
326 	 * page. It is the cache user's responsibility to free object in the
327 	 * same state as after calling the constructor, or deal appropriately
328 	 * with any differences between a freshly constructed and a reallocated
329 	 * object.
330 	 *
331 	 * %NULL means no constructor.
332 	 */
333 	void (*ctor)(void *);
334 };
335 
336 struct kmem_cache *__kmem_cache_create_args(const char *name,
337 					    unsigned int object_size,
338 					    struct kmem_cache_args *args,
339 					    slab_flags_t flags);
340 static inline struct kmem_cache *
__kmem_cache_create(const char * name,unsigned int size,unsigned int align,slab_flags_t flags,void (* ctor)(void *))341 __kmem_cache_create(const char *name, unsigned int size, unsigned int align,
342 		    slab_flags_t flags, void (*ctor)(void *))
343 {
344 	struct kmem_cache_args kmem_args = {
345 		.align	= align,
346 		.ctor	= ctor,
347 	};
348 
349 	return __kmem_cache_create_args(name, size, &kmem_args, flags);
350 }
351 
352 /**
353  * kmem_cache_create_usercopy - Create a kmem cache with a region suitable
354  * for copying to userspace.
355  * @name: A string which is used in /proc/slabinfo to identify this cache.
356  * @size: The size of objects to be created in this cache.
357  * @align: The required alignment for the objects.
358  * @flags: SLAB flags
359  * @useroffset: Usercopy region offset
360  * @usersize: Usercopy region size
361  * @ctor: A constructor for the objects, or %NULL.
362  *
363  * This is a legacy wrapper, new code should use either KMEM_CACHE_USERCOPY()
364  * if whitelisting a single field is sufficient, or kmem_cache_create() with
365  * the necessary parameters passed via the args parameter (see
366  * &struct kmem_cache_args)
367  *
368  * Return: a pointer to the cache on success, NULL on failure.
369  */
370 static inline struct kmem_cache *
kmem_cache_create_usercopy(const char * name,unsigned int size,unsigned int align,slab_flags_t flags,unsigned int useroffset,unsigned int usersize,void (* ctor)(void *))371 kmem_cache_create_usercopy(const char *name, unsigned int size,
372 			   unsigned int align, slab_flags_t flags,
373 			   unsigned int useroffset, unsigned int usersize,
374 			   void (*ctor)(void *))
375 {
376 	struct kmem_cache_args kmem_args = {
377 		.align		= align,
378 		.ctor		= ctor,
379 		.useroffset	= useroffset,
380 		.usersize	= usersize,
381 	};
382 
383 	return __kmem_cache_create_args(name, size, &kmem_args, flags);
384 }
385 
386 /* If NULL is passed for @args, use this variant with default arguments. */
387 static inline struct kmem_cache *
__kmem_cache_default_args(const char * name,unsigned int size,struct kmem_cache_args * args,slab_flags_t flags)388 __kmem_cache_default_args(const char *name, unsigned int size,
389 			  struct kmem_cache_args *args,
390 			  slab_flags_t flags)
391 {
392 	struct kmem_cache_args kmem_default_args = {};
393 
394 	/* Make sure we don't get passed garbage. */
395 	if (WARN_ON_ONCE(args))
396 		return ERR_PTR(-EINVAL);
397 
398 	return __kmem_cache_create_args(name, size, &kmem_default_args, flags);
399 }
400 
401 /**
402  * kmem_cache_create - Create a kmem cache.
403  * @__name: A string which is used in /proc/slabinfo to identify this cache.
404  * @__object_size: The size of objects to be created in this cache.
405  * @__args: Optional arguments, see &struct kmem_cache_args. Passing %NULL
406  *	    means defaults will be used for all the arguments.
407  *
408  * This is currently implemented as a macro using ``_Generic()`` to call
409  * either the new variant of the function, or a legacy one.
410  *
411  * The new variant has 4 parameters:
412  * ``kmem_cache_create(name, object_size, args, flags)``
413  *
414  * See __kmem_cache_create_args() which implements this.
415  *
416  * The legacy variant has 5 parameters:
417  * ``kmem_cache_create(name, object_size, align, flags, ctor)``
418  *
419  * The align and ctor parameters map to the respective fields of
420  * &struct kmem_cache_args
421  *
422  * Context: Cannot be called within a interrupt, but can be interrupted.
423  *
424  * Return: a pointer to the cache on success, NULL on failure.
425  */
426 #define kmem_cache_create(__name, __object_size, __args, ...)           \
427 	_Generic((__args),                                              \
428 		struct kmem_cache_args *: __kmem_cache_create_args,	\
429 		void *: __kmem_cache_default_args,			\
430 		default: __kmem_cache_create)(__name, __object_size, __args, __VA_ARGS__)
431 
432 void kmem_cache_destroy(struct kmem_cache *s);
433 int kmem_cache_shrink(struct kmem_cache *s);
434 
435 /*
436  * Please use this macro to create slab caches. Simply specify the
437  * name of the structure and maybe some flags that are listed above.
438  *
439  * The alignment of the struct determines object alignment. If you
440  * f.e. add ____cacheline_aligned_in_smp to the struct declaration
441  * then the objects will be properly aligned in SMP configurations.
442  */
443 #define KMEM_CACHE(__struct, __flags)                                   \
444 	__kmem_cache_create_args(#__struct, sizeof(struct __struct),    \
445 			&(struct kmem_cache_args) {			\
446 				.align	= __alignof__(struct __struct), \
447 			}, (__flags))
448 
449 /*
450  * To whitelist a single field for copying to/from usercopy, use this
451  * macro instead for KMEM_CACHE() above.
452  */
453 #define KMEM_CACHE_USERCOPY(__struct, __flags, __field)						\
454 	__kmem_cache_create_args(#__struct, sizeof(struct __struct),				\
455 			&(struct kmem_cache_args) {						\
456 				.align		= __alignof__(struct __struct),			\
457 				.useroffset	= offsetof(struct __struct, __field),		\
458 				.usersize	= sizeof_field(struct __struct, __field),	\
459 			}, (__flags))
460 
461 /*
462  * Common kmalloc functions provided by all allocators
463  */
464 void * __must_check krealloc_noprof(const void *objp, size_t new_size,
465 				    gfp_t flags) __realloc_size(2);
466 #define krealloc(...)				alloc_hooks(krealloc_noprof(__VA_ARGS__))
467 
468 void kfree(const void *objp);
469 void kfree_sensitive(const void *objp);
470 size_t __ksize(const void *objp);
471 
472 DEFINE_FREE(kfree, void *, if (!IS_ERR_OR_NULL(_T)) kfree(_T))
473 DEFINE_FREE(kfree_sensitive, void *, if (_T) kfree_sensitive(_T))
474 
475 /**
476  * ksize - Report actual allocation size of associated object
477  *
478  * @objp: Pointer returned from a prior kmalloc()-family allocation.
479  *
480  * This should not be used for writing beyond the originally requested
481  * allocation size. Either use krealloc() or round up the allocation size
482  * with kmalloc_size_roundup() prior to allocation. If this is used to
483  * access beyond the originally requested allocation size, UBSAN_BOUNDS
484  * and/or FORTIFY_SOURCE may trip, since they only know about the
485  * originally allocated size via the __alloc_size attribute.
486  */
487 size_t ksize(const void *objp);
488 
489 #ifdef CONFIG_PRINTK
490 bool kmem_dump_obj(void *object);
491 #else
kmem_dump_obj(void * object)492 static inline bool kmem_dump_obj(void *object) { return false; }
493 #endif
494 
495 /*
496  * Some archs want to perform DMA into kmalloc caches and need a guaranteed
497  * alignment larger than the alignment of a 64-bit integer.
498  * Setting ARCH_DMA_MINALIGN in arch headers allows that.
499  */
500 #ifdef ARCH_HAS_DMA_MINALIGN
501 #if ARCH_DMA_MINALIGN > 8 && !defined(ARCH_KMALLOC_MINALIGN)
502 #define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
503 #endif
504 #endif
505 
506 #ifndef ARCH_KMALLOC_MINALIGN
507 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
508 #elif ARCH_KMALLOC_MINALIGN > 8
509 #define KMALLOC_MIN_SIZE ARCH_KMALLOC_MINALIGN
510 #define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE)
511 #endif
512 
513 /*
514  * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
515  * Intended for arches that get misalignment faults even for 64 bit integer
516  * aligned buffers.
517  */
518 #ifndef ARCH_SLAB_MINALIGN
519 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
520 #endif
521 
522 /*
523  * Arches can define this function if they want to decide the minimum slab
524  * alignment at runtime. The value returned by the function must be a power
525  * of two and >= ARCH_SLAB_MINALIGN.
526  */
527 #ifndef arch_slab_minalign
arch_slab_minalign(void)528 static inline unsigned int arch_slab_minalign(void)
529 {
530 	return ARCH_SLAB_MINALIGN;
531 }
532 #endif
533 
534 /*
535  * kmem_cache_alloc and friends return pointers aligned to ARCH_SLAB_MINALIGN.
536  * kmalloc and friends return pointers aligned to both ARCH_KMALLOC_MINALIGN
537  * and ARCH_SLAB_MINALIGN, but here we only assume the former alignment.
538  */
539 #define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN)
540 #define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN)
541 #define __assume_page_alignment __assume_aligned(PAGE_SIZE)
542 
543 /*
544  * Kmalloc array related definitions
545  */
546 
547 /*
548  * SLUB directly allocates requests fitting in to an order-1 page
549  * (PAGE_SIZE*2).  Larger requests are passed to the page allocator.
550  */
551 #define KMALLOC_SHIFT_HIGH	(PAGE_SHIFT + 1)
552 #define KMALLOC_SHIFT_MAX	(MAX_PAGE_ORDER + PAGE_SHIFT)
553 #ifndef KMALLOC_SHIFT_LOW
554 #define KMALLOC_SHIFT_LOW	3
555 #endif
556 
557 /* Maximum allocatable size */
558 #define KMALLOC_MAX_SIZE	(1UL << KMALLOC_SHIFT_MAX)
559 /* Maximum size for which we actually use a slab cache */
560 #define KMALLOC_MAX_CACHE_SIZE	(1UL << KMALLOC_SHIFT_HIGH)
561 /* Maximum order allocatable via the slab allocator */
562 #define KMALLOC_MAX_ORDER	(KMALLOC_SHIFT_MAX - PAGE_SHIFT)
563 
564 /*
565  * Kmalloc subsystem.
566  */
567 #ifndef KMALLOC_MIN_SIZE
568 #define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
569 #endif
570 
571 /*
572  * This restriction comes from byte sized index implementation.
573  * Page size is normally 2^12 bytes and, in this case, if we want to use
574  * byte sized index which can represent 2^8 entries, the size of the object
575  * should be equal or greater to 2^12 / 2^8 = 2^4 = 16.
576  * If minimum size of kmalloc is less than 16, we use it as minimum object
577  * size and give up to use byte sized index.
578  */
579 #define SLAB_OBJ_MIN_SIZE      (KMALLOC_MIN_SIZE < 16 ? \
580                                (KMALLOC_MIN_SIZE) : 16)
581 
582 #ifdef CONFIG_RANDOM_KMALLOC_CACHES
583 #define RANDOM_KMALLOC_CACHES_NR	15 // # of cache copies
584 #else
585 #define RANDOM_KMALLOC_CACHES_NR	0
586 #endif
587 
588 /*
589  * Whenever changing this, take care of that kmalloc_type() and
590  * create_kmalloc_caches() still work as intended.
591  *
592  * KMALLOC_NORMAL can contain only unaccounted objects whereas KMALLOC_CGROUP
593  * is for accounted but unreclaimable and non-dma objects. All the other
594  * kmem caches can have both accounted and unaccounted objects.
595  */
596 enum kmalloc_cache_type {
597 	KMALLOC_NORMAL = 0,
598 #ifndef CONFIG_ZONE_DMA
599 	KMALLOC_DMA = KMALLOC_NORMAL,
600 #endif
601 #ifndef CONFIG_MEMCG
602 	KMALLOC_CGROUP = KMALLOC_NORMAL,
603 #endif
604 	KMALLOC_RANDOM_START = KMALLOC_NORMAL,
605 	KMALLOC_RANDOM_END = KMALLOC_RANDOM_START + RANDOM_KMALLOC_CACHES_NR,
606 #ifdef CONFIG_SLUB_TINY
607 	KMALLOC_RECLAIM = KMALLOC_NORMAL,
608 #else
609 	KMALLOC_RECLAIM,
610 #endif
611 #ifdef CONFIG_ZONE_DMA
612 	KMALLOC_DMA,
613 #endif
614 #ifdef CONFIG_MEMCG
615 	KMALLOC_CGROUP,
616 #endif
617 	NR_KMALLOC_TYPES
618 };
619 
620 typedef struct kmem_cache * kmem_buckets[KMALLOC_SHIFT_HIGH + 1];
621 
622 extern kmem_buckets kmalloc_caches[NR_KMALLOC_TYPES];
623 
624 /*
625  * Define gfp bits that should not be set for KMALLOC_NORMAL.
626  */
627 #define KMALLOC_NOT_NORMAL_BITS					\
628 	(__GFP_RECLAIMABLE |					\
629 	(IS_ENABLED(CONFIG_ZONE_DMA)   ? __GFP_DMA : 0) |	\
630 	(IS_ENABLED(CONFIG_MEMCG) ? __GFP_ACCOUNT : 0))
631 
632 extern unsigned long random_kmalloc_seed;
633 
kmalloc_type(gfp_t flags,unsigned long caller)634 static __always_inline enum kmalloc_cache_type kmalloc_type(gfp_t flags, unsigned long caller)
635 {
636 	/*
637 	 * The most common case is KMALLOC_NORMAL, so test for it
638 	 * with a single branch for all the relevant flags.
639 	 */
640 	if (likely((flags & KMALLOC_NOT_NORMAL_BITS) == 0))
641 #ifdef CONFIG_RANDOM_KMALLOC_CACHES
642 		/* RANDOM_KMALLOC_CACHES_NR (=15) copies + the KMALLOC_NORMAL */
643 		return KMALLOC_RANDOM_START + hash_64(caller ^ random_kmalloc_seed,
644 						      ilog2(RANDOM_KMALLOC_CACHES_NR + 1));
645 #else
646 		return KMALLOC_NORMAL;
647 #endif
648 
649 	/*
650 	 * At least one of the flags has to be set. Their priorities in
651 	 * decreasing order are:
652 	 *  1) __GFP_DMA
653 	 *  2) __GFP_RECLAIMABLE
654 	 *  3) __GFP_ACCOUNT
655 	 */
656 	if (IS_ENABLED(CONFIG_ZONE_DMA) && (flags & __GFP_DMA))
657 		return KMALLOC_DMA;
658 	if (!IS_ENABLED(CONFIG_MEMCG) || (flags & __GFP_RECLAIMABLE))
659 		return KMALLOC_RECLAIM;
660 	else
661 		return KMALLOC_CGROUP;
662 }
663 
664 /*
665  * Figure out which kmalloc slab an allocation of a certain size
666  * belongs to.
667  * 0 = zero alloc
668  * 1 =  65 .. 96 bytes
669  * 2 = 129 .. 192 bytes
670  * n = 2^(n-1)+1 .. 2^n
671  *
672  * Note: __kmalloc_index() is compile-time optimized, and not runtime optimized;
673  * typical usage is via kmalloc_index() and therefore evaluated at compile-time.
674  * Callers where !size_is_constant should only be test modules, where runtime
675  * overheads of __kmalloc_index() can be tolerated.  Also see kmalloc_slab().
676  */
__kmalloc_index(size_t size,bool size_is_constant)677 static __always_inline unsigned int __kmalloc_index(size_t size,
678 						    bool size_is_constant)
679 {
680 	if (!size)
681 		return 0;
682 
683 	if (size <= KMALLOC_MIN_SIZE)
684 		return KMALLOC_SHIFT_LOW;
685 
686 	if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
687 		return 1;
688 	if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
689 		return 2;
690 	if (size <=          8) return 3;
691 	if (size <=         16) return 4;
692 	if (size <=         32) return 5;
693 	if (size <=         64) return 6;
694 	if (size <=        128) return 7;
695 	if (size <=        256) return 8;
696 	if (size <=        512) return 9;
697 	if (size <=       1024) return 10;
698 	if (size <=   2 * 1024) return 11;
699 	if (size <=   4 * 1024) return 12;
700 	if (size <=   8 * 1024) return 13;
701 	if (size <=  16 * 1024) return 14;
702 	if (size <=  32 * 1024) return 15;
703 	if (size <=  64 * 1024) return 16;
704 	if (size <= 128 * 1024) return 17;
705 	if (size <= 256 * 1024) return 18;
706 	if (size <= 512 * 1024) return 19;
707 	if (size <= 1024 * 1024) return 20;
708 	if (size <=  2 * 1024 * 1024) return 21;
709 
710 	if (!IS_ENABLED(CONFIG_PROFILE_ALL_BRANCHES) && size_is_constant)
711 		BUILD_BUG_ON_MSG(1, "unexpected size in kmalloc_index()");
712 	else
713 		BUG();
714 
715 	/* Will never be reached. Needed because the compiler may complain */
716 	return -1;
717 }
718 static_assert(PAGE_SHIFT <= 20);
719 #define kmalloc_index(s) __kmalloc_index(s, true)
720 
721 #include <linux/alloc_tag.h>
722 
723 /**
724  * kmem_cache_alloc - Allocate an object
725  * @cachep: The cache to allocate from.
726  * @flags: See kmalloc().
727  *
728  * Allocate an object from this cache.
729  * See kmem_cache_zalloc() for a shortcut of adding __GFP_ZERO to flags.
730  *
731  * Return: pointer to the new object or %NULL in case of error
732  */
733 void *kmem_cache_alloc_noprof(struct kmem_cache *cachep,
734 			      gfp_t flags) __assume_slab_alignment __malloc;
735 #define kmem_cache_alloc(...)			alloc_hooks(kmem_cache_alloc_noprof(__VA_ARGS__))
736 
737 void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru,
738 			    gfp_t gfpflags) __assume_slab_alignment __malloc;
739 #define kmem_cache_alloc_lru(...)	alloc_hooks(kmem_cache_alloc_lru_noprof(__VA_ARGS__))
740 
741 /**
742  * kmem_cache_charge - memcg charge an already allocated slab memory
743  * @objp: address of the slab object to memcg charge
744  * @gfpflags: describe the allocation context
745  *
746  * kmem_cache_charge allows charging a slab object to the current memcg,
747  * primarily in cases where charging at allocation time might not be possible
748  * because the target memcg is not known (i.e. softirq context)
749  *
750  * The objp should be pointer returned by the slab allocator functions like
751  * kmalloc (with __GFP_ACCOUNT in flags) or kmem_cache_alloc. The memcg charge
752  * behavior can be controlled through gfpflags parameter, which affects how the
753  * necessary internal metadata can be allocated. Including __GFP_NOFAIL denotes
754  * that overcharging is requested instead of failure, but is not applied for the
755  * internal metadata allocation.
756  *
757  * There are several cases where it will return true even if the charging was
758  * not done:
759  * More specifically:
760  *
761  * 1. For !CONFIG_MEMCG or cgroup_disable=memory systems.
762  * 2. Already charged slab objects.
763  * 3. For slab objects from KMALLOC_NORMAL caches - allocated by kmalloc()
764  *    without __GFP_ACCOUNT
765  * 4. Allocating internal metadata has failed
766  *
767  * Return: true if charge was successful otherwise false.
768  */
769 bool kmem_cache_charge(void *objp, gfp_t gfpflags);
770 void kmem_cache_free(struct kmem_cache *s, void *objp);
771 
772 kmem_buckets *kmem_buckets_create(const char *name, slab_flags_t flags,
773 				  unsigned int useroffset, unsigned int usersize,
774 				  void (*ctor)(void *));
775 
776 /*
777  * Bulk allocation and freeing operations. These are accelerated in an
778  * allocator specific way to avoid taking locks repeatedly or building
779  * metadata structures unnecessarily.
780  *
781  * Note that interrupts must be enabled when calling these functions.
782  */
783 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p);
784 
785 int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size, void **p);
786 #define kmem_cache_alloc_bulk(...)	alloc_hooks(kmem_cache_alloc_bulk_noprof(__VA_ARGS__))
787 
kfree_bulk(size_t size,void ** p)788 static __always_inline void kfree_bulk(size_t size, void **p)
789 {
790 	kmem_cache_free_bulk(NULL, size, p);
791 }
792 
793 void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t flags,
794 				   int node) __assume_slab_alignment __malloc;
795 #define kmem_cache_alloc_node(...)	alloc_hooks(kmem_cache_alloc_node_noprof(__VA_ARGS__))
796 
797 /*
798  * These macros allow declaring a kmem_buckets * parameter alongside size, which
799  * can be compiled out with CONFIG_SLAB_BUCKETS=n so that a large number of call
800  * sites don't have to pass NULL.
801  */
802 #ifdef CONFIG_SLAB_BUCKETS
803 #define DECL_BUCKET_PARAMS(_size, _b)	size_t (_size), kmem_buckets *(_b)
804 #define PASS_BUCKET_PARAMS(_size, _b)	(_size), (_b)
805 #define PASS_BUCKET_PARAM(_b)		(_b)
806 #else
807 #define DECL_BUCKET_PARAMS(_size, _b)	size_t (_size)
808 #define PASS_BUCKET_PARAMS(_size, _b)	(_size)
809 #define PASS_BUCKET_PARAM(_b)		NULL
810 #endif
811 
812 /*
813  * The following functions are not to be used directly and are intended only
814  * for internal use from kmalloc() and kmalloc_node()
815  * with the exception of kunit tests
816  */
817 
818 void *__kmalloc_noprof(size_t size, gfp_t flags)
819 				__assume_kmalloc_alignment __alloc_size(1);
820 
821 void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node)
822 				__assume_kmalloc_alignment __alloc_size(1);
823 
824 void *__kmalloc_cache_noprof(struct kmem_cache *s, gfp_t flags, size_t size)
825 				__assume_kmalloc_alignment __alloc_size(3);
826 
827 void *__kmalloc_cache_node_noprof(struct kmem_cache *s, gfp_t gfpflags,
828 				  int node, size_t size)
829 				__assume_kmalloc_alignment __alloc_size(4);
830 
831 void *__kmalloc_large_noprof(size_t size, gfp_t flags)
832 				__assume_page_alignment __alloc_size(1);
833 
834 void *__kmalloc_large_node_noprof(size_t size, gfp_t flags, int node)
835 				__assume_page_alignment __alloc_size(1);
836 
837 /**
838  * kmalloc - allocate kernel memory
839  * @size: how many bytes of memory are required.
840  * @flags: describe the allocation context
841  *
842  * kmalloc is the normal method of allocating memory
843  * for objects smaller than page size in the kernel.
844  *
845  * The allocated object address is aligned to at least ARCH_KMALLOC_MINALIGN
846  * bytes. For @size of power of two bytes, the alignment is also guaranteed
847  * to be at least to the size. For other sizes, the alignment is guaranteed to
848  * be at least the largest power-of-two divisor of @size.
849  *
850  * The @flags argument may be one of the GFP flags defined at
851  * include/linux/gfp_types.h and described at
852  * :ref:`Documentation/core-api/mm-api.rst <mm-api-gfp-flags>`
853  *
854  * The recommended usage of the @flags is described at
855  * :ref:`Documentation/core-api/memory-allocation.rst <memory_allocation>`
856  *
857  * Below is a brief outline of the most useful GFP flags
858  *
859  * %GFP_KERNEL
860  *	Allocate normal kernel ram. May sleep.
861  *
862  * %GFP_NOWAIT
863  *	Allocation will not sleep.
864  *
865  * %GFP_ATOMIC
866  *	Allocation will not sleep.  May use emergency pools.
867  *
868  * Also it is possible to set different flags by OR'ing
869  * in one or more of the following additional @flags:
870  *
871  * %__GFP_ZERO
872  *	Zero the allocated memory before returning. Also see kzalloc().
873  *
874  * %__GFP_HIGH
875  *	This allocation has high priority and may use emergency pools.
876  *
877  * %__GFP_NOFAIL
878  *	Indicate that this allocation is in no way allowed to fail
879  *	(think twice before using).
880  *
881  * %__GFP_NORETRY
882  *	If memory is not immediately available,
883  *	then give up at once.
884  *
885  * %__GFP_NOWARN
886  *	If allocation fails, don't issue any warnings.
887  *
888  * %__GFP_RETRY_MAYFAIL
889  *	Try really hard to succeed the allocation but fail
890  *	eventually.
891  */
kmalloc_noprof(size_t size,gfp_t flags)892 static __always_inline __alloc_size(1) void *kmalloc_noprof(size_t size, gfp_t flags)
893 {
894 	if (__builtin_constant_p(size) && size) {
895 		unsigned int index;
896 
897 		if (size > KMALLOC_MAX_CACHE_SIZE)
898 			return __kmalloc_large_noprof(size, flags);
899 
900 		index = kmalloc_index(size);
901 		return __kmalloc_cache_noprof(
902 				kmalloc_caches[kmalloc_type(flags, _RET_IP_)][index],
903 				flags, size);
904 	}
905 	return __kmalloc_noprof(size, flags);
906 }
907 #define kmalloc(...)				alloc_hooks(kmalloc_noprof(__VA_ARGS__))
908 
909 #define kmem_buckets_alloc(_b, _size, _flags)	\
910 	alloc_hooks(__kmalloc_node_noprof(PASS_BUCKET_PARAMS(_size, _b), _flags, NUMA_NO_NODE))
911 
912 #define kmem_buckets_alloc_track_caller(_b, _size, _flags)	\
913 	alloc_hooks(__kmalloc_node_track_caller_noprof(PASS_BUCKET_PARAMS(_size, _b), _flags, NUMA_NO_NODE, _RET_IP_))
914 
kmalloc_node_noprof(size_t size,gfp_t flags,int node)915 static __always_inline __alloc_size(1) void *kmalloc_node_noprof(size_t size, gfp_t flags, int node)
916 {
917 	if (__builtin_constant_p(size) && size) {
918 		unsigned int index;
919 
920 		if (size > KMALLOC_MAX_CACHE_SIZE)
921 			return __kmalloc_large_node_noprof(size, flags, node);
922 
923 		index = kmalloc_index(size);
924 		return __kmalloc_cache_node_noprof(
925 				kmalloc_caches[kmalloc_type(flags, _RET_IP_)][index],
926 				flags, node, size);
927 	}
928 	return __kmalloc_node_noprof(PASS_BUCKET_PARAMS(size, NULL), flags, node);
929 }
930 #define kmalloc_node(...)			alloc_hooks(kmalloc_node_noprof(__VA_ARGS__))
931 
932 /**
933  * kmalloc_array - allocate memory for an array.
934  * @n: number of elements.
935  * @size: element size.
936  * @flags: the type of memory to allocate (see kmalloc).
937  */
kmalloc_array_noprof(size_t n,size_t size,gfp_t flags)938 static inline __alloc_size(1, 2) void *kmalloc_array_noprof(size_t n, size_t size, gfp_t flags)
939 {
940 	size_t bytes;
941 
942 	if (unlikely(check_mul_overflow(n, size, &bytes)))
943 		return NULL;
944 	if (__builtin_constant_p(n) && __builtin_constant_p(size))
945 		return kmalloc_noprof(bytes, flags);
946 	return kmalloc_noprof(bytes, flags);
947 }
948 #define kmalloc_array(...)			alloc_hooks(kmalloc_array_noprof(__VA_ARGS__))
949 
950 /**
951  * krealloc_array - reallocate memory for an array.
952  * @p: pointer to the memory chunk to reallocate
953  * @new_n: new number of elements to alloc
954  * @new_size: new size of a single member of the array
955  * @flags: the type of memory to allocate (see kmalloc)
956  *
957  * If __GFP_ZERO logic is requested, callers must ensure that, starting with the
958  * initial memory allocation, every subsequent call to this API for the same
959  * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that
960  * __GFP_ZERO is not fully honored by this API.
961  *
962  * See krealloc_noprof() for further details.
963  *
964  * In any case, the contents of the object pointed to are preserved up to the
965  * lesser of the new and old sizes.
966  */
krealloc_array_noprof(void * p,size_t new_n,size_t new_size,gfp_t flags)967 static inline __realloc_size(2, 3) void * __must_check krealloc_array_noprof(void *p,
968 								       size_t new_n,
969 								       size_t new_size,
970 								       gfp_t flags)
971 {
972 	size_t bytes;
973 
974 	if (unlikely(check_mul_overflow(new_n, new_size, &bytes)))
975 		return NULL;
976 
977 	return krealloc_noprof(p, bytes, flags);
978 }
979 #define krealloc_array(...)			alloc_hooks(krealloc_array_noprof(__VA_ARGS__))
980 
981 /**
982  * kcalloc - allocate memory for an array. The memory is set to zero.
983  * @n: number of elements.
984  * @size: element size.
985  * @flags: the type of memory to allocate (see kmalloc).
986  */
987 #define kcalloc(n, size, flags)		kmalloc_array(n, size, (flags) | __GFP_ZERO)
988 
989 void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node,
990 					 unsigned long caller) __alloc_size(1);
991 #define kmalloc_node_track_caller_noprof(size, flags, node, caller) \
992 	__kmalloc_node_track_caller_noprof(PASS_BUCKET_PARAMS(size, NULL), flags, node, caller)
993 #define kmalloc_node_track_caller(...)		\
994 	alloc_hooks(kmalloc_node_track_caller_noprof(__VA_ARGS__, _RET_IP_))
995 
996 /*
997  * kmalloc_track_caller is a special version of kmalloc that records the
998  * calling function of the routine calling it for slab leak tracking instead
999  * of just the calling function (confusing, eh?).
1000  * It's useful when the call to kmalloc comes from a widely-used standard
1001  * allocator where we care about the real place the memory allocation
1002  * request comes from.
1003  */
1004 #define kmalloc_track_caller(...)		kmalloc_node_track_caller(__VA_ARGS__, NUMA_NO_NODE)
1005 
1006 #define kmalloc_track_caller_noprof(...)	\
1007 		kmalloc_node_track_caller_noprof(__VA_ARGS__, NUMA_NO_NODE, _RET_IP_)
1008 
kmalloc_array_node_noprof(size_t n,size_t size,gfp_t flags,int node)1009 static inline __alloc_size(1, 2) void *kmalloc_array_node_noprof(size_t n, size_t size, gfp_t flags,
1010 							  int node)
1011 {
1012 	size_t bytes;
1013 
1014 	if (unlikely(check_mul_overflow(n, size, &bytes)))
1015 		return NULL;
1016 	if (__builtin_constant_p(n) && __builtin_constant_p(size))
1017 		return kmalloc_node_noprof(bytes, flags, node);
1018 	return __kmalloc_node_noprof(PASS_BUCKET_PARAMS(bytes, NULL), flags, node);
1019 }
1020 #define kmalloc_array_node(...)			alloc_hooks(kmalloc_array_node_noprof(__VA_ARGS__))
1021 
1022 #define kcalloc_node(_n, _size, _flags, _node)	\
1023 	kmalloc_array_node(_n, _size, (_flags) | __GFP_ZERO, _node)
1024 
1025 /*
1026  * Shortcuts
1027  */
1028 #define kmem_cache_zalloc(_k, _flags)		kmem_cache_alloc(_k, (_flags)|__GFP_ZERO)
1029 
1030 /**
1031  * kzalloc - allocate memory. The memory is set to zero.
1032  * @size: how many bytes of memory are required.
1033  * @flags: the type of memory to allocate (see kmalloc).
1034  */
kzalloc_noprof(size_t size,gfp_t flags)1035 static inline __alloc_size(1) void *kzalloc_noprof(size_t size, gfp_t flags)
1036 {
1037 	return kmalloc_noprof(size, flags | __GFP_ZERO);
1038 }
1039 #define kzalloc(...)				alloc_hooks(kzalloc_noprof(__VA_ARGS__))
1040 #define kzalloc_node(_size, _flags, _node)	kmalloc_node(_size, (_flags)|__GFP_ZERO, _node)
1041 
1042 void *__kvmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node) __alloc_size(1);
1043 #define kvmalloc_node_noprof(size, flags, node)	\
1044 	__kvmalloc_node_noprof(PASS_BUCKET_PARAMS(size, NULL), flags, node)
1045 #define kvmalloc_node(...)			alloc_hooks(kvmalloc_node_noprof(__VA_ARGS__))
1046 
1047 #define kvmalloc(_size, _flags)			kvmalloc_node(_size, _flags, NUMA_NO_NODE)
1048 #define kvmalloc_noprof(_size, _flags)		kvmalloc_node_noprof(_size, _flags, NUMA_NO_NODE)
1049 #define kvzalloc(_size, _flags)			kvmalloc(_size, (_flags)|__GFP_ZERO)
1050 
1051 #define kvzalloc_node(_size, _flags, _node)	kvmalloc_node(_size, (_flags)|__GFP_ZERO, _node)
1052 #define kmem_buckets_valloc(_b, _size, _flags)	\
1053 	alloc_hooks(__kvmalloc_node_noprof(PASS_BUCKET_PARAMS(_size, _b), _flags, NUMA_NO_NODE))
1054 
1055 static inline __alloc_size(1, 2) void *
kvmalloc_array_node_noprof(size_t n,size_t size,gfp_t flags,int node)1056 kvmalloc_array_node_noprof(size_t n, size_t size, gfp_t flags, int node)
1057 {
1058 	size_t bytes;
1059 
1060 	if (unlikely(check_mul_overflow(n, size, &bytes)))
1061 		return NULL;
1062 
1063 	return kvmalloc_node_noprof(bytes, flags, node);
1064 }
1065 
1066 #define kvmalloc_array_noprof(...)		kvmalloc_array_node_noprof(__VA_ARGS__, NUMA_NO_NODE)
1067 #define kvcalloc_node_noprof(_n,_s,_f,_node)	kvmalloc_array_node_noprof(_n,_s,(_f)|__GFP_ZERO,_node)
1068 #define kvcalloc_noprof(...)			kvcalloc_node_noprof(__VA_ARGS__, NUMA_NO_NODE)
1069 
1070 #define kvmalloc_array(...)			alloc_hooks(kvmalloc_array_noprof(__VA_ARGS__))
1071 #define kvcalloc_node(...)			alloc_hooks(kvcalloc_node_noprof(__VA_ARGS__))
1072 #define kvcalloc(...)				alloc_hooks(kvcalloc_noprof(__VA_ARGS__))
1073 
1074 void *kvrealloc_noprof(const void *p, size_t size, gfp_t flags)
1075 		__realloc_size(2);
1076 #define kvrealloc(...)				alloc_hooks(kvrealloc_noprof(__VA_ARGS__))
1077 
1078 extern void kvfree(const void *addr);
1079 DEFINE_FREE(kvfree, void *, if (!IS_ERR_OR_NULL(_T)) kvfree(_T))
1080 
1081 extern void kvfree_sensitive(const void *addr, size_t len);
1082 
1083 unsigned int kmem_cache_size(struct kmem_cache *s);
1084 
1085 /**
1086  * kmalloc_size_roundup - Report allocation bucket size for the given size
1087  *
1088  * @size: Number of bytes to round up from.
1089  *
1090  * This returns the number of bytes that would be available in a kmalloc()
1091  * allocation of @size bytes. For example, a 126 byte request would be
1092  * rounded up to the next sized kmalloc bucket, 128 bytes. (This is strictly
1093  * for the general-purpose kmalloc()-based allocations, and is not for the
1094  * pre-sized kmem_cache_alloc()-based allocations.)
1095  *
1096  * Use this to kmalloc() the full bucket size ahead of time instead of using
1097  * ksize() to query the size after an allocation.
1098  */
1099 size_t kmalloc_size_roundup(size_t size);
1100 
1101 void __init kmem_cache_init_late(void);
1102 
1103 #endif	/* _LINUX_SLAB_H */
1104