1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) KEBA Industrial Automation Gmbh 2024
4 *
5 * Driver for KEBA I2C controller FPGA IP core
6 */
7
8 #include <linux/i2c.h>
9 #include <linux/io.h>
10 #include <linux/iopoll.h>
11 #include <linux/module.h>
12 #include <linux/misc/keba.h>
13
14 #define KI2C "i2c-keba"
15
16 #define KI2C_CAPABILITY_REG 0x02
17 #define KI2C_CAPABILITY_CRYPTO 0x01
18 #define KI2C_CAPABILITY_DC 0x02
19
20 #define KI2C_CONTROL_REG 0x04
21 #define KI2C_CONTROL_MEN 0x01
22 #define KI2C_CONTROL_MSTA 0x02
23 #define KI2C_CONTROL_RSTA 0x04
24 #define KI2C_CONTROL_MTX 0x08
25 #define KI2C_CONTROL_TXAK 0x10
26 #define KI2C_CONTROL_DISABLE 0x00
27
28 #define KI2C_CONTROL_DC_REG 0x05
29 #define KI2C_CONTROL_DC_SDA 0x01
30 #define KI2C_CONTROL_DC_SCL 0x02
31
32 #define KI2C_STATUS_REG 0x08
33 #define KI2C_STATUS_IN_USE 0x01
34 #define KI2C_STATUS_ACK_CYC 0x02
35 #define KI2C_STATUS_RXAK 0x04
36 #define KI2C_STATUS_MCF 0x08
37
38 #define KI2C_STATUS_DC_REG 0x09
39 #define KI2C_STATUS_DC_SDA 0x01
40 #define KI2C_STATUS_DC_SCL 0x02
41
42 #define KI2C_DATA_REG 0x0c
43
44 #define KI2C_INUSE_SLEEP_US (2 * USEC_PER_MSEC)
45 #define KI2C_INUSE_TIMEOUT_US (10 * USEC_PER_SEC)
46
47 #define KI2C_POLL_DELAY_US 5
48
49 struct ki2c {
50 struct keba_i2c_auxdev *auxdev;
51 void __iomem *base;
52 struct i2c_adapter adapter;
53
54 struct i2c_client **client;
55 int client_size;
56 };
57
ki2c_inuse_lock(struct ki2c * ki2c)58 static int ki2c_inuse_lock(struct ki2c *ki2c)
59 {
60 u8 sts;
61 int ret;
62
63 /*
64 * The I2C controller has an IN_USE bit for locking access to the
65 * controller. This enables the use of I2C controller by other none
66 * Linux processors.
67 *
68 * If the I2C controller is free, then the first read returns
69 * IN_USE == 0. After that the I2C controller is locked and further
70 * reads of IN_USE return 1.
71 *
72 * The I2C controller is unlocked by writing 1 into IN_USE.
73 *
74 * The IN_USE bit acts as a hardware semaphore for the I2C controller.
75 * Poll for semaphore, but sleep while polling to free the CPU.
76 */
77 ret = readb_poll_timeout(ki2c->base + KI2C_STATUS_REG,
78 sts, (sts & KI2C_STATUS_IN_USE) == 0,
79 KI2C_INUSE_SLEEP_US, KI2C_INUSE_TIMEOUT_US);
80 if (ret)
81 dev_err(&ki2c->auxdev->auxdev.dev, "%s err!\n", __func__);
82
83 return ret;
84 }
85
ki2c_inuse_unlock(struct ki2c * ki2c)86 static void ki2c_inuse_unlock(struct ki2c *ki2c)
87 {
88 /* unlock the controller by writing 1 into IN_USE */
89 iowrite8(KI2C_STATUS_IN_USE, ki2c->base + KI2C_STATUS_REG);
90 }
91
ki2c_wait_for_bit(void __iomem * addr,u8 mask,unsigned long timeout)92 static int ki2c_wait_for_bit(void __iomem *addr, u8 mask, unsigned long timeout)
93 {
94 u8 val;
95
96 return readb_poll_timeout(addr, val, (val & mask), KI2C_POLL_DELAY_US,
97 jiffies_to_usecs(timeout));
98 }
99
ki2c_wait_for_mcf(struct ki2c * ki2c)100 static int ki2c_wait_for_mcf(struct ki2c *ki2c)
101 {
102 return ki2c_wait_for_bit(ki2c->base + KI2C_STATUS_REG, KI2C_STATUS_MCF,
103 ki2c->adapter.timeout);
104 }
105
ki2c_wait_for_data(struct ki2c * ki2c)106 static int ki2c_wait_for_data(struct ki2c *ki2c)
107 {
108 int ret;
109
110 ret = ki2c_wait_for_mcf(ki2c);
111 if (ret < 0)
112 return ret;
113
114 return ki2c_wait_for_bit(ki2c->base + KI2C_STATUS_REG,
115 KI2C_STATUS_ACK_CYC,
116 ki2c->adapter.timeout);
117 }
118
ki2c_wait_for_data_ack(struct ki2c * ki2c)119 static int ki2c_wait_for_data_ack(struct ki2c *ki2c)
120 {
121 unsigned int reg;
122 int ret;
123
124 ret = ki2c_wait_for_data(ki2c);
125 if (ret < 0)
126 return ret;
127
128 /* RXAK == 0 means ACK reveived */
129 reg = ioread8(ki2c->base + KI2C_STATUS_REG);
130 if (reg & KI2C_STATUS_RXAK)
131 return -EIO;
132
133 return 0;
134 }
135
ki2c_has_capability(struct ki2c * ki2c,unsigned int cap)136 static int ki2c_has_capability(struct ki2c *ki2c, unsigned int cap)
137 {
138 unsigned int reg = ioread8(ki2c->base + KI2C_CAPABILITY_REG);
139
140 return (reg & cap) != 0;
141 }
142
ki2c_get_scl(struct ki2c * ki2c)143 static int ki2c_get_scl(struct ki2c *ki2c)
144 {
145 unsigned int reg = ioread8(ki2c->base + KI2C_STATUS_DC_REG);
146
147 /* capability KI2C_CAPABILITY_DC required */
148 return (reg & KI2C_STATUS_DC_SCL) != 0;
149 }
150
ki2c_get_sda(struct ki2c * ki2c)151 static int ki2c_get_sda(struct ki2c *ki2c)
152 {
153 unsigned int reg = ioread8(ki2c->base + KI2C_STATUS_DC_REG);
154
155 /* capability KI2C_CAPABILITY_DC required */
156 return (reg & KI2C_STATUS_DC_SDA) != 0;
157 }
158
ki2c_set_scl(struct ki2c * ki2c,int val)159 static void ki2c_set_scl(struct ki2c *ki2c, int val)
160 {
161 u8 control_dc;
162
163 /* capability KI2C_CAPABILITY_DC and KI2C_CONTROL_MEN = 0 reqired */
164 control_dc = ioread8(ki2c->base + KI2C_CONTROL_DC_REG);
165 if (val)
166 control_dc |= KI2C_CONTROL_DC_SCL;
167 else
168 control_dc &= ~KI2C_CONTROL_DC_SCL;
169 iowrite8(control_dc, ki2c->base + KI2C_CONTROL_DC_REG);
170 }
171
172 /*
173 * Resetting bus bitwise is done by checking SDA and applying clock cycles as
174 * long as SDA is low. 9 clock cycles are applied at most.
175 *
176 * Clock cycles are generated and udelay() determines the duration of clock
177 * cycles. Generated clock rate is 100 KHz and so duration of both clock levels
178 * is: delay in ns = (10^6 / 100) / 2
179 */
180 #define KI2C_RECOVERY_CLK_CNT (9 * 2)
181 #define KI2C_RECOVERY_UDELAY 5
ki2c_reset_bus_bitwise(struct ki2c * ki2c)182 static int ki2c_reset_bus_bitwise(struct ki2c *ki2c)
183 {
184 int val = 1;
185 int ret = 0;
186 int i;
187
188 /* disable I2C controller (MEN = 0) to get direct access to SCL/SDA */
189 iowrite8(0, ki2c->base + KI2C_CONTROL_REG);
190
191 /* generate clock cycles */
192 ki2c_set_scl(ki2c, val);
193 udelay(KI2C_RECOVERY_UDELAY);
194 for (i = 0; i < KI2C_RECOVERY_CLK_CNT; i++) {
195 if (val) {
196 /* SCL shouldn't be low here */
197 if (!ki2c_get_scl(ki2c)) {
198 dev_err(&ki2c->auxdev->auxdev.dev,
199 "SCL is stuck low!\n");
200 ret = -EBUSY;
201 break;
202 }
203
204 /* break if SDA is high */
205 if (ki2c_get_sda(ki2c))
206 break;
207 }
208
209 val = !val;
210 ki2c_set_scl(ki2c, val);
211 udelay(KI2C_RECOVERY_UDELAY);
212 }
213
214 if (!ki2c_get_sda(ki2c)) {
215 dev_err(&ki2c->auxdev->auxdev.dev, "SDA is still low!\n");
216 ret = -EBUSY;
217 }
218
219 /* reenable controller */
220 iowrite8(KI2C_CONTROL_MEN, ki2c->base + KI2C_CONTROL_REG);
221
222 return ret;
223 }
224
225 /*
226 * Resetting bus bytewise is done by writing start bit, 9 data bits and stop
227 * bit.
228 *
229 * This is not 100% safe. If target is an EEPROM and a write access was
230 * interrupted during the ACK cycle, this approach might not be able to recover
231 * the bus. The reason is, that after the 9 clock cycles the EEPROM will be in
232 * ACK cycle again and will hold SDA low like it did before the start of the
233 * routine. Furthermore the EEPROM might get written one additional byte with
234 * 0xff into it. Thus, use bitwise approach whenever possible, especially when
235 * EEPROMs are on the bus.
236 */
ki2c_reset_bus_bytewise(struct ki2c * ki2c)237 static int ki2c_reset_bus_bytewise(struct ki2c *ki2c)
238 {
239 int ret;
240
241 /* hold data line high for 9 clock cycles */
242 iowrite8(0xFF, ki2c->base + KI2C_DATA_REG);
243
244 /* create start condition */
245 iowrite8(KI2C_CONTROL_MEN | KI2C_CONTROL_MTX | KI2C_CONTROL_MSTA | KI2C_CONTROL_TXAK,
246 ki2c->base + KI2C_CONTROL_REG);
247 ret = ki2c_wait_for_mcf(ki2c);
248 if (ret < 0) {
249 dev_err(&ki2c->auxdev->auxdev.dev, "Start condition failed\n");
250
251 return ret;
252 }
253
254 /* create stop condition */
255 iowrite8(KI2C_CONTROL_MEN | KI2C_CONTROL_MTX | KI2C_CONTROL_TXAK,
256 ki2c->base + KI2C_CONTROL_REG);
257 ret = ki2c_wait_for_mcf(ki2c);
258 if (ret < 0)
259 dev_err(&ki2c->auxdev->auxdev.dev, "Stop condition failed\n");
260
261 return ret;
262 }
263
ki2c_reset_bus(struct ki2c * ki2c)264 static int ki2c_reset_bus(struct ki2c *ki2c)
265 {
266 int ret;
267
268 ret = ki2c_inuse_lock(ki2c);
269 if (ret < 0)
270 return ret;
271
272 /*
273 * If the I2C controller is capable of direct control of SCL/SDA, then a
274 * bitwise reset is used. Otherwise fall back to bytewise reset.
275 */
276 if (ki2c_has_capability(ki2c, KI2C_CAPABILITY_DC))
277 ret = ki2c_reset_bus_bitwise(ki2c);
278 else
279 ret = ki2c_reset_bus_bytewise(ki2c);
280
281 ki2c_inuse_unlock(ki2c);
282
283 return ret;
284 }
285
ki2c_write_target_addr(struct ki2c * ki2c,struct i2c_msg * m)286 static void ki2c_write_target_addr(struct ki2c *ki2c, struct i2c_msg *m)
287 {
288 u8 addr;
289
290 addr = m->addr << 1;
291 /* Bit 0 signals RD/WR */
292 if (m->flags & I2C_M_RD)
293 addr |= 0x01;
294
295 iowrite8(addr, ki2c->base + KI2C_DATA_REG);
296 }
297
ki2c_start_addr(struct ki2c * ki2c,struct i2c_msg * m)298 static int ki2c_start_addr(struct ki2c *ki2c, struct i2c_msg *m)
299 {
300 int ret;
301
302 /*
303 * Store target address byte in the controller. This has to be done
304 * before sending START condition.
305 */
306 ki2c_write_target_addr(ki2c, m);
307
308 /* enable controller for TX */
309 iowrite8(KI2C_CONTROL_MEN | KI2C_CONTROL_MTX,
310 ki2c->base + KI2C_CONTROL_REG);
311
312 /* send START condition and target address byte */
313 iowrite8(KI2C_CONTROL_MEN | KI2C_CONTROL_MTX | KI2C_CONTROL_MSTA,
314 ki2c->base + KI2C_CONTROL_REG);
315
316 ret = ki2c_wait_for_data_ack(ki2c);
317 if (ret < 0)
318 /*
319 * For EEPROMs this is normal behavior during internal write
320 * operation.
321 */
322 dev_dbg(&ki2c->auxdev->auxdev.dev,
323 "%s wait for ACK err at 0x%02x!\n", __func__, m->addr);
324
325 return ret;
326 }
327
ki2c_repstart_addr(struct ki2c * ki2c,struct i2c_msg * m)328 static int ki2c_repstart_addr(struct ki2c *ki2c, struct i2c_msg *m)
329 {
330 int ret;
331
332 /* repeated start and write is not supported */
333 if ((m->flags & I2C_M_RD) == 0) {
334 dev_err(&ki2c->auxdev->auxdev.dev,
335 "Repeated start not supported for writes\n");
336 return -EINVAL;
337 }
338
339 /* send repeated start */
340 iowrite8(KI2C_CONTROL_MEN | KI2C_CONTROL_MSTA | KI2C_CONTROL_RSTA,
341 ki2c->base + KI2C_CONTROL_REG);
342
343 ret = ki2c_wait_for_mcf(ki2c);
344 if (ret < 0) {
345 dev_err(&ki2c->auxdev->auxdev.dev,
346 "%s wait for MCF err at 0x%02x!\n", __func__, m->addr);
347 return ret;
348 }
349
350 /* write target-address byte */
351 ki2c_write_target_addr(ki2c, m);
352
353 ret = ki2c_wait_for_data_ack(ki2c);
354 if (ret < 0)
355 dev_err(&ki2c->auxdev->auxdev.dev,
356 "%s wait for ACK err at 0x%02x!\n", __func__, m->addr);
357
358 return ret;
359 }
360
ki2c_stop(struct ki2c * ki2c)361 static void ki2c_stop(struct ki2c *ki2c)
362 {
363 iowrite8(KI2C_CONTROL_MEN, ki2c->base + KI2C_CONTROL_REG);
364 ki2c_wait_for_mcf(ki2c);
365 }
366
ki2c_write(struct ki2c * ki2c,const u8 * data,int len)367 static int ki2c_write(struct ki2c *ki2c, const u8 *data, int len)
368 {
369 int ret;
370 int i;
371
372 for (i = 0; i < len; i++) {
373 /* write data byte */
374 iowrite8(data[i], ki2c->base + KI2C_DATA_REG);
375
376 ret = ki2c_wait_for_data_ack(ki2c);
377 if (ret < 0)
378 return ret;
379 }
380
381 return 0;
382 }
383
ki2c_read(struct ki2c * ki2c,u8 * data,int len)384 static int ki2c_read(struct ki2c *ki2c, u8 *data, int len)
385 {
386 u8 control;
387 int ret;
388 int i;
389
390 if (len == 0)
391 return 0; /* nothing to do */
392
393 control = KI2C_CONTROL_MEN | KI2C_CONTROL_MSTA;
394
395 /* if just one byte => send tx-nack after transfer */
396 if (len == 1)
397 control |= KI2C_CONTROL_TXAK;
398
399 iowrite8(control, ki2c->base + KI2C_CONTROL_REG);
400
401 /* dummy read to start transfer on bus */
402 ioread8(ki2c->base + KI2C_DATA_REG);
403
404 for (i = 0; i < len; i++) {
405 ret = ki2c_wait_for_data(ki2c);
406 if (ret < 0)
407 return ret;
408
409 if (i == len - 2)
410 /* send tx-nack after transfer of last byte */
411 iowrite8(KI2C_CONTROL_MEN | KI2C_CONTROL_MSTA | KI2C_CONTROL_TXAK,
412 ki2c->base + KI2C_CONTROL_REG);
413 else if (i == len - 1)
414 /*
415 * switch to TX on last byte, so that reading DATA
416 * register does not trigger another read transfer
417 */
418 iowrite8(KI2C_CONTROL_MEN | KI2C_CONTROL_MSTA | KI2C_CONTROL_MTX,
419 ki2c->base + KI2C_CONTROL_REG);
420
421 /* read byte and start next transfer (if not last byte) */
422 data[i] = ioread8(ki2c->base + KI2C_DATA_REG);
423 }
424
425 return len;
426 }
427
ki2c_xfer(struct i2c_adapter * adap,struct i2c_msg msgs[],int num)428 static int ki2c_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[], int num)
429 {
430 struct ki2c *ki2c = i2c_get_adapdata(adap);
431 int ret;
432 int i;
433
434 ret = ki2c_inuse_lock(ki2c);
435 if (ret < 0)
436 return ret;
437
438 for (i = 0; i < num; i++) {
439 struct i2c_msg *m = &msgs[i];
440
441 if (i == 0)
442 ret = ki2c_start_addr(ki2c, m);
443 else
444 ret = ki2c_repstart_addr(ki2c, m);
445 if (ret < 0)
446 break;
447
448 if (m->flags & I2C_M_RD)
449 ret = ki2c_read(ki2c, m->buf, m->len);
450 else
451 ret = ki2c_write(ki2c, m->buf, m->len);
452 if (ret < 0)
453 break;
454 }
455
456 ki2c_stop(ki2c);
457
458 ki2c_inuse_unlock(ki2c);
459
460 return ret < 0 ? ret : num;
461 }
462
ki2c_unregister_devices(struct ki2c * ki2c)463 static void ki2c_unregister_devices(struct ki2c *ki2c)
464 {
465 int i;
466
467 for (i = 0; i < ki2c->client_size; i++) {
468 struct i2c_client *client = ki2c->client[i];
469
470 if (client)
471 i2c_unregister_device(client);
472 }
473 }
474
ki2c_register_devices(struct ki2c * ki2c)475 static int ki2c_register_devices(struct ki2c *ki2c)
476 {
477 struct i2c_board_info *info = ki2c->auxdev->info;
478 int i;
479
480 /* register all known I2C devices */
481 for (i = 0; i < ki2c->client_size; i++) {
482 struct i2c_client *client;
483 unsigned short const addr_list[2] = { info[i].addr,
484 I2C_CLIENT_END };
485
486 client = i2c_new_scanned_device(&ki2c->adapter, &info[i],
487 addr_list, NULL);
488 if (!IS_ERR(client)) {
489 ki2c->client[i] = client;
490 } else if (PTR_ERR(client) != -ENODEV) {
491 ki2c->client_size = i;
492 ki2c_unregister_devices(ki2c);
493
494 return PTR_ERR(client);
495 }
496 }
497
498 return 0;
499 }
500
ki2c_func(struct i2c_adapter * adap)501 static u32 ki2c_func(struct i2c_adapter *adap)
502 {
503 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
504 }
505
506 static const struct i2c_algorithm ki2c_algo = {
507 .master_xfer = ki2c_xfer,
508 .functionality = ki2c_func,
509 };
510
ki2c_probe(struct auxiliary_device * auxdev,const struct auxiliary_device_id * id)511 static int ki2c_probe(struct auxiliary_device *auxdev,
512 const struct auxiliary_device_id *id)
513 {
514 struct device *dev = &auxdev->dev;
515 struct i2c_adapter *adap;
516 struct ki2c *ki2c;
517 int ret;
518
519 ki2c = devm_kzalloc(dev, sizeof(*ki2c), GFP_KERNEL);
520 if (!ki2c)
521 return -ENOMEM;
522 ki2c->auxdev = container_of(auxdev, struct keba_i2c_auxdev, auxdev);
523 ki2c->client = devm_kcalloc(dev, ki2c->auxdev->info_size,
524 sizeof(*ki2c->client), GFP_KERNEL);
525 if (!ki2c->client)
526 return -ENOMEM;
527 ki2c->client_size = ki2c->auxdev->info_size;
528 auxiliary_set_drvdata(auxdev, ki2c);
529
530 ki2c->base = devm_ioremap_resource(dev, &ki2c->auxdev->io);
531 if (IS_ERR(ki2c->base))
532 return PTR_ERR(ki2c->base);
533
534 adap = &ki2c->adapter;
535 strscpy(adap->name, "KEBA I2C adapter", sizeof(adap->name));
536 adap->owner = THIS_MODULE;
537 adap->class = I2C_CLASS_HWMON;
538 adap->algo = &ki2c_algo;
539 adap->dev.parent = dev;
540
541 i2c_set_adapdata(adap, ki2c);
542
543 /* enable controller */
544 iowrite8(KI2C_CONTROL_MEN, ki2c->base + KI2C_CONTROL_REG);
545
546 /* reset bus before probing I2C devices */
547 ret = ki2c_reset_bus(ki2c);
548 if (ret)
549 goto out;
550
551 ret = devm_i2c_add_adapter(dev, adap);
552 if (ret) {
553 dev_err(dev, "Failed to add adapter (%d)!\n", ret);
554 goto out;
555 }
556
557 ret = ki2c_register_devices(ki2c);
558 if (ret) {
559 dev_err(dev, "Failed to register devices (%d)!\n", ret);
560 goto out;
561 }
562
563 return 0;
564
565 out:
566 iowrite8(KI2C_CONTROL_DISABLE, ki2c->base + KI2C_CONTROL_REG);
567 return ret;
568 }
569
ki2c_remove(struct auxiliary_device * auxdev)570 static void ki2c_remove(struct auxiliary_device *auxdev)
571 {
572 struct ki2c *ki2c = auxiliary_get_drvdata(auxdev);
573
574 ki2c_unregister_devices(ki2c);
575
576 /* disable controller */
577 iowrite8(KI2C_CONTROL_DISABLE, ki2c->base + KI2C_CONTROL_REG);
578
579 auxiliary_set_drvdata(auxdev, NULL);
580 }
581
582 static const struct auxiliary_device_id ki2c_devtype_aux[] = {
583 { .name = "keba.i2c" },
584 { }
585 };
586 MODULE_DEVICE_TABLE(auxiliary, ki2c_devtype_aux);
587
588 static struct auxiliary_driver ki2c_driver_aux = {
589 .name = KI2C,
590 .id_table = ki2c_devtype_aux,
591 .probe = ki2c_probe,
592 .remove = ki2c_remove,
593 };
594 module_auxiliary_driver(ki2c_driver_aux);
595
596 MODULE_AUTHOR("Gerhard Engleder <eg@keba.com>");
597 MODULE_DESCRIPTION("KEBA I2C bus controller driver");
598 MODULE_LICENSE("GPL");
599